Science.gov

Sample records for 1260-year control integration

  1. Integrated control of ectoparasites.

    PubMed

    Bram, R A

    1994-12-01

    Integrated control of ectoparasites of veterinary importance is being implemented on a limited basis at present. However, several forces are accelerating a global shift to integrated pest management (IPM). These accelerating forces include the following: reduction in new chemical compounds registered for use on livestock and poultry universal development of resistance to pesticides heightened environmental sensitivities to exclusive dependence on pesticide-based control need for strategies which increase profits for the producer while decreasing costs to the consumer. Integrated pest control requires many technologies for incorporation into specific pest management systems. Individual components include new chemicals, formulations and delivery systems, biological control, mechanical control, immunological control, genetic control, and regulatory control. Computer simulation models based on a quantitative ecological database are invaluable in devising and monitoring IPM approaches to controlling ectoparasites which affect livestock and poultry. IPM strategies have been developed for pests of veterinary importance, but eventually these must be incorporated into total livestock production systems. For implementation, a number of major impediments to IPM must be overcome. These problems can best be solved through a vigorous technology transfer programme. In addition to face-to-face meetings between producers and extension agents, the implementation of IPM can be further encouraged at producer group meetings, through education of animal health professionals, by the publication of articles in producer magazines, and by radio and television broadcasts to the agricultural sector. Research focusing on the development of cost-effective and environmentally-compatible IPM systems is necessary for future progress. PMID:7711315

  2. STOVL Control Integration Program

    NASA Technical Reports Server (NTRS)

    Weiss, C.; Mcdowell, P.; Watts, S.

    1994-01-01

    An integrated flight/propulsion control for an advanced vector thrust supersonic STOVL aircraft, was developed by Pratt & Whitney and McDonnell Douglas Aerospace East. The IFPC design was based upon the partitioning of the global requirements into flight control and propulsion control requirements. To validate the design, aircraft and engine models were also developed for use on a NASA Ames piloted simulator. Different flight control implementations, evaluated for their handling qualities, are documented in the report along with the propulsion control, engine model, and aircraft model.

  3. Integrated mobile robot control

    NASA Technical Reports Server (NTRS)

    Amidi, Omead; Thorpe, Charles

    1991-01-01

    This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.

  4. Integrated airframe propulsion control

    NASA Technical Reports Server (NTRS)

    Fennell, R. E.; Black, S. B.

    1982-01-01

    Perturbation equations which describe flight dynamics and engine operation about a given operating point are combined to form an integrated aircraft/propulsion system model. Included in the model are the dependence of aerodynamic coefficients upon atmospheric variables along with the dependence of engine variables upon flight condition and inlet performance. An off-design engine performance model is used to identify interaction parameters in the model. Inclusion of subsystem interaction effects introduces coupling between flight and propulsion variables. To analyze interaction effects on control, consideration is first given to control requirements for separate flight and engine models. For the separate airframe model, feedback control provides substantial improvement in short period damping. For the integrated system, feedback control compensates for the coupling present in the model and provides good overall system stability. However, this feedback control law involves many non-zero gains. Analysis of suboptimal control strategies indicates that performance of the closed loop integrated system can be maintained with a feedback matrix in which the number of non-zero gains is small relative to the number of components in the feedback matrix.

  5. Integrated Environmental Control Model

    Energy Science and Technology Software Center (ESTSC)

    1999-09-03

    IECM is a powerful multimedia engineering software program for simulating an integrated coal-fired power plant. It provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integratedmore » into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of dofferent costs and performance results. A Graphical Use Interface (GUI) facilitates the configuration of the technologies, entry of data, and retrieval of results.« less

  6. Integrating preconcentrator heat controller

    DOEpatents

    Bouchier, Francis A.; Arakaki, Lester H.; Varley, Eric S.

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  7. Microgravity Control Integration Process

    NASA Astrophysics Data System (ADS)

    Heese, J.; Grodsinsky, Carlos M.

    2002-01-01

    To verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks during any ISS microgravity period, a control integration process must be followed. Currently no facility racks have taken this process from start to finish. The authors are assisting the NASA Glenn Research Center (GRC) Fluids Combustion Facility (FCF) in this process. The major topics to be addressed in this paper are: 1) ISS Program Microgravity Requirements, 2) Rack Microgravity Control Approaches, 3) Integration Process Flow, 4) Required ISS Program Inputs, 5) Facility Analytical Work, 6) Facility Testing Work, 7) Facility Output to ISS Program, and 8) Verification &Validation Process. The ISS payload microgravity requirements are given in PIRN 110H to the ISS Program document SSP 57000. These requirements are based on being a "good neighbor" by limiting the payload disturbances on the environment of adjacent rack payloads during ISS microgravity periods. The ARIS PIRN, which is still pending ISS Program approval, addresses onboard rack disturbances being transmitted to offboard locations and specific ARIS items such as rack sway space and accelerometer saturation. To meet the facilities' microgravity requirements, various active or passive isolation approaches can be utilized. These include the Active Rack Isolation System (ARIS), the Passive Rack Isolation System (PaRIS), damping material inserted into the four external ARIS snubber cups, or local isolation at the individual onboard rack disturbers. ARIS utilizes a controller specifically tuned for the facility and eight pushrods, which will coordinate the racks movement in the low frequency range (.01 Hz to 2 Hz). PaRIS utilizes eight spring / dampers to isolate the rack from the ISS module structure at frequencies above 0.5 Hz. Local onboard rack isolation approaches involve the use of damping materials, isolation grommets, or wire rope isolators for

  8. Integrated control-structure design

    NASA Technical Reports Server (NTRS)

    Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.

    1991-01-01

    A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.

  9. Integrated Biological Control

    SciTech Connect

    JOHNSON, A.R.

    2002-09-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  10. Integrated Biological Control

    SciTech Connect

    JOHNSON, A.R.

    2003-10-09

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects, and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (a priori) or in response to existing contamination spread (a posteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and a priori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, a posteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  11. Integrated Control Using the SOFFT Control Structure

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  12. Integrated controls design optimization

    DOEpatents

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  13. Integrated Aeropropulsion Control System Design

    NASA Technical Reports Server (NTRS)

    Lin, C. -F.; Hurley, Francis X.; Huang, Jie; Hadaegh, F. Y.

    1996-01-01

    %T Integrated Aeropropulsion Control System Design%A C-F. Lin%A Francis X. Hurley%A Jie Huang%A F. Y. Hadaegh%J International Conference on Control and Information(psi)995%C Hong Kong%D June 1995%K aeropropulsion, control, system%U http://jpltrs.jpl.nasa.gov/1995/95-0658.pdfAn integrated intelligent control approach is proposed to design a high performance control system for aeropropulsion systems based on advanced sensor processing, nonlinear control and neural fuzzy control integration. Our approach features the following innovations:??e complexity and uncertainty issues are addressed via the distributed parallel processing, learning, and online reoptimization properties of neural networks.??e nonlinear dynamics and the severe coupling can be naturally incorporated into the design framework.??e knowledge base and decision making logic furnished by fuzzy systems leads to a human intelligence enhanced control scheme.In addition, fault tolerance, health monitoring and reconfigurable control strategies will be accommodated by this approach to ensure stability, graceful degradation and reoptimization in the case of failures, malfunctions and damage.!.

  14. INTEGRATED WEED CONTROL IN MAIZE.

    PubMed

    Latré, J; Dewitte, K; Derycke, V; De Roo, B; Haesaert, G

    2015-01-01

    Integrated pest management has been implemented as a general practice by EU legislation. As weed control actually is the most important crop protection measure in maize for Western Europe, the new legislation will have its impact. The question is of course which systems can be successfully implemented in practice with respect to labour efficiency and economical parameters. During 3 successive growing seasons (2007, 2008, 2009) weed control in maize was evaluated, the main focus was put on different techniques of integrated weed control and was compared with chemical weed control. Additionally, during 4 successive growing seasons (2011, 2012, 2013 and 2014) two objects based on integrated weed control and two objects based on mechanical weed control were compared to about twenty different objects of conventional chemical weed control. One of the objects based on mechanical weed control consisted of treatment with the flex-tine harrow before and after emergence in combination with chemical weed control at a reduced rate in 3-4 leave stage. The second one consisted of broadcast mechanical treatments before and after emergence followed by a final in-row application of herbicides and an inter-row cultivation at 6-7(8) leave stage. All trials were conducted on the Experimental farm of Bottelare HoGent-UGent on a sandy loam soil. Maize was growing in 1/3 crop rotation. The effect on weed growth as well as the economic impact of the different applications was evaluated. Combining chemical and mechanical weed control is a possible option in conventional farming but the disadvantages must be taken into account. A better planned weed control based on the real present weed-population in combination with a carefully thought-out choice of herbicides should also be considered as an IPM--approach. PMID:27145588

  15. Integrated control system and method

    SciTech Connect

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  16. Integrated Transmission and Distribution Control

    SciTech Connect

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment

  17. Preventing Integrator Windup In A Control System

    NASA Technical Reports Server (NTRS)

    Kaminer, Isaac

    1992-01-01

    Design concept for control system addresses how to prevent control inputs to plant from exceeding electrical limits imposed by mechanical limits of control actuators in plant, and prevent windup in integrators in control system. Concept consists of two parts. First, to rearrange terms of control equation to move integrators into output path of control system. Second, involves limiting inputs to integrators when one control input of plant reaches its limit. Concept applicable to control systems typical of aircraft autopilot systems.

  18. Integrity in flight control systems

    NASA Technical Reports Server (NTRS)

    Kurzhals, P. R.; Deloach, R.

    1977-01-01

    In connection with advances in technology, mainly in the electronic area, aircraft flight control applications have evolved from simple pilot-relief autopilots to flight-critical and redundant fly-by-wire and active control systems. For flight-critical implementations which required accommodation of inflight failures, additional levels of redundancy were incorporated to provide fail-safe and fail-operative performance. The current status of flight control systems reliability is examined and high-reliability approaches are discussed. Attention is given to the design of ring laser gyros and magnetohydrodynamic rate sensors, redundancy configurations for component failure protection, improvements of hydraulic actuators made on the component level, integrated actuators, problems of software reliability, lightning considerations, and failure detection methods for component and system failures.

  19. The integrated environmental control model

    SciTech Connect

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R.

    1995-11-01

    The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.

  20. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  1. HSCT integrated propulsion control issues

    NASA Technical Reports Server (NTRS)

    Carlin, Christopher M.

    1992-01-01

    The propulsion control system affects the economics of the HSCT through the mechanisms indicated. Weight reduction is paramount in an aircraft of this type. Significant reductions are possible relative to the SST or even current technology if improvements are made in areas such as high temperature electronics. Dependability is an increasingly important parameter in all aircraft, but the higher capital cost of the HSCT makes it doubly important. Conversely the more difficult HSCT design problem makes it more difficult to achieve. Integration of propulsion controls will make it possible to improve both the static and dynamic performance of the HSCT propulsion system. Noise and emissions requirements may introduce novel control system requirements such as automatically programmed takeoff thrust for noise abatement. Control system development technology is evolving. For HSCT, highly automated and thoroughly validated tools will be required to reliably achieve desired system performance at introduction, and to reduce development costs. A technology plan was developed to prepare for HSCT development. This presentation addresses the portion of the plan required to demonstrate technology readiness for the HSCT in the late 1990's rather than the technology development currently in progress.

  2. Integrated Approach to Malaria Control

    PubMed Central

    Shiff, Clive

    2002-01-01

    Malaria draws global attention in a cyclic manner, with interest and associated financing waxing and waning according to political and humanitarian concerns. Currently we are on an upswing, which should be carefully developed. Malaria parasites have been eliminated from Europe and North America through the use of residual insecticides and manipulation of environmental and ecological characteristics; however, in many tropical and some temperate areas the incidence of disease is increasing dramatically. Much of this increase results from a breakdown of effective control methods developed and implemented in the 1960s, but it has also occurred because of a lack of trained scientists and control specialists who live and work in the areas of endemic infection. Add to this the widespread resistance to the most effective antimalarial drug, chloroquine, developing resistance to other first-line drugs such as sulfadoxine-pyrimethamine, and resistance of certain vector species of mosquito to some of the previously effective insecticides and we have a crisis situation. Vaccine research has proceeded for over 30 years, but as yet there is no effective product, although research continues in many promising areas. A global strategy for malaria control has been accepted, but there are critics who suggest that the single strategy cannot confront the wide range of conditions in which malaria exists and that reliance on chemotherapy without proper control of drug usage and diagnosis will select for drug resistant parasites, thus exacerbating the problem. An integrated approach to control using vector control strategies based on the biology of the mosquito, the epidemiology of the parasite, and human behavior patterns is needed to prevent continued upsurge in malaria in the endemic areas. PMID:11932233

  3. Perturbation analysis of optimal integral controls

    NASA Technical Reports Server (NTRS)

    Slater, G. L.

    1984-01-01

    The application of linear optimal control to the design of systems with integral control action on specified outputs is considered. Using integral terms in a quadratic performance index, an asymptotic analysis is used to determine the effect of variable quadratic weights on the eigenvalues and eigenvectors of the closed loop system. It is shown that for small integral terms the placement of integrator poles and gain calculation can be effectively decoupled from placement of the primary system eigenvalues. This technique is applied to the design of integral controls for a STOL aircraft outer loop guidance system.

  4. Open architecture in control system integration

    SciTech Connect

    Wysor, R.W.; Carnal, C.L.; Igou, R.E.

    1993-09-01

    Open architecture offers the manufacturing community a number of advantages in the integration of future machine control systems. Among these advantages is the ability to upgrade and take advantage of innovative new control strategies. A key enabling technology in open architecture control systems is the digital signal processor (DSP). DSPs can be used to provide a complete control system or can enhance the computational capability of larger control systems. The use of DSPs in the integration of open architecture control systems is discussed, including their impact on reliability and control system functionality. In addition, the role of DSPs in control system architecture is addressed.

  5. Integrated lift/drag controller for aircraft

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  6. Tilt/Integral/Derivative Compensators For Controllers

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.

    1995-01-01

    Tilt/integral/derivative (TID) compensators for tunable feedback control systems offer advantages over proportional/integral/derivative compensators. Designed and adjusted more easily, and made to reject disturbances more strongly and less sensitive to variations in parameters of controlled system.

  7. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kaelbling, Leslie Pack

    1989-01-01

    Artificial intelligence research on planning is concerned with designing control systems that choose actions by manipulating explicit descriptions of the world state, the goal to be achieved, and the effects of elementary operations available to the system. Because planning shifts much of the burden of reasoning to the machine, it holds great appeal as a high-level programming method. Experience shows, however, that it cannot be used indiscriminately because even moderately rich languages for describing goals, states, and the elementary operators lead to computational inefficiencies that render the approach unsuitable for realistic applications. This inadequacy has spawned a recent wave of research on reactive control or situated activity in which control systems are modeled as reacting directly to the current situation rather than as reasoning about the future effects of alternative action sequences. While this research has confronted the issue of run-time tractability head on, in many cases it has done so by sacrificing the advantages of declarative planning techniques. Ways in which the two approaches can be unified are discussed. The authors begin by modeling reactive control systems as state machines that map a stream of sensory inputs to a stream of control outputs. These machines can be decomposed into two continuously active subsystems: the planner and the execution module. The planner computes a plan, which can be seen as a set of bits that control the behavior of the execution module. An important element of this work is the formulation of a precise semantic interpretation for the inputs and outputs of the planning system. They show that the distinction between planned and reactive behavior is largely in the eye of the beholder: systems that seem to compute explicit plans can be redescribed in situation-action terms and vice versa. They also discuss practical programming techniques that allow the advantages of declarative programming and guaranteed

  8. Integrated Control of Fire Blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Northwest United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of the pathogen arose. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic, but it is considerably less effective than streptomycin when the latter was...

  9. INTEGRATING DESALINATION AND AGRICULTURAL SALINITY CONTROL ALTERNATIVES

    EPA Science Inventory

    The cost-effectiveness relationships for various agricultural and desalination alternatives for controlling salinity in irrigation return flows are developed. Selection of optimal salinity management strategies on a river basin scale is described as a problem of integrating optim...

  10. Integrating planning and reactive control

    NASA Astrophysics Data System (ADS)

    Wilkins, David E.; Myers, Karen L.

    1994-10-01

    Our research is developing persistent agents that can achieve complex tasks in dynamic and uncertain environments. We refer to such agents as taskable, reactive agents. An agent of this type requires a number of capabilities. The ability to execute complex tasks necessitates the use of strategic plans for accomplishing tasks; hence, the agent must be able to synthesize new plans at run time. The dynamic nature of the environment requires that the agent be able to deal with unpredictable changes in its world. As such, agents must be able to react to unanticipated events by taking appropriate actions in a timely manner, while continuing activities that support current goals. The unpredictability of the world could lead to failure of plans generated for individual tasks. Agents must have the ability to recover from failures by adapting their activities to the new situation, or replanning if the world changes sufficiently. Finally, the agent should be able to perform in the face of uncertainty. The Cypress system, described here, provides a framework for creating taskable, reactive agents. Several features distinguish our approach: (1) the generation and execution of complex plans with parallel actions; (2) the integration of goal-driven and event driven activities during execution; (3) the use of evidential reasoning for dealing with uncertainty; and (4) the use of replanning to handle run-time execution problems. Our model for a taskable, reactive agent has two main intelligent components, an executor and a planner. The two components share a library of possible actions that the system can take. The library encompasses a full range of action representations, including plans, planning operators, and executable procedures such as predefined standard operating procedures (SOP's). These three classes of actions span multiple levels of abstraction.

  11. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Wilkins, David E.; Myers, Karen L.

    1994-01-01

    Our research is developing persistent agents that can achieve complex tasks in dynamic and uncertain environments. We refer to such agents as taskable, reactive agents. An agent of this type requires a number of capabilities. The ability to execute complex tasks necessitates the use of strategic plans for accomplishing tasks; hence, the agent must be able to synthesize new plans at run time. The dynamic nature of the environment requires that the agent be able to deal with unpredictable changes in its world. As such, agents must be able to react to unanticipated events by taking appropriate actions in a timely manner, while continuing activities that support current goals. The unpredictability of the world could lead to failure of plans generated for individual tasks. Agents must have the ability to recover from failures by adapting their activities to the new situation, or replanning if the world changes sufficiently. Finally, the agent should be able to perform in the face of uncertainty. The Cypress system, described here, provides a framework for creating taskable, reactive agents. Several features distinguish our approach: (1) the generation and execution of complex plans with parallel actions; (2) the integration of goal-driven and event driven activities during execution; (3) the use of evidential reasoning for dealing with uncertainty; and (4) the use of replanning to handle run-time execution problems. Our model for a taskable, reactive agent has two main intelligent components, an executor and a planner. The two components share a library of possible actions that the system can take. The library encompasses a full range of action representations, including plans, planning operators, and executable procedures such as predefined standard operating procedures (SOP's). These three classes of actions span multiple levels of abstraction.

  12. Bay integrated power system control and diagnostics

    SciTech Connect

    Beierl, O.

    1996-03-01

    The paper presents new concepts for control and diagnostic systems for high voltage switchgear (123-kV and above). Air insulated and gas insulated (SF6) switchgear is considered. The new aspect is the integration of monitoring and diagnostic concepts in digital control and protection systems. Communication concepts for sensors and actuators with digital process busses at bay level are discussed. The paper covers integration concepts for circuit breaker monitoring (AIS, GIS) and for GIS the integration of on-line partial discharge measurement, on-line arc detection and on-line monitoring of the gas conditions. Finally, the advantages, disadvantages and the applicability of integrated diagnostic and control concepts are discussed by means of technical and commercial aspects.

  13. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  14. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    D.C. Randle

    2000-01-07

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I&C) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I&C and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I&C systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I&C systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored, controlled, and

  15. Integrating Software Modules For Robot Control

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.

    1993-01-01

    Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.

  16. Integrated restructurable flight control system demonstration results

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.; Hsu, John Y.

    1987-01-01

    The purpose of this study was to examine the complementary capabilities of several restructurable flight control system (RFCS) concepts through the integration of these technologies into a complete system. Performance issues were addressed through a re-examination of RFCS functional requirements, and through a qualitative analysis of the design issues that, if properly addressed during integration, will lead to the highest possible degree of fault-tolerant performance. Software developed under previous phases of this contract and under NAS1-18004 was modified and integrated into a complete RFCS subroutine for NASA's B-737 simulation. The integration of these modules involved the development of methods for dealing with the mismatch between the outputs of the failure detection module and the input requirements of the automatic control system redesign module. The performance of this demonstration system was examined through extensive simulation trials.

  17. NIF Integrated Computer Controls System Description

    SciTech Connect

    VanArsdall, P.

    1998-01-26

    This System Description introduces the NIF Integrated Computer Control System (ICCS). The architecture is sufficiently abstract to allow the construction of many similar applications from a common framework. As discussed below, over twenty software applications derived from the framework comprise the NIF control system. This document lays the essential foundation for understanding the ICCS architecture. The NIF design effort is motivated by the magnitude of the task. Figure 1 shows a cut-away rendition of the coliseum-sized facility. The NIF requires integration of about 40,000 atypical control points, must be highly automated and robust, and will operate continuously around the clock. The control system coordinates several experimental cycles concurrently, each at different stages of completion. Furthermore, facilities such as the NIF represent major capital investments that will be operated, maintained, and upgraded for decades. The computers, control subsystems, and functionality must be relatively easy to extend or replace periodically with newer technology.

  18. Optimal integral controller with sensor failure accommodation

    NASA Technical Reports Server (NTRS)

    Alberts, T.; Houlihan, T.

    1989-01-01

    An Optimal Integral Controller that readily accommodates Sensor Failure - without resorting to (Kalman) filter or observer generation - has been designed. The system is based on Navy-sponsored research for the control of high performance aircraft. In conjunction with a NASA developed Numerical Optimization Code, the Integral Feedback Controller will provide optimal system response even in the case of incomplete state feedback. Hence, the need for costly replication of plant sensors is avoided since failure accommodation is effected by system software reconfiguration. The control design has been applied to a particularly ill-behaved, third-order system. Dominant-root design in the classical sense produced an almost 100 percent overshoot for the third-order system response. An application of the newly-developed Optimal Integral Controller - assuming all state information available - produces a response with no overshoot. A further application of the controller design - assuming a one-third sensor failure scenario - produced a slight overshoot response that still preserved the steady state time-point of the full-state feedback response. The control design should have wide application in space systems.

  19. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    SciTech Connect

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  20. Integrated Neural Flight and Propulsion Control System

    NASA Technical Reports Server (NTRS)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  1. Integrated computer control system architectural overview

    SciTech Connect

    Van Arsdall, P.

    1997-06-18

    This overview introduces the NIF Integrated Control System (ICCS) architecture. The design is abstract to allow the construction of many similar applications from a common framework. This summary lays the essential foundation for understanding the model-based engineering approach used to execute the design.

  2. Integrated flight/propulsion control - Adaptive engine control system mode

    NASA Technical Reports Server (NTRS)

    Yonke, W. A.; Terrell, L. A.; Meyers, L. P.

    1985-01-01

    The adaptive engine control system mode (ADECS) which is developed and tested on an F-15 aircraft with PW1128 engines, using the NASA sponsored highly integrated digital electronic control program, is examined. The operation of the ADECS mode, as well as the basic control logic, the avionic architecture, and the airframe/engine interface are described. By increasing engine pressure ratio (EPR) additional thrust is obtained at intermediate power and above. To modulate the amount of EPR uptrim and to prevent engine stall, information from the flight control system is used. The performance benefits, anticipated from control integration are shown for a range of flight conditions and power settings. It is found that at higher altitudes, the ADECS mode can increase thrust as much as 12 percent, which is used for improved acceleration, improved turn rate, or sustained turn angle.

  3. The integration of two control systems

    SciTech Connect

    Bickley, M; White, K

    1995-01-01

    During the past year the Continuous Electron Beam Accelerator Facility (CEBAF) has installed a new machine control system, based on the Experimental Physics and Industrial Control System (EPICS). The migration from CEBAF`s old control system, Thaumaturgic Automated Control Logic (TACL), had to be done concurrently with commissioning of the CEBAF accelerator. The smooth transition to EPICS was made possible by the similarity of the control systems` topological design and network communication protocol. Both systems have operator display computer nodes which are decoupled from the data acquisition and control nodes. The communication between display and control nodes of both control systems is based on making named requests for data, with data being passed on change of value. Due to TACL`s use of a central communications process, it was possible to integrate both control systems` network communications in that process. This in turn meant that CEBAF did not require changes to any other software in order to support network communication between TACL and EPICS. CEBAF implemented the machine`s control under EPICS in an evolutionary, controlled manner. 4 refs., 3 figs.

  4. The integration of two control systems

    SciTech Connect

    Bickley, M.; White, K.

    1995-12-31

    During the past year the Continuous Electron Beam Accelerator Facility (CEBAF) has installed a new machine control system, based on the Experimental Physics and Industrial Control System (EPICS). The migration from CEBAF`s old control system, Thaumaturgic Automated Control Logic (TACL), had to be done concurrently with commissioning of the CEBAF accelerator. The smooth transition to EPICS was made possible by the similarity of the control systems` topological design and network communication protocol. Both systems have operator display computer nodes which are decoupled from the data acquisition and control nodes. The communication between display and control nodes of both control systems is based on making named requests for data, with data being passed on change of value. Due to TACL`s use of a central communications process, it was possible to integrate both control systems` network communications in that process. This in turn meant that CEBAF did not require changes to any other software in order to support network communication between TACL and EPICS. CEBAF implemented the machine`s control under EPICS in an evolutionary, controlled manner. 4 refs., 3 figs.

  5. Controller partitioning for integrated flight/propulsion control implementation

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1993-01-01

    The notion of partitioning a centralized controller into a decentralized, hierarchical structure suitable for integrated flight/propulsion control (IFPC) implementation is discussed. A systematic procedure is developed for determining partitioned airframe and engine subsystem controllers (subcontrollers), with the desired interconnection structure, that approximate the closed-loop performance and robustness characteristics of a given centralized controller. The procedure is demonstrated by application to IFPC design for a Short Take-Off and Vertical Landing (STOVL) aircraft in the landing approach to hover transition flight phase.

  6. Integrated communication and control systems. I - Analysis

    NASA Technical Reports Server (NTRS)

    Halevi, Yoram; Ray, Asok

    1988-01-01

    The paper presents the results of an ICCS analysis focusing on discrete-time control systems subject to time-varying delays. The present analytical technique is applicable to integrated dynamic systems such as those encountered in advanced aircraft, spacecraft, and the real-time control of robots and machine tools via a high-speed network within an autonomous manufacturing environment. The significance of data latency and missynchronization between individual system components in ICCS networks is discussed in view of the time-varying delays.

  7. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1994-01-01

    This report documents the activities and research results obtained under a grant (NAG3-998) from the NASA Lewis Research Center. The focus of the research was the investigation of dynamic interactions between airframe and engines for advanced ASTOVL aircraft configurations, and the analysis of the implications of these interactions on the stability and performance of the airframe and engine control systems. In addition, the need for integrated flight and propulsion control for such aircraft was addressed. The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multi variable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important non-linear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multi variable techniques, included model-following formulations of LQG and/or H (infinity) methods showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods.

  8. Integrated Bulding Heating, Cooling and Ventilation Control

    NASA Astrophysics Data System (ADS)

    Dong, Bing

    Current research studies show that building heating, cooling and ventilation energy consumption account for nearly 40% of the total building energy use in the U.S. The potential for saving energy through building control systems varies from 5% to 20% based on recent market surveys. In addition, building control affects environmental performances such as thermal, visual, air quality, etc., and occupancy such as working productivity and comfort. Building control has been proven to be important both in design and operation stages. Building control design and operation need consistent and reliable static and dynamic information from multiple resources. Static information includes building geometry, construction and HVAC equipment. Dynamic information includes zone environmental performance, occupancy and outside weather information during operation. At the same time, model-based predicted control can help to optimize energy use while maintaining indoor set-point temperature when occupied. Unfortunately, several issues in the current approach of building control design and operation impede achieving this goal. These issues include: a) dynamic information data such as real-time on-site weather (e.g., temperature, wind speed and solar radiation) and occupancy (number of occupants and occupancy duration in the space) are not readily available; b) a comprehensive building energy model is not fully integrated into advanced control for accuracy and robustness; c) real-time implementation of indoor air temperature control are rare. This dissertation aims to investigate and solve these issues based on an integrated building control approach. This dissertation introduces and illustrates a method for integrated building heating, cooling and ventilation control to reduce energy consumption and maintain indoor temperature set-point, based on the prediction of occupant behavior patterns and weather conditions. Advanced machine learning methods including Adaptive Gaussian Process

  9. Integrated Attitude Control Based on Momentum Management for Space Station

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Ni

    An integrated attitude control for attitude control, momentum management and power storage is proposed as a momentum-management-based IPACS. The integrated attitude control combines ACMM and IPACS to guarantees the momentum of CMGs and flywheels within acceptable limits as well as satisfying the requirements of attitude control and power storage. The later objective is to testify the foundation of the integrated attitude control by the fact that the momentum management of the integrated attitude control is able to keep the momentum exchange actuators including flywheels and VSCMG out of singularity. Finally, the space station attitude control task during assembly process is illustrated to testify the effectiveness of the integrated attitude control.

  10. Development of a Residential Integrated Ventilation Controller

    SciTech Connect

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  11. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  12. National Ignition Facility integrated computer control system

    NASA Astrophysics Data System (ADS)

    Van Arsdall, Paul J.; Bettenhausen, R. C.; Holloway, Frederick W.; Saroyan, R. A.; Woodruff, J. P.

    1999-07-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control system. The framework provides an open, extensive architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. THe ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensor to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance.

  13. National Ignition Facility integrated computer control system

    SciTech Connect

    Van Arsdall, P.J., LLNL

    1998-06-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control systems. The framework provides an open, extensible architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. The ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensors to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance.

  14. Integrated tools for control-system analysis

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Proffitt, Melissa S.; Clark, David R.

    1989-01-01

    The basic functions embedded within a user friendly software package (MATRIXx) are used to provide a high level systems approach to the analysis of linear control systems. Various control system analysis configurations are assembled automatically to minimize the amount of work by the user. Interactive decision making is incorporated via menu options and at selected points, such as in the plotting section, by inputting data. There are five evaluations such as the singular value robustness test, singular value loop transfer frequency response, Bode frequency response, steady-state covariance analysis, and closed-loop eigenvalues. Another section describes time response simulations. A time response for random white noise disturbance is available. The configurations and key equations used for each type of analysis, the restrictions that apply, the type of data required, and an example problem are described. One approach for integrating the design and analysis tools is also presented.

  15. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    SciTech Connect

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  16. Using Pseudomonas spp. for Integrated Biological Control.

    PubMed

    Stockwell, Virginia O; Stack, James P

    2007-02-01

    ABSTRACT Pseudomonas spp. have been studied for decades as model organisms for biological control of plant disease. Currently, there are three commercial formulations of pseudomonads registered with the U.S. Environmental Protection Agency for plant disease suppression, Bio-Save 10 LP, Bio-Save 11 LP, and BlightBan A506. Bio-Save 10 LP and Bio-Save 11 LP, products of Jet Harvest Solutions, Longwood, FL, contain Pseudomonas syringae strains ESC-10 and ESC-11, respectively. These products are applied in packinghouses to prevent postharvest fungal diseases during storage of citrus, pome, stone fruits, and potatoes. BlightBan A506, produced by NuFarm Americas, Burr Ridge, IL, contains P. fluorescens strain A506. BlightBan A506 is applied primarily to pear and apple trees during bloom to suppress the bacterial disease fire blight. Combining BlightBan A506 with the antibiotic streptomycin improves control of fire blight, even in areas with streptomycin-resistant populations of the pathogen. BlightBan A506 also may reduce fruit russet and mild frost injury. These biocontrol products consisting of Pseudomonas spp. provide moderate to excellent efficacy against multiple production constraints, are relatively easy to apply, and they can be integrated with conventional products for disease control. These characteristics will contribute to the adoption of these products by growers and packinghouses. PMID:18944382

  17. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1995-01-01

    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  18. The CALIPSO Integrated Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth's cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system's operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system's survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  19. Control of polarization in integrated optics

    NASA Astrophysics Data System (ADS)

    Koonath, Prakash Vijayan

    Integrated optical devices have attracted considerable attention in recent years with the rapid progress in optical communications, and the emergence of dense wavelength division multiplexing systems. The control over the state of polarization of the optical signal is an important issue that needs to be addressed due to the structure-induced anisotropy in these devices. In this thesis, two different types of integrated optical devices, with distinct approaches to address their polarization sensitivity, have been explored. The first device investigated was a semiconductor optical amplifier based on multi-quantum wells, where the gain depends on the state of polarization of the optical signal. To realize amplifiers with polarization insensitive gain, tensile-strained quantum wells structures were utilized as active regions in these devices. Optical gain calculations were performed using k.p method to calculate the tensile stress that needs to be introduced for gain equalization. These devices were then fabricated and tested to demonstrate the concept of gain equalization in InGaAsP/InP based material system at 1300 nm wavelength window and in AlInGaAs/InP based material system at both 1300 nm and 1550 run wavelength windows. In the second device, polarization sensitivity of integrated optical devices, combined with the linear electro-optic effect in III-V semiconductor materials, is exploited to manipulate the state of polarization of the optical signal. A phase modulator, combined with a TE <--> TM converter, may be used to obtain a device that converts the arbitrary elliptical input state of polarization to either the TE or the TM mode of the structure. Finite element methods have been developed to model the propagation and loss characteristics, and calculate the switching voltages of these devices based on AlGaAs/GaAs material system. The fabricated devices were then investigated for their I-V characteristics and propagations losses with

  20. Sensorimotor integration in human postural control

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2002-01-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an

  1. Analysis of integral controls in linear quadratic regulator design

    NASA Technical Reports Server (NTRS)

    Slater, G. L.

    1979-01-01

    The application of linear optimal control to the design of systems with integral control action on specified outputs is considered. Using integral terms in a quadratic performance index, an asymptotic analysis is used to determine the effect of variable quadratic weights on the eigenvalues and eigenvectors of the closed loop system. It is shown that for small integral terms the placement of integrator poles and gain calculation can be effectively decoupled from placement of the primary system eigenvalues. This technique is applied to the design of integral controls for a STOL aircraft outer loop guidance system.

  2. Experimental Validation of an Integrated Controls-Structures Design Methodology

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Walz, Joseph E.

    1996-01-01

    The first experimental validation of an integrated controls-structures design methodology for a class of large order, flexible space structures is described. Integrated redesign of the controls-structures-interaction evolutionary model, a laboratory testbed at NASA Langley, was described earlier. The redesigned structure was fabricated, assembled in the laboratory, and experimentally tested against the original structure. Experimental results indicate that the structure redesigned using the integrated design methodology requires significantly less average control power than the nominal structure with control-optimized designs, while maintaining the required line-of-sight pointing performance. Thus, the superiority of the integrated design methodology over the conventional design approach is experimentally demonstrated. Furthermore, amenability of the integrated design structure to other control strategies is evaluated, both analytically and experimentally. Using Linear-Quadratic-Guassian optimal dissipative controllers, it is observed that the redesigned structure leads to significantly improved performance with alternate controllers as well.

  3. The entropy reduction engine: Integrating planning, scheduling, and control

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John L.; Kedar, Smadar T.

    1991-01-01

    The Entropy Reduction Engine, an architecture for the integration of planning, scheduling, and control, is described. The architecture is motivated, presented, and analyzed in terms of its different components; namely, problem reduction, temporal projection, and situated control rule execution. Experience with this architecture has motivated the recent integration of learning. The learning methods are described along with their impact on architecture performance.

  4. Integrated aerodynamic-structural-control wing design

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, M.; Haftka, R. T.; Grossman, B.; Unger, E. R.

    1992-01-01

    The aerodynamic-structural-control design of a forward-swept composite wing for a high subsonic transport aircraft is considered. The structural analysis is based on a finite-element method. The aerodynamic calculations are based on a vortex-lattice method, and the control calculations are based on an output feedback control. The wing is designed for minimum weight subject to structural, performance/aerodynamic and control constraints. Efficient methods are used to calculate the control-deflection and control-effectiveness sensitivities which appear as second-order derivatives in the control constraint equations. To suppress the aeroelastic divergence of the forward-swept wing, and to reduce the gross weight of the design aircraft, two separate cases are studied: (1) combined application of aeroelastic tailoring and active controls; and (2) aeroelastic tailoring alone. The results of this study indicated that, for this particular example, aeroelastic tailoring is sufficient for suppressing the aeroelastic divergence, and the use of active controls was not necessary.

  5. Integrated structure/control law design by multilevel optimization

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Schmidt, David K.

    1989-01-01

    A new approach to integrated structure/control law design based on multilevel optimization is presented. This new approach is applicable to aircraft and spacecraft and allows for the independent design of the structure and control law. Integration of the designs is achieved through use of an upper level coordination problem formulation within the multilevel optimization framework. The method requires the use of structure and control law design sensitivity information. A general multilevel structure/control law design problem formulation is given, and the use of Linear Quadratic Gaussian (LQG) control law design and design sensitivity methods within the formulation is illustrated. Results of three simple integrated structure/control law design examples are presented. These results show the capability of structure and control law design tradeoffs to improve controlled system performance within the multilevel approach.

  6. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  7. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  8. Variable Structure PID Control to Prevent Integrator Windup

    NASA Technical Reports Server (NTRS)

    Hall, C. E.; Hodel, A. S.; Hung, J. Y.

    1999-01-01

    PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.

  9. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    SciTech Connect

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  10. Development and Integration of Control System Models

    NASA Technical Reports Server (NTRS)

    Kim, Young K.

    1998-01-01

    The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.

  11. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.

  12. Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.

    1990-01-01

    Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.

  13. Integrated low power digital gyro control electronics

    NASA Technical Reports Server (NTRS)

    M'Closkey, Robert (Inventor); Challoner, A. Dorian (Inventor); Grayver, Eugene (Inventor); Hayworth, Ken J. (Inventor)

    2005-01-01

    Embodiments of the invention generally encompass a digital, application specific integrated circuit (ASIC) has been designed to perform excitation of a selected mode within a vibratory rate gyroscope, damping, or force-rebalance, of other modes within the sensor, and signal demodulation of the in-phase and quadrature components of the signal containing the angular rate information. The ASIC filters dedicated to each channel may be individually programmed to accommodate different rate sensor designs/technology or variations within the same class of sensors. The ASIC architecture employs a low-power design, making the ASIC, particularly suitable for use in power-sensitive applications.

  14. Design of a multivariable integrated control for a supersonic propulsion system. [variable stream control engine

    NASA Technical Reports Server (NTRS)

    Beattie, E. C.

    1980-01-01

    An inlet/engine/nozzle integrated control mode for the propulsion system of an advanced supersonic commercial aircraft was studied. Results show that integration of these control functions can result in both operational and performance benefits for the propulsion system. For example, this integrated control mode may make it possible to minimize the use of inlet bypass doors for shock position control. This may be of benefit to the aircraft as a result of minimizing: (1) bypass bleed drag effects; (2) perturbations to the aircraft resulting from the side thrust effect of the bypass bleeds; and (3) potential unstarts of the inlet. A conceptual integrated control mode was developed which makes use of many cross coupling paths between inlet and engine control variables and inlet and engine sensed variables. A multivariable control design technique based upon linear quadratic regulator theory was applied to designing the feedback gains for this control to allow a simulation evaluation of the benefits of the integrated control mode.

  15. Compact integrated piezoelectric vibration control package

    NASA Astrophysics Data System (ADS)

    Spangler, Ronald L., Jr.; Russo, Farla M.; Palombo, Daniel A.

    1997-06-01

    Using recent advances in small, surface-mount electronics, coupled with proprietary packaging techniques, ACX has developed the SmartPackTM. The design and realization of this self-contained, active piezoelectric control device are described in this paper. The SmartPack uses a local control architecture, consisting of two parallel, analog, positive position feedback (PPF) filters, along with nearly collocated piezo strain sensors and actuators, to control multiple structural vibration modes. A key issue is the management of waste heat from the power electronics required to drive the piezo actuators. This issue is addressed through thermal/electrical modeling of the packaged amplifier. The effectiveness of the device is demonstrated through multi-mode active damping on a 24 inch square plate.

  16. Integrated control system for low-energy buildings

    SciTech Connect

    Lute, P.J.; van Paassen, D.H.C. )

    1990-01-01

    This paper presents a proposal for an integrated system for the control of lighting, ventilation, and indoor temperature of low-energy buildings. It also presents results of simulations with the proposed control system. The low energy consumption is achieved by using the outdoor climate as much as possible. The building has components, such as shading devices and ventilation windows., to regulate the influence of the outdoor climate on the indoor climate. These components have to be controlled to achieve an acceptable indoor climate throughout the year. Simulations have been done for two types of climate, moderate (Uccle, Belgium) and warm (Carpentras, France). The proposed integrated control system is compared with an on/off control system. The conclusion is that the integrated control system saves energy and provides a good indoor climate. In moderate climates, this can almost be achieved with only passive components. In warmer climates, overheating occurs during the summer because of the outdoor climate.

  17. Integrated alarm annunciation and entry control systems -- Survey results

    SciTech Connect

    Clever, J.J.; Arakaki, L.H.; Monaco, F.M.; Juarros, L.E.; Quintana, G.R.

    1993-10-01

    This report provides the results and analyses of a detailed survey undertaken in Summer 1993 to address integrated intrusion detection alarm annunciation and entry control system issues. This survey was undertaken as a first attempt toward beginning to answer questions about integrated systems and commercial capabilities to meet or partially meet US Department of Energy (DOE) site needs.

  18. Who's in Control of the Technology-Integrated School?

    ERIC Educational Resources Information Center

    Price, Betsy

    2005-01-01

    In recent years, principals have had to act as referees for a new type of match between teachers and technology staff members, affectionately known as the "techies." This time the match is for the control of the technology-integrated classroom. Creating technology-integrated classrooms often puts the interests of teachers in opposition to the…

  19. Integrated control of soilborne plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are no resistant varieties or chemical controls for the Major soilborne pathogens of wheat in the Pacific Northwest of the U.S. These diseases include Rhizoctonia root rot and bare patch (caused by R. solani and R. oryzae), Fusarium crown rot (caused by F. pseudograminearum and F. culmorum), P...

  20. Long Duration Balloon Charge Controller Stack Integration

    NASA Astrophysics Data System (ADS)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  1. Integrated Insect Control May Alter Pesticide Use Pattern

    ERIC Educational Resources Information Center

    Worthy, Ward

    1973-01-01

    Discusses the use of predators, parasites, bacteria, viruses, hormones, pheromones, and sterile-male release and insect-resistance imparting techniques in pest control. Concludes with comments from chemical pesticide companies as popular attitudes toward the integrated pest management. (CC)

  2. Integrated Power and Attitude Control System (IPACS)

    NASA Technical Reports Server (NTRS)

    Michaelis, Theodore D.

    1998-01-01

    Recent advances in materials, circuit integration and power switching have given the concept of dynamic energy and momentum storage important weight size, and operational advantages over the conventional momentum wheel-battery configuration. Simultaneous momentum and energy storage for a three axes stabilized spacecraft can be accomplished with a topology of at least four wheels where energy (a scalar) is stored or retrieved in such a manner as to keep the momentum vector invariant. This study, instead, considers the case of two counter-rotating wheels in one axis to more effectively portray the principles involved. General scalable system design equations are derived which demonstrate the role of momentum storage when combined with energy storage.

  3. Fracture control procedures for aircraft structural integrity

    NASA Technical Reports Server (NTRS)

    Wood, H. A.

    1972-01-01

    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  4. Integrated flight/propulsion control for supersonic STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Mihaloew, James R.

    1990-01-01

    A technology program to investigate integrated flight/propulsion control-system design for STOVL fighter aircraft is described. Integrated control systems being developed by U.S. industry for specific STOVL concepts are discussed. Attention is given to NASA involvement in the definition of control concepts, design-methods and flying-qualities criteria, and the evaluation of these concepts and criteria in analytical design studies, in ground-based experiments, and in flight on the Harrier V/STOL research aircraft. Initial fixed-base simulation experiments conducted for two STOVL fighter concepts are discussed. These simulations defined acceptable transition flight envelopes, determined control power used during transition and hover, and provided evaluations of the integration of the flight and propulsion controls to achieve good flying qualities throughout the low-speed flight envelope.

  5. System Engineering and Integration of Controls for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  6. STOVL aircraft simulation for integrated flight and propulsion control research

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Drummond, Colin K.

    1989-01-01

    The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.

  7. Integrated management of Scotch broom (Cytisus scoparius) using biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated weed management (IWM) strategies are being advocated and employed to control invasive plants species. In this study, we compared the impact of three management strategies [biological control alone (BC), BC with fire (BC + F), and BC with mowing (BC + M)] to determine if combining fire or...

  8. Integration of access control and ancillary information systems

    SciTech Connect

    Rodriguez, J.R.; Ahrens, J.S.

    1995-07-01

    The DOE has identified the Lawrence Livermore National Laboratory ARGUS system as the standard entry control system for the DOE Complex. ARGUS integrates several key functions, specifically, badging, entry control, and verification of clearance status. Not all sites need or can afford an ARGUS system. Such sites are therefore limited to commercial equipment which provide ARGUS like features. In this project an alternative way to integrate commercial equipment into an integrated system to include badging, access control, property control, and automated verification of clearance status has been investigated. Such a system would provide smaller sites the same functionality as is provided by ARGUS. Further, it would allow sites to fully participate in the DOE`s concept of Complex wide access control. This multi-year task is comprised of three phases. Phase 1, system requirements and definitions, and phase 2, software and hardware development, were completed during fiscal year 1994. This report covers these two phases and the demonstration system which resulted. Phase three would employ the demonstration system to evaluate system performance, identify operational limits and to integrate additional features. The demonstration system includes a badging station, a database server, a managers workstation, an entry control system, and a property protection system. The functions have been integrated through the use of custom interfaces and operator screens which greatly increase ease of use.

  9. Rotorcraft flight-propulsion control integration: An eclectic design concept

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. C. G.

    1988-01-01

    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

  10. Impact of active controls technology on structural integrity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  11. Propulsion/flight control integration technology (PROFIT) software system definition

    NASA Technical Reports Server (NTRS)

    Carlin, C. M.; Hastings, W. J.

    1978-01-01

    The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.

  12. Integrated Control Modeling for Propulsion Systems Using NPSS

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.

  13. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  14. Integrated measure and control system for textile machinery

    NASA Astrophysics Data System (ADS)

    Liu, Yuantao; Zhao, Jinzhi; Zhao, Zexiang

    2010-12-01

    In this paper, textile mechanical drive control is researched. Textile machinery integrated measure and control system is established. The system is composed of micro-computer, PLC, transducer, implement device, all kinds of detective components and industrial Ethernet etc. Technology of industrial field bus control and Internet technique are applied. The system is on a background of textile production technique, such as spring, woven, chemical fiber, non-woven, dyeing and finishing. A network based open integrated control system is developed. Various characteristics of production technique flow and textile machinery movement discipline are presented. Configuration software is introduced according to user's control tasks. Final remote automatic controls are finished. This may make development cost reduced, and development periods shortened. Some problems in textile machinery development process are solved, which may make transparency factory and remote development realized.

  15. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The present paper fully decomposes the system into structural and control subsystem designs and produces an improved design. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  16. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The system is fully decomposed into structural and control subsystem designs and an improved design is produced. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  17. A rotorcraft flight/propulsion control integration study

    NASA Technical Reports Server (NTRS)

    Ruttledge, D. G. C.

    1986-01-01

    An eclectic approach was taken to a study of the integration of digital flight and propulsion controls for helicopters. The basis of the evaluation was the current Gen Hel simulation of the UH-60A Black Hawk helicopter with a model of the GE T700 engine. A list of flight maneuver segments to be used in evaluating the effectiveness of such an integrated control system was composed, based on past experience and an extensive survey of the U.S. Army Air-to-Air Combat Test data. A number of possible features of an integrated system were examined and screened. Those that survived the screening were combined into a design that replaced the T700 fuel control and part of the control system in the UH-60A Gen Hel simulation. This design included portions of an existing pragmatic adaptive fuel control designed by the Chandler-Evans Company and an linear quadratic regulator (LQR) based N(p) governor designed by the GE company, combined with changes in the basic Sikorsky Aircraft designed control system. The integrated system exhibited improved total performance in many areas of the flight envelope.

  18. Integration of multiple sensor fusion in controller design.

    PubMed

    Abdelrahman, Mohamed; Kandasamy, Parameshwaran

    2003-04-01

    The main focus of this research is to reduce the risk of a catastrophic response of a feedback control system when some of the feedback data from the system sensors are not reliable, while maintaining a reasonable performance of the control system. In this paper a methodology for integrating multiple sensor fusion into the controller design is presented. The multiple sensor fusion algorithm produces, in addition to the estimate of the measurand, a parameter that measures the confidence in the estimated value. This confidence is integrated as a parameter into the controller to produce fast system response when the confidence in the estimate is high, and a slow response when the confidence in the estimate is low. Conditions for the stability of the system with the developed controller are discussed. This methodology is demonstrated on a cupola furnace model. The simulations illustrate the advantages of the new methodology. PMID:12708539

  19. Integrated control of output and surge for a dynamic compressor control system

    SciTech Connect

    Enterline, L. L.; Kaya, A.

    1985-12-31

    An integrated control system for both the output and surge protection of a centrifugal compressor in a chilled, water system is provided by biasing the output of a feed forward and cascade centrifugal compressor output control logic module with the output of a coordinating control logic module, which utilized a surge control logic module output to establish the biasing signal.

  20. Integrated Controls-Structures Design Methodology for Flexible Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Price, D. B.

    1995-01-01

    This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the control system design are performed simultaneously. The integrated design problem is posed as an optimization problem in which both the structural parameters and the control system parameters constitute the design variables, which are used to optimize a common objective function, thereby resulting in an optimal overall design. The approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-based flexible structure experiment. The numerical results obtained indicate that the integrated design approach generally yields spacecraft designs that are substantially superior to the conventional approach, wherein the structural design and control design are performed sequentially.

  1. The Integrated Airframe/Propulsion Control System Architecture program (IAPSA)

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Cohen, Gerald C.; Meissner, Charles W.

    1990-01-01

    The Integrated Airframe/Propulsion Control System Architecture program (IAPSA) is a two-phase program which was initiated by NASA in the early 80s. The first phase, IAPSA 1, studied different architectural approaches to the problem of integrating engine control systems with airframe control systems in an advanced tactical fighter. One of the conclusions of IAPSA 1 was that the technology to construct a suitable system was available, yet the ability to create these complex computer architectures has outpaced the ability to analyze the resulting system's performance. With this in mind, the second phase of IAPSA approached the same problem with the added constraint that the system be designed for validation. The intent of the design for validation requirement is that validation requirements should be shown to be achievable early in the design process. IAPSA 2 has demonstrated that despite diligent efforts, integrated systems can retain characteristics which are difficult to model and, therefore, difficult to validate.

  2. Electron tunneling infrared sensor module with integrated control circuitry

    NASA Technical Reports Server (NTRS)

    Boyadzhyan-Sevak, Vardkes V. (Inventor)

    2001-01-01

    In an integrated electron tunneling sensor, an automatic tunneling control circuit varies a high voltage bias applied to the sensor deflection electrode in response to changes in sensor output to maintain the proper gap between the sensor tip and membrane. The control circuit ensures stable tunneling activity in the presence of large signals and other disturbances to the sensor. Output signals from the module may be derived from the amplified sensor output. The integrated sensor module is particularly well adapted for use in blood glucose measurement and monitoring system.

  3. Buried waste integrated demonstration human engineered control station. Final report

    SciTech Connect

    Not Available

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  4. Integrated programme for control of geohelminths: a perspective.

    PubMed

    Ananthakrishnan, S; Das, P K

    2001-01-01

    Infestation by geohelminths is an important public health problem in developing countries like India. It is a major cause of morbidity in school-age children who have the highest burden of worm infestation. Some of the morbid conditions attributed to intestinal helminthiasis are malnutrition, growth retardation, anaemia, vitamin A deficiency and impaired intellectual performance. Chemotherapy targeted at school-age children has been recommended as a cost-effective and feasible control programme for the control of geohelminths. To optimize resources a geohelminth control programme can be integrated with other existing national health programmes. The availability of drugs such as diethyl carbamazine (DEC) and albendazole, which have anthelminthic and antifilarial properties, opens the possibility of integrating a geohelminth control programme with a filaria control programme. However, co-administration of DEC and albendazole raises several issues of frequency of administration, efficacy, compliance and cost-effectiveness. Thus, integrating a geohelminth control programme with the existing mid-day meal or anaemia prophylaxis programme would be a more appropriate and cost-effective strategy to control geohelminths, alleviate the morbidity caused by them and improve the overall health of the community. PMID:11467143

  5. A simple nonlinear PD controller for integrating processes.

    PubMed

    Dey, Chanchal; Mudi, Rajani K; Simhachalam, Dharmana

    2014-01-01

    Many industrial processes are found to be integrating in nature, for which widely used Ziegler-Nichols tuned PID controllers usually fail to provide satisfactory performance due to excessive overshoot with large settling time. Although, IMC (Internal Model Control) based PID controllers are capable to reduce the overshoot, but little improvement is found in the load disturbance response. Here, we propose an auto-tuning proportional-derivative controller (APD) where a nonlinear gain updating factor α continuously adjusts the proportional and derivative gains to achieve an overall improved performance during set point change as well as load disturbance. The value of α is obtained by a simple relation based on the instantaneous values of normalized error (eN) and change of error (ΔeN) of the controlled variable. Performance of the proposed nonlinear PD controller (APD) is tested and compared with other PD and PID tuning rules for pure integrating plus delay (IPD) and first-order integrating plus delay (FOIPD) processes. Effectiveness of the proposed scheme is verified on a laboratory scale servo position control system. PMID:24094507

  6. Integrated, proportionally controlled, and naturally compliant universal joint actuator with controllable stiffness

    DOEpatents

    Borenstein, Johann; Granosik, Grzegorz

    2005-03-22

    An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of segments interconnected by an integrated joint actuator assembly. The integrated joint actuator assembly includes a plurality of bellows-type actuators individually coupling adjacent segments to permit pivotal actuation of the apparatus therebetween. A controller is employed to maintain proper positional control and stiffness control while minimize air flow.

  7. TICS-24 --- an Integrated Telescope Control System Using Hypercard

    NASA Astrophysics Data System (ADS)

    Hawkins, R. L.; Ratcliff, S. J.

    1993-12-01

    Starting from scripts generously provided by Ratcliff, the author has developed an integrated telescope and instrumentation control system for Hypercard on the Macintosh. The Telescope Integrated Control System (TICS-24) uses Hypercard scripts, HyperBASIC XFCN's, and APDA serial port XFCN's to control a telescope and another instrument over the built-in serial ports on a Macintosh. Additionally, TICS-24 has the ability to act as an object database with finder charts for frequently observed targets. The system is expandable, since new functions simply become new scripts and/or ``cards''. The system is also easily adaptable to other telescopes and instrumentation, since controlling a different telescope or instrument only requires rewriting the actual serial commands to match those expected by the new instrument.

  8. Transient response characteristics in a biomolecular integral controller.

    PubMed

    Sen, Shaunak

    2016-04-01

    The cellular behaviour of perfect adaptation is achieved through the use of an integral control element in the underlying biomolecular circuit. It is generally unclear how integral action affects the important aspect of transient response in these biomolecular systems, especially in light of the fact that it typically deteriorates the transient response in engineering contexts. To address this issue, the authors investigated the transient response in a computational model of a simple biomolecular integral control system involved in bacterial signalling. They find that the transient response can actually speed up as the integral gain parameter increases. On further analysis, they find that the underlying dynamics are composed of slow and fast modes and the speed-up of the transient response is because of the speed-up of the slow-mode dynamics. Finally, they note how an increase in the integral gain parameter also leads to a decrease in the amplitude of the transient response, consistent with the overall improvement in the transient response. These results should be useful in understanding the overall effect of integral action on system dynamics, particularly for biomolecular systems. PMID:26997660

  9. Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.

  10. Integrated identification and robust control tuning for large space structures

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Scheid, R. E.

    1990-01-01

    System identification is studied for the explicit purpose of supporting modern H-infinity robust control design objectives. In the analysis, the true plant is not assumed to be in the identification model set. An integrated identification/robust control problem is posed in which the optimal solution guarantees the best robust performance relative to the system information contained in a given experimental data set. A numerical example demonstrating an approximate solution to the problem indicates the usefulness of the approach.

  11. Security controls in the Stockpoint Logistics Integrated Communications Environment (SPLICE)

    NASA Astrophysics Data System (ADS)

    Arseneault, D. S.

    1985-03-01

    This thesis examines security controls specified and implemented in the Stock Point Logistics Integrated Communications Environment (SPLICE) project. Controls provided by the Defense Data Network and the Tandem operating system are reviewed. Alternatives from current literature in areas of authentication, encryption, and dial-port protection are reviewed for the purpose of suggesting enhancements. Issues discussed apply to most interactive/decentralized systems in operation today and include administrative as well as technical recommendations.

  12. Performance analysis of Integrated Communication and Control System networks

    NASA Technical Reports Server (NTRS)

    Halevi, Y.; Ray, A.

    1990-01-01

    This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.

  13. Design of chimeric antigen receptors with integrated controllable transient functions.

    PubMed

    Juillerat, Alexandre; Marechal, Alan; Filhol, Jean-Marie; Valton, Julien; Duclert, Aymeric; Poirot, Laurent; Duchateau, Philippe

    2016-01-01

    The ability to control T cells engineered to permanently express chimeric antigen receptors (CARs) is a key feature to improve safety. Here, we describe the development of a new CAR architecture with an integrated switch-on system that permits to control the CAR T-cell function. This system offers the advantage of a transient CAR T-cell for safety while letting open the possibility of multiple cytotoxicity cycles using a small molecule drug. PMID:26750734

  14. Design and Integration of an Actuated Nose Strake Control System

    NASA Technical Reports Server (NTRS)

    Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.

    1996-01-01

    Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.

  15. Developing an Integration Infrastructure for Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan

    2014-01-01

    Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.

  16. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1998-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  17. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1996-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  18. A semiconductor laser with monolithically integrated dynamic polarization control.

    PubMed

    Holmes, B M; Naeem, M A; Hutchings, D C; Marsh, J H; Kelly, A E

    2012-08-27

    We report the first demonstration of a semiconductor laser monolithically integrated with an active polarization controller, which consists of a polarization mode converter followed by an active, differential phase shifter. High speed modulation of the device output polarization is demonstrated via current injection to the phase shifter section. PMID:23037101

  19. Integrated assurance assessment of a reconfigurable digital flight control system

    NASA Technical Reports Server (NTRS)

    Ness, W. G.; Davis, R. M.; Benson, J. W.; Smith, M. K.; Eldredge, D.

    1983-01-01

    The integrated application of reliability, failure effects and system simulator methods in establishing the airworthiness of a flight critical digital flight control system (DFCS) is demonstrated. The emphasis was on the mutual reinforcement of the methods in demonstrating the system safety.

  20. Integrated Quality Control Measurement Project. Findings and Corrective Actions.

    ERIC Educational Resources Information Center

    Price Waterhouse and Co., New York, NY.

    The Integrated Quality Control Measurement Project (IQCMP) of the U.S. Department of Education measured the quality of awards distributed during the 1988-89 award year under the three major Title IV programs: the Pell Grant program, the Campus-Based programs, and the Stafford Loan program, in order to evaluate and improve the quality of the…

  1. Silicon-on-insulator integrated tunable polarization controller (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sarmiento-Merenguel, Jose-Dario; Alonso-Ramos, Carlos; Halir, Robert; Le Roux, Xavier; Vivien, Laurent; Cheben, Pavel; Durán-Valdeiglesias, Elena; Molina-Fernández, Iñigo; Marris-Morini, Delphine; Xu, Danxia; Schmid, Jens H.; Janz, Siegfried; Ortega-Moñux, Alejandro

    2016-05-01

    Polarization management is a key functionality in many photonic applications, including optical communications, imaging or quantum information. Developing integrated devices capable of reliably controlling polarization state would result in compact and low cost circuits with improved stability compared with fiber or bulk optics solutions. However, stringent fabrication tolerances make the integration of polarization managing elements highly challenging. The main challenge in polarization controllers, composed by polarization rotators and polarization phase shifters, is to precisely control rotation angle in integrated polarization rotators. Proposed solutions typically require sophisticated fabrication processes or extremely tight fabrication tolerances, seriously hindering their practical application. Here we present a technology independent polarization controller scheme that relies on phase shifters to largely relax fabrication tolerances of polarization rotators. In addition, these phase shifters enable dynamic wavelength tuning. In our scheme, three polarization rotation elements are interconnected with two tunable phase shifters to adjust the polarization extinction ratio, while an output polarization phase shifter is used to select the relative phase. This way we can achieve any desired output state of polarization. We have implemented this scheme in the silicon-on-insulator platform, experimentally demonstrating a record polarization extinction range of 40 dB (± 20 dB) with a 98% coverage of the Poincaré sphere. Furthermore, the device is tunable in the complete C-band. These results constitute, to the best of our knowledge, the highest polarization extinction range achieved in a fully integrated device.

  2. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.; Torkelson, Thomas C.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture.

  3. Integrated product definition representation for agile numerical control applications

    SciTech Connect

    Simons, W.R. Jr.; Brooks, S.L.; Kirk, W.J. III; Brown, C.W.

    1994-11-01

    Realization of agile manufacturing capabilities for a virtual enterprise requires the integration of technology, management, and work force into a coordinated, interdependent system. This paper is focused on technology enabling tools for agile manufacturing within a virtual enterprise specifically relating to Numerical Control (N/C) manufacturing activities and product definition requirements for these activities.

  4. APPCD - INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS)COST MODEL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS)Cost Model is a compiled model written in FORTRAN and C language which is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It was developed over the past several years...

  5. ECOLOGICAL IMPACT OF INTEGRATED CHEMICAL AND BIOLOGICAL AQUATIC WEED CONTROL

    EPA Science Inventory

    This final report presents results of a four-year study of the ecological impacts of chemical, biological, and integrated methods of aquatic weed control. Biological and water quality changes occurred as abundance of macrophytic vegetation was altered by natural factors or manage...

  6. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi

    A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.

  7. Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

    PubMed Central

    Zhao, Guoliang; Li, Hongxing

    2013-01-01

    This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model. PMID:24453897

  8. CONDUIT: A New Multidisciplinary Integration Environment for Flight Control Development

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Colbourne, Jason D.; Morel, Mark R.; Biezad, Daniel J.; Levine, William S.; Moldoveanu, Veronica

    1997-01-01

    A state-of-the-art computational facility for aircraft flight control design, evaluation, and integration called CONDUIT (Control Designer's Unified Interface) has been developed. This paper describes the CONDUIT tool and case study applications to complex rotary- and fixed-wing fly-by-wire flight control problems. Control system analysis and design optimization methods are presented, including definition of design specifications and system models within CONDUIT, and the multi-objective function optimization (CONSOL-OPTCAD) used to tune the selected design parameters. Design examples are based on flight test programs for which extensive data are available for validation. CONDUIT is used to analyze baseline control laws against pertinent military handling qualities and control system specifications. In both case studies, CONDUIT successfully exploits trade-offs between forward loop and feedback dynamics to significantly improve the expected handling, qualities and minimize the required actuator authority. The CONDUIT system provides a new environment for integrated control system analysis and design, and has potential for significantly reducing the time and cost of control system flight test optimization.

  9. Some Issues Related to Integrating Active Flow Control With Flight Control

    NASA Technical Reports Server (NTRS)

    Williams, David; Colonius, Tim; Tadmor, Gilead; Rowley, Clancy

    2010-01-01

    Time varying control of CL is necessary for integrating AFC and Flight Control (Biasing allows for +/- changes in lift) Time delays associated with actuation are long (APPROX.5.8 c/U) and must be included in controllers. Convolution of input signal with single pulse kernel gives reasonable prediction of lift response.

  10. Integration, control, and applications of multifunctional linear actuators

    NASA Astrophysics Data System (ADS)

    Ma, Kougen; Ghasemi-Nejhad, Mehrdad N.

    2008-03-01

    The integration, analysis, control, and application of a linear actuator are investigated. The linear actuator has super-precision, large stroke, and simultaneous precision positioning and vibration suppression capabilities. It is an integration of advanced electro-mechanical technology, smart materials technology, sensing technology, and control technology. Based on the electromechanical technology, a DC-motor driven leading screw ensures the large stroke of motion and coarse positioning. The smart piezoelectric technology makes the fine positioning and vibration suppression over a wide frequency range possible. The advanced control strategy greatly compensates the hysteresis characteristics such as backlash and/or dead zone, and enables the excellent performance of the actuator. Several sensors such as load cells, displacement sensors, and encoders are also integrated for various applications. Controller design and testing of this linear actuator are also conducted. The applications of the linear actuator are also explored in precision positioning and vibration suppression of a flexible manipulator and smart composite platform for thrust vector control of satellites.

  11. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako

    The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.

  12. Integrated controls and health monitoring for chemical transfer propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Binder, Michael P.

    1990-01-01

    NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed.

  13. Integration of OLE into the TACL control system

    SciTech Connect

    Bowling, B.; Douglas, D.; Kewisch, J.; Kloeppel, P.; Kraft, G.A. )

    1993-12-25

    OLE, the On-Line Envelope program, is a first-order optics code which was designed to provide fast lattice transfer functions from actual accelerator magnet and cavity control values. This paper addresses the results of a successful integration of OLE into the CEBAF control system, TACL. This marriage provides the user with the ability for obtaining real-time Twiss parameters and transfer functions which reflect the current operational state of the machine. The resultant OLE calculation provides the analytical core for many control and diagnostic functions used at CEBAF, including focusing corrections, orbit corrections, emittance measurements, and beamline analysis.

  14. Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator

    PubMed Central

    Nandi, Rabindranath; Pattanayak, Sandhya; Das, Sagarika

    2015-01-01

    A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ωo) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θe) for the integrator and low active ωo-sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear fo variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests. PMID:27347537

  15. Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator.

    PubMed

    Nandi, Rabindranath; Pattanayak, Sandhya; Venkateswaran, Palaniandavar; Das, Sagarika

    2015-01-01

    A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ω o ) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θ e ) for the integrator and low active ω o -sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear f o variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests. PMID:27347537

  16. Integrated multi-sensory control of space robot hand

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Kan, E. P.; Killion, R. R.

    1985-01-01

    Dexterous manipulation of a robot hand requires the use of multiple sensors integrated into the mechanical hand under distributed microcomputer control. Where space applications such as construction, assembly, servicing and repair tasks are desired of smart robot arms and robot hands, several critical drives influence the design, engineering and integration of such an electromechanical hand. This paper describes a smart robot hand developed at the Jet Propulsion Laboratory for experimental use and evaluation with the Protoflight Manipulator Arm (PFMA) at the Marshall Space Flight Center (MSFC).

  17. Proportional-plus-integral semiactive control using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Aguirre, N.; Ikhouane, F.; Rodellar, J.

    2011-05-01

    Magnetorheological (MR) dampers are a promising alternative to structural active actuators as they provide adjustable damping over a wide range of frequencies without large power requirements. However, the complex dynamics that characterizes these devices makes it difficult to formulate control laws based on the MR damper model. Instead, many semiactive control strategies proposed in the literature have been based on the idea of "clipping" the voltage signal so that the MR damper force "tracks" a desired active control force which is computed on-line. With this idea many algorithms have been proposed using, among others, techniques such as optimal control, H∞ control, sliding mode control, backstepping and QFT. This work presents a semiactive control strategy based on the same idea of "clipping" the voltage signal but using a simpler PI design. The proportional and integral gains of the controller are calculated so that the controller guarantees stability, minimization of the closed loop response and robustness against modeling errors. Effectiveness of the control strategy is compared to some others techniques and passive cases as well. Simulation results shows that this simple strategy can effectively improve the structural responses and achieve performance index comparable to that of more complex algorithms.

  18. Integrated otpical monitoring of MEMS for closed-loop control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Wang, Limin; McCormick, W. B.; Rittenhouse, S. A.; Famouri, Parviz F.; Hornak, Lawrence A.

    2003-01-01

    Robust control and failure assessment of MEMS employed in physically demanding, mission critical applications will allow for higher degrees of quality assurance in MEMS operation. Device fault detection and closed-loop control require detailed knowledge of the operational states of MEMS over the lifetime of the device, obtained by a means decoupled from the system. Preliminary through-wafer optical monitoring research efforts have shown that through-wafer optical probing is suitable for characterizing and monitoring the behavior of MEMS, and can be implemented in an integrated optical monitoring package for continuous in-situ device monitoring. This presentation will discuss research undertaken to establish integrated optical device metrology for closed-loop control of a MUMPS fabricated lateral harmonic oscillator. Successful linear closed-loop control results using a through-wafer optical microprobe position feedback signal will be presented. A theoretical optical output field intensity study of grating structures, fabricated on the shuttle of the resonator, was performed to improve the position resolution of the optical microprobe position signal. Through-wafer microprobe signals providing a positional resolution of 2 μm using grating structures will be shown, along with initial binary Fresnel diffractive optical microelement design layout, process development, and testing results. Progress in the design, fabrication, and test of integrated optical elements for multiple microprobe signal delivery and recovery will be discussed, as well as simulation of device system model parameter changes for failure assessment.

  19. Sensitivity method for integrated structure/active control law design

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1987-01-01

    The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.

  20. Integrated Model Reduction and Control of Aircraft with Flexible Wings

    NASA Technical Reports Server (NTRS)

    Swei, Sean Shan-Min; Zhu, Guoming G.; Nguyen, Nhan T.

    2013-01-01

    This paper presents an integrated approach to the modeling and control of aircraft with exible wings. The coupled aircraft rigid body dynamics with a high-order elastic wing model can be represented in a nite dimensional state-space form. Given a set of desired output covariance, a model reduction process is performed by using the weighted Modal Cost Analysis (MCA). A dynamic output feedback controller, which is designed based on the reduced-order model, is developed by utilizing output covariance constraint (OCC) algorithm, and the resulting OCC design weighting matrix is used for the next iteration of the weighted cost analysis. This controller is then validated for full-order evaluation model to ensure that the aircraft's handling qualities are met and the uttering motion of the wings suppressed. An iterative algorithm is developed in CONDUIT environment to realize the integration of model reduction and controller design. The proposed integrated approach is applied to NASA Generic Transport Model (GTM) for demonstration.

  1. Modeling of Depth Cue Integration in Manual Control Tasks

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.; Kaiser, Mary K.; Davis, Wendy

    2003-01-01

    Psychophysical research has demonstrated that human observers utilize a variety of visual cues to form a perception of three-dimensional depth. However, most of these studies have utilized a passive judgement paradigm, and failed to consider depth-cue integration as a dynamic and task-specific process. In the current study, we developed and experimentally validated a model of manual control of depth that examines how two potential cues (stereo disparity and relative size) are utilized in both first- and second-order active depth control tasks. We found that stereo disparity plays the dominate role for determining depth position, while relative size dominates perception of depth velocity. Stereo disparity also plays a reduced role when made less salient (i.e., when viewing distance is increased). Manual control models predict that position information is sufficient for first-order control tasks, while velocity information is required to perform a second-order control task. Thus, the rules for depth-cue integration in active control tasks are dependent on both task demands and cue quality.

  2. Integrated control algorithms for plant environment in greenhouse

    NASA Astrophysics Data System (ADS)

    Zhang, Kanyu; Deng, Lujuan; Gong, Youmin; Wang, Shengxue

    2003-09-01

    In this paper a survey of plant environment control in artificial greenhouse was put forward for discussing the future development. Firstly, plant environment control started with the closed loop control of air temperature in greenhouse. With the emergence of higher property computer, the adaptive control algorithm and system identification were integrated into the control system. As adaptation control is more depending on observation of variables by sensors and yet many variables are unobservable or difficult to observe, especially for observation of crop growth status, so model-based control algorithm were developed. In order to evade modeling difficulty, one method is predigesting the models and the other method is utilizing fuzzy logic and neural network technology that realize the models by the black box and gray box theory. Studies on control method of plant environment in greenhouse by means of expert system (ES) and artificial intelligence (AI) have been initiated and developed. Nowadays, the research of greenhouse environment control focus on energy saving, optimal economic profit, enviornment protection and continualy develop.

  3. Ground Operations Autonomous Control and Integrated Health Management

    NASA Technical Reports Server (NTRS)

    Daniels, James

    2014-01-01

    The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.

  4. Communication and control in an integrated manufacturing system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Throne, Robert D.; Muthuswamy, Yogesh K.

    1987-01-01

    Typically, components in a manufacturing system are all centrally controlled. Due to possible communication bottlenecking, unreliability, and inflexibility caused by using a centralized controller, a new concept of system integration called an Integrated Multi-Robot System (IMRS) was developed. The IMRS can be viewed as a distributed real time system. Some of the current research issues being examined to extend the framework of the IMRS to meet its performance goals are presented. These issues include the use of communication coprocessors to enhance performance, the distribution of tasks and the methods of providing fault tolerance in the IMRS. An application example of real time collision detection, as it relates to the IMRS concept, is also presented and discussed.

  5. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.

    PubMed

    Tahvildari, Radin; Beamish, Eric; Tabard-Cossa, Vincent; Godin, Michel

    2015-03-21

    Nanopore arrays are fabricated by controlled dielectric breakdown (CBD) in solid-state membranes integrated within polydimethylsiloxane (PDMS) microfluidic devices. This technique enables the scalable production of independently addressable nanopores. By confining the electric field within the microfluidic architecture, nanopore fabrication is precisely localized and electrical noise is significantly reduced. Both DNA and protein molecules are detected to validate the performance of this sensing platform. PMID:25631885

  6. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that used both reliability and performance tools. An account is given of the motivation for the final design and problems associated with both reliability and performance modeling. The appendices contain a listing of the code for both the reliability and performance model used in the design.

  7. Project Orion, Environmental Control and Life Support System Integrated Studies

    NASA Technical Reports Server (NTRS)

    Russell, James F.; Lewis, John F.

    2008-01-01

    Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.

  8. Secure, Autonomous, Intelligent Controller for Integrating Distributed Sensor Webs

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2007-01-01

    This paper describes the infrastructure and protocols necessary to enable near-real-time commanding, access to space-based assets, and the secure interoperation between sensor webs owned and controlled by various entities. Select terrestrial and aeronautics-base sensor webs will be used to demonstrate time-critical interoperability between integrated, intelligent sensor webs both terrestrial and between terrestrial and space-based assets. For this work, a Secure, Autonomous, Intelligent Controller and knowledge generation unit is implemented using Virtual Mission Operation Center technology.

  9. Optimizing aircraft performance with adaptive, integrated flight/propulsion control

    NASA Technical Reports Server (NTRS)

    Smith, R. H.; Chisholm, J. D.; Stewart, J. F.

    1991-01-01

    The Performance-Seeking Control (PSC) integrated flight/propulsion adaptive control algorithm presented was developed in order to optimize total aircraft performance during steady-state engine operation. The PSC multimode algorithm minimizes fuel consumption at cruise conditions, while maximizing excess thrust during aircraft accelerations, climbs, and dashes, and simultaneously extending engine service life through reduction of fan-driving turbine inlet temperature upon engagement of the extended-life mode. The engine models incorporated by the PSC are continually upgraded, using a Kalman filter to detect anomalous operations. The PSC algorithm will be flight-demonstrated by an F-15 at NASA-Dryden.

  10. Integrated evolutionary computation neural network quality controller for automated systems

    SciTech Connect

    Patro, S.; Kolarik, W.J.

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  11. Integrated metrology: an enabler for advanced process control (APC)

    NASA Astrophysics Data System (ADS)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  12. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  13. Integrated Power/Attitude Control System (IPACS) technology experiment

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.

    1984-01-01

    An experiment is proposed that will perform the tasks associated with the control and energy storage/power generation functions attendant to space operations. It was shown in past studies that the integration of these functions into one system can result in significant weight, volume, and cost savings. The Integrated Power/Attitude Control System (IPACS) concept is discussed. During orbit day, power is derived from the solar cell arrays and, after appropriate conditioning, is used to operate the spacecraft subsystems, including the control system. In conventional approaches, a part of the collected solar energy is stored in a bank of batteries to permit operation of the vehicle's systems during orbit night. In the IPACS concept, the solar energy is stored in the spinning flywheels of the control system in the form of kinetic energy. During orbit night, the wheels are despun and, through the use of a wheel-shaft mounted generator, power is generated for the onboard subsystems. Operating these flywheels over a 50-percent speed variation permits the extraction of 75 percent of the stored energy while at the same time preserving 50 percent of the momentum capacity for control of the vehicle. Batteries can therefore be eliminated and significant weight and volume savings realized.

  14. Generalized access control strategies for integrated services token passing systems

    NASA Astrophysics Data System (ADS)

    Pang, Joseph W. M.; Tobagi, Fouad A.; Boyd, Stephen

    1994-08-01

    The demand for integrated services local area networks is increasing at a rapid pace with the advent of many new and exciting applications: office and factory automation, distributed computing, and multimedia communications. To support these new applications, it is imperative to integrate traffic with diverse statistical characteristics and differing delay requirements on the same network. An attractive approach for integrating traffic has been adopted in two token passing local area network standards, the IEEE 802.4 token bus standard and FDDI. The idea is to control the transmissions of each station based on a distributed timing algorithm, so as to achieve the following goals: (1) to limit the token cycles so that time-critical traffic can be accommodated, and (2) to allocate pre-specified bandwidths to different stations when the network is overloaded. We have investigated the analysis and design of this protocol. In this paper, we generalize the transmission control algorithm used previously. The major advantages of the generalization over the original protocol are: (1) it provides a much expanded design space, (2) it guarantees convergent behavior, and (3) it gives meaningful insights into the dynamics of the basic control algorithm.

  15. Linear Time Invariant Models for Integrated Flight and Rotor Control

    NASA Astrophysics Data System (ADS)

    Olcer, Fahri Ersel

    2011-12-01

    Recent developments on individual blade control (IBC) and physics based reduced order models of various on-blade control (OBC) actuation concepts are opening up opportunities to explore innovative rotor control strategies for improved rotor aerodynamic performance, reduced vibration and BVI noise, and improved rotor stability, etc. Further, recent developments in computationally efficient algorithms for the extraction of Linear Time Invariant (LTI) models are providing a convenient framework for exploring integrated flight and rotor control, while accounting for the important couplings that exist between body and low frequency rotor response and high frequency rotor response. Formulation of linear time invariant (LTI) models of a nonlinear system about a periodic equilibrium using the harmonic domain representation of LTI model states has been studied in the literature. This thesis presents an alternative method and a computationally efficient scheme for implementation of the developed method for extraction of linear time invariant (LTI) models from a helicopter nonlinear model in forward flight. The fidelity of the extracted LTI models is evaluated using response comparisons between the extracted LTI models and the nonlinear model in both time and frequency domains. Moreover, the fidelity of stability properties is studied through the eigenvalue and eigenvector comparisons between LTI and LTP models by making use of the Floquet Transition Matrix. For time domain evaluations, individual blade control (IBC) and On-Blade Control (OBC) inputs that have been tried in the literature for vibration and noise control studies are used. For frequency domain evaluations, frequency sweep inputs are used to obtain frequency responses of fixed system hub loads to a single blade IBC input. The evaluation results demonstrate the fidelity of the extracted LTI models, and thus, establish the validity of the LTI model extraction process for use in integrated flight and rotor control

  16. INTEGRATED ROBOT-HUMAN CONTROL IN MINING OPERATIONS

    SciTech Connect

    George Danko

    2005-04-01

    This report contains a detailed description of the work conducted in the first year of the project on Integrated Robot-Human Control in Mining Operations at University of Nevada, Reno. This project combines human operator control with robotic control concepts to create a hybrid control architecture, in which the strengths of each control method are combined to increase machine efficiency and reduce operator fatigue. The kinematics reconfiguration type differential control of the excavator implemented with a variety of ''software machine kinematics'' is the key feature of the project. This software re-configured excavator is more desirable to execute a given digging task. The human operator retains the master control of the main motion parameters, while the computer coordinates the repetitive movement patterns of the machine links. These repetitive movements may be selected from a pre-defined family of trajectories with different transformations. The operator can make adjustments to this pattern in real time, as needed, to accommodate rapidly-changing environmental conditions. A Bobcat{reg_sign} 435 excavator was retrofitted with electro-hydraulic control valve elements. The modular electronic control was tested and the basic valve characteristics were measured for each valve at the Robotics Laboratory at UNR. Position sensors were added to the individual joint control actuators, and the sensors were calibrated. An electronic central control system consisting of a portable computer, converters and electronic driver components was interfaced to the electro-hydraulic valves and position sensors. The machine is operational with or without the computer control system depending on whether the computer interface is on or off. In preparation for emulated mining tasks tests, typical, repetitive tool trajectories during surface mining operations were recorded at the Newmont Mining Corporation's ''Lone Tree'' mine in Nevada.

  17. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  18. Accelerometer method and apparatus for integral display and control functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  19. Electronic integrated disease surveillance system and pathogen asset control system.

    PubMed

    Wahl, Tom G; Burdakov, Aleksey V; Oukharov, Andrey O; Zhilokov, Azamat K

    2012-01-01

    Electronic Integrated Disease Surveillance System (EIDSS) has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO) data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS) has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS.Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP) sponsored by the US Defense Threat Reduction Agency (DTRA). PMID:23327375

  20. Integrated Attitude Control Strategy for the Asteroid Redirect Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; Price, Hoppy; San Martin, Miguel

    2014-01-01

    A deep-space mission has been proposed to redirect an asteroid to a distant retrograde orbit around the moon using a robotic vehicle, the Asteroid Redirect Vehicle (ARV). In this orbit, astronauts will rendezvous with the ARV using the Orion spacecraft. The integrated attitude control concept that Orion will use for approach and docking and for mated operations will be described. Details of the ARV's attitude control system and its associated constraints for redirecting the asteroid to the distant retrograde orbit around the moon will be provided. Once Orion is docked to the ARV, an overall description of the mated stack attitude during all phases of the mission will be presented using a coordinate system that was developed for this mission. Next, the thermal and power constraints of both the ARV and Orion will be discussed as well as how they are used to define the optimal integrated stack attitude. Lastly, the lighting and communications constraints necessary for the crew's extravehicular activity planned to retrieve samples from the asteroid will be examined. Similarly, the joint attitude control strategy that employs both the Orion and the ARV attitude control assets prior, during, and after each extravehicular activity will also be thoroughly discussed.

  1. Integrated Tools for Future Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  2. Integrated Design and Implementation of Embedded Control Systems with Scilab

    PubMed Central

    Ma, Longhua; Xia, Feng; Peng, Zhe

    2008-01-01

    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  3. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  4. Oxy-fuel combustion with integrated pollution control

    DOEpatents

    Patrick, Brian R.; Ochs, Thomas Lilburn; Summers, Cathy Ann; Oryshchyn, Danylo B.; Turner, Paul Chandler

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  5. Integrated command, control, communications and computation system functional architecture

    NASA Technical Reports Server (NTRS)

    Cooley, C. G.; Gilbert, L. E.

    1981-01-01

    The functional architecture for an integrated command, control, communications, and computation system applicable to the command and control portion of the NASA End-to-End Data. System is described including the downlink data processing and analysis functions required to support the uplink processes. The functional architecture is composed of four elements: (1) the functional hierarchy which provides the decomposition and allocation of the command and control functions to the system elements; (2) the key system features which summarize the major system capabilities; (3) the operational activity threads which illustrate the interrelationahip between the system elements; and (4) the interfaces which illustrate those elements that originate or generate data and those elements that use the data. The interfaces also provide a description of the data and the data utilization and access techniques.

  6. Adaptive integral dynamic surface control of a hypersonic flight vehicle

    NASA Astrophysics Data System (ADS)

    Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick

    2015-07-01

    In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.

  7. Integrated health monitoring and controls for rocket engines

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Musgrave, J. L.; Guo, T. H.

    1992-01-01

    Current research in intelligent control systems at the Lewis Research Center is described in the context of a functional framework. The framework is applicable to a variety of reusable space propulsion systems for existing and future launch vehicles. It provides a 'road map' technology development to enable enhanced engine performance with increased reliability, durability, and maintainability. The framework hierarchy consists of a mission coordination level, a propulsion system coordination level, and an engine control level. Each level is described in the context of the Space Shuttle Main Engine. The concept of integrating diagnostics with control is discussed within the context of the functional framework. A distributed real time simulation testbed is used to realize and evaluate the functionalities in closed loop.

  8. Integrated safeguards & security for material protection, accounting, and control.

    SciTech Connect

    Duran, Felicia Angelica; Cipiti, Benjamin B.

    2009-10-01

    Traditional safeguards and security design for fuel cycle facilities is done separately and after the facility design is near completion. This can result in higher costs due to retrofits and redundant use of data. Future facilities will incorporate safeguards and security early in the design process and integrate the systems to make better use of plant data and strengthen both systems. The purpose of this project was to evaluate the integration of materials control and accounting (MC&A) measurements with physical security design for a nuclear reprocessing plant. Locations throughout the plant where data overlap occurs or where MC&A data could be a benefit were identified. This mapping is presented along with the methodology for including the additional data in existing probabilistic assessments to evaluate safeguards and security systems designs.

  9. An integrated design for missile guidance/control/tracking system

    NASA Astrophysics Data System (ADS)

    Xu, Yefeng; Qiu, Haitao

    2008-10-01

    An integrated information system (IIS) which contains strapdown inertial navigation system (SINS), automatic pilot and terminal guidance seeker is proposed. Using rotating modulation approach, the performance of the low cost MEMS inertial sensor is improved by 20-30 times. The precision of the modulated MEMS gyro is available for strapdown navigation system and autopilot. The IIS gyros replace gimbal-based gyros are used in the line-of-sight (LOS) stabilization system. The seeker's LOS angular rate is estimated by combining the missile-fixed gyro information with gimbal coordinate rate information. The indirect LOS stabilization control loop is elaborately designed according to the gimbal kinematical relationship and dynamics models. The study and analysis results show that the compensation torque is available to null the disturbance and make the LOS stabilization. The proposed IIS saves two sets of gyros and make the SINS, autopilot, seeker integrated designing. It owns many advantages such as compact configuration, prominent low cost etc.

  10. Functional Integration of mRNA Translational Control Programs.

    PubMed

    MacNicol, Melanie C; Cragle, Chad E; Arumugam, Karthik; Fosso, Bruno; Pesole, Graziano; MacNicol, Angus M

    2015-01-01

    Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease. PMID:26197342

  11. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  12. Non-singular terminal dynamic surface control based integrated guidance and control design and simulation.

    PubMed

    Cong, Zhang; Yun-Jie, Wu

    2016-07-01

    In this paper, a novel cascade type design model is transformed from the simulation model, which has a broader scope of application, for integrated guidance and control (IGC). A novel non-singular terminal dynamic surface control based IGC method is proposed. It can guarantee the missile with multiple disturbances fast hits the target with high accuracy, while considering the terminal impact angular constraint commendably. And the stability of the closed-loop system is strictly proved. The essence of integrated guidance and control design philosophy is reached that establishing a direct relation between guidance and attitude equations by "intermediate states" and then designing an IGC law for the obtained integrated cascade design model. Finally, a series of simulations and comparisons with a 6-DOF nonlinear missile that includes all aerodynamic effects are demonstrated to illustrate the effectiveness and advantage of the proposed IGC method. PMID:27049772

  13. Integrated emissions control system for residential CWS furnace

    SciTech Connect

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  14. Quality control of integral membrane proteins by assembly-dependent membrane integration.

    PubMed

    Feige, Matthias J; Hendershot, Linda M

    2013-08-01

    Cell-surface multiprotein complexes are synthesized in the endoplasmic reticulum (ER), where they undergo cotranslational membrane integration and assembly. The quality control mechanisms that oversee these processes remain poorly understood. We show that less hydrophobic transmembrane (TM) regions derived from several single-pass TM proteins can enter the ER lumen completely. Once mislocalized, they are recognized by the Hsp70 chaperone BiP. In a detailed analysis for one of these proteins, the αβT cell receptor (αβTCR), we show that unassembled ER-lumenal subunits are rapidly degraded, whereas specific subunit interactions en route to the native receptor promote membrane integration of the less hydrophobic TM segments, thereby stabilizing the protein. For the TCR α chain, both complete ER import and subunit assembly depend on the same pivotal residue in its TM region. Thus, membrane integration linked to protein assembly allows cellular quality control of membrane proteins and connects the lumenal ER chaperone machinery to membrane protein biogenesis. PMID:23932713

  15. A parameter optimization approach to controller partitioning for integrated flight/propulsion control application

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian

    1992-01-01

    A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.

  16. Toward integrated opisthorchiasis control in northeast Thailand: the Lawa project.

    PubMed

    Sripa, Banchob; Tangkawattana, Sirikachorn; Laha, Thewarach; Kaewkes, Sasithorn; Mallory, Frank F; Smith, John F; Wilcox, Bruce A

    2015-01-01

    Human liver fluke, Opisthorchis viverrini, a food-borne trematode is a significant public health problem in Southeast Asia, particularly in Thailand. Despite a long history of control programmes in Thailand and a nationwide reduction, O. viverrini infection prevalence remains high in the northeastern provinces. Therefore, a new strategy for controlling the liver fluke infection using the EcoHealth/One Health approach was introduced into the Lawa Lake area in Khon Kaen province where the liver fluke is endemic. A programme has been carried using anthelminthic treatment, novel intensive health education methods both in the communities and in schools, ecosystem monitoring and active community participation. As a result, the infection rate in the more than 10 villages surrounding the lake has declined to approximate one third of the average of 50% as estimated by a baseline survey. Strikingly, the Cyprinoid fish species in the lake, which are the intermediate host, now showed less than 1% prevalence compared to a maximum of 70% at baseline. This liver fluke control programme, named "Lawa model," is now recognised nationally and internationally, and being expanding to other parts of Thailand and neighbouring Mekong countries. Challenges to O. viverrini disease control, and lessons learned in developing an integrative control programme using a community-based, ecosystem approach, and scaling-up regionally based on Lawa as a model are described. PMID:25102053

  17. Rotary blood pump control using integrated inlet pressure sensor.

    PubMed

    Cysyk, Joshua; Jhun, Choon-Sik; Newswanger, Ray; Weiss, William; Rosenberg, Gerson

    2011-01-01

    Due to improved reliability and reduced risk of thromboembolic events, continuous flow left ventricular assist devices are being used more commonly as a long term treatment for end-stage heart failure. As more and more patients with these devices are leaving the hospital, a reliable control system is needed that can adjust pump support in response to changes in physiologic demand. An inlet pressure sensor has been developed that can be integrated with existing assist devices. A control system has been designed to adjust pump speed based on peak-to-peak changes in inlet pressure. The inlet pressure sensor and control system have been tested with the HeartMate II axial flow blood pump using a mock circulatory loop and an active left ventricle model. The closed loop control system increased total systemic flow and reduced ventricular load following a change in preload as compared to fixed speed control. The increase in systemic flow occurred under all operating conditions, and maximum unloading occurred in the case of reduced ventricular contractility. PMID:22254326

  18. Digital phase-locked-loop speed sensor for accuracy improvement in analog speed controls. [feedback control and integrated circuits

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1975-01-01

    A digital speed control that can be combined with a proportional analog controller is described. The stability and transient response of the analog controller were retained and combined with the long-term accuracy of a crystal-controlled integral controller. A relatively simple circuit was developed by using phase-locked-loop techniques and total error storage. The integral digital controller will maintain speed control accuracy equal to that of the crystal reference oscillator.

  19. Integrated low emissions cleanup system for multi-contaminant control

    SciTech Connect

    Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.

    1993-06-01

    The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to provide economical gas turbine life. The ILEC concept can simultaneously control particulate, sulfur, alkali, and other contaminants in high-pressure fuel gases, or combustion gases, at temperatures up to about 1700{degrees}F in advanced, coal-fired, power generation systems. The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the ILEC concept for multi-contaminant control, and to provide test data applicable to the design of subsequent field tests.

  20. Propulsion/flight control integration technology (PROFIT) design analysis status

    NASA Technical Reports Server (NTRS)

    Carlin, C. M.; Hastings, W. J.

    1978-01-01

    The propulsion flight control integration technology (PROFIT) program was designed to develop a flying testbed dedicated to controls research. The preliminary design, analysis, and feasibility studies conducted in support of the PROFIT program are reported. The PROFIT system was built around existing IPCS hardware. In order to achieve the desired system flexibility and capability, additional interfaces between the IPCS hardware and F-15 systems were required. The requirements for additions and modifications to the existing hardware were defined. Those interfaces involving the more significant changes were studied. The DCU memory expansion to 32K with flight qualified hardware was completed on a brassboard basis. The uplink interface breadboard and a brassboard of the central computer interface were also tested. Two preliminary designs and corresponding program plans are presented.

  1. Integrated Robot-Human Control in Mining Operations

    SciTech Connect

    George Danko

    2007-09-30

    This report contains a detailed description of the work conducted for the project on Integrated Robot-Human Control in Mining Operations at University of Nevada, Reno. This project combines human operator control with robotic control concepts to create a hybrid control architecture, in which the strengths of each control method are combined to increase machine efficiency and reduce operator fatigue. The kinematics reconfiguration type differential control of the excavator implemented with a variety of 'software machine kinematics' is the key feature of the project. This software re-configured excavator is more desirable to execute a given digging task. The human operator retains the master control of the main motion parameters, while the computer coordinates the repetitive movement patterns of the machine links. These repetitive movements may be selected from a pre-defined family of trajectories with different transformations. The operator can make adjustments to this pattern in real time, as needed, to accommodate rapidly-changing environmental conditions. A working prototype has been developed using a Bobcat 435 excavator. The machine is operational with or without the computer control system depending on whether the computer interface is on or off. In preparation for emulated mining tasks tests, typical, repetitive tool trajectories during surface mining operations were recorded at the Newmont Mining Corporation's 'Lone Tree' mine in Nevada. Analysis of these working trajectories has been completed. The motion patterns, when transformed into a family of curves, may serve as the basis for software-controlled machine kinematics transformation in the new human-robot control system. A Cartesian control example has been developed and tested both in simulation and on the experimental excavator. Open-loop control is robustly stable and free of short-term dynamic problems, but it allows for drifting away from the desired motion kinematics of the machine. A novel, closed

  2. Flight-determined benefits of integrated flight-propulsion control systems

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  3. Meeting migratory bird management needs by integrated disease control

    USGS Publications Warehouse

    Friend, M.

    1984-01-01

    The need to combat diseases of migratory birds more effectively will intensify because of need to counteract effects of continual habitat losses. Degradation of habitat will increase potential for disease transmission and the emergence of new disease problems. Migratory bird mobility provides a ready mechanism for spread of disease to locations greatly removed from the site of initial outbreaks. Disease control and management on a flyway basis is needed to combat disease problems of migratory birds more effectively. Modifications in the flyway council system are suggested for implementation of an integrated approach to disease control. Flyway management of disease problems is not a new concept and has been used for addressing lead poisoning in waterfowl (Greenwalt 1976). However, integration of disease concepts in the management of migratory birds on a flyway basis has not been attempted to the extent identified in this paper. Information and communication needs to achieve the goal of minimizing losses of migratory birds to disease are also identified. The limited resources available for disease investigations dictate that sound planning efforts serve as the foundation for program development, priority assessment, and coordination of efforts. Effective disease control in migratory birds is achievable. However, disease control will not happen without adjustments in current perspectives and approaches to disease problems. 'A prime requisite of long range planning for animal disease control or eradication is an attitude of mind that sustains an unflagging optimism toward the ultimate accomplishment of desired results, coupled with an equally persistent skepticism toward dogmatic formulae promising either certain success or certain failure. A long range plan cannot remain inviolate. It must undergo constant critical review and modification as necessary to: accommodate newly acquired scientific or practical information; meet changing economic conditions; account for

  4. Low voltage pentacene OTFT integration for smart sensor control circuits

    NASA Astrophysics Data System (ADS)

    Kumar, Prashanth S.; Rai, Pratyush; Mathur, Gyanesh N.; Varadan, Vijay K.

    2010-04-01

    The past decade has witnessed remarkable progress in Organic electronics and Organic sensor technology on flexible substrates. Temperature and strain sensors for wireless active health monitoring systems have been tested and demonstrated. These sensors need control circuits to condition and transmit the measurand to the data acquisition system. The control circuits have to be incorporated on to the same substrate as the sensing element. So far, Pentacene based Organic Thin-Film Transistors (OTFTs) have been the most promising candidates for integrated circuit applications. To this end, optimization of the OTFT fabrication process is needed to obtain reliable and reproducible transistor performance in terms of mobility, threshold voltage, drive currents, minimal supply voltage and minimal leakage currents. The objective here is to minimize the leakage losses and the voltage required to drive this circuitry while maintaining process compatibility. The choice of dielectric material has been proven to be a key factor influencing all the desirable characteristics stated above. This paper investigates the feasibility of using a High K/Low K, Tantalum Pentoxide/Poly (4-vinyl phenol) (PVP) hybrid dielectric in Pentacene-based OTFTs to lower the operating voltages. Inverters and simple logic gates like 2-input NAND are simulated with these OTFTs. The results indicate that these OTFTs can indeed be used to build large scale integrated circuits with reproducibility.

  5. Integrated robotic vehicle control system for outdoor container handling

    NASA Astrophysics Data System (ADS)

    Viitanen, Jouko O.; Haverinen, Janne; Mattila, Pentti; Maekelae, Hannu; von Numers, Thomas; Stanek, Zbigniev; Roening, Juha

    1997-09-01

    We describe an integrated system developed for use onboard a moving work machine. The machine is targeted to such applications as e.g. automatic container handling at loading terminals. The main emphasis is on the various environment perception duties required by autonomous or semi-autonomous operation. These include obstacle detection, container position determination, localization needed for efficient navigation and measurement of docking and grasping locations of containers. Practical experience is reported on the use of several different types of technologies for the tasks. For close distance measurement, such as container row following, ultrasonic measurement was used, with associated control software. For obstacle and docking position detection, 3D active vision techniques were developed with structured lighting, utilizing also motion estimation techniques. Depth from defocus-based methods were developed for passive 3D vision. For localization, fusion of data from several sources was carried out. These included dead-reckoning data from odometry, an inertial unit, and several alternative external localization devices, i.e. real-time kinematic GPS, inductive and optical transponders. The system was integrated to run on a real-time operating system platform, using a high-level software specification tool that created the hierarchical control structure of the software.

  6. Integration of cellular bioenergetics with mitochondrial quality control and autophagy

    PubMed Central

    Hill, Bradford G.; Benavides, Gloria A.; Lancaster, Jack R.; Ballinger, Scott; Dell’Italia, Lou; Zhang, Jianhua; Darley-Usmar, Victor M.

    2013-01-01

    Bioenergetic dysfunction is emerging as a cornerstone for establishing a framework for understanding the pathophysiology of cardiovascular disease, diabetes, cancer and neurodegeneration. Recent advances in cellular bioenergetics have shown that many cells maintain a substantial bioenergetic reserve capacity, which is a prospective index of “healthy” mitochondrial populations. The bioenergetics of the cell are likely regulated by energy requirements and substrate availability. Additionally, the overall quality of the mitochondrial population and the relative abundance of mitochondria in cells and tissues also impinge on overall bioenergetic capacity and resistance to stress. Because mitochondria are susceptible to damage mediated by reactive oxygen/nitrogen and lipid species, maintaining a “healthy” population of mitochondria through quality control mechanisms appears to be essential for cell survival under conditions of pathological stress. Accumulating evidence suggest that mitophagy is particularly important for preventing amplification of initial oxidative insults, which otherwise would further impair the respiratory chain or promote mutations in mitochondrial DNA (mtDNA). The processes underlying the regulation of mitophagy depend on several factors including the integrity of mtDNA, electron transport chain activity, and the interaction and regulation of the autophagic machinery. The integration and interpretation of cellular bioenergetics in the context of mitochondrial quality control and genetics is the theme of this review. PMID:23092819

  7. [Integrated control of main diseases and insects of Dendranthema morifolium].

    PubMed

    Wang, Jie; Hu, Huilu; Zhang, Chenglin; Hu, Yibing; Liu, Mingfang

    2002-04-01

    The main virus diseases, downy mildew, leaf spot, leaf-injuring insects and aphid's natural enemies in Dendranthema morifolicum were investigated and identified, and the development laws of pests and natural enemies were studied respectively. The effectiveness of integrated control of stem-tip culture, film covering, interplating with tall stalk crops, micronutrient application, terminal bud excising, and use of natural enemies were evaluated. The results showed that after the application of above integrated control measures, the virus-free rate and the yield-increasing rate of the seedlings from stem-tip culture were about 60% and over 50%, respectively. The incidence of downy mildew and leaf-spot decreased by 28% to 30%. The injurious insect density reduced by 40%. The detection of pesticides residue indicated that three pyrethroids insecticides such as cypermethrin, fenvalterate, and deltamthrin were applied one month before harvest, the residues in Dendranthema morifolium after harvest were 0.017, 0.058 and 0.019 mol.L-1, respectively, and all lower than the relevant tolerance values. PMID:12222051

  8. Integrated Enterprise Accelerator Database for the SLC Control System

    NASA Astrophysics Data System (ADS)

    Lahey, T.; Rock, J.; Sass, R.; Shoaee, H.; Underwood, K.

    2002-08-01

    Since its inception in the early 1980's, the SLC Control System has been driven by a highly structured memory-resident real-time database. While efficient, its rigid structure and file-based sources makes it difficult to maintain and extract relevant information. The goal of transforming the sources for this database into a relational form is to enable it to be part of a Control System Enterprise Database that is an integrated central repository for SLC accelerator device and Control System data with links to other associated databases. We have taken the concepts developed for the NLC Enterprise Database and used them to create and load a relational model of the online SLC Control System database. This database contains data and structure to allow querying and reporting on beamline devices, their associations and parameters. queries tend to retrieve large numbers of rows and attribute tables can become large, adversely affecting performance. In addition, this model does not allow optimal use of database features such as constraints and joins, nor the standard set of database query and

  9. Integrated guidance, navigation and control verification plan primary flight system. [space shuttle avionics integration

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The verification process and requirements for the ascent guidance interfaces and the ascent integrated guidance, navigation and control system for the space shuttle orbiter are defined as well as portions of supporting systems which directly interface with the system. The ascent phase of verification covers the normal and ATO ascent through the final OMS-2 circularization burn (all of OPS-1), the AOA ascent through the OMS-1 burn, and the RTLS ascent through ET separation (all of MM 601). In addition, OPS translation verification is defined. Verification trees and roadmaps are given.

  10. Integration of the virtual 3D model of a control system with the virtual controller

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the

  11. Robust control of integrated motor-transmission powertrain system over controller area network for automotive applications

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyuan; Zhang, Hui; Cao, Dongpu; Fang, Zongde

    2015-06-01

    Integrated motor-transmission (IMT) powertrain system with directly coupled motor and gearbox is a good choice for electric commercial vehicles (e.g., pure electric buses) due to its potential in motor size reduction and energy efficiency improvement. However, the controller design for powertrain oscillation damping becomes challenging due to the elimination of damping components. On the other hand, as controller area network (CAN) is commonly adopted in modern vehicle system, the network-induced time-varying delays that caused by bandwidth limitation will further lead to powertrain vibration or even destabilize the powertrain control system. Therefore, in this paper, a robust energy-to-peak controller is proposed for the IMT powertrain system to address the oscillation damping problem and also attenuate the external disturbance. The control law adopted here is based on a multivariable PI control, which ensures the applicability and performance of the proposed controller in engineering practice. With the linearized delay uncertainties characterized by polytopic inclusions, a delay-free closed-loop augmented system is established for the IMT powertrain system under discrete-time framework. The proposed controller design problem is then converted to a static output feedback (SOF) controller design problem where the feedback control gains are obtained by solving a set of linear matrix inequalities (LMIs). The effectiveness as well as robustness of the proposed controller is demonstrated by comparing its performance against that of a conventional PI controller.

  12. Ground Operations Autonomous Control and Integrated Health Management

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Walker, Mark; Wilkins, Kim; Johnson, Robert; Sass, Jared; Youney, Justin

    2014-01-01

    An intelligent autonomous control capability has been developed and is currently being validated in ground cryogenic fluid management operations. The capability embodies a physical architecture consistent with typical launch infrastructure and control systems, augmented by a higher level autonomous control (AC) system enabled to make knowledge-based decisions. The AC system is supported by an integrated system health management (ISHM) capability that detects anomalies, diagnoses causes, determines effects, and could predict future anomalies. AC is implemented using the concept of programmed sequences that could be considered to be building blocks of more generic mission plans. A sequence is a series of steps, and each executes actions once conditions for the step are met (e.g. desired temperatures or fluid state are achieved). For autonomous capability, conditions must consider also health management outcomes, as they will determine whether or not an action is executed, or how an action may be executed, or if an alternative action is executed instead. Aside from health, higher level objectives can also drive how a mission is carried out. The capability was developed using the G2 software environment (www.gensym.com) augmented by a NASA Toolkit that significantly shortens time to deployment. G2 is a commercial product to develop intelligent applications. It is fully object oriented. The core of the capability is a Domain Model of the system where all elements of the system are represented as objects (sensors, instruments, components, pipes, etc.). Reasoning and decision making can be done with all elements in the domain model. The toolkit also enables implementation of failure modes and effects analysis (FMEA), which are represented as root cause trees. FMEA's are programmed graphically, they are reusable, as they address generic FMEA referring to classes of subsystems or objects and their functional relationships. User interfaces for integrated awareness by

  13. Integrated Power and Attitude Control for a Spacecraft with Flywheels and Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Bose, David M.

    2003-01-01

    A law is designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as all integrated set of actuators for attitude control. General. nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as it means of compensating for damping exerted by rotor bearings. Two flywheel 'steering laws' are developed such that torque commanded by all attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude and illustrate the benefits of kinetic energy error feedback.

  14. Integrated Communication and Control Systems. III - Nonidentical sensor and controller sampling

    NASA Technical Reports Server (NTRS)

    Liou, Luen-Woei; Ray, A.

    1990-01-01

    Networking in Integrated Communication and Control Systems (ICCS) introduces randomly varying delays which degrade the system dynamic performance and are a source of potential instability. In Part I of this sequence of papers, a discrete-time, finite-dimensional model of the delayed control system for analysis and design of ICCS was developed where the sensor and controller have identical sampling rates. In Part II, two alternate approaches for ICCS design, namely, identical and nonidentical sampling rates for sensor and controller were proposed. This Part III presents extended modeling of ICCS for nonidentical sensor and controller sampling rates. This model is also suitable for analyzing tracking problems, i.e., control systems with time-dependent reference inputs.

  15. Integrative analysis of cell cycle control in budding yeast.

    PubMed

    Chen, Katherine C; Calzone, Laurence; Csikasz-Nagy, Attila; Cross, Frederick R; Novak, Bela; Tyson, John J

    2004-08-01

    The adaptive responses of a living cell to internal and external signals are controlled by networks of proteins whose interactions are so complex that the functional integration of the network cannot be comprehended by intuitive reasoning alone. Mathematical modeling, based on biochemical rate equations, provides a rigorous and reliable tool for unraveling the complexities of molecular regulatory networks. The budding yeast cell cycle is a challenging test case for this approach, because the control system is known in exquisite detail and its function is constrained by the phenotypic properties of >100 genetically engineered strains. We show that a mathematical model built on a consensus picture of this control system is largely successful in explaining the phenotypes of mutants described so far. A few inconsistencies between the model and experiments indicate aspects of the mechanism that require revision. In addition, the model allows one to frame and critique hypotheses about how the division cycle is regulated in wild-type and mutant cells, to predict the phenotypes of new mutant combinations, and to estimate the effective values of biochemical rate constants that are difficult to measure directly in vivo. PMID:15169868

  16. Integrated sensor and actuator fault-tolerant control

    NASA Astrophysics Data System (ADS)

    Seron, María M.; De Doná, José A.; Richter, Jan H.

    2013-04-01

    We propose a fault-tolerant control scheme that deals with sensor and actuator faults through the use of a virtual actuator (VA) and a bank of virtual sensors (VSs). A novel feature of the scheme is that the VSs implicitly integrate both fault detection and isolation (FDI) and - in conjunction with the VA - controller reconfiguration tasks. The VA and the bank of VSs operate in closed-loop with an observer-based tracking controller designed for a nominal (fault free) model of the plant. A switching rule that reconfigures the VA and engages the suitable VS from the bank is based on sets defined for measurable residual signals constructed directly from the VS signals. Our method handles abrupt actuator and sensor faults of arbitrary magnitude including complete outage. The overall scheme is shown to guarantee closed-loop boundedness and setpoint tracking under all considered fault situations. Enhancements of the scheme to deal with errors in the fault detection and isolation are also proposed. Applications of the scheme to a winding machine and an interconnected tank system are presented.

  17. Controlled growth of Si nanowire arrays for device integration.

    PubMed

    Hochbaum, Allon I; Fan, Rong; He, Rongrui; Yang, Peidong

    2005-03-01

    Silicon nanowires were synthesized, in a controlled manner, for their practical integration into devices. Gold colloids were used for nanowire synthesis by the vapor-liquid-solid growth mechanism. Using SiCl4 as the precursor gas in a chemical vapor deposition system, nanowire arrays were grown vertically aligned with respect to the substrate. By manipulating the colloid deposition on the substrate, highly controlled growth of aligned silicon nanowires was achieved. Nanowire arrays were synthesized with narrow size distributions dictated by the seeding colloids and with average diameters down to 39 nm. The density of wire growth was successfully varied from approximately 0.1-1.8 wires/microm2. Patterned deposition of the colloids led to confinement of the vertical nanowire growth to selected regions. In addition, Si nanowires were grown directly into microchannels to demonstrate the flexibility of the deposition technique. By controlling various aspects of nanowire growth, these methods will enable their efficient and economical incorporation into devices. PMID:15755094

  18. Rhythmic gain control during supramodal integration of approximate number.

    PubMed

    Spitzer, Bernhard; Blankenburg, Felix; Summerfield, Christopher

    2016-04-01

    According to one view, neural oscillations structure information processing in time, determining whether sensory inputs have a strong or weak impact on behavior. Recent work showed that during sequential integration of visual inputs, stimuli that fall in the preferred phase of slow (1-3Hz), endogenous EEG activity carry greater weight in subsequent judgment. Here, we asked two questions. Firstly, is this phenomenon modality-specific, or is it supramodal? Secondly, does this effect occur at the level of sequential encoding, or only during decision formation? We analyzed scalp EEG recordings from healthy human participants while they compared the approximate number of visual, auditory or somatosensory pulses in two successive intervals (N1 and N2). Despite differences in activity evoked in different domains, a common, slowly-oscillating (~3Hz) choice-predictive signal was observed in all three modalities with a maximum coincident with pulse onset. Critically, this signal was present during N2 (when a decision was being formed) but absent during N1 (when perceptual information was encoded, but no decision could be made). In other words, rhythmic gain control during sequential processing is a supramodal phenomenon that occurs while information is integrated towards a categorical decision. PMID:26707891

  19. Redundant integrated flight control/navigation inertial sensor complex

    NASA Technical Reports Server (NTRS)

    Ebner, R. E.; Mark, J. G.

    1977-01-01

    A redundant strapdown inertial navigation system for integrated flight control/navigation use is described. Design of the system, which consists of four tuned-gimbal gyros, eight accelerometers, and four processors, is discussed, with emphasis on its compact configuration (13 by 13 by 14 in.), based on symmetry properties of an octahedron. A matrix operator for least-squares combination of data from an arbitrary number of two-degree-of-freedom gyros is derived, and general parity equations for error analysis are given. Self-contained detection and isolation of a two-axis gyro failure is considered; system failure probability, which depends on component failure rates and self-correction capacities, is analyzed. Test data, including typical parity equation responses during motion and simulated gyro and accelerometer failures, are also presented.

  20. Integrated Project Scheduling and Staff Assignment with Controllable Processing Times

    PubMed Central

    Framinan, Jose M.

    2014-01-01

    This paper addresses a decision problem related to simultaneously scheduling the tasks in a project and assigning the staff to these tasks, taking into account that a task can be performed only by employees with certain skills, and that the length of each task depends on the number of employees assigned. This type of problems usually appears in service companies, where both tasks scheduling and staff assignment are closely related. An integer programming model for the problem is proposed, together with some extensions to cope with different situations. Additionally, the advantages of the controllable processing times approach are compared with the fixed processing times. Due to the complexity of the integrated model, a simple GRASP algorithm is implemented in order to obtain good, approximate solutions in short computation times. PMID:24895672

  1. An Integrated Approach to Damage Accommodation in Flight Control

    NASA Technical Reports Server (NTRS)

    Boskovic, Jovan D.; Knoebel, Nathan; Mehra, Raman K.; Gregory, Irene

    2008-01-01

    In this paper we present an integrated approach to in-flight damage accommodation in flight control. The approach is based on Multiple Models, Switching and Tuning (MMST), and consists of three steps: In the first step the main objective is to acquire a realistic aircraft damage model. Modeling of in-flight damage is a highly complex problem since there is a large number of issues that need to be addressed. One of the most important one is that there is strong coupling between structural dynamics, aerodynamics, and flight control. These effects cannot be studied separately due to this coupling. Once a realistic damage model is available, in the second step a large number of models corresponding to different damage cases are generated. One possibility is to generate many linear models and interpolate between them to cover a large portion of the flight envelope. Once these models have been generated, we will implement a recently developed-Model Set Reduction (MSR) technique. The technique is based on parameterizing damage in terms of uncertain parameters, and uses concepts from robust control theory to arrive at a small number of "centered" models such that the controllers corresponding to these models assure desired stability and robustness properties over a subset in the parametric space. By devising a suitable model placement strategy, the entire parametric set is covered with a relatively small number of models and controllers. The third step consists of designing a Multiple Models, Switching and Tuning (MMST) strategy for estimating the current operating regime (damage case) of the aircraft, and switching to the corresponding controller to achieve effective damage accommodation and the desired performance. In the paper present a comprehensive approach to damage accommodation using Model Set Design,MMST, and Variable Structure compensation for coupling nonlinearities. The approach was evaluated on a model of F/A-18 aircraft dynamics under control effector damage

  2. An integrated analysis of controlled- and passive source seismic data

    NASA Astrophysics Data System (ADS)

    Rumpfhuber, Eva-Maria

    This dissertation consists of two parts, which include a study using passive source seismic data, and one using the dataset from a large-scale refraction/wide-angle reflection seismic experiment as the basis for an integrated analysis. The goal of the dissertation is the integration of the two different datasets and a combined interpretation of the results of the "Continental Dynamics of the Rocky Mountains" (CD-ROM) 1999 seismic experiment. I have determined the crustal structure using four different receiver function methods using data collected from the northern transect of the CD-ROM passive seismic experiment. The resulting migrated image and crustal thickness determinations confirm and define prior crustal thickness measurements based on the CD-ROM and Deep Probe datasets. The new results show a very strong lower crustal layer (LCL) with variable thickness beneath the Wyoming Province. In addition, I was able to show that it terminates at 42° latitude and provide a seismic tie between the CD-ROM and Deep Probe seismic experiments so they represent a continuous N-S transect extending from New Mexico into Alberta, Canada. This new tie is particularly important because it occurs close to a major tectonic boundary, the Cheyenne belt, between an Archean craton and a Proterozoic terrane. The controlled-source seismic dataset was analyzed with the aid of forward modeling and inversion to establish a two-dimensional velocity and interface model of the area. I have developed a picking strategy, which helps identify the seismic phases, and improves quality and quantity of the picks. In addition, I was able to pick and identify S-wave phases, which furthermore allowed me to establish an independent S-wave model, and hence the Poisson's and Vp/Vs ratios. The final velocity and interface model was compared to prior results, and the results were jointly interpreted with the receiver function results. Thanks to the integration of the controlled-source and receiver function

  3. Formulation of a strategy for monitoring control integrity in critical digital control systems

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1991-01-01

    Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.

  4. Status of the Fiber Optic Control System Integration (FOCSI) program

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1993-05-01

    This report presents a discussion of the progress made in the NASA/NAVY Fiber Optic Control System Integration (FOCSI) program. This program will culminate in open-loop flight tests of passive optical sensors and associated electro-optics on an F-18 aircraft. Currently, the program is in the final stages of hardware fabrication and environmental testing of the passive optical sensors and electro-optics. This program is a foundation for future Fly-by-Light (FBL) programs. The term Fly-by-Light is used to describe the utilization of passive optical sensors and fiber optic data links for monitoring and control of aircraft in which sensor and actuation signals are transmitted optically. The benefits of this technology for advanced aircraft include the following: improved reliability and reduced certification cost due to greater immunity to EME (electromagnetic effects); reduced harness volume and weight; elimination of short circuits and sparking in wiring due to insulation deterioration; lower maintenance costs (fewer components); greater flexibility in data bus protocol and architecture; absence of ground loops; and higher operating temperatures for electrically passive optical sensors.

  5. Characterization of integrated optical CD for process control

    NASA Astrophysics Data System (ADS)

    Yu, Jackie; Uchida, Junichi; van Dommelen, Youri; Carpaij, Rene; Cheng, Shaunee; Pollentier, Ivan; Viswanathan, Anita; Lane, Lawrence; Barry, Kelly A.; Jakatdar, Nickhil

    2004-05-01

    The accurate measurement of CD (critical dimension) and its application to inline process control are key challenges for high yield and OEE (overall equipment efficiency) in semiconductor production. CD-SEM metrology, although providing the resolution necessary for CD evaluation, suffers from the well-known effect of resist shrinkage, making accuracy and stability of the measurements an issue. For sub-100 nm in-line process control, where accuracy and stability as well as speed are required, CD-SEM metrology faces serious limitations. In contrast, scatterometry, using broadband optical spectra taken from grating structures, does not suffer from such limitations. This technology is non-destructive and, in addition to CD, provides profile information and film thickness in a single measurement. Using Timbre's Optical Digital Profililometry (ODP) technology, we characterized the Process Window, using a iODP101 integrated optical CD metrology into a TEL Clean Track at IMEC. We demonstrate the Optical CD's high sensitivity to process change and its insensitivity to measurement noise. We demonstrate the validity of ODP modeling by showing its accurate response to known process changes built into the evaluation and its excellent correlation to CD-SEM. We will further discuss the intrinsic Optical CD metrology factors that affect the tool precision, accuracy and its correlation to CD-SEM.

  6. Controls-structures integrated design optimization with shape variations

    NASA Technical Reports Server (NTRS)

    Koganti, Gopichand; Hou, Gene

    1993-01-01

    The shape design variables have been introduced into the set of design variables of the Controls-Structure Integrated (CSI) Design of space-structures. The importance of the shape variations in improving the design (obtained with only control and sizing variables) has been aptly illustrated. Two different types of design variables that describe the shape variations of the structure have been introduced. In the first case, the nodal coordinates have been considered as design variables. This has the inherent difficulty of having too many design variables. This not only is time consuming but also memory intensive and may not yield a manufacturable shape to the structure. The second approach has been introduced to overcome this difficulty. The structure is allowed to vary in a particular pre defined pattern. The coefficients of these patterns are considered as the shape design variables. The eigenvalue and eigenvector sensitivity equations with respect to these coefficient design variables have been developed and are used to approximate the eigenvalues and eigenvectors in a perturbed design.

  7. Integration and Modulation of Intercellular Signaling Underlying Blood Flow Control

    PubMed Central

    Segal, Steven S.

    2015-01-01

    Vascular resistance networks control tissue blood flow in concert with regulating arterial perfusion pressure. In response to increased metabolic demand, vasodilation arising in arteriolar networks ascends to encompass proximal feed arteries. By reducing resistance upstream, ascending vasodilation (AVD) increases blood flow into the microcirculation. Once initiated [e.g., through local activation of K+ channels in endothelial cells (ECs)], hyperpolarization is conducted through gap junctions along the endothelium. Via EC projections through the internal elastic lamina, hyperpolarization spreads into the surrounding smooth muscle cells (SMCs) through myoendothelial gap junctions (MEGJs) to promote their relaxation. Intercellular signaling through electrical signal transmission (i.e., cell-to-cell conduction) can thereby coordinate vasodilation along and among the branches of microvascular resistance networks. Perivascular sympathetic nerve fibers course through the adventitia and release norepinephrine to stimulate SMCs via α-adrenoreceptors to produce contraction. In turn, SMCs can signal ECs through MEGJs to activate K+ channels and attenuate sympathetic vasoconstriction. Activation of K+ channels along the endothelium will dissipate electrical signal transmission and inhibit AVD, thereby restricting blood flow into the microcirculation while maintaining peripheral resistance and perfusion pressure. This review explores the origins and nature of intercellular signaling governing blood flow control in skeletal muscle with respect to the interplay between AVD and sympathetic innervation. Whereas these interactions are integral to physical daily activity and athletic performance, resolving the interplay between respective signaling events provides insight into how selective interventions can improve tissue perfusion and oxygen delivery during vascular disease. PMID:26368324

  8. Status of the Fiber Optic Control System Integration (FOCSI) program

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1993-01-01

    This report presents a discussion of the progress made in the NASA/NAVY Fiber Optic Control System Integration (FOCSI) program. This program will culminate in open-loop flight tests of passive optical sensors and associated electro-optics on an F-18 aircraft. Currently, the program is in the final stages of hardware fabrication and environmental testing of the passive optical sensors and electro-optics. This program is a foundation for future Fly-by-Light (FBL) programs. The term Fly-by-Light is used to describe the utilization of passive optical sensors and fiber optic data links for monitoring and control of aircraft in which sensor and actuation signals are transmitted optically. The benefits of this technology for advanced aircraft include the following: improved reliability and reduced certification cost due to greater immunity to EME (electromagnetic effects); reduced harness volume and weight; elimination of short circuits and sparking in wiring due to insulation deterioration; lower maintenance costs (fewer components); greater flexibility in data bus protocol and architecture; absence of ground loops; and higher operating temperatures for electrically passive optical sensors.

  9. Voltage and Reactive Power Control by Integrating Genetic Algorithm and Tabu Search Considering Control Process

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kensei; Aoki, Hidenori; Naoi, Kenji; Mizutani, Yoshibumi

    This paper presents the result of executing the conventional genetic algorithm (GA) and a new method to the voltage and reactive power control (VQC). The conventional GA can give the control process and improve the fitness with the practical control times. And, the method to cancel the limited deviation as early as possible is implemented. Moreover, the method to reduce the control times to the fitness as much as possible is proposed. The proposed method is integrated the tabu search (TS) into the conventional GA. The proposed method generates next generation’s individual with the crossover of the conventional GA and the neighborhood search of the TS. Therefore, the proposed method executes an effective search. As a result, the proposed method can obtain better fitness than the conventional GA in the same calculation times. The effectiveness of the proposed method is demonstrated by practical 15-bus and 118-bus systems.

  10. A novel proportional--integral-derivative control configuration with application to the control of batch distillation

    SciTech Connect

    Alvarez-Ramirez, J.; Monroy-Loperena, R.; Cervantes, I.; Morales, A.

    2000-02-01

    The aim of this paper is to propose a novel proportional-integral-derivative (PID) control configuration based on an observer structure. Batch distillation is used as the base case study where the regulated output is the distillate composition. The proposed PID control law is derived in the framework of robust nonlinear control with modeling error compensation techniques. A reduced-order observer is proposed to estimate both the derivative of the regulated output and the underlying modeling error. These observations are subsequently used in a control loop to feedback variations of distillate composition (derivative feedback) and to counteract the effects of modeling errors. It is shown that, under certain conditions, the resulting control law is equivalent to a classical PID controller with an antireset windup scheme. Moreover, the tuning of the controller is performed very easily in terms of a prescribed closed-loop time constant and an estimation time constant. Numerical results are provided for binary and multicomponent separations. Sampled/delayed measurements and several sources of uncertainties are considered in order to provide a realistic test scenario for the proposed control design procedure.

  11. [The meaning of fertility control in an integrated world].

    PubMed

    Benagiano, G; Testa, G; Cocuzzi, L

    2004-06-01

    Modern contraception was born out of the momentum of the demographic explosion that characterised the 20th century; today the phenomenon has acquired complexity because it is interconnected with population aging which is already very evident in the industrialised West, but is about to explode in the developing world too. Modern contraception played a decisive role in slowing down demographic growth which is now at a point below replacement level in numerous industrialised countries, including Italy. A phenomenon that has, unfortunately, often accompanied family planning education campaigns has been that of coercion: in the most highly populated countries and thus in those countries most exposed to the severe consequences of ultra-rapid increases in the population, governments and particularly zealous public servants have often resorted to more or less forced sterilisation and even abortion in order to achieve their targets. All of this ended in 1994 when the Cairo International Conference for Cooperation and Development recognised and sanctioned the new integrated concept of Reproductive Health. This new concept mandates that family planning and modern contraception must be integrated with all other interventions aimed at creating a state of psychophysical wellbeing in everything that concerns reproduction. Today then it is absolutely impossible to speak of "family planning", "fertility control" or "contraception" in isolated fashion; it is necessary to insert interventions in these fields into the global context of all other interventions in matters of reproduction. Finally, it should be recalled that in the 2nd half of the 20th century, after hundreds of thousands of years, homo sapiens performed at least 2 revolutions: the contraceptive revolution, which permitted sexuality without reproduction, and the reproductive revolution, which permitted reproduction without sexuality. Given the speed of these changes it should not surprise that they were received with

  12. Integrated Neural and Endocrine Control of Gastrointestinal Function.

    PubMed

    Furness, John B

    2016-01-01

    The activity of the digestive system is dynamically regulated by external factors, including body nutritional and activity states, emotions and the contents of the digestive tube. The gut must adjust its activity to assimilate a hugely variable mixture that is ingested, particularly in an omnivore such as human for which a wide range of food choices exist. It must also guard against toxins and pathogens. These nutritive and non-nutritive components of the gut contents interact with the largest and most vulnerable surface in the body, the lining of the gastrointestinal tract. This requires a gut sensory system that can detect many classes of nutrients, non-nutrient components of food, physicochemical conditions, toxins, pathogens and symbionts (Furness et al., Nat Rev Gastroenterol Hepatol 10:729-740, 2013). The gut sensors are in turn coupled to effector systems that can respond to the sensory information. The responses are exerted through enteroendocrine cells (EEC), the enteric nervous system (ENS), the central nervous system (CNS) and the gut immune and tissue defence systems. It is apparent that the control of the digestive organs is an integrated function of these effectors. The peripheral components of the EEC, ENS and CNS triumvirate are extensive. EEC cells have traditionally been classified into about 12 types (disputed in this review), releasing about 20 hormones, together making the gut endocrine system the largest endocrine organ in the body. Likewise, in human the ENS contains about 500 million neurons, far more than the number of neurons in the remainder of the peripheral autonomic nervous system. Together gut hormones, the ENS and the CNS control or influence functions including satiety, mixing and propulsive activity, release of digestive enzymes, induction of nutrient transporters, fluid transport, local blood flow, gastric acid secretion, evacuation and immune responses. Gut content receptors, including taste, free fatty acid, peptide and

  13. Role of the Controller in an Integrated Pilot-Controller Study for Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Verma, Savvy; Kozon, Thomas; Ballinger, Debbi; Lozito, Sandra; Subramanian, Shobana

    2011-01-01

    Closely spaced parallel runway operations have been found to increase capacity within the National Airspace System but poor visibility conditions reduce the use of these operations [1]. Previous research examined the concepts and procedures related to parallel runways [2][4][5]. However, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This study developed and examined the pilot s and controller s procedures and information requirements for creating aircraft pairs for closely spaced parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s (+/- 10s error) at a coupling point that was 12 nmi from the runway threshold. In this paper, the role of the controller, as examined in an integrated study of controllers and pilots, is presented. The controllers utilized a pairing scheduler and new pairing interfaces to help create and maintain aircraft pairs, in a high-fidelity, human-in-the loop simulation experiment. Results show that the controllers worked as a team to achieve pairing between aircraft and the level of inter-controller coordination increased when the aircraft in the pair belonged to different sectors. Controller feedback did not reveal over reliance on the automation nor complacency with the pairing automation or pairing procedures.

  14. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    PubMed

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-01

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices. PMID:24145429

  15. Pneumatic oscillator circuits for timing and control of integrated microfluidics

    PubMed Central

    Duncan, Philip N.; Nguyen, Transon V.; Hui, Elliot E.

    2013-01-01

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices. PMID:24145429

  16. Local, integrated control of blood flow: Professor Tudor Griffith Memorial.

    PubMed

    Edwards, David H

    2013-11-01

    Professor Tudor Griffith was one of the founding members of the European Study Group on Cardiovascular Oscillations, and hosted the 1st ESGCO Conference in Cardiff, Wales in 2000. Tudor was a passionate scientist, who managed to combine his enthusiasm for vascular biology with his background in physics, to make key and insightful advances to our knowledge and understanding of the integrated vascular control mechanisms that co-ordinate blood flow in tissue perfusion. He had a particular interest in the endothelium, the monolayer of cells that lines the entire cardiovascular system and which is in prime position to sense a wide variety of modulatory stimuli, both chemical and mechanical. Over the last 20 years Tudor produced a series of research papers in which he used chaos theory to analyse the behaviour of arteries that underpins vasomotion. The research led to the development of mathematical models that were able to predict calcium oscillations in vascular smooth muscle with a view to predicting events in a complete virtual artery. This article will review the field in which he worked, with an obvious emphasis on his contribution. PMID:23522722

  17. An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Watts, Stephen R.; Garg, Sanjay

    1995-01-01

    This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.

  18. Resilient Propulsion Control Research for the NASA Integrated Resilient Aircraft Control (IRAC) Project

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Litt, Jonathan S.

    2007-01-01

    Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.

  19. Fiber Optic Control System Integration program: for optical flight control system development

    NASA Astrophysics Data System (ADS)

    Weaver, Thomas L.; Seal, Daniel W.

    1994-10-01

    Hardware and software were developed for optical feedback links in the flight control system of an F/A-18 aircraft. Developments included passive optical sensors and optoelectronics to operate the sensors. Sensors with different methods of operation were obtained from different manufacturers and integrated with common optoelectronics. The sensors were the following: Air Data Temperature; Air Data Pressure; and Leading Edge Flap, Nose Wheel Steering, Trailing Edge Flap, Pitch Stick, Rudder, Rudder Pedal, Stabilator, and Engine Power Lever Control Position. The sensors were built for a variety of aircraft locations and harsh environments. The sensors and optoelectronics were as similar as practical to a production system. The integrated system was installed by NASA for flight testing. Wavelength Division Multiplexing proved successful as a system design philosophy. Some sensors appeared to be better choices for aircraft applications than others, with digital sensors generally being better than analog sensors, and rotary sensors generally being better than linear sensors. The most successful sensor approaches were selected for use in a follow-on program in which the sensors will not just be flown on the aircraft and their performance recorded; but, the optical sensors will be used in closing flight control loops.

  20. Networked simulation for the design of an integrated chassis control system

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Bum; Lee, Jaecheon; Park, Byeong-Ryul; Jeong, Gu-Min; Ahn, Hyun-Sik

    2007-12-01

    This paper presents a networked simulation for an integrated chassis control system of AFS (Active Front Steering) and ITD (Intelligent Torque Distribution). Integration of each chassis control system is used to overcome the limit of performance when each chassis controller is used individually. We show an integration method AFS and ITD under the supervisory controller which determines the operation modes based on vehicle variables. The experimental set-up for the networked simulation of the integrated chassis control consists of four microcontroller boards, a steering wheel sensor and a data acquisition board where all the microcontrollers and a sensor are communicated using the CAN protocol. It is shown by experimental results that the integrated control system can achieve better performance than simply combined individual controllers in the sense of energy consumption.

  1. Integrated-Circuit Controller For Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  2. Integrated Control with Structural Feedback to Enable Lightweight Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2011-01-01

    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  3. Computerized control permits applying volume balance for pipeline integrity 150

    SciTech Connect

    Daves, R.E.

    1983-07-01

    Volume balance is an effective technique for monitoring line-integrity in certain liquids pipelines. The details of implementation often mean the difference between a useful dispatcher tool and a sinkhole for system resources. These implementation details are far too important to leave to a vendor's discretion. The design of a line-integrity monitor must take into account the presentation of sufficient information to allow the system dispatcher to analyze any alarms generated by the system. Timely action by the dispatcher is essential to the success of the line-integrity monitor.

  4. INTEGRATED CONTROL OF COMBINED SEWER REGULATORS USING WEATHER RADAR

    EPA Science Inventory

    Integrated operation was simulated of ten dynamic combined sewer regulators on a Montreal interceptor. Detailed review of digital recording weather radar capabilities indicated that it is potentially the best rainfall estimation means for accomplishing the runoff prediction that ...

  5. An integrated control/structure design method using multi-objective optimization

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep; Joshi, Suresh M.

    1991-01-01

    The benefits are demonstrated of a multiobjective optimization based control structure integrated design methodology. An application of the proposed CSI methodology to the integrated design of the Spacecraft COntrol Lab Experiment (SCOLE) configuration is presented. Integrated design resulted in reducing both the control performance measure and the mass. Thus, better overall performance is achieved through integrated design optimization. The mutliobjective optimization approach used provides Pareto optimal solutions by unconstrained minimization of a differentiable KS function. Furthermore, adjusting the parameters gives insight into the trade-offs involved between different objectives.

  6. Integrated controls/structures study of advanced space systems

    NASA Technical Reports Server (NTRS)

    Greene, C. S.; Cunningham, T. B.

    1982-01-01

    A cost tradeoff is postulated for a stiff structure utilizing minimal controls (and control expense) to point and stabilize the vehicle. Extra costs for a stiff structure are caused by weight, packaging size, etc. Likewise, a more flexible vehicle should result in reduced structural costs but increased costs associated with additional control hardware and data processing required for vibration control of the structure. This tradeoff occurs as the ratio of the control bandwidth required for the mission to the lowest (significant) bending mode of the vehicle. The cost of controlling a spacecraft for a specific mission and the same basic configuration but varying the flexibility is established.

  7. Integrated control of active suspension system and electronic stability programme using hierarchical control strategy: theory and experiment

    NASA Astrophysics Data System (ADS)

    Xiao, Hansong; Chen, Wuwei; Zhou, HuiHui; Zu, Jean W.

    2011-02-01

    Integrated vehicle dynamics control has been an important research topic in the area of vehicle dynamics and control over the past two decades. The aim of integrated vehicle control is to improve the overall vehicle performance including handling, stability, and comfort through creating synergies in the use of sensor information, hardware, and control strategies. This paper proposes a two-layer hierarchical control architecture for integrated control of the active suspension system (ASS) and the electronic stability programme (ESP). The upper-layer controller is designed to coordinate the interactions between the ASS and the ESP. While in the lower layer, the two controllers including the ASS and the ESP are developed independently to achieve their local control objectives. Both a simulation investigation and a hardware-in-the-loop experimental study are performed. Simulation results demonstrate that the proposed hierarchical control system is able to improve the multiple vehicle performance indices including both the ride comfort and the lateral stability, compared with the non-integrated control system. Moreover, the experimental results verify the effectiveness of the design of the hierarchical control system.

  8. Integrated structural control design of large space structures

    SciTech Connect

    Allen, J.J.; Lauffer, J.P.

    1995-01-01

    Active control of structures has been under intensive development for the last ten years. Reference 2 reviews much of the identification and control technology for structural control developed during this time. The technology was initially focused on space structure and weapon applications; however, recently the technology is also being directed toward applications in manufacturing and transportation. Much of this technology focused on multiple-input/multiple-output (MIMO) identification and control methodology because many of the applications require a coordinated control involving multiple disturbances and control objectives where multiple actuators and sensors are necessary for high performance. There have been many optimal robust control methods developed for the design of MIMO robust control laws; however, there appears to be a significant gap between the theoretical development and experimental evaluation of control and identification methods to address structural control applications. Many methods have been developed for MIMO identification and control of structures, such as the Eigensystem Realization Algorithm (ERA), Q-Markov Covariance Equivalent Realization (Q-Markov COVER) for identification; and, Linear Quadratic Gaussian (LQG), Frequency Weighted LQG and H-/ii-synthesis methods for control. Upon implementation, many of the identification and control methods have shown limitations such as the excitation of unmodelled dynamics and sensitivity to system parameter variations. As a result, research on methods which address these problems have been conducted.

  9. Active parallel redundancy for electronic integrator-type control circuits

    NASA Technical Reports Server (NTRS)

    Peterson, R. A.

    1971-01-01

    Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.

  10. Internal Models in Sensorimotor Integration: Perspectives from Adaptive Control Theory

    PubMed Central

    Tin, Chung; Poon, Chi-Sang

    2007-01-01

    Internal model and adaptive control are empirical and mathematical paradigms that have evolved separately to describe learning control processes in brain systems and engineering systems, respectively. This paper presents a comprehensive appraisal of the correlation between these paradigms with a view to forging a unified theoretical framework that may benefit both disciplines. It is suggested that the classic equilibrium-point theory of impedance control of arm movement is analogous to continuous gain-scheduling or high-gain adaptive control within or across movement trials, respectively, and that the recently proposed inverse internal model is akin to adaptive sliding control originally for robotic manipulator applications. Modular internal models architecture for multiple motor tasks is a form of multi-model adaptive control. Stochastic methods such as generalized predictive control, reinforcement learning, Bayesian learning and Hebbian feedback covariance learning are reviewed and their possible relevance to motor control is discussed. Possible applicability of Luenberger observer and extended Kalman filter to state estimation problems such as sensorimotor prediction or the resolution of vestibular sensory ambiguity is also discussed. The important role played by vestibular system identification in postural control suggests an indirect adaptive control scheme whereby system states or parameters are explicitly estimated prior to the implementation of control. This interdisciplinary framework should facilitate the experimental elucidation of the mechanisms of internal model in sensorimotor systems and the reverse engineering of such neural mechanisms into novel brain-inspired adaptive control paradigms in future. PMID:16135881

  11. Integrated Controls-Structures Design Methodology: Redesign of an Evolutionary Test Structure

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Joshi, Suresh M.

    1997-01-01

    An optimization-based integrated controls-structures design methodology for a class of flexible space structures is described, and the phase-0 Controls-Structures-Integration evolutionary model, a laboratory testbed at NASA Langley, is redesigned using this integrated design methodology. The integrated controls-structures design is posed as a nonlinear programming problem to minimize the control effort required to maintain a specified line-of-sight pointing performance, under persistent white noise disturbance. Static and dynamic dissipative control strategies are employed for feedback control, and parameters of these controllers are considered as the control design variables. Sizes of strut elements in various sections of the CEM are used as the structural design variables. Design guides for the struts are developed and employed in the integrated design process, to ensure that the redesigned structure can be effectively fabricated. The superiority of the integrated design methodology over the conventional design approach is demonstrated analytically by observing a significant reduction in the average control power needed to maintain specified pointing performance with the integrated design approach.

  12. Computational architecture for integrated controls and structures design

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Park, K. C.

    1989-01-01

    To facilitate the development of control structure interaction (CSI) design methodology, a computational architecture for interdisciplinary design of active structures is presented. The emphasis of the computational procedure is to exploit existing sparse matrix structural analysis techniques, in-core data transfer with control synthesis programs, and versatility in the optimization methodology to avoid unnecessary structural or control calculations. The architecture is designed such that all required structure, control and optimization analyses are performed within one program. Hence, the optimization strategy is not unduly constrained by cold starts of existing structural analysis and control synthesis packages.

  13. Spatial Integration under Contextual Control in a Virtual Environment

    ERIC Educational Resources Information Center

    Molet, Mikael; Gambet, Boris; Bugallo, Mehdi; Miller, Ralph R.

    2012-01-01

    The role of context was examined in the selection and integration of independently learned spatial relationships. Using a dynamic 3D virtual environment, participants learned one spatial relationship between landmarks A and B which was established in one virtual context (e.g., A is left of B) and a different spatial relationship which was…

  14. IRS views on physician control of integrated networks.

    PubMed

    Griffith, G M

    1995-11-01

    Integrated delivery systems and their components are evolving rapidly, as are Internal Revenue Service (IRS) tax-exemption rulings and standards affecting these entities. A common concern addressed by two recent IRS tax-exemption rulings centered on the impact of physician involvement on a hospital's tax-exempt status. PMID:10151865

  15. An integrated Mach-Zehnder modulator bias controller based on eye-amplitude monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Min-Hyeong; Jung, Hyun-Yong; Zimmermann, Lars; Choi, Woo-Young

    2016-03-01

    A novel integrated Mach-Zehnder modulator (MZM) bias controller based on eye-amplitude monitoring is demonstrated in IHP's 0.25-μm BiCMOS technology. The bias controller monitors the MZM output light, automatically moves the MZM bias voltage to the optimal value that produces the largest eye amplitude, and maintains it there even if the MZM transfer characteristics change due to thermal drift. The controller is based on the feedback loop consisting of Si photodetector, trans-impedance amplifier, rectifier, square amplifier, track-and-hold circuit, comparator, polarity changer, and charge-pump, all of which are monolithically integrated. The area of the controller is 0.083-mm2 and it consumes 92.5-mW. Our bias controller shows successful operation for a commercially-available 850-nm LiNbO3 MZM modulated with 3-Gbps PRBS data by maintaining a very clean eye for at least 30 minutes. Without the controller, the eye for the same MZM modulation becomes completely closed due to thermal drift. The data rate is limited by the Si PD integrated in the controller not by the controller architecture. Since our controller is based on the Si BiCMOS technology which can also provide integrated Si photonics devices on the same Si, it has a great potential for realizing a Si MZM with an integrated bias controller, which should fully demonstrate the advantage of electronic-photonic integrated circuit technology.

  16. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    PubMed

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. PMID:25234140

  17. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.

  18. INTEGRATED ROBOT-HUMAN CONTROL IN MINING OPERATIONS

    SciTech Connect

    George Danko

    2006-04-01

    This report describes the results of the 2nd year of a research project on the implementation of a novel human-robot control system for hydraulic machinery. Sensor and valve re-calibration experiments were conducted to improve open loop machine control. A Cartesian control example was tested both in simulation and on the machine; the results are discussed in detail. The machine tests included open-loop as well as closed-loop motion control. Both methods worked reasonably well, due to the high-quality electro-hydraulic valves used on the experimental machine. Experiments on 3-D analysis of the bucket trajectory using marker tracking software are also presented with the results obtained. Open-loop control is robustly stable and free of short-term dynamic problems, but it allows for drifting away from the desired motion kinematics of the machine. A novel, closed-loop control adjustment provides a remedy, while retaining much of the advantages of the open-loop control based on kinematics transformation. Additional analysis of previously recorded, three-dimensional working trajectories of the bucket of large mine shovels was completed. The motion patterns, when transformed into a family of curves, serve as the basis for software-controlled machine kinematics transformation in the new human-robot control system.

  19. HTGR-GT and electrical load integrated control

    SciTech Connect

    Chan, T.; Openshaw, F.; Pfremmer, D.

    1980-05-01

    A discussion of the control and operation of the HTGR-GT power plant is presented in terms of its closely coupled electrical load and core cooling functions. The system and its controls are briefly described and comparisons are made with more conventional plants. The results of analyses of selected transients are presented to illustrate the operation and control of the HTGR-GT. The events presented were specifically chosen to show the controllability of the plant and to highlight some of the unique characteristics inherent in this multiloop closed-cycle plant.

  20. Compensation of distributed delays in integrated communication and control systems

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Luck, Rogelio

    1991-01-01

    The concept, analysis, implementation, and verification of a method for compensating delays that are distributed between the sensors, controller, and actuators within a control loop are discussed. With the objective of mitigating the detrimental effects of these network induced delays, a predictor-controller algorithm was formulated and analyzed. Robustness of the delay compensation algorithm was investigated relative to parametric uncertainties in plant modeling. The delay compensator was experimentally verified on an IEEE 802.4 network testbed for velocity control of a DC servomotor.

  1. An integrated architecture of adaptive neural network control for dynamic systems

    SciTech Connect

    Ke, Liu; Tokar, R.; Mcvey, B.

    1994-07-01

    In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input which rises the adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. Feed forward neural network controllers with state feedback establish fixed control mappings which can not adapt when model uncertainties present. With error feedbacks, neural network controllers learn the slopes or the gains respecting to the error feedbacks, which are error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation.

  2. Space Station Freedom Environmental Control and Life Support System (ECLSS) phase 3 simplified integrated test trace contaminant control subsystem performance

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1990-01-01

    Space Station Freedom environmental control and life support system testing has been conducted at Marshall Space Flight Center since 1986. The phase 3 simplified integrated test (SIT) conducted from July 30, 1989, through August 11, 1989, tested an integrated air revitalization system. During this test, the trace contaminant control subsystem (TCCS) was directly integrated with the bleed stream from the carbon dioxide reduction subsystem. The TCCS performed as expected with minor anomalies. The test set the basis for further characterizing the TCCS performance as part of advance air revitalization system configurations.

  3. Perceived Control, Communication, and Health: An Integrative Review.

    ERIC Educational Resources Information Center

    Brenders, David A.

    Perceived control has become an important construct for health care research. Since the processes and outcomes of health and illness are constantly mediated and affected by communication, the relationship between a person's belief in his/her personal control of events and health care interactions is an important component of the theory and…

  4. Pest Control in the School Environment: Adopting Integrated Pest Management.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Pesticide Programs.

    As the public becomes more aware of the health and environmental risks pesticides may pose, its interest in seeking the use of equally effective alternative pest control methods increases. School administrators and other persons who have pest control decision-making responsibilities for school buildings and grounds can use this guide to become…

  5. Manufacturing Squares: An Integrative Statistical Process Control Exercise

    ERIC Educational Resources Information Center

    Coy, Steven P.

    2016-01-01

    In the exercise, students in a junior-level operations management class are asked to manufacture a simple product. Given product specifications, they must design a production process, create roles and design jobs for each team member, and develop a statistical process control plan that efficiently and effectively controls quality during…

  6. An Integrated Model of Cognitive Control in Task Switching

    ERIC Educational Resources Information Center

    Altmann, Erik M.; Gray, Wayne D.

    2008-01-01

    A model of cognitive control in task switching is developed in which controlled performance depends on the system maintaining access to a code in episodic memory representing the most recently cued task. The main constraint on access to the current task code is proactive interference from old task codes. This interference and the mechanisms that…

  7. A new integrated controller for switched reluctance motor

    SciTech Connect

    Hossain, A.; Ahmed, A.

    1995-12-31

    The interest in switched reluctance motors (SRMs) have increased significantly in recent years, as these motors have found wide applications in industry as a possible alternative to adjustable speed AC and DC drives for many commercial applications. The simple construction and low cost of the SRM have made it an attractive candidate for replacing adjustable speed drives in automobile, aerospace, manufacturing and consumer product. Smooth operation and control of the SRM greatly depend on the external control unit. Instead of using a traditional digital controller with discrete devices, the authors have designed and fabricated a single chip logic controller for controlling torque and speed of an SRM. They have used Programmable Logic Device (PLD) to implement the digital logic coupled with a power controller. They have described the operational logic in the form of a block diagram and from there they have derived the controller logic. Initial testing of the controller for a four-phase SRM drive has been completed. Thorough testing and further research are in progress.

  8. Transaction-Based Controls for Building-Grid Integration: VOLTTRON™

    SciTech Connect

    Akyol, Bora A.; Haack, Jereme N.; Hernandez, George; Katipamula, Srinivas; Widergren, Steven E.

    2015-07-01

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of a “transactional network” concept that supports energy, operational, and financial transactions between building systems (e.g., rooftop units -- RTUs), and the electric power grid using applications, or 'agents', that reside either on the equipment, on local building controllers, or in the Cloud. The transactional network vision is delivered using a real-time, scalable reference platform called VOLTTRON that supports the needs of the changing energy system. VOLTTRON is an agent execution and an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions.

  9. SAVA 3: A testbed for integration and control of visual processes

    NASA Technical Reports Server (NTRS)

    Crowley, James L.; Christensen, Henrik

    1994-01-01

    The development of an experimental test-bed to investigate the integration and control of perception in a continuously operating vision system is described. The test-bed integrates a 12 axis robotic stereo camera head mounted on a mobile robot, dedicated computer boards for real-time image acquisition and processing, and a distributed system for image description. The architecture was designed to: (1) be continuously operating, (2) integrate software contributions from geographically dispersed laboratories, (3) integrate description of the environment with 2D measurements, 3D models, and recognition of objects, (4) capable of supporting diverse experiments in gaze control, visual servoing, navigation, and object surveillance, and (5) dynamically reconfiguarable.

  10. Integrated Resilient Aircraft Control Project Full Scale Flight Validation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2009-01-01

    Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

  11. Integrated control of thermally distorted large space antennas

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.; Huang, Jen-Kuang

    1991-01-01

    The objective is to develop a control system design method that (1) recognizes the time dependence of the thermal distortion due to orbital motion and (2) controls variables that are directly related to far field performance for earth pointing space antennas. The first objective is accomplished by expanding the distortion into principal components that are orthogonal in space and time. The approach for the second objective is to expand the far zone electric field in a Zernike-Bessel series. The method accommodates tapered feeds and arbitrary polarizations. Simulations are performed for a geosynchronous radiometer to determine the effectiveness of the control system under variations in solar geometry, structure materials and thermal properties.

  12. Man's role in integrated control and information management systems

    NASA Technical Reports Server (NTRS)

    Nevins, J. L.; Johnson, I. S.

    1972-01-01

    Display control considerations associated with avionics techniques are discussed. General purpose displays and a prototype interactive display/command design featuring a pushplate CRT overlay for command input are considered.

  13. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1984-01-01

    A unified control synthesis methodology for complex and/or non-conventional flight vehicles are developed. Prediction techniques for the handling characteristics of such vehicles and pilot parameter identification from experimental data are addressed.

  14. Potential benefits of propulsion and flight control integration for supersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Berry, D. T.; Schweikhard, W. G.

    1976-01-01

    Typical airframe/propulsion interactions such as Mach/altitude excursions and inlet unstarts are reviewed. The improvements in airplane performance and flight control that can be achieved by improving the interfaces between propulsion and flight control are estimated. A research program to determine the feasibility of integrating propulsion and flight control is described. This program includes analytical studies and YF-12 flight tests.

  15. Fifty years of Integrated Control Concept: Moving the Model and Implementation Forward in Arizona.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: Fifty years ago Stern and colleagues outlined a simple but sophisticated idea of pest control based on the complementary action of chemical and biological control. This Integrated Control (IC) Concept has since been the driving force and conceptual foundation for all IPM program...

  16. Integrated environmental control and monitoring in the intelligent workplace. Final report

    SciTech Connect

    1997-12-31

    This project involved the design and engineering of the control and monitoring of environmental quality - visual, thermal, air - in the Intelligent Workplace. The research objectives were to study the performance of the individual systems, to study the integration issues related to each system, to develop a control plan, and to implement and test the integrated systems in a real setting. In this project, a control strategy with related algorithms for distributed sensors, actuators, and controllers for negotiating central and individual control of HVAC, lighting, and enclosure was developed in order to maximize user comfort, and energy and environmental effectiveness. The goal of the control system design in the Intelligent Workplace is the integration of building systems for optimization of occupant satisfaction, organizational flexibility, energy efficiency and environmental effectiveness. The task of designing this control system involves not only the research, development and demonstration of state-of-the-art mechanical and electrical systems, but also their integration. The ABSIC research team developed functional requirements for the environmental systems considering the needs of both facility manager and the user. There are three levels of control for the environmental systems: scheduled control, sensor control, and user control. The challenges are to achieve the highest possible levels of energy effectiveness simultaneously with the highest levels of user satisfaction. The report describes the components of each system, their implementation in the Intelligent Workplace and related control and monitoring issues.

  17. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The Highly Integrated Digital Electronic Control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine/airframe control systems. This system is being used on the F-15 airplane. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed.

  18. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. This system is being used on the F-15 airplane at the Dryden Flight Research Facility of NASA Ames Research Center. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are being implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed in this paper.

  19. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  20. Integrative physiology of fundamental frequency control in birds.

    PubMed

    Goller, Franz; Riede, Tobias

    2013-06-01

    One major feature of the remarkable vocal repertoires of birds is the range of fundamental frequencies across species, but also within individual species. This review discusses four variables that determine the oscillation frequency of the vibrating structures within a bird's syrinx. These are (1) viscoelastic properties of the oscillating tissue, (2) air sac pressure, (3) neuromuscular control of movements and (4) source-filter interactions. Our current understanding of morphology, biomechanics and neural control suggests that a complex interplay of these parameters can lead to multiple combinations for generating a particular fundamental frequency. An increase in the complexity of syringeal morphology from non-passeriform birds to oscines also led to a different interplay for regulating oscillation frequency by enabling control of tension that is partially independent of regulation of airflow. In addition to reviewing the available data for all different contributing variables, we point out open questions and possible approaches. PMID:23238240

  1. Analysis of airframe/engine interactions - An integrated control perspective

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.; Garg, Sanjay

    1990-01-01

    Techniques for the analysis of the dynamic interactions between airframe/engine dynamical systems are presented. Critical coupling terms are developed that determine the significance of these interactions with regard to the closed loop stability and performance of the feedback systems. A conceptual model is first used to indicate the potential sources of the coupling, how the coupling manifests itself, and how the magnitudes of these critical coupling terms are used to quantify the effects of the airframe/engine interactions. A case study is also presented involving an unstable airframe with thrust vectoring for attitude control. It is shown for this system with classical, decentralized control laws that there is little airframe/engine interaction, and the stability and performance with those control laws is not affected. Implications of parameter uncertainty in the coupling dynamics is also discussed, and effects of these parameter variations are also demonstrated to be small for this vehicle configuration.

  2. A quantitative integrated assessment of pollution prevention achieved by integrated pollution prevention control licensing.

    PubMed

    Styles, David; O'Brien, Kieran; Jones, Michael B

    2009-11-01

    This paper presents an innovative, quantitative assessment of pollution avoidance attributable to environmental regulation enforced through integrated licensing, using Ireland's pharmaceutical-manufacturing sector as a case study. Emissions data reported by pharmaceutical installations were aggregated into a pollution trend using an Environmental Emissions Index (EEI) based on Lifecycle Assessment methodologies. Complete sectoral emissions data from 2001 to 2007 were extrapolated back to 1995, based on available data. Production volume data were used to derive a sectoral production index, and determine 'no-improvement' emission trends, whilst questionnaire responses from 20 industry representatives were used to quantify the contribution of integrated licensing to emission avoidance relative to these trends. Between 2001 and 2007, there was a 40% absolute reduction in direct pollution from 27 core installations, and 45% pollution avoidance relative to hypothetical 'no-improvement' pollution. It was estimated that environmental regulation avoided 20% of 'no-improvement' pollution, in addition to 25% avoidance under business-as-usual. For specific emissions, avoidance ranged from 14% and 30 kt a(-1) for CO(2) to 88% and 598 t a(-1) for SO(x). Between 1995 and 2007, there was a 59% absolute reduction in direct pollution, and 76% pollution avoidance. Pollution avoidance was dominated by reductions in emissions of VOCs, SO(x) and NO(x) to air, and emissions of heavy metals to water. Pollution avoidance of 35% was attributed to integrated licensing, ranging from between 8% and 2.9 t a(-1) for phosphorus emissions to water to 49% and 3143 t a(-1) for SO(x) emissions to air. Environmental regulation enforced through integrated licensing has been the major driver of substantial pollution avoidance achieved by Ireland's pharmaceutical sector - through emission limit values associated with Best Available Techniques, emissions monitoring and reporting requirements, and

  3. Robust adaptive integrated translation and rotation control of a rigid spacecraft with control saturation and actuator misalignment

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Duan, Guangren

    2013-05-01

    This paper handles the integrated translation and rotation tracking control problem of a rigid spacecraft with unknown mass property, actuator misalignment and control saturation. In view of the system natural coupling, the coupled translational and rotational dynamics of the spacecraft is developed, where a thruster configuration with installation misalignment is taken into account. By using anti-windup technique and backstepping philosophy, a robust adaptive integrated control scheme is proposed such that the spacecraft is able to track the command position and attitude signals in the presence of external disturbance, unknown mass property, thruster misalignment and control saturation. Within the Lyapunov framework, the uniformly ultimate boundedness of the system states is guaranteed. In particular, given the nominal case, the asymptotic convergence of the system states can be further ensured by the proposed control scheme. Finally, numerical simulation demonstrates the effect of the designed control strategy.

  4. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1985-01-01

    Pilot/vehicle analysis techniques for optimizing aircraft handling qualities are presented. The analysis approach considered is based on the optimal control frequency domain techniques. These techniques stem from an optimal control approach of a Neal-Smith like analysis on aircraft attitude dynamics extended to analyze the flared landing task. Some modifications to the technique are suggested and discussed. An in depth analysis of the effect of the experimental variables, such as prefilter, is conducted to gain further insight into the flared land task for this class of vehicle dynamics.

  5. Three-parameter tunable Tilt-Integral-Derivative (TID) controller

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor)

    1994-01-01

    A feedback control system compensator of the PID type is provided, wherein the proportional component of the compensator is replaced with a tilted component having a transfer function s to the power of -1/n. The resulting transfer function of the entire compensator more closely approximates an optimal transfer function, thereby achieving improved feedback controller. Further, as compared to conventional PID compensators, the TID compensator allows for simpler tuning, better disturbance rejection ratio, and smaller effects of plant parameter variations on closed loop response.

  6. A Risk Management Architecture for Emergency Integrated Aircraft Control

    NASA Technical Reports Server (NTRS)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  7. The Contribution of Network Organization and Integration to the Development of Cognitive Control.

    PubMed

    Marek, Scott; Hwang, Kai; Foran, William; Hallquist, Michael N; Luna, Beatriz

    2015-12-01

    Cognitive control, which continues to mature throughout adolescence, is supported by the ability for well-defined organized brain networks to flexibly integrate information. However, the development of intrinsic brain network organization and its relationship to observed improvements in cognitive control are not well understood. In the present study, we used resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisaccade task, and rigorous head motion control to characterize and relate developmental changes in network organization, connectivity strength, and integration to inhibitory control development. Subjects were 192 10-26-y-olds who were imaged during 5 min of rest. In contrast to initial studies, our results indicate that network organization is stable throughout adolescence. However, cross-network integration, predominantly of the cingulo-opercular/salience network, increased with age. Importantly, this increased integration of the cingulo-opercular/salience network significantly moderated the robust effect of age on the latency to initiate a correct inhibitory control response. These results provide compelling evidence that the transition to adult-level inhibitory control is dependent upon the refinement and strengthening of integration between specialized networks. Our findings support a novel, two-stage model of neural development, in which networks stabilize prior to adolescence and subsequently increase their integration to support the cross-domain incorporation of information processing critical for mature cognitive control. PMID:26713863

  8. The Contribution of Network Organization and Integration to the Development of Cognitive Control

    PubMed Central

    Marek, Scott; Hwang, Kai; Foran, William; Hallquist, Michael N.; Luna, Beatriz

    2015-01-01

    Abstract Cognitive control, which continues to mature throughout adolescence, is supported by the ability for well-defined organized brain networks to flexibly integrate information. However, the development of intrinsic brain network organization and its relationship to observed improvements in cognitive control are not well understood. In the present study, we used resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisaccade task, and rigorous head motion control to characterize and relate developmental changes in network organization, connectivity strength, and integration to inhibitory control development. Subjects were 192 10–26-y-olds who were imaged during 5 min of rest. In contrast to initial studies, our results indicate that network organization is stable throughout adolescence. However, cross-network integration, predominantly of the cingulo-opercular/salience network, increased with age. Importantly, this increased integration of the cingulo-opercular/salience network significantly moderated the robust effect of age on the latency to initiate a correct inhibitory control response. These results provide compelling evidence that the transition to adult-level inhibitory control is dependent upon the refinement and strengthening of integration between specialized networks. Our findings support a novel, two-stage model of neural development, in which networks stabilize prior to adolescence and subsequently increase their integration to support the cross-domain incorporation of information processing critical for mature cognitive control. PMID:26713863

  9. Integrated production planning and control system for steelmaking facilities with an energy conservation criterion

    SciTech Connect

    Li, C.M.; Moodie, C.L.

    1982-12-01

    Effects of plant scheduling on overall energy usage in an integrated steel plant were determined and techniques were designed to minimize the quantity of energy utilized. The design and development of an integrated production control strategy through which the energy usage are discussed as well as test methodology and preliminary investigation.

  10. Integrated Psychosocial and Opioid-Antagonist Treatment for Alcohol Dependence: A Systematic Review of Controlled Evaluations

    ERIC Educational Resources Information Center

    Vaughn, Michael G.; Howard, Matthew O.

    2004-01-01

    Methodological characteristics and outcomes of 14 controlled clinical investigations of integrated psychosocial and opioid-antagonist alcohol dependence treatment were evaluated. The 14 studies were identified through computerized bibliographic and manual literature searches. Clients receiving integrated psychosocial and opioid-antagonist…

  11. An efficient step-size control method in numerical integration for astrodynamical equations

    NASA Astrophysics Data System (ADS)

    Liu, C. Z.; Cui, D. X.

    2002-11-01

    Using the curvature of the integral curve, a step-size control method is introduced in this paper. This method will prove to be the efficient scheme in the sense that it saves computation time and improve accuracy of numerical integration.

  12. Alternative and integrated strategies for sugarbeet root maggot control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Granular formulations of organophosphate and carbamate insecticides have been used to control the sugarbeet root maggot (SBRM), Tetanops myopaeformis (Röder), for over three decades; the development of insecticide resistance to these materials has been a concern for several years. This experiment wa...

  13. Simulating advanced life support systems to test integrated control approaches

    NASA Astrophysics Data System (ADS)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  14. Integrated design of smart rotor and robust control system

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Vineet; Chen, Peter C.; Thompson, Peter M.; Aponso, Bimal L.

    1998-07-01

    Vibration and noise are two long-standing problems that have limited the expansion of military and commercial applications of rotorcraft. The source of these interrelated phenomena is the main rotor, which operates in an unsteady and complex aerodynamic environment. The trailing edge flap concept for smart blade control has been investigated by several researchers for possible use in noise and vibration reduction, and shows promise. The flaps are actuated using piezo-stack, bimorph or magnetostrictive actuators. It is however still unclear if there is a single actuation mechanism that addresses both noise and vibration reduction, while still having enough control authority available to act as an extra control effector in its own right. The uncertainty about the actuation mechanism, about the precise amount of flap deflection available, and about the accuracy of current constitutive models of the actuators lead to significant difficulties in analyzing the potential of the concept for helicopter applications. In this study we propose and execute an innovative approach to the above problem that consists of modeling the smart actuation mechanism using a simple low order linear model that matches test data (with an associated variation or uncertainty). We use this model in association with a helicopter flight dynamic model for carrying out an optimization of flap sizing and placement for minimum fixed frame vibration. Finally, we use the model to carry out an analysis of the effectiveness of the flap in reducing inter-axis coupling, and as a redundant control effector in case of primary actuator failure.

  15. Integrated communication and control systems. II - Design considerations

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Halevi, Yoram

    1988-01-01

    The ICCS design issues for nonperiodic and stochastic delays are addressed and the framework for alternative design procedures is outlined. The impact of network-induced delays on system stability is investigated and their physical significance is demonstrated using a simulation. The negative effects of vacant sampling and message rejection at the controller are demonstrated.

  16. OPTIMIZATION OF INTEGRATED URBAN WET-WEATHER CONTROL STRATEGIES

    EPA Science Inventory

    An optimization method for urban wet weather control (WWC) strategies is presented. The developed optimization model can be used to determine the most cost-effective strategies for the combination of centralized storage-release systems and distributed on-site WWC alternatives. T...

  17. Cover crop and organic weed control integration in tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased adoption of conservation tillage in organic vegetable production requires more information on the role of various cover crops in weed control, tomato quality and yield. An experiment was established in autumn 2005 and 2006 at the North Alabama Horticulture Experiment Station, Cullman,...

  18. Integrated control-system design via generalized LQG (GLQG) theory

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.

    1989-01-01

    Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.

  19. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1983-01-01

    Development of a unified control synthesis methodology for complex and/or non-conventional flight vehicles, and prediction techniques for the handling characteristics of such vehicles are reported. Identification of pilot dynamics and objectives, using time domain and frequency domain methods is proposed.

  20. Integrating Biological Systems in the Process Dynamics and Control Curriculum

    ERIC Educational Resources Information Center

    Parker, Robert S.; Doyle, Francis J.; Henson, Michael A.

    2006-01-01

    The evolution of the chemical engineering discipline motivates a re-evaluation of the process dynamics and control curriculum. A key requirement of future courses will be the introduction of theoretical concepts and application examples relevant to emerging areas, notably complex biological systems. We outline the critical concepts required to…

  1. Integrated Control of Fire Blight with Bacterial Antagonists and Oxytetracycline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Pacific Northwest of the United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of Erwinia amylovora were prevalent. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the duration of inhibitory acti...

  2. Integrated Control of Fire Blight with Antagonists and Oxytetracycline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Northwest United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of the pathogen arose. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the durability of inhibitory activity of oxytetracycline is ...

  3. Integrated Control of Fire Blight with Antagonists and Oxytetracycline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Pacific Northwest of the United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of Erwinia amylovora arose. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the duration of inhibitory activity of o...

  4. An optimization-based integrated controls-structures design methodology for flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, Suresh M.; Armstrong, Ernest S.

    1993-01-01

    An approach for an optimization-based integrated controls-structures design is presented for a class of flexible spacecraft that require fine attitude pointing and vibration suppression. The integrated design problem is posed in the form of simultaneous optimization of both structural and control design variables. The approach is demonstrated by application to the integrated design of a generic space platform and to a model of a ground-based flexible structure. The numerical results obtained indicate that the integrated design approach can yield spacecraft designs that have substantially superior performance over a conventional design wherein the structural and control designs are performed sequentially. For example, a 40-percent reduction in the pointing error is observed along with a slight reduction in mass, or an almost twofold increase in the controlled performance is indicated with more than a 5-percent reduction in the overall mass of the spacecraft (a reduction of hundreds of kilograms).

  5. Integrated flue gas treatment condensing heat exchanger for pollution control

    SciTech Connect

    Johnson, D.W.; Warchol, J.J.; Schulze, K.H.; Carrigan, J.F.

    1994-12-31

    Condensing heat exchangers recover both sensible and latent heat from flue gases. Using Teflon{reg_sign} to cover the heat exchanger tubes and inside surfaces that are exposed to the flue gas ensures adequate material lifetime in the corrosive environment encountered when the flue gas temperature drops below the acid dew point. A recent design improvement, called the integrated flue gas treatment (IFGT) concept, offers the ability to remove pollutants from the flue gas, as well as recover waste heat. It has been shown to remove SO{sub 2}, SO{sub 3}, particulates, and trace emissions. Babcock and Wilcox (B and W) is undertaking an extensive program to optimize this technology for a variety of flue gas applications. This paper summarizes the current status of IFGT technology and the development activities that are in progress.

  6. A stochastic regulator for integrated communication and control systems. I - Formulation of control law. II - Numerical analysis and simulation

    NASA Technical Reports Server (NTRS)

    Liou, Luen-Woei; Ray, Asok

    1991-01-01

    A state feedback control law for integrated communication and control systems (ICCS) is formulated by using the dynamic programming and optimality principle on a finite-time horizon. The control law is derived on the basis of a stochastic model of the plant which is augmented in state space to allow for the effects of randomly varying delays in the feedback loop. A numerical procedure for synthesizing the control parameters is then presented, and the performance of the control law is evaluated by simulating the flight dynamics model of an advanced aircraft. Finally, recommendations for future work are made.

  7. A satellite digital controller or 'play that PID tune again, Sam'. [Position, Integral, Derivative feedback control algorithm for design strategy

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.

    1976-01-01

    The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.

  8. Integrated control of lower urinary tract – clinical perspective

    PubMed Central

    Fowler, Clare J

    2006-01-01

    The neural mechanisms that determine social bladder control are reviewed, with a particular emphasis on the role played by sensation in the process. Much has been learnt about the neural control of the bladder from studying patients with neurological disease and those disorders that are known to disrupt bladder storage are described. Possible approaches to treatment of the resulting incontinence are reviewed and it is acknowledged that in the future, the optimal treatment for incontinence may be determined by its precise underlying pathophysiology in each instance, for example, suprapontine causes requiring different medication to spinal causes. Although the main emphasis of urological research and development so far has been the treatment of incontinence, effective therapy for other bladder disorders such an impaired emptying or bladder pain could have an important impact on the bladder symptoms of many patients. PMID:16465178

  9. Inlet, engine, airframe controls integration development for supercruising aircraft

    NASA Technical Reports Server (NTRS)

    Houchard, J. H.; Carlin, C. M.; Tjonneland, E.

    1983-01-01

    In connection with a consideration of advanced military aircraft systems, attention is given to research for improving the technology of the design of supersonic cruise aircraft. Syberg et al. (1981) have shown that an analytic design method is now available to accurately predict the flow characteristics of axisymmetric supersonic inlets, including off-design angle of attack operation. On the basis of information regarding the inlet flow characteristics, the control system designer can begin the inlet design and development, before wind tunnel testing has begun. The present investigation is concerned with details and status of inlet control technology. A detailed representation of a supersonic propulsion system is developed. This development demonstrates the feasibility of the selected hybrid computational concept.

  10. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1986-01-01

    The topics of research in this program include pilot/vehicle analysis techniques, identification of pilot dynamics, and control and display synthesis techniques for optimizing aircraft handling qualities. The project activities are discussed. The current technical activity is directed at extending and validating the active display synthesis procedure, and the pilot/vehicle analysis of the NLR rate-command flight configurations in the landing task. Two papers published by the researchers are attached as appendices.

  11. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

    2003-01-30

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

  12. Control integration concept for hypersonic cruise-turn maneuvers

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Lallman, Frederick J.

    1992-01-01

    Piloting difficulties associated with conducting aircraft maneuvers in hypersonic flight are caused in part by the nonintuitive nature of the aircraft response and the stringent constraints anticipated on allowable angle of attack and dynamic pressure variations. An approach is documented that provides precise, coordinated maneuver control during excursions from a hypersonic cruise flight path and the necessary flight condition constraints. The approach is to achieve specified guidance commands by resolving altitude and cross range errors into a load factor and bank angle command by using a coordinate transformation that acts as an interface between outer and inner loop flight controls. This interface, referred to as a 'resolver', applies constraints on angle of attack and dynamic pressure perturbations while prioritizing altitude regulation over cross range. An unpiloted test simulation, in which the resolver was used to drive inner loop flight controls, produced time histories of responses to guidance commands and atmospheric disturbances at Mach numbers of 6, 10, 15, and 20. Angle of attack and throttle perturbation constraints, combined with high speed flight effects and the desire to maintain constant dynamic pressure, significantly impact the maneuver envelope for a hypersonic vehicle.

  13. Intelligent vehicle control: Opportunities for terrestrial-space system integration

    NASA Technical Reports Server (NTRS)

    Shoemaker, Charles

    1994-01-01

    For 11 years the Department of Defense has cooperated with a diverse array of other Federal agencies including the National Institute of Standards and Technology, the Jet Propulsion Laboratory, and the Department of Energy, to develop robotics technology for unmanned ground systems. These activities have addressed control system architectures supporting sharing of tasks between the system operator and various automated subsystems, man-machine interfaces to intelligent vehicles systems, video compression supporting vehicle driving in low data rate digital communication environments, multiple simultaneous vehicle control by a single operator, path planning and retrace, and automated obstacle detection and avoidance subsystem. Performance metrics and test facilities for robotic vehicles were developed permitting objective performance assessment of a variety of operator-automated vehicle control regimes. Progress in these areas will be described in the context of robotic vehicle testbeds specifically developed for automated vehicle research. These initiatives, particularly as regards the data compression, task sharing, and automated mobility topics, also have relevance in the space environment. The intersection of technology development interests between these two communities will be discussed in this paper.

  14. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 6: Controls and guidance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft Integrated Technology Plan (ITP) on controls and guidance are included. Topics covered include: strategic avionics technology planning and bridging programs; avionics technology plan; vehicle health management; spacecraft guidance research; autonomous rendezvous and docking; autonomous landing; computational control; fiberoptic rotation sensors; precision instrument and telescope pointing; microsensors and microinstruments; micro guidance and control initiative; and earth-orbiting platforms controls-structures interaction.

  15. Integrated photocatalytic filtration array for indoor air quality control.

    PubMed

    Denny, Frans; Permana, Eric; Scott, Jason; Wang, Jing; Pui, David Y H; Amal, Rose

    2010-07-15

    Photocatalytic and filtration technologies were integrated to develop a hybrid system capable of removing and oxidizing organic pollutants from an air stream. A fluidized bed aerosol generator (FBAG) was adapted to prepare TiO(2)-loaded ventilation filters for the photodegradation of gas phase ethanol. Compared to a manually loaded filter, the ethanol photodegradation rate constant for the FBAG coated filter increased by 361%. Additionally, the presence of the photogenerated intermediate product, acetaldehyde, was reduced and the time for mineralization to CO(2) was accelerated. These improvements were attributed to the FBAG system providing a more uniform distribution of TiO(2) particles across the filter surface leading to greater accessibility by the UV light. A dual-UV-lamp system, as opposed to a single-lamp system, enhanced photocatalytic filter performance demonstrating the importance of high light irradiance and light distribution across the filter surface. Substituting the blacklight blue lamps with a UV-light-emitting-diode (UV-LED) array led to further improvement as well as suppressed the electrical energy per order (EE/O) by a factor of 6. These improvements derived from the more uniform distribution of light irradiance as well as the higher efficiency of UV-LEDs in converting electrical energy to photons. PMID:20550189

  16. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    NASA Technical Reports Server (NTRS)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  17. Validation of an Integrated Airframe and Turbofan Engine Simulation for Evaluation of Propulsion Control Modes

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Sowers, T Shane; Liu, Yuan; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The National Aeronautics and Space Administration (NASA) has developed independent airframe and engine models that have been integrated into a single real-time aircraft simulation for piloted evaluation of propulsion control algorithms. In order to have confidence in the results of these evaluations, the integrated simulation must be validated to demonstrate that its behavior is realistic and that it meets the appropriate Federal Aviation Administration (FAA) certification requirements for aircraft. The paper describes the test procedures and results, demonstrating that the integrated simulation generally meets the FAA requirements and is thus a valid testbed for evaluation of propulsion control modes.

  18. Numerical solution of optimal control problems using multiple-interval integral Gegenbauer pseudospectral methods

    NASA Astrophysics Data System (ADS)

    Tang, Xiaojun

    2016-04-01

    The main purpose of this work is to provide multiple-interval integral Gegenbauer pseudospectral methods for solving optimal control problems. The latest developed single-interval integral Gauss/(flipped Radau) pseudospectral methods can be viewed as special cases of the proposed methods. We present an exact and efficient approach to compute the mesh pseudospectral integration matrices for the Gegenbauer-Gauss and flipped Gegenbauer-Gauss-Radau points. Numerical results on benchmark optimal control problems confirm the ability of the proposed methods to obtain highly accurate solutions.

  19. Propulsion system-flight control integration and optimization: Flight evaluation and technology transition

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.

    1990-01-01

    Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical.

  20. Feasibility of Outpatient Fully Integrated Closed-Loop Control

    PubMed Central

    Kovatchev, Boris P.; Renard, Eric; Cobelli, Claudio; Zisser, Howard C.; Keith-Hynes, Patrick; Anderson, Stacey M.; Brown, Sue A.; Chernavvsky, Daniel R.; Breton, Marc D.; Farret, Anne; Pelletier, Marie-Josée; Place, Jérôme; Bruttomesso, Daniela; Del Favero, Simone; Visentin, Roberto; Filippi, Alessio; Scotton, Rachele; Avogaro, Angelo; Doyle, Francis J.

    2013-01-01

    OBJECTIVE To evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital–hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance. RESULTS The total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality. CONCLUSIONS This study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes. PMID:23801798

  1. Stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Feng, Ju; Zhu, Weiqiu; Ying, Zuguang

    2010-01-01

    The stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems is investigated. First, the stochastic optimal control problem of a partially observable nonlinear quasi-integrable Hamiltonian system is converted into that of a completely observable linear system based on a theorem due to Charalambous and Elliot. Then, the converted stochastic optimal control problem is solved by applying the stochastic averaging method and the stochastic dynamical programming principle. The response of the controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation and the Riccati equation for the estimated error of system states. As an example to illustrate the procedure and effectiveness of the proposed method, the stochastic optimal control problem of a partially observable two-degree-of-freedom quasi-integrable Hamiltonian system is worked out in detail.

  2. Performance improvements of a highly integrated digital electronic control system for an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.

    1985-01-01

    The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.

  3. Human Systems Integration: Unmanned Aircraft Control Station Certification Plan Guidance

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document provides guidance to the FAA on important human factors considerations that can be used to support the certification of a UAS Aircraft Control Station (ACS). This document provides a synopsis of the human factors analysis, design and test activities to be performed to provide a basis for FAA certification. The data from these analyses, design activities, and tests, along with data from certification/qualification tests of other key components should be used to establish the ACS certification basis. It is expected that this information will be useful to manufacturers in developing the ACS Certification Plan,, and in supporting the design of their ACS.

  4. Integrated actuation system for individual control of helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Bushko, Dariusz A.; Fenn, Ralph C.; Gerver, Michael J.; Berry, John R.; Phillips, Frank; Merkley, Donald J.

    1996-05-01

    The unique configuration of the rotorcraft generates problems unknown to fixed wing aircraft. These problems include high vibration and noise levels. This paper presents the development and test results of a Terfenol-D based actuator designed to operate in an individual blade control system in order to reduce vibration and noise and increase performance on Army UH- 60A helicopter. The full-scale, magnetostrictive, Terfenol-D based actuator was tested on a specially designed testbed that simulated operational conditions of a helicopter blade in the laboratory. Tests of actuator performance (strike, force moment, bandwidth, fatigue life under operational loading) were performed.

  5. Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators.

    PubMed

    Kim, Jun-Whee; Park, Su-Hyun; Chu, Woo-Sung; Oh, Min-Cheol

    2012-05-21

    Polarization controllers based on polymer waveguide technology are demonstrated by incorporating thermo-optic birefringence modulators (BMs) and thin-film wave plates. Highly birefringent polymer materials are used to increase the efficiency of birefringence modulation in proportion to the heating power. Thin-film quarter-wave plates are fabricated by using a crosslinkable liquid crystal, reactive mesogen, and inserted between the BMs to produce static phase retardation and polarization coupling. By applying a triangular AC signal to one BM and a DC signal to another, the polarization states of the output light are modulated to cover the entire surface of the Poincaré sphere. PMID:22714231

  6. Vibration suppression of distributed parameter flexible structures by Integral Consensus Control

    NASA Astrophysics Data System (ADS)

    Omidi, Ehsan; Mahmoodi, S. Nima

    2016-03-01

    Integral Consensus Control (ICC) is proposed and implemented in this paper for the first time, as a novel approach for vibration control in distributed parameter flexible structures. The ICC consists of multiple parallel first-order lossy integrators, with the goal of targeting all major participating resonant modes in the oscillation of the structure. The vibration control design is taken to a different level, by integrating the concept of consensus control design into the new dynamics. Each control patch on the flexible structure is considered as a node of a network, and a communication topology with consensus control terms are augmented in the controller design dynamics. The result is an effective vibration controller, which is also robust to failures and inconsistencies in the control system. A cantilever is used as a sample flexible structure to investigate the control method. Multi-agent representation of the system, state estimator dynamics and the ICC model are designed for the structure. Extensive numerical simulations have been conducted to show the suppression performance of the ICC under different input disturbances. A comparative study is presented to show the advantage of the decentralized design over the conventional centralized approach. The new consensus control design provides new possibilities to vibration control problems, where an effective, robust and synchronized suppression is needed.

  7. Robust integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1993-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The emphasis is on formulating the H-infinity optimal control synthesis problem such that the critical requirements for the flight and propulsion systems are adequately reflected within the linear, centralized control problem formulation and the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objective as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope.

  8. Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.

    1991-01-01

    Results are presented from an application of H(infinity) control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic short take-off and vertical landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H(infinity) control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H(infinity)=based IFPC design study performed earlier is used as the base to formulate the robust H(infinity) control design problem and improve the previous design. Detailed evaluation results are presented for a reduced-order controller obtained from the improved H(infinity) control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with chnages in aircraft trim speed within the transition flight envelope.

  9. Control algorithms of SONET integrated self-healing networks

    NASA Astrophysics Data System (ADS)

    Hasegawa, Satoshi; Okaoue, Yasuyo; Egawa, Takashi; Sakauchi, Hideki

    1994-01-01

    As the deployment of high-speed fiber transmission systems has been accelerated, they are widely recognized as a firm infrastructure of information society. Under this circumstance, the importance of network survivability has been increasing rapidly in these days. In SONET, the self-healing networks have been highlighted as one of the most advanced mechanisms to realize SONET survivable networks. Several schemes have been proposed and studied actively due to a rapid progress on the development of highly intelligent NE's. Among them in this paper, a DCS based distributed self-healing network is discussed from a viewpoint of its control algorithms. Specifically, our self-healing algorithm called TRANS is explained in detail, which possesses such desirable features as providing fast and flexible restoration with line and path level restoration applied to an individual STS-1 channel, capability to handle multiple and even node failures, and so on. Both software simulation and hardware experiment verify that TRANS works properly in a real distributed environment, the result of which is shown in the paper. In addition, the combined use of TRANS and the ring restoration control is proposed taking into account the use in a practical SONET.

  10. Continuous integration and quality control for scientific software

    NASA Astrophysics Data System (ADS)

    Neidhardt, A.; Ettl, M.; Brisken, W.; Dassing, R.

    2013-08-01

    Modern software has to be stable, portable, fast and reliable. This is going to be also more and more important for scientific software. But this requires a sophisticated way to inspect, check and evaluate the quality of source code with a suitable, automated infrastructure. A centralized server with a software repository and a version control system is one essential part, to manage the code basis and to control the different development versions. While each project can be compiled separately, the whole code basis can also be compiled with one central “Makefile”. This is used to create automated, nightly builds. Additionally all sources are inspected automatically with static code analysis and inspection tools, which check well-none error situations, memory and resource leaks, performance issues, or style issues. In combination with an automatic documentation generator it is possible to create the developer documentation directly from the code and the inline comments. All reports and generated information are presented as HTML page on a Web server. Because this environment increased the stability and quality of the software of the Geodetic Observatory Wettzell tremendously, it is now also available for scientific communities. One regular customer is already the developer group of the DiFX software correlator project.

  11. Integrating Geohydrological Models In ATES-Systems Control

    NASA Astrophysics Data System (ADS)

    Bloemendal, Martin

    2015-04-01

    1) Purpose. Accomplish optimal and sustainable use of subsurface for Aquifer Thermal Energy Storage (ATES). 2) Scope. A heat pump in combination with an ATES system can efficiently and sustainably provide heating and cooling for user comfort within buildings. ATES systems are popular in moderate climate in which ATES systems are exploited as they are able to save primary energy. While storing warm and cold groundwater, ATES systems occupy a significant amount of the subsurface space, making that the space in the aquifers below cities is becoming scarce [1]. With the rapid growth of the number of ATES systems, the use of the subsurface intensifies, which raises additional questions regarding its sustainability and the long term profitability of the individual systems. In practice considerable difficulties regarding A) the performance of these installations and B) optimal and sustainable use of the subsurface are met. 3) Approach. Recently it was confirmed [2] that ATES systems can be placed closer to each other with limited effect on their energy efficiency. By placing them closer together we introduce the risk of a tragedy of the commons [3]. Therefore it is of importance to know where the warm and cold zones are over time and enable ATES-controllers to use the subsurface optimal and sustainably. From the field of multi agent systems and complex adaptive systems we use approaches and techniques to make an operation and control system that enables to adapt their control not only based on current demand, but also on current aquifer status and expected future demand. We are developing a numerical groundwater model structure which is fed with operational data of different ATES-systems. While doing this we run into challenges and opportunities like; spatial and temporal scale issues, sustaining the storage with balancing thermal storage and extraction at area level, dynamics and relation between hydrological and thermal influence and consequences for spreading of

  12. African trypanosomiasis and S. intercalatum infection in Equatorial Guinea: comparative epidemiology and feasibility of integrated control.

    PubMed

    Simarro, P P; Sima, F O; Mia, M

    1989-06-01

    The integration of schistosomiasis control with the activities of different endemic disease control or health programmes has been endorsed by a WHO Expert Committee on the Control of Schistosomiasis (WHO 1985). Endemic countries face increasing economic and manpower constraints which limit the coverage and effectiveness of control activities. Integration would be expected to optimize available resources for control. The feasibility of integration can be assessed by a comparative evaluation of: the epidemiology and distribution of the health problems; the techniques and methodology of control; and the requirements for maintenance and their relative health importance. This report presents a preliminary assessment of trypanosomiasis and schistosomiasis in Equatorial Guinea. The background and implementation of the operational national trypanosomiasis control programme are summarized. Population-based epidemiological investigations undertaken by the staff of the trypanosomiasis control programme are reported from a rural village and an urban suburb of Bata, Equatorial Guinea. The distribution and morbidity of S. intercalatum are compared, the public health importance of S. intercalatum is reviewed and the feasibility of integration of control of trypanosomiasis and schistosomiasis are assessed. PMID:2772519

  13. Integrating Computer Architectures into the Design of High-Performance Controllers

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Leyland, Jane A.; Warmbrodt, William

    1986-01-01

    Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, on-line graphics, and file management. This paper discusses five global design considerations that are useful to integrate array processor, multimicroprocessor, and host computer system architecture into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the non-real-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration will be briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind-tunnel environment, the control architecture can generally be applied to a wide range of automatic control applications.

  14. Model predictive control system and method for integrated gasification combined cycle power generation

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  15. The expected value of control: An integrative theory of anterior cingulate cortex function

    PubMed Central

    Shenhav, Amitai; Botvinick, Matthew M.; Cohen, Jonathan D.

    2013-01-01

    Summary The dorsal anterior cingulate cortex (dACC) has a near-ubiquitous presence in the neuroscience of cognitive control. It has been implicated in a diversity of functions, from reward processing and performance monitoring to the execution of control and action selection. Here, we propose that this diversity can be understood in terms of a single underlying function: allocation of control based on an evaluation of the expected value of control (EVC). We present a normative model of EVC that integrates three critical factors: the expected payoff from a controlled process, the amount of control that must be invested to achieve that payoff, and the cost in terms of cognitive effort. We propose that dACC integrates this information, using it to determine whether, where and how much control to allocate. We then consider how the EVC model can explain the diverse array of findings concerning dACC function. PMID:23889930

  16. The expected value of control: an integrative theory of anterior cingulate cortex function.

    PubMed

    Shenhav, Amitai; Botvinick, Matthew M; Cohen, Jonathan D

    2013-07-24

    The dorsal anterior cingulate cortex (dACC) has a near-ubiquitous presence in the neuroscience of cognitive control. It has been implicated in a diversity of functions, from reward processing and performance monitoring to the execution of control and action selection. Here, we propose that this diversity can be understood in terms of a single underlying function: allocation of control based on an evaluation of the expected value of control (EVC). We present a normative model of EVC that integrates three critical factors: the expected payoff from a controlled process, the amount of control that must be invested to achieve that payoff, and the cost in terms of cognitive effort. We propose that dACC integrates this information, using it to determine whether, where and how much control to allocate. We then consider how the EVC model can explain the diverse array of findings concerning dACC function. PMID:23889930

  17. Integrated digital flight-control system for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The integrated digital flight control system is presented which provides rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN&C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described along with the input and output. The specific estimation and control algorithms used in the various mission phases are given.

  18. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Connie Senior; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2005-03-31

    This is the nineteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Refurbished corrosion probes were installed at Plant Gavin and operated for approximately 1,300 hours. This quarterly report includes further results from the BYU catalyst characterization lab and the in-situ lab, and includes the first results from a model suitable for comprehensive simulation codes for describing catalyst performance. The SCR slipstream reactor at Plant Gadsden operated for approximately 100 hours during the quarter because of ash blockage in the inlet probe.

  19. Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan L.; Carrasquillo, Robyn; Bagdigian, Bob; Peterson, Laurie

    2011-01-01

    This white paper documents a roadmap for development of Environmental Control and Life Support (ECLS) Systems (ECLSS) capabilities required to enable beyond-Low Earth Orbit (LEO) Exploration missions. In many cases, the execution of this Exploration-based roadmap will directly benefit International Space Station (ISS) operational capability by resolving known issues and/or improving overall system reliability. In addition, many of the resulting products will be applicable across multiple Exploration elements such as Multi-Purpose Crew Vehicle (MPCV), Multi-Mission Space Exploration Vehicle (MMSEV), Deep Space Habitat (DSH), and Landers. Within the ECLS community, this white paper will be a unifying tool that will improve coordination of resources, common hardware, and technologies. It will help to align efforts to focus on the highest priority needs that will produce life support systems for future human exploration missions that will simply run in the background, requiring minimal crew interaction.

  20. Integrating Tobacco Control and Obesity Prevention Initiatives at Retail Outlets.

    PubMed

    Ribisl, Kurt M; D'Angelo, Heather; Evenson, Kelly R; Fleischhacker, Sheila; Myers, Allison E; Rose, Shyanika W

    2016-01-01

    Tobacco products are sold in approximately 375,000 US retail outlets, including convenience stores and pharmacies, which often sell energy-dense, low-nutrient foods and beverages. The Food and Drug Administration's (FDA's) increased authority over tobacco product sales and marketing, combined with declining smoking rates, provides an opportunity to transition tobacco retailers toward healthier retail environments. Unfortunately, research into improving consumer retail environments is often conducted in isolation by researchers working in tobacco control, nutrition, and physical activity. Interdisciplinary efforts are needed to transform tobacco retailers from stores that are dependent on a declining product category, to the sale and promotion of healthful foods and creating environments conducive to active living. The objective of this article is to describe the potential for interdisciplinary efforts to transition retailers away from selling and promoting tobacco products and toward creating retail environments that promote healthful eating and active living. PMID:26963859

  1. Integrated control system environment for high-throughput tomography

    NASA Astrophysics Data System (ADS)

    Khokhriakov, Igor; Lottermoser, Lars; Gehrke, Rainer; Kracht, Thorsten; Wintersberger, Eugen; Kopmann, Andreas; Vogelgesang, Matthias; Beckmann, Felix

    2014-09-01

    A new control system for high-throughput experiments (X-Ray, Neutrons) is introduced in this article. The system consists of several software components which are required to make optimized use of the beamtime and to fulfill the demand to implement the new standardized data format established within the Helmholtz Association in Germany. The main components are: PreExperiment Data Collector; Status server; Data Format Server. Especially for tomography a concept for an online reconstruction based on GPU computing is presented. One of the main goals of the system is to collect data that extends standard experimental data, e.g. instrument's hardware state, preinvestigation data, experiment description data etc. The collected data is stored together with the experiment data in the permanent storage of the user. The stored data is then used for post processing and analysis of the experiment.

  2. Keeping the peace green: Integrating arms control and environmental protection

    SciTech Connect

    Tanzman, E.A.; Kellman, B.

    1994-10-21

    This talk is about how to avoid turning swords into Superfund sites. The problem we address is the potential conflict between the desire to take advantage of the greater international security brought by the end of the Cold War by entering arms control agreements requiring various military weapons to be dismantled, and the desire to avoid further degrading the environment in the process of destroying them. We will use as an illustration of these issues the Chemical Weapons Convention (CWC), which is intended to cause the destruction of all chemical weapons in the world. First, we will provide a brief overview of the CWC, then we will focus in on its environmental provisions, and, finally, we will discuss potential conflicts with United States law and how they might be resolved.

  3. Integrated Watershed Pollution Control at Wujingang Canal, China

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Yang, X.; Luo, X.

    2012-04-01

    With a drainage area of 400 square kilometers, Wujingang Canal is located at the economically developed Yangtz Delta of eastern China. As a major tributary, the canal contributes a significant amount of pollutant load to the Lake Tai. Over the past many years, water quality of the canal and its tributaries could not meet the lowest Category V of Chinese surface water quality standard, indicating that its water is not suitable for the purposes of irrigation or scenic views. Major pollution sources in the watershed include industries, residential households, agriculture, fishery, and animal feedlot operations. A comprehensive plan with a budget of 2 billion RMB for the Wujingang watershed pollution control was developed in 2008 and has been implemented progressively ever since. Major components of the plan include: (1) advanced treatment of wastewater from industries and municipal sewage plants for further removal of nitrogen and phosphorous; (2) industrial wastewater reuse; (3) contiguous treatment of sewage from rural residential households with cost-effective technologies such as tower ecofilter system; (4) recycling of rural wastes to generate high-value added products using technologies such as multi-phase anaerobic co-digestion; and (5) making full use of the local landscape and configuring physical, chemical, and biological pollutant treatment structures to build the "clean river network" for treatment of mildly polluted agricultural discharge and surface runoff. Through the implementation of the above measures, water quality of the Wujingang Canal and its tributaries is expected to improve to meet Category IV of Chinese surface water quality standard by 2012, and Category III standard by 2020. Keywords watershed pollution control, non-point source pollution, rural sewage, rural waste, Lake Tai

  4. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  5. Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch

    NASA Astrophysics Data System (ADS)

    Safa, Khari; Zahra, Rahmani; Behrooz, Rezaie

    2016-05-01

    An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system. In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov’s stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response, and robustness against uncertainties.

  6. A unified double-loop multi-scale control strategy for NMP integrating-unstable systems

    NASA Astrophysics Data System (ADS)

    Seer, Qiu Han; Nandong, Jobrun

    2016-03-01

    This paper presents a new control strategy which unifies the direct and indirect multi-scale control schemes via a double-loop control structure. This unified control strategy is proposed for controlling a class of highly nonminimum-phase processes having both integrating and unstable modes. This type of systems is often encountered in fed-batch fermentation processes which are very difficult to stabilize via most of the existing well-established control strategies. A systematic design procedure is provided where its applicability is demonstrated via a numerical example.

  7. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    SciTech Connect

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and

  8. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  9. Installation package for integrated programmable electronic controller and hydronic subsystem - solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A description is given of the Installation, Operation, and Maintenance Manual and information on the power panel and programmable microprocessor, a hydronic solar pump system and a hydronic heating hot water pumping system. These systems are integrated into various configurations for usages in solar energy management, control and monitoring, lighting control, data logging and other solar related applications.

  10. Beyond Rigid Body: Integrated Structural Control of Extremely Lightweight Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2013-01-01

    Integrated structural control of extremely lightweight vehicles will open a new paradigm and allow for performance increases. The X-56A Multi-Utility Technology Testbed (MUTT) vehicle will be used to evaluate and advance the state-of-the-art in modeling and control of this new class of aerospace vehicle.

  11. Results of an integrated structure-control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1988-01-01

    Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.

  12. Voltage and Reactive Power Control by Integration of Genetic Algorithm and Tabu Search

    NASA Astrophysics Data System (ADS)

    Aoki, Hidenori; Yamamoto, Kensei; Mizutani, Yoshibumi

    This paper presents on the result of voltage and reactive power control by use of the proposed method. The feature of proposed method is integration of genetic algorithm (GA) and tabu search (TS). This method obtains an excellent fitness at shorter calculation time than GA considering conventional control process. The effectiveness of this method is shown by a practicable 15-bus system.

  13. Economic value of biological control in integrated pest management of managed plant systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protectio...

  14. Integrated command, control, communication and computation system design study. Summary of tasks performed

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A summary of tasks performed on an integrated command, control, communication, and computation system design study is given. The Tracking and Data Relay Satellite System command and control system study, an automated real-time operations study, and image processing work are discussed.

  15. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 3: PROGRAMMER'S MAINTENANCE MANUAL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  16. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 2: TECHNICAL DOCUMENTATION MANUAL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  17. INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 2: TECHNICAL DOCUMENTATION

    EPA Science Inventory

    The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...

  18. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 1: USER'S GUIDE

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  19. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 3: PROGRAMMER'S MAINTENACE MANUAL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  20. INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 1: USER'S GUIDE

    EPA Science Inventory

    The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...

  1. INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 3: PROGRAMMER'S MAINTENANCE MANUAL

    EPA Science Inventory

    The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...

  2. Postural Control Deficits in Autism Spectrum Disorder: The Role of Sensory Integration

    ERIC Educational Resources Information Center

    Doumas, Michail; McKenna, Roisin; Murphy, Blain

    2016-01-01

    We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were…

  3. Propulsion system performance resulting from an integrated flight/propulsion control design

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Garg, Sanjay

    1992-01-01

    Propulsion-system-specific results are presented from the application of the integrated methodology for propulsion and airframe control (IMPAC) design approach to integrated flight/propulsion control design for a 'short takeoff and vertical landing' (STOVL) aircraft in transition flight. The IMPAC method is briefly discussed and the propulsion system specifications for the integrated control design are examined. The structure of a linear engine controller that results from partitioning a linear centralized controller is discussed. The details of a nonlinear propulsion control system are presented, including a scheme to protect the engine operational limits: the fan surge margin and the acceleration/deceleration schedule that limits the fuel flow. Also, a simple but effective multivariable integrator windup protection scheme is examined. Nonlinear closed-loop simulation results are presented for two typical pilot commands for transition flight: acceleration while maintaining flightpath angle and a change in flightpath angle while maintaining airspeed. The simulation nonlinearities include the airframe/engine coupling, the actuator and sensor dynamics and limits, the protection scheme for the engine operational limits, and the integrator windup protection. Satisfactory performance of the total airframe plus engine system for transition flight, as defined by the specifications, was maintained during the limit operation of the closed-loop engine subsystem.

  4. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  5. Recent Advances in Understanding Integrative Control of Potassium Homeostasis

    PubMed Central

    Youn, Jang H.; McDonough, Alicia A.

    2016-01-01

    The potassium homeostatic system is very tightly regulated. Recent studies have shed light on the sensing and molecular mechanisms responsible for this tight control. In addition to classic feedback regulation mediated by a rise in extracellular fluid (ECF) [K+], there is evidence for a feedforward mechanism: Dietary K+ intake is sensed in the gut, and an unidentified gut factor is activated to stimulate renal K+ excretion. This pathway may explain renal and extrarenal responses to altered K+ intake that occur independently of changes in ECF [K+]. Mechanisms for conserving ECF K+ during fasting or K+ deprivation have been described: Kidney NADPH oxidase activation initiates a cascade that provokes the retraction of K+ channels from the cell membrane, and muscle becomes resistant to insulin stimulation of cellular K+ uptake. How these mechanisms are triggered by K+ deprivation remains unclear. Cellular AMP kinase–dependent protein kinase activity provokes the acute transfer of K+ from the ECF to the ICF, which may be important in exercise or ischemia. These recent advances may shed light on the beneficial effects of a high-K+ diet for the cardiovascular system. PMID:18759636

  6. Integrated Luminal and Cytosolic Aspects of the Calcium Release Control

    PubMed Central

    Baran, Irina

    2003-01-01

    We propose here a unitary approach to the luminal and cytosolic control of calcium release. A minimal number of model elements that realistically describe different data sets are combined and adapted to correctly respond to various physiological constraints. We couple the kinetic properties of the inositol 1,4,5 trisphosphate receptor/calcium channel with the dynamics of Ca2+ and K+ in both the lumen and cytosol, and by using a detailed simulation approach, we propose that local (on a radial distance ∼2 μm) calcium oscillations in permeabilized cells are driven by the slow inactivation of channels organized in discrete clusters composed of between six and 15 channels. Moreover, the character of these oscillations is found to be extremely sensitive to K+, so that the cytosolic and luminal calcium variations are in or out of phase if the store at equilibrium has tens or hundreds μM Ca2+, respectively, depending on the K+ gradient across the reticulum membrane. Different patterns of calcium signals can be reproduced through variation of only a few parameters. PMID:12609854

  7. Continuous Software Integration and Quality Control during Software Development

    NASA Astrophysics Data System (ADS)

    Ettl, M.; Neidhardt, A.; Brisken, W.; Dassing, R.

    2012-12-01

    Modern software has to be stable, portable, fast, and reliable. This requires a sophisticated infrastructure supporting and providing the developers with additional information about the state and the quality of the project. That is why we have created a centralized software repository, where the whole code-base is managed and version controlled on a centralized server. Based on this, a hierarchical build system has been developed where each project and their sub-projects can be compiled by simply calling the top level Makefile. On the top of this, a nightly build system has been created where the top level Makefiles of each project are called every night. The results of the build including the compiler warnings are reported to the developers using generated HTML pages. In addition, all the source code is automatically checked using a static code analysis tool, called "cppcheck". This tool produces warnings, similar to those of a compiler, but more pedantic. The reports of this analysis are translated to HTML and reported to the developers similar to the nightly builds. Armed with this information,the developers can discover issues in their projects at an early development stage. In combination it reduces the number of possible issues in our software to ensure quality of our projects at different development stages. These checks are also offered to the community. They are currently used within the DiFX software correlator project.

  8. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-07-28

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. CFD modeling studies of RRI in a full scale utility boiler have been performed that provide further insight into the NOx reduction process that occurs if the furnace is not adequately staged. In situ reactivity data indicate thus far that titania sulfates under SCR conditions but there is no indication of vanadia sulfation in agreement with some, but not most literature results. Additional analysis and advanced diagnostics are under way to confirm this result and determine its accuracy. Construction of a catalyst characterization reactor system is nearly complete, with a few remaining details discussed in this report. Shakedown testing of the SCR field reactor was completed at the University of Utah pilot-scale coal furnace. The CEM system has been ordered. Talks continued with American Electric Power about hosting a demonstration at their Rockport plant.

  9. Preliminary paper - Integrated control process for the development of the mined geologic disposal system

    SciTech Connect

    Daniel, Russell B.; Harbert, Kevin R.; Calloway, David E.

    1997-11-26

    The US Department of Energy (DOE) Order 430.1, Life Cycle Asset Management, begins to focus DOE Programs and Projects on the total system life cycle instead of looking at project execution or operation as individual components. As DOE begins to implement this order, the DOE Management and Operating contractors must develop a process to control not only the contract baseline but also the overall life cycle baseline. This paper presents an integrated process that is currently being developed on the Yucca Mountain Project for DOE. The process integrates the current contract/project baseline management process with the management control process for design and the configuration management change control process.

  10. Control of a flexible bracing manipulator: Integration of current research work to realize the bracing manipulator

    NASA Technical Reports Server (NTRS)

    Kwon, Dong-Soo

    1991-01-01

    All research results about flexible manipulator control were integrated to show a control scenario of a bracing manipulator. First, dynamic analysis of a flexible manipulator was done for modeling. Second, from the dynamic model, the inverse dynamic equation was derived, and the time domain inverse dynamic method was proposed for the calculation of the feedforward torque and the desired flexible coordinate trajectories. Third, a tracking controller was designed by combining the inverse dynamic feedforward control with the joint feedback control. The control scheme was applied to the tip position control of a single link flexible manipulator for zero and non-zero initial condition cases. Finally, the contact control scheme was added to the position tracking control. A control scenario of a bracing manipulator is provided and evaluated through simulation and experiment on a single link flexible manipulator.

  11. Multipurpose Controller with EPICS integration and data logging: BPM application for ESS Bilbao

    NASA Astrophysics Data System (ADS)

    Arredondo, I.; del Campo, M.; Echevarria, P.; Jugo, J.; Etxebarria, V.

    2013-10-01

    This work presents a multipurpose configurable control system which can be integrated in an EPICS control network, this functionality being configured through a XML configuration file. The core of the system is the so-called Hardware Controller which is in charge of the control hardware management, the set up and communication with the EPICS network and the data storage. The reconfigurable nature of the controller is based on a single XML file, allowing any final user to easily modify and adjust the control system to any specific requirement. The selected Java development environment ensures a multiplatform operation and large versatility, even regarding the control hardware to be controlled. Specifically, this paper, focused on fast control based on a high performance FPGA, describes also an application approach for the ESS Bilbao's Beam Position Monitoring system. The implementation of the XML configuration file and the satisfactory performance outcome achieved are presented, as well as a general description of the Multipurpose Controller itself.

  12. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-09-30

    This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. The corrosion probe task is proceeding: Two plant visits were made to prepare for field testing and shakedown tests for the probes were conducted at the University of Utah''s L1500 furnace. Corrosion probes will be installed at the Gavin Plant site in the next quarter. Laboratory studies of SCR catalyst continued this quarter. FTIR studies of catalyst sulfation and of adsorption of NH3 and NO were continued at BYU. NO activities have been measured for a number of samples of BYU catalyst and insights have been gained from the results. Plans are being detailed to test monolith and plate catalysts exposed in the field. In this quarter, the catalysts in the slipstream reactor at AEP's Rockport plant were exposed to the dusty flue gas for 1695 hours. Thus the cumulative catalyst exposure to flue gas rose from 980 hours last quarter to 2677 hours in this quarter. Loss of catalyst activity was noted between April (when the catalysts were fresh) and August. Further analysis of activity data will be needed.

  13. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-06-30

    This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

  14. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  15. Design and Control of Integrated Systems for Hydrogen Production and Power Generation

    NASA Astrophysics Data System (ADS)

    Georgis, Dimitrios

    Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared

  16. Integrated production overlay field-by-field control for leading edge technology nodes

    NASA Astrophysics Data System (ADS)

    Chung, Woong Jae; Tristan, John; Gutjahr, Karsten; Subramany, Lokesh; Li, Chen; Sun, Yulei; Yelverton, Mark; Kim, Young Ki; Kim, Jeong Soo; Huang, Chin-Chou Kevin; Pierson, William; Karur-Shanmugam, Ramkumar; Riggs, Brent; Jug, Sven; Robinson, John C.; Yap, Lipkong; Ramanathan, Vidya

    2014-04-01

    As photolithography will continue with 193nm immersion multiple patterning technologies for the leading edge HVM process node, the production overlay requirement for critical layers in logic devices has almost reached the scanner hardware performance limit. To meet the extreme overlay requirements in HVM production environment, this study investigates a new integrated overlay control concept for leading edge technology nodes that combines the run-to-run (R2R) linear or high order control loop, the periodic field-by-field or correction per exposure (CPE) wafer process signature control loop, and the scanner baseline control loop into a single integrated overlay control path through the fab host APC system. The goal is to meet the fab requirements for overlay performance, lower the cost of ownership, and provide freedom of control methodology. In this paper, a detailed implementation of this concept will be discussed, along with some preliminary results.

  17. Smith predictor based-sliding mode controller for integrating processes with elevated deadtime.

    PubMed

    Camacho, Oscar; De la Cruz, Francisco

    2004-04-01

    An approach to control integrating processes with elevated deadtime using a Smith predictor sliding mode controller is presented. A PID sliding surface and an integrating first-order plus deadtime model have been used to synthesize the controller. Since the performance of existing controllers with a Smith predictor decrease in the presence of modeling errors, this paper presents a simple approach to combining the Smith predictor with the sliding mode concept, which is a proven, simple, and robust procedure. The proposed scheme has a set of tuning equations as a function of the characteristic parameters of the model. For implementation of our proposed approach, computer based industrial controllers that execute PID algorithms can be used. The performance and robustness of the proposed controller are compared with the Matausek-Micić scheme for linear systems using simulations. PMID:15098585

  18. Experimental validation of optimization-based integrated controls-structures design methodology for flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Joshi, Suresh M.; Walz, Joseph E.

    1993-01-01

    An optimization-based integrated design approach for flexible space structures is experimentally validated using three types of dissipative controllers, including static, dynamic, and LQG dissipative controllers. The nominal phase-0 of the controls structure interaction evolutional model (CEM) structure is redesigned to minimize the average control power required to maintain specified root-mean-square line-of-sight pointing error under persistent disturbances. The redesign structure, phase-1 CEM, was assembled and tested against phase-0 CEM. It is analytically and experimentally demonstrated that integrated controls-structures design is substantially superior to that obtained through the traditional sequential approach. The capability of a software design tool based on an automated design procedure in a unified environment for structural and control designs is demonstrated.

  19. INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS) COST MODEL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch's (APPCD, NRMRL) Integrated Air Pollution Control System Cost Model is a compiled model written in FORTRAN and C language that is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It ...

  20. Modeling, control and integration of a portable solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Adhikari, Puran

    This thesis presents an innovative method for the modeling, control and integration of a portable hybrid solid oxide fuel cell system. The control and integration of the fuel cell system is important not only for its efficient operation, but also for issues related to safety and reliability. System modeling is needed in order to facilitate the controller design. Mathematical models of the various components of the system are built in the matlab/simulink environment. Dynamic modeling of the fuel cell stack, catalytic partial oxidation (CPOX) reformer, heat exchanger, tail gas combustor and tail gas splitter of the balance of plant system is performed first. Followed by, modeling of the three input DC/DC converter and energy storage devices (battery and supercapacitor). A two-level control approach, higher level and lower level, is adopted in this research. Each of the two major subsystems, balance of plant subsystem and power electronics subsystem, has its own local level controller (called lower level controller) that are designed such that they follow exactly the command reference from a higher level controller. The higher level controller is an intelligent controller that makes decisions about how the lower level or local controllers should perform based on the status of fuel cell, energy storage device and external load demand. Linear analysis has been done for the design and development of the local controllers as appropriate. For the higher level controller, a finite state machine model is developed and implemented using stateflow and fuzzy logic toolboxes of matlab. Simulations are carried out for the integrated system. The simulation results verify that the controllers are robust in performance during the transient condition when the energy storage devices supplement fuel cells. The temperature and flow rates of the fuel and air are controlled as desired. The output from the designed fuel cell system is a regulated DC voltage, which verifies the overall

  1. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do not

  2. Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.

    PubMed

    Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong

    2014-12-01

    In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches. PMID:24718584

  3. Power-based control with integral action for wind turbines connected to the grid

    NASA Astrophysics Data System (ADS)

    Peña, R. R.; Fernández, R. D.; Mantz, R. J.; Battaiotto, P. E.

    2015-10-01

    In this paper, a power shaping control with integral action is employed to control active and reactive powers of wind turbines connected to the grid. As it is well known, power shaping allows finding a Lyapunov function which ensures stability. In contrast to other passivity-based control theories, the power shaping controller design allows to use easily measurable variables, such as voltages and currents which simplify the physical interpretation and, therefore, the controller synthesis. The strategy proposed is evaluated in the context of severe operating conditions, such as abrupt changes in the wind speed and voltage drops.

  4. An introduction to stochastic control theory, path integrals and reinforcement learning

    NASA Astrophysics Data System (ADS)

    Kappen, Hilbert J.

    2007-02-01

    Control theory is a mathematical description of how to act optimally to gain future rewards. In this paper I give an introduction to deterministic and stochastic control theory and I give an overview of the possible application of control theory to the modeling of animal behavior and learning. I discuss a class of non-linear stochastic control problems that can be efficiently solved using a path integral or by MC sampling. In this control formalism the central concept of cost-to-go becomes a free energy and methods and concepts from statistical physics can be readily applied.

  5. Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.

    1985-01-01

    Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.

  6. Material protection, control and accounting cooperation at the Urals Electrochemical Integrated Plant (UEIP), Novouralsk, Russia

    SciTech Connect

    McAllister, S., LLNL

    1998-07-15

    The Urals Electrochemical Integrated Plant is one of the Russian Ministry of Atomic Energy`s nuclear material production sites participating in the US Department of Energy`s Material Protection, Control and Accounting (MPC&A) Program. The Urals Electrochemical Integrated Plant is Russia`s largest uranium enrichment facility and blends tons of high-enriched uranium into low enriched uranium each year as part of the US high-enriched uranium purchase. The Electrochemical Integrated Plant and six participating national laboratories are cooperating to implement a series of enhancements to the nuclear material protection, control, and accountability systems at the site This paper outlines the overall objectives of the MPC&A program at Urals Electrochemical Integrated Plant and the work completed as of the date of the presentation.

  7. Ver-i-Fus: an integrated access control and information monitoring and management system

    NASA Astrophysics Data System (ADS)

    Thomopoulos, Stelios C.; Reisman, James G.; Papelis, Yiannis E.

    1997-01-01

    This paper describes the Ver-i-Fus Integrated Access Control and Information Monitoring and Management (IAC-I2M) system that INTELNET Inc. has developed. The Ver-i-Fus IAC-I2M system has been designed to meet the most stringent security and information monitoring requirements while allowing two- way communication between the user and the system. The systems offers a flexible interface that permits to integrate practically any sensing device, or combination of sensing devices, including a live-scan fingerprint reader, thus providing biometrics verification for enhanced security. Different configurations of the system provide solutions to different sets of access control problems. The re-configurable hardware interface, tied together with biometrics verification and a flexible interface that allows to integrate Ver-i-Fus with an MIS, provide an integrated solution to security, time and attendance, labor monitoring, production monitoring, and payroll applications.

  8. Sterility method of pest control and its potential role in an integrated sea lamprey (Petromyzon marinus) control program

    USGS Publications Warehouse

    Hanson, Lee H.; Manion, Patrick J.

    1980-01-01

    The sterility method of pest control could be an effective tool in the sea lamprey (Petromyzon marinus) control program in the Great Lakes. Some of the requirements for its successful application have been met. A field study demonstrated that the release of male sea lampreys, sterilized by the injection of 100 mg/kg of P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir), will reduce the number of viable larvae produced. The actual reduction in reproductive success that occurred was directly related to the ratio of sterile to normal males in the population. The technique can be used in many ways in an integrated control program and has considerable potential for the more effective control of the sea lamprey. Eradication is a distinct possibility.Key words: sea lamprey, Petromyzon marinus; pest control, fish control, sterile-male technique, sterilization, chemosterilants, bisazir, Great Lakes

  9. Speed synchronization control for integrated automotive motor-transmission powertrain system with random delays

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyuan; Zhang, Hui; Fang, Zongde

    2015-12-01

    This paper presents a robust speed synchronization controller design for an integrated motor-transmission powertrain system in which the driving motor and multi-gearbox are directly coupled. As the controller area network (CAN) is commonly used in the vehicle powertrain system, the possible network-induced random delays in both feedback and forward channel are considered and modeled by using two Markov chains in the controller design process. For the application perspective, the control law adopted here is a generalized proportional-integral (PI) control. By employing the system-augmentation technique, a delay-free stochastic closed-loop system is obtained and the generalized PI controller design problem is converted to a static output feedback (SOF) controller design problem. Since there are external disturbances involved in the closed-loop system, the energy-to-peak performance is considered to guarantee the robustness of the controller. And the controlled output is chosen as the speed synchronization error. To further improve the transient response of the closed-loop system, the pole placement is also employed in the energy-to-peak performance based speed synchronization control. The mode-dependent control gains are obtained by using an iterative linear matrix inequality (LMI) algorithm. Simulation results show the effectiveness of the proposed control approach.

  10. Fifty years of the integrated control concept: moving the model and implementation forward in Arizona.

    PubMed

    Naranjo, Steven E; Ellsworth, Peter C

    2009-12-01

    Fifty years ago, Stern, Smith, van den Bosch and Hagen outlined a simple but sophisticated idea of pest control predicated on the complementary action of chemical and biological control. This integrated control concept has since been a driving force and conceptual foundation for all integrated pest management (IPM) programs. The four basic elements include thresholds for determining the need for control, sampling to determine critical densities, understanding and conserving the biological control capacity in the system and the use of selective insecticides or selective application methods, when needed, to augment biological control. Here we detail the development, evolution, validation and implementation of an integrated control (IC) program for whitefly, Bemisia tabaci (Genn.), in the Arizona cotton system that provides a rare example of the vision of Stern and his colleagues. Economic thresholds derived from research-based economic injury levels were developed and integrated with rapid and accurate sampling plans into validated decision tools widely adopted by consultants and growers. Extensive research that measured the interplay among pest population dynamics, biological control by indigenous natural enemies and selective insecticides using community ordination methods, predator:prey ratios, predator exclusion and demography validated the critical complementary roles played by chemical and biological control. The term 'bioresidual' was coined to describe the extended environmental resistance from biological control and other forces possible when selective insecticides are deployed. The tangible benefits have been a 70% reduction in foliar insecticides, a >$200 million saving in control costs and yield, along with enhanced utilization of ecosystem services over the last 14 years. PMID:19834884

  11. Integration of Multiple Organic Light Emitting Diodes and a Lens for Emission Angle Control

    NASA Astrophysics Data System (ADS)

    Rahadian, Fanny; Masada, Tatsuya; Fujieda, Ichiro

    We propose to integrate a single lens on top of multiple OLEDs. Angular distribution of the light emitted from the lens surface is altered by turning on the OLEDs selectively. We can use such a light source as a backlight for a liquid crystal display to switch its viewing angle range and/or to display multiple images in different directions. Pixel-level integration would allow one to construct an OLED display with a similar emission angle control.

  12. Design of a semi-custom integrated circuit for the SLAC SLC timing control system

    SciTech Connect

    Linstadt, E.

    1984-10-01

    A semi-custom (gate array) integrated circuit has been designed for use in the SLAC Linear Collider timing and control system. The design process and SLAC's experiences during the phases of the design cycle are described. Issues concerning the partitioning of the design into semi-custom and standard components are discussed. Functional descriptions of the semi-custom integrated circuit and the timing module in which it is used are given.

  13. Integrating payload design, planning, and control in the Dutch Utilisation Centre

    NASA Technical Reports Server (NTRS)

    Grant, T. J.

    1993-01-01

    Spacecraft payload design, experiment planning and scheduling, and payload control are traditionally separate areas of activity. This paper describes the development of a prototype software tool--the Activity Scheduling System (ASS)--which integrates these activity areas. ASS is part of a larger project to build a Dutch Utilisation Centre (DUC), intended eventually to support all space utilization activities in The Netherlands. ASS has been tested on the High Performance Capillary Electrophoresis payload. The paper outlines the integrated preparation and operations concept embodied in ASS. It describes the ASS prototype, including a typical session. The results of testing are summarized. Possible enhancement of ASS, including integration into DUC, is sketched.

  14. Sensorless control of salient PMSM with adaptive integrator and resistance online identification using strong tracking filter

    NASA Astrophysics Data System (ADS)

    Ma, Shaokang; Wu, Peijun; Ji, Jinhu; Li, Xuchun

    2016-02-01

    This article presents a sensorless control approach of salient PMSM with an online parameter identifier. Adaptive Integrator is proposed and utilised for the estimation of active flux and rotor position. As a result, integrator overflow caused by DC offset is avoided. Meanwhile, an online stator resistance identification algorithm using strong tracking filter is employed, and the identified stator resistance is fed back to the estimating algorithm. Thus, the estimating algorithm can calculate the rotor position correctly. Simulations and experimental results validate the feasibility of both adaptive integrator and the parameter identification method.

  15. An integrated model of the Space Station Freedom active thermal control system

    NASA Technical Reports Server (NTRS)

    Tandler, John J.; Bilardo, Vincent J., Jr.

    1989-01-01

    A flexible, generic model of the Space Station Freedom active thermal control system has been developed which is designed to analyze dynamic interactions of the major subsystems of the ATCS. Models are described for the components of the central thermal bus, the radiator external thermal environment, and the internal thermal control system. Two programs are described which facilitate the development of the integrated ATCS model. The first, SIMRAD, simplifies an external thermal environment model given a desired level of accuracy in integrated model performance. The model reduction technique is shown to reduce model execution time significantly while maintaining the desired accuracy. The second, GENFLU, generates SINDA/FLUINT input code for the evaporator and load interface models and automates the integration of load submodels. The component submodels and integration techniques were used to create an integrated model of the thermal control system for an early assembly flight configuration. The results demonstrate the utility of the integrated model in studying dynamic interactions of the ATCS subsystems.

  16. A proportional-plus-integral controller for a particle beam weapon

    NASA Astrophysics Data System (ADS)

    Moose, W. J.

    1984-12-01

    The goal of this thesis is to design a proportional-plus-integral (PI) controller, for use with the Meer filter, to control a particle beam weapon. The device used to measure the beam produces a low signal rate, the Meer filter is used to produce an estimate of the beam position. A type-1, proportional-plus-integral controller is designed using LOG assumptions and dynamic programming to solve the cost function. A sensitivity analysis is performed to determine the system sensitivity to different parameters. A performance analysis is also performed to demonstrate the system robustness to unmodelled errors. The results of these analyses are compared to a type-0, proportional gain controller. In addition the PI controllers ability to regulate to a non-zero setpoint is demonstrated.

  17. Tuning of PID controllers for integrating systems using direct synthesis method.

    PubMed

    Anil, Ch; Padma Sree, R

    2015-07-01

    A PID controller is designed for various forms of integrating systems with time delay using direct synthesis method. The method is based on comparing the characteristic equation of the integrating system and PID controller with a filter with the desired characteristic equation. The desired characteristic equation comprises of multiple poles which are placed at the same desired location. The tuning parameter is adjusted so as to achieve the desired robustness. Tuning rules in terms of process parameters are given for various forms of integrating systems. The tuning parameter can be selected for the desired robustness by specifying Ms value. The proposed controller design method is applied to various transfer function models and to the nonlinear model equations of jacketed CSTR to show its effectiveness and applicability. PMID:25800952

  18. Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.

    1994-01-01

    An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.

  19. An integrated controls-structures design methodology for a flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, Suresh M.; Price, Douglas B.

    1992-01-01

    This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the control system design are performed simultaneously. The integrated design problem is posed as an optimization problem in which both the structural parameters and the control system parameters constitute the design variables, which are used to optimize a common objective function, thereby resulting in an optimal overall design. The approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-based flexible structure experiment. The numerical results obtained indicate that the integrated design approach generally yields spacecraft designs that are substantially superior compared to the conventional approach, wherein the structural design and control design are performed sequentially.

  20. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    NASA Technical Reports Server (NTRS)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  1. Are integral controllers adapted to the new era of ELT adaptive optics?

    NASA Astrophysics Data System (ADS)

    Conan, J.-M.; Raynaud, H.-F.; Kulcsár, C.; Meimon, S.

    2011-09-01

    With ELTs we are now entering a new era in adaptive optics developments. Meeting unprecedented level of performance with incredibly complex systems implies reconsidering AO concepts at all levels, including controller design. Concentrating mainly on temporal aspects, one may wonder if integral controllers remain an adequate solution. This question is all the more important that, with ever larger degrees of freedom, one may be tempted to discard more sophisticated approaches because they are deemed too complex to implement. The respective performance of integrator versus LQG control should therefore be carefully evaluated in the ELT context. We recall for instance the impressive correction improvement brought by such controllers for the rejection of windshake and vibration components. LQG controller significantly outperforms the integrator because its disturbance rejection transfer function closely matches the energy concentration, respectively at low temporal frequencies for windshake, and around localized resonant peaks for vibrations. The application to turbulent modes should also be investigated, especially for very low spatial frequencies now explored on the huge ELT pupil. The questions addressed here are: 1/ How do integral and LQG controllers compare in terms of performance for a given sampling frequency and noise level?; 2/ Could we relax sampling frequency with LQG control?; 3/ Does a mode to mode adaptation of temporal rejection bring significant performance improvement?; 4/ Which modes particularly benefit from this fine tuning of the rejection transfer function? Based on a simplified ELT AO configuration, and through a simple analytical formulation, performance is evaluated for several control approaches. Various assumptions concerning the perturbation parameters (seeing and outer-scale value, windshake amplitude) are considered. Bode's integral theorem allows intuitive understanding of the results. Practical implementation and computation complexity

  2. Control of dengue: Consensus views of Endemic Disease Control Agents and Community Health Agents on their integrated action.

    PubMed

    Pessoa, João Paulo de Morais; Oliveira, Ellen Synthia Fernandes de; Teixeira, Ricardo Antônio Gonçalves; Lemos, Cristiane Lopes Simão; Barros, Nelson Filice de

    2016-08-01

    Dengue is one of Brazil's most important public health challenges. Activities for its prevention and control have been based on the strategy of integrated management proposed in health policies, in which the central actors are the Endemic Disease Control Agent(ACE) and the Community Health Agent (ACS). This study analyzes consensus opinions produced by ACSs and ACEs on theactions for incorporating ACEs into the teams of the Family Health Strategy (ESF). It is a qualitative study from a large municipality in Brazil in which dengue is endemic, using a focus group of professionals that is subsequently analyzed using Collective Subject Discourse Analysis, supported by WebQDA. The results indicate consensus positions in relation to the following subjects: I) difficulty in the process of integration of ACSs and ACEs for control of dengue; II) inclusion of ACEs in the primary healthcare of the ESF; and III) absence of monitoring and assessment of the integrated actions. In conclusion, there are needs: to make participants more aware, seeking changes in behavior; to offer an environment of support to those involved with training courses about dengue; and to monitor the process of integration, and evaluate it periodically, creating indicators of quality and quantity. PMID:27557006

  3. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    NASA Astrophysics Data System (ADS)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  4. Linear matrix inequality-based proportional-integral control design with application to F-16 aircraft

    NASA Astrophysics Data System (ADS)

    Theodore, Zachary B.

    A robust proportional-integral (PI) controller was synthesized for the F-16 VISTA (Variable stability In-flight Simulator Test Aircraft) using a linear matrix inequality (LMI) approach, with the goal of eventually designing and implementing a linear parameter-varying PI controller on high performance aircraft. The combination of classical and modern control theory provides theoretically guaranteed stability and performance throughout the flight envelope and ease of implementation due to the simplicity of the PI controller structure. The controller is designed by solving a set of LMIs with pole placement constraints. This closed-loop system was simulated in MATLAB/Simulink to analyze the performance of the controller. A robust Hinfinity controller was also developed to compare performance with PI controller. The simulation results showed stability, albeit with poor performance compared to the Hinfinity controlle.

  5. Functional integration of vertical flight path and speed control using energy principles

    NASA Technical Reports Server (NTRS)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  6. Multicriteria Evaluation of Classical Swine Fever Control Strategies Using the Choquet Integral.

    PubMed

    Brosig, J; Traulsen, I; Krieter, J

    2016-02-01

    An outbreak of the highly contagious animal disease classical swine fever (CSF) requires the selection of an optimal control strategy. The choice of a control strategy is a decision process depending on different aspects. Besides epidemiology, economic and ethical/social aspects must be taken into account. In this study, multicriteria decision-making (MCDM) was used to evaluate six control strategies for two regions with different farm densities. A strategy including only the minimum EU control measures and the traditional control strategy based on preventive culling were compared to alternative control strategies using emergency vaccination and/or rapid PCR testing ('emergency vaccination', 'test to slaughter', 'test to control' and 'vaccination in conjunction with rapid testing'). The MACBETH approach was used in order to assess the three main criteria (epidemiology, economics and ethical/social aspects). Subcriteria with both quantitative and qualitative performance levels were translated into a normalized scale. The Choquet integral approach was adopted to obtain a ranking of the six CSF control strategies based on the three main criteria, taking interactions into account. Three different rankings of the importance of the main criteria, which were to reflect the potential perceptions of stakeholders, were examined. Both the region under investigation and the ranking of the main criteria had an influence on the 'best' choice. Alternative control strategies were favourable to the minimum EU control and the traditional control measures independent of the farm density. Because the choice of the 'best' control strategy does not solely depend on the epidemiological efficiency, MCDM can help to find the best solution. Both MACBETH and the Choquet integral approach are feasible MCDM approaches. MACBETH only needs a qualitative evaluation and is therefore a comparatively intuitive approach. The Choquet integral does not only take the importance of the criteria into

  7. Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.

    1991-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented.

  8. Application of an integrated flight/propulsion control design methodology to a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.

    1991-01-01

    Results are presented from the application of an emerging Integrated Flight/Propulsion Control (IFPC) design methodology to a Short Take Off and Vertical Landing (STOVL) aircraft in transition flight. The steps in the methodology consist of designing command shaping prefilters to provide the overall desired response to pilot command inputs. A previously designed centralized controller is first validated for the integrated airframe/engine plant used. This integrated plant is derived from a different model of the engine subsystem than the one used for the centralized controller design. The centralized controller is then partitioned in a decentralized, hierarchical structure comprising of airframe lateral and longitudinal subcontrollers and an engine subcontroller. Command shaping prefilters from the pilot control effector inputs are then designed and time histories of the closed loop IFPC system response to simulated pilot commands are compared to desired responses based on handling qualities requirements. Finally, the propulsion system safety and nonlinear limited protection logic is wrapped around the engine subcontroller and the response of the closed loop integrated system is evaluated for transients that encounter the propulsion surge margin limit.

  9. Integrated Schistosomiasis and Soil-Transmitted Helminthiasis Control over Five Years on Kome Island, Tanzania

    PubMed Central

    Kaatano, Godfrey M.; Siza, Julius E.; Mwanga, Joseph R.; Min, Duk-Yong; Yong, Tai-Soon; Chai, Jong-Yil; Ko, Yunsuk; Chang, Su Young; Kullaya, Cyril M.; Rim, Han-Jong; Changalucha, John M.; Eom, Keeseon S.

    2015-01-01

    Integrated control strategies are important for sustainable control of schistosomiasis and soil-transmitted helminthiasis, despite their challenges for their effective implementation. With the support of Good Neighbors International in collaboration with National Institute of Medical Research, Mwanza, Tanzania, integrated control applying mass drug administration (MDA), health education using PHAST, and improved safe water supply has been implemented on Kome Island over 5 years for controlling schistosomiasis and soil-transmitted helminths (STHs). Baseline surveys for schistosomiasis and STHs was conducted before implementation of any integrated control strategies, followed by 4 cross-sectional follow-up surveys on randomly selected samples of schoolchildren and adults in 10 primary schools and 8 villages, respectively, on Kome islands. Those follow-up surveys were conducted for impact evaluation after introduction of control strategies interventions in the study area. Five rounds of MDA have been implemented from 2009 along with PHAST and improved water supply with pumped wells as other control strategies for complementing MDA. A remarkable steady decline of schistosomiasis and STHs was observed from 2009 to 2012 with significant trends in their prevalence decline, and thereafter infection rate has remained at a low sustainable control. By the third follow-up survey in 2012, Schistosoma mansoni infection prevalence was reduced by 90.5% and hookworm by 93.3% among schoolchildren while in adults the corresponding reduction was 83.2% and 56.9%, respectively. Integrated control strategies have successfully reduced S. mansoni and STH infection status to a lower level. This study further suggests that monitoring and evaluation is a crucial component of any large-scale STH and schistosomiasis intervention. PMID:26537032

  10. Integrated Schistosomiasis and Soil-Transmitted Helminthiasis Control over Five Years on Kome Island, Tanzania.

    PubMed

    Kaatano, Godfrey M; Siza, Julius E; Mwanga, Joseph R; Min, Duk-Yong; Yong, Tai-Soon; Chai, Jong-Yil; Ko, Yunsuk; Chang, Su Young; Kullaya, Cyril M; Rim, Han-Jong; Changalucha, John M; Eom, Keeseon S

    2015-10-01

    Integrated control strategies are important for sustainable control of schistosomiasis and soil-transmitted helminthiasis, despite their challenges for their effective implementation. With the support of Good Neighbors International in collaboration with National Institute of Medical Research, Mwanza, Tanzania, integrated control applying mass drug administration (MDA), health education using PHAST, and improved safe water supply has been implemented on Kome Island over 5 years for controlling schistosomiasis and soil-transmitted helminths (STHs). Baseline surveys for schistosomiasis and STHs was conducted before implementation of any integrated control strategies, followed by 4 cross-sectional follow-up surveys on randomly selected samples of schoolchildren and adults in 10 primary schools and 8 villages, respectively, on Kome islands. Those follow-up surveys were conducted for impact evaluation after introduction of control strategies interventions in the study area. Five rounds of MDA have been implemented from 2009 along with PHAST and improved water supply with pumped wells as other control strategies for complementing MDA. A remarkable steady decline of schistosomiasis and STHs was observed from 2009 to 2012 with significant trends in their prevalence decline, and thereafter infection rate has remained at a low sustainable control. By the third follow-up survey in 2012, Schistosoma mansoni infection prevalence was reduced by 90.5% and hookworm by 93.3% among schoolchildren while in adults the corresponding reduction was 83.2% and 56.9%, respectively. Integrated control strategies have successfully reduced S. mansoni and STH infection status to a lower level. This study further suggests that monitoring and evaluation is a crucial component of any large-scale STH and schistosomiasis intervention. PMID:26537032

  11. Tuning of IMC based PID controllers for integrating systems with time delay.

    PubMed

    Kumar, D B Santosh; Padma Sree, R

    2016-07-01

    Design of Proportional Integral and Derivative (PID) controllers based on IMC principles for various types of integrating systems with time delay is proposed. PID parameters are given in terms of process model parameters and a tuning parameter. The tuning parameter is IMC filter time constant. In the present work, the IMC filter (Q) is chosen in such a manner that the order of the denominator of IMC controller is one less than the order of the numerator. The IMC filter time constant (λ) is tuned in such a way that a good compromise is made between performance and robustness for both servo and regulatory problems. To improve servo response of the controller a set point filter is designed such that the closed loop response is similar to that of first order plus time delay system. The proposed controller design method is applied to various transfer function models and to the non-linear model equations of jacketed CSTR to demonstrate its applicability and effectiveness. The performance of the proposed controller is compared with the recently reported methods in terms of IAE and ITAE. The smooth functioning of the controller is determined in terms of total variation and compared with recently reported methods. Simulation studies are carried out on various integrating systems with time delay to show the effectiveness and superiority of the proposed controllers. PMID:27087135

  12. High-Performance Integrated Control of water quality and quantity in urban water reservoirs

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.; Goedbloed, A.

    2015-11-01

    This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3-D, high-fidelity simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low-order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 storm-water-fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D-FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).

  13. An optimization-based approach for integrated controls-structures design of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Armstrong, E. S.

    1994-01-01

    The control of flexible spacecraft is a difficult problem because of large number of elastic modes; low value, closely-spaced frequencies; very small damping; and uncertainties in math models. The traditional design approach is to design the structure first and then to design the control system. This view-graph presentation develops a methodology for spacecraft design which addresses control/structure interaction issues, produces technology for simultaneous control/structure design, and translates into algorithms and computational tools for practical integrated computer-aided design.

  14. Microcontroller Based Proportional Derivative Plus Conditional Integral Controller for Electro-Mechanical Dual Acting Pulley Continuously Variable Transmission Ratio Control

    NASA Astrophysics Data System (ADS)

    Budianto, A.; Tawi, K. B.; Hussein, M.; Supriyo, B.; Ariyono, S.; Che Kob, M. S.; Ezlamy Zulkifli, Mohd; K, Khairuldean A.; Daraoh, Aishah

    2012-09-01

    Electro-Mechanical Dual Acting Pulley (EMDAP) Continuously Variable Transmission (CVT) is a transmission utilized by electro-mechanical actuated system. It has a potential to reduce energy consumption because it only needs power during changing CVT ratio and no power is needed to maintain CVT ratio due to self lock mechanism design. This paper proposed simple proportional derivative plus conditional integral (PDCI) controller to control EMDAP CVT ratio which can be simply implemented on a microcontroller. This proposed controller used Astrom-Hagglund method and Ziegler-Nichols formula to tune PDCI gain. The Proportional Derivative controller is directly activated from the start but Integral controller is only activated when the error value reaches error value setting point. Simulation using Matlab/Simulink software was conducted to evaluate PDCI system performance. The simulation results showed PDCI controller has ability to perform maximum overshoot 0.1%, 0.001 steady state error and 0.5s settling time. For clamping condition, settling time is about 11.46s during changing ratio from 2.0 to 0.7, while for release condition, settling time is about 8.33s during changing ratio from 0.7 to 2.0.

  15. Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers

    NASA Technical Reports Server (NTRS)

    Vess, Melissa F.; Starin, Scott R.

    2007-01-01

    During design of the SDO Science and Inertial mode PID controllers, the decision was made to disable the integral torque whenever system stability was in question. Three different schemes were developed to determine when to disable or enable the integral torque, and a trade study was performed to determine which scheme to implement. The trade study compared complexity of the control logic, risk of not reenabling the integral gain in time to reject steady-state error, and the amount of integral torque space used. The first scheme calculated a simplified Routh criterion to determine when to disable the integral torque. The second scheme calculates the PD part of the torque and looked to see if that torque would cause actuator saturation. If so, only the PD torque is used. If not, the integral torque is added. Finally, the third scheme compares the attitude and rate errors to limits and disables the integral torque if either of the errors is greater than the limit. Based on the trade study results, the third scheme was selected. Once it was decided when to disable the integral torque, analysis was performed to determine how to disable the integral torque and whether or not to reset the integrator once the integral torque was reenabled. Three ways to disable the integral torque were investigated: zero the input into the integrator, which causes the integral part of the PID control torque to be held constant; zero the integral torque directly but allow the integrator to continue integrating; or zero the integral torque directly and reset the integrator on integral torque reactivation. The analysis looked at complexity of the control logic, slew time plus settling time between each calibration maneuver step, and ability to reject steady-state error. Based on the results of the analysis, the decision was made to zero the input into the integrator without resetting it. Throughout the analysis, a high fidelity simulation was used to test the various implementation methods.

  16. Development and testing of the Junkeeper Control Corporation integrated programmable electronic controller and hydronics package

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1979-01-01

    Additional developmental work on the existing programmable electronic controller and hydronic package for use with solar heating and cooling systems is summarized. The controller/hydronics subsystems passed all acceptance tests and performance criteria. The subsystems were shown marketable for public use.

  17. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    NASA Technical Reports Server (NTRS)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  18. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  19. Precision Integrated Power and Attitude Control System (IPACS) in the Presence of Dynamic Uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, D.; MacKunis, W.; Fitz-Coy, N.; Dixon, W. E.

    2011-01-01

    An adaptive robust integrated power and attitude control system (IPACS) is presented for a variable speed control moment gyroscope (VSCMG)-actuated satellite. The developed IPACS method is capable of achieving precision attitude control while simultaneously achieving asymptotic power tracking for a rigid-body satellite in the presence of uncertain friction in the VSCMG gimbals and wheels. In addition, the developed controller compensates for the effects of uncertain, time-varying satellite inertia properties. Some challenges encountered in the control design are that the control input is premultiplied by a nonsquare, time-varying, nonlinear, uncertain matrix and is embedded in a discontinuous nonlinear. Globally uniformly ultimately bounded attitude tracking and asymptotic power tracking results are proven via Lyapunov stability analyses, and simulation results are provided to demonstrate the performance of the controller.

  20. Integrated Orbit and Attitude Control for a Nanosatellite with Power Constraints

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Hall, Christopher; Berry, Matthew; Hy-Young, Kim

    2003-01-01

    Small satellites tend to be power-limited, so that actuators used to control the orbit and attitude must compete with each other as well as with other subsystems for limited electrical power. The Virginia Tech nanosatellite project, HokieSat, must use its limited power resources to operate pulsed-plasma thrusters for orbit control and magnetic torque coils for attitude control, while also providing power to a GPS receiver, a crosslink transceiver, and other subsystems. The orbit and attitude control strategies were developed independently. The attitude control system is based on an application of Linear Quadratic Regulator (LQR) to an averaged system of equations, whereas the orbit control is based on orbit element feedback. In this paper we describe the strategy for integrating these two control systems and present simulation results to verify the strategy.

  1. Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control

    NASA Astrophysics Data System (ADS)

    Colombo, Leonardo; Ferraro, Sebastián; Martín de Diego, David

    2016-07-01

    Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. In this paper we present a method to construct symplectic-momentum integrators for higher-order Lagrangian systems. Given a regular higher-order Lagrangian L:T^{(k)}Q→ R with k≥ 1 , the resulting discrete equations define a generally implicit numerical integrator algorithm on T^{(k-1)}Q× T^{(k-1)}Q that approximates the flow of the higher-order Euler-Lagrange equations for L. The algorithm equations are called higher-order discrete Euler-Lagrange equations and constitute a variational integrator for higher-order mechanical systems. The general idea for those variational integrators is to directly discretize Hamilton's principle rather than the equations of motion in a way that preserves the invariants of the original system, notably the symplectic form and, via a discrete version of Noether's theorem, the momentum map. We construct an exact discrete Lagrangian L_d^e using the locally unique solution of the higher-order Euler-Lagrange equations for L with boundary conditions. By taking the discrete Lagrangian as an approximation of L_d^e , we obtain variational integrators for higher-order mechanical systems. We apply our techniques to optimal control problems since, given a cost function, the optimal control problem is understood as a second-order variational problem.

  2. Integrator Windup Protection-Techniques and a STOVL Aircraft Engine Controller Application

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.; Narayanaswamy, S.

    1997-01-01

    Integrators are included in the feedback loop of a control system to eliminate the steady state errors in the commanded variables. The integrator windup problem arises if the control actuators encounter operational limits before the steady state errors are driven to zero by the integrator. The typical effects of windup are large system oscillations, high steady state error, and a delayed system response following the windup. In this study, methods to prevent the integrator windup are examined to provide Integrator Windup Protection (IW) for an engine controller of a Short Take-Off and Vertical Landing (STOVL) aircraft. An unified performance index is defined to optimize the performance of the Conventional Anti-Windup (CAW) and the Modified Anti-Windup (MAW) methods. A modified Genetic Algorithm search procedure with stochastic parameter encoding is implemented to obtain the optimal parameters of the CAW scheme. The advantages and drawbacks of the CAW and MAW techniques are discussed and recommendations are made for the choice of the IWP scheme, given some characteristics of the system.

  3. Control and Diagnosis in Integrated Product Development - Observations during the Development of an AGV

    NASA Astrophysics Data System (ADS)

    Stetter, R.; Simundsson, A.

    2015-11-01

    This paper is concerned with the integration of control and diagnosis functionalities into the development of complete systems which include mechanical, electrical and electronic subsystems. For the development of such systems the strategies, methods and tools of integrated product development have attracted significant attention during the last decades. Today, it is generally observed that product development processes of complex systems can only be successful if the activities in the different domains are well connected and synchronised and if an ongoing communication is present - an ongoing communication spanning the technical domains and also including functions such as production planning, marketing/distribution, quality assurance, service and project planning. Obviously, numerous approaches to tackle this challenge are present in scientific literature and in industrial practice, as well. Today, the functionality and safety of most products is to a large degree dependent on control and diagnosis functionalities. Still, there is comparatively little research concentrating on the integration of the development of these functionalities into the overall product development processes. The main source of insight of the presented research is the product development process of an Automated Guided Vehicle (AGV) which is intended to be used on rough terrain. The paper starts with a background describing Integrated Product Development. The second section deals with the product development of the sample product. The third part summarizes some insights and formulates first hypotheses concerning control and diagnosis in Integrated Product Development.

  4. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    PubMed

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations. PMID:25776190

  5. Observer design for compensation of network-induced delays in integrated communication and control systems

    NASA Technical Reports Server (NTRS)

    Luck, R.; Ray, A.

    1988-01-01

    A method for compensating the effects of network-induced delays in integrated communication and control systems (ICCS) is proposed, and a finite-dimensional time-invariant ICCS model is developed. The problem of analyzing systems with time-varying and stochastic delays is circumvented by the application of a deterministic observer. For the case of controller-to-actuator delays, the observed design must rely on an extended model which represents the delays as additional states.

  6. Innovative control concepts and component integration for a generic supercruise fighter

    NASA Technical Reports Server (NTRS)

    Marks, Bret A.; Hahne, David E.

    1990-01-01

    The results of a series of low speed wind tunnel tests conducted in the NASA Langley Research Center (LaRC) 12 ft Low Speed Wind Tunnel (LSWT) are highlighted. The main objectives of the tests were to provide generalized component integration guidelines and to investigate a variety of innovative control concepts designed to improve the high angle of attack (AOA) controllability of a generic class of supercruise fighters.

  7. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  8. Integrated dry NO{sub x}/SO{sub 2} emissions control system: integrated system test report

    SciTech Connect

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1997-04-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System Program, is a Clean Coal Technology III demonstration, being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) Dry Sorbent Injection (DSI) and duct humidification for SO{sub 2} removal. This report documents the final phase of the test program, in which the overall performance of the integrated system was evaluated. Previous testing has shown that the goal of 70 percent NO{sub x} removal was easily achieved with the combination of low-NO{sub x} burners, overfire air, and urea-based SNCR. Similarly, the ability of the sodium-based DSI system to achieve 70 percent SO{sub 2} removal was also demonstrated previously. The integrated tests demonstrated the synergistic benefit of operating the SNCR and sodium-based DSI systems concurrently. With the automatic control system set to limit the NH{sub 3} emissions to less than 8 ppm, the NO{sub 2} emissions from the sodium-based DSI system were reduced by nominally 50 percent compared to operation with the DSI system alone. Comparably, the combined operation reduced NH{sub 3} emissions, as reflected by a higher urea injection rate for a fixed NH{sub 3} emission limit. With combined DSI and SNCR operation, an ammonia odor problem was encountered around the Unit 4 ash silo (this did not occur with the SNCR system operated alone at comparable NH{sub 3} slip levels). This odor problem is attributed to the sodium changing the rate at which NH{sub 3} is released from the ash when it is wetted for truck transport to the disposal site.

  9. Improved stability and stabilization design for networked control systems using new quadruple-integral functionals.

    PubMed

    Li, Zhichen; Bai, Yan; Li, Tianqi

    2016-07-01

    This paper investigates stability analysis and stabilization for networked control systems. By a refined delay decomposition approach, slightly different Lyapunov-Krasovskii functionals (LKFs) with quadruple-integral terms and augmented vectors containing triple-integral forms of state are constructed. New integral inequalities are proposed to estimate the cross terms from derivatives of the LKFs, which can be proved to offer tighter bounds than what the Jensen one produces theoretically. Moreover, the non-strictly proper rational functions in deriving process are fully handled via reciprocally convex approach. A state feedback controller design approach is also developed. Numerical examples and applications to practical power and oscillator systems demonstrate the superiority of the proposed criteria in conservatism reduction compared to some existing ones. PMID:27087136

  10. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  11. Integrated Application of Active Controls (IAAC) Technology to an Advanced Subsonic Transport: Project Plan

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The state of the art of active controls technology (ACT) and a recommended ACT development program plan are reviewed. The performance benefits and cost of ownership of an integrated application of ACT to civil transport aircraft is to be assessed along with the risk and laboratory and/or flight experiments designed to reduce the technical risks to a commercially acceptable level.

  12. Management of kudzu by the bioherbicide, Myrothecium verrucaria, herbicides and integrated control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replicated field plots were established and monitored for two years to evaluate management practices for kudzu. The bioherbical plant pathogen, Myrothecium verrucaria, several herbicides and a variety of integrated control programs achieved a high level of kudzu suppression, although no system test...

  13. Primary motor cortex underlies multi-joint integration for fast feedback control

    PubMed Central

    Pruszynski, J. Andrew; Kurtzer, Isaac; Nashed, Joseph Y.; Omrani, Mohsen; Brouwer, Brenda; Scott, Stephen H.

    2016-01-01

    A basic difficulty for the nervous system is integrating locally ambiguous sensory information to form accurate perceptions about the outside world1–4. This local-to-global problem is also fundamental to motor control of the arm since complex mechanical interactions between the shoulder and elbow allow a particular amount of motion at one joint to arise from an infinite combination of shoulder and elbow torques5 (Fig. 1a). Here we show that a transcortical pathway through primary motor cortex (M1) resolves this ambiguity during fast feedback control. We demonstrate that single M1 neurons of behaving monkeys can integrate shoulder and elbow motion information into motor commands which appropriately counter the underlying torque within ~50 ms of a mechanical perturbation. Moreover, we reveal a causal link between M1 processing and multi-joint integration in humans by showing that shoulder muscle responses occurring ~50 ms after pure elbow displacement can be potentiated by transcranial magnetic stimulation. Our results show that M1 underlies multi-joint integration during fast feedback control, demonstrating that transcortical processing permits feedback responses to express a level of sophistication previously reserved for voluntary control and providing neurophysiological support for influential theories positing that voluntary movement is generated by the intelligent manipulation of sensory feedback6,7. PMID:21964335

  14. UPDATING PERFORMANCE AND COST OF NOX CONTROL TECHNOLOGIES IN THE INTEGRATED PLANNING MODEL

    EPA Science Inventory

    The US EPA uses the Integrated Planning Model (IPM) to evaluate the cost and emission impacts of proposed policies. Studies were undertaken recently to update the performance and cost factors contained in this model for various NOx control technologies. The studies showed a sig...

  15. Functional requirements with survey results for integrated intrusion detection and access control annunciator systems

    SciTech Connect

    Arakaki, L.H.; Monaco, F.M.

    1995-09-01

    This report contains the guidance Functional Requirements for an Integrated Intrusion Detection and Access Control Annunciator System, and survey results of selected commercial systems. The survey questions were based upon the functional requirements; therefore, the results reflect which and sometimes how the guidance recommendations were met.

  16. Educating Masters of Public Health Students on Tobacco Control and Prevention: An Integrated Curriculum Approach

    ERIC Educational Resources Information Center

    Lowe, John; Aquilino, Mary; Abramsohn, Erin

    2007-01-01

    Objectives: Comprehensive training in the area of tobacco control and prevention has not been available to public health students receiving professional degrees. This study describes findings of a project designed to develop and evaluate an integrated approach to the education of Masters of Public Health (MPH) students at the University of Iowa…

  17. SCIENCE OF INTEGRATED WATERSHED MANAGEMENT: LINKING POLLUTANT CONTROL PRACTICES WITH WATER QUALITY

    EPA Science Inventory

    SCIENCE OF INTEGRATED WATERSHED MANAGEMENT: LINKING POLLUTANT CONTROL PRACTICES WITH WATER QUALITY M. Morrison (NRMRL), C. Nietch (NRMRL), 1. Schubauer-Berigan (NRMRL), M. Hantush (NRMRL), D. Lai (NRMRL), B. Daniel (NERL), M. Griffith (NCEA) Science Questions LTG 3. MYP Sc...

  18. Design and Evaluation of an Integrated Online Motion Control Training Package

    ERIC Educational Resources Information Center

    Buiu, C.

    2009-01-01

    The aim of this paper is to present an integrated Internet-based package for teaching the fundamentals of motion control by using a wide range of resources: theory, videos, simulators, games, quizzes, and a remote lab. The package is aimed at automation technicians, pupils at vocational schools and students taking an introductory course in…

  19. Computer software design description for the integrated control and data acquisition system LDUA system

    SciTech Connect

    Aftanas, B.L.

    1998-08-12

    This Computer Software Design Description (CSDD) document provides the overview of the software design for all the software that is part of the integrated control and data acquisition system of the Light Duty Utility Arm System (LDUA). It describes the major software components and how they interface. It also references the documents that contain the detailed design description of the components.

  20. Visuomotor Integration and Inhibitory Control Compensate for Each Other in School Readiness

    ERIC Educational Resources Information Center

    Cameron, Claire E.; Brock, Laura L.; Hatfield, Bridget E.; Cottone, Elizabeth A.; Rubinstein, Elise; LoCasale-Crouch, Jennifer; Grissmer, David W.

    2015-01-01

    Visuomotor integration (VMI), or the ability to copy designs, and 2 measures of executive function were examined in a predominantly low-income, typically developing sample of children (n = 467, mean age 4.2 years) from 5 U.S. states. In regression models controlling for age and demographic variables, we tested the interaction between visuomotor…

  1. Autocommander: A Supervisory Controller for Integrated Guidance and Control for the 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Fisher, J. E.; Lawrence, D. A.; Zhu, J. J.; Jackson, Scott (Technical Monitor)

    2002-01-01

    This paper presents a hierarchical architecture for integrated guidance and control that achieves risk and cost reduction for NASA's 2d generation reusable launch vehicle (RLV). Guidance, attitude control, and control allocation subsystems that heretofore operated independently will now work cooperatively under the coordination of a top-level autocommander. In addition to delivering improved performance from a flight mechanics perspective, the autocommander is intended to provide an autonomous supervisory control capability for traditional mission management under nominal conditions, G&C reconfiguration in response to effector saturation, and abort mode decision-making upon vehicle malfunction. This high-level functionality is to be implemented through the development of a relational database that is populated with the broad range of vehicle and mission specific data and translated into a discrete event system model for analysis, simulation, and onboard implementation. A Stateflow Autocoder software tool that translates the database into the Stateflow component of a Matlab/Simulink simulation is also presented.

  2. Energetically efficient proportional-integral-differential (PID) control of wake vortices behind a circular cylinder

    NASA Astrophysics Data System (ADS)

    Das, Pramode K.; Mathew, Sam; Shaiju, A. J.; Patnaik, B. S. V.

    2016-02-01

    The control of vortex shedding behind a circular cylinder is a precursor to a wide range of external shear flow problems in engineering, in particular the flow-induced vibrations. In the present study, numerical simulation of an energetically efficient active flow control strategy is proposed, for the control of wake vortices behind a circular cylinder at a low Reynolds number of 100. The fluid is assumed to be incompressible and Newtonian with negligible variation in properties. Reflectionally symmetric controllers are designed such that, they are located on a small sector of the cylinder over which, tangential sliding mode control is imparted. In the field of modern controls, proportional (P), integral (I) and differential (D) control strategies and their numerous combinations are extremely popular in industrial practice. To impart suitable control actuation, the vertically varying lift force on the circular cylinder, is synthesised for the construction of an error term. Four different types of controllers considered in the present study are, P, I, PI and PID. These controllers are evaluated for their energetic efficiency and performance. A linear quadratic optimal control problem is formulated, to minimise the cost functional. By performing detailed simulations, it was observed that, the system is energetically efficient, even when the twin eddies are still persisting behind the circular cylinder. To assess the adaptability of the controllers, the actuators were switched on and off to study their dynamic response.

  3. Benefits of variable rotor speed in integrated helicopter/engine control

    NASA Technical Reports Server (NTRS)

    Iwata, Takanori; Rock, Stephen M.

    1993-01-01

    Current helicopter flight and propulsion controls are typically designed with the assumption that rotor speed will be held to a constant setpoint. A new flight and propulsion control system using a continuously variable rotor speed command is proposed to improve the maneuverability and agility of helicopter systems. In this new approach, the flight control system generates an optimal variable rotor speed command in addition to conventional control commands in a framework of integrated flight/propulsion control. The benefits (i.e. improved maneuverability and agility) of varying rotor speed during transient maneuvers are demonstrated using a bob-up maneuver as an example. In particular, two types of benefits are identified in different maneuver conditions. One comes from a thrust augmentation, while the other comes from an exchange of rotational and translational energy. In the example, a simple linear dynamic hover model is used with an optimal control design method to generate the optimal rotor speed command.

  4. Development of a modular integrated control architecture for flexible manipulators. Final report

    SciTech Connect

    Burks, B.L.; Battiston, G.

    1994-12-08

    In April 1994, ORNL and SPAR completed the joint development of a manipulator controls architecture for flexible structure controls under a CRADA between the two organizations. The CRADA project entailed design and development of a new architecture based upon the Modular Integrated Control Architecture (MICA) previously developed by ORNL. The new architecture, dubbed MICA-II, uses an object-oriented coding philosophy to provide a highly modular and expandable architecture for robotic manipulator control. This architecture can be readily ported to control of many different manipulator systems. The controller also provides a user friendly graphical operator interface and display of many forms of data including system diagnostics. The capabilities of MICA-II were demonstrated during oscillation damping experiments using the Flexible Beam Experimental Test Bed at Hanford.

  5. Influence of time lag and noncolocation on integrated structural/control system designs

    NASA Technical Reports Server (NTRS)

    Manning, R. A.; Schmit, L. A.

    1989-01-01

    Recent research efforts have led to the development of simultaneous structural/control system design procedures. Absent in any of the work is the time delay present in the control system sensors and actuators and the computational time delay for synthesizing actuator commands from sensor measurements. Madden has shown that the time delay present in the control system can have profound effects on the resulting system performance and stability regardless of its source. In addition, many of the simultaneous structural/control system design procedures have used colocated sensors and actuators for implementation of the control system. In actual practice, colocation in not always possible. The issue of stability degradation when using noncolocated sensor and actuators was raised. The integrated structural/control system design procedure is extended to include the effects of time lag and noncolocation of sensors and actuators on the resulting optimum designs.

  6. Control technology for integrated circuit fabrication at Micro-Circuit Engineering, Incorporated, West Palm Beach, Florida

    NASA Astrophysics Data System (ADS)

    Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.

    1984-07-01

    A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.

  7. Integration of domain and resource-based reasoning for real-time control in dynamic environments

    NASA Technical Reports Server (NTRS)

    Morgan, Keith; Whitebread, Kenneth R.; Kendus, Michael; Cromarty, Andrew S.

    1993-01-01

    A real-time software controller that successfully integrates domain-based and resource-based control reasoning to perform task execution in a dynamically changing environment is described. The design of the controller is based on the concept of partitioning the process to be controlled into a set of tasks, each of which achieves some process goal. It is assumed that, in general, there are multiple ways (tasks) to achieve a goal. The controller dynamically determines current goals and their current criticality, choosing and scheduling tasks to achieve those goals in the time available. It incorporates rule-based goal reasoning, a TMS-based criticality propagation mechanism, and a real-time scheduler. The controller has been used to build a knowledge-based situation assessment system that formed a major component of a real-time, distributed, cooperative problem solving system built under DARPA contract. It is also being employed in other applications now in progress.

  8. Frequency locking of an optical cavity using linear-quadratic Gaussian integral control

    NASA Astrophysics Data System (ADS)

    Sayed Hassen, S. Z.; Heurs, M.; Huntington, E. H.; Petersen, I. R.; James, M. R.

    2009-09-01

    We show that a systematic modern control technique such as linear-quadratic Gaussian (LQG) control can be applied to a problem in experimental quantum optics which has previously been addressed using traditional approaches to controller design. An LQG controller which includes integral action is synthesized to stabilize the frequency of the cavity to the laser frequency and to reject low frequency noise. The controller is successfully implemented in the laboratory using a dSpace digital signal processing board. One important advantage of the LQG technique is that it can be extended in a straightforward way to control systems with multiple measurements and multiple feedback loops. This work is expected to pave the way for extremely stable lasers with fluctuations approaching the quantum noise limit and which could be potentially used in a wide range of applications.

  9. Quality controls in integrative approaches to detect errors and inconsistencies in biological databases.

    PubMed

    Ghisalberti, Giorgio; Masseroli, Marco; Tettamanti, Luca

    2010-01-01

    Numerous biomolecular data are available, but they are scattered in many databases and only some of them are curated by experts. Most available data are computationally derived and include errors and inconsistencies. Effective use of available data in order to derive new knowledge hence requires data integration and quality improvement. Many approaches for data integration have been proposed. Data warehousing seams to be the most adequate when comprehensive analysis of integrated data is required. This makes it the most suitable also to implement comprehensive quality controls on integrated data. We previously developed GFINDer (http://www.bioinformatics.polimi.it/GFINDer/), a web system that supports scientists in effectively using available information. It allows comprehensive statistical analysis and mining of functional and phenotypic annotations of gene lists, such as those identified by high-throughput biomolecular experiments. GFINDer backend is composed of a multi-organism genomic and proteomic data warehouse (GPDW). Within the GPDW, several controlled terminologies and ontologies, which describe gene and gene product related biomolecular processes, functions and phenotypes, are imported and integrated, together with their associations with genes and proteins of several organisms. In order to ease maintaining updated the GPDW and to ensure the best possible quality of data integrated in subsequent updating of the data warehouse, we developed several automatic procedures. Within them, we implemented numerous data quality control techniques to test the integrated data for a variety of possible errors and inconsistencies. Among other features, the implemented controls check data structure and completeness, ontological data consistency, ID format and evolution, unexpected data quantification values, and consistency of data from single and multiple sources. We use the implemented controls to analyze the quality of data available from several different biological

  10. Integrating biological and chemical controls in decision making: European corn borer (Lepidoptera: Crambidae) control in sweet corn as an example.

    PubMed

    Musser, Fred R; Nyrop, Jan P; Shelton, Anthony M

    2006-10-01

    As growers switch to transgenic crops and selective insecticides that are less toxic to natural enemies, natural enemies can become more important in agricultural pest management. Current decision-making guides are generally based on pest abundance and do not address pest and natural enemy toxicity differences among insecticides or the impact of natural enemies on pest survival. A refined approach to making pest management decisions is to include the impact of natural enemies and insecticides, thereby better integrating biological and chemical control. The result of this integration is a dynamic threshold that varies for each product and the level of biological control expected. To demonstrate the significance of conserved biological control in commercial production, a decision-making guide was developed that evaluates control options for European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), in sweet corn, Zea mays L., where the primary natural enemies are generalist predators. Management options are lambda-cyhalothrin (broad-spectrum insecticide), spinosad (selective insecticide), Trichogramma ostriniae (Peng and Chen) (Hymenoptera: Trichogrammatidae) (parasitoid), and Bacillus thuringiensis (Bt) sweet corn (transgenic variety). The key factors influencing thresholds for all treatments are the intended market, predator populations, and the presence of alternative foods for the predators. Treatment cost is the primary factor separating the threshold for each treatment within a common scenario, with the lowest cost treatment having the lowest pest threshold. However, when the impact of a treatment on natural enemies is projected over the 3-wk control period, the impact of the treatment on predators becomes the key factor in determining the threshold, so the lowest thresholds are for broad-spectrum treatments, whereas selective products can have thresholds > 6 times higher by the third week. This decision guide can serve as a framework to help

  11. A new integrated evaluation method of heavy metals pollution control during melting and sintering of MSWI fly ash.

    PubMed

    Li, Rundong; Li, Yanlong; Yang, Tianhua; Wang, Lei; Wang, Weiyun

    2015-05-30

    Evaluations of technologies for heavy metal control mainly examine the residual and leaching rates of a single heavy metal, such that developed evaluation method have no coordination or uniqueness and are therefore unsuitable for hazard control effect evaluation. An overall pollution toxicity index (OPTI) was established in this paper, based on the developed index, an integrated evaluation method of heavy metal pollution control was established. Application of this method in the melting and sintering of fly ash revealed the following results: The integrated control efficiency of the melting process was higher in all instances than that of the sintering process. The lowest integrated control efficiency of melting was 56.2%, and the highest integrated control efficiency of sintering was 46.6%. Using the same technology, higher integrated control efficiency conditions were all achieved with lower temperatures and shorter times. This study demonstrated the unification and consistency of this method. PMID:25725342

  12. Improving postural control through integration of sensory inputs and visual biofeedback.

    PubMed

    Fuller, K; Huber, L

    1995-01-01

    Postural control is an essential component to be considered in the rehabilitation of stroke survivors. This article attempts to provide the clinician with terminology and frameworks for classification in order to provide a more focused intervention. There is a comparison of some of the available assessments of impairment and disability. Treatment emphasizing the specific use of visual biofeedback to improve postural control is described. Control of the sensory environment during treatment to challenge a patient's ability to integrate available sensory information to perform balance activities is described. A case study incorporating treatment ideas is included. PMID:27619900

  13. A piezoelectric micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    NASA Astrophysics Data System (ADS)

    Groen, Maarten S.; Wu, Kai; Brookhuis, Robert A.; van Houwelingen, Marc J.; Brouwer, Dannis M.; Lötters, Joost C.; Wiegerink, Remco J.

    2014-12-01

    We have designed and characterized a MEMS microvalve with built-in capacitive displacement sensing and fitted it with a miniature piezoelectric actuator to achieve active valve control. The integrated displacement sensor enables high bandwidth proportional control of the gas flow through the valve. This is an essential requirement for non-invasive blood pressure waveform monitoring based on following the arterial pressure with a counter pressure. Using the capacitive sensor, we demonstrate negligible hysteresis in the valve control characteristics. Fabrication of the valve requires only two mask steps for deep reactive ion etching (DRIE) and one release etch.

  14. Wavelength stabilization of a synchronously pumped optical parametric oscillator: optimizing proportional-integral control.

    PubMed

    Lamour, Tobias P; Sun, Jinghua; Reid, Derryck T

    2010-05-01

    We describe a formal approach to the wavelength stabilization of a synchronously pumped ultrafast optical parametric oscillator using proportional-integral feedback control. Closed-loop wavelength stabilization was implemented by using a position-sensitive detector as a sensor and a piezoelectric transducer to modify the cavity length of the oscillator. By characterizing the frequency response of the loop components, we constructed a predictive model of the controller which showed formally that a proportional-only feedback was insufficient to eliminate the steady state error, consistent with experimental observations. The optimal proportional and integral gain coefficients were obtained from a numerical optimization of the controller model that minimized the settling time while also limiting the overshoot to an acceptable value. Results are presented showing effective wavelength and power stabilization to levels limited only by the relative intensity noise of the pump laser. PMID:20515118

  15. Saturations-based nonlinear controllers with integral term: validation in real-time

    NASA Astrophysics Data System (ADS)

    Alatorre, A. G.; Castillo, P.; Mondié, S.

    2016-05-01

    Popular saturations-based nonlinear controller usually include proportional and derivative components of the state or output. The fact that in many applications, these components do not suffice to insure the convergence to the desired output values, motivate the addition of an integral term. In this paper, three configurations of nonlinear controllers based on saturation functions are improved with an integral component. The stability of the three algorithms is analysed using the Lyapunov theory. Simulation results validate the proposed control laws when they are applied to nonlinear systems with constant and unknown perturbations. Real-time experiments realised with a quad-rotor aerial vehicle and a hovercraft vehicle show that the proposed scheme can follow autonomously some trajectories, and that it could be robust with respect to delays.

  16. Control architecture for human-robot integration: application to a robotic wheelchair.

    PubMed

    Galindo, Cipriano; Gonzalez, Javier; Fernández-Madrigal, Juan-Antonio

    2006-10-01

    Completely autonomous performance of a mobile robot within noncontrolled and dynamic environments is not possible yet due to different reasons including environment uncertainty, sensor/software robustness, limited robotic abilities, etc. But in assistant applications in which a human is always present, she/he can make up for the lack of robot autonomy by helping it when needed. In this paper, the authors propose human-robot integration as a mechanism to augment/improve the robot autonomy in daily scenarios. Through the human-robot-integration concept, the authors take a further step in the typical human-robot relation, since they consider her/him as a constituent part of the human-robot system, which takes full advantage of the sum of their abilities. In order to materialize this human integration into the system, they present a control architecture, called architecture for human-robot integration, which enables her/him from a high decisional level, i.e., deliberating a plan, to a physical low level, i.e., opening a door. The presented control architecture has been implemented to test the human-robot integration on a real robotic application. In particular, several real experiences have been conducted on a robotic wheelchair aimed to provide mobility to elderly people. PMID:17036812

  17. Application of controller partitioning optimization procedure to integrated flight/propulsion control design for a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Schmidt, Phillip H.

    1993-01-01

    A parameter optimization framework has earlier been developed to solve the problem of partitioning a centralized controller into a decentralized, hierarchical structure suitable for integrated flight/propulsion control implementation. This paper presents results from the application of the controller partitioning optimization procedure to IFPC design for a Short Take-Off and Vertical Landing (STOVL) aircraft in transition flight. The controller partitioning problem and the parameter optimization algorithm are briefly described. Insight is provided into choosing various 'user' selected parameters in the optimization cost function such that the resulting optimized subcontrollers will meet the characteristics of the centralized controller that are crucial to achieving the desired closed-loop performance and robustness, while maintaining the desired subcontroller structure constraints that are crucial for IFPC implementation. The optimization procedure is shown to improve upon the initial partitioned subcontrollers and lead to performance comparable to that achieved with the centralized controller. This application also provides insight into the issues that should be addressed at the centralized control design level in order to obtain implementable partitioned subcontrollers.

  18. Visuomotor integration and inhibitory control compensate for each other in school readiness.

    PubMed

    Cameron, Claire E; Brock, Laura L; Hatfield, Bridget E; Cottone, Elizabeth A; Rubinstein, Elise; LoCasale-Crouch, Jennifer; Grissmer, David W

    2015-11-01

    Visuomotor integration (VMI), or the ability to copy designs, and 2 measures of executive function were examined in a predominantly low-income, typically developing sample of children (n = 467, mean age 4.2 years) from 5 U.S. states. In regression models controlling for age and demographic variables, we tested the interaction between visuomotor integration (design copying) and inhibitory control (pencil-tap) or verbal working memory (digit span) on 4 directly assessed academic skills and teacher-reported approaches to learning. Compared with children with both poor visuomotor integration and low inhibitory control, those on the higher end of the continuum in at least 1 of these 2 skills performed better across several dependent variables. This compensatory pattern was evident for longitudinal improvement in print knowledge on the Test of Preschool Early Literacy (TOPEL), with similar though marginally significant findings for improvement in phonological awareness (TOPEL) and teacher-rated approaches to learning on the Preschool Learning Behaviors Scale (PLBS). Of note, the same compensatory pattern emerged for concurrently measured receptive vocabulary on the Peabody Picture Vocabulary Test (PPVT), expressive vocabulary on the Woodcock-Johnson III (WJ), TOPEL phonological awareness, and teacher-rated approaches to learning. The consistent pattern of results suggests that strong visuomotor integration skills are an important part of school readiness, and merit further study. PMID:26436872

  19. Design and piloted simulation evaluation of integrated flight/propulsion controls for STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Engelland, Shawn A.

    1991-01-01

    Integrated flight/propulsion control systems have been designed for operation of STOVL aircraft over the low speed powered-lift flight envelope. The control system employs command modes for attitude, flightpath angle and flightpath acceleration during transition, and translational velocity command for hover and vertical landing. The command modes and feedback control are implemented in the form of a state-rate feedback implicit model follower to achieve the desired flying qualities and to suppress the effects of external disturbances and variations in the aircraft characteristics over the low speed envelope. A nonlinear inverse system was used to translate the output from these commands and feedback control into commands for the various aerodynamic and propulsion control effectors that are employed in powered-lift flight. Piloted evaluations of these STOVL integrated control designs have been conducted on Ames Research Center's Vertical Motion Simulator to assess flying qualities over the low-speed flight envelope. Results indicate that Level 1 flying qualities are achieved with this control system concept for each of these low-speed operations over a wide range of wind, atmospheric turbulence, and visibility conditions.

  20. Integrated Computing, Communication, and Distributed Control of Deregulated Electric Power Systems

    SciTech Connect

    Bajura, Richard; Feliachi, Ali

    2008-09-24

    Restructuring of the electricity market has affected all aspects of the power industry from generation to transmission, distribution, and consumption. Transmission circuits, in particular, are stressed often exceeding their stability limits because of the difficulty in building new transmission lines due to environmental concerns and financial risk. Deregulation has resulted in the need for tighter control strategies to maintain reliability even in the event of considerable structural changes, such as loss of a large generating unit or a transmission line, and changes in loading conditions due to the continuously varying power consumption. Our research efforts under the DOE EPSCoR Grant focused on Integrated Computing, Communication and Distributed Control of Deregulated Electric Power Systems. This research is applicable to operating and controlling modern electric energy systems. The controls developed by APERC provide for a more efficient, economical, reliable, and secure operation of these systems. Under this program, we developed distributed control algorithms suitable for large-scale geographically dispersed power systems and also economic tools to evaluate their effectiveness and impact on power markets. Progress was made in the development of distributed intelligent control agents for reliable and automated operation of integrated electric power systems. The methodologies employed combine information technology, control and communication, agent technology, and power systems engineering in the development of intelligent control agents for reliable and automated operation of integrated electric power systems. In the event of scheduled load changes or unforeseen disturbances, the power system is expected to minimize the effects and costs of disturbances and to maintain critical infrastructure operational.

  1. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    SciTech Connect

    BPL Global

    2008-09-30

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at

  2. Extended temporal integration in rapid serial visual presentation: Attentional control at Lag 1 and beyond.

    PubMed

    Akyürek, Elkan G; Wolff, Michael J

    2016-07-01

    In the perception of target stimuli in rapid serial visual presentations, the process of temporal integration plays an important role when two targets are presented in direct succession (at Lag 1), causing them to be perceived as a singular episodic event. This has been associated with increased reversals of target order report and elevated task performance in classic paradigms. Yet, most current models of temporal attention do not incorporate a mechanism of temporal integration and it is currently an open question whether temporal integration is a factor in attentional processing: It might be an independent process, perhaps little more than a sensory sampling rate parameter, isolated to Lag 1, where it leaves the attentional dynamics otherwise unaffected. In the present study, these boundary conditions were tested. Temporal target integration was observed across sequences of three targets spanning an interval of 240ms. Integration rates furthermore depended strongly on bottom-up attentional filtering, and to a lesser degree on top-down control. The results support the idea that temporal integration is an adaptive process that is part of, or at least interacts with, the attentional system. Implications for current models of temporal attention are discussed. PMID:27155801

  3. Development of Innovative Integrated Simulator on Shipboard Crane Considering Ship Sway and Transfer Control

    NASA Astrophysics Data System (ADS)

    Ito, Ryuji; Terashima, Kazuhiko; Noda, Yoshiyuki; Iwasa, Takahiro

    In this paper, in order to systemize the state analysis of a shipboard crane, the integrated computer simulator tool of rotary crane with ship behavior in consideration of ship sway is newly built. The integrated simulator of shipboard crane considering ship sway was realized by corporating an external force interface routine of a component with Fluid analysis software. The transfer control system is conducted by HSA (Hybrid Shape Approach) using STT (Straight Transfer Transformation) method. The proposal method was confirmed to be effective in order to reduce both sway of a ship and a load by the simulation analysis.

  4. Use of the MATRIXx Integrated Toolkit on the Microwave Anisotropy Probe Attitude Control System

    NASA Technical Reports Server (NTRS)

    Ward, David K.; Andrews, Stephen F.; McComas, David C.; ODonnell, James R., Jr.

    1999-01-01

    Recent advances in analytical software tools allow the analysis, simulation, flight code, and documentation of an algorithm to be generated from a single source, all within one integrated analytical design package. NASA's Microwave Anisotropy Probe project has used one such package, Integrated Systems' MATRIXx suite, in the design of the spacecraft's Attitude Control System. The project's experience with the linear analysis, simulation, code generation, and documentation tools will be presented and compared with more traditional development tools. In particular, the quality of the flight software generated will be examined in detail. Finally, lessons learned on each of the tools will be shared.

  5. Systematic Review of Integrative Health Care Research: Randomized Control Trials, Clinical Controlled Trials, and Meta-Analysis

    PubMed Central

    Khorsan, Raheleh; Coulter, Ian D.; Crawford, Cindy; Hsiao, An-Fu

    2011-01-01

    A systematic review was conducted to assess the level of evidence for integrative health care research. We searched PubMed, Allied and Complementary Medicine (AMED), BIOSIS Previews, EMBASE, the entire Cochrane Library, MANTIS, Social SciSearch, SciSearch Cited Ref Sci, PsychInfo, CINAHL, and NCCAM grantee publications listings, from database inception to May 2009, as well as searches of the “gray literature.” Available studies published in English language were included. Three independent reviewers rated each article and assessed the methodological quality of studies using the Scottish Intercollegiate Guidelines Network (SIGN 50). Our search yielded 11,891 total citations but 6 clinical studies, including 4 randomized, met our inclusion criteria. There are no available systematic reviews/meta-analyses published that met our inclusion criteria. The methodological quality of the included studies was assessed independently using quality checklists of the SIGN 50. Only a small number of RCTs and CCTs with a limited number of patients and lack of adequate control groups assessing integrative health care research are available. These studies provide limited evidence of effective integrative health care on some modalities. However, integrative health care regimen appears to be generally safe. PMID:20953383

  6. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    SciTech Connect

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  7. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  8. Integrated control and health management. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Holzmann, Wilfried A.; Hayden, Warren R.

    1988-01-01

    To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods.

  9. The Assessment of Postural Control, Reflex Integration, and Bilateral Motor Coordination of Young Handicapped Children. Final Report.

    ERIC Educational Resources Information Center

    DeGangi, Georgia; Larsen, Lawrence A.

    A measurement device, Assessment of Sensorimotor Integration in Preschool Children, was developed to assess postural control, reflex integration and bilateral motor integration in developmentally delayed children (3 to 5 years old). The test was administered to 113 normal children and results were compared with data collected on 23 developmentally…

  10. Toxicological assessment of spinosad: Implications for integrated control of Aedes aegypti using larvicides and larvivorous fish.

    PubMed

    Pereira, Boscolli Barbosa; Caixeta, Evelyn Siqueira; Freitas, Priscila Costa; Santos, Vanessa Santana Vieira; Limongi, Jean Ezequiel; de Campos Júnior, Edimar Olegário; Campos, Carlos Fernando; Souto, Henrique Nazareth; Rodrigues, Tamiris Sabrina; Morelli, Sandra

    2016-01-01

    Integration of larvivorous fish and biolarvicides at low concentrations to control of mosquito larvae in field situations may result in a safer and more effective tool. However, the usefulness of integrated approach depends upon survival and ecological fitness of fish employed. Thus, the aim of this study was to examine the genotoxic effects of combining different sublethal concentrations of spinosad, a naturally occurring neurotoxic insecticide, with male adult poecilid larvivorous guppy (Poecilia reticulata) and platy (Xiphophorus maculatus) fish on Aedes larvae mosquitos. Both fish species have been used for biological control of Aedes larvae in Brazil. Sublethal spinosad exposures were predetermined based on CL50-96hr. Nuclear abnormalities (NA) and micronucleus (MN) frequency in gill cells were measured after 14 d of exposure. Behavioral changes were monitored over 96 h. Although genotoxic effects were not markedly different from control, behavioral changes evaluated based upon the no-observable-effect concentration (NOEC) and lowest-observable-effect concentration (LOEC). Adverse effects were noted at concentrations of 12.6 mg/L (NOEC) and 25.3 mg/L (LOEC) spinosad. Therefore, these insecticide concentrations may be considered as being safe to these fish species and have important implications for integrated approach to control Aedes larvae using natural larvicides and larvivorous fish. PMID:27294296

  11. A novel predictive control algorithm and robust stability criteria for integrating processes.

    PubMed

    Zhang, Bin; Yang, Weimin; Zong, Hongyuan; Wu, Zhiyong; Zhang, Weidong

    2011-07-01

    This paper introduces a novel predictive controller for single-input/single-output (SISO) integrating systems, which can be directly applied without pre-stabilizing the process. The control algorithm is designed on the basis of the tested step response model. To produce a bounded system response along the finite predictive horizon, the effect of the integrating mode must be zeroed while unmeasured disturbances exist. Here, a novel predictive feedback error compensation method is proposed to eliminate the permanent offset between the setpoint and the process output while the integrating system is affected by load disturbance. Also, a rotator factor is introduced in the performance index, which is contributed to the improvement robustness of the closed-loop system. Then on the basis of Jury's dominant coefficient criterion, a robust stability condition of the resulted closed loop system is given. There are only two parameters which need to be tuned for the controller, and each has a clear physical meaning, which is convenient for implementation of the control algorithm. Lastly, simulations are given to illustrate that the proposed algorithm can provide excellent closed loop performance compared with some reported methods. PMID:21353217

  12. The Integration of COTS/GOTS within NASA's HST Command and Control System

    NASA Technical Reports Server (NTRS)

    Pfarr, Thomas; Reis, James E.; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    NASA's mission critical Hubble Space Telescope (HST) command and control system has been re-engineered with COTS/GOTS and minimal custom code. This paper focuses on the design of this new HST Control Center System (CCS) and the lessons learned throughout its development. CCS currently utilizes 31 COTS/GOTS products with an additional 12 million lines of custom glueware code; the new CCS exceeds the capabilities of the original system while significantly reducing the lines of custom code by more than 50%. The lifecycle of COTS/GOTS products will be examined including the pack-age selection process, evaluation process, and integration process. The advantages, disadvantages, issues, concerns, and lessons teamed for integrating COTS/GOTS into the NASA's mission critical HST CCS will be examined in detail. Command and control systems designed with traditional custom code development efforts will be compared with command and control systems designed with new development techniques relying heavily on COTS/COTS integration. This paper will reveal the many hidden costs of COTS/GOTS solutions when compared to traditional custom code development efforts; this paper will show the high cost of COTS/GOTS solutions including training expenses, consulting fees, and long-term maintenance expenses.

  13. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  14. Internally directed cognition and mindfulness: an integrative perspective derived from predictive and reactive control systems theory

    PubMed Central

    Tops, Mattie; Boksem, Maarten A. S.; Quirin, Markus; IJzerman, Hans; Koole, Sander L.

    2013-01-01

    In the present paper, we will apply the predictive and reactive control systems (PARCS) theory as a framework that integrates competing theories of neural substrates of awareness by describing the “default mode network” (DMN) and anterior insula (AI) as parts of two different behavioral and homeostatic control systems. The DMN, a network that becomes active at rest when there is no external stimulation or task to perform, has been implicated in self-reflective awareness and prospection. By contrast, the AI is associated with awareness and task-related attention. This has led to competing theories stressing the role of the DMN in self-awareness vs. the role of interoceptive and emotional information integration in the AI in awareness of the emotional moment. In PARCS, the respective functions of the DMN and AI in a specific control system explains their association with different qualities of awareness, and how mental states can shift from one state (e.g., prospective self-reflection) to the other (e.g., awareness of the emotional moment) depending on the relative dominance of control systems. These shifts between reactive and predictive control are part of processes that enable the intake of novel information, integration of this novel information within existing knowledge structures, and the creation of a continuous personal context in which novel information can be integrated and understood. As such, PARCS can explain key characteristics of mental states, such as their temporal and spatial focus (e.g., a focus on the here and now vs. the future; a first person vs. a third person perspective). PARCS further relates mental states to brain states and functions, such as activation of the DMN or hemispheric asymmetry in frontal cortical functions. Together, PARCS deepens the understanding of a broad range of mental states, including mindfulness, mind wandering, rumination, autobiographical memory, imagery, and the experience of self. PMID:24904455

  15. Air-breathing hypersonic vehicle guidance and control studies; An integrated trajectory/control analysis methodology: Phase 1

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1991-01-01

    A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty.

  16. Nonlinear fractional order proportion-integral-derivative active disturbance rejection control method design for hypersonic vehicle attitude control

    NASA Astrophysics Data System (ADS)

    Song, Jia; Wang, Lun; Cai, Guobiao; Qi, Xiaoqiang

    2015-06-01

    Near space hypersonic vehicle model is nonlinear, multivariable and couples in the reentry process, which are challenging for the controller design. In this paper, a nonlinear fractional order proportion integral derivative (NFOPIλDμ) active disturbance rejection control (ADRC) strategy based on a natural selection particle swarm (NSPSO) algorithm is proposed for the hypersonic vehicle flight control. The NFOPIλDμ ADRC method consists of a tracking-differentiator (TD), an NFOPIλDμ controller and an extended state observer (ESO). The NFOPIλDμ controller designed by combining an FOPIλDμ method and a nonlinear states error feedback control law (NLSEF) is to overcome concussion caused by the NLSEF and conversely compensate the insufficiency for relatively simple and rough signal processing caused by the FOPIλDμ method. The TD is applied to coordinate the contradiction between rapidity and overshoot. By attributing all uncertain factors to unknown disturbances, the ESO can achieve dynamic feedback compensation for these disturbances and thus reduce their effects. Simulation results show that the NFOPIλDμ ADRC method can make the hypersonic vehicle six-degree-of-freedom nonlinear model track desired nominal signals accurately and fast, has good stability, dynamic properties and strong robustness against external environmental disturbances.

  17. Integrated dynamic analysis simulation of space stations with controllable solar array

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.

  18. An electric-field assisted growth control methodology for integrating ZnO nanorods with microstructures.

    PubMed

    Zong, X; Zhu, R

    2014-11-01

    The growth control of ZnO nanorods bridging over two microelectrodes in a three-electrode structure (the top cathode and anode, and the bottom gate) was realized using a wet chemical method with the assistance of an electric field generated by applying AC sine wave power on the top electrodes and a DC voltage on the bottom gate. A numerical control model for controlling the growth position, direction and density of ZnO nanorods on the microstructure was established based on the simulation of the electric-field distribution around the microstructures. The three input parameters in the numerical control model were defined as the peak-to-peak voltage of the AC sine wave (x1), the frequency of the AC sine wave (x2) and gate voltage (x3). Moreover, five output parameters (y1, y2, y3, y4, y5) in the model were defined as the electric field intensities at specific points on the electrodes to characterize the growth rate, direction, position and morphology of the ZnO nanorods integrated with the microelectrodes. The relationship between the defined outputs and inputs were established using 3(rd) polynomial fitting, which served as the numerical control model for the prediction of nanorod growth. The experimental results validated that growth control methodology provides us with an effective approach to integrate ZnO nanorods into devices. PMID:25219487

  19. Approaches to integrating nuclear weapons stockpile management and arms control objectives.

    SciTech Connect

    Sanders, Lani Miyoshi; DeLand, Sharon Marie; Pregenzer, Arian Leigh

    2010-06-01

    Historically, U.S. arms control policy and the U.S. nuclear weapons enterprise have been reactive to each other, rather than interdependent and mutually reinforcing. One element of the divergence has been the long timescale necessary to plan and create substantive changes in the infrastructure vs. the inherent unpredictability of arms control outcomes. We explore several examples that illustrate this tension, some of the costs and implications associated with this reactive paradigm, and illustrate that, while the nuclear weapons enterprise has long considered the implications of arms control in sizing capacity of its missions, it has not substantively considered arms control in construction requirement for capabilities and products. Since previous arms control agreements have limited numbers and types of deployed systems, with delivery systems as the object of verification, this disconnect has not been forefront. However, as future agreements unfold, the warhead itself may become the treaty limited item and the object of verification. Such a scenario might offer both the need and the opportunity to integrate nuclear weapons and arms control requirements in unprecedented ways. This paper seeks to inspire new thinking on how such integration could be fostered and the extent to which it can facilitate significant reduction in nuclear stockpiles.

  20. An integrated electroactive polymer sensor-actuator: design, model-based control, and performance characterization

    NASA Astrophysics Data System (ADS)

    Hunt, A.; Chen, Z.; Tan, X.; Kruusmaa, M.

    2016-03-01

    Ionic electroactive polymers (IEAPs), particularly ionic polymer-metal composites (IPMCs) and carbon-polymer composites (CPCs), bend when a voltage is applied on their electrodes, and conversely, they generate an electrical signal when subjected to a mechanical bending. In this work we study and compare the capabilities of IPMC and CPC actuators and sensors in closed-loop control applications. We propose and realize an integrated IEAP sensor-actuator design, characterize its performance using three different materials, and compare the results. The design consists of two short IEAP actuators and one sensor mechanically coupled together in a parallel configuration, and an attached rigid extension significantly longer than the IEAPs. This allows the device to be compliant, simple to construct, lightweight, easy to miniaturize, and functionally similar to a one-degree-of-freedom rotational joint. For control design and accurate position sensing in feedback experiments, we adapt physics-based and control-oriented models of actuation and sensing dynamics, and perform experiments to identify their parameters. In performance characterization, both model-based {H}∞ control and proportional-integral control are explored. System responses to step inputs, sinusoids, and random references are measured, and long-duration sinusoidal tracking experiments are performed. The results show that, while IEAP position sensing is stable for only a limited time-span, H ∞ control significantly improves the performance of the device.

  1. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    SciTech Connect

    Birru, Dagnachew; Wen, Yao-Jung; Rubinstein, Francis M.; Clear, Robert D.

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach to determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the

  2. Integrated Weed Control for Land Stewardship at Legacy Management's Rocky Flats Site in Colorado - 13086

    SciTech Connect

    Nelson, Jody K.

    2013-07-01

    Land stewardship is one of nine sustainability programs in the U.S. Department of Energy's Environmental Management System. Land stewardship includes maintaining and improving ecosystem health. At the Rocky Flats Site near Westminster, Colorado, land stewardship is an integral component of the Office of Legacy Management's post-closure monitoring and management at the site. Nearly 263 hectares (650 acres) were disturbed and re-vegetated during site cleanup and closure operations. Proactive management of revegetation areas is critical to the successful reestablishment of native grasslands, wetlands, and riparian communities. The undisturbed native plant communities that occur at the site also require active management to maintain the high-quality wetlands and other habitats that are home to numerous species of birds and other wildlife such as elk and deer, rare plant communities, and the federally listed threatened Preble's meadow jumping mouse. Over the past several decades, an increase of Noxious weeds has impacted much of Colorado's Front Range. As a result, weed control is a key component of the land stewardship program at Rocky Flats. Thirty-three species of state-listed Noxious weeds are known to occur in the Central and Peripheral Operable Units at Rocky Flats, along with another five species that are considered invasive at the site. Early detection and rapid response to control new invasive species is crucial to the program. An integrated weed control/vegetation management approach is key to maintaining healthy, sustainable plant communities that are able to resist Noxious weed invasions. Weed mapping, field surveys, and field-staff training sessions (to learn how to identify new potential problem species) are conducted to help detect and prevent new weed problems. The integrated approach at Rocky Flats includes administrative and cultural techniques (prevention), mechanical controls, biological controls, and chemical controls. Several species of biocontrol

  3. Implementing principles of the integrated control concept 50 years later – current challenges in IPM for arthropod pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest management theory and concepts developed fifty years ago as part of the integrated control concept remain at the foundation of IPM today. Implementation of integrated control and subsequently IPM has always been faced with the challenge of carrying out their principles in a rigorous, disciplin...

  4. Implementing principles of the integrated control concept 50 years later – current challenges in IPM for arthropod pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 1959 publication of the article ‘The Integrated Control Concept’ by Stern and colleagues established a new philosophical framework for pest management that eventually provided a foundation for IPM to develop. Considered within the context of pest control approaches 50 years ago, the integrated ...

  5. Resonant passive-active vibration absorber with integrated force feedback control

    NASA Astrophysics Data System (ADS)

    Høgsberg, Jan; Brodersen, Mark L.; Krenk, Steen

    2016-04-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction.

  6. Virtual- and real-world operation of mobile robotic manipulators: integrated simulation, visualization, and control environment

    NASA Astrophysics Data System (ADS)

    Chen, ChuXin; Trivedi, Mohan M.

    1992-03-01

    This research is focused on enhancing the overall productivity of an integrated human-robot system. A simulation, animation, visualization, and interactive control (SAVIC) environment has been developed for the design and operation of an integrated robotic manipulator system. This unique system possesses the abilities for multisensor simulation, kinematics and locomotion animation, dynamic motion and manipulation animation, transformation between real and virtual modes within the same graphics system, ease in exchanging software modules and hardware devices between real and virtual world operations, and interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation, and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.

  7. Active regulation of receptor ratios controls integration of quorum-sensing signals in Vibrio harveyi

    PubMed Central

    Teng, Shu-Wen; Schaffer, Jessica N; Tu, Kimberly C; Mehta, Pankaj; Lu, Wenyun; Ong, N P; Bassler, Bonnie L; Wingreen, Ned S

    2011-01-01

    Quorum sensing is a chemical signaling mechanism used by bacteria to communicate and orchestrate group behaviors. Multiple feedback loops exist in the quorum-sensing circuit of the model bacterium Vibrio harveyi. Using fluorescence microscopy of individual cells, we assayed the activity of the quorum-sensing circuit, with a focus on defining the functions of the feedback loops. We quantitatively investigated the signaling input–output relation both in cells with all feedback loops present as well as in mutants with specific feedback loops disrupted. We found that one of the feedback loops regulates receptor ratios to control the integration of multiple signals. Together, the feedback loops affect the input–output dynamic range of signal transmission and the noise in the output. We conclude that V. harveyi employs multiple feedback loops to simultaneously control quorum-sensing signal integration and to ensure signal transmission fidelity. PMID:21613980

  8. Web Design Based on Integrated and Supervision Control System in City Rail Transit

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Xing, Yu; Zheng, Hengchao

    This paper presents a method of setting up WEB System to Integrated Supervision Control System for the requirements of city Rail Transit. First, basic platform and software/hardware architecture of WEB System are discussed. Then the function module, data flow and communication mechanisms are described and a design based on technologies of SVG and Ajax is proposed and the WEB video release function and system security are described. This design makes it possible that important information of Integrated Supervision Control System can be browsed and queried in external Web pages. Watching Real-time images of all cameras in internal network of Rail Transit is possible, which is providing remote viewing and management functions for metro managers.

  9. STOL Simulation Requirements for Development of Integrated Flight/propulsion Control Systems

    NASA Technical Reports Server (NTRS)

    Sanders, K. E.; Anderson, D. C.; Watson, J. H.

    1984-01-01

    The role and use of simulation as a design tool in developing integrated systems where design criteria is largely unavailable is well known. This paper addresses additional simulation needs for the development of Integrated Flight/Propulsion Control Systems (IFPCS) which will improve the probability of properly interpreting simulation results. These needs are based on recent experience with power approach flying qualities evaluations of an advanced fighter configuration which incorporated Short Takeoff and Landing (STOL) technologies and earlier experiences with power approach flying qualities evaluations on the AFTI/F-16 program. The use of motion base platforms with axial and normal degrees of freedom will help in evaluating pilot coupling and workload in the presence of high frequency low amplitude axial accelerations produced by high bandwidth airspeed controllers in a gusty environment.

  10. A development and integration analysis of commercial and in-house control subsystems

    SciTech Connect

    Moore, D.M.; Dalesio, L.R.

    1998-12-31

    The acquisition and integration of commercial automation and control subsystems in physics research is becoming more common. It is presumed these systems present lower risk and less cost. This paper studies four subsystems used in the Accelerator Production of Tritium (APT) Low Energy Demonstration Accelerator (LEDA) at the Los Alamos National Laboratory (LANL). The radio frequency quadrupole (RFQ) resonance-control cooling subsystem (RCCS), the high-power RF subsystem and the RFQ vacuum subsystem were outsourced; the low-level RF (LLRF) subsystem was developed in-house. Based on the authors experience a careful evaluation of the costs and risks in acquisition, implementation, integration, and maintenance associated with these approaches is given.

  11. Community Involvement in Dengue Outbreak Control: An Integrated Rigorous Intervention Strategy

    PubMed Central

    Lin, Hualiang; Liu, Tao; Song, Tie; Lin, Lifeng; Xiao, Jianpeng; Lin, Jinyan; He, Jianfeng; Zhong, Haojie; Hu, Wenbiao; Deng, Aiping; Peng, Zhiqiang; Ma, Wenjun; Zhang, Yonghui

    2016-01-01

    Background An explosive outbreak of dengue fever occurred in Guangdong Province, China in 2014. A community-based integrated intervention was applied to control this outbreak in the capital city Guangzhou, where dengue epidemic was mainly caused by imported cases. Methodology/Principal Findings We used a time series generalized additive model based on meteorological factors to assess the effectiveness of this intervention. The results showed that there was significant reduction in mosquito density following the intervention, and there was a 70.47% (95% confidence interval: 66.07%, 74.88%) reduction in the reported dengue cases compared with the predicted cases after 12 days since the beginning of the intervention, we estimated that a total of 23,302 dengue cases were prevented. Conclusions This study suggests that an integrated dengue intervention program has significant effects to control a dengue outbreak in areas where dengue epidemic was mainly caused by imported dengue cases. PMID:27548481

  12. Attachment-Focused Integrative Reminiscence with Older African-Americans: A Randomized Controlled Intervention Study

    PubMed Central

    Henderson, Charles R.; Kang, Suk-Young; Pillemer, Karl

    2015-01-01

    Objectives Prior integrative reminiscence interventions have had a limited focus on attachment themes. The Attachment-Focused Integrative Reminiscence (AFIR) intervention differs from these in its central emphasis on attachment themes. The wide range of health benefits resulting from integrative reminiscence may be due in part to reminiscing about, mourning, and integrating unresolved attachment experiences. Method Participants were randomized into treatment and wait-list control conditions; completed a pre-test; met for 8 consecutive weekly 2-hour sessions of largely attachment-focused reminiscence; then completed post-tests immediately following the intervention and again 6 months later. Results Results show treatment effects for depression (p = .01 and .05 at 8 weeks and 6 months), perceived stress (p = .01 and .04), and emergency room (ER) visits at 6 months (p = .04), with the intervention group showing lower depression and stress and fewer ER visits. Conclusion Integrative reminiscence interventions are cost-effective, have rapid impact, and carry a certain appeal to older adults. Augmenting such interventions with a focus on attachment experiences may reduce perceived stress, an important health risk factor. Wider application of AFIRs may further reduce health disparities among U.S. older adults. PMID:25812080

  13. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    NASA Astrophysics Data System (ADS)

    Ivancic, W. D.; Paulsen, P. E.; Miller, E. M.; Sage, S. P.

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe® satellites to obtain space-based sensor data.

  14. Integrated dry NO sub x /SO sub 2 emissions control system

    SciTech Connect

    Not Available

    1992-02-15

    The DOE Cooperative Agreement No. DE-FC22-91PC90550 dated march 11, 1991, Public Service Company of Colorado has prepared the following quarterly report for Phases I, IIA, and IIB of the Integrated Dry No{sub x}/SO{sub 2} Emissions Control System Project. This project includes low NO{sub x} burners with NO{sub x} ports (post firing air injection), humidification and dry sorbent injection.

  15. Integrated dry NO sub x /SO sub 2 emissions control system

    SciTech Connect

    Not Available

    1992-02-15

    The DOE Cooperative Agreement No. DE-FC22-91PC90550 dated March 11, 1991, Public Service Company of Colorado has prepared the following quarterly report for Phases I, IIA, and IIB of the Integrated Dry NO{sub x}SO{sub 2} Emissions Control System Project. This project includes low NO{sub x} burners with NO{sub x} ports (post firing air injection), humidification and dry sorbent injection.

  16. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.

    2013-01-01

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.

  17. Design of a robust multivariable proportional plus integral controller via spectral assignment

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Maynard, R. A.; Liberty, S. R.

    1980-01-01

    A new design procedure for a class of multivariable integral plus proportional servo control systems is presented. The procedure utilizes a null space formulation of the eigensystem assignment problem assuming complete state feedback. Reduced order observers are used to estimate unavailable states. The resulting system realizes arbitrary closed-loop eigenvalues, approximates specified modal behavior and achieves low eigensystem sensitivity with respect to plant parameter variations. A tutorial example to illustrate the design procedure is included.

  18. Sensing, Control, and System Integration for Autonomous Vehicles: A Series of Challenges

    NASA Astrophysics Data System (ADS)

    Özgüner, Ümit; Redmill, Keith

    One of the important examples of mechatronic systems can be found in autonomous ground vehicles. Autonomous ground vehicles provide a series of challenges in sensing, control and system integration. In this paper we consider off-road autonomous vehicles, automated highway systems and urban autonomous driving and indicate the unifying aspects. We specifically consider our own experience during the last twelve years in various demonstrations and challenges in attempting to identify unifying themes. Such unifying themes can be observed in basic hierarchies, hybrid system control approaches and sensor fusion techniques.

  19. Development of an integrated spacecraft Guidance, Navigation, & Control subsystem for automated proximity operations

    NASA Astrophysics Data System (ADS)

    Schulte, Peter Z.; Spencer, David A.

    2016-01-01

    This paper describes the development and validation process of a highly automated Guidance, Navigation, & Control subsystem for a small satellite on-orbit inspection application, enabling proximity operations without human-in-the-loop interaction. The paper focuses on the integration and testing of Guidance, Navigation, & Control software and the development of decision logic to address the question of how such a system can be effectively implemented for full automation. This process is unique because a multitude of operational scenarios must be considered and a set of complex interactions between subsystem algorithms must be defined to achieve the automation goal. The Prox-1 mission is currently under development within the Space Systems Design Laboratory at the Georgia Institute of Technology. The mission involves the characterization of new small satellite component technologies, deployment of the LightSail 3U CubeSat, entering into a trailing orbit relative to LightSail using ground-in-the-loop commands, and demonstration of automated proximity operations through formation flight and natural motion circumnavigation maneuvers. Operations such as these may be utilized for many scenarios including on-orbit inspection, refueling, repair, construction, reconnaissance, docking, and debris mitigation activities. Prox-1 uses onboard sensors and imaging instruments to perform Guidance, Navigation, & Control operations during on-orbit inspection of LightSail. Navigation filters perform relative orbit determination based on images of the target spacecraft, and guidance algorithms conduct automated maneuver planning. A slew and tracking controller sends attitude actuation commands to a set of control moment gyroscopes, and other controllers manage desaturation, detumble, thruster firing, and target acquisition/recovery. All Guidance, Navigation, & Control algorithms are developed in a MATLAB/Simulink six degree-of-freedom simulation environment and are integrated using

  20. Integral-based event triggering controller design for stochastic LTI systems via convex optimisation

    NASA Astrophysics Data System (ADS)

    Mousavi, S. H.; Marquez, H. J.

    2016-07-01

    The presence of measurement noise in the event-based systems can lower system efficiency both in terms of data exchange rate and performance. In this paper, an integral-based event triggering control system is proposed for LTI systems with stochastic measurement noise. We show that the new mechanism is robust against noise and effectively reduces the flow of communication between plant and controller, and also improves output performance. Using a Lyapunov approach, stability in the mean square sense is proved. A simulated example illustrates the properties of our approach.

  1. TRICCS: A proposed teleoperator/robot integrated command and control system for space applications

    NASA Technical Reports Server (NTRS)

    Will, R. W.

    1985-01-01

    Robotic systems will play an increasingly important role in space operations. An integrated command and control system based on the requirements of space-related applications and incorporating features necessary for the evolution of advanced goal-directed robotic systems is described. These features include: interaction with a world model or domain knowledge base, sensor feedback, multiple-arm capability and concurrent operations. The system makes maximum use of manual interaction at all levels for debug, monitoring, and operational reliability. It is shown that the robotic command and control system may most advantageously be implemented as packages and tasks in Ada.

  2. Integrated operation of sewer system and WWTP by simulation-based control of the WWTP inflow.

    PubMed

    Seggelke, K; Rosenwinkel, K H; Vanrolleghem, P A; Krebs, P

    2005-01-01

    In recent years numerical modelling became a standard procedure to optimise urban wastewater systems design and operation by integration. For dynamic control of the wastewater teatment plant (WWTP) inflow, a model-based predictive concept is introduced aiming at improving the receiving water quality. An on-line simulator running parallel to the real WWTP operation reflects the actual state of operation and provides this model information to a prognosis tool which determines the best option for the WWTP inflow. The investigations showed that it is possible to reduce the NH4-N peak concentrations in the receiving water by dynamic WWTP inflow control based on predictive scenario analysis. PMID:16248196

  3. Site-controlled Ag nanocrystals grown by molecular beam epitaxy-Towards plasmonic integration technology

    SciTech Connect

    Urbanczyk, Adam; Noetzel, Richard

    2012-12-15

    We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.

  4. Air-breathing hypersonic vehicle guidance and control studies: An integrated trajectory/control analysis methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    An integrated trajectory/control analysis algorithm has been used to generate trajectories and desired control strategies for two different hypersonic air-breathing vehicle models and orbit targets. Both models used cubic spline curve fit tabulated winged-cone accelerator vehicle representations. Near-fuel-optimal, horizontal takeoff trajectories, imposing a dynamic pressure limit of 1000 psf, were developed. The first model analysis case involved a polar orbit and included the dynamic effects of using elevons to maintain longitudinal trim. Analysis results indicated problems with the adequacy of the propulsion model and highlighted dynamic pressure/altitude instabilities when using vehicle angle of attack as a control variable. Also, the magnitude of computed elevon deflections to maintain trim suggested a need for alternative pitch moment management strategies. The second analysis case was reformulated to use vehicle pitch attitude relative to the local vertical as the control variable. A new, more realistic, air-breathing propulsion model was incorporated. Pitch trim calculations were dropped and an equatorial orbit was specified. Changes in flight characteristics due to the new propulsion model have been identified. Flight regimes demanding rapid attitude changes have been noted. Also, some issues that would affect design of closed-loop controllers were ascertained.

  5. Integrated quality control: implementation and validation of instrument function checks and procedural controls for a cartridge-based point-of-care system for critical care analysis.

    PubMed

    D'Orazio, Paul; Mansouri, Sohrab

    2013-03-01

    In this article, the process used to develop and validate an integrated quality-control system for a cartridge-based, point-of-care system for critical care analysis is outlined. Application of risk management principles has resulted in a quality control system using a combination of statistical quality control with onboard reference solutions and failure pattern recognition used to flag common failure modes during the analytical phase of the testing process. A combination of traditional external quality control, integrated quality control to monitor ongoing instrument functionality, operator training, and other laboratory-implemented monitors is most effective in controlling known failure modes during the testing process. PMID:23331731

  6. RCTS: A flexible environment for sensor integration and control of robot systems; the distributed processing approach

    NASA Technical Reports Server (NTRS)

    Allard, R.; Mack, B.; Bayoumi, M. M.

    1989-01-01

    Most robot systems lack a suitable hardware and software environment for the efficient research of new control and sensing schemes. Typically, engineers and researchers need to be experts in control, sensing, programming, communication and robotics in order to implement, integrate and test new ideas in a robot system. In order to reduce this time, the Robot Controller Test Station (RCTS) has been developed. It uses a modular hardware and software architecture allowing easy physical and functional reconfiguration of a robot. This is accomplished by emphasizing four major design goals: flexibility, portability, ease of use, and ease of modification. An enhanced distributed processing version of RCTS is described. It features an expanded and more flexible communication system design. Distributed processing results in the availability of more local computing power and retains the low cost of microprocessors. A large number of possible communication, control and sensing schemes can therefore be easily introduced and tested, using the same basic software structure.

  7. Manipulation based on sensor-directed control: An integrated end effector and touch sensing system

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    A hand/touch sensing system is described that, when mounted on a position-controlled manipulator, greatly expands the kinds of automated manipulation tasks that can be undertaken. Because of the variety of coordinate conversions, control equations, and completion criteria, control is necessarily dependent upon a small digital computer. The sensing system is designed both to be rugged and to sense the necessary touch and force information required to execute a wide range of manipulation tasks. The system consists of a six-axis wrist sensor, external touch sensors, and a pair of matrix jaw sensors. Details of the construction of the particular sensors, the integration of the end effector into the sensor system, and the control algorithms for using the sensor outputs to perform manipulation tasks automatically are discussed.

  8. Integrated dry NO sub x /SO sub 2 emissions control system

    SciTech Connect

    Not Available

    1991-10-15

    This project's goal is to demonstrate the removal up to 70% of the NO{sub x} and 70% of the SO{sub 2} emissions from coal fired utility boilers. It will establish an alternative emissions control technology integrating a combination of several processes, while minimizing capital expenditures and limiting waste production to dry solids that are handled with conventional ash removal equipment. These processes include low-NO{sub x} burners, NO{sub x} ports and urea injection for NO{sub x} control, sodium or calcium based sorbent injection for SO{sub 2} control, and flue gas humidification to enhance the reactivity of the SO{sub 2} control compound.

  9. Dynamics and control of hypersonic vehicles - The integration challenge for the 1990's

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Mamich, Harvey; Chavez, Frank

    1991-01-01

    The dynamic characteristics of hypersonic vehicles are reviewed, with special attention to the interactions between the airframe, engine, and structural dynamics. Based on a preliminary investigation of the dynamics of a generic vehicle configuration similar to the X-30 with Scramjet propulsion, an assessment of these interactions is presented. The control effectors include aerodynamic pitch-control surfaces, as well as engine fuel flow and diffuser area ratio. The study configuration is statically instable in pitch, and exhibits strong airframe/engine/elastic coupling in the attitude dynamics and engine responses. This strong coupling will require a highly integrated airframe-engine control system, and the performance of the attitude control system will be contingent upon the ability to adequately deal with the structural aeroelastic response and engine dynamics.

  10. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    SciTech Connect

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  11. Zero Failure Production Methods Based on a Process Integrated Virtual Control

    NASA Astrophysics Data System (ADS)

    Hora, P.; Heingärtner, J.; Manopulo, N.; Tong, L.

    2011-08-01

    Although the virtual methods are nowadays fully established as a widely used tool in the planning and optimization of forming processes they are still completely omitted for a direct, "intelligent" process control in the later production of the parts. The paper presents a proposal for a Process-Integrated-Virtual-Control (PIVC) considering the real process perturbations induced by deviations of material properties as well as by further time dependent process parameters like the tool temperature. For the detection of the material deviations an in-line eddy-current measurement method and the appropriate evaluation method for the definition of the stochastic yield curves will be presented. The paper closes with a virtually taught control system modifying the blank-holder forces in dependency of thermal conditions and material deviations. The goal of this PIVC coupled to in-line process controls is to achieve a Zero Failure production even under alternative time dependent process conditions.

  12. Heteronanojunctions with atomic size control using a lab-on-chip electrochemical approach with integrated microfluidics

    NASA Astrophysics Data System (ADS)

    Lunca Popa, P.; Dalmas, G.; Faramarzi, V.; Dayen, J. F.; Majjad, H.; Kemp, N. T.; Doudin, B.

    2011-05-01

    A versatile tool for electrochemical fabrication of heteronanojunctions with nanocontacts made of a few atoms and nanogaps of molecular spacing is presented. By integrating microfluidic circuitry in a lab-on-chip approach, we keep control of the electrochemical environment in the vicinity of the nanojunction and add new versatility for exchanging and controlling the junction's medium. Nanocontacts made of various materials by successive local controlled depositions are demonstrated, with electrical properties revealing sizes reaching a few atoms only. Investigations on benchmark molecular electronics material, trapped between electrodes, reveal the possibility to create nanogaps of size matching those of molecules. We illustrate the interest of a microfluidic approach by showing that exposure of a fabricated molecular junction to controlled high solvent flows can be used as a reliability criterion for the presence of molecular entities in a gap.

  13. GOLD: Integration of model-based control systems with artificial intelligence and workstations

    SciTech Connect

    Lee, M.; Clearwater, S.

    1987-08-01

    Our experience with model based accelerator control started at SPEAR. Since that time nearly all accelerator beam lines have been controlled using model-based application programs, for example, PEP and SLC at SLAC. In order to take advantage of state-of-the-art hardware and software technology, the design and implementation of the accelerator control programs have undergone radical change with time. Consequently, SPEAR, PEP, and SLC all use different control programs. Since many of these application programs are imbedded deep into the control system, they had to be rewritten each time. Each time this rewriting has occurred a great deal of time and effort has been spent on training physicists and programmers to do the job. Now, we have developed these application programs for a fourth time. This time, however, the programs we are developing are generic so that we will not have to do it again. We have developed an integrated system called GOLD (Generic Orbit and Lattice Debugger) for debugging and correcting trajectory errors in accelerator lattices. The system consists of a lattice modeling program (COMFORT), a beam simulator (PLUS), a graphical workstation environment (micro-VAX) and an expert system (ABLE). This paper will describe some of the features and applications of our integrated system with emphasis on the automation offered by expert systems. 5 refs.

  14. GOLD: Integration of model-based control systems with artificial intelligence and workstations

    SciTech Connect

    Lee, M.; Clearwater, S.

    1987-08-01

    Our experience with model-based accelerator control started at SPEAR. Since that time nearly all accelerator beamlines have been controlled using model-based application programs, for example, PEP and SLC at SLAC. In order to take advantage of state-of-the-art hardware and software technology, the design and implementation of the accelerator control programs have undergone radical changes with time. Consequently, SPEAR, PEP and SLC all use different control programs. Since many of these application programs are embedded deep into the control system, they had to be rewritten each time. Each time this rewriting has occurred a great deal of time and effort has been spent on training physicists and programmers to do the job. Now, we have developed an integrated system called GOLD (Genetic Orbit and Lattice Debugger) for debugging and correcting trajectory errors in accelerator lattices. The system consists of a lattice modeling program (COMFORT), a beam simulator (PLUS), a graphical workstation environment (micro-VAX) and an expert system (ABLE). This paper will describe some of the features and applications of our integrated system with emphasis on the automation offered by expert systems. 5 refs.

  15. Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control

    PubMed Central

    Li, Weifeng; Chen, Ziyi; Yan, Nan; Jones, Jeffery A.; Guo, Zhiqiang; Huang, Xiyan; Chen, Shaozhen; Liu, Peng; Liu, Hanjun

    2016-01-01

    Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls. PMID:27356768

  16. Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control.

    PubMed

    Li, Weifeng; Chen, Ziyi; Yan, Nan; Jones, Jeffery A; Guo, Zhiqiang; Huang, Xiyan; Chen, Shaozhen; Liu, Peng; Liu, Hanjun

    2016-01-01

    Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls. PMID:27356768

  17. Integrated pest management and allocation of control efforts for vector-borne diseases

    USGS Publications Warehouse

    Ginsberg, H.S.

    2001-01-01

    Applications of various control methods were evaluated to determine how to integrate methods so as to minimize the number of human cases of vector-borne diseases. These diseases can be controlled by lowering the number of vector-human contacts (e.g., by pesticide applications or use of repellents), or by lowering the proportion of vectors infected with pathogens (e.g., by lowering or vaccinating reservoir host populations). Control methods should be combined in such a way as to most efficiently lower the probability of human encounter with an infected vector. Simulations using a simple probabilistic model of pathogen transmission suggest that the most efficient way to integrate different control methods is to combine methods that have the same effect (e.g., combine treatments that lower the vector population; or combine treatments that lower pathogen prevalence in vectors). Combining techniques that have different effects (e.g., a technique that lowers vector populations with a technique that lowers pathogen prevalence in vectors) will be less efficient than combining two techniques that both lower vector populations or combining two techniques that both lower pathogen prevalence, costs being the same. Costs of alternative control methods generally differ, so the efficiency of various combinations at lowering human contact with infected vectors should be estimated at available funding levels. Data should be collected from initial trials to improve the effects of subsequent interventions on the number of human cases.

  18. Integrated quantitative proteomic and transcriptomic analysis of lung tumor and control tissue: a lung cancer showcase

    PubMed Central

    Huwer, Hanno; Hildebrandt, Andreas; Lenhof, Hans-Peter; Wesse, Tanja; Franke, Andre; Keller, Andreas

    2016-01-01

    Proteomics analysis of paired cancer and control tissue can be applied to investigate pathological processes in tumors. Advancements in data-independent acquisition mass spectrometry allow for highly reproducible quantitative analysis of complex proteomic patterns. Optimized sample preparation workflows enable integrative multi-omics studies from the same tissue specimens. We performed ion mobility enhanced, data-independent acquisition MS to characterize the proteome of 21 lung tumor tissues including adenocarcinoma and squamous cell carcinoma (SCC) as compared to control lung tissues of the same patient each. Transcriptomic data were generated for the same specimens. The quantitative proteomic patterns and mRNA abundances were subsequently analyzed using systems biology approaches. We report a significantly (p = 0.0001) larger repertoire of proteins in cancer tissues. 12 proteins were higher in all tumor tissues as compared to matching control tissues. Three proteins, CAV1, CAV2, and RAGE, were vice versa higher in all controls. We also identified characteristic SCC and adenocarcinoma protein patterns. Principal Component Analysis provided evidence that not only cancer from control tissue but also tissue from adenocarcinoma and SCC can be differentiated. Transcriptomic levels of key proteins measured from the same matched tissue samples correlated with the observed protein patterns. The applied study set-up with paired lung tissue specimens of which different omics are measured, is generally suited for an integrated multi-omics analysis. PMID:26930711

  19. Evaluation of a synergistic handheld instrument for resternotomy controlled by an integrated optical sensor.

    PubMed

    Korff, Alexander; Jalowy, Thomas; Mueller, Meiko; Fuertjes, Tobias; Dohmen, Guido; Radermacher, Klaus; Follmann, Axel

    2011-01-01

    Re-Sternotomy is an important part of many interventions in cardiac or thoracic surgery. It is performed close to critical structures such as the ascending aorta or the heart with an inherent high risk of serious damage. In this paper, a system for improving the safety of this surgical procedure is presented. A soft tissue preserving saw is combined with automatic depth regulation. The depth is controlled on the basis of the optical characteristics (visible light) of the tissue aligned to the saw blade, which is analyzed using a color sensor. Detection of the blades' position in the bone during the cutting process is possible through the integration of an optical fiber into the tip of the saw blade. The automatic depth control is realized using a hysteresis controller running on a real time system. To show the feasibility of this approach, the sensor technology was integrated into a prototypal sternal saw and evaluated on artificial bone. As part of the experiments the influence of water for cooling and dust particles from the process on the systems control stability were analyzed. The system performed stable and accurate. Future research will focus on the control algorithm and cadaver trials. PMID:22256041

  20. Integration of dynamic information for visuomotor control in young adults with developmental coordination disorder.

    PubMed

    de Oliveira, Rita F; Wann, John P

    2010-09-01

    We examined the hypothesis that developmental coordination disorder (DCD) consists of a poor integration of distal preparatory visual information with the visual information that arises during movement execution. We set up a steering task where the action goal was to steer smoothly on a virtual winding course under conditions that manipulated the availability and timing of visual information. Participants were 20 young adults who had been diagnosed with DCD in their childhood and 20 typically developing age-matched controls. On a simple tracking task, participants with DCD were slower and more variable than controls. The group differences dissipated, however, when the display highlighted the directional changes necessary within the next 500 ms. When the latter condition was modified to also include the full layout of the course, however, the performance of the DCD group once again decreased. This result could not be attributed to a simple distraction effect. The results suggest that distinct neural mechanisms are associated with the processing of fast visual information for online control and longer-term action preparation based on spatial layout. In skilled action, cerebellar and parietal areas process information effectively and their outputs are integrated into one smooth movement. Because the DCD group showed difficulties in steering when both types of information were present, it is likely that this integration is suboptimal. PMID:20677003