Science.gov

Sample records for 12c nucleus rezonansnye

  1. New experimental limits on the probabilities of pauli-forbidden transitions in the {sup 12}C nucleus from data obtained with the borexino detector

    SciTech Connect

    Derbin, A. V.; Fomenko, K. A.

    2010-12-15

    The Pauli exclusion principle was tested for nucleons in the {sup 12}C nucleus by using data from the Borexino detector. The approach used consisted in seeking photons, neutrons, and protons, as well as electrons and positrons, emitted in the Pauli-forbidden transitions of nucleons from the 1P{sub 3/2} shell to the filled 1S{sub 1/2} shell. Owing to a uniquely low background level in the Borexino detector and its large mass, the currently most stringent experimental limits were obtained for the probabilities and relative intensities of Pauli-forbidden transitions for the electromagnetic, strong, and weak channels.

  2. Phenomenological and semi-microscopic analysis for 16O and 12C elastically scattering on the nucleus of 16O and 12C at Energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Hamada, Sh; Burtebayev, N.; Amangeldi, N.; Gridnev, K. A.; Rusek, K.; Kerimkulov, Zh; Maltsev, N.

    2012-09-01

    The nuclear burning process proceeds from the conservation of the most abundant element hydrogen to helium, then from helium to carbon and oxygen, and then from these to heavier elements. Some of the key reactions for the carbon and oxygen burning stages of the nucleosynthesis are 12C+12C and 16O+16O leading to all possible final states. This paper contains the experimental measurements of 12C+12C and 16O+16O angular distributions performed at the cyclotron DC-60 in Astana, Kazakhstan. The extracted beam of 16O and 12C was accelerated up to two energies 1.75 and 1.5 MeV/n and then directed to an Al2O3 target of thickness 20 μg/cm2 and a carbon self-supporting target of thickness 17.4 μg/cm2. The angular distribution calculations were performed using both the phenomenological optical potential (SPI-GENOA) code and the double folding potential (FRESCO) code.

  3. Description of nuclear systems with a self-consistent configuration-mixing approach: Theory, algorithm, and application to the 12C test nucleus

    NASA Astrophysics Data System (ADS)

    Robin, C.; Pillet, N.; Peña Arteaga, D.; Berger, J.-F.

    2016-02-01

    Background: Although self-consistent multiconfiguration methods have been used for decades to address the description of atomic and molecular many-body systems, only a few trials have been made in the context of nuclear structure. Purpose: This work aims at the development of such an approach to describe in a unified way various types of correlations in nuclei in a self-consistent manner where the mean-field is improved as correlations are introduced. The goal is to reconcile the usually set-apart shell-model and self-consistent mean-field methods. Method: This approach is referred to as "variational multiparticle-multihole configuration mixing method." It is based on a double variational principle which yields a set of two coupled equations that determine at the same time the expansion coefficients of the many-body wave function and the single-particle states. The solution of this problem is obtained by building a doubly iterative numerical algorithm. Results: The formalism is derived and discussed in a general context, starting from a three-body Hamiltonian. Links to existing many-body techniques such as the formalism of Green's functions are established. First applications are done using the two-body D1S Gogny effective force. The numerical procedure is tested on the 12C nucleus to study the convergence features of the algorithm in different contexts. Ground-state properties as well as single-particle quantities are analyzed, and the description of the first 2+ state is examined. Conclusions: The self-consistent multiparticle-multihole configuration mixing method is fully applied for the first time to the description of a test nucleus. This study makes it possible to validate our numerical algorithm and leads to encouraging results. To test the method further, we will realize in the second article of this series a systematic description of more nuclei and observables obtained by applying the newly developed numerical procedure with the same Gogny force. As

  4. Non-coplanar compact configurations of nuclei and non-compound-nucleus contribution in the fusion cross section of the 12C+93Nb reaction

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Hemdeep, Kaur, Arshdeep; Gupta, Raj K.

    2016-02-01

    Background: In our earlier study of the 12C+93Nb→*105Ag reaction at three near- and below-barrier energies (Ec .m .=41.097 , 47.828, and 54.205 MeV), using the dynamical cluster-decay model (DCM) with various nuclear interaction potentials (the Blocki et al. pocket formula and others derived from the Skyrme energy density formalism) for compact, coplanar (Φc=00 ) nuclei, we found a large non-compound-nucleus (nCN) contribution in the measured fusion cross section of this reaction. Purpose: In the present work, we look for the effect of using non-coplanar, compact configurations (Φc≠00 ), in the Blocki et al. pocket formula of the nuclear proximity potential, on the non-compound-nucleus (nCN) contribution, using the DCM. Methods: Allowing the Φ degree of freedom in the DCM formalism, we calculate the compound-nucleus (CN) and nCN cross sections. The only parameter of the DCM is the neck-length parameter Δ R , which also fits the empirically determined nCN cross section nearly exactly, under the assumption of considering it like a quasifission process where the fragment preformation factor P0=1 . Results: With the Φ degree of freedom included, at the higher two energies the nCN cross section gets enhanced, and hence the pure CN cross section is decreased, since the calculated (total) fusion cross section is fitted to experimental data. The parameter Δ R for the nCN contribution is smaller, and hence the reaction time larger, than for the CN decay process. Also, the contributing angular momentum ℓmax value increases in going from Φc=00 to Φc≠00 for both the CN and nCN processes. The intermediate mass fragments (IMFs), measured up to mass 13 in this reaction, are shown extended up to mass 16, and the fusion-fission (f f ) region is identified as A /2 ±16 , the same as for the Φc=00 case. Conclusions: As a result of enhanced nCN cross section due to Φc≠00 , the CN fusion probability PCN for *105Ag changes its behavior from an increasing to a

  5. Delta Electroproduction in 12-C

    SciTech Connect

    Steven McLauchlan

    2003-01-31

    The Delta-nucleus potential is a crucial element in the understanding of the nuclear system. Previous electroexcitation measurements in the delta region reported a Q2 dependence of the delta mass indicating that this potential is dependent on the momentum of the delta. Such a dependence is not observed for protons and neutrons in the nuclear medium. This thesis presents the experimental study of the electroexcitation of the delta resonance in 12C, performed using the high energy electron beam at the Thomas Jefferson National Accelerator Facility, and the near 4(pie) acceptance detector CLAS that enables the detection of the full reaction final state. Inclusive, semi inclusive, and exclusive cross sections were measured with an incident electron beam energy of 1.162GeV over the Q2 range 0.175-0.475 (GeV/c)2. A Q2 dependence of the delta mass was only observed in the exclusive measurements indicating that the delta-nucleus potential is affected by the momentum of the delta.

  6. Double folding cluster potential for {sup 12}C+{sup 12}C elastic scattering

    SciTech Connect

    Hassanain, M. A.; Ibraheem, Awad A.; Farid, M. El-Azab

    2008-03-15

    Using the alpha ({alpha})-cluster structure of {sup 12}C nucleus, two versions of the {sup 12}C+{sup 12}C real double folded optical potentials have been generated based upon effective {alpha}-{alpha},{alpha}-nucleon (N) and N-N interactions. The obtained potentials, in conjunction with shallow phenomenological Woods-Saxon imaginary parts, successfully reproduce the elastic scattering differential cross section for 12 sets of data over the broad energy range 70-360 MeV. No renormalization of the real folded potentials is required to fit the data. The energy dependence of the extracted real and imaginary volume integrals and total reaction cross section is investigated.

  7. Incoherent neutral pion photoproduction on 12C.

    PubMed

    Tarbert, C M; Watts, D P; Aguar, P; Ahrens, J; Annand, J R M; Arends, H J; Beck, R; Bekrenev, V; Boillat, B; Braghieri, A; Branford, D; Briscoe, W J; Brudvik, J; Cherepnya, S; Codling, R; Downie, E J; Föhl, K; Glazier, D I; Grabmayr, P; Gregor, R; Heid, E; Hornidge, D; Jahn, O; Kashevarov, V L; Knezevic, A; Kondratiev, R; Korolija, M; Kotulla, M; Krambrich, D; Krusche, B; Lang, M; Lisin, V; Livingston, K; Lugert, S; Macgregor, I J D; Manley, D M; Martinez, M; McGeorge, J C; Mekterovic, D; Metag, V; Nefkens, B M K; Nikolaev, A; Novotny, R; Owens, R O; Pedroni, P; Polonski, A; Prakhov, S N; Price, J W; Rosner, G; Rost, M; Rostomyan, T; Schadmand, S; Schumann, S; Sober, D; Starostin, A; Supek, I; Thomas, A; Unverzagt, M; Walcher, Th; Zehr, F

    2008-04-01

    We present the first detailed measurement of incoherent photoproduction of neutral pions to a discrete state of a residual nucleus. The 12C(gamma,pi(0))(12)C*(4.4 MeV) reaction has been studied with the Glasgow photon tagger at MAMI employing a new technique which uses the large solid angle Crystal Ball detector both as a pi(0) spectrometer and to detect decay photons from the excited residual nucleus. The technique has potential applications to a broad range of future nuclear measurements with the Crystal Ball and similar detector systems elsewhere. Such data are sensitive to the propagation of the Delta in the nuclear medium and will give the first information on matter transition form factors from measurements with an electromagnetic probe. The incoherent cross sections are compared to two theoretical predictions including a Delta-hole model. PMID:18517938

  8. High-spin molecular resonances in 12C + 12C

    NASA Astrophysics Data System (ADS)

    Uegaki, E.; Abe, Y.

    2016-05-01

    Resonances observed in the 12C + 12C collisions are studied with a molecular model. At high spins J = 10-18, a stable dinuclear configuration is found to be an equator-equator touching one. Firstly, normal modes have been solved around the equilibrium, with spin J and K-quantum number being specified for rotation of the whole system. Secondly, with respect to large centrifugal energy, Coriolis coupling has been diagonalized among low-lying 11 states of normal-mode excitations, which brings K-mixing. The analyses of decay widths and excitation functions have been done. The molecular ground state exhibits alignments of the orbital angular momentum and the 12C spins, while some of the molecular excited states exhibit disalignments with small widths. Those results are surprisingly in good agreement with the experiments, which will light up a new physical picture of the highspin 12C + 12C resonances.

  9. Angular correlation measurements for {sup 12}C{sup 12}C,{sup 12}C{sup 12}C 3{sup -} scattering

    SciTech Connect

    Wuosmaa, A.H.; Betts, R.R.; Freer, M.

    1995-08-01

    Previous studies of inelastic {sup 12}C + {sup 12}C scattering to a variety of final states identified significant resonance behavior in a number of different reaction channels. These resonances can be interpreted as either potential scattering resonances, or as population of cluster structures in the compound nucleus {sup 24}Mg, or as some interplay between the two mechanisms. Currently, for many of these resonances the situation remains unclear. One example is a large peak observed in the excitation function for the 3{sup -} - g.s. excitation, identified in previous work performed at the Daresbury Laboratory in England. This peak is observed at the same center-of-mass energy as one observed in the O{sub 2}{sup +}-O{sub 2}{sup +} inelastic scattering channel. That structure was suggested to correspond to exotic deformed configurations in the compound nucleus {sup 24}Mg. As the peak in the 3{sup -} + g.s. exit channel occurs at precisely the same energy as the purported resonance, it is tempting to associate the two. Before such an association can be confirmed or ruled out, further information must be obtained about the 3{sup -} + g.s. structure. In particular, it is important to determine the angular momenta that dominate the 3{sup -} + g.s. structure.

  10. YF-12C on ramp

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The so-called YF-12C on the NASA Flight Research Center ramp. Following the loss of a YF-12A in a non-fatal accident in June 1971, NASA acquired the second production SR-71A (61-7951) from the Air Force. Because the SR-71 program was shrouded in the highest secrecy, the Air Force restricted NASA to using the aircraft solely for propulsion testing with YF-12A inlets and engines. It was designated the YF-12C, and given a bogus tail number (06937). The two YF-12As in the program had actual tail numbers 06935 and 06936. The first NASA flight of the YF-12C took place on 24 May 1972. The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 606936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made

  11. Incoherent Neutral Pion Photoproduction on {sup 12}C

    SciTech Connect

    Tarbert, C. M.; Watts, D. P.; Branford, D.; Foehl, K.; Glazier, D. I.; Aguar, P.; Ahrens, J.; Arends, H. J.; Heid, E.; Jahn, O.; Krambrich, D.; Martinez, M.; Rost, M.; Thomas, A.; Walcher, Th.; Annand, J. R. M.; Codling, R.; Downie, E. J.; Livingston, K.; MacGregor, I. J. D.

    2008-04-04

    We present the first detailed measurement of incoherent photoproduction of neutral pions to a discrete state of a residual nucleus. The {sup 12}C({gamma},{pi}{sup 0}){sup 12}C{sub 4.4} {sub MeV}* reaction has been studied with the Glasgow photon tagger at MAMI employing a new technique which uses the large solid angle Crystal Ball detector both as a {pi}{sup 0} spectrometer and to detect decay photons from the excited residual nucleus. The technique has potential applications to a broad range of future nuclear measurements with the Crystal Ball and similar detector systems elsewhere. Such data are sensitive to the propagation of the {delta} in the nuclear medium and will give the first information on matter transition form factors from measurements with an electromagnetic probe. The incoherent cross sections are compared to two theoretical predictions including a {delta}-hole model.

  12. /sup 18/O + /sup 12/C fusion-evaporation reaction

    SciTech Connect

    Heusch, B; Beck, C; Coffin, J P; Freeman, R M; Gallmann, A; Haas, F; Rami, F; Wagner, P; Alburger, D E

    1980-01-01

    A study of the /sup 18/O + /sup 12/C fusion evaporation reaction has been undertaken for 2 reasons: to make a systematic study of the formation cross section for each individual evaporation residue over a broad excitation energy region in the compound nucleus /sup 30/Si:30 to 62 MeV; and to compare all results to fusion-evaporation calculations done in the framework of the Hauser-Feschbach statistical model.

  13. The C-12/C-13 abundance ratio in Comet Halley

    SciTech Connect

    Wyckoff, S.; Lindholm, E.; Wehinger, P.A.; Peterson, B.A.; Zucconi, J.M.

    1989-04-01

    The individual (C-13)N rotational lines in Comet Halley are resolved using high-resolution spectra of the CN B2Sigma(+)-X2Sigma(+) (0,0) band. The observe C-12/C-13 abundance ratio excludes a site of origin for the comet near Uranus and Neptune and suggests a condensation environment quite distinct from other solar system bodies. Two theories are presented for the origin of Comet Halley. One theory suggest that the comet originated 4.5 Gyr ago in an inner Oort cloud at a heliocentric distance greater than 100 AU where chemical fractionation led to the C-13 enrichment in the CN parent molecule prior to condensation of the comet nucleus. According to the other, more plausible theory, the comet nucleus condensed relatively recently from the interstellar medium which has become enriches in C-13 and was subsequently gravitationally captured by the solar system. 107 refs.

  14. The 12C* Hoyle state in the inelastic 12C + 12C reaction and in 24Mg* decay

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Bruno, M.; D'Agostino, M.; Baiocco, G.; Gulminelli, F.; Abbondanno, U.; Barlini, S.; Bini, M.; Casini, G.; Cinausero, M.; Degerlier, M.; Fabris, D.; Gramegna, F.; Mabiala, J.; Marchi, T.; Olmi, A.; Pasquali, G.; Piantelli, S.; Valdré, S.

    2016-08-01

    The reaction 12C + 12C at 95 MeV has been studied at the Legnaro Laboratories of INFN with the GARFIELD + RCo apparatus. Data have been analyzed in order to investigate the decay of the Hoyle state of 12C*. Two different data selections have been made. The first one corresponds to peripheral binary collisions where the quasi-projectile is excited to the Hoyle state and the target has been left in the ground state. The second selection allows for studying central events with the formation of a 24Mg* and the Hoyle state is obtained as a step of the decay chain. The characteristics of the Hoyle state decay are very similar in the two samples and point to a mainly sequential decay through the population of an intermediate 8Begs, with a small contribution (˜1.1%) from simultaneous three α-particle processes.

  15. First direct measurement of 12C(12C,n)23Mg at stellar energies

    NASA Astrophysics Data System (ADS)

    Tang, X. D.; Bucher, B.; Fang, X.; Heger, A.; Almaraz-Calderon, S.; Alongi, A.; Ayangeakaa, A. D.; Beard, M.; Best, A.; Browne, J.; Cahillane, C.; Couder, M.; deBoer, R. J.; Kontos, A.; Lamm, L.; Li, Y. J.; Long, A.; Lu, W.; Lyons, S.; Notani, M.; Patel, D.; Paul, N.; Pignatari, M.; Roberts, A.; Robertson, D.; Smith, K.; Stech, E.; Talwar, R.; Tan, W. P.; Wiescher, M.; Woosley, S. E.

    2016-02-01

    Neutrons produced by the carbon fusion reaction 12C(12C,n)23Mg play an important role in stellar nucleosynthesis. Past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement which extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction 12C(12C,p)23Na. The new reaction rate has been determined with a well-defined uncertainty which exceeds the precision required by astrophysics models. Using our constrained rate, we find that 12C(12C,n)23Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae.

  16. Fusion measurements of 12C+12C at energies of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Santiago-Gonzalez, D.; Jiang, C. L.; Rehm, K. E.; Alcorta, M.; Almaraz-Calderon, S.; Avila, M. L.; Ayangeakaa, A. D.; Back, B. B.; Bourgin, D.; Bucher, B.; Carpenter, M. P.; Courtin, S.; David, H. M.; Deibel, C. M.; Dickerson, C.; DiGiovine, B.; Fang, X.; Greene, J. P.; Haas, F.; Henderson, D. J.; Janssens, R. V. F.; Jenkins, D.; Lai, J.; Lauritsen, T.; Lefebvre-Schuhl, A.; Montanari, D.; Pardo, R. C.; Paul, M.; Seweryniak, D.; Tang, X. D.; Ugalde, C.; Zhu, S.

    2016-05-01

    The cross section of the 12C+12C fusion reaction at low energies is of paramount importance for models of stellar nucleosynthesis in different astrophysical scenarios, such as Type Ia supernovae and Xray superbursts, where this reaction is a primary route for the production of heavier elements. In a series of experiments performed at Argonne National Laboratory, using Gammasphere and an array of Silicon detectors, measurements of the fusion cross section of 12C+12C were successfully carried out with the γ and charged-particle coincidence technique in the center-of-mass energy range of 3-5 MeV. These were the first background-free fusion cross section measurements for 12C+12C at energies of astrophysical interest. Our results are consistent with previous measurements in the high-energy region; however, our lowest energy measurement indicates a fusion cross section slightly lower than those obtained with other techniques.

  17. Folding model calculations for 6He+12C elastic scattering

    NASA Astrophysics Data System (ADS)

    Awad, A. Ibraheem

    2016-03-01

    In the framework of the double folding model, we used the α+2n and di-triton configurations for the nuclear matter density of the 6He nucleus to generate the real part of the optical potential for the system 6He+12C. As an alternative, we also use the high energy approximation to generate the optical potential for the same system. The derived potentials are employed to analyze the elastic scattering differential cross section at energies of 38.3, 41.6 and 82.3 MeV/u. For the imaginary part of the potential we adopt the squared Woods-Saxon form. The obtained results are compared with the corresponding measured data as well as with available results in the literature. The calculated total reaction cross sections are investigated and compared with the optical limit Glauber model description.

  18. The 12C(12C,α)20Ne and 12C(12C,p)23Na reactions at the Gamow peak via the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; Cherubini, S.; Guardo, L.; Gulino, M.; Indelicato, I.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.

    2016-05-01

    A measurement of the 12C(14N,α20Ne)2H and 12C(14N,p23Na)2Hreactions has been performed at a 14N beam energy of 30.0 MeV. The experiment aims to explore the extent to which contributing 24Mg excited states can be populated in the quasi-free reaction off the deuteron in 14N. In particular, the 24Mg excitation region explored in the measurement plays a key role in stellar carbon burning whose cross section is commonly determined by extrapolating high-energy fusion data. From preliminary results, α and proton channels are clearly identified. In particular, ground and first excited states of 20Ne and 23Na play a major role.

  19. Selective alpha particle decay of 12C+12C resonances to excited 20Ne rotational bands observed in the 12C(12C,α)20Ne reaction

    NASA Astrophysics Data System (ADS)

    Ledoux, R. J.; Ordon¯Ez, C. E.; Bechara, M. J.; Al-Juwair, H. A.; Lavelle, G.; Cosman, E. R.

    1984-09-01

    Excitation functions of the 12C(12C,α)20Ne reaction were measured at θlab=7.5° between Ec.m.=14-40 MeV and angular distributions were measured from Ec.m.=17.8 to 20.6 MeV. Summed yields reveal prominent intermediate structure resonances over the entire range which correlate well to resonances previously observed in elastic data. The resonances show enhanced decays to excited rotational bands in 20Ne with reduced widths comparable to those for the elastic channel and an order of magnitude greater than those for the 20Ne ground state band. A discussion is given of the resonances as shape-isomeric states in a shell model secondary minimum in 24Mg, and of the selective alpha decay as being transitions to states of related configuration in 20Ne.

  20. First Direct Measurement of (12)C((12)C,n)(23)Mg at Stellar Energies.

    PubMed

    Bucher, B; Tang, X D; Fang, X; Heger, A; Almaraz-Calderon, S; Alongi, A; Ayangeakaa, A D; Beard, M; Best, A; Browne, J; Cahillane, C; Couder, M; deBoer, R J; Kontos, A; Lamm, L; Li, Y J; Long, A; Lu, W; Lyons, S; Notani, M; Patel, D; Paul, N; Pignatari, M; Roberts, A; Robertson, D; Smith, K; Stech, E; Talwar, R; Tan, W P; Wiescher, M; Woosley, S E

    2015-06-26

    Neutrons produced by the carbon fusion reaction (12)C((12)C,n)(23)Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction (12)C((12)C,p)(23)Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that (12)C((12)C,n)(23)Mg is crucial to the production of Na and Al in pop-III pair instability supernovae. It also plays a nonnegligible role in the production of weak s-process elements, as well as in the production of the important galactic γ-ray emitter (60)Fe. PMID:26197115

  1. Multicluster study of the {sup 12}C+n and {sup 12}C+p systems

    SciTech Connect

    Dufour, M.; Descouvemont, P.; Dufour, M.

    1997-10-01

    We use the generator coordinate method to study the {sup 12}C( n,{gamma}){sup 13}C and {sup 12}C( p,{gamma}){sup 13}N reactions, as well as the {sup 13}C and {sup 13}N spectroscopy. The {sup 12}C wave functions are defined by three {alpha} particles in a regular triangle of size R{sub C}. Different configurations are considered, in order to analyze clustering effects. It is shown that spectroscopic properties of {sup 13}C and {sup 13}N are sensitive to the {sup 12}C wave function; reasonable agreement with experiment is found with R{sub C} values minimizing the {sup 12}C binding energy. The present study supports the suggestion of a halo structure for the 1/2{sup +} excited state in {sup 13}C. The neutron and proton capture cross sections are in good agreement with experiment. Finally, we analyze distortion effects in the {sup 12}C+n wave functions. {copyright} {ital 1997} {ital The American Physical Society}

  2. The Circumstellar Shell of the Post-Asymptotic Giant Branch Star HD 56126: 12C12C/12C13C Isotope Ratio and 12C16O Column Density

    NASA Astrophysics Data System (ADS)

    Bakker, Eric J.; Lambert, David L.

    1998-11-01

    We have made the first detection of circumstellar absorption lines of the 12C13C A 1Πu-X 1Σ+g (Phillips) system 1-0 band and the 12C16O X 1Σ+ first-overtone 2-0 band in the spectrum of the post-AGB star HD 56126 (IRAS 07134+1005). All current detections of circumstellar molecular absorption lines toward HD 56126 (12C2, 12C13C, 12C14N, 13C14N, and 12C16O) yield the same heliocentric velocity of VCSE = 77.6 +/- 0.4 km s-1. The 12C2, 12C13C, and 12C16O lines give rotational temperatures and integrated column densities of Trot = 328 +/- 37 K, log Nint = 15.34 +/- 0.10 cm-2, Trot = 256 +/- 30 K, log Nint = 13.79 +/- 0.12 cm-2, and Trot = 51 +/- 37 K, log Nint = 18.12 +/- 0.13 cm-2, respectively. The rotational temperatures are lower for molecules with a higher permanent dipole moment. Derived relative column densities ratios are 12C2/12C13C = 36 +/- 13 and 12C16O/(12C2 + 12C13C) = 606 +/- 230. Combined with data from a previous paper, we find relative column densities of 12C16O/(12C14N + 13C14N) = 475 +/- 175 and 12C14N/13C14N = 38 +/- 2. Under chemical equilibrium conditions, 12C13C is formed twice as easily as 12C2. The isotopic exchange reaction for 12C2 is too slow to significantly alter the 12C2/12C13C ratio, and the 12C2 to 12C13C ratio is a good measure of half the carbon isotope ratio: 12C/13C = 2 × 12C2/12C13C = 72 +/- 26. This is in agreement with our prediction that the isotopic exchange reaction for 12C14N is efficient and our observation in Paper III of 12C14N/13C14N = 38 +/- 2. A fit of the C2 excitation model of van Dishoeck & Black to the relative population distribution of C2 yields nc σ/I = 3.3 +/- 1.0 × 10-14. At r ~= 1016 cm, this translates into nc = 1.7 × 107 cm-3 and Ṁ~=2.5×10-4 M⊙ yr-1.

  3. YF-12C in flight at sunset

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The so-called YF-12C in flight at sunset. The YF-12C was the second production SR-71A (61-7951), modified with YF-12A inlets and engines, and given a bogus tail number (06937). It replaced a YF-12A (60-6936) that crashed during a joint USAF-NASA research program. The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 60-6936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made 62 flights. It was lost in a non-fatal crash on 24 June 1971. It was replaced by the YF-12C. The YF-12C was delivered to NASA on 16 July 1971. From then until 22 December 1978, it made 90 flights. The Lockheed A-12 family, known as the Blackbirds, were designed by Clarence 'Kelly' Johnson. They were constructed mostly

  4. Spin alignment and density matrix measurement in sup 28 Si + sup 12 C orbiting reaction

    SciTech Connect

    Ray, A.; Shapira, D.; Halbert, M.L.; Gomez del Campo, J.; Kim, H.J. ); Sullivan, J.P. . Cyclotron Inst.); Shivakumar, B.; Mitchell, J. . Wright Nuclear Structure Lab.)

    1990-01-01

    Gamma-ray angular correlations have been measured for the strongly damped reactions {sup 12}C({sup 28}Si,{sup 12}C){sup 28}Si between {theta}{sub cm} = (120{degree} {minus} 160{degree}) for E{sub cm} = 43.5 and 48 MeV. We find that the density matrices for the {sup 12}C(2{sub 1}{sup +}) and {sup 28}Si states are almost diagonal with respect to the direction of motion of the outgoing particle. The measured density matrices and spin alignments are consistent with the picture of formation of a long-lived dinuclear complex undergoing orbiting, bending and wriggling motions, but not with those obtained from statistical compound nucleus or sticking model calculations. 17 refs., 2 figs., 1 tab.

  5. 12C+ 12C elastic scattering excitation functions and phase shift analysis

    NASA Astrophysics Data System (ADS)

    Ledoux, R. J.; Bechara, M. J.; Ordonez, C. E.; Al-Juwair, H. A.; Cosman, E. R.

    1983-03-01

    The 12C+ 12C elastic scattering has been measured for Ec.m.=14.6-31.3 MeV, θc.m.=30°-110°. The elastic data have been analyzed via a phase shift analysis, enabling the extraction of model independent sets of phase shift parameters. The extracted Jπ values for the intermediate structure resonances at Ec.m.=18.4, 19.3, and 20.3 MeV are 12+, 12+, and 12+ or 14+, respectively. The questions of ambiguities in the phase shift analysis and the comparison with Jπ values deduced from other experiments are discussed. Evidence is presented for the existence of gross structure resonances. The elastic scattering has also been analyzed using the sum-of-differences method to directly extract the total reaction cross section. The results of these analyses are compared to existing models of the origin of intermediate structure resonances. NUCLEAR REACTIONS Measured the 12C+ 12C elastic scattering, Ec.m.=14.6-31.3 MeV, θc.m.=30°-110°. Phase shift analysis, sum-of-differences analysis.

  6. Decay strength distributions in {sup 12}C({sup 12}C,{gamma}) radiative capture

    SciTech Connect

    Jenkins, D. G.; Fulton, B. R.; Marley, P.; Fox, S. P.; Glover, R.; Wadsworth, R.; Watson, D. L.; Courtin, S.; Haas, F.; Lebhertz, D.; Beck, C.; Papka, P.; Rousseau, M.; Sanchez i Zafra, A.; Hutcheon, D. A.; Davis, C.; Ottewell, D.; Pavan, M. M.; Pearson, J.; Ruiz, C.

    2007-10-15

    The heavy-ion radiative capture reaction, {sup 12}C({sup 12}C,{gamma}), has been investigated at energies both on- and off-resonance, with a particular focus on known resonances at E{sub c.m.}=6.0, 6.8, 7.5, and 8.0 MeV. Gamma rays detected in a BGO scintillator array were recorded in coincidence with {sup 24}Mg residues at the focal plane of the DRAGON recoil separator at TRIUMF. In this manner, the relative strength of all decay pathways through excited states up to the particle threshold could be examined for the first time. Isovector M1 transitions are found to be a important component of the radiative capture from the E{sub c.m.}=6.0 and 6.8 MeV resonances. Comparison with Monte Carlo simulations suggests that these resonances may have either J=0 or 2, with a preference for J=2. The higher energy resonances at E{sub c.m.}=7.5 and 8.0 MeV have a rather different decay pattern. The former is a clear candidate for a J=4 resonance, whereas the latter has a dominant J=4 character superposed on a J=2 resonant component underneath. The relationship between these resonances and the well-known quasimolecular resonances as well as resonances in breakup and electrofission of {sup 24}Mg into two {sup 12}C nuclei are discussed.

  7. Measurement of the ^12C+^12C Fusion Reaction with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Henderson, D.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Esbensen, H.; Fernandez-Niello, J. O.; Jiang, C. L.; Lighthall, J. C.; Marley, S. T.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.

    2012-10-01

    The fusion of the ^12C+^12C system is of great interest in nuclear structure and nuclear astrophysics. Above the Coulomb barrier, the excitation function of this system exhibits oscillations, which are not well understood. There is also a significant discrepancy between the experimental fusion cross-section and recent coupled-channel calculations that is not present in other carbon systems. To address these issues, we have re-measured the fusion excitation function for ^12,13C+^12C in the energy range of 10 MeV < Ecm < 20 MeV using a Multi-Sampling Ionization Chamber (MUSIC) detector. The gas of the ionization chamber (CH4) served as both the target material and the counter gas. One of the main advantages of this method is that the excitation function is measured over a large range of energies using only one beam energy. This method has been proven to be successful and it will be used to measure fusion reactions in other light systems. The experimental results will be presented and compared to previous experimental data and theoretical models.

  8. Solving the {sup 12}C+{sup 12}C scattering puzzle: is there the '4th elephant'?

    SciTech Connect

    Demyanova, A. S.; Danilov, A. N.; Ogloblin, A. A.; Goncharov, S. A.; Bohlen, H. G.; Khlebnikov, S. V.; Tyurin, G. P.; Maslov, V. A.; Penionzkevich, Yu. E.; Sobolev, Yu. G.; Trzaska, W.

    2010-04-30

    Differential cross sections of the {sup 12}C+{sup 12}C and the {sup 13}C+{sup 12}C elastic scattering were measured at the projectile energies 240 MeV ({sup 12}C) and 250 MeV ({sup 13}C) up to the largest angles. The positions of the 1{sup st} Airy minima known from the former experiments were confirmed.

  9. Investigation of multiparticle final states in {sup 12}C photoreactions

    SciTech Connect

    Harty, P.D.; MacGregor, I.J.; Annand, J.R.; Anthony, I.; Cross, G.E.; Hall, S.J.; Kellie, J.D.; McGeorge, J.C.; Miller, G.J.; Owens, R.O.; Grabmayr, P.; Hehl, T.; Lamparter, T.; Sauer, M.; Schneider, R.; Spaeth, K.; Branford, D.; Davinson, T.; MacKenzie, J.A.; Ahrens, J.; Beck, R.

    1998-01-01

    The {sup 12}C({gamma},pn), {sup 12}C({gamma},pp), {sup 12}C({gamma},ppp), {sup 12}C({gamma},pp{pi}{sup {plus_minus}}), {sup 12}C({gamma},p{pi}{sup {plus_minus}}) reactions have been studied using tagged photons of energy E{sub {gamma}}=250{endash}600 MeV. A model which includes all major absorption mechanisms and final state interactions gives results that agree well with the shapes of missing energy spectra, but for some channels the predicted cross sections are too large. {copyright} {ital 1998} {ital The American Physical Society}

  10. Investigation of proton-proton short-range correlations via the 12C(e,e'pp) reaction.

    PubMed

    Shneor, R; Monaghan, P; Subedi, R; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertin, P; Bertozzi, W; Boeglin, W; Chen, J P; Choi, Seonho; Chudakov, E; Cisbani, E; Craver, B; de Jager, C W; Feuerbach, R J; Frullani, S; Garibaldi, F; Gayou, O; Gilad, S; Gilman, R; Glamazdin, O; Gomez, J; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; Jans, E; Jiang, X; Jiang, Y; Kaufman, L; Kelleher, A; Kolarkar, A; Kuchina, E; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Nanda, S; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Reitz, B; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Thompson, N; Ulmer, P E; Urciuoli, G M; Voutier, E; Wang, K; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Yao, H; Zheng, X; Zhu, L

    2007-08-17

    We investigated simultaneously the 12C(e,e'p) and 12C(e,e'pp) reactions at Q2=2 (GeV/c)2, xB=1.2, and in an (e, e'p) missing-momentum range from 300 to 600 MeV/c. At these kinematics, with a missing momentum greater than the Fermi momentum of nucleons in a nucleus and far from the delta excitation, short-range nucleon-nucleon correlations are predicted to dominate the reaction. For (9.5+/-2)% of the 12C(e,e'p) events, a recoiling partner proton was observed back-to-back to the 12C(e,e'p) missing-momentum vector, an experimental signature of correlations. PMID:17930888

  11. Investigation of Proton-Proton Short-Range Correlations via the 12C(e,e'pp) Reaction

    SciTech Connect

    J. Arrington; H. Benaoum; F. Benmokhtar; P. Bertin; W. Bertozzi; W. Boeglin; J. P. Chen; Seonho Choi; E. Chudakov; E. Cisbani; B. Craver; C. W. de Jager; R. Feuerbach; S. Frullani; F. Garibaldi; O. Gayou; S. Gilad; R. Gilman; O. Glamazdin; J. Gomez; O. Hansen; D. W. Higinbotham; T. Holmstrom; H. Ibrahim; R. Igarashi; E. Jans; X. Jiang; Y. Jiang; L. Kaufman; A. Kelleher; A. Kolarkar; E. Kuchina; G. Kumbartzki; J. J. LeRose; R. Lindgren; N. Liyanage; D. J. Margaziotis; P. Markowitz; S. Marrone; M. Mazouz; R. Michaels; B. Moffit; S. Nanda; C. F. Perdrisat; E. Piasetzky; M. Potokar; V. Punjabi; Y. Qiang; J. Reinhold; B. Reitz; G. Ron; G. Rosner; A. Saha; B. Sawatzky; A. Shahinyan; S. Sirca; K. Slifer; P. Solvignon; V. Sulkosky; N. Thompson; P. E. Ulmer; G. M. Urciuoli; E. Voutier; K. Wang; J. W. Watson

    2007-08-01

    We investigated simultaneously the 12C(e,e'p) and 12C(e,e'pp) reactions at Q2 = 2 [GeV/c]2, x_B = 1.2, and in an (e,e'p) missing-momentum range from 300 to 600 MeV/c. At these kinematics, with a missing-momentum greater than the Fermi momentum of nucleons in a nucleus and far from the delta excitation, short-range nucleon-nucleon correlations are predicted to dominate the reaction. For(9.5 +/- 2)% of the 12C(e,e'p) events, a recoiling partner proton was observed back-to-back to the 12C(e,e'p) missing momentum vector, an experimental signature of correlations.

  12. The effect of 12C + 12C rate uncertainties on the weak s-process component

    SciTech Connect

    Fryer, Christopher Lee; Hungerford, Aimee L; Hirschi, Raphael; Pignatari, Marco; Bennett, Michael E; Diehl, Steven; Herwig, Falk; Hillary, William; Richman, Debra; Rockefeller, Gabriel; Timmes, Frank X; Wiescher, Michael

    2010-09-10

    The contribution by massive stars (M > 15M{sub {circle_dot}}) to the weak s-process component of the solar system abundances is primarily due to the {sup 22}Ne neutron source, which is activated near the end of helium-core burning. The residual {sup 22}Ne left over from helium-core burning is then reignited during carbon burning, initiating further s-processing that modifies the isotopic distribution. This modification is sensitive to the stellar structure and the carbon burning reaction rate. Recent work on the {sup 12}C + {sup 12}C reaction suggests that resonances located within the Gamow peak may exist, causing a strong increase in the astrophysical S-factor and consequently the reaction rate. To investigate the effect of such a rate, 25M{sub {circle_dot}} stellar models with different carbon burning rates, at solar metallicity, were generated using the Geneva Stellar Evolution Code (GENEC) with nucleosynthesis post-processing calculated using the NuGrid Multi-zone Post-Processing Network code (MPPNP). A strongly enhanced rate can cause carbon burning to occur in a convective core rather than a radiative one and the convective core mixes the matter synthesized there up into the carbon shell, significantly altering the initial composition of the carbon-shell. In addition, an enhanced rate causes carbon-shell burning episodes to ignite earlier in the evolution of the star, igniting the {sup 22}Ne source at lower temperatures and reducing the neutron density.

  13. Semiclassical description of the {sup 6}He+{sup 12}C elastic scattering

    SciTech Connect

    Bayrak, O. Boztosun, I.

    2011-01-15

    The results of the elastic scattering of {sup 6}He+{sup 12}C systemat E{sub Lab} = 18 MeV by using the barrier and internal wave decomposition of the S-matrix element within the framework of the WKB method are presented. This is the first detailed study for the interaction of the exotic {sup 6}He nucleus on different stable nuclei by using a semiclassicalmethod. In this paper, we show that in order to obtain the elastic scattering cross section of the {sup 6}He+{sup 12}C systemat energies close to the Coulomb barrier, it is vitally important to take into account the inner complex turning points in the calculations and the tunneling effects play a crucial role to explain the experimental data. The semiclassical results are compared with the experimental data as well as the quantum-mechanical one.

  14. Nuclear transparency and the onset of strong absorption regime in the 12C+24Mg system

    NASA Astrophysics Data System (ADS)

    Lichtenthäler, R.; Lépine-Szily, A.; Hussein, M. S.

    1999-10-01

    The elastic scattering of 12C+24Mg has been studied by means of a phase-shift analysis of 21 angular distributions ranging from Elab=16 MeV up to Elab=40 MeV. A tridimensional plot of the reflection coefficient of the S matrix as a function of the angular momentum and energy shows a well-defined region of energy, which separates two regimes: strong absorption for higher energies and the so-called ``anomalous transparency regime,'' recently observed in this system at low energies. The Argand diagrams of the S matrix in angular momentum space also present very contrasting behaviors in the two regions with very rapidly varying phases in the low energy region, which we associate with a parity dependent term in the S matrix directly related to significant coupling to the elastic transfer of a 12C nucleus.

  15. Simulation of 12C+12C elastic scattering at high energy by using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Guo, Chen-Lei; Zhang, Gao-Long; Tanihata, I.; Le, Xiao-Yun

    2012-03-01

    The Monte Carlo method is used to simulate the 12C+12C reaction process. Taking into account the size of the incident 12C beam spot and the thickness of the 12C target, the distributions of scattered 12C on the MWPC and the CsI detectors at a detective distance have been simulated. In order to separate elastic scattering from the inelastic scattering with 4.4 MeV excited energy, we set several variables: the kinetic energy of incident 12C, the thickness of the 12C target, the ratio of the excited state, the wire spacing of the MWPC, the energy resolution of the CsI detector and the time resolution of the plastic scintillator. From the simulation results, the preliminary establishment of the experiment system can be determined to be that the beam size of the incident 12C is phi5 mm, the incident kinetic energy is 200-400 A MeV, the target thickness is 2 mm, the ratio of the excited state is 20%, the flight distance of scattered 12C is 3 m, the energy resolution of the CsI detectors is 1%, the time resolution of the plastic scintillator is 0.5%, and the size of the CsI detectors is 7 cm×7 cm, and we need at least 16 CsI detectors to cover a 0° to 5° angular distribution.

  16. {sup 12}C+{sup 12}C reactions at astrophysical energies: Tests of targets behaviour under beam bombardment

    SciTech Connect

    Morales-Gallegos, L.; Aliotta, M.; Davinson, T.; Di Leva, A.; Imbriani, G.; Romano, M.; Romoli, M.; Gialanella, L.; Schürmann, D.; De Cesare, M.; Strieder, F.

    2014-05-09

    {sup 12}C({sup 12}C,α){sup 20}Ne and {sup 12}C({sup 12}C,p){sup 23}Na are the most important reactions during the carbon burning phase in stars. Direct measurements at the relevant astrophysical energy (E=1.5±0.3MeV) are very challenging because of the extremely small cross sections involved and of the high beam-induced background originating from impurities in the targets. In addition, persistent resonant structures at low energies are not well understood and make the extrapolation of the cross section from high energy data very uncertain. As a preliminary step towards the measurements of the {sup 12}C({sup 12}C,α){sup 20}Ne and {sup 12}C({sup 12}C,p){sup 23}Na reactions we intend to investigate the behaviour of targets under beam bombardment, specifically the quantitative measurement of hydrogen and deuterium content of highly pure stable carbon targets in relation to target temperature. Experiments are taking place at the CIRCE accelerator in Caserta, Italy and preliminary results are presented here.

  17. Hyperdeformed band in 36Ar populated in the 12C + 24Mg elastic scattering

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Sciani, W.; Benjamim, E. A.; Chamon, L. C.; Lichtenthäler, R.; Otani, Y.

    2008-05-01

    The strongly oscillating angular distributions of the elastic scattering of 12C + 24Mg at energies around the Coulomb barrier (Ecm = 10.67 - 16.00 MeV) [1] were reproduced adding three Breit-Wigner resonance terms with J values of 6, 7 and 8 h respectively to the l = 6, 7 and 8 terms of the elastic S-matrix. The elastic scattering S-matrix was calculated using the double folding, deep, optical potential with non-local interaction, also called, Sao Paulo Potential [2]. All fifteen angular distributions could be well reproduced by the 3 resonances, located respectively at Ecm = 14.15, 15.8 and 16.9 MeV in the entrance channel, which correspond to excitation energies of 30.45, 32.1 and 33.2 MeV in the 36Ar compound nucleus. The J = 6, 7 and 8 h resonances fit well into a rotational molecular band, together with the J = 18, 20, 22 and 24 h resonances observed in the 16O + 20Ne elastic scattering [3]. The band head is at 29.5 MeV excitation energy in the 36Ar compound nucleus and has a large moment of inertia indicating a large deformation. Calculations of Rae and Merchant [4] propose the existence of a hyperdeformed band in 36Ar with 12C + 24Mg and 16O + 20Ne cluster structure.

  18. Deformation and cluster structures in 12C studied with configuration mixing using Skyrme interactions

    NASA Astrophysics Data System (ADS)

    Fukuoka, Y.; Shinohara, S.; Funaki, Y.; Nakatsukasa, T.; Yabana, K.

    2013-07-01

    We report an investigation of the structure of the 12C nucleus employing a newly developed configuration-mixing method. In the three-dimensional coordinate-space representation, we generate a number of Slater determinants with various correlated structures using the imaginary-time algorithm. We then diagonalize a many-body Hamiltonian with the Skyrme interaction in the space spanned by the Slater determinants with parity and angular momentum projections. Our calculation reasonably describes the ground and excited states of the 12C nucleus, both for shell-model-like and cluster-like states. The excitation energies and transition strengths of the ground-state rotational band are well reproduced. Negative-parity excited states, 11-, 21-, and 31-, are also reasonably described. The second and third 0+ states, 02+ and 03+, appear at around 8.8 and 15 MeV, respectively. The 02+ state shows a structure consistent with former results of the α-cluster models. However, the calculated radius of the 02+ state is smaller than in those calculations. The three-α linear-chain configuration dominates in the 03+ state.

  19. Detailed study for 16O → 12C + α and 12C → 11B + p spectroscopic factors

    NASA Astrophysics Data System (ADS)

    Hamada, Sh.; Burtebayev, N.; Amangeldi, N.

    2014-10-01

    We have measured the angular distributions for 16O elastically scattered on 12C nuclei at energy 28 MeV and also for 12C ion beam elastically scattered on 11B target nuclei at energy 18 MeV. These measurements were performed in the cyclotron DC-60 INP NNC RK. Calculations were performed using both empirical Woods-Saxon and double folding optical model potentials. Both elastic scattering and transfer reaction were taken into consideration. We have extracted the spectroscopic factors for the configurations 16O → 12C + α and 12C → 11B + p and compared them with other calculated or extracted values at different energies from literature. The extracted spectroscopic factor for the configuration 12C → 11B + p from the current work is in the range 2.7-3.1, which is very close to Cohen-Kurath prediction. While for the configuration 16O → 12C + α, spectroscopic factors show fluctuation with energy which could be due to the well-known resonant-like behavior observed in 16O + 12C excitation function.

  20. Preequilibrium processes in the fusion of {sup 12}C with {sup 103}Rh up to 20 MeV/nucleon

    SciTech Connect

    Birattari, C.; Bonardi, M.; Cavinato, M.; Fabrici, E.; Gadioli, E.; Gadioli Erba, E.; Groppi, F.; Bello, M.; Bovati, C.; Di Filippo, A. |; Stevens, T.G.; Connell, S.H.; Sellschop, J.P.; Mills, S.J.; Nortier, F.M.; Steyn, G.F.; Marchetta, C. |

    1996-12-01

    We have measured the excitation functions of several reactions occurring in the fusion of {sup 12}C with {sup 103}Rh at incident energies up to about 230 MeV. The data can be satisfactorily reproduced by considering the preequilibrium emission of particles during the thermalization of the composite nucleus. The energy evolution of the mean-field interaction is also discussed. {copyright} {ital 1996 The American Physical Society.}

  1. Neutrino and antineutrino charge-exchange reactions on {sup 12}C

    SciTech Connect

    Samana, A. R.; Krmpotic, F.; Paar, N.; Bertulani, C. A.

    2011-02-15

    We extend the formalism of weak interaction processes, obtaining new expressions for the transition rates, which greatly facilitate numerical calculations, for both neutrino-nucleus reactions and muon capture. Explicit violation of the conserved vector current hypothesis by the Coulomb field, as well as development of a sum-rule approach for inclusive cross sections, has been worked out. We have done a thorough study of exclusive (ground-state) properties of {sup 12}B and {sup 12}N within the projected quasiparticle random phase approximation (PQRPA). Good agreement with experimental data achieved in this way put into evidence the limitations of the standard RPA and QRPA models, which come from the inability of the RPA to open the p{sub 3/2} shell and from the nonconservation of the number of particles in the QRPA. The inclusive neutrino/antineutrino ({nu}/{nu}-tilde) reactions {sup 12}C({nu},e{sup -}){sup 12}N and {sup 12}C({nu}-tilde,e{sup +}){sup 12}B are calculated within both the PQRPA and the relativistic QRPA. It is found that (i) the magnitudes of the resulting cross sections are close to the sum-rule limit at low energy, but significantly smaller than this limit at high energies, for both {nu} and {nu}-tilde; (ii) they increase steadily when the size of the configuration space is augmented, particularly for {nu}/{nu}-tilde energies >200 MeV; and (iii) they converge for sufficiently large configuration space and final-state spin. The quasi-elastic {sup 12}C({nu},{mu}{sup -}){sup 12}N cross section recently measured in the MiniBooNE experiment is briefly discussed. We study the decomposition of the inclusive cross section based on the degree of forbiddenness of different multipoles. A few words are dedicated to the {nu}/{nu}-tilde-{sup 12}C charge-exchange reactions related to astrophysical applications.

  2. Terahertz Spectroscopy of the Bending Vibrations of Acetylene 12C2H2 and 12C2D2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, B.; Pearson, J.

    2009-12-01

    Several fundamental interstellar molecules, e.g., C2H2, CH4 and C3, are completely symmetric molecules and feature no permanent dipole moment and no pure rotation spectrum. As a result they have only previously been observed in the infrared. However, directly observing them with the rest of the molecular column especially when the source is spatially resolved would be very valuable in understanding chemical evolution. Vibrational difference bands provide a means to detect symmetric molecules with microwave precision using terahertz techniques. Herschel, SOFIA and ALMA have the potential to identify a number of vibrational difference bands of light symmetric species. This paper reports laboratory results on 12C2H2 and 12C2D2. Symmetric acetylene isotopologues have two bending modes, the trans bending and the cis bending. Their difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 3500 GHz for 12C2H2 and 900 GHz for 12C2D2. Twenty 12C2H2 P branch high-J transitions and two hundred and fifty-one 12C2D2 P Q and R branch transitions have been measured in the 0.2 - 1.6 THz region with precision of 50 to 100 kHz. These lines were modeled together with prior data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2H2 and 12C2D2 with the combined data set, and new frequency and intensity predictions were made to support astrophysics applications. The research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. S. Y. was supported by an appointment to the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities through a contract with NASA.

  3. The C-12/C-13 Ratio as a Chemistry Indicator

    NASA Technical Reports Server (NTRS)

    Wirstroem, Eva; Geppert, Wolf; Persson, Carina; Charnley, Steven

    2011-01-01

    Isotopic ratios of elements are considered powerful tools, e.g. in tracing the origin of solar system body materials, or the degree of nucleosynthesis processing throughout the Galaxy. In interstellar molecules, some isotopic ratios like H/D and C-12/C-13 can also be used as indicators of their chemical origin. Isotope fractionation in gas-phase chemical reactions and gas-dust interaction makes observations of the ratio between C-12 and C-13 isotopologues suitable to distinguish between different formation scenarios. We will present observations of the C-12/C-13 ratio in methanol and formaldehyde towards a sample of embedded, massive young stellar objects. In relation to this we also present results from theoretical modeling showing the usefulness of the C-12/C-13 ratio as a chemistry indicator.

  4. Reexamination of the excited states of {sup 12}C

    SciTech Connect

    Freer, M.; Munoz-Britton, T.; Nicoli, M. P.; Singer, S. M.; Sparks, N.; Boztosun, I.; Bremner, C. A.; Chappell, S. P. G.; Rae, W. D. M.; Cowin, R. L.; Dillon, G. K.; Fulton, B. R.; Greenhalgh, B. J.; Watson, D. L.; Weisser, D. C.

    2007-09-15

    An analysis of the {sup 12}C({sup 12}C,3{alpha}){sup 12}C reaction was made at beam energies between 82 and 106 MeV. Decays to both the ground state and the excited states of {sup 8}Be were isolated, allowing states of different characters to be identified. In particular, evidence was found for a previously observed state at 11.16 MeV. An analysis of the angular distributions of the unnatural parity states at 11.83 and 13.35 MeV, previously assigned J{sup {pi}}=2{sup -}, calls into question the validity of these assignments, suggesting that at least one of the states may correspond to J{sup {pi}}=4{sup -}. Evidence is also found for 1{sup -} and 3{sup -} strengths associated with broad states between 11 and 14 MeV.

  5. Electromagnetic Response of ^{12}C: A First-Principles Calculation.

    PubMed

    Lovato, A; Gandolfi, S; Carlson, J; Pieper, Steven C; Schiavilla, R

    2016-08-19

    The longitudinal and transverse electromagnetic response functions of ^{12}C are computed in a "first-principles" Green's function Monte Carlo calculation, based on realistic two- and three-nucleon interactions and associated one- and two-body currents. We find excellent agreement between theory and experiment and, in particular, no evidence for the quenching of the measured versus calculated longitudinal response. This is further corroborated by a reanalysis of the Coulomb sum rule, in which the contributions from the low-lying J^{π}=2^{+}, 0_{2}^{+} (Hoyle), and 4^{+} states in ^{12}C are accounted for explicitly in evaluating the total inelastic strength. PMID:27588850

  6. EFOM 12C software: general overview. Final report

    SciTech Connect

    Jadot, P.; Fuchsova, J.; Vankelecom, E.; Van der Voort, E.; Thonet, C.

    1981-01-01

    The EFOM EC-12C software is described, produced by Systems-Europe during the first program of the CEC on energy modelling. This includes DAMOCLES, a specific data-base management system; SIMUL, a simulation program whose prime function is to check data consistency and issue warning messages when inconsistencies occur; and ORESTE-EDISON, a linear program matrix generator and report writer. The energy model, and the method of representing the energy system are briefly described. Appendix A defines the parameters needed to perform the case studies using the EFOM 12C software.

  7. Cluster Structure of {sup 12}C and {sup 11}Be

    SciTech Connect

    Freer, M.; Haigh, P. J.; Ashwood, N. I.; Bloxham, T.; Curtis, N.; McEwan, P.; Fujita, H.; Carter, J.; Usman, I.; Buthelezi, Z.; Foertsch, S. V.; Neveling, R.; Perez, S. M.; Smit, F. D.; Fearick, R. W.; Papka, P.; Swartz, J. A.; Bohlen, H. G.; Dorsch, T.; Kokalova, Tz.

    2009-08-26

    The structure of {sup 12}C is discussed, in particular the spectrum of states above the alpha-decay threshold. A search for the 2{sup +} excitation of the Hoyle-state is reported. The structural link between halo-like states and molecular states is explored in the case of {sup 11}Be.

  8. The Rotation-Vibration Structure of 12C

    NASA Astrophysics Data System (ADS)

    Gai, M.; Bijker, R.; Freer, M.; Kokalova, T.; Marin-Lambarri, D. J.; Wheldon, C.

    2014-12-01

    The newly measured high spin Jπ = 5- state at 22.4(2) MeV in 12C reported in this conference, fits very well to the predicted (ground state) rotational band of an oblate equilateral triangular spinning top with a D3h symmetry characterized by the sequence of states: 0+, 2+, 3- 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D3h symmetry was observed in triatomic molecules, and it is observed here for the first time in nuclear physics. We discuss a classification of other rotation-vibration bands in 12C such as the (0+) Hoyle band and the (1-) bending mode band and suggest measurements in search of the predicted ("missing") states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or non observation) of the predicted ("missing") states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.654 MeV in 12 C.

  9. {sup 12}C formation: A classical quest in new light

    SciTech Connect

    Tengblad, O.; Alcorta, M.; Borge, M. J. G.; Madurga, M.; Perea, A.; Cubero, M.; Fynbo, H. O. U.; Riisager, K.; Kirsebom, O.; Hyldegaard, S.; Jonson, B.; Nyman, G.; Nilsson, T.; Diget, D. G.; Fulton, B.

    2011-10-28

    In this work we have studied the break-up of {sup 12}C following the reactions {sup 10}B({sup 3}He,p{alpha}{alpha}{alpha}) and {sup 11}B({sup 3}He,d{alpha}{alpha}{alpha}). The study was performed at the 5 MV tandem in Madrid. The break-up gives us information on excited states in {sup 12}C from the famous Hoyle state up to an energy of almost 18 MeV. Using a highly segmented experimental set-up the simultaneous detection of the three alpha particles in coincidence with a proton or deuteron respectively made possible a full kinematic reconstruction of the break-up. On the basis of the energies of the 3 {alpha} particles and their angular correlations it has been possible to determine the spin and parity of states for cases in which the assignment has been doubtful. Some of these levels will also de-excite via electromagnetic emission. The comparison between the energy of proton that populate a state of {sup 12}C and the sum of the energies of the 3{alpha} emitted from the same state makes possible to determine the presence of electromagnetic disintegration ({gamma}) to lower states within {sup 12}C followed by the 3{alpha} break-up.

  10. Evidence for triangular D3h symmetry in 12C.

    PubMed

    Marín-Lámbarri, D J; Bijker, R; Freer, M; Gai, M; Kokalova, Tz; Parker, D J; Wheldon, C

    2014-07-01

    We report a measurement of a new high spin Jπ=5- state at 22.4(2) MeV in 12C which fits very well to the predicted (ground state) rotational band of an oblate equilateral triangular spinning top with a D3h symmetry characterized by the sequence 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D3h symmetry was observed in triatomic molecules, and it is observed here for the first time in nuclear physics. We discuss a classification of other rotation-vibration bands in 12C such as the (0+) Hoyle band and the (1-) bending mode band and suggest measurements in search of the predicted ("missing") states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or nonobservation) of the predicted ("missing") states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.654 MeV in 12C. PMID:25032922

  11. The effect of 12C +12C rate uncertainties on the evolution and nucleosynthesis of massive stars

    NASA Astrophysics Data System (ADS)

    Bennett, M. E.; Hirschi, R.; Pignatari, M.; Diehl, S.; Fryer, C.; Herwig, F.; Hungerford, A.; Nomoto, K.; Rockefeller, G.; Timmes, F. X.; Wiescher, M.

    2012-03-01

    Over the last 40 years, the 12C +12C fusion reaction has been the subject of considerable experimental efforts to constrain uncertainties at temperatures relevant for stellar nucleosynthesis. Recent studies have indicated that the reaction rate may be higher than that currently used in stellar models. In order to investigate the effect of an enhanced carbon-burning rate on massive star structure and nucleosynthesis, new stellar evolution models and their yields are presented exploring the impact of three different 12C +12C reaction rates. Non-rotating stellar models considering five different initial masses, 15, 20, 25, 32 and 60 M⊙, at solar metallicity, were generated using the Geneva Stellar Evolution Code (GENEC) and were later post-processed with the NuGrid Multi-zone Post-Processing Network tool (MPPNP). A dynamic nuclear reaction network of ˜1100 isotopes was used to track the s-process nucleosynthesis. An enhanced 12C +12C reaction rate causes core carbon burning to be ignited more promptly and at lower temperature. This reduces the neutrino losses, which increases the core carbon-burning lifetime. An increased carbon-burning rate also increases the upper initial mass limit for which a star exhibits a convective carbon core (rather than a radiative one). Carbon-shell burning is also affected, with fewer convective-shell episodes and convection zones that tend to be larger in mass. Consequently, the chance of an overlap between the ashes of carbon-core burning and the following carbon shell convection zones is increased, which can cause a portion of the ashes of carbon-core burning to be included in the carbon shell. Therefore, during the supernova explosion, the ejecta will be enriched by s-process nuclides synthesized from the carbon-core s-process. The yields were used to estimate the weak s-process component in order to compare with the Solar system abundance distribution. The enhanced rate models were found to produce a significant proportion of Kr

  12. Centrality and system-size dependencies of temperatures of soft and hard components of pt distributions of negative pions in 4He + 12C, and 12C + 181Ta collisions at √{sN N}=3.14 GeV

    NASA Astrophysics Data System (ADS)

    Olimov, Kh. K.; Iqbal, Akhtar; Haseeb, Mahnaz Q.; Lutpullaev, S. L.; Yuldashev, B. S.

    2015-08-01

    Collision centrality as well as the system-size dependencies of the temperatures of the soft (pt=0.1 -0.5 GeV/c ) and hard (pt=0.5 -1.2 GeV/c ) components of the experimental transverse momentum distributions of the negative pions produced in 4He+12C , 12C+12C , and 12C+181Ta collisions at 4.2 A GeV/c (√{sN N}=3.14 GeV ) are analyzed. For the studied collision systems and selected collision centralities, the temperatures are extracted from fitting separately the soft and hard pt components of the negative pions by one-temperature Hagedorn and one-temperature Boltzmann functions. The extracted temperatures of both the soft and hard components of the pt distributions of π- depend on the geometry (size) and degree of overlap of the colliding nuclei in peripheral, semicentral, and central nucleus-nucleus collisions at √{sN N}=3.14 GeV . The gap (differences) between the extracted temperatures in the studied collision systems increases with increasing the degree of overlap of the colliding nuclei, i.e., with an increase in the collision centrality and the corresponding increase in the numbers of participant nucleons and binary collisions. The temperature of the soft pt component of the negative pions in 12C+12C (12C+181Ta ) collisions increases (decreases) with increasing of the collision centrality. The temperature of the hard pt component of π- in 12C+181Ta (4He+12C ) collisions increases (decreases) consistently with an increase in the collision centrality. The temperature of the soft pt component of π- decreases with an increase in the system size in semicentral and central nucleus-nucleus collisions at √{sN N}=3.14 GeV . In central collisions, the temperature of the hard pt component increases consistently with an increase in system size. The physical interpretations of the results obtained are given. The quantitative results on temperatures extracted from the pt spectra of negative pions in nucleus-nucleus collisions at 4.2 A GeV/c are compared to those

  13. Tests of Predictions of the Algebraic Cluster Model: the Triangular D 3h Symmetry of 12C

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2016-07-01

    A new theoretical approach to clustering in the frame of the Algebraic Cluster Model (ACM) has been developed. It predicts rotation-vibration structure with rotational band of an oblate equilateral triangular symmetric spinning top with a D 3h symmetry characterized by the sequence of states: 0+, 2+, 3-, 4±, 5- with a degenerate 4+ and 4- (parity doublet) states. Our measured new 2+ 2 in 12C allows the first study of rotation-vibration structure in 12C. The newly measured 5- state and 4- states fit very well the predicted ground state rotational band structure with the predicted sequence of states: 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D 3h symmetry is characteristic of triatomic molecules, but it is observed in the ground state rotational band of 12C for the first time in a nucleus. We discuss predictions of the ACM of other rotation-vibration bands in 12 C such as the (0+) Hoyle band and the (1-) bending mode with prediction of (“missing 3- and 4-”) states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or non observation) of the predicted (“missing”) states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.6542 MeV in 12C. We discuss proposed research programs at the Darmstadt S-DALINAC and at the newly constructed ELI-NP facility near Bucharest to test the predictions of the ACM in isotopes of carbon.

  14. Emission of charged particles from excited compound nucleus

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.

    2010-11-24

    The formation and decay of excited compound nucleus are studied within the dinuclear system model[1]. The cross sections of complex fragment emission are calculated and compared with experimental data for the reactions {sup 3}He+{sup 108}Ag, {sup 78,82}Kr+{sup 12}C. Angular momentum dependence of cluster emission in {sup 78}Kr+{sup 12}C and {sup 40}Ca+{sup 78}Kr reactions is demonstrated.

  15. 12C(p,p‧) scattering measurement at forward angles

    NASA Astrophysics Data System (ADS)

    Tamii, A.; Adachi, T.; Fujita, K.; Hatanaka, K.; Hashimoto, H.; Itoh, M.; Matsubara, H.; Nakanishi, K.; Sakemi, Y.; Shimbara, Y.; Shimizu, Y.; Tameshige, Y.; Yosoi, M.; Fujita, Y.; Sakaguchi, H.; Zenihiro, J.; Kawabata, T.; Sasamoto, Y.; Dozono, M.; Carter, J.; Fujita, H.; Rubio, B.; Perez, A.

    Experimental method of measuring inelastic proton scattering with high-resolution at forward angles including zero degrees has been developed. An energy resolution of 20 keV and a scattering angle resolution of 0.5 degrees have been achieved as well as low background condition and a reliable background subtraction method. The experimental technique was applied to the 12C(p,p‧) reaction for studying the property of the second 0+ state at 7.7 MeV and a broad bump around Ex~10 MeV, where the presence of a 2+ state was reported from the 12C(α,α‧) measurement. Preliminary spectra and angular distributions are shown.

  16. Observation of. lambda. -hypernuclei in the reaction /sup 12/C(. pi. /sup +/,K/sup +/)/sub. lambda. //sup 12/C

    SciTech Connect

    Milner, E.C.

    1985-12-01

    The observation of ..lambda..-hypernuclear levels in /sub ..lambda..//sup 12/C by associated production through the (..pi../sup +/,K/sup +/) reaction is reported. Spectrometers used in the measurements are discussed. The /sub ..lambda..//sup 12/C excitation energy spectra were recorded at laboratory scattering angles of 5.6/sup 0/, 10.3/sup 0/, and 15.2/sup 0/. The spectra show two major peaks - one attributed to the ground state, and one about 11 MeV higher in excitation. The peak near 11 MeV excitation energy is believed to be almost entirely composed of a multiplet of three J/sup ..pi../ = 2/sup +/ states. Relativistic DWBA calculations imply support for the expectation that higher spin states are preferentially populated in the (..pi../sup +/,K/sup +/) reaction, compared to the (K/sup -/,..pi../sup -/) reaction in which lower spin states are excited. 29 refs., 40 figs.

  17. AGB fluorine nucleosynthesis studied by means of Trojan-horse method: the case of {sup 15}N(p,{alpha}){sup 12}C

    SciTech Connect

    Pizzone, R. G.; Spitaleri, C.; La Cognata, M.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, S.; Tumino, A.; Tribble, R.; Trache, L.; Fu, C.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.

    2008-05-12

    The low-energy bare-nucleus cross section for {sup 15}N(p,{alpha}){sup 12}C is extracted by means of the Trojan-horse Method applied to the {sup 2}H({sup 15}N,{alpha}){sup 12}C)n reaction at E{sub beam} = 60 MeV. The astrophysical S-factor is deduced and compared to the direct data in the same energy region. A fair agreement with direct data down to 80 keV is found if energy resolution effects are taken into account.

  18. Nuclear transparency from quasielastic 12C(e,e'p)

    SciTech Connect

    D. Rohe; O. Benhar; C.S. Armstrong; R. Asaturyan; O.K. Baker; S. Bueltmann; C. Carasco; D. Day; R. Ent; H.C. Fenker; K. Garrow; A. Gasparian; P. Gueye; M. Hauger; A. Honegger; J. Jourdan; C.E. Keppel; G. Kubon; R. Lindgren; A. Lung; D.J. Mack; J.H. Mitchell; H. Mkrtchyan; D. Mocelj; K. Normand; T. Petitjean; O. Rondon; E. Segbefia; I. Sick; S. Stepanyan; L. Tang; F. Tiefenbacher; W.F. Vulcan; G. Warren; S.A. Wood; L. Yuan; M. Zeier; H. Zhu; B. Zihlmann

    2005-11-01

    We studied the reaction 12C(e,e'p) in quasielastic kinematics at momentum transfers between 0.6 and 1.8 (GeV/c){sup 2} covering the single-particle region. From this the nuclear transparency factors are extracted using two methods. The results are compared to theoretical predictions obtained using a generalization of Glauber theory described in this paper. Furthermore, the momentum distribution in the region of the 1s-state up to momenta of 300 MeV/c is obtained from the data and compared to the Correlated Basis Function theory and the Independent-Particle Shell model.

  19. 2{sup +} excitation of the {sup 12}C Hoyle state

    SciTech Connect

    Freer, M.; Fujita, H.; Carter, J.; Usman, I.; Buthelezi, Z.; Foertsch, S. V.; Neveling, R.; Perez, S. M.; Smit, F. D.; Fearick, R. W.; Papka, P.; Swartz, J. A.

    2009-10-15

    A high-energy-resolution magnetic spectrometer has been used to measure the {sup 12}C excitation energy spectrum to search for the 2{sup +} excitation of the 7.65 MeV, 0{sup +} Hoyle state. By measuring in the diffractive minimum of the angular distribution for the broad 0{sup +} background, evidence is found for a possible 2{sup +} state at 9.6(1) MeV with a width of 600(100) keV. The implications for the {sup 8}Be+{sup 4}He reaction rate in stellar environments are discussed.

  20. Electromagnetic Response of 12C: A First-Principles Calculation

    NASA Astrophysics Data System (ADS)

    Lovato, A.; Gandolfi, S.; Carlson, J.; Pieper, Steven C.; Schiavilla, R.

    2016-08-01

    The longitudinal and transverse electromagnetic response functions of 12C are computed in a "first-principles" Green's function Monte Carlo calculation, based on realistic two- and three-nucleon interactions and associated one- and two-body currents. We find excellent agreement between theory and experiment and, in particular, no evidence for the quenching of the measured versus calculated longitudinal response. This is further corroborated by a reanalysis of the Coulomb sum rule, in which the contributions from the low-lying Jπ=2+, 02+ (Hoyle), and 4+ states in 12 are accounted for explicitly in evaluating the total inelastic strength.

  1. Symplectic structure and monopole strength in {sup 12}C

    SciTech Connect

    Yoshida, T.; Itagaki, N.; Kato, K.

    2011-02-15

    The relation between the monopole transition strength and existence of cluster structure in the excited states is discussed based on an algebraic cluster model. The structure of {sup 12}C is studied with a 3{alpha} model, and the wave function for the relative motions between {alpha} clusters are described by the symplectic algebra Sp(2, R){sub z}, which corresponds to the linear combinations of SU(3) states with different multiplicities. Introducing Sp(2,R){sub z} algebra works well for reducing the number of the basis states, and it is also shown that states connected by the strong monopole transition are classified by a quantum number {Lambda} of the Sp(2,R){sub z} algebra.

  2. Study of /sup 12/C interactions at HISS

    SciTech Connect

    Crawford, H.J.

    1982-12-01

    Single-particle inclusive measurements in high-energy nuclear physics have provided the foundation for a number of models of interacting nuclear fluids. Such measurements yield information on the endpoints of the evolution of highly excited nuclear systems. However, they suffer from the fact that observed particles can be formed in a large number of very different evolutionary paths. To learn more about how interactions proceed we have performed a series of experiments in which all fast nuclear fragments are analyzed for each individual interaction. These experiments were performed at the LBL Bevalac HISS (Heavy Ion Spectrometer System) facility where we studied the interaction of 1 GeV/nuc 12C nuclei with targets of C, CH/sub 2/, Cu, and U. In this paper we describe HISS and present some preliminary results of the experiment.

  3. Low-energy neutron direct capture by 12C in a dispersive optical potential

    NASA Astrophysics Data System (ADS)

    Kitazawa, H.; Go, K.; Igashira, M.

    1998-01-01

    A dispersive optical potential for the interaction between low-energy neutrons and 12C nuclei is derived from a dispersion relation based on the Feshbach generalized optical model. The potential reproduces completely neutron total cross sections below 1.0 MeV and substantially reproduces the energy of the 3090 keV(1/2+) level in 13C which is of nearly pure 2s1/2 single-particle character. It is found that direct-capture model calculations with this potential explain quite successfully the observed off-resonance capture transitions to the ground (1/2-), 3090 keV(1/2+), 3685 keV(3/2-), and 3854 keV(5/2+) levels in 13C at neutron energies of 20-600 keV. Special emphasis is laid on the fact that in these model analyses, account should be taken of the spatial nonlocality of the neutron-nucleus interaction potential, in particular for negative energies.

  4. Low-energy neutron direct capture by {sup 12}C in a dispersive optical potential

    SciTech Connect

    Kitazawa, H.; Go, K.; Igashira, M.

    1998-01-01

    A dispersive optical potential for the interaction between low-energy neutrons and {sup 12}C nuclei is derived from a dispersion relation based on the Feshbach generalized optical model. The potential reproduces completely neutron total cross sections below 1.0 MeV and substantially reproduces the energy of the 3090keV(1/2{sup +}) level in {sup 13}C which is of nearly pure 2s{sub 1/2} single-particle character. It is found that direct-capture model calculations with this potential explain quite successfully the observed off-resonance capture transitions to the ground (1/2{sup {minus}}), 3090keV(1/2{sup +}), 3685keV(3/2{sup {minus}}), and 3854keV(5/2{sup +}) levels in {sup 13}C at neutron energies of 20{endash}600 keV. Special emphasis is laid on the fact that in these model analyses, account should be taken of the spatial nonlocality of the neutron-nucleus interaction potential, in particular for negative energies. {copyright} {ital 1998} {ital The American Physical Society}

  5. Energies of molecular structures in 12C,16O,20Ne,24Mg, and 32S

    NASA Astrophysics Data System (ADS)

    Royer, G.; Ramasamy, G.; Eudes, P.

    2015-11-01

    The energies of the 12C,16O,20Ne,24Mg, and 32S 4 n nuclei have been determined within a generalized liquid drop model and assuming different planar and three-dimensional shapes of the α molecules: linear chain, triangle, square, tetrahedron, pentagon, trigonal bipyramid, square pyramid, hexagon, octahedron, octagon, and cube. The potential barriers governing the entrance and decay channels via α absorption or emission as well as more symmetric binary and ternary reactions have been compared. The rms radii of the linear chains differ from the experimental rms radii of the ground states. The binding energies of the three-dimensional shapes at the contact point are higher than the ones of the planar configurations. The α particle plus A-4 daughter configuration leads always to the lowest potential barrier. The binding energy can be reproduced within the sum of the binding energy of n α particles plus the number of bonds multiplied by 2.4 MeV or by the sum of the binding energies of one α particle and the daughter nucleus plus the Coulomb energy and the proximity energy.

  6. {sup 35}Cl+{sup 12}C asymmetrical fission excitation functions

    SciTech Connect

    Beck, C.; Mahboub, D.; Nouicer, R.; Matsuse, T.; Djerroud, B.; Freeman, R.M.; Haas, F.; Hachem, A.; Morsad, A.; Youlal, M.; Dayras, R.; Wieleczko, J.P.; Berthoumieux, E.; Legrain, R.; Pollacco, E.

    1996-07-01

    The fully energy-damped yields from the {sup 35}Cl+{sup 12}C reaction have been systematically investigated using particle-particle coincidence techniques at a {sup 35}Cl bombarding energy of {approximately}8 MeV/nucleon. The fragment-fragment correlation data show that the majority of events arises from a binary-decay process with rather large numbers of secondary light-charged particles emitted from the two excited exit fragments. No evidence is observed for ternary break-up events. The binary-process results of the present measurement, along with those of earlier, inclusive experimental data obtained at several lower bombarding energies are compared with predictions of two different kinds of statistical model calculations. These calculations are performed using the transition-state formalism and the extended Hauser-Feshbach method and are based on the available phase space at the saddle point and scission point of the compound nucleus, respectively. The methods give comparable predictions and are both in good agreement with the experimental results thus confirming the fusion-fission origin of the fully damped yields. The similarity of the predictions for the two models supports the claim that the scission point configuration is very close to that of the saddle point for the light {sup 47}V compound system. The results also give further support for the specific mass-asymmetry-dependent fission barriers needed in the transition-state calculation. {copyright} {ital 1996 The American Physical Society.}

  7. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  8. 29 CFR 779.504 - The retailer and section 12(c).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Child Labor Provisions § 779.504 The retailer and section 12(c). Section 12(c) was amended in 1961 to prohibit the employment of oppressive child labor in any enterprise engaged in commerce or in the... comply with section 12(c) of the child labor provisions of the Act. As stated in § 779.503,...

  9. 29 CFR 779.504 - The retailer and section 12(c).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Child Labor Provisions § 779.504 The retailer and section 12(c). Section 12(c) was amended in 1961 to prohibit the employment of oppressive child labor in any enterprise engaged in commerce or in the... comply with section 12(c) of the child labor provisions of the Act. As stated in § 779.503,...

  10. 29 CFR 779.504 - The retailer and section 12(c).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Child Labor Provisions § 779.504 The retailer and section 12(c). Section 12(c) was amended in 1961 to prohibit the employment of oppressive child labor in any enterprise engaged in commerce or in the... comply with section 12(c) of the child labor provisions of the Act. As stated in § 779.503,...

  11. 29 CFR 779.504 - The retailer and section 12(c).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Child Labor Provisions § 779.504 The retailer and section 12(c). Section 12(c) was amended in 1961 to prohibit the employment of oppressive child labor in any enterprise engaged in commerce or in the... comply with section 12(c) of the child labor provisions of the Act. As stated in § 779.503,...

  12. 29 CFR 779.504 - The retailer and section 12(c).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Child Labor Provisions § 779.504 The retailer and section 12(c). Section 12(c) was amended in 1961 to prohibit the employment of oppressive child labor in any enterprise engaged in commerce or in the... comply with section 12(c) of the child labor provisions of the Act. As stated in § 779.503,...

  13. Nucleus-nucleus scattering at high energies

    NASA Technical Reports Server (NTRS)

    Franco, V.; Varma, G. K.

    1977-01-01

    Nucleus-nucleus scattering is treated in the Glauber approximation. The usual optical limit result, generally thought to improve as the number of nucleons in the colliding nuclei increases, is found to be the first term of a series which diverges for large nuclei. Corrections to the optical limit are obtained which provide a means of performing realistic calculations for collisions involving light nuclei. Total cross section predictions agree well with recent measurements.

  14. Effect of repulsive and attractive three-body forces on nucleus-nucleus elastic scattering

    SciTech Connect

    Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.

    2009-10-15

    The effect of the three-body force (TBF) is studied in nucleus-nucleus elastic scattering on the basis of Brueckner theory for nucleon-nucleon (NN) effective interaction (complex G matrix) in the nuclear matter. A new G matrix called CEG07 proposed recently by the present authors includes the TBF effect and reproduces a realistic saturation curve in the nuclear matter, and it is shown to well reproduce proton-nucleus elastic scattering. The microscopic optical potential for the nucleus-nucleus system is obtained by folding the G matrix with nucleon density distributions in colliding nuclei. We first analyze in detail the {sup 16}O+{sup 16}O elastic scattering at E/A=70 MeV. The observed cross sections are nicely reproduced up to the most backward scattering angles only when the TBF effect is included. The use of the frozen-density approximation (FDA) is essentially important to properly estimate the effect of the TBF in nucleus-nucleus scattering. Other prescriptions for defining the local density have also been tested, but only the FDA prescription gives a proper description of the experimental cross sections as well as the effect of the TBF. The effects of the three-body attraction and the {omega}-rearrangement term are also analyzed. The CEG07 interaction is compared with CDM3Y6, which is a reliable and successful effective density-dependent NN interaction used in the double-folding model. The CEG07 G matrix is also tested in the elastic scattering of {sup 16}O by the {sup 12}C, {sup 28}Si, and {sup 40}Ca targets at E/A=93.9 MeV, and in the elastic scattering of {sup 12}C by the {sup 12}C target at E/A=135 MeV with great success. The decisive effect of the TBF is clearly seen also in those systems. Finally, we have tested CEG07a, CEG07b, and CEG07c for the {sup 16}O+{sup 16}O system at various energies.

  15. One- and two-step mechanisms of the 9Be( 12C, 11B) 10B reaction at Elab( 12C)=65 MeV and the energy dependence of 11,10B+ 10B interactions

    NASA Astrophysics Data System (ADS)

    Rudchik, A. T.; Momotyuk, O. A.; Budzanowski, A.; Chernievsky, V. K.; Koshchy, E. I.; Mokhnach, A. V.; Ziman, V. A.; Kliczewski, S.; Siudak, R.; Skwirczyńska, I.; Szczurek, A.; Makowska-Rzeszutko, M.; G l̵owacka, L.; Turkiewicz, J.

    2000-09-01

    Angular distributions of the 9Be( 12C, 11B) 10B reaction were measured at the energy of Elab( 12C)=65 MeV for transitions to the ground and 0.72 MeV (1 +), 1.74 MeV (0 +, T=1), 3.59 MeV (2 +) excited states of the 10B nucleus and 2.12 MeV (1/2 -)+2.15 MeV (1 +) excited states of 11B and 10B nuclei, respectively. Data were analyzed within the coupled reaction channel (CRC) model including one- and two-step transfer mechanisms. The elastic and inelastic scattering and p-, d-, (d + n)-, (n + p)-, ( 3He + p)- and ( 3He + d)-transfer mechanisms were included in the coupled channel scheme. It was found that two-step processes are important for all transitions. Data of 10B+ 10B elastic scattering from the literature were included in the analysis of the energy dependence of optical model parameters for 10B+ 10B and 10B+ 11B interactions. A good description of all sets of experimental data was achieved.

  16. Velocity spectra and angular distributions of evaporation residues from sup 32 S + sup 12 C at 145 MeV

    SciTech Connect

    Arena, N.; Cavallaro, S.; Femino', S.; Figuera, P.; Pirrone, S.; Porto, F.; Sambataro, S. )

    1991-11-01

    Velocity spectra and angular and mass distributions for the evaporation residues of the {sup 32}S+{sup 12}C system at {ital E}{sup 32}S=145 MeV in the angular range 3{degree}{le}{var theta}{sub {ital L}}{le}12{degree} have been measured. In order to separate compound nucleus evaporation residues from other heavy reaction products, a kinematic analysis based on simple statistical assumptions relative to the velocity spectra was performed. The structures in the mass distribution are compared with the LILITA code predictions. The fusion excitation function of the existing results is compared with theoretical models. The total reaction cross section has been extracted by means of the modified sum of differences method.

  17. Reconstruction of ^16O(,)^12C Events in the HIγS Optical Readout Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Stave, S.; Ahmed, M. W.; Clinton, E. R.; Howell, C. R.; Seo, P.-N.; Weller, H. R.; Gai, M.; Young, A. H.; Bromberger, B.; Dangendorf, V.; Tittelmeier, K.

    2008-10-01

    A new optical readout time projection chamber (O-TPC) is in use at the High Intensity γ-ray Source (HIγS) located at the Free Electron Laser Laboratory on the Duke University campus. One application of the HIγS O-TPC is the study of the inverse of the ^12C(,)^16O reaction which is important for stellar evolution theory. In the O-TPC, incoming γ-rays interact with an ^16O nucleus producing an α and a ^12C which then leave trails of ionization electrons along their path. The O-TPC then provides several signals each of which must be interpreted simultaneously to determine the different particle types, their energies and their directions. Part of the challenge of operating the O-TPC is integrating the fast signals from the photomultiplier tubes and drift chamber with the slow signals from the CCD camera which images the tracks. Automated routines have been developed to take all of the available track information and provide a reliable determination of the interaction cross section. Examples of the method and preliminary results will be presented.

  18. Terahertz Spectroscopy and Global Analysis of the Bending Vibrations of ^{12}C_2H_2 and ^{12}C_2D_2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-06-01

    Symmetric molecules have no permanent dipole moment and are undetectable by rotational spectroscopy. Their interstellar observations have previously been limited to mid-infrared vibration-rotation spectroscopy. Although relatively weak, vibrational difference bands provide a means for detection of non polar molecules by terahertz techniques with microwave precision. Herschel, SOFIA, and ALMA have the potential to identify a number of difference bands of light symmetric species, e.g., C_2H_2, CH_4 and C_3. This paper reports the results of the laboratory study on ^{12}C_2H_2 and ^{12}C_2D_2. The symmetric isotopomers of acetylene have two bending modes, the trans bending ν_4 (^1{π}_g), and the cis bending ν_5 (^1{π}_u). For ^{12}C_2H_2, the two bending modes occur at 612 and 729 cm^{-1}, respectively. For ^{12}C_2D_2, the two bending modes occur at 511 and 538 cm^{-1}. The ν_5-ν_4 difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 117 cm^{-1} (3500 GHz) for ^{12}C_2H_2 and 27 cm^{-1} (900 GHz) for ^{12}C_2D_2. Two hundred and fifty-one ^{12}C_2D_2 transitions, which are from ν_5-ν_4, (ν_5+ν_4)-2ν_4 and 2ν_5-(ν_5+ν_4) bands, have been measured in the 0.2-1.6 THz region, and 202 of them were observed for the first time. The precision of these measurements is estimated to be from 50 kHz to 100 kHz. A multistate analysis was carried out for the bending vibrational modes ν_4 and ν_5 of ^{12}C_2D_2, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for ^{12}C_2D_2 by adding the new measurements to the old data set which had only 10 lines with microwave measurement precision. The experiments on ^{12}C_2H_2 are in progress and ten P branch lines have been observed. We will present the ^{12}C_2H_2 results to date.

  19. Measurement of the di-electron mass spectrum in 12C+12C collisions at 2 AGeV by HADES

    SciTech Connect

    Sudol, Malgorzata

    2006-07-11

    The High Acceptance DiElectron Spectrometer (HADES) has been constructed at the SIS accelerator (GSI, Darmstadt) to investigate electron-positron pairs produced in proton, pion and heavy-ion induced reactions. The physics programme of HADES is focused on in-medium properties of light vector mesons. In this contribution the HADES experiment is outlined and first results obtained for 12C + 12C collisions at 2 AGeV are presented.

  20. Measurement of the complete fusion cross section of /sup 12/C+/sup 159/Tb, /sup 12/C+/sup 165/Ho

    SciTech Connect

    Wang Sufang; Cai Wei; Zheng Jiwen

    1989-07-01

    Complete fusion cross sections have been measured for /sup 12/C+/sup 159/Tb and /sup 12/C+/sup 165/Ho reactions by measuring /ital K/--/ital X/ rays of evaporation residues with a Si (Li) spectrometer. The half-lives of evaporation residues and their yield distributions as a function of incident energy have also been obtained. The experimental values for complete fusion cross sections were compared with the theoretical ones.

  1. Investigation of Proton-Proton Short-Range Correlations via the 12C(e,eï ½Rpp) Reaction

    SciTech Connect

    Sheyor, Ran

    2007-12-01

    In this work we present a simultaneous measurement of the 12C(e,e2p) and 12C(e,e2pp) reactions. This measurement was done as part of the E01-015 experiment at Hall A of Jefferson Lab, at Q2 = 2 (GeV/c) 2 , B x = 1.2, for an (e,e2p) missing-momentum range from 300 to 600 MeV/c. At these kinematics conditions, with a missing-momentum greater than the Fermi momentum of nucleons in a nucleus and far from the D excitation, nucleon-nucleon Short-Range Correlations (SRCs) are predicted to dominate the reaction. For 9.5 ± 2% of the 12C(e,e2p) events, a recoiling partner proton was observed in the opposite direction to the 12C(e,e2p) missing momentum vector with roughly equal momentum. This observation is an experimental signature for proton-proton short-range correlations (pp-SRC) in nuclei. Even though the probability of pp-SRCs in nuclei is small, they are important since they can teach us about the strong interaction at short distances. Moreover, as a manifestation of asymmetric

  2. Coupling and higher-order effects in the {sup 12}C(d,p){sup 13}C and {sup 13}C(p,d){sup 12}C reactions

    SciTech Connect

    Delaunay, F.; Nunes, F.M.; Lynch, W.G.; Tsang, M.B.

    2005-07-01

    Coupled-channel calculations are performed for the {sup 12}C(d,p){sup 13}C and {sup 13}C(p,d){sup 12}C reactions between 7 and 60 MeV to study the effect of inelastic couplings in transfer reactions. The effect of treating transfer beyond Born approximation is also addressed. The coupling to the {sup 12}C 2{sup +} state is found to change the peak cross section by up to 15%. Effects beyond Born approximation lead to a significant renormalization of the cross sections, between 5% and 10% for deuteron energies above 10 MeV and larger than 10% for lower energies. We also performed calculations including the remnant term in the transfer operator, which has a small impact on the {sup 12}C(d,p){sup 13}C(g.s.) and {sup 13}C(p,d){sup 12}C(g.s.) reactions (where g.s. indicates ground state). Above 30-MeV deuteron energy, the effect of the remnant term is larger than 10% for the {sup 12}C(d,p){sup 13}C(1/2{sup +}, 3.09 MeV) reaction and is found to increase with decreasing neutron separation energy for the 3.09-MeV state of {sup 13}C. This is of importance for transfer reactions with weakly bound nuclei.

  3. Kaon-Nucleus Interaction Studied through the In-Flight (K-,N) Reaction

    NASA Astrophysics Data System (ADS)

    Kishimoto, T.; Hayakawa, T.; Ajimura, S.; Khanam, F.; Itabashi, T.; Matsuoka, K.; Minami, S.; Mitoma, Y.; Sakaguchi, A.; Shimizu, Y.; Terai, K.; Chrien, R. E.; Pile, P.; Noumi, H.; Sekimoto, M.; Takahashi, H.; Fukuda, T.; Imoto, W.; Mizoi, Y.

    2007-08-01

    We studied the bar{K}-nucleus interaction by the 12C(K-,N) reaction. Missing mass spectra were derived from the momenta of both neutrons and protons from the reaction. An appreciable strength was observed below the bar{K}-nucleus threshold, which indicates that the bar{K}-nuclear potential is strongly attractive. The missing mass spectra are compared with the results of theoretical calculations. It is found that a potential depth of approximately -190 MeV best reproduces the spectrum of the 12C(K-,n) reaction and approximately -160 MeV best reproduces that of the 12C(K-,p) reaction. Our data show that the bar{K}-nucleus potential is sufficiently deep to realize kaon condensation in the core of neutron stars.

  4. bar{K}-Nucleus Interaction Probed by the In-Flight (K^-,N) Reactions

    NASA Astrophysics Data System (ADS)

    Kishimoto, T.; Hayakawa, T.; Ajimura, S.; Khanam, F.; Itabashi, T.; Matsuoka, K.; Minami, S.; Mitoma, Y.; Sakaguchi, A.; Shimizu, Y.; Terai, K.; Chrien, R. E.; Pile, P.; Noumi, H.; Sekimoto, M.; Takahashi, H.; Fukuda, T.; Imoto, W.; Mizoi, Y.

    We would like to point out that the (K^-,N) reactions are particularly useful for the study of the bar{K}-nucleus interaction. We have measured the missing mass spectra derived from the momenta of both neutrons and protons from the ^{12}{C}(K^-,N) reactions. It was found that an appreciable amount of strength were below the bar{K}-nucleus threshold which indicates that the bar{K}-nuclear potential is strongly attractive. The missing mass spectra are compared with theoretical calculations. It is found that a potential depth of around -190 MeV reproduces well the spectrum of the ^{12}C(K^-,n) reaction and a less deep potential of around -160 MeV reproduces well that of the ^{12}C(K^-,p) reaction. Our data show that the bar{K}-nucleus potential is very deep to realize kaon condensation in the core of neutron stars.

  5. Alpha particle condensation in {sup 12}C and nuclear rainbow scattering

    SciTech Connect

    Ohkubo, S.; Hirabayashi, Y.

    2008-05-12

    It is shown that the large radius of the Hoyle state of {sup 12}C with a dilute density distribution in an {alpha} particle condensate can be clearly seen in the shift of the rainbow angle (therefore the Airy minimum) to a larger angle in {alpha}+{sup 12}C rainbow scattering at the high energy region and prerainbow oscillations in {sup 3}He+{sup 12}C scattering at the lower energy region.

  6. Counting the number of correlated pairs in a nucleus

    SciTech Connect

    Vanhalst, Maarten; Cosyn, Wim; Ryckebusch, Jan

    2011-09-15

    We suggest that the number of correlated nucleon pairs in an arbitrary nucleus can be estimated by counting the number of proton-neutron, proton-proton, and neutron-neutron pairs residing in a relative S state. We present numerical calculations of those amounts for the nuclei {sup 4}He, {sup 9}Be, {sup 12}C, {sup 27}Al, {sup 40}Ca, {sup 48}Ca, {sup 56}Fe, {sup 63}Cu, {sup 108}Ag, and {sup 197}Au. The results are used to predict the values of the ratios of the per-nucleon electron-nucleus inelastic scattering cross section to the deuteron in the kinematic regime where correlations dominate.

  7. Molecular structure in /sup 12/C + /sup 12/C, orbiting in /sup 12/C + /sup 28/Si, and first studies of the /sup 60/Ni + /sup 60/Ni interaction

    SciTech Connect

    Erb, K.A.; Ford, J.L.C. Jr.; Novotny, R.; Shapira, D.

    1981-01-01

    Some physical implications of a recently proposed classification scheme for the /sup 12/C + /sup 12/C Coulomb barrier resonances for which the requisite very large body of experimental data is already available are discussed. New data are presented suggesting that the back angle resonance-like structure previously observed in quasi-elastic /sup 28/Si + /sup 12/C reactions reflects the existence of a fully developed, rotating di-nuclear system that governs back-angle yields in many additional exit channels. Also some very recent data are briefly discussed for /sup 60/Ni + /sup 60/Ni scattering in a first look at a previously unstudied region of the periodic table. (WHK)

  8. (. pi. sup +- ,. pi. sup +- prime N) reactions on sup 12 C and sup 208 Pb near the giant resonance region

    SciTech Connect

    Yoo, Sung Hoon.

    1990-05-01

    Angular distributions for the {sup 12}C({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} p) and {sup 208}Pb({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} p or n) reactions near the giant resonance region have been measured at T{sub {pi}} = 180 MeV, and found different between {pi}{sup +} and {pi}{sup {minus}} data. This observation is interpreted as evidence for different excitation mechanisms dominating the {pi}{sup {minus}}-nucleus and {pi}{sup +}-nucleus interactions in the giant resonance region of these targets. A comparison with the single-nucleon knock-out distorted-wave impulse approximation calculations shows, even though these calculations underestimate ({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} N) data for both targets, the dominance of direct process for ({pi}{sup +}, {pi}{sup {plus}}{prime} p) or ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} n) in contrast to ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} p) or ({pi}{sup +}, {pi}{sup +}{prime} n). In the ({pi}{sup +}, {pi}{sup +}{prime} p) reaction proton-proton hole states are excited directly and appear to have a large probability for direct decay with escape width, whereas in ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} p) the preferentially excited neutron-neutron hole doorway states couple to resonance states and decay with spreading width. This interpretation led us to suggest that the ratio of cross-sections for inelastic scattering to the giant resonance region should be written in terms of an incoherent sum of cross-sections to neutron and proton doorway states. In a heavy nucleus such as {sup 208}Pb, neutron and proton doorway states. In a heavy nucleus such as {sup 208}Pb, neutron and proton doorway states contribute incoherently because the different decay processes do not populate the same final states of the residual nucleus.

  9. Exotic atoms, K-nucleus scattering and hypernuclei

    SciTech Connect

    Barnes, P. D.

    1981-01-01

    Recent progress in exotic atom physics, kaon-nucleus scattering, and hypernuclear physics is reviewed. Specific problems discussed include searches for muon-nucleon interactions beyond QED, a comparison of data and recent calculation of K/sup + -/ + /sup 12/C elastic and inelastic scattering, as well as recent studies of ..sigma.. and ..lambda.. hypernuclei including new data on the level structure of /sup 13/C/..lambda...

  10. Neutrino magnetic moment effects in neutrino nucleus reactions

    SciTech Connect

    Singh, S.K.; Athar, M.S.

    1995-10-01

    Some low energy neutrino nucleus reactions induced by neutrinos (antineutrinos) having a magnetic moment of the order of 10{sup {minus}9}{minus}10{sup {minus}10} Bohr magneton are studied. It is found that in the case of {sup 4}He, {sup 12}C, and {sup 16}O, the detection of very low energy scalar and isoscalar elastic and inelastic reactions induced by the isoscalar vector currents can provide a better limit on the neutrino magnetic moment.

  11. Dilute Nuclear States: {sup 12}C, {sup 10}Be and {sup 14}C

    SciTech Connect

    Freer, M.

    2008-11-11

    The experimental evidence for dilute {alpha}-particle states in {sup 12}C, {sup 10}Be and {sup 14}C is discussed. The question of the location of the 2{sup +} excitation of the 7.65 MeV {sup 12}C state remains unresolved, as does the existence of possible analogue states in {sup 14}C.

  12. Holmium target fragmentation induced by intermediate energy /sup 12/C and /sup 16/O ions

    SciTech Connect

    Kraus, R.H. Jr.

    1986-01-01

    Target fragment (40 < A < 180) production cross sections were measured using off-line gamma-ray spectroscopy for the interaction of 208 MeV /sup 12/C, 272 MeV /sup 16/O, 442 MeV/sup 12/C, 1020 MeV /sup 12/C, and 1635 MeV /sup 16/O with /sup 165/Ho. Target fragment isobaric yields were deduced from these measurements. Trans-target nuclides were identified for all reaction systems. Nuclides up to 4 Z-units above the target were identified for 208 MeV /sup 12/C and 272 MeV /sup 16/O induced reactions, to 3 Z-units above the target for 442 MeV /sup 12/C and 1020 MeC /sup 12/C induced reactions, and to 2 Z-units above the target for 1635 MeV /sup 16/O induced reactions. Fission was observed to decrease between 17 MeV/A and 37 MeV/A from 13% of the reaction cross section to 4% for /sup 12/C induced reactions. No fission contribution was observed for 1020 MeV /sup 12/C and 1635 MeV /sup 16/O induced interactions.

  13. Fusion cross section of 12C+13C at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Zhang, N. T.; Tang, X. D.; Chen, H.; Chesneanu, D.; Straticiuc, M.; Trache, L.; Burducea, I.; Li, K. A.; Li, Y. J.; Ghita, D. G.; Margineanu, R.; Pantelica, A.; Gomoiu, C.

    2016-02-01

    In the recent work at Notre Dame, correlations between three carbon isotope fusion systems have been studied and it is found that the fusion cross sections of 12C+13Cand 13C+13C provide an upper limit on the fusion cross section of the astrophysically important 12C+12C reaction.The aim of this work is to continue such research by measuring the fusion cross section of the 12C+13C reaction to lower energies. In this experiment, the off-line activity measurement was performed in the ultra-low background laboratory 12C+13C and the fusion cross section for has been determined in the energy range of Ec.m. =2.5-6.8 MeV. Comparison between this work and several models is also presented.

  14. Simulations of ^12C Break Up In A Twin Ionization Chamber

    NASA Astrophysics Data System (ADS)

    Segal, C. B.; Patel, N. R.; Greife, U.; Rehm, K. E.; Deibel, C. M.; Greene, J.; Henderson, D.; Jiang, C. L.; Kay, B. P.; Lee, H. Y.; Pardo, R.; Notani, M.; Marley, S. T.; Tang, X. D.

    2008-10-01

    In stellar explosions the triple α decay process is key to forming the life-giving ^12C . This experiment is to further investigate the energy region in ^12C around 10 MeV where a theoretically predicted 2^+ state has yet to be observed. The motivation for studying this is to better understand the ^12C nucleosynthesis process that occurs in red giant stars where the short lived ^8Be interacts with alphas at extreme temperature and pressure scenarios which then in turn creates ^12C. We study the particle-unbound states by implanting ^12B into a twin Frisch grid ionization chamber and following the decay into ^12C and subsequently into three α particles. The response of this ionization chamber to the detection of multiple α particles was studied using various simulation programs. Results of these simulations and limits for the predicted 2^+ state will be presented.

  15. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism

    PubMed Central

    Lito, Piro; Solomon, Martha; Li, Lian-Sheng; Hansen, Rasmus; Rosen, Neal

    2016-01-01

    It is thought that KRAS oncoproteins are constitutively active because their guanosine triphosphatase (GTPase) activity is disabled. Consequently, drugs targeting the inactive or guanosine 5′-diphosphate–bound conformation are not expected to be effective. We describe a mechanism that enables such drugs to inhibit KRASG12C signaling and cancer cell growth. Inhibition requires intact GTPase activity and occurs because drug-bound KRASG12C is insusceptible to nucleotide exchange factors and thus trapped in its inactive state. Indeed, mutants completely lacking GTPase activity and those promoting exchange reduced the potency of the drug. Suppressing nucleotide exchange activity downstream of various tyrosine kinases enhanced KRASG12C inhibition, whereas its potentiation had the opposite effect. These findings reveal that KRASG12C undergoes nucleotide cycling in cancer cells and provide a basis for developing effective therapies to treat KRASG12C-driven cancers. PMID:26841430

  16. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism.

    PubMed

    Lito, Piro; Solomon, Martha; Li, Lian-Sheng; Hansen, Rasmus; Rosen, Neal

    2016-02-01

    It is thought that KRAS oncoproteins are constitutively active because their guanosine triphosphatase (GTPase) activity is disabled. Consequently, drugs targeting the inactive or guanosine 5'-diphosphate-bound conformation are not expected to be effective. We describe a mechanism that enables such drugs to inhibit KRAS(G12C) signaling and cancer cell growth. Inhibition requires intact GTPase activity and occurs because drug-bound KRAS(G12C) is insusceptible to nucleotide exchange factors and thus trapped in its inactive state. Indeed, mutants completely lacking GTPase activity and those promoting exchange reduced the potency of the drug. Suppressing nucleotide exchange activity downstream of various tyrosine kinases enhanced KRAS(G12C) inhibition, whereas its potentiation had the opposite effect. These findings reveal that KRAS(G12C) undergoes nucleotide cycling in cancer cells and provide a basis for developing effective therapies to treat KRAS(G12C)-driven cancers. PMID:26841430

  17. EFFECTS OF NUCLEAR INDUCED BREAKUP ON THE FUSION OF 6Li+12C AND 6He+12C SYSTEMS AROUND BARRIER ENERGIES

    NASA Astrophysics Data System (ADS)

    Duhan, Sukhvinder S.; Singh, Manjeet; Kharab, Rajesh

    2012-06-01

    We have studied the effects of nuclear induced breakup channel coupling on the fusion cross-section for 6Li+12C and 6He+12C systems in the near barrier energy regime using the dynamic polarization potential (DPP) approach. It has been found that there is enhancement in the fusion cross-section with respect to standard one-dimensional barrier penetration model in the below barrier energy regime while at energies above the barrier there is suppression of fusion cross-section with respect to simple barrier penetration model is observed. The agreement between data and predictions for 6Li+12C system improves significantly as a result of the inclusion of nuclear induced DPP.

  18. Study of two- and multi-particle correlations in 12C+24Mg and 12C+208Pb reactions at E=35 AMeV

    NASA Astrophysics Data System (ADS)

    Quattrocchi, L.; Acosta, L.; Amorini, F.; Anzalone, A.; Auditore, L.; Berceanu, I.; Cardella, G.; Chbihi, A.; De Filippo, E.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Grzeszczuk, A.; Lanzalone, G.; Lombardo, I.; Martel, I.; Minniti, T.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Rosato, E.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.; Vigilante, M.

    2016-05-01

    Two and multi particle correlations from the decay of sources produced in 12C+24Mg and 12C+208Pb collisions at E=35 AMeV have been studied by using the forward part (1° < θlab < 30°) of the CHIMERA multi-detector. Correlations and invariant mass spectroscopy are used to explore simultaneous and sequential decays of resonances in light isotopes with Z˜3-6, produced in peripheral collisions via the break-up of excited quasi-projectiles. Among them we mention 5Li, 6Li, 6Be, 8Be and the astrophysically important state in 12C decaying into three alpha particles. Results and future perspectives at the INFN-LNS will be presented.

  19. /sup 12/C(/sup 6/Li,d)/sup 16/O. -->. cap alpha. +/sup 12/C reaction mechanism by means of angular correlation measurements

    SciTech Connect

    Cunsolo, A.; Foti, A.; Imme, G.; Pappalardo, G.; Raciti, G.; Saunier, N.

    1980-06-01

    The particle-particle angular correlation method is applied to the reaction /sup 12/C(/sup 6/Li,d)/sup 16/O ..-->.. ..cap alpha..+/sup 12/C. Deuterons were detected at theta/sup lab//sub d/=10/sup 0/. Information on the reaction mechanism is obtained by analyzing the shape and the angular shift of the experimental data. A dominant direct transfer mechanism is found for the primary reaction. The ratios GAMMA..cap alpha../sub 0//GAMMA and the ..cap alpha..-reduced widths ..gamma cap alpha../sub 0/ are deduced.

  20. The Nucleus Introduced

    PubMed Central

    Pederson, Thoru

    2011-01-01

    Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions. PMID:20660024

  1. 99.996 %{sup 12}C films isotopically enriched and deposited in situ

    SciTech Connect

    Dwyer, K. J.; Pomeroy, J. M.; Simons, D. S.

    2013-06-24

    Ionizing natural abundance carbon dioxide gas, we extract and mass select the ions, depositing thin films isotopically enriched to 99.9961(4) %{sup 12}C as measured by secondary ion mass spectrometry (SIMS). In solid state quantum information, coherence times of nitrogen-vacancy (NV) centers in {sup 12}C enriched diamond exceeding milliseconds demonstrate the viability of NV centers as qubits, motivating improved isotopic enrichment. NV centers in diamond are particularly attractive qubit candidates due to the optical accessibility of the spin states. We present SIMS analysis and cross-sectional scanning electron microscopy of {sup 12}C enriched thin film samples grown with this method.

  2. Astrophysical SE2 factor of the 12C(α, γ)16O reaction through the 12C(11B, 7Li)16O transfer reaction

    NASA Astrophysics Data System (ADS)

    Guo, B.; Du, X. C.; Li, Z. H.; Li, Y. J.; Pang, D. Y.; Su, J.; Yan, S. Q.; Fan, Q. W.; Gan, L.; Han, Z. Y.; Li, E. T.; Li, X. Y.; Lian, G.; Liu, J. C.; Pei, C. J.; Qiao, L. H.; Shen, Y. P.; Su, Y.; Wang, Y. B.; Zeng, S.; Zhou, Y.; Liu, W. P.

    2016-02-01

    The 12C(α, γ)16O reaction plays a key role in the evolution of stars with masses of M > 0.55 M⊙. At the Gamow peak (Ec.m. = 300 ke V, T9 = 0.2), the cross section of the 12C(α, γ)16O reaction is so small (about 10-17 barn) that the direct measurement in ground laboratory is not feasible with the existing technology. Up to now, the cross sections at lower energies can only be extrapolated from the data at higher energies. However, two subthreshold resonances, locating at Ex = 7.117 MeV and Ex = 6.917 MeV, make this extrapolation more complicated. In this work the 6.917 MeV subthreshold resonance in the 12C(α, γ)16O reaction was investigated via the 12C(11B, 7Li)16O reaction. The experiment was performed using the Q3D magnetic spectrograph at HI-13 tandem accelerator. We measured the angular distribution of the 12C(11B, 7Li)16O transfer reaction leading to the 6.917 MeV state. Based on DWBA analysis, we derived the square of ANC of the 6.917 MeV level in 16O to be (2.45± 0.28) ×1010 fm-1, with which the reduced-α width can be computed. Finally, we calculated the astrophysical SE2 factor of the 6.917 MeV resonance to be 67.6 ± 7.7 ke V b.

  3. Computational Models of X-Ray Burst Quenching Times and 12C Nucleosynthesis Following a Superburst

    SciTech Connect

    Fisker, J L

    2009-03-19

    Superbursts are energetic events on neutron stars that are a thousand times more powerful than ordinary type I X-ray bursts. They are believed to be powered by a thermonuclear explosion of accumulated {sup 12}C. However, the source of this {sup 12}C remains elusive to theoretical calculations and its concentration and ignition depth are both unknown. Here we present the first computational simulations of the nucleosynthesis during the thermal decay of a superbust, where X-ray bursts are quenched. Our calculations of the quenching time verify previous analytical calculations and shed new light on the physics of stable burning at low accretion rates. We show that concentrated (X{sub {sup 12}C} {approx}> 0.40), although insufficient, amounts of {sup 12}C are generated during the several weeks following the superburst where the decaying thermal flux of the superburst stabilizes the burning of the accreted material.

  4. Triangular D3h Symmetry in the Rotation-Vibration Spectrum of 12C

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2015-02-01

    Our recent measurements of new states in 12C including the second 2+ at 10 MeV and the high spin 5- state at 22.4 MeV allow us to study the Rotation-Vibration spectrum of 12C from which evidence for a new (D3h) geometrical symmetry emerges. The data fit very well to the predicted (ground state) rotational band of an oblate equilateral triangular spinning top with a D3h symmetry characterized by the sequence of states: 0+, 2+, 3-, 4+/-, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D3h symmetry was observed in triatomic molecules, and it is observed in 12C for the first time in nuclear physics. The triatomic like structure in nuclei is reminiscent of the discovery of diatomic α+14C structure in 18O. We discuss a classification of other rotation-vibration bands in 12C such as the (0+) Hoyle band and the (1-) bending mode band and suggest measurements in search of the predicted ("missing") states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or non observation) of the predicted ("missing") states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.654 MeV in 12C.

  5. Further evidence for a dynamically generated secondary bow in 13C+12C rainbow scattering

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.; Ogloblin, A. A.

    2015-11-01

    The existence of a secondary bow is confirmed for 13C+12C nuclear rainbow scattering in addition to the 16O+12C system. This is found by studying the experimental angular distribution of 13C+12C scattering at the incident 13C energy EL=250 MeV with an extended double-folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic wave functions for 12C using a density-dependent nucleon-nucleon force. The Airy minimum at θ ≈70°, which is not reproduced by a conventional folding potential, is revealed to be a secondary bow generated dynamically by a coupling to the excited state 2+ (4.44 MeV) of 12C. The essential importance of the quadruple Y 2 term (reorientation term) of potential of the excited state 2+ of 12C for the emergence of a secondary bow is found. The mechanism of the secondary bow is intuitively explained by showing how the trajectories are refracted dynamically into the classically forbidden angular region beyond the rainbow angle of the primary rainbow.

  6. Phenomenological analysis of rapidity distribution of negative pions in central 12C+12C collisions at $\\sqrt{s_{nn}} = 3.14\\, {\\rm GeV}$

    NASA Astrophysics Data System (ADS)

    Olimov, Khusniddin K.; Ali, Qasim; Haseeb, Mahnaz Q.; Arif, Atif; Lutpullaev, Sagdulla L.; Yuldashev, B. S.

    2015-06-01

    Various aspects of the simple phenomenological model, the grand combinational model (GCM), proposed earlier for the systematic description of the center-of-mass (cm) rapidity distributions of different particles produced in high energy heavy ion collisions, were analyzed. The values of GCM parameters were extracted from fitting the cm rapidity distributions of the negative pions in 12C+12C collisions at √ {snn} = 3.14 GeV both in the experiment and using Modified FRITIOF Model. The GCM parameters extracted for the central 12C+12C collisions were compared with those obtained in central Pb+Pb collisions at super proton synchrotron (SPS) and alternating gradient synchrotron (AGS) energies between √ {snn} = 6.3 GeV and √ {snn} = 12.3 GeV and in central Au+Au collisions at Relativistic heavy ion collider (RHIC) energies between √ {snn} = 19.6 GeV and √ {snn} = 200 GeV. The plausible physical interpretations for the GCM parameters were given. The initial assumption that the parameter β of GCM should be zero for symmetric systems with identical colliding nuclei was validated. The parameter γ of GCM was deduced to follow an approximate asymptotic behavior (γ → 0 as √ {snn} -> ∞ ) at very large cm energies, and γ ≅ 0 could possibly be related to complete dehadronization of the whole collision system, along with attaining its maximum possible energy density, in central collisions of identical nuclei. The behavior of cm energy dependence of γ suggested that it could possibly be sensitive to deconfinement phase transition.

  7. Excitation functions of inelastic and transfer channels in {sup 12}C+{sup 12}C around E{sub c.m.}=32.5 MeV

    SciTech Connect

    Szilner, S.; Basrak, Z.

    1997-03-01

    A prominent and wide resonance centered at E{sub c.m.}=32.5 MeV has recently been found in the (0{sub 2}{sup +},0{sub 2}{sup +}) inelastic channel of the {sup 12}C+{sup 12}C reaction. It has been suggested that it corresponds to a 6{alpha}-particle-chain state in {sup 24}Mg. In the present work we study {sup 12}C+{sup 12}C excitation functions between center-of-mass energies of 30 and 35 MeV in steps of 250 keV for weakly populated outgoing channels. We present the inelastic channels to the states above the {alpha}-particle decay threshold, (0{sub 1}{sup +},0{sub 2}{sup +}), (0{sub 1}{sup +},3{sub 1}{sup {minus}}), and (0{sub 1}{sup +},4{sub 1}{sup +}), and the one- and two-nucleon transfer channels. In the inelastic and the transfer channels we observe correlated intermediate-width structures at E{sub c.m.}=31, 32.5, and 33.5 MeV, whose widths are appreciably smaller than the width measured in the (0{sub 2}{sup +},0{sub 2}{sup +}) channel. Our E{sub c.m.}=32.5 MeV angular distribution of the (0{sub 1}{sup +},0{sub 2}{sup +}) channel exhibits oscillatory behavior and, unlike that of the (0{sub 2}{sup +},0{sub 2}{sup +}) channel, does not display enhancement around {theta}{sub c.m.}=90{degree}. Data were collected via the kinematic coincidence technique. For data reduction we use a novel approach allowing for the extraction of results on nonbinary channels. {copyright} {ital 1997} {ital The American Physical Society}

  8. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  9. Convergence of the nucleus-nucleus Glauber multiple scattering series

    SciTech Connect

    Usmani, A.A.; Ahmad, I. )

    1991-05-01

    The Glauber {ital S}-matrix operator for nucleus-nucleus scattering is expressed as a finite series of matrix elements involving Bell's polynomials. Analyzing {alpha}{sup 4}He elastic-scattering data at the incident momentum of 4.32 GeV/{ital c}, we infer that our expansion is appreciably converging. Further, by applying closure over target and projectile states and neglecting a certain class of terms involving intermediate excitations, we arrive at a recurrence relation for nucleus-nucleus multiple scattering series terms, which invites further study as it seems to provide a simple method for calculating the nucleus-nucleus elastic-scattering cross section.

  10. Nucleus Course in Japanese.

    ERIC Educational Resources Information Center

    Akiyama, Nobuo; Flamm, Carol S.

    The "Nucleus Course in Japanese," based on the Institute of Modern Languages'"Situational Reinforcement" approach, is designed for 80 to 100 hours of instruction. Each lesson has several sections--Response drills, Appropriate Response Sequence, and Reading. Most of the lessons also include optional sections with Sentences for Repetition or a…

  11. Cell nucleus in context

    SciTech Connect

    Lelievre, Sophie A.; Bissell, Mina J.; Pujuguet, Philippe

    1999-11-11

    The molecular pathways that participate in regulation of gene expression are being progressively unraveled. Extracellular signals, including the binding of extracellular matrix and soluble molecules to cell membrane receptors, activate specific signal transducers that convey information inside the cell and can alter gene products. Some of these transducers when translocated to the cell nucleus may bind to transcription complexes and thereby modify the transcriptional activity of specific genes. However, the basic molecules involved in the regulation of gene expression are found in many different cell and tissue types; thus the mechanisms underlying tissue-specific gene expression are still obscure. In this review, we focus on the study of signals that are conveyed to the nucleus. We propose that the way in which extracellular signals are integrated may account for tissue-specific gene expression. We argue that the integration of signals depends on the structural organization of cells ( i.e., extracellular matrix, cell membrane, cytoskeleton, nucleus) which a particular cell type within a tissue. Putting the nuclei in context allows us to envision gene expression as being regulated not only by the communication between the extracellular environment and the nucleus, but also by the influence of organized assemblies of cells on extracellular-nuclear communications.

  12. Binary reaction decays from {sup 24}Mg+{sup 12}C

    SciTech Connect

    Beck, C.; Papka, P.; Zafra, A. Sanchez i; Azaiez, F.; Bednarczyk, P.; Courtin, S.; Curien, D.; Dorvaux, O.; Lebhertz, D.; Nourreddine, A.; Rousseau, M.; Thummerer, S.; Oertzen, W. von; Gebauer, B.; Wheldon, C.; Kokalova, Tz.; Angelis, G. de; Gadea, A.; Lenzi, S.; Szilner, S.

    2009-09-15

    Charged-particle and {gamma} decays in {sup 24}Mg* are investigated for excitation energies where quasimolecular resonances appear in {sup 12}C+{sup 12}C collisions. Various theoretical predictions for the occurrence of superdeformed and hyperdeformed bands associated with resonance structures with low spin are discussed within the measured {sup 24}Mg* excitation energy region. The inverse kinematics reaction {sup 24}Mg+{sup 12}C is studied at E{sub lab}({sup 24}Mg)=130 MeV, an energy that enables the population of {sup 24}Mg states decaying into {sup 12}C+{sup 12}C resonant breakup states. Exclusive data were collected with the Binary Reaction Spectrometer in coincidence with Euroball IV installed at the Vivitron tandem facility at Strasbourg. Specific structures with large deformation were selectively populated in binary reactions, and their associated {gamma} decays studied. Coincident events associated with inelastic and {alpha}-transfer channels have been selected by choosing the excitation energy or the entry point via the two-body Q values. The analysis of the binary reaction channels is presented with a particular emphasis on {sup 24}Mg-{gamma}, {sup 20}Ne-{gamma}, and {sup 16}O-{gamma} coincidences. New information (spin and branching ratios) is deduced on high-energy states in {sup 24}Mg and {sup 16}O, respectively.

  13. IMPROVED LINE DATA FOR THE SWAN SYSTEM {sup 12}C{sup 13}C ISOTOPOLOGUE

    SciTech Connect

    Ram, Ram S.; Brooke, James S. A.; Bernath, Peter F.; Sneden, Christopher; Lucatello, Sara E-mail: rr662@york.ac.uk E-mail: chris@verdi.as.utexas.edu

    2014-03-01

    We present new, accurate predictions for rotational line positions, excitation energies, and transition probabilities of the {sup 12}C{sup 13}C isotopologue Swan d{sup 3}Π-a{sup 3}Π system 0-0, 0–1, 0–2, 1–0, 1–1, 1–2, 2–0, 2–1, and 2–2 vibrational bands. The line positions and energy levels were predicted through new analyses of published laboratory data for the {sup 12}C{sup 13}C lines. Transition probabilities were derived from recent computations of transition dipole moments and related quantities. The {sup 12}C{sup 13}C line data were combined with similar data for {sup 12}C{sub 2,} reported in a companion paper, and applied to produce synthetic spectra of carbon-rich metal-poor stars that have strong C{sub 2} Swan bands. The matches between synthesized and observed spectra were used to estimate band head positions for a few of the {sup 12}C{sup 13}C vibrational bands and to verify that the new computed line data match observed spectra. The much weaker C{sub 2} lines of the bright red giant Arcturus were also synthesized in the band head regions.

  14. Onset of deconfinement in nucleus-nucleus collisions

    SciTech Connect

    Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.

    2012-05-15

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals anomalies-the kink, horn, and step. They were predicted as signals of the deconfinement phase transition and observed by the NA49 Collaboration in central PbPb collisions at the CERN SPS. This indicates the onset of the deconfinement in nucleus-nucleus collisions at about 30 A GeV.

  15. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  16. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  17. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  18. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  19. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  20. Experimental study of the 13C+12C fusion reaction at deep sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Tudor, D.; Chilug, A. I.; Straticiuc, M.; Trache, L.; Chesneanu, D.; Toma, S.; Ghita, D. G.; Burducea, I.; Margineanu, R.; Pantelica, A.; Gomoiu, C.; Zhang, N. T.; Tang, X.; Li, Y. J.

    2016-04-01

    Heavy-ion fusion reactions between light nuclei such as carbon and oxygen isotopes have been studied because of their significance for a wide variety of stellar burning scenarios. One important stellar reaction is 12C+12C, but it is difficult to measure it in the Gamow window because of very low cross sections and several resonances occurring. Hints can be obtained from the study of 13C+12C reaction. We have measured this process by an activation method for energies down to Ecm=2.5 MeV using 13C beams from the Bucharest 3 MV tandetron and gamma-ray deactivation measurements in our low and ultralow background laboratories, the latter located in a salt mine about 100 km north of Bucharest. Results obtained so far are shown and discussed in connection with the possibility to go even further down in energy and with the interpretation of the reaction mechanism at such deep sub-barrier energies.

  1. The closo-Si12C12 molecule from cluster to crystal: A theoretical prediction

    NASA Astrophysics Data System (ADS)

    Duan, Xiaofeng F.; Burggraf, Larry W.

    2016-03-01

    The structure of closo-Si12C12 is unique among stable SinCm isomers (n, m > 4) because of its high symmetry, π-π stacking of C6 rings and unsaturated silicon atoms at symmetrical peripheral positions. Dimerization potential surfaces reveal various dimerization reactions that form between two closo-Si12C12 molecules through Si-Si bonds at unsaturated Si atoms. As a result the closo-Si12C12 molecule is capable of polymerization to form stable 1D polymer chains, 2D crystal layers, and 3D crystals. 2D crystal structures formed by side-side polymerization satisfy eight Si valences on each monomer without large distortion of the monomer structure. 3D crystals are formed by stacking 2D structures in the Z direction, preserving registry of C6 rings in monomer moiety.

  2. Proton Nucleus Elastic Scattering Data.

    Energy Science and Technology Software Center (ESTSC)

    1993-08-18

    Version 00 The Proton Nucleus Elastic Scattering Data file PNESD contains the numerical data and the related bibliography for the differential elastic cross sections, polarization and integral nonelastic cross sections for elastic proton-nucleus scattering.

  3. High Resolution Laser Spectroscopy of Mg12C12CD, Mg13C13CH and Mg12C_4H

    NASA Astrophysics Data System (ADS)

    Forthomme, D.; Linton, C.; Tokaryk, D. W.; Adam, A. G.; Granger, A. D.

    2010-06-01

    Carbon and magnesium are abundant elements in the interstellar medium, so it is possible that carbon chain molecules containing a magnesium atom may exist in this environment. With this in mind, radical molecules of the form MgC2nH (n = 1,2,3) have been frequent subjects of both experimental and theoretical studies In this presentation we will discuss our high-resolution experiments of the ~A2Π-~X2Σ+ transitions in the isotopologues Mg12C12CD and Mg13C13CH, which complement our earlier investigation of this spectrum in Mg12C12CH^b. The data permit us to determine the lengths of individual bonds to high precision. In addition, we have expanded on previous studies of the ~A2Π-~X2Σ+ transition of Mg12C_4H, conducted at medium resolution. The parameters obtained from our high-resolution spectra are compared with those obtained from theoretical structure calculations. H. Ding, C. Apetrei, L. Chacaga, J. P. Maier, Astrophys. J. 677 (2008) 348-352 D. W. Tokaryk, A. G. Adam, W. S. Hopkins, J. Mol. Spectrosc. 230 (2005) 54-61 D. E. Woon, Chem. Phys. Lett. 274 (1997) 299-305 C. A. Thompson and L. Andrews, J. Am. Chem. Soc. 118 (1996) 10242-10249 X. Guo, J. Zhang, J. Li, L. Jiang, J. Zhang, Chem. Phys 360 (2009) 27-31 E. Chasovskikh, E. B. Jochnowitz, J. P. Maier, J. Phys. Chem. A. 112 (2008) 8686-8689.

  4. 8Be Direct Transfer in α+12C Inelastic Scattering and Signatures of the Alpha Particle Condensation in the NEAR-3α Threshold States of 12C

    NASA Astrophysics Data System (ADS)

    Belyaeva, T. L.; Demyanova, A. S.; Ogloblin, A. A.; Goncharov, S. A.

    The coupled reaction channels model calculations of the direct 8Be transfer in the α+12C elastic and inelastic (to the 7.65 MeV 02^ + and the 9.65 MeV 31^ - states) scattering have been performed. It is shown that the cluster configuration with zero relative angular momentum dominates in 02^ + state being 4.4 times larger than that in the ground state. In the 31^ - state, a dominance of the p-orbital motion is found. The condensed properties are confirmed in the Hoyle state. The 3α exotic, but hardly a condensed structure of the 31^ - state is found.

  5. Role of 8Be heavy stripping mechanism in the α + 12C inelastic scattering to the near-3 α-threshold states in 12C

    NASA Astrophysics Data System (ADS)

    Belyaeva, T. L.; Danilov, A. N.; Demyanova, A. S.; Goncharov, S. A.; Ogloblin, A. A.; Perez-Torres, R.

    2011-11-01

    The angular distributions of α + 12C elastic and inelastic (to the 4.44 MeV, 2+; 7.65MeV, 0+; and 9.64MeV, 3- states) scattering at 110 MeV are characterized by pronounced enhancement and strong oscillations at large angles. We performed calculations of the differential cross sections of these reactions assuming a potential scattering in the forward hemisphere and the direct transfer of 8Be cluster θ c.m. > 90°. We showed that the α + 8Be cluster configuration with relative angular momentum L = 0 dominates in the Hoyle state being 4.4 times larger than that in the ground state. This result also contributes to the verification of αBEC hypothesis and is consistent with the conjecture of a dilute 3 α structure of the Hoyle state. In the 9.64 MeV, 3- state, a positive interference of all allowed α + 8Be configurations with a dominance of the p-orbital (49%) α-8Be relative motion is found. This finding manifests the exotic 3 α, but hardly condensed structure of the 9.64-MeV 3- state in 12C.

  6. Role of {sup 8}Be heavy stripping mechanism in the {alpha} + {sup 12}C inelastic scattering to the near-3{alpha}-threshold states in {sup 12}C

    SciTech Connect

    Belyaeva, T. L.; Danilov, A. N.; Demyanova, A. S.; Goncharov, S. A.; Ogloblin, A. A.; Perez-Torres, R.

    2011-11-15

    The angular distributions of {alpha} + {sup 12}C elastic and inelastic (to the 4.44 MeV, 2{sup +}; 7.65MeV, 0{sup +}; and 9.64MeV, 3{sup -} states) scattering at 110 MeV are characterized by pronounced enhancement and strong oscillations at large angles. We performed calculations of the differential cross sections of these reactions assuming a potential scattering in the forward hemisphere and the direct transfer of {sup 8}Be cluster {theta}{sub c.m.} > 90 Degree-Sign . We showed that the {alpha} + {sup 8}Be cluster configuration with relative angular momentum L = 0 dominates in the Hoyle state being 4.4 times larger than that in the ground state. This result also contributes to the verification of {alpha}BEC hypothesis and is consistent with the conjecture of a dilute 3{alpha} structure of the Hoyle state. In the 9.64 MeV, 3{sup -} state, a positive interference of all allowed {alpha} + {sup 8}Be configurations with a dominance of the p-orbital (49%) {alpha}-{sup 8}Be relative motion is found. This finding manifests the exotic 3{alpha}, but hardly condensed structure of the 9.64-MeV 3{sup -} state in {sup 12}C.

  7. {sup 12}C-{sup 12}C elastic scattering at 1.016, 1.449, and 2.4 GeV and the NN amplitude

    SciTech Connect

    Chauhan, Deeksha; Khan, Z. A.

    2007-05-15

    Working within the framework of the Coulomb modified Glauber model, we analyze the elastic angular distribution and reaction cross section for the {sup 12}C-{sup 12}C system at 1.016, 1.449, and 2.4 GeV. The elastic S matrix is evaluated using the effective profile function approach, and a correlation expansion for the Glauber amplitude is obtained. We emphasize the parametrization of the basic (input) NN amplitude, which may be used for a wide range of angles. Retaining the first two terms of the correlation expansion and using the realistic densities for the colliding nuclei, we find that (i) the consideration of higher momentum transfer components, and hence the nondiffractive behavior, of the NN amplitude provides a more satisfactory account of the data than does the conventional (one-term) Gaussian parametrization for the NN amplitude, (ii) the in-medium effects seem to reduce the (free) NN total cross section and influence the other parameters of the NN amplitude as well, (iii) the phase of the NN amplitude does not help in improving the theoretical situation, and (iv) the c.m. correlations play an important role at the energies considered. We also discuss the suitability of the effective profile function approach in the present context.

  8. Effect of {sup 12}C+{sup 12}C reaction and convective mixing on the progenitor mass of ONe white dwarfs

    SciTech Connect

    Halabi, Ghina M. El Eid, Mounib

    2015-02-24

    Stars in the mass range ∼8 - 12 M{sub ⊙} are the most numerous massive stars. This mass range is critical because it may lead to supernova (SN) explosion, so it is important for the production of heavy elements and the chemical evolution of the galaxy. We investigate the critical transition mass (M{sub up}), which is the minimum initial stellar mass that attains the conditions for hydrostatic carbon burning. Stars of masses < M{sub up} evolve to the Asymptotic Giant Branch and then develop CO White Dwarfs, while stars of masses ≥ M{sub up} ignite carbon in a partially degenerate CO core and form electron degenerate ONe cores. These stars evolve to the Super AGB (SAGB) phase and either become progenitors of ONe White Dwarfs or eventually explode as electron-capture SN (EC-SN). We study the sensitivity of M{sub up} to the C-burning reaction rate and to the treatment of convective mixing. In particular, we show the effect of a recent determination of the {sup 12}C+{sup 12}C fusion rate, as well as the extension of the convective core during hydrogen and helium burning on M{sub up} in solar metallicity stars. We choose the 9 M{sub ⊙} model to show the detailed characteristics of the evolution with the new C-burning rate.

  9. Development of the Silicon Array at Notre Dame (SAND) for the Study of the 12C + 12C Reaction at Sub-Coulomb Energies

    NASA Astrophysics Data System (ADS)

    Cahillane, Craig

    2011-10-01

    The 12C + 12C fusion reaction is an important process in stellar evolution and nucleosynthesis. The energy region of interest lies between 1 and 3 MeV, but studying the reaction at these energies is difficult because of the reaction's rapidly decaying cross-section a sub-Coulomb energies. Both detector efficiency and beam intensity limit such measurements. As a test run for the future Silicon Array at Notre Dame (SAND), two YY1 Trapezoid Silicon Detectors were used to detect the proton decay of the carbon fusion reaction. The two detectors covered a solid angle of 0.34 steradians. In the construction of SAND, more large surface area silicon detectors will be used to dramatically increase detection efficiency by covering a much larger solid angle. Combined with the new high-intensity 5 MV accelerator also under construction at Notre Dame, SAND could reduce the error on low energy cross sections in the astrophysical region and possibly detect hypothesized resonances at lower energies. This work is supported by the NSF under Grant No. PHY-1068192 and PHY-0822648.

  10. Experimental evidence for a fusion enhancement in 19O+12C at near barrier energies

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Steinbach, T. K.; Vadas, J.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Tripathi, V.; Kuvin, S. A.; Wiedenhover, I.; Umar, A. S.; Oberacker, V. E.

    2016-03-01

    Fusion of neutron-rich light nuclei in the outer crust of an accreting neutron star has been proposed as responsible for triggering X-ray super-bursts. The underlying hypothesis in this proposition is that the fusion of neutron-rich nuclei is enhanced as compared to stable nuclei. To investigate this hypothesis, an experiment has been performed to measure the fusion excitation function for 18O and 19O nuclei incident on a 12C target. A beam of 19O was produced by the 18O(d,p) reaction at Florida State University and separated using the RESOLUT mass spectrometer. The resulting 19O beam bombarded a 100 μg/cm2 12C target at an intensity of 2-4 x 104p/s. Evaporation residues resulting from the de-excitation of the fusion product were distinguished by measuring their energy and time-of-flight. Evaporation residues were detected with high efficiency by measuring them in the angular range 4.4° <=θlab <= 11.7°. The fusion cross-section has been measured down to 170 mb level. As compared to 18O+12C the fusion cross-section for 19O+12C is enhanced by approximately a factor of 3 times at the lowest energy measured. The measured excitation function will be compared with theoretical calculations. Supported by the US DOE under Grant No. DEFG02-88ER-40404.

  11. Interaction of (12)C ions with the mouse retinal response to light.

    PubMed

    Carozzo, Simone; Ball, Sherry L; Narici, Livio; Schardt, Dieter; Sannita, Walter G

    2015-06-26

    Astronauts in orbit reported phosphenes varying in shape and orientation across the visual field; incidence was correlated with the radiation flux. Patients with skull tumors treated by (12)C ions and volunteers whose posterior portion of the eye was exposed to highly ionizing particles in early studies reported comparable percepts. An origin in radiation activating the visual system is suggested. Bursts (∼ 4 ms) of (12)C ions evoked electrophysiological mass responses comparable to those to light in the retina of anesthetized wild-type mice at threshold flux intensities consistent with the incidence observed in humans. The retinal response amplitude increased in mice with ion intensity to a maximum at ∼ 2000 ions/burst, to decline at higher intensities; the inverted-U relationship suggests complex effects on retinal structures. Here, we show that bursts of (12)C ions presented simultaneously to white light stimuli reduced the presynaptic mass response to light in the mouse retina, while increasing the postsynaptic retinal and cortical responses amplitude and the phase-locking to stimulus of cortical low frequency and gamma (∼ 25-45 Hz) responses. These findings suggest (12)C ions to interfere with, rather than mimicking the light action on photoreceptors; a parallel action on other retinal structures/mechanisms resulting in cortical activation is conceivable. Electrophysiological visual testing appears applicable to monitor the radiation effects and in designing countermeasures to prevent functional visual impairment during operations in space. PMID:25956035

  12. GRH Characterization using 4.4 MeV ^12C Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; Langenbrunner, J. R.; Young, C. S.; Barton, B. T.; Mack, J. M.; McEvoy, A. M.; Evans, S.; Sedillo, T.; Stoeffl, W.; Horsfield, C. J.; Rubery, M.; Miller, E. K.; Grafil, E.

    2010-11-01

    The OMEGA Gamma Reaction History (GRH) diagnostic has been characterized using a relatively well-known source of 4.43 MeV gamma rays produced from inelastic scattering of DT-neutrons off of a graphite puck placed near an imploding capsule at the OMEGA laser facility. An independently measured neutron yield, combined with the known ^12C density and ^12C(n,n'γ)^12C cross-section, allows an in-situ calibration of the GRH detection efficiency at 4.43 MeV. GRH data were collected at two different ^12C target locations to confirm the published angular distribution of gamma rays and were compared with MCNP modeling predictions. These in-situ calibrations were used to validate the GRH simulation code based on a coupled MCNP/ACCEPT Monte-Carlo method. By combining these results with other absolute calibration methods, we are able to infer a DT branching ratio for gamma to neutron production and to make an accurate plastic ablator areal density measurement.

  13. 33 CFR 157.12c - Construction, maintenance, security, calibration, and training.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12c Construction, maintenance, security, calibration, and training. (a) The oil discharge monitoring and control system must be designed to ensure that user access is restricted to essential controls. Access beyond these controls...

  14. {sup 15}N(p,{alpha}{sub 0}){sup 12}C S factor

    SciTech Connect

    Barker, F. C.

    2008-10-15

    Experimental values of the astrophysical S factor for the {sup 15}N(p,{alpha}{sub 0}){sup 12}C reaction are available both from direct measurements and from the Trojan horse method. We here use R-matrix formulas to fit these values and to extrapolate to zero energy to obtain values of S(0)

  15. Selective Targeting of the KRAS G12C Mutant: Kicking KRAS When It's Down.

    PubMed

    Hobbs, G Aaron; Wittinghofer, Alfred; Der, Channing J

    2016-03-14

    Two recent studies evaluated a small molecule that specifically binds to and inactivates the KRAS G12C mutant. The new findings argue that the perception that mutant KRAS is persistently frozen in its active GTP-bound form may not be accurate. PMID:26977877

  16. Are we there yet? A Practitioner's View of DO-178C/ED-12C

    NASA Astrophysics Data System (ADS)

    Daniels, Dewi

    RTCA DO-178B/EUROCAE ED-12B is the industry-accepted guidance for determining that the software aspects of airborne systems and equipment comply with airworthiness requirements. DO-178B/ED-12B, published in 1992, is being updated to DO-178C/ED-12C. Nearly six years in the making, DO- 178C/ED-12C is expected to be completed in December 2010. It will be accompanied by a new set of supplements providing additional and much-needed guidance on tool qualification, model based development and verification, objectoriented technologies, and formal methods. Written by a member of the DO-178C/ED-12C editorial team who is also a practising software developer and verifier, this paper provides a practitioner's view of the new standard and its supplements. It explains how they will affect your organisation, focusing on the practical implications of the many changes between DO-178B/ED-12B and DO-178C/ED-12C.

  17. Ethane's 12C/13C Ratio in Titan: Implications for Methane Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Nixon, C. A.; Romani, P. N.; Bjoraker, G. L.; Sada, P. V.; Lunsford, A. W.; Boyle, R. J.; Hesman, B. E.; McCabe, G. H.

    2009-01-01

    As the .main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS(exp 1) and from the ground and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes.

  18. Towards Understanding the DO-178C / ED-12C Assurance Case

    NASA Technical Reports Server (NTRS)

    Holloway, C M.

    2012-01-01

    This paper describes initial work towards building an explicit assurance case for DO-178C / ED-12C. Two specific questions are explored: (1) What are some of the assumptions upon which the guidance in the document relies, and (2) What claims are made concerning test coverage analysis?

  19. A = 10 nuclei and 12C with SRG evolved chiral three-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Maris, Pieter; Vary, James; Calci, Angelo; Langhammer, Joachim; Binder, Sven; Roth, Robert

    2014-09-01

    We investigate selected static and transition properties of A = 10 nuclei and 12C using ab initio No-Core Shell Model (NCSM) methods with chiral two- and SRG-evolved three-nucleon interactions. We examine the dependences of observables on the SRG evolution scale and on the model-space parameters. We obtain nearly converged low-lying excitation spectra for 12C. We compare results of the full NCSM with the Importance Truncated NCSM in large model spaces for benchmarking purposes in 12C. The agreement of some observables with experiment is improved significantly by the inclusion of 3N interactions, e.g., the B(M1) from the first (Jπ , T) = (1+ , 1) state to the ground state of 12C. However, in some cases the agreement deteriorates, e.g., for the excitation energy of the first (1+ , 0) state, leaving room for improved next-generation chiral Hamiltonians. On the other hand, the excitation energies of 10C, 10B, and 10Be are not as well converged as those of 12C. In particular the lowest two (1+ , 0) states of 10B are sensitive to both the basis truncation parameters and the 3N interaction. We investigate selected static and transition properties of A = 10 nuclei and 12C using ab initio No-Core Shell Model (NCSM) methods with chiral two- and SRG-evolved three-nucleon interactions. We examine the dependences of observables on the SRG evolution scale and on the model-space parameters. We obtain nearly converged low-lying excitation spectra for 12C. We compare results of the full NCSM with the Importance Truncated NCSM in large model spaces for benchmarking purposes in 12C. The agreement of some observables with experiment is improved significantly by the inclusion of 3N interactions, e.g., the B(M1) from the first (Jπ , T) = (1+ , 1) state to the ground state of 12C. However, in some cases the agreement deteriorates, e.g., for the excitation energy of the first (1+ , 0) state, leaving room for improved next-generation chiral Hamiltonians. On the other hand, the excitation

  20. Study of the reactions occurring in the fusion of {sup 12}C and {sup 16}O with heavy nuclei at incident energies below 10 MeV/nucleon

    SciTech Connect

    Cavinato, M.; Fabrici, E.; Gadioli, E.; Gadioli Erba, E.; Vergani, P.; Crippa, M.; Colombo, G.; Redaelli, I.; Ripamonti, M.

    1995-11-01

    The excitation functions for production of many residues in the fusion of {sup 12}C with {sup 181}Ta and {sup 197}Au and of {sup 16}O with {sup 165}Ho and {sup 181}Ta have been measured at incident energies varying from the Coulomb barrier up to about 10 MeV/nucleon. The cross sections for fusion of these ions without fission have been deduced and they show that such a process may only occur for projectile angular momenta smaller than a critical value. The excitation functions for individual reactions provide evidence for the emission of preequilibrium nucleons during the thermalization of the composite nucleus and may be satisfactorily reproduced by a calculation based on the Boltzmann master equation theory.

  1. Geometric and electronic structures of B12C6N6 fullerene

    NASA Astrophysics Data System (ADS)

    Li, Fei; Zhang, Yan; Chen, Hongshan

    2014-02-01

    An electron deficient fullerene B12C6N6 is studied by using ab initio calculations. The structure is generated by replacing N with C in the B12N12 cage to ensure only B-C and B-N bonds are formed. All the possible isomers are optimized and the low energy structures are determined. C and N atoms in the low energy isomers are inclined to segregate and form B2C2 and B2N2 squares. Natural bond analysis shows that the atomic orbitals of B, C and N in this cage hybrid approximately in sp2.3 and then form B-C and B-N bonds. The 2p orbitals perpendicular to the cage surface are partially occupied and the molecular orbitals formed by these orbitals are highly delocalized. The natural charge on N is about -1.17 in both B12N12 and B12C6N6, and the charge on C is -0.72 to -0.60. The molecular orbital compositions show that the B-N bonds are the same in B12N12 and B12C6N6, and the B-C bonds possess stronger covalent character. The HOMO of B12C6N6 is formed by 2p of B and C, and the LUMO is formed by 2p of C. The energy gap of C24, B12N12 and B12C6N6 is 2.52, 6.84 and 3.22 eV, respectively.

  2. Investigating 13C +12C reaction by the activation method. Sensitivity tests

    NASA Astrophysics Data System (ADS)

    Chesneanu, Daniela; Trache, L.; Margineanu, R.; Pantelica, A.; Ghita, D.; Straticiuc, M.; Burducea, I.; Blebea-Apostu, A. M.; Gomoiu, C. M.; Tang, X.

    2015-02-01

    We have performed experiments to check the limits of sensitivity of the activation method using the new 3 MV Tandetron accelerator and the low and ultra-low background laboratories of the "Horia Hulubei" National Institute of Physics and Nuclear Engineering (IFIN-HH). We have used the 12C +13C reaction at beam energies Elab= 6, 7 and 8 MeV. The knowledge of this fusion cross section at deep sub-barrier energies is of interest for astrophysical applications, as it provides an upper limit for the fusion cross section of 12C +12C over a wide energy range. A 13C beam with intensities 0.5-2 particleμA was provided by the accelerator and used to bombard graphite targets, resulting in activation with 24Na from the 12C (13C ,p) reaction. The 1369 and 2754 keV gamma-rays from 24Na de-activation were clearly observed in the spectra obtained in two different laboratories used for measurements at low and ultralow background: one at the surface and one located underground in the Unirea salt mine from Slanic Prahova, Romania. In the underground laboratory, for Elab = 6 MeV we have measured an activity of 0.085 ± 0.011 Bq, corresponding to cross sections of 1-3 nb. This demonstrates that it is possible to measure 12C targets irradiated at lower energies for at least 10 times lower cross sections than before β-γ coincidences will lead us another factor of 10 lower, proving that this installations can be successfully used for nuclear astrophysics measurements.

  3. Synthesis, crystal structure, and properties of two modifications of MgB(12)C(2).

    PubMed

    Adasch, Volker; Hess, Kai-Uwe; Ludwig, Thilo; Vojteer, Natascha; Hillebrecht, Harald

    2007-01-01

    Single crystals of two modifications of the new magnesium boride carbide MgB(12)C(2) were synthesized from the elements in a metallic melt by using tantalum ampoules. Crystals were characterized by single-crystal X-ray diffraction and electron microprobe analysis (energy-dispersive (EDX) and wavelength-dispersive (WDX) X-ray spectroscopy). Orthorhombic MgB(12)C(2) is formed in a Cu/Mg melt at 1873 K. The crystal structure of o-MgB(12)C(2) (Imma, Z=4, a=5.6133(10), b=9.828(2), c=7.9329(15) A, 574 reflections, 42 variables, R(1)(F)=0.0208, wR(2)(I)=0.0540) consists of a hexagonal primitive array of B(12) icosahedra with Mg atoms and C(2) units in trigonal-prismatic voids. Each icosahedron has six exohedral B--B and six B--C bonds. Carbon is tetrahedrally coordinated by three boron atoms and one carbon atom with a remarkably long C--C distance of 1.727 A. Monoclinic MgB(12)C(2) is formed in an Al/Mg melt at 1573 K. The structure of m-MgB(12)C(2) (C2/c, Z=4, a=7.2736(11), b=8.7768(13), c=7.2817(11) A, beta=105.33(3) degrees , 1585 reflections, 71 variables, R(1)(F)=0.0228, wR(2)(I)=0.0610) may be described as a distorted cubic close arrangement of B(12) icosahedra. Tetrahedral voids are filled by C atoms and octahedral voids are occupied by Mg atoms. The icosahedra are interconnected by four exohedral B--B bonds to linear chains and by eight interstitial C atoms to form a three-dimensional covalent network. Both compounds fulfill the electron-counting rules of Wade and Longuet-Higgins. PMID:17236227

  4. Investigating {sup 13}C+{sup 12}C reaction by the activation method. Sensitivity tests

    SciTech Connect

    Chesneanu, Daniela Trache, L.; Margineanu, R.; Pantelica, A.; Ghita, D.; Straticiuc, M.; Burducea, I.; Blebea-Apostu, A. M.; Gomoiu, C. M.; Tang, X.

    2015-02-24

    We have performed experiments to check the limits of sensitivity of the activation method using the new 3 MV Tandetron accelerator and the low and ultra-low background laboratories of the “Horia Hulubei” National Institute of Physics and Nuclear Engineering (IFIN-HH). We have used the {sup 12}C+{sup 13}C reaction at beam energies E{sub lab}= 6, 7 and 8 MeV. The knowledge of this fusion cross section at deep sub-barrier energies is of interest for astrophysical applications, as it provides an upper limit for the fusion cross section of {sup 12}C+{sup 12}C over a wide energy range. A {sup 13}C beam with intensities 0.5–2 particleμA was provided by the accelerator and used to bombard graphite targets, resulting in activation with {sup 24}Na from the {sup 12}C({sup 13}C,p) reaction. The 1369 and 2754 keV gamma-rays from {sup 24}Na de-activation were clearly observed in the spectra obtained in two different laboratories used for measurements at low and ultralow background: one at the surface and one located underground in the Unirea salt mine from Slanic Prahova, Romania. In the underground laboratory, for E{sub lab} = 6 MeV we have measured an activity of 0.085 ± 0.011 Bq, corresponding to cross sections of 1–3 nb. This demonstrates that it is possible to measure {sup 12}C targets irradiated at lower energies for at least 10 times lower cross sections than before β–γ coincidences will lead us another factor of 10 lower, proving that this installations can be successfully used for nuclear astrophysics measurements.

  5. Analytic optical potentials for nucleon-nucleus nucleus-nucleus collisions involving light and medium nuclei

    NASA Technical Reports Server (NTRS)

    Bidasaria, H. B.; Townsend, L. W.

    1982-01-01

    Utilizing an optical model potential approximation to the exact nucleus-nucleus multiple-scattering series, optical potentials for nucleon-nucleus and nucleus-nucleus collisions are analytically derived. These expressions are applicable to light and medium cosmic ray nuclei as their single-particle density distributions are analytically determined, without approximation, from their actual harmonic well charge density distributions. Pauli correlation effects are included through the use of a simple Gaussian function to replace the usual expression obtained in the infinite nuclear matter approximation.

  6. In-medium effect with muon-neutrino and anti-muon-neutrino quasi-elastic scattering from 12C nucleons

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Kim, K. S.; Kim, Hungchong; So, W. Y.; Maruyama, Tomoyuki; Kajino, Toshitaka

    2015-04-01

    We investigated the in-medium effect by density-dependent axial and weak-vector form factors on muon-neutrino ({{ν }μ }) and anti-muon-neutrino ({{\\bar{ν }}μ }) scattering in the quasi-elastic (QE) region from nucleons (N*) bound in a nucleus or immersed in a nuclear medium via neutral current (NC) and charged current (CC). For the density-dependent form factors, we exploited a quark-meson-coupling (QMC) model. We found that the {{ν }μ }({{\\bar{ν }}μ })-{{N}*} scattering cross sections via NC in the QE region usually decrease with an increased medium density, while those using CC were increased. However, their rate of change was sensitive to the four-momentum transfer given to a bound nucleon through scattering. We compared these results obtained by the elementary process corrected by the in-medium effect to the BNL and MiniBooNE data, which measured {{ν }μ } scattering cross sections per nucleon through {{ν }μ } - 12C scattering in 12C composite targets. The incident energy range was 550 \\lt {{E}ν }\\lt 3000 MeV. We increased the energy up to 100 GeV to compare our results to the NOMAD experimental data. In order to study the density effects on a nucleon embedded in 12C, we exploited the QMC form factors evaluated at ρ =0.5{{ρ }o}, where the normal density {{ρ }o}˜ 0.15 f{{m}-3}. The strangeness contributions in NC scattering are also incorporated into the form factors for comparison with experimental data. Our numerical results show that most of the experimental data can be explained in a satisfactory manner by the density-dependent elementary process, but there are some remaining deviations resulting from the nuclear structure, particularly in the low and high momentum-transfer regions.

  7. 12C(16O, α)24Mg* reaction in the energy region Ec.m.=26.6 to 42.9 MeV

    NASA Astrophysics Data System (ADS)

    Bechara, M. J.; Lazzarini, A. J.; Ledoux, R. J.; Cosman, E. R.

    1983-04-01

    The 12C+16O resonance structure in the 28Si nucleus is examined by means of the 12C(16O, α)24Mg reaction excitation functions in the energy range Ec.m.=26.6 to 42.9 MeV in 430 keV steps at θlab=7.5°. We could identify 64 discrete states in 24Mg up to 31.7 MeV of excitation energy. The excitation functions show abundant structure over the entire energy range. The summed excitation functions, which tend to average out statistical fluctuations, show pronounced intermediate structure enhancement in the cross section at Ec.m.~=29.5, 32.2, and 35 MeV and indicate the presence of a smaller peak at 37.3 MeV. The widths of these structures are about 1 MeV, which is intermediate between the value expected from ion-ion potential resonances and statistical fluctuations. The nonstatistical character of these structures is reinforced by some statistical tests and by the correlations in energy and width found in several exit channels. Our data also suggest a possible structural relationship between the 28Si resonances and certain 24Mg final states. NUCLEAR REACTIONS 12C(16O, α)24Mg* measured σ(E) to states up to 31.7 MeV of excitation energy for Ec.m.=26.6 to 42.9 MeV in 430 keV steps, θlab=7.5°. Nonstatistical structure observed.

  8. An analysis of the 12C(p,d) reaction at eta'(958) meson production region by microscopic transport model (JAM)

    NASA Astrophysics Data System (ADS)

    Higashi, Yuko; Ikeno, Natumi; Nagahiro, Hideko; Hirenzaki, Satoru; Fujioka, Hiroyuki; Itahashi, Kenta; Tanaka, Yoshiki

    2014-09-01

    We study theoretically the 12C(p , d) reaction for the formation of the η' mesonic nucleus to optimize the experiments at GSI and FAIR, where the missing mass spectroscopy of the 12C(p , d) reaction is adopted to measure η' meson bound states in 11C. This method was proposed in Ref. and the peak structures are expected in the inclusive spectra of the deuteron in case that the discrete states exist. The semi-exclusive measurements are also considered at FAIR to reduce the background, where protons/charged pions are measured in coincidence with the deuteron. We present the theoretical distributions of the emitted charged particle in the (p , d) reaction. The charged particles produced by the η' absorption are expected to have uniform angular distribution with the specific energy of the absorption process, while those by the background distribute in the forward directions. Thus, we can reduce the background largely by the differences of the charged particle distributions from these processes. We use the microscopic transport model and we report the advantages of the semi-exclusive measurements.

  9. Astrophysical S(E) factor of the {sup 15}N(p,{alpha}){sup 12}C reaction at sub-Coulomb energies via the Trojan horse method

    SciTech Connect

    La Cognata, M.; Romano, S.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Tumino, A.; Tribble, R.; Fu, Changbo; Goldberg, V. Z.; Mukhamedzhanov, A. M.; Schmidt, D.; Tabacaru, G.; Trache, L.; Irgaziev, B. F.

    2007-12-15

    The low-energy bare-nucleus cross section for {sup 15}N(p,{alpha}){sup 12}C is extracted by means of the Trojan horse method applied to the {sup 2}H({sup 15}N,{alpha}{sup 12}C)n reaction at E{sub beam}=60 MeV. For the first time we applied the modified half-off-energy-shell resonant R-matrix method that takes into account off-energy-shell effects and initial- and final-state interactions. In particular it has been shown that inclusion of Coulomb {sup 15}N-d scattering and off-shell effects do not affect the determination of the astrophysical factor. Also the simple plane-wave approximation used in previous analyses is justified. The results extracted via the Trojan horse method are compared to direct data in the same energy region and show very good agreement in the energy interval 70-312 keV. These results confirm the extrapolations of the S factor reported in literature.

  10. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  11. Nucleus from string theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Morita, Takeshi

    2011-08-01

    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.

  12. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  13. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  14. Networking the nucleus

    PubMed Central

    Rajapakse, Indika; Scalzo, David; Tapscott, Stephen J; Kosak, Steven T; Groudine, Mark

    2010-01-01

    The nuclei of differentiating cells exhibit several fundamental principles of self-organization. They are composed of many dynamical units connected physically and functionally to each other—a complex network—and the different parts of the system are mutually adapted and produce a characteristic end state. A unique cell-specific signature emerges over time from complex interactions among constituent elements that delineate coordinate gene expression and chromosome topology. Each element itself consists of many interacting components, all dynamical in nature. Self-organizing systems can be simplified while retaining complex information using approaches that examine the relationship between elements, such as spatial relationships and transcriptional information. These relationships can be represented using well-defined networks. We hypothesize that during the process of differentiation, networks within the cell nucleus rewire according to simple rules, from which a higher level of order emerges. Studying the interaction within and among networks provides a useful framework for investigating the complex organization and dynamic function of the nucleus. PMID:20664641

  15. Theoretical calculations for neutrino-induced charged current reactions in sup 12 C and recent experimental results

    SciTech Connect

    Mintz, S.L. ); Pourkaviani, M. )

    1989-12-01

    Theoretical calculations are presented for the reaction {nu}{sub {ital e}}+{sup 12}C{r arrow}{sup 12}N{sub g.s.} +{ital e}{sup {minus}} for {ital E}{sub {nu}} from threshold to 135 MeV, for the reaction {nu}{sub {mu}}+{sup 12}C{r arrow}{sup 12}N{sub g.s.} +{mu}{sup {minus}}, and the corresponding antineutrino reaction for {ital E}{sub {nu}} from threshold to 160 MeV. Use is made of updated form factors based on more recent data for {ital e}{sup {minus}}+{sup 12}C{r arrow}{sup 12}C{sup *}+{ital e}{prime} {minus} and {gamma}+{sup 12}C{r arrow}{sup 12}C{sup *}. The recent neutrino reaction experiments are discussed in light of these calculations.

  16. Electromagnetic selection rules in the triangular α-cluster model of 12C

    NASA Astrophysics Data System (ADS)

    Stellin, G.; Fortunato, L.; Vitturi, A.

    2016-08-01

    After recapitulating the procedure to find the bands and the states occurring in the {{ D }}3h alpha-cluster model of 12C in which the clusters are placed at the vertexes of an equilateral triangle, we obtain the selection rules for electromagnetic transitions. While the alpha-cluster structure leads to the cancellation of E1 transitions, the approximations carried out in deriving the rotational-vibrational Hamiltonian lead to the disappearance of M1 transitions. Furthermore, although in general the lowest active modes are E2, E3, ... and M2, M3, ..., the cancellation of M2, M3 and M5 transitions between certain bands also occur as a result of the application of group theoretical techniques drawn from molecular physics. These implications can be very relevant for the spectroscopic analysis of γ-ray spectra of 12C.

  17. Nucleosynthesis in the Hyades Open Cluster: Evidence for the Enhanced Depletion of 12C

    NASA Astrophysics Data System (ADS)

    Schuler, Simon C.; King, Jeremy R.; The, Lih-Sin

    2010-03-01

    We present the results of a light element abundance analysis of three solar-type main sequence (MS) dwarfs and three red giant branch (RGB) clump stars in the Hyades open cluster using high-resolution and high signal-to-noise spectroscopy. The CNO abundances of each group (MS or RGB) are in excellent star-to-star agreement and confirm that the giants have undergone first dredge-up mixing. The observed abundances are compared to predictions of a standard stellar model based on the Clemson-American University of Beirut (CAUB) stellar evolution code. The model reproduces the observed evolution of the N and O abundances, as well as the previously derived 12C/13C ratio, but it fails to predict the observed level of 12C depletion in the giants. More tellingly, the sum of the observed giant CNO abundances does not equal that of the dwarfs.

  18. Projectile and Target Fragmentation in the Interaction of 12C and 27Al

    SciTech Connect

    Foertsch, S.V.; Steyn, G.F.; Lawrie, J.J.; Smit, F.D.; Cerutti, F.; Colleoni, P.; Gadioli, E.; Mairani, A.; Connell, S.H.; Fearick, R.W.; Thovhogi, T.; Machner, H.; Goldenbaum, F.; Pysz, K.

    2005-05-24

    The emission of intermediate mass fragments (IMFs) produced in the inclusive 12C+27Al and 27Al+12C reactions at incident energies corresponding to a c.m. excitation energy of 107.5 MeV were studied at lab. angles of 12 deg. to 25 deg. Double differential cross sections of the IMF spectra are compared to model calculations, which include direct breakup of both the projectile and target, nucleon coalescence, as well as partial and complete fusion. This study indicates the importance of the complementary nature of a reaction together with its inverse process in fully understanding the driving reaction mechanisms in the interaction of two light-mass nuclei.

  19. Charge form factor and sum rules of electromagnetic response functions in $^{12}$C

    SciTech Connect

    Lovato, Alessandro; Gandolfi, Stefano; Carlson, Joseph A.; Butler, Ralph; Lusk, Ewing; Pieper, Steven C.; Schiavilla, Rocco

    2013-08-01

    An {\\it ab initio} calculation of the $^{12}$C elastic form factor, and sum rules of longitudinal and transverse response functions measured in inclusive (e,e') scattering, is reported, based on realistic nuclear potentials and electromagnetic currents. The longitudinal elastic form factor and sum rule are found to be in satisfactory agreement with available experimental data. A direct comparison between theory and experiment is difficult for the transverse sum rule. However, it is shown that the calculated one has large contributions from two-body currents, indicating that these mechanisms lead to a significant enhancement of the quasi-elastic transverse response. This fact may have implications for the anomaly observed in recent neutrino quasi-elastic charge-changing scattering data off $^{12}$C.

  20. Novel Polycarbo-Substituted Imidazo[1,2-c]quinazolines: Synthesis and Cytotoxicity Study.

    PubMed

    Khoza, Tebogo Ankie; Makhafola, Tshepiso Jan; Mphahlele, Malose Jack

    2015-01-01

    Amination of the 2-aryl-6-bromo-4-chloro-8-iodoquinazolines with 2-aminoethanol followed by acid-promoted cyclodehydration of the incipient 2-((6,8-dihalo-2-phenylquinazolin-4-yl)amino)ethanols afforded the corresponding novel 5-aryl-9-bromo-7-iodo-2,3-dihydro-2H-imidazo[1,2-c]quinazolines. The latter were, in turn, subjected to sequential (Sonogashira and Suzuki-Miyaura) and one-pot two-step (Sonogashira/Stille) cross-coupling reactions to afford diversely functionalized polycarbo-substituted 2H-imidazo[1,2-c]quinazolines. The imidazoquinazolines were screened for in vitro cytotoxicity against human breast adenocarcinoma (MCF-7) cells and human cervical cancer (HeLa) cells. PMID:26694336

  1. Analysis of the 11B(d,n)12C Reaction

    NASA Astrophysics Data System (ADS)

    Ridling, Nathan; Prior, Richard; Spraker, Mark; Weller, Henry; Perdue, Brent

    2006-10-01

    Studies have been performed on the ^11B(d,n)^12C reaction to measure the absolute astrophysical S factor and its energy dependence, the reaction cross section, and tensor and vector analyzing powers T20, T21, T22, and iT11. The motivation behind this research project is not only its relevance to nuclear astrophysics, but also in the reaction dynamics of (d,n) reactions at very low energies. PSD (Pulse shape discrimination) was used along with PAW (Physics Analysis Workstation) in order to extract the neutrons from the gamma-rays. Using a neutron response function fitting routine in Root, we have determined the number of neutron counts leading to the ground and first excited states of ^12C. These yields were used to construct the angular distributions of the cross section and analyzing powers. Ultimately, we will extract the reaction specific transition matrix elements.

  2. The C-12/C-13 ratio in Jupiter from the Voyager infrared investigation

    NASA Technical Reports Server (NTRS)

    Courtin, R.; Gautier, D.; Marten, A.; Kunde, V.

    1983-01-01

    An analysis of the v(4) band of CH4 in the spectra recorded by the Voyager 1 IRIS experiment has yielded a C-12/C-13 ratio in Jupiter that is 160 plus 40 or minus 55, or 1.8 plus 0.4 or minus 0.6 times the terrestrial value. It is noted that while no plausible theory predicts such a difference between the C-12/C-13 ratio values of Jupiter and the inner solar system, values of this ratio in the solar neighborhood 4.5 million years ago, inferred from recent interstellar medium measurements, are compatible with the present determination in Jupiter. The Jovian, rather than the terrestrial value, would then be representative of the carbon isotope ratio in the primitive solar nebula.

  3. Multiple-scattering effects in nucleus-nucleus reactions with Glauber theory

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shinya; Ebata, Shuichiro; Horiuchi, Wataru; Kimura, Masaaki

    2014-09-01

    A study of new unstable nuclei has become possible in new radioactive beam facilities. In order to understand the relationship between reaction observables and nuclear structure, we need reaction theory which exactly reflects the nuclear structure. The Glauber theory is a powerful tool of analyzing high energy nuclear reactions. The theory describes the multiple scattering processes, whereas the optical limit approximation (OLA), which is widely used, ignores those processes. Those effects are expected to play an important role in the nuclear collision involving unstable nuclei (see for example Phys. Rev. C 54, 1843 (1996)). Here we apply the Glauber theory to nucleus-nucleus reactions. The wave functions are generated by the Skyrme-Hartree-Fock method and are expressed in a Slater determinant that allows us to evaluate the complete Glauber amplitude easily. We calculate total reaction cross sections, elastic cross sections and differential elastic cross sections for 16~24O, 40~70Ca, 56,58Ni, 100~140Sn, 190~214Pb on proton, 4He, 12C targets and compare with experimental data. The Glauber theory gives much better description than the OLA, especially at larger scattering angles.

  4. Corrections to the one-photon approximation in the 0+-->2+ transition of 12C

    SciTech Connect

    Paul Gueye; Madeleine Bernheim; J. F. Danel; Jean-Eric Ducret; L. Lakehal-Ayat; Jean-Marc Le Goff; Alain Magnon; Claude Marchand; Edmond Offermann; Jacques Marroncle; Pascal Vernin; Marco C. Traini; Vincent Breton; Salvatore Frullani; Franco Garibaldi; Francesco Ghio; Mauro Iodice; Zein-Eddine Meziani

    2001-04-18

    Contribution of higher order effects to the one-photon exchange approximation were studied in the first excited state of 12C by comparing inclusive inelastic scattering cross sections of electrons and positrons obtained at the Saclay Linear Accelerator. The data were compared to a distorted wave Born approximation (DWBA)calculation. The results indicate an effect less than 2% within 2sigma, compatible with what was observed in recent elastic scattering measurements.

  5. Two Categories of 13C/12C Ratios for Higher Plants 1

    PubMed Central

    Smith, Bruce N.; Epstein, Samuel

    1971-01-01

    13C/12C ratios have been determined for plant tissue from 104 species representing 60 families. Higher plants fall into two categories, those with low δPDBI13C values (—24 to —34‰) and those with high δ 13C values (—6 to —19‰). Algae have δ 13C values of —12 to —23‰. Photosynthetic fractionation leading to such values is discussed. PMID:16657626

  6. Isoscalar monopole and dipole excitations of cluster states and giant resonances in 12C

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2016-05-01

    The isoscalar monopole (ISM) and dipole (ISD) excitations in 12C are investigated theoretically with the shifted antisymmetrized molecular dynamics (AMD) plus 3 α -cluster generator coordinate method (GCM). The small-amplitude vibration modes are described by coherent one-particle one-hole excitations expressed by a small shift of single-nucleon Gaussian wave functions within the AMD framework, whereas the large-amplitude cluster modes are incorporated by superposing 3 α -cluster wave functions in the GCM. The coupling of the excitations in the intrinsic frame with the rotation and parity transformation is taken into account microscopically by the angular-momentum and parity projections. The present a calculation that describes the ISM and ISD excitations over a wide energy region covering cluster modes in the low-energy region and the giant resonances in the high-energy region, although the quantitative description of the high-energy part is not satisfactory. The low-energy ISM and ISD strengths of the cluster modes are enhanced by the distance motion between α clusters, and they split into a couple of states because of the angular motion of α clusters. The low-energy ISM strengths exhaust 26% of the energy-weighted sum rule, which is consistent with the experimental data for the 12C(02+; 7.65 MeV) and 12C(03+; 10.3 MeV) measured by (e ,e') ,(α ,α') , and (6Li,6Li' ) scatterings. In the calculated low-energy ISD strengths, two 1- states (the 11- and 12- states) with the significant strengths are obtained over E =10 -15 MeV. The results indicate that the ISD excitations can be a good probe to experimentally search for new cluster states such as the 12C(12-) obtained in the present calculation.

  7. Muon and neutrino production in inclusive proton-/sup 12/C reactions

    SciTech Connect

    Mintz, S.L.

    1987-01-01

    We present an estimate for the cross section for the inclusive reaction p+ /sup 12/C..--> mu../sup +/+..nu..+X, where X is a nuclear state. For an incident proton c.m. energy of 1076 MeV, a cross section of 4.41 x 10/sup -42/ cm/sup 2/ is obtained. The possibility of observing anomalous threshold states is also discussed.

  8. C-12/C-13 Ratio in Ethane on Titan and Implications for Methane's Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Romani, Paul N.; Bjoraker, Gordon L.; Sada, Pedro V.; Nixon, Conor A.; Lunsford, Allen W.; Boyle, Robert J.; Hesman, Brigette E.; McCabe, George H.

    2009-01-01

    The C-12/C-13 abundance ratio in ethane in the atmosphere of Titan has been measured at 822 cm(sup -1) from high spectral resolution ground-based observations. The value 89(8), coincides with the telluric standard and also agrees with the ratio seen in the outer planets. It is almost identical to the result for ethane on Titan found by the composite infrared spectrometer (CIRS) on Cassini. The C-12/C-13 ratio for ethane is higher than the ratio measured in atmospheric methane by Cassini/Huygens GCMS, 82.3(l), representing an enrichment of C-12 in the ethane that might be explained by a kinetic isotope effect of approximately 1.1 in the formation of methyl radicals. If methane is being continuously resupplied to balance photochemical destruction, then we expect the isotopic composition in the ethane product to equilibrate at close to the same C-12/C-13 ratio as that in the supply. The telluric value of the ratio in ethane then implies that the methane reservoir is primordial.

  9. Measurements and Modeling of (16)O(12)C(17)O Spectroscopic Parameters at 2µm

    NASA Astrophysics Data System (ADS)

    Jacquemart, D.; Sung, K.; Brown, L. R.; Coleman, M.; Mantz, A. W.; Smith, M. A. H.

    2014-06-01

    In the present study, line-intensity measurements for 16O12C17O were performed using a high-resolution Fourier transform spectrometer (Bruker IFS-125HR) together with a Herriott cell allowing a 20.956 m absorption path. For this, a 17O-enriched CO2 gas sample mixture was used. The 16O12C17O isotopologue abundance in the sample was determined to be 0.3991 by mass spectrometry. Since a collisional narrowing effect has been observed, the Rautian profile was systematically used instead of the Voigt profile. Finally, around 1000 transitions were studied between 4604 and 5126 cm-1 involving 15 bands of the 16O12C17O isotopologue. For each of the 15 bands, transition dipole moments and Herman-Wallis factors were derived, which also enabled a global comparison with theoretical calculations and predictions achieved for carbon dioxide. For the measured and calculated line positions, the accuracy is between 0.1 - 1×10-3 cm-1. For line intensities, depending on the intensity of the band, accuracies are between 2 - 3 % for 5 cold bands and 2 hot bands and between 6 - 30 % for 8 weaker hot bands. Results from this work are compared to previous works and to HITRAN 2012. Complete line lists were generated to support atmospheric remote sensing for the Earth (e.g. GOSAT, OCO-2 ...), Mars and Venus.

  10. Electric quadrupole excitations in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Calculations are presented for electric quadrupole excitations in relativistic nucleus-nucleus collisions. The theoretical results are compared to an extensive data set and it is found that electric quadrupole effects provide substantial corrections to cross sections, especially for heavier nuclei.

  11. Meson multiplicity versus energy in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Atwater, T. W.; Freier, P. S.

    1986-01-01

    A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.

  12. Scaling phenomenon in relativistic nucleus-nucleus collisions

    SciTech Connect

    Wong, C. Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures.

  13. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  14. The Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    Exciting new broadband observations of the galactic nucleus have placed the heart of the Milky Way under intense scrutiny in recent years. This has been due in part to the growing interest from theorists motivated to study the physics of black hole accretion, magnetized gas dynamics, and unusual star formation. The center of our Galaxy is now known to harbor the most compelling supermassive black hole candidate, weighing in at 3-4 million solar masses. Its nearby environment is comprised of a molecular dusty ring, clusters of evolved and young stars, diffuse hot gas, ionized gas streamers, and several supernova remnants. This chapter will focus on the physical makeup of this dynamic region and the feasibility of actually imaging the black hole's shadow in the coming decade with mm interferometry.

  15. Neutrino-Nucleus Reactions and Nucleosynthesis

    SciTech Connect

    Suzuki, Toshio; Chiba, Satoshi; Yoshida, Takashi; Honma, Michio; Higashiyama, Koji; Umeda, Hideyuki; Nomoto, Ken'ichi; Kajino, Toshitaka; Otsuka, Takaharu

    2008-05-21

    Neutrino-induced reactions on {sup 12}C, {sup 4}He as well as Fe and Ni isotopes are studied based on new shell model Hamiltonians for p-shell and fp-shell. Gamow-Teller and spin-dipole transitions are investigated, and applied to neutrino-nucleus reactions induced by both DAR and supernova neutrinos. The reaction cross sections are found to be enhanced compared with conventional Hamiltonians as well as previous calculations. The production yields of {sup 7}Li and {sup 11}B during supernova explosions are found to be enhanced, and the effects of neutrino oscillations and implications of the enhancement on the constraint on temperature for {nu}{sub {mu}}{sub ,{tau}} and {nu}-bar{sub {mu}}{sub ,{tau}} are discussed. Production of other light elements such as {sup 10}Be and {sup 10}B by neutrino processes is also discussed. Neutral current reactions on Ni and Fe isotopes induced by supernova neutrinos are investigated. Effects of neutrino-induced reactions on the production yields of heavy elements such as Mn are discussed.

  16. Experimental Energy Levels and Partition Function of the 12C2 Molecule

    NASA Astrophysics Data System (ADS)

    Furtenbacher, Tibor; Szabó, István; Császár, Attila G.; Bernath, Peter F.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2016-06-01

    The carbon dimer, the 12C2 molecule, is ubiquitous in astronomical environments. Experimental-quality rovibronic energy levels are reported for 12C2, based on rovibronic transitions measured for and among its singlet, triplet, and quintet electronic states, reported in 42 publications. The determination utilizes the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. The 23,343 transitions measured experimentally and validated within this study determine 5699 rovibronic energy levels, 1325, 4309, and 65 levels for the singlet, triplet, and quintet states investigated, respectively. The MARVEL analysis provides rovibronic energies for six singlet, six triplet, and two quintet electronic states. For example, the lowest measurable energy level of the {{a}}{}3{{{\\Pi }}}{{u}} state, corresponding to the J = 2 total angular momentum quantum number and the F 1 spin-multiplet component, is 603.817(5) cm‑1. This well-determined energy difference should facilitate observations of singlet–triplet intercombination lines, which are thought to occur in the interstellar medium and comets. The large number of highly accurate and clearly labeled transitions that can be derived by combining MARVEL energy levels with computed temperature-dependent intensities should help a number of astrophysical observations as well as corresponding laboratory measurements. The experimental rovibronic energy levels, augmented, where needed, with ab initio variational ones based on empirically adjusted and spin–orbit coupled potential energy curves obtained using the Duo code, are used to obtain a highly accurate partition function, and related thermodynamic data, for 12C2 up to 4000 K.

  17. Antiproton-nucleus interaction

    NASA Astrophysics Data System (ADS)

    Cugnon, J.; Vandermeulen, J.

    The antiproton-nucleus physics is reviewed. On the experimental side, the recent results obtained at the LEAR, BNL and KEK facilities are analyzed. A brief summary of the main pp and pn experimental data is also given. The antiproton-nucleus interaction can lead to elasic, inelastic and charge exchange scattering and to annihilation. The latter is very dominant. The scattering cross-sections are usually analyzed in terms of complex potential models. The relationship between potentials, charge conjugation and Dirac phenomenology is discussed. Much emphasis is put on the dynamics of the antiproton annihilation on nuclei. The energy transfer, pion absorption and target response are analyzed within the intranuclear cascade model. Special interest is devoted to strangeness production, hypernucleus formation and possible annihilation on two nucleons. Signatures for this new process are searched in experimental data. Finally, the highly debated question of quark-gluon formation is analyzed. Cet article constitue une revue de la physique antiproton-noyau. Du point de vue expérimental, cette revue porte particulièrement sur les récents résultats obtenus à LEAR, BNL et KEK. On y a aussi inclus une mise à jour des faits expérimentaux principaux pour pp et pn. L'interaction antiproton-noyau conduit à la diffusion élastique, inélastique et d'xA9change de charge et à des processus d'annihilation. Habituellement, les expériences de diffusion sont analysées en termes de potentiels complexes. La relation entre ces potentiels, la conjugaison de charge et la phénoménologie de Dirac est discutée. On s'est particulièrement intéressé à la dynamique de l'annihilation d'antiprotons sur des noyaux. Le transfert d'énergie, l'absorption de pions et la réponse de la cible sont analysés dans le cadre du modèle de cascade intranucléaire. Certains autres points sont discutés plus en détail: la production d'étrangeté, la formation d'hypernoyaux et l'annihilation sur

  18. Neutral weak-current two-body contributions in inclusive scattering from {sup 12}C

    SciTech Connect

    Lovato, Alessandro; Gandolfi, Stefano; Carlson, Joseph; Pieper, S. C.; Schiavilla, Rocco

    2014-05-01

    An {\\it ab initio} calculation of the sum rules of the neutral weak response functions in $^{12}$C is reported, based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic currents, consisting of one- and two-body terms. We find that the sum rules of the response functions associated with the longitudinal and transverse components of the (space-like) neutral current are largest and that a significant portion ($\\simeq 30$\\%) of the calculated strength is due to two-body terms. This fact may have implications for the MiniBooNE and other neutrino quasi-elastic scattering data on nuclei.

  19. C12/C13-ratio determination in nanodiamonds by atom-probe tomography.

    PubMed

    Lewis, Josiah B; Isheim, Dieter; Floss, Christine; Seidman, David N

    2015-12-01

    The astrophysical origins of ∼ 3 nm-diameter meteoritic nanodiamonds can be inferred from the ratio of C12/C13. It is essential to achieve high spatial and mass resolving power and minimize all sources of signal loss in order to obtain statistically significant measurements. We conducted atom-probe tomography on meteoritic nanodiamonds embedded between layers of Pt. We describe sample preparation, atom-probe tomography analysis, 3D reconstruction, and bias correction. We present new data from meteoritic nanodiamonds and terrestrial standards and discuss methods to correct isotopic measurements made with the atom-probe tomograph. PMID:26095824

  20. Mechanics of the Nucleus

    PubMed Central

    Lammerding, Jan

    2015-01-01

    The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203

  1. Global optical potential for nucleus-nucleus systems from 50 MeV/u to 400 MeV/u

    NASA Astrophysics Data System (ADS)

    Furumoto, T.; Horiuchi, W.; Takashina, M.; Yamamoto, Y.; Sakuragi, Y.

    2012-04-01

    We present a new global optical potential (GOP) for nucleus-nucleus systems, including neutron-rich and proton-rich isotopes, in the energy range of 50-400 MeV/u. The GOP is derived from the microscopic folding model with the complex G-matrix interaction CEG07 and the global density presented by the São Paulo group. The folding model accounts for realistic complex optical potentials of nucleus-nucleus systems well and reproduces the existing elastic scattering data for stable heavy-ion projectiles at incident energies above 50 MeV/u. We then calculate the folding-model potentials (FMPs) for projectiles of even-even isotopes, 8-22C, 12-24O, 16-38Ne, 20-40Mg, 22-48Si, 26-52S, 30-62Ar, and 34-70Ca, scattered by stable target nuclei of 12C, 16O, 28Si, 40Ca 58Ni, 90Zr, 120Sn, and 208Pb at incident energies of 50, 60, 70, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, and 400 MeV/u. The calculated FMP is represented, with a sufficient accuracy, by a linear combination of 10-range Gaussian functions. The expansion coefficients depend on the incident energy, the projectile and target mass numbers, and the projectile atomic number, while the range parameters depend only on the projectile and target mass numbers. The adequate mass region of the present GOP by the global density is inspected in comparison with FMP by realistic density. The full set of the range parameters and the coefficients for all the projectile-target combinations at each incident energy are provided on a permanent open-access website together with a fortran program for calculating the microscopic-basis GOP (MGOP) for a desired projectile nucleus by the spline interpolation over the incident energy and the target mass number.

  2. Measurement of the fusion excitation function for 19O + 12C at near barrier energies

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Steinbach, T. K.; Vadas, J.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Tripathi, V.; Kuvin, S. A.; Wiedenhover, I.

    2015-10-01

    Fusion of neutron-rich light nuclei in the outer crust of an accreting neutron star has been proposed as responsible for triggering X-ray super-bursts. The underlying hypothesis in this proposition is that the fusion of neutron-rich nuclei is enhanced as compared to stable nuclei. To investigate this hypothesis, an experiment has been performed to measure the fusion excitation function for 18O and 19O nuclei incident on a 12C target. A beam of 19O was produced by the 18O(d,p) reaction at Florida State University and separated using the RESOLUT mass spectrometer. The resulting 19O beam bombarded a 100 μg/cm2 12C target at an intensity of 2-4 × 103 p/s. Evaporation residues resulting from the de-excitation of the fusion product were distinguished by measuring their energy and time-of-flight. Using silicon detectors, micro-channel plate detectors, and an ionization chamber, evaporation residues were detected in the angular range θlab <= 23° with high efficiency. Initial experimental results including measurement of the fusion cross-section to approximately the 100 mb level will be presented. The measured excitation function will be compared to theoretical predictions. Supported by the US DOE under Grand No. DEFG02-88ER-40404.

  3. Direct measurement of 11B(p ,γ )12C astrophysical S factors at low energies

    NASA Astrophysics Data System (ADS)

    He, J. J.; Jia, B. L.; Xu, S. W.; Chen, S. Z.; Ma, S. B.; Hou, S. Q.; Hu, J.; Zhang, L. Y.; Yu, X. Q.

    2016-05-01

    We directly measure the absolute cross section of 11B(p ,γ )12C in the energy region of Ec .m .=130 -257 keV by using a thin target for the first time. This work is performed on a 320-kV platform at the Institute of Modern Physics in Lanzhou. The astrophysical S factors of this reaction are obtained for capture to the ground and first excited states of 12C. The properties of the known resonance at ˜150 keV are derived and agree with the previous results. However, in the energy region of 170-240 keV, our S factors are about 15%-50% larger than the adopted values in NACRE II and are also larger than the upper limits of NACRE II by up to ˜20 % . This indicates that our new reaction rate is enhanced by about 15%-50% compared to the NACRE II adopted rate in the temperature region 0.32-0.62 GK.

  4. Measurements of 12 C ion fragmentation on thin carbon target from the FIRST collaboration at GSI

    NASA Astrophysics Data System (ADS)

    Toppi, M.; FIRST Collaboration

    2015-04-01

    The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at GSI laboratory took data in summer 2011, studying the collisions of a 12C ion beam with Carbon and Au thin targets. The experiment main purpose is the double differential cross section measurement of the carbon ion fragmentation at energies that are relevant both for tumor therapy and space radiation protection applications (100-1000 MeV/u). The FIRST dataset contains carbon ions collisions on a 3.43 g·Cin-2 carbon target (about 24 M events) and on a 0.96 g·cm-2 Au target (about 4.5 M events). The SIS (heavy ion synchrotron) was used to accelerate the 12C ions at the energy of 400 MeV/u. The preliminary results of differential cross sections measurements as a function of angle and energy for carbon target, in the small angle region (θ ≤ 5°), are presented.

  5. The anharmonic resonances in the infrared spectrum of 12 C 13 CH 2

    NASA Astrophysics Data System (ADS)

    Fusina, L.; Bramati, G.; Mazzavillani, A.; di Lonardo, G.

    The vibration-rotation spectrum of 13 C mono-substituted acetylene, 12 C 13 CH 2 , has been recorded in the region between 1100 and 3500 cm -1 at instrumental (4 ×10 -3} cm -1 ) or Doppler limited (6- 8 ×10 -3 cm -1 ) resolution. Hot and cold bands involving the stretchings ν1 , ν2 and ν3 and the stretching-bending combination bands with v 2 = 1, v 4 ≤1 and v 5 ≤2 have been observed and analysed. The anharmonic resonances within the dyads ν 1 / ( ν2 +2 ν 5 ) and ν 3 / ( ν2 + ν 4 + ν5 ), which strongly perturb the spectrum of 13 C 2 H 2 and 12 C 2 H 2 , respectively, have been analysed. From the simultaneous treatment of all the assigned transitions a set of deperturbed molecular parameters, containing also the coupling coefficients K 1,255 and K 3,245 , was derived. They fully characterize the ro-vibrational pattern of the observed stretching and stretching-bending combination states and provide an accurate description of the anharmonic resonances in the molecule.

  6. Efficiency Calibration for Measuring the 12C(n, 2n)11C Cross Section

    NASA Astrophysics Data System (ADS)

    Eckert, Thomas; Gula, August; Vincett, Laurel; Yuly, Mark; Padalino, Stephen; Russ, Megan; Bienstock, Mollie; Simone, Angela; Ellison, Drew; Desmitt, Holly; Sangster, Craig; Regan, Sean; Fitzgerald, Ryan

    2015-11-01

    One possible inertial confinement fusion diagnostic involves tertiary neutron activation via the 12C(n, 2n)11C reaction. A recent experiment to measure this reaction cross-section involved coincidence counting the annihilation gamma rays produced by the positron decay of 11C. This requires an accurate value for the full-peak coincidence efficiency of the NaI detector system. The GEANT 4 toolkit was used to develop a Monte Carlo simulation of the detector system which can be used to calculate the required efficiencies. For validation, simulation predictions have been compared with the results of two experiments. In the first, full-peak coincidence positron annihilation efficiencies were measured for 22Na decay positrons that annihilate in a small plastic scintillator. In the second, a NIST-calibrated 68Ge source was used. A comparison of calculated with measured efficiencies, as well as 12C(n, 2n)11C cross sections are presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  7. Vibrational dynamics of a non-degenerate ultrafast rotor: The (C12,C13)-oxalate ion

    PubMed Central

    Kuroda, Daniel G.; Abdo, Mohannad; Chuntonov, Lev; Smith, Amos B.; Hochstrasser, Robin M.

    2013-01-01

    Molecular ions undergoing ultrafast conformational changes on the same time scale of water motions are of significant importance in condensed phase dynamics. However, the characterization of systems with fast molecular motions has proven to be both experimentally and theoretically challenging. Here, we report the vibrational dynamics of the non-degenerate (C12,C13)-oxalate anion, an ultrafast rotor, in aqueous solution. The infrared absorption spectrum of the (C12,C13)-oxalate ion in solution reveals two vibrational transitions separated by approximately 40 cm−1 in the 1500–1600 cm−1 region. These two transitions are assigned to vibrational modes mainly localized in each of the carboxylate asymmetric stretch of the ion. Two-dimensional infrared spectra reveal the presence and growth of cross-peaks between these two transitions which are indicative of coupling and population transfer, respectively. A characteristic time of sub-picosecond cross-peaks growth is observed. Ultrafast pump-probe anisotropy studies reveal essentially the same characteristic time for the dipole reorientation. All the experimental data are well modeled in terms of a system undergoing ultrafast population transfer between localized states. Comparison of the experimental observations with simulations reveal a reasonable agreement, although a mechanism including only the fluctuations of the coupling caused by the changes in the dihedral angle of the rotor, is not sufficient to explain the observed ultrafast population transfer. PMID:24182056

  8. Theoretical investigation of stabilities and optical properties of Si12C12 clusters.

    PubMed

    Duan, Xiaofeng F; Burggraf, Larry W

    2015-01-21

    By sorting through hundreds of globally stable Si12C12 isomers using a potential surface search and using simulated annealing, we have identified low-energy structures. Unlike isomers knit together by Si-C bonds, the lowest energy isomers have segregated carbon and silicon regions that maximize stronger C-C bonding. Positing that charge separation between the carbon and silicon regions would produce interesting optical absorption in these cluster molecules, we used time-dependent density functional theory to compare the calculated optical properties of four isomers representing structural classes having different types of silicon and carbon segregation regions. Absorptions involving charge transfer between segregated carbon and silicon regions produce lower excitation energies than do structures having alternating Si-C bonding for which frontier orbital charge transfer is exclusively from separated carbon atoms to silicon atoms. The most stable Si12C12 isomer at temperatures below 1100 K is unique as regards its high symmetry and large optical oscillator strength in the visible blue. Its high-energy and low-energy visible transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. PMID:25612705

  9. Applying new tools to old problems—experimental studies of resonances in 12C

    NASA Astrophysics Data System (ADS)

    Kirsebom, O. S.; Fynbo, H. O. U.; Howard, A. M.; Laursen, K. L.

    2014-12-01

    We report preliminary results from an experimental study of the p + 11B reaction at beam energies of 2.00 MeV, 2.63 MeV and 3.12 MeV, corresponding to three known 0+, 2+ and 3- resonances in 12C at excitation energies of 17.79 MeV, 18.38 MeV and 18.81 MeV. The resonances have small γ-decay branches to lower-lying resonances of the order of 10-6- 10-5. By detecting the three outgoing a particles in coincidence and measuring their momenta, we obtain complete kinematics information. From the combined energy of the α particles we determine the energy of the γ transition. In this way, we identify two previously observed transitions, (0+, 17.79) → (1+, 12.71) and (3-, 18.38) → (3- 9.64), and one new transition, (2+, 18.81) → (1+, 12.71). The results demonstrate the usefulness of γ decay as a probe of the low-lying resonance spectrum of 12C in the search for new broad (cluster) resonances.

  10. Two Neutron Removal in Relativistic Nucleus-Nucleus Reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for double neutron removal via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work examines the cause of these discrepancies and systematically investigates whether the problem might be due to electromagnetic theory, nuclear contributions, or an underestimate of experimental error. Using cross section systematics from other reactions it is found that the discrepancies can be resolved in a plausible manner.

  11. Examining the Structure of the Oxygen-16 Nucleus

    NASA Astrophysics Data System (ADS)

    Sauer, Ethan; Aprahamian, Ani; Tan, Wanpeng; Gyurjinyan, Armen; Frentz, Bryce; Guerin, Benjamin

    2015-10-01

    The intent of this work is to explore the structure of the nucleus of Oxygen-16 (16O), which consists of four alpha particles, each with two protons and two neutrons. 16O is generated via the fusion of helium and carbon during stellar nucleosynthesis. This reaction is crucial to the existence of life. By measuring the structure of the 16O nucleus, we hope to gain a better understanding of stellar evolution and processes. The theoretical state of most interest is a linear arrangement of the four alpha particles, proposed by Chevallier et al. in their 1967 paper to explain the surprisingly large moment of inertia of the nucleus they measured. The existence of this state can be most accurately observed through an analysis of the energy spectra of the decay products. This method has previously been implemented at Notre Dame by Freer et al. when a similar structure, that of Carbon-12 (12C), was analyzed, and a previously unknown state was observed. The data gathered is analyzed using the method of angular correlation, which makes use of the angles and energies of decay products relative to the center of mass frame to reconstruct possible spins of the initial state. Analysis is currently underway and results will be presented at CEU 2015. Supported by NSF Grant PHY-1419765.

  12. Unexpected doubly-magic nucleus.

    SciTech Connect

    Janssens, R. V. F.; Physics

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope {sup 24}O has been found to be one such nucleus - yet it lies just at the limit of stability.

  13. Spectral temperatures of {Delta}{sup 0}(1232) resonances produced in p{sup 12}C and d{sup 12}C collisions at 4.2 GeV/c per nucleon

    SciTech Connect

    Khan, Imran; Olimov, Kh. K.

    2013-07-15

    The reconstructed experimental transverse momentum (p{sub t}) distributions of {Delta}{sup 0}(1232) resonances produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c and the corresponding spectra calculated using Modified FRITIOF model were analyzed in the framework of Hagedorn Thermodynamic Model. The spectral temperatures of {Delta}{sup 0}(1232) resonances were extracted from fitting their p{sub t} spectra with one-temperature Hagedorn function. The extracted spectral temperatures of {Delta}{sup 0}(1232) were compared with the corresponding temperatures of {pi}{sup -} mesons in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c obtained similarly from fitting the p{sub t} spectra of {pi}{sup -} by one-temperature Hagedorn function. The spectral temperatures of {Delta}{sup 0}(1232) resonances agreed within uncertainties with the corresponding temperatures of {pi}{sup -} mesons produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c.

  14. E0 strength in /sup 12/C from /sup 6/Li scattering

    SciTech Connect

    Eyrich, W.; Hofmann, A.; Lehmann, A.; Muehldorfer, B.; Schloesser, H.; Wirth, H.; Gils, H.J.; Rebel, H.; Zagromski, S.

    1987-07-01

    The (/sup 6/Li,/sup 6/Li') reaction was studied on /sup 12/C at E/sub Li/ = 156 MeV at extreme forward angles including theta = 0/sup 0/. Spectra were taken in the excitation energy region E/sub x/approx. <30 MeV. E0 strength was deduced at E/sub x/ = 7.65 MeV (9.5% energy weighted sum rule) around E/sub x/ = 10.2 MeV (5% +- 1% energy weighted sum rule) and in the region 19 MeVless than or equal toE/sub x/less than or equal to21.5 MeV (5% +- 2% energy weighted sum rule).

  15. Animal /sup 13/C//sup 12/C correlates with trophic level in pelagic food webs

    SciTech Connect

    Rau, G.H.; Mearns, A.J.; Young, D.R.; Olson, R.J.; Schafer, H.A.; Kaplan, I.R.

    1983-01-01

    Whatever the underlying cause(s), our observations further substantiate the existence of small but progressive increases in animal tissue /sup 13/C//sup 12/C with increasing trophic level. Such a relationship has significant implications for the use of stable carbon isotope natural abundance in animal tissues or remains, in order to interpret the tropic structure and food base of past as well as present-day animal communities. The delta/sup 13/C of the marine animal tissues analyzed ranged from -20.6 to -15.8%. The macro-fauna from the eastern tropical Pacific Ocean had higher isotope values than the net plankton collected from the same area. The average increases in delta/sup 13/C per trophic level were 0.73 and 1.38% for the California coastal waters and for the eastern tropical Pacific, respectively. These isotopic increases approximate closely those previously reported to occur within single trophic level steps.

  16. Experimental study of the 12C ( K -stopped , π0 ) 12 Λ B reaction

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Cui, X.; Empl, A.; Hungerford, E. V.; Lan, K. J.; Youn, M.; Chrien, R. E.; Gill, R.; Pile, P.; Rusek, A.; Sutter, R.; Bjoraker, J.; Dehnhard, D.; O'Donnell, J. M.; Gerald, J.; Juengst, H.; Liu, J. H.; Peng, J. C.; Morris, C. L.; Riedel, C. M.; Thiessen, H. A.; Androic, D.; Bertovic, I.; Furic, M.; Petkovic, T.; Planinic, M.; Tang, L.; Zeps, V.

    2003-12-01

    The ( K -stopped , π0 ) strangeness and charge changing reaction was investigated by producing a 12 Λ B hypernucleus from a carbon target. The branching ratio for K- capture to the ground and p -shell states of this hypernucleus was found to be (0.28±0.08)× 10-3 and (0.35±0.09)× 10-3 , respectively, which after correction for isospin was lower than a previously measured value for the 12 C ( K -stopped , π- ) 12ΛC reaction, but still above the theoretical predictions for the ground state. The experiment obtained a missing-mass resolution comparable to in-flight reactions, however the higher background and lower selectivity of the K -stopped reaction limits its usefulness in the study of new hypernuclear species.

  17. Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering

    NASA Astrophysics Data System (ADS)

    Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen

    2014-09-01

    Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three

  18. Photosynthesis and sup 13 C/ sup 12 C ratios in Amazonian rain forests

    SciTech Connect

    Van Der Merwe, N.J. ); Medina, E. )

    1989-05-01

    Measurements are reported of {sup 13}C/{sup 12}C ratios for air CO{sub 2} at different heights in two Amazonian rain forests. CO{sub 2} emitted from the forest floor is severely depleted in {sup 13}C which produces isotopically light source air throughout the forest. Air {delta}{sup 13}C values vary very little with height above ground, but are about 5 to 6{per thousand} more negative than the open atmosphere. CO{sub 2} recycling under the canopy depletes all leaf {delta}{sup 13}C values by a like amount. Additional factors further deplete leaf {delta}{sup 13}C values by 4 to 5{per thousand} at ground level; this effect decreases with height to zero in the upper canopy, yielding a gradient in {delta}{sup 13}C values.

  19. Measurement of the Induced Proton Polarization Pn in the 12C(e, e', p) reaction

    SciTech Connect

    Woo, R J; Barkhuff, David; Bertozzi, William; Chen, Jian-ping; Dale, Dan; Dodson, G; Dow, K A; Epstein, Marty; Farkhondeh, Manouchehr; Finn, Mike; Gilad, Shalev; Jones, Mark K; Joo, Kyungseon; Kelly, James; Kowalski, Stanley; Lourie, Bob; Madey, Richard; Margaziotis, Dimitri; Markowitz, Pete; McIntyre, Justin; Mertz, Christoph; Milbrath, Brian; Mitchell, Joseph; Perdrisat, Charles F; Punjabi, Vina; Rutt, Paul; Sarty, Adam; Tieger, D; Tschalaer, C; Turchinetz, William; Ulmer, Paul E; Van Verst, S P; Vellidis, C; Warren, Glen; Weinstein, Lawrence

    1998-01-19

    The first measurements of the induced proton polarization Pn for the 12C(e,e',p) reaction are reported. The experiment was performed at quasifree kinematics for energy and momentum transfer (w,q) = (294 MeV, 765 MeV/c) and sampled a missing momentum range of 0-250 MeV/c. The induced polarization arises from final-state interactions and for these kinematics is dominated by the real part of the spin-orbit optical potential. The distorted-wave impulse approximation provides good agreement with data for the 1 p3/2 shell. The data for the continuum suggest that both the 1s1/2 shell and underlying l > 1 configurations contribute.

  20. 12C+p resonant elastic scattering in the Maya active target

    NASA Astrophysics Data System (ADS)

    Sambi, S.; Raabe, R.; Borge, M. J. G.; Caamano, M.; Damoy, S.; Fernández-Domínguez, B.; Flavigny, F.; Fynbo, H.; Gibelin, J.; Grinyer, G. F.; Heinz, A.; Jonson, B.; Khodery, M.; Nilsson, T.; Orlandi, R.; Pancin, J.; Perez-Loureiro, D.; Randisi, G.; Ribeiro, G.; Roger, T.; Suzuki, D.; Tengblad, O.; Thies, R.; Datta, U.

    2015-03-01

    In a proof-of-principle measurement, the Maya active target detector was employed for a 12C( p, p) resonant elastic scattering experiment in inverse kinematics. The excitation energy region from 0 to 3MeV above the proton breakup threshold in 13N was investigated in a single measurement. By using the capability of the detector to localize the reaction vertex and record the tracks of the recoiling protons, data covering a large solid angle could be utilized, at the same time keeping an energy resolution comparable with that of direct-kinematics measurements. The excitation spectrum in 13N was fitted using the R-matrix formalism. The level parameters extracted are in good agreement with previous studies. The active target proved its potential for the study of resonant elastic scattering in inverse kinematics with radioactive beams, when detection efficiency is of primary importance.

  1. Enhancement of radioactivity of /sup 14/C-/sup 12/C mixtures via partial reduction

    SciTech Connect

    Stevenson, G.R.; Lauricella, T.L.

    1986-08-20

    The solution electron affinities of perdeuterated polyaromatics are less than those of the protiated materials. This observation prompted the investigation of the possibility of increasing the radioactivity of benzophenone-carbonyl-/sup 14/C (BZO-14C)-cold benzophenone (BZO-12C) mixtures via the partial reduction of these mixtures to the ketyls. The /sup 14/C-depleted benzophenones left in the reaction vessel in the form of Na/sup +/(NH/sub 3/)BZO/sup -/ can be recovered by simply adding a solution of I/sub 2/ in tetrahydrofuran to the solid salt. Further, there is no theoretical limit as to how much the radioactivity of the sample can be enhanced by passing /sup 14/C-enhanced material through this process consecutively, up to the point where the pure carbon-14 compound is obtained.

  2. Elastic constant C11 of 12C diamond between 10 and 613 K

    NASA Astrophysics Data System (ADS)

    Nagakubo, A.; Arita, M.; Ogi, H.; Sumiya, H.; Nakamura, N.; Hirao, M.

    2016-05-01

    We measured the temperature dependence of the elastic constant C11 of a 12C diamond monocrystal using picosecond ultrasonics between 10 and 613 K. We found that C11 is almost temperature independent below room temperature; the temperature coefficient around 300 K is -6.6 MPa/K. Our results show a significantly higher Einstein temperature than reported values by ˜30%, indicating that diamond has a larger zero-point energy, which remains dominant around ambient temperature. We also calculated the temperature dependence of the elastic constants using ab-initio methods, resulting in good agreement with measurements. Our study shows that below-ambient-temperature measurements are not sufficient to extract the Debye temperature and the Grüneisen parameter of high-Debye-temperature materials.

  3. A New Decay Path in the {sup 12}C+{sup 16}O Radiative Capture Reaction

    SciTech Connect

    Courtin, S.; Lebhertz, D.; Haas, F.; Beck, C.; Michalon, A.; Salsac, M.-D.; Jenkins, D. G.; Marley, P.; Lister, C. J.

    2009-03-04

    The {sup 12}C({sup 16}O,{gamma}){sup 28}Si radiative capture reaction has been studied at energies close to the Coulomb barrier at Triumf (Vancouver) using the Dragon spectrometer and its associated BGO array. It has been observed that the {gamma} decay flux proceeds mainly via states around 10-11 MeV and via the direct feeding of the {sup 28}Si 3{sub 1}{sup -}(6879 keV) and 4{sub 2}{sup +}(6888 keV) deformed states. A discussion is presented about this selective feeding as well as perspectives for the use of novel detection systems for the study of light heavy-ion radiative capture reactions.

  4. Response of an FBX dosimeter to high LET 7Li and 12C ions

    NASA Astrophysics Data System (ADS)

    Bhat, N. N.; Choudhary, D.; Sarma, A.; Gupta, B. L.; Siddappa, K.

    2003-12-01

    We have carried out systematic studies on the response of ferrous sulphate-benzoic acid-xylenol orange (FBX)—a highly sensitive chemical dosimeter in liquid form to accelerated charged particles of different LET. Dosimeters were exposed in the form of thin layers to graded fluence of 7Li ion beam with three different energies Viz, 46, 38 and 27 MeV corresponding to average LETs of 6.3, 7.5 and 11 eV Å -1 and 12C ion beam with energy 45.6 MeV corresponding to average LET of 52.5 eV Å -1. From the investigations, the corresponding G(Fe +3) values were found to be (51.7±1.3)×10 -7, (35.4±0.7)×10 -7, (19.3±0.6)×10 -7 and (8.4±0.1)×10 -7 mol J -1, respectively. For gamma radiation, with estimated LET of 0.02 eV Å -1, G(Fe +3) value was observed to be (56.1±0.4)×10 -7 mol J -1. Clearly, G(Fe +3) values were found to decrease with increasing LET of the particle beam. However, the dosimeter showed no dependence on LET up to about 6 eV Å -1 unlike the Fricke dosimeter. The results confirm the response of FBX dosimeter is non-linear for doses exceeding 5 Gy for 60Co gamma rays. More importantly, the present study using 7Li and 12C ions clearly shows that response of the FBX dosimeter is linear for high LET radiations at low as well as high doses.

  5. X-ray diffraction study of the binding of the antisickling agent 12C79 to human hemoglobin

    SciTech Connect

    Wireko, R.C.; Abraham, D.J. )

    1991-03-15

    The hemoglobin binding site of the antisickling agent 12C79 has been determined by x-ray crystallography. 12C79 is recognized as one of the first molecules to reach clinical trials that was designed, de novo, from x-ray-determined atomic coordinates of a protein. Several previous attempts to verify the proposed Hb binding sites via crystallographic studies have failed. Using revised experimental procedures, the authors obtained 12C79-deoxhemoglobin crystals grown after reaction with oxyhemoglobin and cyanoborohydride reduction to stabilize the Schiff base linkage. The difference electron-density Fourier maps show that two 12C79 molecules bind covalently to both symmetry-related N-terminal amino groups of the hemoglobin {alpha} chains. This is in contrast to the original design that proposed the binding of one drug molecule that spans the molecular dyad to interact with both N-terminal {alpha}-amino groups.

  6. {sup {bold 6}}Li(vector)+{sup {bold 12}}C inelastic scattering at 30 and 50 MeV

    SciTech Connect

    Kerr, P.L.; Kemper, K.W.; Green, P.V.; Mohajeri, K.; Myers, E.G.; Schmidt, B.G.; Hnizdo, V.

    1996-09-01

    A complete set of analyzing powers (AP`s), {ital iT}{sub 11}, {ital T}{sub 20}, {ital T}{sub 21}, and {ital T}{sub 22}, for 50 MeV {sup 12}C({sup 6}Li(vector),{sup 6}Li) elastic scattering and inelastic scattering to the {sup 12}C(2{sup +}, 4.44 MeV), {sup 12}C(0{sup +}, 7.65 MeV), and {sup 12}C(3{sup {minus}}, 9.64 MeV) states over the center-of-mass (c.m.) angular range 10{degree}{endash}115{degree} is reported. In addition, cross sections for the excited states 3{sup +}(2.18 MeV), 2{sup +}(4.31 MeV), and 1{sup +}(5.65 MeV) of {sup 6}Li were measured by using the inverse-kinematics reaction {sup 6}Li({sup 12}C,{sup 12}C) at 100 MeV. A combined analysis of the new 50 MeV data and previous 30 MeV data has been carried out using the coupled-channels (CC) code FRESCO. The CC calculations use an optical potential with double-folded (DF) real central, Woods-Saxon imaginary central, and Thomas real spin-orbit (SO) potentials. Calculations include reorientation terms and coupling to the first three excited states of {sup 6}Li and the first two nonzerospin states of {sup 12}C. The {sup 6}Li coupling strengths were fixed by the measured {sup 6}Li excited-state cross sections. The elastic-scattering cross sections and A.P.`s are described well. The need for an explicit SO potential is apparent in the elastic and inelastic-scattering AP`s {ital iT}{sub 11}, more so at 30 MeV than at 50 MeV. The rank-2 AP`s up to 50{degree} c.m. arise mainly from ground-state reorientation effects. The DF potential normalization constant {ital N} approaches unity for the 50 MeV data. At both energies, the {sup 12}C(2{sup +}) cross sections are underestimated at large angles, and the description of the {sup 12}C(3{sup {minus}}) cross sections is poor in detail. The {sup 12}C(3{sup {minus}}) AP`s and the {sup 12}C(2{sup +}) {ital iT}{sub 11} are not reproduced at either energy. {copyright} {ital 1996 The American Physical Society.}

  7. Role of break-up processes in the fusion of the {sup 12}C+ {sup 52}Cr system

    SciTech Connect

    Amanuel, F. K.; Zelalem, B.; Chaubey, A. K.; Agarwal, Avinash; Rizvi, I. A.; Maheshwari, Anjana; Ahmed, Tauseef

    2011-08-15

    We present the results and analysis of our investigation of the role of break-up processes on the fusion of a {sup 12}C{sup 6+} beam with a {sup 52}Cr target near, at, and above the Coulomb barrier. In this experiment the excitation functions of evaporation residues produced via ({sup 12}C, 2n), ({sup 12}C, pxn), ({sup 12}C, {alpha}xn), and ({sup 12}C, {alpha}pxn) channels in a {sup 12}C + {sup 52}Cr reaction were measured at several beam energies ranging from {approx_equal}51 to 87 MeV by employing the recoil catcher technique followed by off-line {gamma}-ray spectrometry. The measured excitation functions were compared with theoretical values obtained using the pace4 statistical model code. Further, for a ({sup 12}C, p2n) channel the measured excitation function was compared with the predictions of the alice-91 code, which was chosen as it takes into account pre-equilibrium emissions. For non-{alpha}-emitting channels, the experimentally measured excitation functions--after correcting them for possible contributions from higher charge isobaric precursor decays--were, in general, found to be in good agreement with theoretical predictions. However, for {alpha}-emitting channels, the measured excitation functions had significantly more production cross sections than what pace4 predicted. This enhancement may be attributed to incomplete fusion processes. An attempt was made to estimate the incomplete fusion fraction in order to compare the relative importance of complete and incomplete fusion processes. The incomplete fusion fraction was found to be sensitive to the projectile energy and mass asymmetry of the entrance channel. We also discuss the results in terms of the impact of the frozen {alpha}-cluster structure of the {sup 12}C isotope on various fusion reactions.

  8. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  9. Unambiguous identification of the second 2+ state in 12C and the structure of the Hoyle state.

    PubMed

    Zimmerman, W R; Ahmed, M W; Bromberger, B; Stave, S C; Breskin, A; Dangendorf, V; Delbar, Th; Gai, M; Henshaw, S S; Mueller, J M; Sun, C; Tittelmeier, K; Weller, H R; Wu, Y K

    2013-04-12

    The second J(π)=2+ state of 12C, predicted over 50 years ago as an excitation of the Hoyle state, has been unambiguously identified using the 12C(γ,α0)(8)Be reaction. The alpha particles produced by the photodisintegration of 12C were detected using an optical time projection chamber. Data were collected at beam energies between 9.1 and 10.7 MeV using the intense nearly monoenergetic gamma-ray beams at the HIγS facility. The measured angular distributions determine the cross section and the E1-E2 relative phases as a function of energy leading to an unambiguous identification of the second 2+ state in 12C at 10.03(11) MeV, with a total width of 800(130) keV and a ground state gamma-decay width of 60(10) meV; B(E2:2(2)+→0(1)+)=0.73(13)e(2)  fm(4) [or 0.45(8) W.u.]. The Hoyle state and its rotational 2+ state that are more extended than the ground state of 12C presents a challenge and constraints for models attempting to reveal the nature of three alpha-particle states in 12C. Specifically, it challenges the ab initio lattice effective field theory calculations that predict similar rms radii for the ground state and the Hoyle state. PMID:25167256

  10. Relative Biological Effectiveness of 12C and 28Si radiation in C57BL/6J mice

    PubMed Central

    Suman, Shubhankar; Datta, Kamal; Trani, Daniela; Laiakis, Evagelia C.; Strawn, Steven J.; Fornace, Albert J.

    2014-01-01

    Study of heavy ion radiation–induced effects on mice could provide insight into the human health risks of space radiation exposure. The purpose of the present study is to assess the relative biological effectiveness (RBE) of 12C and 28Si ion radiation, which has not been reported previously in the literature. Female C57BL/6J mice (n=15) were irradiated using 4 to 8 Gy of 28Si (300MeV/nucleon energy; LET 70 keV/μm) and 5 to 8 Gy of 12C (290MeV/nucleon energy; LET 13 keV/μm) ions. Post-exposure, mice were monitored regularly and their survival observed for 30 days. The LD50/30 dose (the dose at which 50% lethality occurred by 30-days post-exposure) was calculated from the survival curve and was used to determine the RBE of 28Si and 12C in relation to γ radiation. The LD50/30 for 28Si and 12C ion is 5.17 Gy and 7.34 Gy respectively and the RBE in relation to γ radiation (LD50/30 – 7.25 Gy) is 1.4 for 28Si and 0.99 for 12C. Determination of RBE of 28Si and 12C for survival in mice is not only important for space radiation risk estimate studies, but also has implications for HZE radiation in cancer therapy. PMID:22562428

  11. Elongated shape isomers in the {sup 36}Ar nucleus

    SciTech Connect

    Cseh, Jozsef; Darai, Judit; Sciani, Wagner; Otani, Yul; Lepine-Szily, Alinka; Benjamim, Elisangela A.; Chamon, Luiz Carlos; Filho, Rubens Lichtenthaeler

    2009-09-15

    A recent analysis of the {sup 12}C+{sup 24}Mg scattering [W. Sciani et al., Phys. Rev. C 80, 034319 (2009)] suggests the existence of a hyperdeformed band in the {sup 36}Ar nucleus, completely in line with the predictions of {alpha}[W. D. M. Rae and A. C. Merchant, Phys. Lett. B279, 207 (1992)] and binary cluster calculations [J. Cseh et al., Phys. Rev. C 70, 034311 (2004)]. Here we review the structural understanding of the superdeformed and the hyperdeformed states of {sup 36}Ar and present new results on the shape isomers as well. Special attention is paid to the clusterization of these states, which indicates the appropriate reaction channels for their formation.

  12. Double Nucleus in M83

    NASA Astrophysics Data System (ADS)

    Mast, Damián; Díaz, Rubén J.; Agüero, M. Paz

    2006-03-01

    M83 is one of the nearest galaxies with enhanced nuclear star formation, and it presents one of the best opportunities to study the kinematics and physical properties of a circumnuclear starburst. Our three-dimensional spectroscopy data in the R band confirm the presence of a secondary nucleus or mass concentration (previously suggested by Thatte and coworkers). We determine the position of this hidden nucleus, which would be more massive than the visible one and was not detected in the optical Hubble Space Telescope images due, probably, to the strong dust extinction. Using a Keplerian approximation, we estimated for the optical nucleus a mass of (5.0+/-0.8)×106 Msolar/sini (r<1.5"), and for the hidden nucleus, located 4''+/-1'' to the northwest (position angle of 271deg+/-15deg) of the optical nucleus, a mass of (1.00+/-0.08)×107 Msolar/sini (r<1.5"). The emission-line ratio map also unveils the presence of a second circumnuclear ring structure, previously discovered by IR imaging (Elmegreen and coworkers). The data allow us to resolve the behavior of the interstellar medium inside the circumnuclear ring and around the binary mass concentration.

  13. YF-12A and YF-12C in flight formation at dawn

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The YF-12A (60-6935) carries the 'coldwall' heat transfer pod on a pylon beneath the forward fuselage. The pod is seen with its insulating coating intact. In the background, the YF-12C flies photo chase. The coldwall project, supported by Langley Research Center, consisted of a stainless steel tube equipped with thermocouples and pressure-sensors. A special insulating coating covered the tube, which was chilled with liquid nitrogen. At Mach 3, the insulation could be pyrotechnically blown away from the tube, instantly exposing it to the thermal environment. The experiment caused many inflight difficulties, such as engine unstarts, but eventually researchers got a successful flight. The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 60-6936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse

  14. Nucleus management with irrigating vectis.

    PubMed

    Srinivasan, Aravind

    2009-01-01

    The main objective in modern cataract surgery is to achieve a better unaided visual acuity with rapid post-surgical recovery and minimal surgery-related complications. Early visual rehabilitation and better unaided vision can be achieved only by reducing the incision size. In manual small incision cataract surgery (MSICS), incision is between 5.5 to 7 mm. Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel. Nucleus extraction with an irrigating vectis is a very simple technique, which combines mechanical and hydrostatic forces to express out the nucleus. This technique is time-tested with good results and more than 95% of nuclei in MSICS are extracted in this way offering all the merits of phacoemulsification with the added benefits of having wider applicability, better safety, shorter learning curve and lower cost. PMID:19075403

  15. Cometary nucleus and active regions

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1984-01-01

    On the basis of the icy conglomerate model of cometary nuclei, various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes are determined. The observational evidence for variations in activity over the surfaces of cometary nuclei are listed and discussed. On June 11 the comet IRAS-ARAKI-ALCOCK approached the Earth to a distance of 0.031 AU, the nearest since C/Lexell, 1770 I, providing a unique opportunity for near-nucleus observations. Preliminary analysis of these images establishes the spin axis of the nucleus, with an oblioquity to the orbit plane of approximately 50 deg, and a lag angle of sublimation approximately 35 deg from the solar meridian on the nucleus. Asymmetries of the inner coma suggests a crazy-quilt distribution of ices with differing volatility over the surface of the nucleus. The observations of Comet P/Homes 1892 III, exhibiting two 8-10 magnitude bursts, are carefully analyzed. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3hr and inclination nearly 180 deg. After the first burst the total magnitude fell less than two magnitudes from November 7 to November 30 (barely naked eye) while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst. The grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.

  16. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner. PMID:24637338

  17. Acridine: a versatile heterocyclic nucleus.

    PubMed

    Kumar, Ramesh; Kaur, Mandeep; Kumari, Meena

    2012-01-01

    Acridine is a heterocyclic nucleus. It plays an important role in various medicines. A number of therapeutic agents are based on acridine nucleus such as quinacrine (antimalarial), acriflavine and proflavine (antiseptics), ethacridine (abortifacient), amsacrine and nitracine (anticancer), and tacrine. Acridine is obtained from high boiling fraction of coal tar. It is also obtained in nature from plant and marine sources. Acridine undergoes a number of reactions such as nucleophilic addition, electrophilic substitution, oxidation, reduction, reductive alkylation and photoalkylation. The present review article summarizes the synthesis, reaction, literature review and pharmaceutical importance of acridine. PMID:22574501

  18. Photon scattering from 12C and 4He nuclei near the Δ(1232) resonance

    NASA Astrophysics Data System (ADS)

    Igarashi, R.; Bergstrom, J. C.; Caplan, H. S.; Doss, K. G. E.; Hallin, E. L.; Skopik, D. M.; Delli Carpini, D.; Booth, E. C.; McIntyre, E. K.; Miller, J. P.; Lucas, M. A.; MacGibbon, B. E.; Nathan, A. M.; Wells, D.

    1995-08-01

    Angular distributions for photon scattering from 12C and 4He have been measured using continuous wave bremsstrahlung from the Saskatchewan Accelerator Laboratory pulse stretcher ring. Data for carbon were taken at 158.8, 195.2, 197.2, 247.2, and 290.2 MeV end-point energies, and for helium were taken at an end-point energy of 158.8 MeV. A large NaI(Tl) gamma ray spectrometer with 1.7% resolution was used to detect the scattered photons at laboratory scattering angles ranging from 20° to 150°. The excellent energy resolution of the NaI detector allowed a separation of elastic from inelastic photon scattering for the first time at these energies. The angular distributions for elastic scattering are in only fair agreement with delta-hole theory and theory based on the optical theorem at forward angles, and completely disagree with theory at backward angles. Measured cross sections for inelastic scattering leading to the 4.43 MeV state in carbon are small compared to the elastic scattering at forward angles, but are dominant at backward angles. This experiment is the first to separate elastic from inelastic photon scattering at these energies.

  19. 13C /12C Fractionation of methane during oxidation in a temperate forested soil

    NASA Astrophysics Data System (ADS)

    Tyler, Stanley C.; Crill, Patrick M.; Brailsford, Gordon W.

    1994-03-01

    We have made measurements of the 13C /12C fractionation of methane (CH 4) during microbial oxidation by an upland temperate soil from College Woods, New Hampshire, using both in situ and laboratory incubation measurements. Uptake rates of 1-4.8 mg CH 4/m 2/d were measured during the active season in New Hampshire while rates of uptake were 2.6-6.8 mg CH 4/m 2/d in jars used for incubation studies. The fractionation factor, calculated from field measurements, was α = 0.978 ± .004. This corresponds to a kinetic isotope effect (KIE) of ki 2/k 13 = 1.022 ± .004 . Only a small dependence on temperature was noted for air temperatures between 281 and 296 K. Our results indicate that the KIE of soil CH 4 oxidation is controlled by physical parameters based on gaseous diffusion into the soil. The implications of these results are discussed with respect to the global CH 4 budget and balancing CH 4 sources and sinks through the use of δ13CH 4 measurements.

  20. Analysis of a Measurement of 12C(n,2n)11C Cross Sections

    NASA Astrophysics Data System (ADS)

    Hartshaw, Garrett; Love, Ian; Yuly, Mark; Padalino, Stephen; Russ, Megan; Bienstock, Mollie; Simone, Angela; Ellison, Drew; Desmitt, Holly; Massey, Thomas; Sangster, Craig

    2013-10-01

    In inertial confinement fusion (ICF), nuclear fusion reactions are initiated by bombarding a small fuel pellet with high power lasers. One ICF diagnostic tool involves placing graphite discs within the reaction chamber to determine the number of high-energy neutrons. This diagnostic requires accurate 12C(n, 2n)11C cross sections, which have not been previously well measured. An experiment to measure this cross section was conducted at Ohio University, in which DT neutrons irradiated polyethylene and graphite targets. The neutron flux was determined by counting recoil protons from the polyethylene in a silicon dE-E detector telescope. Preliminary cross sections were calculated using the incident neutron flux and the number of 11C nuclei in the graphite and polyethylene targets determined by counting, in a separate counting station, the gamma rays resulting from the positron decay of 11C. This poster will present the data analysis techniques used to determine these cross sections and the MCNPX simulation used to compute the corrections needed to account for the detector and target geometry. Funded in part by a LLE contract through the DOE.

  1. Carbon isotope ratio (13C/12C) of pine honey and detection of HFCS adulteration.

    PubMed

    Çinar, Serap B; Ekşi, Aziz; Coşkun, İlknur

    2014-08-15

    Carbon isotope ratio ((13)C/(12)C=δ(13)C) of 100 pine honey samples collected from 9 different localities by Mugla region (Turkey) in years 2006, 2007 and 2008 were investigated. The δ(13)Cprotein value of honey samples ranged between -23.7 and -26.6‰, while the δ(13)Choney value varied between -22.7 and -27‰. For 90% of the samples, the difference in the C isotope ratio of protein and honey fraction (δ(13)Cpro-δ(13)Chon) was -1.0‰ and/or higher. Therefore, it can be said that the generally anticipated minimum value of C isotope difference (-1.0‰) for honey is also valid for pine honey. On the other hand, C4 sugar value (%), which was calculated from the δ(13)Cpro-δ(13)Chon difference, was found to be linearly correlated with the amount of adulterant (HFCS) in pine honey. These results indicate that C4 sugar value is a powerful criteria for detecting HFCS adulteration in pine honey. The δ(13)Choney and δ(13)Cprotein-δ(13)Choney values of the samples did not show any significant differences in terms of both year and locality (P>0.05), while the δ(13)Cprotein values showed significant differences due to year (P<0.05) but not due to locality (P>0.05). PMID:24679745

  2. Multimodal Imaging Using a 11B(d,nγ)12C Source

    NASA Astrophysics Data System (ADS)

    Nattress, Jason; Rose, Paul; Mayer, Michal; Wonders, Marc; Wilhelm, Kyle; Erickson, Anna; Jovanovic, Igor; Multimodal Imaging; Nuclear Detection (MIND) in Active Interrogation Collaboration

    2016-03-01

    Detection of shielded special nuclear material (SNM) still remains one of the greatest challenges facing nuclear security, where small signal-to-background ratios result from complex, challenging configurations of practical objects. Passive detection relies on the spontaneous radioactive decay, whereas active interrogation (AI) uses external probing radiation to identify and characterize the material. AI provides higher signal intensity, providing a more viable method for SNM detection. New and innovative approaches are needed to overcome specific application constraints, such as limited scanning time. We report on a new AI approach that integrates both neutron and gamma transmission signatures to deduce specific material properties that can be utilized to aid SNM identification. The approach uses a single AI source, single detector type imaging system based on the 11B(d,nγ)12C reaction and an array of eight EJ-309 liquid scintillators, respectively. An integral transmission imaging approach has been employed initially for both neutrons and photons, exploiting the detectors' particle discrimination properties. Representative object images using neutrons and photons will be presented.

  3. Electrophysiological effects of 12C on patients undergoing heavy ions therapy at GSI: a pilot study

    NASA Astrophysics Data System (ADS)

    Sannita, W. G.; Narici, L.; Debus, J.; Carozzo, S.; Saturno, M.; Schardt, D.; Schulz-Ertner, D.

    Phosphenes light flashes observed in space have been attributed to heavy ions interfering with the retina photoreceptors However their generating mechanisms are still undefined and neurons of the retina and non-ocular visual structures are as sensitive to ionizing agents as retinal photoreceptors Multiple sources are therefore possible that could question safety in manned space travel Patients undergoing 12C ion therapy of skull tumors also involving the anterior optic pathway often report phosphenes similar to those described by astronauts and volunteers in accelerator experiments In a pilot study their occurrence either within each beam pulse or shortly after it in case of very short pulses correlated with the beam position and local dose deposited near the optic nerve or eye during irradiation Further research is in progress at the GSI Biophysics facilities in Darmstadt FRG Purposes of the study are 1- to identify electrophysiological cortical concomitants of phosphenes 2- to correlate phosphenes with irradiated portions of the anterior visual pathways and with known basic mechanisms of vision and 3- to obtain information to be used in the understanding of phosphenes observed in space We will present preliminary results from the first measurements

  4. Charged current antineutrino reactions from {sup 12}C at MiniBooNE energies

    SciTech Connect

    Athar, M. Sajjad; Ahmad, Shakeb; Singh, S. K.

    2007-05-01

    A study of charged current induced antineutrino interactions from nuclei has been done for the intermediate energy antineutrinos and applied to {sup 12}C, relevant for ongoing experiment by MiniBooNE collaboration. The calculations have been done for the quasielastic and inelastic lepton production as well as for the incoherent and the coherent pion production processes. The calculations are done in local density approximation. In the case of the quasielastic reaction the effects of Pauli blocking, Fermi motion effects, renormalization of weak transition strengths in nuclear medium and the Coulomb distortion of the outgoing lepton have been taken into account. For the inelastic processes the calculations have been done in the {delta} dominance model and take into account the effect of Pauli blocking, Fermi motion of the nucleon, and renormalization of {delta} properties in a nuclear medium. The effect of final state interactions of pions is also taken into account. The numerical results for the total cross sections for the charged current quasielastic scattering and incoherent pion production processes are compared with earlier experimental results available in freon and freon-propane. It is found that nuclear medium effects give strong reduction in the cross sections leading to satisfactory agreement with the available data.

  5. Elastic neutron scattering at 96 MeV from {sup 12}C and {sup 208}Pb

    SciTech Connect

    Klug, J.; Blomgren, J.; Atac, A.; Bergenwall, B.; Hildebrand, A.; Johansson, C.; Mermod, P.; Pomp, S.; Tippawan, U.; Nilsson, L.; Elmgren, K.; Olsson, N.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Dangtip, S.; Phansuke, P.; Oesterlund, M.; Le Brun, C.

    2003-12-01

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL, has recently been installed at the 20-180 MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from {sup 12}C and {sup 208}Pb has been studied at 96 MeV in the 10 deg. -70 deg. interval. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions based on phenomenology or microscopic nuclear theory.

  6. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  7. Including higher energy data in the R-matrix extrapolation of 12C(α , γ) 16O

    NASA Astrophysics Data System (ADS)

    Deboer, R.; Uberseder, E.; Azuma, R. E.; Best, A.; Brune, C.; Goerres, J.; Sayre, D.; Smith, K.; Wiescher, M.

    2015-10-01

    The phenomenological R-matrix technique has proved to be very successful in describing the cross sections of interest to nuclear astrophysics. One of the key reactions is 12C(α , γ) 16O, which has frequently been analyzed using R-matrix but usually over a limited energy range. This talk will present an analysis that, for the first time, extends above the proton and α1 separation energies taking advantage of a large amount of additional data. The analysis uses the new publicly released JINA R-matrix code AZURE2. The traditional reaction channels of 12C(α , γ) 16O, 12C(α ,α0) 12, and 16N(βα) 12C are included but are now accompanied by the higher energy reactions. By explicitly including higher energy levels, the uncertainty in the extrapolation of the cross section is significantly reduced. This is accomplished by more stringent constraints on interference combination and background poles by the additional higher energy data and by considering new information about subthresold states from transfer reactions. The result is the most comprehensive R-matrix analysis of the 12C(α , γ) 16O reaction to date. This research was supported in part by the ND CRC and funded by the NSF through Grant No. Phys-0758100, and JINA through Grant No. Phys-0822648.

  8. RF-bunching of relativistic 12C3+ ion beam for laser cooling experiment at the CSRe

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Wen, W. Q.; Ma, X.; Huang, Z. K.; Zhang, D. C.; Bussmann, M.; Winters, D. F. A.; Yuan, Y. J.; Zhu, X. L.; Zhao, D. M.; Mao, R. S.; Li, J.; Mao, L. J.; Yang, J. C.; Zhao, H. W.; Xu, H. S.; Xiao, G. Q.; Xia, J. W.

    2015-01-01

    To prepare the upcoming experiment of laser cooling of relativistic 12C3+ ion beams at the experimental cooler storage ring (CSRe), a test experiment was performed with 12C3+ ion beams at an energy of 122 MeV/u on the CSRe, at the Institute of Modern Physics, Lanzhou, China. In this experiment, the main storage ring of CSRm was employed to accumulate and accelerate the ion beam which was injected into the CSRe for the experiments. The number of 12C3+ ions at the CSRe reached 5×108 for every injection, which satisfied the experimental requirement. To fulfil the laser cooling experiment, the 12C3+ ion beams were bunched by sinusoidal waveforms with fixed and sweeping frequencies, respectively. A resonant Schottky pick-up was employed to record the Schottky spectra of these ion beams. The test experimental results demonstrated that the RF-buncher and diagnostic systems at the CSRe worked well and the CSRe was very stable with 12C3+ ion beams, hereby the CSRe is suitable for laser cooling experiment.

  9. Comparison of characteristics of {Delta}{sup 0}(1232) produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c

    SciTech Connect

    Olimov, Kh. K. Haseeb, Mahnaz Q. Khan, Imran

    2012-04-15

    Reconstructed momentum, transverse momentum, kinetic energy, rapidity, and emission angle distributions along with their mean values were compared for {Delta}{sup 0}(1232) resonances produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c. Mean momentum, transverse momentum, and rapidity of protons and negative pions coming from {Delta}{sup 0}(1232) decay were extracted and compared with the corresponding mean values for protons and {pi}{sup -} mesons in experiment and the relevant model calculations.

  10. Investigation of the Herzberg (C1Σ+→A1Π) band system in 12C17O

    NASA Astrophysics Data System (ADS)

    Hakalla, Rafał

    2015-10-01

    The C→A (0,1), (0,2) and (0,3) rovibronic bands of the less-abundant 12C17O isotopologue are studied in high resolution using a high-accuracy dispersive optical spectroscopy in the region of 22,800-26,100 cm-1. Calibration with respect to simultaneously recorded thorium atomic lines, obtained from several overlapped orders of the spectrum in the visible range, as well as a stainless steel hollow-cathode molecular lamp with two anodes, yields an absolute accuracy of wavenumbers measurements of about 0.0025 cm-1 for the CO spectra. All 261 spectra lines of the Herzberg band system in 12C17O, up to Jmax=34, were precisely measured and rotationally analyzed. As a result, the merged rotational constants and rotational equilibrium constants for the C1Σ+ Rydberg state, as well as the band origins, the isotope shifts, the RKR turning points, Franck-Condon factors, relative intensities, and r-centroids of the C→A system in the 12C17O isotopologue were obtained. An experimental RKR potential energy curve and vibrational levels of the C1Σ+ state in 12C17O together with highly excited k3Π, c3Π, E1Π, B1Σ+ and D‧1Σ+ states lying in the region between the first dissociation limit and the ionization potential of CO were plotted. A detailed investigation of possible perturbations that should occur in the C1Σ+(υ=0) Rydberg state of less-abundant 12C17O isotopologue in the close vicinity of the k3Π(υ=1, 2) and c3Π(υ=0) states in the region 92,000 cm-1 was performed. In the A1Π, υ=3 state of 12C17O, extensive, multi-state rotational perturbations were found and analyzed. Also, a global isotopic analysis of the C1Σ+ Rydberg state was carried out in the 12C16O, 12C17O, 13C16O, 12C18O, 13C17O, and 13C18O as well as in 14C16O and 14C18O isotopologues. This analysis enabled us to determine, amongst others, the vibrational equilibrium constants in 12C17O for the C1Σ+ state, to improve these constants in the 12C16O, 13C16O, 12C18O, 13C17O, and 13C18O isotopologues and

  11. Higgs and Particle Production in Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Liu, Zhe

    We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsacker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsacker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium. The transverse momentum factorization manifests itself in light cone gauge but not so clearly in Feynman gauge. In saturation physics there are two different unintegrated gluon distributions usually encountered in the literature: the Weizsacker-Williams gluon distribution and the dipole gluon distribution. The first gluon distribution is constructed by solving classical Yang-Mills equation of motion in the Mc

  12. Neutrino-nucleus reactions based on recent structure studies

    SciTech Connect

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reactions are studied with the use of new shell model Hamiltonians, which have proper tensor components in the interactions and prove to be successful in the description of Gamow-Teller (GT) strengths in nuclei. The new Hamiltonians are applied to obtain new neutrino-nucleus reaction cross sections in {sup 12}C, {sup 13}C, {sup 56}Fe and {sup 56}Ni induced by solar and supernova neutrinos. The element synthesis by neutrino processes in supernova explosions is discussed with the new cross sections. The enhancement of the production yields of {sup 7}Li, {sup 11}B and {sup 55}Mn is obtained while fragmented GT strength in {sup 56}Ni with two-peak structure is found to result in smaller e-capture rates at stellar environments. The monopole-based universal interaction with tensor force of π+ρ meson exchanges is used to evaluate GT strength in {sup 40}Ar and ν-induced reactions on {sup 40}Ar. It is found to reproduce well the experimental GT strength in {sup 40}Ar.

  13. S-Factor measurement of the 12C(p,γ)13N reaction in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Stöckel, Klaus; Reinhardt, Tobias P.; Akhmadaliev, S.; Bemmerer, D.; Gohl, St.; Reinicke, S.; Schmidt, K.; Serfling, M.; Szücs, T.; Takács, M. P.; Wagner, L.; Zuber, K.

    2015-05-01

    Hydrogen rich solid targets have been developed and produced to investigate the 12C(p, γ)13N reaction in inverse kinematics. The SRIM simulation software has been used to determine the parameters for ion implantation in various materials. Nuclear Resonant Reacton Analysis (NRRA) with the resonant reaction 15N(p, αγ)12C has been carried out to measure the hydrogen content of the produced targets. Measurements of the produced targets at the energy range from Ecm = 577 keV down to Ecm = 191 keV, were performed at the 3-MV Tandetron of Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

  14. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  15. Single nucleon emission in relativistic nucleus-nucleus reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.

  16. Dynamical nucleus-nucleus potential at short distances

    SciTech Connect

    Jiang Yongying; Wang Ning; Li Zhuxia; Scheid, Werner

    2010-04-15

    The dynamical nucleus-nucleus potentials for fusion reactions {sup 40}Ca+{sup 40}Ca, {sup 48}Ca+{sup 208}Pb, and {sup 126}Sn+{sup 130}Te are studied with the improved quantum molecular dynamics model together with the extended Thomas-Fermi approximation for the kinetic energies of nuclei. The obtained fusion barrier for {sup 40}Ca+{sup 40}Ca is in good agreement with the extracted fusion barrier from the measured fusion excitation function, and the depths of the fusion pockets are close to the results of time-dependent Hartree-Fock calculations. The energy dependence of the fusion barrier is also investigated. The fusion pocket becomes shallow for a heavy fusion system and almost disappears for heavy nearly symmetric systems, and the obtained potential at short distances is higher than the adiabatic potential.

  17. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    SciTech Connect

    Mali, P.; Mukhopadhyay, A. Sarkar, S.; Singh, G.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.

  18. LED-based Fourier transform spectroscopy of 16O12C18O and 12C18O2 in the 11,260-11,430 cm-1 range

    NASA Astrophysics Data System (ADS)

    Serdyukov, V. I.; Sinitsa, L. N.; Lugovskoi, A. A.; Borkov, Yu. G.; Tashkun, S. A.; Perevalov, V. I.

    2016-07-01

    The absorption spectrum of the 16O12C18O and 12C18O2 carbon dioxide isotopologues has been recorded in the 11,260- 11,430 cm-1 spectral range using Bruker IFS 125 HR Fourier transform spectrometer with resolution 0.05 cm-1 at temperature 297 K and path length 24 m. The 18O enriched sample of carbon dioxide at total pressure 96.5 mbar was used for these purposes. The spectrometer used LED emitter as a light source. This gave possibility to reach the minimal detectable absorption coefficient αmin~1.4×10-7 cm-1 using 23,328 scans. In the recorded spectrum we have assigned the 00051-00001 band for both 16O12C18O and 12C18O2 isotopologues using the predictions performed within the framework of the method of effective operators. The line positions and intensities of the observed bands are found. The comparison of the observed and predicted line positions and intensities is performed confirming good accuracy of the predictions. The spectroscopic parameters for the observed bands are determined.

  19. Limits for the 3[alpha] branching ratio of the decay of the 7. 65 MeV, 0[sub 2][sup +] state in [sup 12]C

    SciTech Connect

    Freer, M.; Wuosmaa, A.H.; Betts, R.R.; Henderson, D.J.; Wilt, P. ); Zurmuehle, R.W.; Balamuth, D.P.; Barrow, S.; Benton, D.; Li, Q.; Liu, Z.; Miao, Y. )

    1994-04-01

    A study of the [sup 12]C([sup 12]C, 3[alpha])[sup 12]C reaction has been performed in order to determine the magnitude of the process by which the 7.65 MeV, 0[sub 2][sup +], state in [sup 12]C breaks up directly into three alpha particles, in contrast to the sequential decay through [sup 8]Be. The strength of this decay channel has important implications for the production rate of [sup 12]C in stellar nucleosynthesis. The present measurement indicates that the contribution of this decay process to the alpha width, [Gamma][sub [alpha

  20. VizieR Online Data Catalog: 12C16O lines in Arcturus IR spectrum

    NASA Astrophysics Data System (ADS)

    Tsuji T.

    2009-06-01

    Based on the Infrared Atlas of the Arcturus Spectrum by Hinkle, Wallace, and Livingston (1995, Cat. ), we measured line-depth, full-width at half-maximum (FWHM), and equivalent width (EW) of 12C16O lines including fundamental, first and second overtone bands, and the results are given in table2. We used the electronic version of the ratioed spectra in our measurement and the tabulated results are measured raw data without any correction yet. The resulting data are used to investigate the nature of the infrared spectrum of Arcturus. It is found that only the weak lines (log(W/nu)<-4.75) can be analyzed consistently on the basis of the classical line-formation theory and hence can be used to extract the nature of the photosphere: We found logAC=7.97 (on the scale of log AH=12.00), micro and macro turbulent velocities to be 1.87 and 3.47km/s, respectively, for the photosphere. The nature of CO lines, however, shows abrupt change at about log(W/nu)=-4.75: The EWs of the lines larger than this limit can no longer be accounted for by the photospheric parameters determined from the weaker lines. A more simple demonstration of this fact is that the curves-of-growth of overtone as well as of fundamental CO lines show unpredictable upturn at about log(W/nu)=-4.75. Similar unusual behaviors of empirical curves-of-growth are found in other red giant and supergiant stars, and it looks as if the curves-of-growth are composite of at least two components of different origins. We think it difficult to understand such empirical data as due to the classical photosphere alone, and infrared spectra of cool luminous stars including Arcturus should be hybrid in nature. Although strong lines of the CO fundamentals show strengthening, the weaker lines show slight weakening, and we consider a possibility that these results are due to absorption/emission by the molecular clouds formed in the extended atmosphere. In cooler giant and supergiant stars in which CO lines show

  1. Coral 13C/12C records of vertical seafloor displacement during megathrust earthquakes west of Sumatra

    NASA Astrophysics Data System (ADS)

    Gagan, Michael K.; Sosdian, Sindia M.; Scott-Gagan, Heather; Sieh, Kerry; Hantoro, Wahyoe S.; Natawidjaja, Danny H.; Briggs, Richard W.; Suwargadi, Bambang W.; Rifai, Hamdi

    2015-12-01

    The recent surge of megathrust earthquakes and tsunami disasters has highlighted the need for a comprehensive understanding of earthquake cycles along convergent plate boundaries. Space geodesy has been used to document recent crustal deformation patterns with unprecedented precision, however the production of long paleogeodetic records of vertical seafloor motion is still a major challenge. Here we show that carbon isotope ratios (δ13C) in the skeletons of massive Porites corals from west Sumatra record abrupt changes in light exposure resulting from coseismic seafloor displacements. Validation of the method is based on the coral δ13C response to uplift (and subsidence) produced by the March 2005 Mw 8.6 Nias-Simeulue earthquake, and uplift further south around Sipora Island during a M ∼ 8.4 megathrust earthquake in February 1797. At Nias, the average step-change in coral δ13C was 0.6 ± 0.1 ‰ /m for coseismic displacements of +1.8 m and -0.4 m in 2005. At Sipora, a distinct change in Porites microatoll growth morphology marks coseismic uplift of 0.7 m in 1797. In this shallow water setting, with a steep light attenuation gradient, the step-change in microatoll δ13C is 2.3 ‰ /m, nearly four times greater than for the Nias Porites. Considering the natural variability in coral skeletal δ13C, we show that the lower detection limit of the method is around 0.2 m of vertical seafloor motion. Analysis of vertical displacement for well-documented earthquakes suggests this sensitivity equates to shallow events exceeding Mw ∼ 7.2 in central megathrust and back-arc thrust fault settings. Our findings indicate that the coral 13C /12C paleogeodesy technique could be applied to convergent tectonic margins throughout the tropical western Pacific and eastern Indian oceans, which host prolific coral reefs, and some of the world's greatest earthquake catastrophes. While our focus here is the link between coral δ13C, light exposure and coseismic crustal deformation, the

  2. Four-body calculation of 12C(α, γ)16O radiative capture reaction at stellar energies

    NASA Astrophysics Data System (ADS)

    Sadeghi, H.; Firoozabadi, M. M.

    2016-01-01

    On the basis of the four-alphamodel, the 12C(α, γ)16Oradiative capture process is investigated by using the four-body Faddeev-Yakubovsky equations as well as the two- and three-body electromagnetic currents. The present calculation is an application of our current conservation realistic potentials method for the 12C(α, γ)16Oradiative capture process. This work clears the way formore refinedmodels of radiative capture based on two- and three-body realistic potentials and current conservation. The calculation is carried out by considering the 4He + 12C (1 + 3) and the 8Be + 8Be (2 + 2) subamplitudes, respectively. Radiative capture 12C(α, γ)16Oreaction is one of the most important reactions in nuclear astrophysics. For this reaction, the electric dipole transitions between states with the same isospin are forbidden in the first order. Because the state 1+ and 0+ ground state nuclei 16O have zero isospin, thus the electric dipole radiations are not at the first order between two levels and electric dipole radiation will be the second order and electric dipole radiation is the same order as the electric quadrupole radiation. Therefore, we must consider the effects of both radiations. In comparison with other theoretical methods and available experimental data, good agreement is achieved for the E 1 and E 2 contribution to the cross section and the astrophysical S factor for this process.

  3. General last-step labeling of biomolecule-based substrates by [12C], [13C], and [11C] carbon monoxide.

    PubMed

    Cornilleau, Thomas; Audrain, Hélène; Guillemet, Aude; Hermange, Philippe; Fouquet, Eric

    2015-01-16

    Alkaloid-, steroid-, biotin-, carbohydrate-, nucleoside-, and peptide-based bioconjugates are easily labeled with CO by a last-step palladium-catalyzed carbonylation. The choice of the [(12)C], [(13)C], or [(11)C] isotope opens the way to a new class of potential tracers or ligands easily available for various applications. PMID:25562588

  4. Nuclear data for neutron and proton interactions with 12C in the energy range 0-10 GeV.

    PubMed

    Pearlstein, S

    1993-08-01

    Nuclear model codes and nuclear systematics are used to give a first approximation to data for nucleons interacting with a 12C target over the range 0-10 GeV. Where there are experiments, the trial values are replaced by an eye guide through the measurements. The evaluated data have been placed in computerized form and are available for distribution. PMID:8392503

  5. Comment on 'Low-energy cross sections in the {sup 12}C({alpha},{gamma}){sup 16}O reaction'

    SciTech Connect

    Descouvemont, P.; Dufour, M.

    2010-02-15

    We show that the E1 and E2 S factors recommended by Katsuma [Phys. Rev. C 78, 034606 (2008)] do not include well-known constraints and that the model is inappropriate for the {sup 12}C({alpha},{gamma}){sup 16}O reaction.

  6. Coupled-channel analysis of neutron scattering from /sup 12/C between 9 and 15 MeV

    SciTech Connect

    Hansen, L.F.; Meigooni, A.S.

    1986-07-01

    A deformed and energy dependent phenomenological optical model potential and coupled-channel formalism for deformed nuclei have been used in the analysis of elastic and inelastic (Q = 4.439 MeV) scattering, and analyzing power for neutrons scattered from /sup 12/C in the energy range of 9 to 15 MeV. 6 refs., 1 fig., 1 tab.

  7. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  8. RCNP E398 {sup 16}O,{sup 12}C(p,p’) experiment: Measurement of the γ-ray emission probability from giant resonances in relation to {sup 16}O,{sup 12}C(ν,ν’) reactions

    SciTech Connect

    Ou, I.; Yamada, Y.; Mori, T.; Yano, T.; Sakuda, M.; Tamii, A.; Suzuki, T.; Yosoi, M.; Aoi, N.; Ideguchi, E.; Hashimoto, T.; Miki, K.; Ito, T.; Iwamoto, C.; Yamamoto, T.; Akimune, H.

    2015-05-15

    We propose to measure the γ-ray emission probability from excited states above 5 MeV including giant resonance of {sup 16}O and {sup 12}C as a function of excitation energy in 1-MeV step. Here, we measure both the excitation energy (E{sub x}=5-30MeV) at the forward scattering angles (0°-3°) of the {sup 16}O, {sup 12}C (p, p’) reaction using Grand-Raiden Spectrometer and the energy of γ-rays (E{sub γ}) using an array of NaI(Tl) counters. The purpose of the experiment is to provide the basic and important information not only for the γ-ray production from primary neutral-current neutrino-oxygen (-carbon) interactions but also for that from the secondary hadronic (neutron-oxygen and -carbon) interactions.

  9. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    SciTech Connect

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  10. Characterization of fragment emission in {sup 20}Ne(7-10 MeV/nucleon)+{sup 12}C reactions

    SciTech Connect

    Dey, Aparajita; Bhattacharya, C.; Bhattacharya, S.; Kundu, S.; Banerjee, K.; Mukhopadhyay, S.; Gupta, D.; Bhattacharjee, T.; Banerjee, S. R.; Bhattacharyya, S.; Rana, T. K.; Basu, S. K.; Saha, R.; Krishan, K.; Mukherjee, A.; Bandopadhyay, D.; Beck, C.

    2007-09-15

    The inclusive energy distributions of the complex fragments (3{<=}Z{<=}7) emitted from the bombardment of {sup 12}C by {sup 20}Ne beams with incident energies between 145 and 200 MeV have been measured in the angular range 10 deg.{<=}{theta}{sub lab}{<=}50 deg. Damped fragment yields in all the cases have been found to have the characteristic of emission from fully energy equilibrated composites. The binary fragment yields are compared with the standard statistical model predictions. Whereas Li and Be fragments yields are in agreement with statistical-model calculations, enhanced yields of entrance channel fragments (5{<=}Z{<=}7) indicate the survival of orbiting-like process in {sup 20}Ne+{sup 12}C system at these energies.