Science.gov

Sample records for 12d1 impact properties

  1. Subtask 12D1: Impact properties of production heat of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Smith, D.L.

    1995-03-01

    Following previous reports of excellent properties of a laboratory heat of V-4Cr-4Ti, the alloy identified as the primary vanadium-based candidate for application as fusion reactor structural components, a large production-scale (500-kg) heat of the alloy was fabricated successfully. Since impact toughness has been known to be most sensitive to alloy composition and microstructure, impact testing of the production-scale heat was conducted in this work between -200{degrees}C and +200{degrees}C. A 500-kg heat of V-4Cr-4Ti, an alloy identified previously as the primary vanadium-based candidate alloy for application as fusion reactor structural components, has been produced successfully. Impact tests were conducted at -196{degrees}C to 150{degrees}C on 1/3-size Charpy specimens of the scale-up heat in as-rolled condition and after annealing for 1 h at 950, 1000, and 1050{degrees}C in high-quality vacuum. The annealed material remained ductile at all test temperatures; the ductile-brittle transition temperature (DBTT) was lower than -200{degrees}C. The upper-shelf energy of the production-scale heat was similar to that of the laboratory-scale ({approx}30-kg) heat of V-4Cr-4Ti investigated previously. Effect of annealing temperature was not significant; however, annealing at 1000{degrees}C for 1 h not only produces best impact properties but also ensures a sufficient tolerance to effect of temperature inhomogeneity expected when annealing large components. Effect of notch geometry was also investigated on the production heat. When annealed properly (e.g., at 1000{degrees}C for 1 h), impact properties were not sensitive to notch geometry (45{degrees}-notch, root radius 0.25 mm; and 300-notch, root radius 0.08 mm). 11 refs., 6 figs., 1 tab.

  2. 17 CFR 270.12d1-2 - Exemptions for investment companies relying on section 12(d)(1)(G) of the Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... by an investment company); and (3) Securities issued by a money market fund, when the acquisition is in reliance on § 270.12d1-1. (b) Definitions. For purposes of this section, money market fund has...

  3. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund shares... issued by a money market fund; and (2) A money market fund, any principal underwriter thereof, and...

  4. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... securities and other investments in which a money market fund may invest under § 270.2a-7; and (B) Undertakes... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund...

  5. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... securities and other investments in which a money market fund may invest under § 270.2a-7; and (B) Undertakes... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund...

  6. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... securities and other investments in which a money market fund may invest under § 270.2a-7; and (B) Undertakes... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund...

  7. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... securities and other investments in which a money market fund may invest under § 270.2a-7; and (B) Undertakes... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund...

  8. 17 CFR 240.12d1-3 - Requirements as to certification.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Requirements as to... § 240.12d1-3 Requirements as to certification. (a) Certification that a security has been approved by an... shall be manually signed by the appropriate exchange authority. (Sec. 12, 48 Stat. 892, as amended; 15...

  9. 17 CFR 240.12d1-3 - Requirements as to certification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Requirements as to... § 240.12d1-3 Requirements as to certification. (a) Certification that a security has been approved by an... shall be manually signed by the appropriate exchange authority. (Sec. 12, 48 Stat. 892, as amended; 15...

  10. 17 CFR 240.12d1-3 - Requirements as to certification.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Requirements as to... § 240.12d1-3 Requirements as to certification. (a) Certification that a security has been approved by an... shall be manually signed by the appropriate exchange authority. (Sec. 12, 48 Stat. 892, as amended; 15...

  11. 17 CFR 240.12d1-3 - Requirements as to certification.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Requirements as to... § 240.12d1-3 Requirements as to certification. (a) Certification that a security has been approved by an... shall be manually signed by the appropriate exchange authority. (Sec. 12, 48 Stat. 892, as amended; 15...

  12. 17 CFR 240.12d1-3 - Requirements as to certification.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Requirements as to... § 240.12d1-3 Requirements as to certification. (a) Certification that a security has been approved by an... shall be manually signed by the appropriate exchange authority. (Sec. 12, 48 Stat. 892, as amended; 15...

  13. The Mitochondrion-Located Protein OsB12D1 Enhances Flooding Tolerance during Seed Germination and Early Seedling Growth in Rice

    PubMed Central

    He, Dongli; Zhang, Hui; Yang, Pingfang

    2014-01-01

    B12D belongs to a function unknown subgroup of the Balem (Barley aleurone and embryo) proteins. In our previous work on rice seed germination, we identified a B12D-like protein encoded by LOC_Os7g41350 (named OsB12D1). OsB12D1 pertains to an ancient protein family with an amino acid sequence highly conserved from moss to angiosperms. Among the six OsB12Ds, OsB12D1 is one of the major transcripts and is primarily expressed in germinating seed and root. Bioinformatics analyses indicated that OsB12D1 is an anoxic or submergence resistance-related gene. RT-PCR results showed OsB12D1 is induced remarkably in the coleoptiles or roots by flooding during seed germination and early seedling growth. The OsB12D1-overexpressed rice seeds could protrude radicles in 8 cm deep water, further exhibiting significant flooding tolerance compared to the wild type. Moreover, this tolerance was not affected by the gibberellin biosynthesis inhibitor paclobutrazol. OsB12D1 was identified in the mitochondrion by subcellular localization analysis and possibly enhances electron transport through mediating Fe and oxygen availability under flooded conditions. This work indicated that OsB12D1 is a promising gene that can help to enhance rice seedling establishment in farming practices, especially for direct seeding. PMID:25089878

  14. Tensile properties of impact ices

    NASA Technical Reports Server (NTRS)

    Chu, M. L.; Scavuzzo, R. J.; Kellackey, C. J.

    1992-01-01

    A special test apparatus was developed to measure the tensile strength of impact ices perpendicular to the direction of growth. The apparatus consists of a split tube carefully machined to minimize the effect of the joint on impact ice strength. The tube is supported in the wind tunnel by two carefully aligned bearings. During accretion the tube is turned slowly in the icing cloud to form a uniform coating of ice on the split tube specimen. The two halves of the split tube are secured firmly by a longitudinal bolt to prevent relative motion between the two halves during ice accretion and handling. Tensile test strength results for a variety of icing conditions were obtained. Both glaze and rime ice conditions were investigated. In general, the tensile strength of impact ice was significantly less than refrigerator ice. Based on the limited data taken, the median strength of rime ice was less than glaze ice. However, the mean values were similar.

  15. Impact properties of zinc die cast alloys

    SciTech Connect

    Schrems, Karol K.; Dogan, Omer N.; Manahan, M.P.; Goodwin, F.E.

    2005-01-01

    Alloys 3, 5, AcuZinc 5, and ZA-8 were tested at five temperatures between -40 C and room temperature to determine impact properties. Izod impact energy data was obtained in accordance with ASTM D256. Unlike ASTM E23, these samples were tested with a milled notch in order to compare with plastic samples. In addition, flexural data was obtained for design use.

  16. Impact failure and fragmentation properties of metals

    SciTech Connect

    Grady, D.E.; Kipp, M.E.

    1998-03-01

    In the present study we describe the development of an experimental fracture material property test method specific to dynamic fragmentation. Spherical test samples of the metals of interest are subjected to controlled impulsive stress loads by acceleration to high velocities with a light-gas launcher facility and subsequent normal impact on thin plates. Motion, deformation and fragmentation of the test samples are diagnosed with multiple flash radiography methods. The impact plate materials are selected to be transparent to the x-ray method so that only test metal material is imaged. Through a systematic series of such tests both strain-to-failure and fragmentation resistance properties are determined through this experimental method. Fragmentation property data for several steels, copper, aluminum, tantalum and titanium have been obtained to date. Aspects of the dynamic data have been analyzed with computational methods to achieve a better understanding of the processes leading to failure and fragmentation, and to test an existing computational fragmentation model.

  17. Enhancements in Magnesium Die Casting Impact Properties

    SciTech Connect

    David Schwam; John F. Wallace; Yulong Zhu; Srinath Viswanathan; Shafik Iskander

    2000-06-30

    The need to produce lighter components in transportation equipment is the main driver in the increasing demand for magnesium castings. In many automotive applications, components can be made of magnesium or aluminum. While being lighter, often times the magnesium parts have lower impact and fatigue properties than the aluminum. The main objective of this study was to identify potential improvements in the impact resistance of magnesium alloys. The most common magnesium alloys in automotive applications are AZ91D, AM50 and AM60. Accordingly, these alloys were selected as the main candidates for the study. Experimental quantities of these alloys were melted in an electrical furnace under a protective atmosphere comprising sulfur hexafluoride, carbon dioxide and dry air. The alloys were cast both in a permanent mold and in a UBE 315 Ton squeeze caster. Extensive evaluation of tensile, impact and fatigue properties was conducted at CWRU on permanent mold and squeeze cast test bars of AZ91, AM60 and AM50. Ultimate tensile strength values between 20ksi and 30ksi were obtained. The respective elongations varied between 25 and 115. the Charpy V-notch impact strength varied between 1.6 ft-lb and 5 ft-lb depending on the alloy and processing conditions. Preliminary bending fatigue evaluation indicates a fatigue limit of 11-12 ksi for AM50 and AM60. This is about 0.4 of the UTS, typical for these alloys. The microstructures of the cast specimens were investigated with optical and scanning electron microscopy. Concomitantly, a study of the fracture toughness in AM60 was conducted at ORNL as part of the study. The results are in line with values published in the literature and are representative of current state of the art in casting magnesium alloys. The experimental results confirm the strong relationship between aluminum content of the alloys and the mechanical properties, in particular the impact strength and the elongation. As the aluminum content increases from about 5

  18. Atmospheric Aerosol Properties and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; Halthore, Rangasayi

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  19. Subtask 12D2: Baseline impact properties of vanadium alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the baseline impact properties of vanadium-base alloys as a function of compositional variables. Up-to-date results on impact properties of unirradiated V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented and reviewed in this paper, with an emphasis on the most promising class of alloys, i.e., V-(4-5)Cr-(3-5)Ti containing 400-1000 wppm Si. Database on impact energy and ductile-brittle transition temperature (DBTT) has been established from Charpy impact tests on small laboratory as well as production-scale heats. DBTT is influenced most significantly by Cr contents and, to a lesser extent, by Ti contents of the alloys. When combined contents of Cr and Ti were {le}10 wt.%, V-Cr-Ti alloys exhibit excellent impact properties, i.e., DBTT<-200{degrees}C and upper shelf energies of {approx}120-140 J/cm{sup 2}. Impact properties of the production-scale heat of the U.S. reference alloy V-4Cr- 4Ti were as good as those of the laboratory-scale heats. Optimal impact properties of the reference alloy were obtained after annealing the as-rolled products at 1000{degrees}C-1050{degrees}C for 1-2 h in high-quality vacuum. 17 refs., 6 figs., 2 tabs.

  20. Predicting the impact of biochar additions on soil hydraulic properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool predicting the impact of biochar additions on soil saturated hydraulic con...

  1. Fatigue and impact properties of metal honeycomb sandwich panel

    NASA Astrophysics Data System (ADS)

    Zou, Guang ping; Lu, Jie; Liang, Jun; Chang, Zhong liang

    2008-11-01

    Honeycomb sandwich structures are significant to be used as applied to thermal protection system on reusable launch vehicle. In this paper the fatigue and impact properties of a novel metallic thermal protection material have been investigated and predicted at room temperature. A series of strength tests are carried out to obtain parameters firstly for further experiments. A set of tension-tension stress fatigue tests and impact tests based on split-Hopkinson pressure bar are carried out. Different high strain rate impact experiments are accomplished. The curves of dynamical stress, strain and strain rate are obtained. Also the cell units images after impact are presented. The results show the fatigue properties of honeycomb sandwich panels are comparatively better. And it has the advantages of anti-impact resistance and high, energy absorption capability.

  2. A Repeated Impact Method and Instrument to Evaluate the Impact Fatigue Property of Drillpipe

    NASA Astrophysics Data System (ADS)

    Lin, Yuanhua; Li, Qiang; Sun, Yongxing; Zhu, Hongjun; Zhou, Ying; Xie, Juan; Shi, Taihe

    2013-04-01

    It is well known that drillpipe failures are a pendent problem in drilling engineering. Most of drillpipe failures are low amplitude-repeated impact fatigue failures. The traditional method is using Charpy impact test to describe the fracture property of drillpipe, but it cannot veritably characterize the impact fatigue property of drillpipe under low amplitude-repeated impact. Based on the Charpy impact and other methods, a repeated impact method and instrument have been proposed to simulate the low amplitude-repeated impact of downhole conditions for drillpipe. Then, a series of tests have been performed using this instrument. Test results demonstrate the drillpipe upset transition area nonhomogeneity is more severe than drillpipe body, which is the key factor that leads to washout and fracture frequently of it. As the one time impact energy increases, the repeated impact times decrease exponentially, therefore, the rotational speed has a great effect on the fatigue life of drillpipe, and it is vital to select a suitable rotational speed for drilling jobs. In addition, based on SEM fractographs we found that the fracture surface of repeated impact is similar to the fatigue fracture, and there are many low cycle fatigue characteristic features on fracture surface that reveal very good agreement with the features of drillpipe fatigue failures in the field.

  3. Spring cleaning: rural water impacts, valuation, and property rights institutions.

    PubMed

    Kremer, Michael; Leino, Jessica; Miguel, Edward; Zwane, Alix Peterson

    2011-01-01

    Using a randomized evaluation in Kenya, we measure health impacts of spring protection, an investment that improves source water quality. We also estimate households' valuation of spring protection and simulate the welfare impacts of alternatives to the current system of common property rights in water, which limits incentives for private investment. Spring infrastructure investments reduce fecal contamination by 66%, but household water quality improves less, due to recontamination. Child diarrhea falls by one quarter. Travel-cost based revealed preference estimates of households' valuations are much smaller than both stated preference valuations and health planners' valuations, and are consistent with models in which the demand for health is highly income elastic. We estimate that private property norms would generate little additional investment while imposing large static costs due to above-marginal-cost pricing, private property would function better at higher income levels or under water scarcity, and alternative institutions could yield Pareto improvements. PMID:21853618

  4. Droplet impact patterns on inclined surfaces with variable properties

    NASA Astrophysics Data System (ADS)

    Lockard, Michael; Neitzel, G. Paul; Smith, Marc K.

    2014-11-01

    Bloodstain pattern analysis is used in the investigation of a crime scene to infer the impact velocity and size of an impacting droplet and, from these, the droplet's point and cause of origin. The final pattern is the result of complex fluid mechanical processes involved in the impact and spreading of a blood drop on a surface coupled with the wetting properties of the surface itself. Experiments have been designed to study these processes and the resulting patterns for the case of a single Newtonian water droplet impacting a planar, inclined surface with variable roughness and wetting properties. Results for Reynolds numbers in the range of (9,000 - 27,000) and Weber numbers in the range of (300 - 2,600) will be presented. Transient video images and final impact patterns will be analyzed and compared with results from traditional bloodstain pattern-analysis techniques used by the forensics community. In addition, preliminary work with a new Newtonian blood simulant designed to match the viscosity and surface tension of blood will be presented. Supported by the National Institute of Justice.

  5. Viton's Impact on NASA Standard Initiator Propellant Properties

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl; Tipton, Bill, Jr.

    2000-01-01

    This paper discusses some of the properties of Viton that are relevant to its use as a pyrotechnic binder in a NASA standard initiator (NSI) propellant. Nearly every aspect of NSI propellant manufacture and use is impacted by the binder system. The effect of Viton's molecular weight on solubility, solution viscosity, glass transition temperature, and strength characteristics as applied to NSI production and performance are reviewed. Emphasis is placed on the Viton fractionation that occurs during the precipitation cycle and its impact on bridgewire functions. Special consideration is given to the production of bridgewire slurry mixtures.

  6. Structural properties of impact ices accreted on aircraft structures

    NASA Technical Reports Server (NTRS)

    Scavuzzo, R. J.; Chu, M. L.

    1987-01-01

    The structural properties of ice accretions formed on aircraft surfaces are studied. The overall objectives are to measure basic structural properties of impact ices and to develop finite element analytical procedures for use in the design of all deicing systems. The Icing Research Tunnel (IRT) was used to produce simulated natural ice accretion over a wide range of icing conditions. Two different test apparatus were used to measure each of the three basic mechanical properties: tensile, shear, and peeling. Data was obtained on both adhesive shear strength of impact ices and peeling forces for various icing conditions. The influences of various icing parameters such as tunnel air temperature and velocity, icing cloud drop size, material substrate, surface temperature at ice/material interface, and ice thickness were studied. A finite element analysis of the shear test apparatus was developed in order to gain more insight in the evaluation of the test data. A comparison with other investigators was made. The result shows that the adhesive shear strength of impact ice typically varies between 40 and 50 psi, with peak strength reaching 120 psi and is not dependent on the kind of substrate used, the thickness of accreted ice, and tunnel temperature below 4 C.

  7. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  8. Impact properties of shear thickening fluid impregnated foams

    NASA Astrophysics Data System (ADS)

    Soutrenon, M.; Michaud, V.

    2014-03-01

    Concentrated colloidal suspensions of silica particles in polyethylene glycol exhibit a shear thickening behavior: above a critical shear rate in a confined environment, they show a steep increase of viscosity. This reversible transition from a low to a high viscosity state is associated with a large energy absorption that could be harnessed for impact protection. As these suspensions are liquid at rest, however, shear thickening fluids (STFs) are difficult to use in practical applications. Furthermore, their specific rheological properties exist within a narrow range of concentration, so they tend to disappear when the material is in contact with air and humidity. In this work, a soft foam scaffold was impregnated with STF to provide a three-dimensional shape to the assembly at rest, while a silicone was cast around it to serve as a physical barrier to the external environment. A method to quickly impregnate the foam was proposed. Impact tests were carried out on the STF/foam/silicone composite pads using a free fall impact tower. Compared to rubber or pure silicone, larger energy absorptions, up to 85%, were observed, which could be repeated for multiple impacts. The transmitted shock waves were also reduced, showing the potential of this system for impact protection of structures.

  9. Impact of Foliage Surface Properties on Vegetation Reflection and Absorption

    NASA Astrophysics Data System (ADS)

    Yang, B.; Knyazikhin, Y.; Yan, L.; Zhao, Y.; Jiao, J.

    2013-12-01

    Optical properties of phytoelements and their distribution in the canopy space (i.e., canopy structure) are among key factors that determine light environment in vegetation canopies, which in turn drives various physiological and physical processes required for the functioning of plants. Canopy radiative response is the source of information about ecosystem properties from remote sensing. Understanding of how radiation interacts with foliage and traverses in the 3D vegetation canopy is essential to both modeling and remote sensing communities. Radiation scattered by a leaf includes information from two dissimilar sources - the leaf surface and leaf interior. The first component of scattered radiation emanates from light reflected at the air-cuticle interface. This portion of reflected radiation does not interact with biochemical constituents inside the leaf and depends on the properties of the leaf surface. The leaf cuticle acts as a "barrier" for photons to enter the mesophyll and be absorbed; thus, tending to increase the leaf scattering. The second component mainly results from radiation interactions within the leaf-interior. The canopy radiation regime is sensitive to canopy structure, leaf surface properties and leaf biochemical constituents. Impact of leaf surface properties on canopy reflection and absorption is poorly understood. Radiation scattered at the surface of leaves is partly polarized. Fresnel reflection is the principal cause of light polarization. Polarization measurements provide a means to assess the impact of leaf surface properties on canopy radiation regime. We measured Bidirectional Reflectance Factor (BRF) in the principal plane and its polarized portion of needles and shoots of two coniferous species in the 400 to 1000 nm spectral interval. The needle and shoot BRF spectra were decomposed into polarized (PBRF) and diffuse (DBRF) components: BRF=PBRF+DBRF. Our analyses indicate: 1) PBRF in forward directions can account for up to 70% of

  10. Electromagnetic Properties of Impact-Generated Plasma, Vapor and Debris

    SciTech Connect

    Crawford, D.A.; Schultz, P.H.

    1998-11-02

    Plasma, vapor and debris associated with an impact or explosive event have been demonstrated in the laboratory to produce radiofrequency and optical electromagnetic emissions that can be diagnostic of the event. Such effects could potentially interfere with communications or remote sensing equipment if an impact occurred, for example, on a satellite. More seriously, impact generated plasma could end the life of a satellite by mechanisms that are not well understood and not normally taken into account in satellite design. For example, arc/discharge phenomena resulting from highly conductive plasma acting as a current path across normally shielded circuits may have contributed to the loss of the Olympus experimental communications satellite on August 11, 1993. The possibility of significant storm activity during the Leonid meteor showers of November 1998, 1999 and 2000 (impact velocity, 72 km/s) has heightened awareness of potential vulnerabilities from hypervelocity electromagnetic effects to orbital assets. The concern is justified. The amount of plasma, electrostatic charge and the magnitude of the resulting currents and electric fields scale nearly as the cube of the impact velocity. Even for microscopic Leonid impacts, the amount of plasma approaches levels that could be dangerous to spacecraft electronics. The degree of charge separation that occurs during hypervelocity impacts scales linearly with impactor mass. The resulting magnetic fields increase linearly with impactor radius and could play a significant role in our understanding of the paleomagnetism of planetary surfaces. The electromagnetic properties of plasma produced by hypervelocity impact have been exploited by researchers as a diagnostic tool, invoked to potentially explain the magnetically jumbled state of the lunar surface and blamed for the loss of the Olympus experimental communications satellite. The production of plasma in and around an impact event can lead to several effects: (1) the

  11. Impact of Methylation on the Physical Properties of DNA

    PubMed Central

    Pérez, Alberto; Castellazzi, Chiara Lara; Battistini, Federica; Collinet, Kathryn; Flores, Oscar; Deniz, Ozgen; Ruiz, Maria Luz; Torrents, David; Eritja, Ramon; Soler-López, Montserrat; Orozco, Modesto

    2012-01-01

    There is increasing evidence for the presence of an alternative code imprinted in the genome that might contribute to gene expression regulation through an indirect reading mechanism. In mammals, components of this coarse-grained regulatory mechanism include chromatin structure and epigenetic signatures, where d(CpG) nucleotide steps are key players. We report a comprehensive experimental and theoretical study of d(CpG) steps that provides a detailed description of their physical characteristics and the impact of cytosine methylation on these properties. We observed that methylation changes the physical properties of d(CpG) steps, having a dramatic effect on enriched CpG segments, such as CpG islands. We demonstrate that methylation reduces the affinity of DNA to assemble into nucleosomes, and can affect nucleosome positioning around transcription start sites. Overall, our results suggest a mechanism by which the basic physical properties of the DNA fiber can explain parts of the cellular epigenetic regulatory mechanisms. PMID:22824278

  12. Magnetic properties of tektites and other related impact glasses

    NASA Astrophysics Data System (ADS)

    Rochette, P.; Gattacceca, J.; Devouard, B.; Moustard, F.; Bezaeva, N. S.; Cournède, C.; Scaillet, B.

    2015-12-01

    We present a comprehensive overview of the magnetic properties of the four known tektite fields and related fully melted impact glasses (Aouelloul, Belize, Darwin, Libyan desert and Wabar glasses, irghizites, and atacamaites), namely magnetic susceptibility and hysteresis properties as well as properties dependent on magnetic grain-size. Tektites appear to be characterized by pure Fe2+ paramagnetism, with ferromagnetic traces below 1 ppm. The different tektite fields yield mostly non-overlapping narrow susceptibility ranges. Belize and Darwin glasses share similar characteristics. On the other hand the other studied glasses have wider susceptibility ranges, with median close to paramagnetism (Fe2+ and Fe3+) but with a high-susceptibility population bearing variable amounts of magnetite. This signs a fundamental difference between tektites (plus Belize and Darwin glasses) and other studied glasses in terms of oxygen fugacity and heterogeneity during formation, thus bringing new light to the formation processes of these materials. It also appears that selecting the most magnetic glass samples allows to find impactor-rich material, opening new perspectives to identify the type of impactor responsible for the glass generation.

  13. EVALUATION OF THE IMPACT OF THIN POURS ON SALTSTONE PROPERTIES

    SciTech Connect

    Cozzi, A.; Langton, C.; Fox, K.

    2012-10-02

    testing showed increased flow when the number of cold joints was increased. Compressive strength testing showed that the maximum load at the onset of cracking was reduced by approximately 26% for those samples that contained cold joints as compared to the monolithic samples. The number of cold joints in the sample had no significant impact on the maximum load prior to cracking. The porosity of the samples was not influenced by cold joints. This result was expected as the porosity is a material property affected by the properties of the components (premix and salt solution) and the water to premix ratio. Overall, the only obvious impact of cold joints in the samples was to significantly increase hydraulic conductivity in the direction parallel to the cold joints. An increasing number of cold joints (thin layers) in the simulated saltstone samples did not exacerbate this effect, nor did it have a negative impact on the Leachability Indices or porosity for surfaces exposed for approximately four days. The presence of a cold joint reduced the compressive strength of the material, although this impact was seen regardless of the number of cold joints in the sample.

  14. Impact of soil properties for European climate simulations

    NASA Astrophysics Data System (ADS)

    Guillod, B. P.; Davin, E. L.; Kündig, C.; Smiatek, G.; Seneviratne, S. I.

    2012-04-01

    Soil properties have a strong influence on the terrestrial water cycle, in particular by influencing soil water distribution and dynamics. This in turn affects evapotranspiration from the land to the atmosphere and thus climate conditions. While many studies have looked at the climatic influence of vegetation characteristics/land cover change, fewer investigated the importance of soil properties for climate, although soil properties can also be indirectly altered by land use changes. In this study, we investigate the influence of soil properties on the European climate using a regional climate model. First, two simulations using two different soil maps are investigated: the soil map of the world from the Food and Agricultural Organization (FAO) and the European Soil Database (ESDB) from the European Commission Joint Research Center (JRC). These simulations highlight the importance of the specified soil texture in summer, with differences of up to 2°C in mean 2-meter temperature and 20% in precipitation due to changes in the partitioning of energy at the land surface into sensible and latent heat flux. In an additional set of experiments, we modify different sets of soil physical parameters to evaluate their relative importance. Hydraulic diffusivity as well as field capacity and plant wilting point are shown to play an important role, unlike hydraulic conductivity. We highlight the importance of the vertical profile of soil moisture for evapotranspiration as it impacts soil moisture dynamics. Our study highlights the importance of soil texture and related parameters for climate simulations. Given the uncertainty associated with the geographical distribution of soil texture, efforts to improve existing databases and their integration in climate and hydrological models are needed. Tackling unresolved issues in land-surface modeling related to the high variability of soil parameters, both spatially and within a soil textural class, would benefit a large community and

  15. The high-temperature impact properties of DOP-26 iridium

    SciTech Connect

    George, T.G.; Stevens, M.F. )

    1988-10-01

    A study of the impact properties of DOP-26 iridium (which contains 0.3% tungsten and --40 pm thorium) at temperatures of 600 to 1,440/sup 0/C revealed that the predominant mode of failure for the material is intergranular separation with occasional transgranular cleavage. DOP-26 iridium also appears to have a high notch sensitivity, in contrast to most other face-centered-cubic (fcc) metals; at elevated deformation temperatures, the dislocation substructure is similar to that of other fcc metals. In addition, regular arrays of pure edge character dislocations have been found. In the test specimens used in this study, the presence of Ir Th particles was observed within iridium grains. The existence of these particles indicates that the role of thorium is not well understood, particularly in light of the fact that previous studies, which depended on grain boundary segregation, have shown thorium to improve grain boundary cohesion.

  16. Unique Properties of Lunar Impact Glass: Nanophase Metallic Fe Synthesis

    SciTech Connect

    Liu, Yang; Taylor, Lawrence A.; Thompson, James R; Schnare, Darren W.; Park, Jae-Sung

    2007-01-01

    Lunar regolith contains important materials that can be used for in-situ resource utilization (ISRU) on the Moon, thereby providing for substantial economic savings for development of a manned base. However, virtually all activities on the Moon will be affected by the deleterious effects of the adhering, abrasive, and pervasive nature of lunar dust (<20 {micro}m portion of regolith, which constitutes {approx}20 wt% of the soil). In addition, the major impact-produced glass in the lunar soil, especially agglutinitic glass (60-80 vol% of the dust), contains unique nanometer-sized metallic Fe (np-Fe{sup 0}), which may pose severe pulmonary problems for humans. The presence of the np-Fe0 imparts considerable magnetic susceptibility to the fine portion of the lunar soil, and dust mitigation techniques can be designed using these magnetic properties. The limited availability of Apollo lunar soils for ISRU research has made it necessary to produce materials that simulate this unique np-Fe{sup 0} property, for testing different dust mitigation methods using electromagnetic fields, and for toxicity studies of human respiratory and pulmonary systems, and for microwave treatment of lunar soil to produce paved roads, etc. A method for synthesizing np-Fe{sup 0} in an amorphous silica matrix is presented here. This type of specific simulant can be used as an additive to other existing lunar soil simulants.

  17. Economic impact of fuel properties on turbine powered business aircraft

    NASA Technical Reports Server (NTRS)

    Powell, F. D.

    1984-01-01

    The principal objective was to estimate the economic impact on the turbine-powered business aviation fleet of potential changes in the composition and properties of aviation fuel. Secondary objectives include estimation of the sensitivity of costs to specific fuel properties, and an assessment of the directions in which further research should be directed. The study was based on the published characteristics of typical and specific modern aircraft in three classes; heavy jet, light jet, and turboprop. Missions of these aircraft were simulated by computer methods for each aircraft for several range and payload combinations, and assumed atmospheric temperatures ranging from nominal to extremely cold. Five fuels were selected for comparison with the reference fuel, nominal Jet A. An overview of the data, the mathematic models, the data reduction and analysis procedure, and the results of the study are given. The direct operating costs of the study fuels are compared with that of the reference fuel in the 1990 time-frame, and the anticipated fleet costs and fuel break-even costs are estimated.

  18. Brief mechanical ventilation impacts airway cartilage properties in neonatal lambs

    PubMed Central

    Kim, Minwook; Pugarelli, Joan; Miller, Thomas L.; Wolfson, Marla R.; Dodge, George R.; Shaffer, Thomas H.

    2012-01-01

    Ultrasound imaging allows in vivo assessment of tracheal kinetics and cartilage structure. To date, the impact of mechanical ventilation (MV) on extracellular matrix (ECM) in airway cartilage is unclear, but an indication of its functional and structural change may support the development of protective therapies. The objective of this study was to characterize changes in mechanical properties of the neonatal airway during MV with alterations in cartilage ECM. Trachea segments were isolated in a neonatal lamb model; ultrasound dimensions and pressure-volume relationships were measured on sham (no MV; n = 6) and MV (n = 7) airways for 4 h. Tracheal cross-sections were harvested at 4 h, tissues were fixed and stained, and Fourier transform infrared imaging spectroscopy (FT-IRIS) was performed. Over 4 h of MV, bulk modulus (28%) and elastic modulus (282%) increased. The MV tracheae showed higher collagen, proteoglycan content, and collagen integrity (new tissue formation); whereas no changes were seen in the controls. These data are clinically relevant in that airway properties can be correlated with MV and changes in cartilage extracellular matrix. Mechanical ventilation increases the in vivo dimensions of the trachea, and is associated with evidence of airway tissue remodeling. Injury to the neonatal airway from MV may have relevance for the development of tracheomalacia. We demonstrated active airway tissue remodeling during MV using a FT-IRIS technique which identifies changes in ECM. PMID:22170596

  19. Impacts of Aminium Sulfates on Atmospheric Aerosol Properties

    NASA Astrophysics Data System (ADS)

    Qiu, C.; Zhang, R.

    2012-12-01

    Atmospheric aerosols influence our environment significantly by interacting with the solar radiation and modifying cloud formation processes. Amines are emitted into the atmosphere from various anthropogenic and biogenic sources. Recent studies have shown that atmospheric amines can enter the particle-phase as salts like aminium sulfates by reacting with aerosol constituents including sulfuric acid and ammonium salts. However, little knowledge is available about the properties of these aminium salts and their impacts on aerosol properties. We have conducted laboratory experiments to measure the hygroscopicity, thermostability, and density of five representative alkylaminium sulfates, using an integrated aerosol analytical system including a tandem differential mobility analyzer and an aerosol particle mass analyzer. When exposed to increasing RH, alkylaminium sulfate aerosols show monotonic growth in size without a well-defined deliquescence point. Aerosols of mixed ammonium-alkylaminium sulfates have deliquescence points lower than that of ammonium sulfate. The measurements of thermostability reveal that dimethylaminium sulfate is the most stable species upon heating. Trimethyl- and triethyl-aminium sulfates volatilize similarly to ammonium sulfate, but exhibit lower volatility than monomethyl- and diethyl-aminium sulfates. The density of alkylaminium sulfates ranges from 1.2 to 1.5 g cm-3, and can be predicted from an empirical model on the basis of the mole ratio of alkyl carbons to total sulfate. Our results suggest that the properties of aerosols may be considerably altered by the incorporation of atmospheric amines through heterogeneous reactions. In particular, these processes may lead to an enhanced water uptake at low RH and considerably change the contribution of aerosols to climate forcing.

  20. Impact of soil properties on selected pharmaceuticals adsorption in soils

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej

    2014-05-01

    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also

  1. Impact of temperature on the biological properties of soil

    NASA Astrophysics Data System (ADS)

    Borowik, Agata; Wyszkowska, Jadwiga

    2016-01-01

    The aim of the study was to determine the response of soil microorganisms and enzymes to the temperature of soil. The effect of the temperatures: 5, 10, 15, 20, and 25°C on the biological properties of soil was investigated under laboratory conditions. The study was performed using four different soils differing in their granulometric composition. It was found that 15°C was the optimal temperature for the development of microorganisms in soil. Typically, in the soil, the highest activity of dehydrogenases was observed at 10-15°C, catalase and acid phosphatase - at 15°C, alkaline phosphatase at 20°C, urease and β-glucosidase at 25°C. The highest colony development index for heterotrophic bacteria was recorded in soils incubated at 25°C, while for actinomycetes and fungi at 15°C. The incubation temperature of soil only slightly changed the ecophysiological variety of the investigated groups of microorganisms. Therefore, the observed climate changes might have a limited impact on the soil microbiological activity, because of the high ability of microorganisms to adopt. The response of soil microorganisms and enzymes was more dependent on the soil granulometric composition, organic carbon, and total nitrogen than on its temperature.

  2. Tensile and impact properties of iron-aluminum alloys

    SciTech Connect

    Alexander, D.J.; Sikka, V.K.

    1993-12-31

    Tensile and impact tests have been conducted on specimens from a series of five heats of iron-aluminum alloys. These results have been compared to data for the iron aluminide alloy FA-129. The transition temperatures of all of the Fe{sub 3}Al-based alloys were similar, but the simple ternary alloy had a much higher upper-shelf energy. The reduced aluminum alloys [based on Fe-8Al (wt %)] had lower transition temperatures and higher upper-shelf energy levels than the Fe{sub 3}Al-type alloys. The reduced aluminum alloy with yttrium showed excellent tensile properties, with a room temperature total elongation of 40%, and a very high upper-shelf energy level. Despite the high tensile ductility at room temperature, the transition temperature of the yttrium-containing alloy was still about 150 C, compared to approximately 300 C for FA-129. In general, the microstructures were coarse and anisotropic. The fracture processes were dominated by second-phase particles.

  3. Collisional properties of ice spheres at low impact velocities

    NASA Technical Reports Server (NTRS)

    Hatzes, Artie P.; Lin, D. N. C.; Bridges, Frank G.

    1988-01-01

    The results of experimental studies on the impact properties of water ice are discussed. Stable temperatures of 85 K and pressures as low as 10 to the -5th Torr were achieved using a new apparatus consisting of a compound disk pendulum and a stainless steel, temperature-controlled cryostat. The coefficient of restitution as a function of velocity was obtained for ice spheres with four different radii of curvature and with a variety of surface conditions. These data can be well fitted by an exponetial law epsilon of given form for most measurements. Surface conditions can drastically alter the resulting value of epsilon, however. In particular, the presence of frost or a roughened contact surface can lower epsilon at a given velocity by 10-30 percent from that of a smooth sphere. It is shown how the presence of frost can change the velocity behavior of epsilon from an exponential to a power-law form. The applications of the results to the dynamics of Saturn's rings are discussed.

  4. IMPACT OF INCREASED ALUMINATE CONCENTRATIONS ON PROPERTIES OF SALTSTONE MIXES

    SciTech Connect

    Harbour, J; Tommy Edwards, T; Erich Hansen, E; Vickie Williams, V

    2007-10-12

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. The protocols developed in this variability study are ideally suited as a tool to assess the impact of proposed changes to the processing flow sheet for Liquid Waste Operations (LWO). One such proposal that is currently under consideration is to introduce a leaching step in the treatment of the High Level Waste (HLW) sludge to remove aluminum prior to vitrification at the Defense Waste Processing Facility (DWPF). This leachate would significantly increase the soluble aluminate concentrations as well as the free hydroxide ion concentration in the salt feed that will be processed at the Saltstone Processing Facility (SPF). Consequently, an initial study of the impact of increased aluminate concentration on the Saltstone grout properties was performed. The projected compositions and ranges of the aluminate rich salt stream (which includes the blending strategy) are not yet available and consequently, in this initial report, two separate salt stream compositions were investigated. The first stream starts with the previously projected baseline composition of the salt solution that will be fed to SPF from the Salt Waste Processing Facility (SWPF). The second stream is the solution that results from washing of the current Tank 51 sludge and subsequent transfer of the salt solution to Tank 11. The SWPF simulant has higher nitrate and lower free hydroxide than the Tank 11 simulant. In both of these cases, the aluminate was varied up to a maximum of 0.40 to 0.45M aluminate in order to evaluate the impact of increasing aluminate ion concentration on the grout properties. In general, the fresh grout properties of mixes made with SWPF and Tank 11 simulants were relatively insensitive to an increase in aluminate concentration in the salt solutions. However, the overall

  5. Notched bar Izod impact properties of zinc die castings

    SciTech Connect

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2007-03-01

    Notched bar Izod impact testing of zinc die cast Alloy 3, Alloy 5, ZA-8, and AcuZinc 5 was performed at five temperatures between -40\\mDC and room temperature in accordance with ASTM E23 for impact testing of metallic materials. A direct comparison between ASTM D256 for impact testing of plastics and ASTM E23 was performed using continuously cast zinc specimens of Alloy 5 and ZA-8 at -40\\mDC and room temperature. There are differences in sample sizes, impact velocity, and striker geometry between the two tests. Bulk zinc tested according to ASTM E23 resulted in higher impact energies at -40\\mDC and lower impact energies at room temperature then did the same alloys when tested according to ASTM D256.

  6. Mechanical properties of glasses impacted by debris or micrometeorites

    NASA Technical Reports Server (NTRS)

    Kinser, Donald L.; Wiedlocher, David E.

    1992-01-01

    Mechanical strength measurements on five glasses and one glass ceramic exposed on the Long Duration Exposure Facility (LDEF) have revealed no damage exceeding experimental limits of error after exposure. The measurement technique subjected less than 5 percent of the sample surface area to stresses above 90 percent of the failure strength. Seven micrometeorite or space debris impacts occurred at locations which were not in that portion of the sample subjected to greater than 90 percent of the applied stress. In consequence of this, the impact events on the sample were not detected in mechanical strength measurements. The physical form and structure of the impact sites was carefully examined to determine the influence of those events upon stress concentration associated with the impact and the resulting mechanical strength influence. The size of the impact site insofar as it determines flaw size for fracture purposes was examined. Surface topography of the impacts reveals that six of the seven sites display impact melting. The classical melt crater structure is surrounded by a zone of fractured glass. Residual stresses arising from shock compression and from cooling of the impact fused zone cannot be included in fracture mechanics analyses based on simple flaw size analyses. Strategies for refining estimates of mechanical strength degradation by impact events are presented.

  7. Deflection by kinetic impact: Sensitivity to asteroid properties

    DOE PAGESBeta

    Bruck Syal, Megan; Michael Owen, J.; Miller, Paul L.

    2016-05-01

    Impacting an asteroid with a spacecraft traveling at high speed delivers an impulsive change in velocity to the body. In certain circumstances, this strategy could be used to deflect a hazardous asteroid, moving its orbital path off of an Earth-impacting course. However, the efficacy of momentum delivery to asteroids by hypervelocity impact is sensitive to both the impact conditions (particularly velocity) and specific characteristics of the target asteroid. We numerically model asteroid response to kinetic impactors under a wide range of initial conditions, using an Adaptive Smoothed Particle Hydrodynamics code. Impact velocities spanning 1–30 km/s were investigated, yielding, for amore » particular set of assumptions about the modeled target material, a power-law dependence consistent with a velocity-scaling exponent of μ = 0.44. Target characteristics including equation of state, strength model, porosity, rotational state, and shape were varied, and corresponding changes in asteroid response were documented. Moreover, the kinetic-impact momentum-multiplication factor, β, decreases with increasing asteroid cohesion and increasing porosity. Although increased porosity lowers β, larger porosities result in greater deflection velocities, as a consequence of reduced target masses for asteroids of fixed size. Porosity also lowers disruption risk for kinetic impacts near the threshold of disruption. Including fast (P = 2.5 h) and very fast (P = 100 s) rotation did not significantly alter β but did affect the risk of disruption by the impact event. Asteroid shape is found to influence the efficiency of momentum delivery, as local slope conditions can change the orientation of the crater ejecta momentum vector. Our results emphasize the need for asteroid characterization studies to bracket the range of target conditions expected at near-Earth asteroids while also highlighting some of the principal uncertainties associated with the kinetic-impact deflection

  8. Deflection by kinetic impact: Sensitivity to asteroid properties

    NASA Astrophysics Data System (ADS)

    Bruck Syal, Megan; Michael Owen, J.; Miller, Paul L.

    2016-05-01

    Impacting an asteroid with a spacecraft traveling at high speed delivers an impulsive change in velocity to the body. In certain circumstances, this strategy could be used to deflect a hazardous asteroid, moving its orbital path off of an Earth-impacting course. However, the efficacy of momentum delivery to asteroids by hypervelocity impact is sensitive to both the impact conditions (particularly velocity) and specific characteristics of the target asteroid. Here we numerically model asteroid response to kinetic impactors under a wide range of initial conditions, using an Adaptive Smoothed Particle Hydrodynamics code. Impact velocities spanning 1-30 km/s were investigated, yielding, for a particular set of assumptions about the modeled target material, a power-law dependence consistent with a velocity-scaling exponent of μ = 0.44. Target characteristics including equation of state, strength model, porosity, rotational state, and shape were varied, and corresponding changes in asteroid response were documented. The kinetic-impact momentum-multiplication factor, β, decreases with increasing asteroid cohesion and increasing porosity. Although increased porosity lowers β, larger porosities result in greater deflection velocities, as a consequence of reduced target masses for asteroids of fixed size. Porosity also lowers disruption risk for kinetic impacts near the threshold of disruption. Including fast (P = 2.5 h) and very fast (P = 100 s) rotation did not significantly alter β but did affect the risk of disruption by the impact event. Asteroid shape is found to influence the efficiency of momentum delivery, as local slope conditions can change the orientation of the crater ejecta momentum vector. These results emphasize the need for asteroid characterization studies to bracket the range of target conditions expected at near-Earth asteroids while also highlighting some of the principal uncertainties associated with the kinetic-impact deflection strategy.

  9. Impact and dynamic mechanical thermal properties of textile silk reinforced epoxy resin composites

    NASA Astrophysics Data System (ADS)

    Yang, K.; Guan, J.

    2016-07-01

    Silk fabric reinforced epoxy resin composites (SFRPs) were prepared using simple techniques of hand lay-up, hot-press and vacuum treatment, and a series of volume fractions of silk reinforcements were achieved. The impact properties and dynamic mechanical properties of SFRPs were investigated using a pendulum impact testing method and dynamic mechanical thermal analysis (DMTA). The results suggest that silk reinforcement could greatly enhance the mechanical performances of SFRPs. The impact strength reached a maximum of 71 kJ/m2 for 60%-silk SFRP, which demonstrated a potential of silk composites for defence and impact- resistant materials.

  10. Quantifying military training impacts using soil chemical and mechanical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Historic Preservation Act requires land-managing agencies to identify and account for their impacts on archaeological resources. Regulatory agencies that oversee compliance with historic preservation legislation frequently assume military training adversely affects archaeological resou...

  11. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    SciTech Connect

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2009-12-01

    This report uses statistical analysis to evaluate the impact of wind power projects on property values, and fails to uncovers conclusive evidence of the existence of any widespread property value impacts.

  12. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam

    NASA Astrophysics Data System (ADS)

    Davoodi, M. M.; Sapuan, S. M.; Ali, Aidy; Ahmad, D.; Khalina, A.

    2010-05-01

    Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.

  13. Characterizing recovery of soil hydrological properties impacted by wildfire

    NASA Astrophysics Data System (ADS)

    Joseph, Alicia; Borak, Jordan; Yatheendradas, Soni; Crosgrove, Brian; Gochis, David; Dugger, Aubrey; Goodrich, David

    2016-04-01

    Accurate characterization of the post-burn recovery of soil properties over time is important for hydrological modeling applications. Yet, this recovery remains not characterized well enough for effective usage as hydrologic model simulation guidelines, for example, by organizations like the NOAA NWS National Water Center for streamflow modeling or like USDA for flash flood modeling. By calibrating a model's soil properties to soil moisture at different short periods of post-fire rain events for an example test case, we attempt to characterize the soil recovery from wildfires as a function of the burn severity, soil properties, hydrologic states like moisture and antecedent rain history post-burn, and ecosystem vegetation type and plant cover density. This work is in line with similar recent work but focuses more on improving predictability for operational hydrologic applications.

  14. Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties

    PubMed Central

    Atalay, Ozgur; Kennon, William Richard

    2014-01-01

    This paper presents a study of the sensing properties exhibited by textile-based knitted strain sensors. Knitted sensors were manufactured using flat-bed knitting technology, and electro-mechanical tests were subsequently performed on the specimens using a tensile testing machine to apply strain whilst the sensor was incorporated into a Wheatstone bridge arrangement to allow electrical monitoring. The sensing fabrics were manufactured from silver-plated nylon and elastomeric yarns. The component yarns offered similar diameters, bending characteristics and surface friction, but their production parameters differed in respect of the required yarn input tension, the number of conductive courses in the sensing structure and the elastomeric yarn extension characteristics. Experimental results showed that these manufacturing controls significantly affected the sensing properties of the knitted structures such that the gauge factor values, the working range and the linearity of the sensors varied according to the knitted structure. These results confirm that production parameters play a fundamental role in determining the physical behavior and the sensing properties of knitted sensors. It is thus possible to manipulate the sensing properties of knitted sensors and the sensor response may be engineered by varying the production parameters applied to specific designs. PMID:24608010

  15. Impact properties of 500-kg heat of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Gazda, J.

    1995-04-01

    Following previous reports of excellent properties of a laboratory heat of V-4Cr-4Ti, the alloy identified as the primary vanadium-based candidate for application as fusion reactor structural components, a large industrial-scale (500-kg) heat of the alloy was fabricated successfully. The objective of this work is to determine the impact properties of the industrial-scale heat.

  16. Online Data Resources in Chemical Engineering Education: Impact of the Uncertainty Concept for Thermophysical Properties

    ERIC Educational Resources Information Center

    Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael

    2013-01-01

    We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…

  17. Excellent Ballistic Impact Properties Demonstrated By New Fabric

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Hopkins, Dale A.

    2002-01-01

    Recently, a relatively new industrial fiber known by the trade name Zylon has been under commercial development by Toyobo Co., Ltd., Japan. In ballistic impact tests conducted at the NASA Glenn Research Center, it was found that dry fabric braided of Zylon had greater ballistic impact capacity than comparable (braid style and weight) fabric braided of Kevlar. To study the potential use of Zylon fabric in jet engine containment systems, the fabric was tested in Glenn's Structures and Acoustics Division Ballistic Impact Facility under conditions simulating those which occur in a jet engine blade-out event. Circular ring test specimens were fabricated by wrapping five layers of braided Zylon or Kevlar fabric around an inner ring made of a thin sheet of aluminum and a 1-in.-thick layer of aluminum honeycomb. The test specimens had an inner diameter of 40 in., an axial length of 10 in., and a wall thickness of approximately 1.5in. A test specimen is shown in the photograph.

  18. Role of impactor properties on the computational simulation of particle impact damage in transparent ceramic windows

    NASA Astrophysics Data System (ADS)

    Schultz, Robert; Guven, Ibrahim; Zelinski, Brian J.

    2014-05-01

    The ability to deploy advanced sensor and seeker systems in harsh environments is often restricted by the mechanical durability of the external electromagnetic window or dome. Mission environments may range from long flights at high speeds through rain, ice, or sand to exposure at slower speeds to debris on runways or from helicopter downwash. While significant progress has been made to characterize, understand, and model rain damage, less is known about modeling damage in windows and domes caused by impacts from solid particles such as stones, pebbles, and sand. This paper highlights recent progress made to simulate particle impact damage in zinc sulfide (ZnS) using peridynamics (PD). Early versions of the PD model of sand impact damage simulated the sand particle as a rigid disk. Results from these early models indicated that the extent of damage in relation to the size of the impacting particle was significantly larger than the actual damage observed by experimentation. In order to identify possible explanations for this discrepancy, the shape, impact orientation and mechanical properties of the impacting particle were modified to more closely resemble actual sand particle impacts, that is, the particle was made friable (deformable and breakable). The impacting geometries considered include sphere, flat face of a cylinder, cube-face, cube-edge, and cube-corner. Results confirm that modification of the impacting particle's mechanical properties, shape and impact orientation lead to better agreement between experimental observations and simulation results.

  19. Impact attenuation properties of new and used lacrosse helmets.

    PubMed

    Bowman, Thomas G; Breedlove, Katherine M; Breedlove, Evan L; Dodge, Thomas M; Nauman, Eric A

    2015-11-01

    The National Operating Committee on Standards for Athletic Equipment (NOCSAE) has developed impact attenuation thresholds that protective helmets worn in sport must meet to be commercially available in an attempt to prevent injury. It remains unknown how normal helmet use in athletic activity alters the force attenuation ability of lacrosse helmets. We tested 3 new and 3 randomly selected used helmets from 2 popular lacrosse models (Cascade Pro7, Cascade CPXR). All used helmets had been worn for 3 collegiate seasons prior to testing and had never been refurbished. Helmets were drop-tested using 3 prescribed impact velocities at 6 locations according to the NOCSAE lacrosse helmet standard, and we compared the Gadd Severity Index (GSI) scores between new and used helmets using a repeated measure ANOVA with location as the repeated variable and data separated by impact velocity. All 12 helmets passed the NOCSAE GSI threshold for all testing conditions; however 1 used helmet shell cracked resulting in a failed test. We found a significant main effect for helmet age at the low (F5,50=2.98, P=.02), medium (F5,50=3.71, P=.006), and high (F5,50=2.70, P=.03) velocities. We suspect that helmet use can degrade materials under some conditions, but improve performance in others due to changes in helmet composition from use. The clinical implications of the differences in GSI scores noted remain unclear. Because one helmet shell cracked resulting in a failed test, used helmets should be regularly inspected for cracks or other signs of mechanical fatigue that may weaken helmet integrity. PMID:26429768

  20. Intellectual Property in Vaccine Innovation: Impact of Recent Patent Developments.

    PubMed

    Ng, Elizabeth Siew-Kuan

    2016-01-01

    This chapter examines the issues on patentability of microorganisms and human genes under the US laws and analyzes their influence on vaccine innovation. The analysis will focus on three aspects, namely, the naturally existing state, unmodified isolated form (i.e., mere extraction from the natural environment), and human-modified/genetically engineered structure. The outcome of the assessment suggests that the impact of the recent US patent jurisprudence on vaccines may differ significantly depending on whether the preparation of a vaccine in question involves natural or man-made DNA material. PMID:27076340

  1. Measurements of Lunar Dust Charging Properties by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Craven, Paul D.; Schneider, Todd A.; Vaughn, Jason A.; LeClair, Andre; Spann, James F.; Norwood, Joseph K.

    2009-01-01

    Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.

  2. Plasmodium falciparum STEVOR proteins impact erythrocyte mechanical properties.

    PubMed

    Sanyal, Sohini; Egée, Stéphane; Bouyer, Guillaume; Perrot, Sylvie; Safeukui, Innocent; Bischoff, Emmanuel; Buffet, Pierre; Deitsch, Kirk W; Mercereau-Puijalon, Odile; David, Peter H; Templeton, Thomas J; Lavazec, Catherine

    2012-01-12

    Infection of erythrocytes with the human malaria parasite, Plasmodium falciparum, results in dramatic changes to the host cell structure and morphology. The predicted functional localization of the STEVOR proteins at the erythrocyte surface suggests that they may be involved in parasite-induced modifications of the erythrocyte membrane during parasite development. To address the biologic function of STEVOR proteins, we subjected a panel of stevor transgenic parasites and wild-type clonal lines exhibiting different expression levels for stevor genes to functional assays exploring parasite-induced modifications of the erythrocyte membrane. Using this approach, we show that stevor expression impacts deformability of the erythrocyte membrane. This process may facilitate parasite sequestration in deep tissue vasculature. PMID:22106347

  3. Impact properties of vanadium-base alloys irradiated at < 430 C

    SciTech Connect

    Chung, H.M.; Smith, D.L.

    1998-03-01

    Recent attention to vanadium-base alloys has focused on the effect of low-temperature (<430 C) neutron irradiation on the mechanical properties, especially the phenomena of loss of work-hardening capability under tensile loading and loss of dynamic toughness manifested by low impact energy and high ductile-brittle-transition temperature (DBTT). This paper summarizes results of an investigation of the low-temperature impact properties of V-5Ti, V-4Cr-4Ti, and V-3Ti-Si that were irradiated in several fission reactor experiments, i.e., FFTF-MOTA, EBR-II X-530, and ATR-A1. Irradiation performance of one production-scale and one laboratory heat of V-4C-4Ti and one laboratory heat of V-3Ti-Si was the focus of the investigation. Even among the same lass of alloy, strong heat-to-heat variation was observed in low-temperature impact properties. A laboratory heat of V-4Cr-4Ti and V-3Ti-1Si exhibited good impact properties whereas a 500-kg heat of V-4Cr-4Ti exhibited unacceptably high DBTT. The strong heat-to-heat variation in impact properties of V-4Cr-4Ti indicates that fabrication procedures and minor impurities play important roles in the low-temperature irradiation performance of the alloys.

  4. Impact of electron beam irradiation on fish gelatin film properties.

    PubMed

    Benbettaïeb, Nasreddine; Karbowiak, Thomas; Brachais, Claire-Hélène; Debeaufort, Frédéric

    2016-03-15

    The objective of this work was to display the effect of electron beam accelerator doses on properties of plasticized fish gelatin film. Electron spin resonance indicates free radical formation during irradiation, which might induce intermolecular cross-linking. Tensile strength for gelatin film significantly increases after irradiation (improved by 30% for 60 kGy). The vapour permeability is weakly affected by irradiation. Surface tension and its polar component increase significantly and are in accordance with the increase of wettability. So, irradiation may change the orientation of polar groups of gelatin at the film surface and crosslink the hydrophobic amino acids. No modification of the crystallinity of the film is observed. These findings suggest that if structure changes, it only occurs in the amorphous phase of the gelatin matrix. It is also observed that irradiation enhances the thermal stability of the gelatin film, by increasing the glass transition temperature and the degradation temperature. PMID:26575707

  5. Impact of pairing on thermodynamical properties of stellar matter

    NASA Astrophysics Data System (ADS)

    Burrello, S.; Aymard, F.; Colonna, M.; Gulminelli, F.; Raduta, Ad. R.

    2016-05-01

    Superfluidity in the crust is a key ingredient for the cooling properties of proto-neutron stars. Investigations on crust superfluidity carried out so far typically assumed that the cluster component was given by a single representative nucleus and did not consider the fact that at finite temperature a wide distribution of nuclei is expected to be populated at a given crust pressure condition. We want to assess the importance of this distribution on the calculation of the heat capacity in the inner crust, in the framework of an extended NSE model. We additionally show that it is very important to consider the temperature evolution of the proton fraction, imposed by the β-equilibrium condition, for a quantitatively reliable estimation of the heat capacity.

  6. The impact of surface properties on particle-interface interactions

    NASA Astrophysics Data System (ADS)

    Wang, Anna; Kaz, David; McGorty, Ryan; Manoharan, Vinothan N.

    2013-03-01

    The propensity for particles to bind to oil-water interfaces was first noted by Ramsden and Pickering over a century ago, and has been attributed to the huge reduction in surface energy when a particle breaches an oil-water interface and straddles it at its equilibrium height. Since then materials on a variety of length scales have been fabricated using particles at interfaces, from Pickering emulsions to Janus particles. In these applications, it is simply assumed that the particle sits at its hugely energetically favourable equilibrium position. However, it was recently shown that the relaxation of particles towards their equilibrium position is logarithmic in time and could take months, much longer than typical experiments. Here we investigate how surface charge and particle 'hairiness' impact the interaction between micron-sized particles and oil-water interfaces, and explore a molecular kinetic theory model to help understand these results. We use digital holographic microscopy to track micron-sized particles as they approach an oil-water interface with a resolution of 2 nm in all three dimensions at up to thousands of frames per second.

  7. Experimental studies on the impact properties of water ice

    NASA Technical Reports Server (NTRS)

    Bridges, F. G.; Lin, D. N. C.; Hatzes, A. P.

    1987-01-01

    Experimental studies on the impact of ice particles at very low velocity were continued. These measurements have applications in the dynamics of Saturn's rings. Initially data were obtained on the coefficient of restitution for ice spheres of one radius of curvature. The type of measurements were expanded to include restitution data for balls with a variety of surfaces as well as sticking forces between ice particles. Significant improvements were made to this experiment, the most important being the construction of a new apparatus. The new apparatus consists of a smaller version of the disk pendulum and a stainless steel, double-walled cryostat. The apparatus has proved to be a significant improvement over the old one. Measurements can now be made at temperatures near 90 K, comparable to the temperature of the environment of Saturn's rings, and with much greater temperature stability. It was found that a roughened contact surface or the presence of frost can cause a much larger change in the restitution measure than the geometrical effect of the radius of curvature.

  8. Extent of pyrolysis impacts on fast pyrolysis biochar properties.

    PubMed

    Brewer, Catherine E; Hu, Yan-Yan; Schmidt-Rohr, Klaus; Loynachan, Thomas E; Laird, David A; Brown, Robert C

    2012-01-01

    A potential concern about the use of fast pyrolysis rather than slow pyrolysis biochars as soil amendments is that they may contain high levels of bioavailable C due to short particle residence times in the reactors, which could reduce the stability of biochar C and cause nutrient immobilization in soils. To investigate this concern, three corn ( L.) stover fast pyrolysis biochars prepared using different reactor conditions were chemically and physically characterized to determine their extent of pyrolysis. These biochars were also incubated in soil to assess their impact on soil CO emissions, nutrient availability, microorganism population growth, and water retention capacity. Elemental analysis and quantitative solid-state C nuclear magnetic resonance spectroscopy showed variation in O functional groups (associated primarily with carbohydrates) and aromatic C, which could be used to define extent of pyrolysis. A 24-wk incubation performed using a sandy soil amended with 0.5 wt% of corn stover biochar showed a small but significant decrease in soil CO emissions and a decrease in the bacteria:fungi ratios with extent of pyrolysis. Relative to the control soil, biochar-amended soils had small increases in CO emissions and extractable nutrients, but similar microorganism populations, extractable NO levels, and water retention capacities. Corn stover amendments, by contrast, significantly increased soil CO emissions and microbial populations, and reduced extractable NO. These results indicate that C in fast pyrolysis biochar is stable in soil environments and will not appreciably contribute to nutrient immobilization. PMID:22751053

  9. Biological Invasions Impact Ecosystem Properties and can Affect Climate Predictions

    NASA Astrophysics Data System (ADS)

    Gonzalez-Meler, M.; Matamala, R.; Cook, D. R.; Graham, S.; Fan, Z.; Gomez-Casanovas, N.

    2012-12-01

    Climate change models vary widely in their predictions of the effects of climate forcing, in part because of difficulties in assigning sources of uncertainties and in simulating changes in the carbon source/sink status and climate-carbon cycle feedbacks of terrestrial ecosystems. We studied the impacts of vegetation and weather variations on carbon and energy fluxes at a restored tallgrass prairie in Illinois. The prairie was a strong carbon sink, despite a prolonged drought period and vegetation changes due to the presence of a non-native biennial plant. A model considering the combined effects of air temperature, precipitation, RH, incoming solar radiation, and vegetation was also developed and used to describe net ecosystem exchange for all years. The vegetation factor was represented in the model with summer albedo and/or NDVI. Results showed that the vegetation factor was more important than abiotic factors in describing changes in C and energy fluxes in ecosystems under disturbances. Changes from natives to a non-native forbs species had the strongest effect in reducing net ecosystem production and increasing sensible heat flux and albedo, which may result in positive feedbacks on warming. Here we show that non-native species invasions can alter the ecosystem sensitivity to climatic factors often construed in models.

  10. Thermal properties of rocks of the borehole Yaxcopoil-1 (Impact Crater Chicxulub, Mexico)

    NASA Astrophysics Data System (ADS)

    Popov, Yu.; Romushkevich, R.; Korobkov, D.; Mayr, S.; Bayuk, I.; Burkhardt, H.; Wilhelm, H.

    2011-02-01

    The results of thermal property measurements on cores from the scientific well Yaxcopoil-1 (1511 m in depth) drilled in the Chicxulub impact structure (Mexico) are described. The thermal conductivity, thermal diffusivity, volumetric heat capacity, thermal anisotropy coefficient, thermal heterogeneity factor, and, in addition, porosity and density were measured on 451 dry and water-saturated cores from the depth interval of 404-1511 m. The acoustic velocities were determined on a subgroup of representative samples. Significant vertical short- and long-scale variations of physical properties related to the grade of shock-thermal metamorphism and correlations between thermal and other physical properties are established. Rocks of the post-impact and impact complexes differ significantly in heterogeneity demonstrating that the impact complex has larger micro- heterogeneity on sample scale. The pre-impact rocks differ essentially from the impact and post-impact rocks in the thermal conductivity, thermal diffusivity, density and porosity. The thermal anisotropy of rocks of all structural-lithological complexes is very low (K = 1.02 … 1.08), which is similar to the situation in the Puchezh-Katunk and Ries impact structures. Correlations are established between the thermal conductivity and elastic wave velocities measured in laboratory. For limestone-calcarenites, the thermal conductivity (λ) can be calculated from the compressional wave velocity (Vp) using the formula λ= 0.346 Vp + 0.844, and for dolomite-anhydrites this relation has the form λ= 0.998 Vp + 1.163 [for λ in W (m K)-1 and Vp in km s-1]. These correlations are used for downscaling of the sonic velocities to the decimetre scale. The effective medium theory is applied to invert the matrix thermal conductivity and pore/crack geometry from the thermal conductivity measured on the studied samples. Representative experimental data on the thermal properties for all lithological groups encountered by the

  11. Impact of fuel properties on advanced power systems

    SciTech Connect

    Sondreal, E.A.; Jones, M.L.; Hurley, J.P.; Benson, S.A.; Willson, W.G.

    1995-12-01

    Advanced coal-fired combined-cycle power systems currently in development and demonstration have the goal of increasing generating efficiency to a level approaching 50% while reducing the cost of electricity from new plants by 20% and meeting stringent standards on emissions of SO{sub x} NO{sub x} fine particulates, and air toxic metals. Achieving these benefits requires that clean hot gas be delivered to a gas turbine at a temperature approaching 1350{degrees}C, while minimizing energy losses in the gasification, combustion, heat transfer, and/or gas cleaning equipment used to generate the hot gas. Minimizing capital cost also requires that the different stages of the system be integrated as simply and compactly as possible. Second-generation technologies including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), externally fired combined cycle (EFCC), and other advanced combustion systems rely on different high-temperature combinations of heat exchange, gas filtration, and sulfur capture to meet these requirements. This paper describes the various properties of lignite and brown coals.

  12. Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability.

    PubMed

    Thoorens, Gregory; Krier, Fabrice; Rozet, Eric; Carlin, Brian; Evrard, Brigitte

    2015-07-25

    The quality by design (QbD) initiative is promoting a better understanding of excipient performance and the identification of critical material attributes (CMAs). Despite microcrystalline cellulose (MCC) being one of the most popular direct compression binders, only a few studies attempted identifying its CMAs. These studies were based either on a limited number of samples or on MCC produced on a small scale and/or in conditions that deviate from those normally encountered in production. The present work utilizes multivariate analyses first to describe a large database of MCCs produced on a commercial scale, including an overview of their physicochemical properties, and secondly to correlate the most significant material attributes with tabletability. Particle size and moisture content are often considered as the most common if not the sole CMAs with regard to MCC performance in direct compression. The evaluation of more than 80 neat MCCs and the performance of selected samples in a model formulation revealed the importance of other potential critical attributes such as tapped density. Drug product developers and excipient suppliers should work together to identify these CMAs, which may not always be captured by the certificate of analysis. PMID:25981619

  13. Impacts of Salinity on Soil Hydraulic Properties and Evaporation Fluxes

    NASA Astrophysics Data System (ADS)

    Fierro, V.; Cristi Matte, F.; Suarez, F. I.; Munoz, J. F.

    2014-12-01

    Saline soils are common in arid zones, where evaporation from shallow groundwater is generally the main component of the water balance. Thus, to correctly manage water resources in these zones, it is important to quantify the evaporation fluxes. Evaporation from saline soils is a complex process that couples the movement of salts, heat, liquid water and water vapor, and strongly depends on the soil water content. Precipitation/dissolution reactions can change the soil structure and alter flow paths, modifying evaporation fluxes. We utilized the HYDRUS-1D model to investigate the effects of salinity on soil hydraulic properties and evaporation fluxes. HYDRUS-1D simulates the transport of liquid water, water vapor, and heat, and can incorporate precipitation/dissolution reactions of the major ions. To run the model, we determined the water retention curve for a soil with different salinities; and we used meteorological forcing from an experimental site from the Atacama Desert. It was found that higher sodium adsorption ratios in the soil increase the soil water retention capacity. Also, it was found that evaporation fluxes increase salts concentration near the soil surface, changing the soil's water retention capacity in that zone. Finally, movement of salts causes differences in evaporation fluxes. It is thus necessary to incorporate salt precipitation/dissolution reactions and its effects on the water retention curve to correctly simulate evaporation in saline soils

  14. Terrain representation impact on periurban catchment morphological properties

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Bocher, E.; Chancibault, K.

    2013-04-01

    SummaryModelling the hydrological behaviour of suburban catchments requires an estimation of environmental features, including land use and hydrographic networks. Suburban areas display a highly heterogeneous composition and encompass many anthropogenic elements that affect water flow paths, such as ditches, sewers, culverts and embankments. The geographical data available, either raster or vector data, may be of various origins and resolutions. Urban databases often offer very detailed data for sewer networks and 3D streets, yet the data covering rural zones may be coarser. This study is intended to highlight the sensitivity of geographical data as well as the data discretisation method used on the essential features of a periurban catchment, i.e. the catchment border and the drainage network. Three methods are implemented for this purpose. The first is the DEM (for digital elevation model) treatment method, which has traditionally been applied in the field of catchment hydrology. The second is based on urban database analysis and focuses on vector data, i.e. polygons and segments. The third method is a TIN (or triangular irregular network), which provides a consistent description of flow directions from an accurate representation of slope. It is assumed herein that the width function is representative of the catchment's hydrological response. The periurban Chézine catchment, located within the Nantes metropolitan area in western France, serves as the case study. The determination of both the main morphological features and the hydrological response of a suburban catchment varies significantly according to the discretization method employed, especially on upstream rural areas. Vector- and TIN-based methods allow representing the higher drainage density of urban areas, and consequently reveal the impact of these areas on the width function, since the DEM method fails. TINs seem to be more appropriate to take streets into account, because it allows a finer

  15. Influence of Martensite Volume Fraction on Impact Properties of Triple Phase (TP) Steels

    NASA Astrophysics Data System (ADS)

    Zare, Ahmad; Ekrami, A.

    2013-03-01

    Ferrite-bainite-martensite triple phase (TP) microstructures with different volume fractions of martensite were obtained by changing heat treatment time during austempering at 300 °C. Room temperature impact properties of TP steels with different martensite volume fractions ( V M) were determined by means of Charpy impact testing. The effects of test temperature on impact properties were also investigated for two selected microstructures containing 0 (the DP steel) and 8.5 vol.% martensite. Test results showed reduction in toughness with increasing V M in TP steels. Fracture toughness values for the DP and TP steels with 8.5 vol.% martensite were obtained from correlation between fracture toughness and the Charpy impact energy. Fractography of Charpy specimens confirmed decrease in TP steels' toughness with increasing V M by considering and comparing radial marks and crack initiation regions at the fracture surfaces of the studied steels.

  16. Impact of Graphene-Metal Interfaces on the Raman and Transport Properties of Graphene Devices

    NASA Astrophysics Data System (ADS)

    Hsu, Allen; Hofmann, Mario; Fang, Wenjing; Kimg, Ki Kang; Kong, Jing; Palacios, Tomas

    2012-02-01

    Graphene is an amazing nano-material with many exciting properties and applications. However, due to its low dimensionality, the performance of this material is mainly limited by interfaces and surface properties. One of these interfaces, important for graphene field effect transistors and catalysts supported on graphene membranes, is that between the graphene and a metal layer. In this study, we experimentally examine the impact of various metals on graphene through Raman and Transmission Electron Microscopy. We find that strong graphene-metal interactions have significant impacts on the phonon structure in graphene. Furthermore, we observe changes in our Raman spectra relating to the crystallographic orientation between a metal and graphene.

  17. The economic impacts of noxious facilities on wages and property values: An exploratory analysis

    SciTech Connect

    Nieves, L.A.; Hemphill, R.C.; Clark, D.E.

    1991-05-01

    Recent assessments of socioeconomic impacts resulting from the location of potentially hazardous facilities have concentrated on the issue of negative public perceptions and their resulting economic consequences. This report presents an analysis designed to answer the question: Can economic impacts resulting from negative perceptions of ``noxious facilities`` be identified and measured? To identify the impacts of negative perceptions, data on noxious facilities sited throughout the United States were compiled, and secondary economic and demographic data sufficient to analyze the economic impacts on the surrounding study areas were assembled. This study uses wage rate and property value differentials to measure impacts on social welfare so that the extent to which noxious facilities and their associated activities have affected surrounding areas can be determined.

  18. The economic impacts of noxious facilities on wages and property values: An exploratory analysis

    SciTech Connect

    Nieves, L.A.; Hemphill, R.C.; Clark, D.E.

    1991-05-01

    Recent assessments of socioeconomic impacts resulting from the location of potentially hazardous facilities have concentrated on the issue of negative public perceptions and their resulting economic consequences. This report presents an analysis designed to answer the question: Can economic impacts resulting from negative perceptions of noxious facilities'' be identified and measured To identify the impacts of negative perceptions, data on noxious facilities sited throughout the United States were compiled, and secondary economic and demographic data sufficient to analyze the economic impacts on the surrounding study areas were assembled. This study uses wage rate and property value differentials to measure impacts on social welfare so that the extent to which noxious facilities and their associated activities have affected surrounding areas can be determined.

  19. Determining perception-based impacts of noxious facilities on wage rates and property values

    SciTech Connect

    Nieves, L.A.; Clark, D.E.

    1992-02-01

    This document, written for the US Department of Energy, discusses current information and the need for future research on estimating the impacts on wages and property values that could result from people`s perceptions of the risks associated with noxious facilities. Psychometric studies indicate that the US population is averse to living near noxious facilities, nuclear-related facilities in particular. Contingent valuation and hedonic studies find that the net economic impacts of proximity to noxious facilities are generally negative and often substantial. Most of these studies are limited in scope, and none estimate the impacts derived from public perceptions of such facilities. This study examines the mechanisms by which negative public perceptions result in economic impacts reflected in wages and property values. On the basis of these mechanisms, it develops a predictive model of perception-based impacts and identifies the data and methods needed to implement it. The key to predicting perception-based impacts lies in combining psychometric and hedonic methods. The reliability of psychometric measures as indicators of aversive stimuli that precipitate economic impacts can be empirically tested. To test the robustness of the findings, alternative estimation methods an be employed in the hedonic analysis. Contingent valuation methods can confirm the results.

  20. Determining perception-based impacts of noxious facilities on wage rates and property values

    SciTech Connect

    Nieves, L.A.; Clark, D.E.

    1992-02-01

    This document, written for the US Department of Energy, discusses current information and the need for future research on estimating the impacts on wages and property values that could result from people's perceptions of the risks associated with noxious facilities. Psychometric studies indicate that the US population is averse to living near noxious facilities, nuclear-related facilities in particular. Contingent valuation and hedonic studies find that the net economic impacts of proximity to noxious facilities are generally negative and often substantial. Most of these studies are limited in scope, and none estimate the impacts derived from public perceptions of such facilities. This study examines the mechanisms by which negative public perceptions result in economic impacts reflected in wages and property values. On the basis of these mechanisms, it develops a predictive model of perception-based impacts and identifies the data and methods needed to implement it. The key to predicting perception-based impacts lies in combining psychometric and hedonic methods. The reliability of psychometric measures as indicators of aversive stimuli that precipitate economic impacts can be empirically tested. To test the robustness of the findings, alternative estimation methods an be employed in the hedonic analysis. Contingent valuation methods can confirm the results.

  1. Impact of Community-Based Residential Facilities for Mentally Retarded Adults on Surrounding Property Values Using Realtor Analysis Methods.

    ERIC Educational Resources Information Center

    Wiener, Dirk; And Others

    1982-01-01

    Analysis of a Comparable Market Analysis procedure used by realtors to determine the impact of group homes for the mentally retarded upon surrounding property values indicated no negative property value effects in six of eight instances. (Author/CL)

  2. A Demographic Analysis of the Impact of Property Tax Caps on Indiana School Districts

    ERIC Educational Resources Information Center

    Hirth, Marilyn A.; Lagoni, Christopher

    2014-01-01

    In 2008, the Indiana legislature passed and the governor signed into law House Enrolled Act No. 1001, now referred to as Public Law 146-2008, which capped Indiana school districts' ability to raise revenues from the local property tax without local voter approval. To phase in the impact of the law, the state provided school districts with…

  3. The effect of heat treatment on the hardness and impact properties of medium carbon steel

    NASA Astrophysics Data System (ADS)

    Mazni Ismail, Noor; Khatif, Nurul Aida Amir; Aliff Kamil Awang Kecik, Mohamad; Hanafiah Shaharudin, Mohd Ali

    2016-02-01

    This paper covers the effect of heat treatment on the mechanical properties of medium carbon steel. The main objective of this project is to investigate the hardness and impact properties of medium carbon steel treated at different heat treatment processes. Three types of heat treatment were performed in this project which are annealing, quenching and tempering. During annealing process, the specimens were heated at 900°C and soaked for 1 hour in the furnace. The specimens were then quenched in a medium of water and open air, respectively. The treatment was followed by tempering processes which were done at 300°C, 450°C, and 600°C with a soaking time of 2 hours for each temperature. After the heat treatment process completed, Rockwell hardness test and Charpy impact test were performed. The results collected from the Rockwell hardness test and Charpy impact test on the samples after quenching and tempering were compared and analysed. The fractured surfaces of the samples were also been examined by using Scanning Electron Microscope. It was observed that different heat treatment processes gave different hardness value and impact property to the steel. The specimen with the highest hardness was found in samples quenched in water. Besides, the microstructure obtained after tempering provided a good combination of mechanical properties due to the process reduce brittleness by increasing ductility and toughness.

  4. Microwave scattering and emission properties of large impact craters on the surface of Venus

    NASA Technical Reports Server (NTRS)

    Stacy, N. J. S.; Campbell, D. B.; Devries, C.

    1992-01-01

    Many of the impact craters on Venus imaged by the Magellan synthetic aperture radar (SAR) have interior floors with oblique incidence angle backscatter cross sections 2 to 16 times (3 dB to 12 dB) greater than the average scattering properties of the planet's surface. Such high backscatter cross sections are indicative of a high degree of wavelength-scale surface roughness and/or a high intrinsic reflectivity of the material forming the crater floors. Fifty-three of these (radar) bright floored craters are associated with 93 percent of the parabolic-shaped radar-dark features found in the Magellan SAR and emissivity data, features that are thought to be among the youngest on the surface of Venus. It was suggested by Campbell et al. that either the bright floors of the parabolic feature parent craters are indicative of a young impact and the floor properties are modified with time to a lower backscatter cross section or that they result from some property of the surface or subsurface material at the point of impact or from the properties of the impacting object. As a continuation of earlier work we have examined all craters with diameters greater than 30 km (except 6 that were outside the available data) so both the backscatter cross section and emissivity of the crater floors could be estimated from the Magellan data.

  5. Impact of reaction conditions on architecture and rheological properties of starch graft polyacrylamide polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We carried out experiments examining the impact that solvent selection and reaction conditions have on the radical initiated graft polymerization reaction of acrylamide onto starch. We have also evaluated the rheological properties the starch graftpolyacrylamide product when a gel is formed in water...

  6. Effect of matrix structure on the impact properties of an alloyed ductile iron

    SciTech Connect

    Toktas, Guelcan . E-mail: gzeytin@balikesir.edu.tr; Tayanc, Mustafa; Toktas, Alaaddin

    2006-12-15

    An investigation was performed to examine the influence of the matrix structure on the impact properties of a 1.03% Cu, 1.25% Ni and 0.18% Mo pearlitic ductile iron. Specimens were first homogenized at 925 deg. C for 7 h and a fully ferritic structure was obtained in all ductile iron samples. Then, various heat treatments were applied to the homogenized specimens in order to obtain pearlitic/ferritic, pearlitic, tempered martensitic, lower and upper ausferritic matrix structures. The unnotched charpy impact specimens were tested at temperatures between - 80 deg. C and + 100 deg. C; the tensile properties (ultimate tensile strength, 0.2% yield strength and elongation) and the hardnesses of the matrix structures were investigated at room temperature. The microstructures and the fracture surfaces of the impact specimens tested at room temperature were also investigated by optical and scanning electron microscope. The results showed that the best impact properties were obtained for the ferritic matrix structure that had the lowest hardness, yield and tensile strength. Ductile iron with a lower ausferritic matrix had the best combination of ultimate tensile strength, percent elongation and impact energies of all structures.

  7. Impact property enhancement of poly (lactic acid) with different flexible copolymers

    NASA Astrophysics Data System (ADS)

    Likittanaprasong, N.; Seadan, M.; Suttiruengwong, S.

    2015-07-01

    The objective of this work was to improve the impact property of Poly (lactic acid) (PLA) by blending with different copolymers. Six flexible copolymers, namely, acrylonitrile butadiene styrene (ABS) powder, Biomax, polybutyrate adipate co-terephthalate (PBAT), polyether block amide (PEBAX), ethylene-vinyl acetate (EVA) and ethylene acrylic elastomer (EAE), with loading less than 20wt% were used and compared. The rheological, mechanical and morphological properties of samples were investigated by melt flow index, tensile testing, impact testing and scanning electron microscope (SEM), respectively. It was found that PLA added 20wt% EAE showed the highest impact strength (59.5 kJ/m2), which was 22 times higher than neat PLA. The elongation at break was also increased by 12 folds compared to neat PLA. The SEM images showed good interface and distribution for PLA containing 20wt% EAE, 15 phr Biomax and 20 wt% PEBAX.

  8. A Novel Ni-Containing Powder Metallurgy Steel with Ultrahigh Impact, Fatigue, and Tensile Properties

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Shu, Guo-Jiun; Chang, Shih-Ying; Lin, Bing-Hao

    2014-08-01

    The impact toughness of powder metallurgy (PM) steel is typically inferior, and it is further impaired when the microstructure is strengthened. To formulate a versatile PM steel with superior impact, fatigue, and tensile properties, the influences of various microstructures, including ferrite, pearlite, bainite, and Ni-rich areas, were identified. The correlations between impact toughness with other mechanical properties were also studied. The results demonstrated that ferrite provides more resistance to impact loading than Ni-rich martensite, followed by bainite and pearlite. However, Ni-rich martensite presents the highest transverse rupture strength (TRS), fatigue strength, tensile strength, and hardness, followed by bainite, pearlite, and ferrite. With 74 pct Ni-rich martensite and 14 pct bainite, Fe-3Cr-0.5Mo-4Ni-0.5C steel achieves the optimal combination of impact energy (39 J), TRS (2170 MPa), bending fatigue strength at 2 × 106 cycles (770 MPa), tensile strength (1323 MPa), and apparent hardness (38 HRC). The impact energy of Fe-3Cr-0.5Mo-4Ni-0.5C steel is twice as high as those of the ordinary high-strength PM steels. These findings demonstrate that a high-strength PM steel with high-toughness can be produced by optimized alloy design and microstructure.

  9. Global Geometric Properties of Martian Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Sakimoto, S. E. H.; Schnetzler, C.; Frawley, J. J.

    1999-01-01

    Impact craters on Mars have been used to provide fundamental insights into the properties of the martian crust, the role of volatiles, the relative age of the surface, and on the physics of impact cratering in the Solar System. Before the three-dimensional information provided by the Mars Orbiter Laser Altimeter (MOLA) instrument which is currently operating in Mars orbit aboard the Mars Global Surveyor (MGS), impact features were characterized morphologically using orbital images from Mariner 9 and Viking. Fresh-appearing craters were identified and measurements of their geometric properties were derived from various image-based methods. MOLA measurements can now provide a global sample of topographic cross-sections of martian impact features as small as approx. 2 km in diameter, to basin-scale features. We have previously examined MOLA cross-sections of Northern Hemisphere and North Polar Region impact features, but were unable to consider the global characteristics of these ubiquitous landforms. Here we present our preliminary assessment of the geometric properties of a globally-distributed sample of martian impact craters, most of which were sampled during the initial stages of the MGS mapping mission (i.e., the first 600 orbits). Our aim is to develop a framework for reconsidering theories concerning impact cratering in the martian environment. This first global analysis is focused upon topographically-fresh impact craters, defined here on the basis of MOLA topographic profiles that cross the central cavities of craters that can be observed in Viking-based MDIM global image mosaics. We have considered crater depths, rim heights, ejecta topologies, cross-sectional "shapes", and simple physical models for ejecta emplacement. To date (May, 1999), we have measured the geometric properties of over 1300 impact craters in the 2 to 350 km diameter size interval. A large fraction of these measured craters were sampled with cavity-center cross-sections during the first

  10. 46 CFR 54.05-20 - Impact test properties for service of 0 °F and below.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Impact test properties for service of 0 °F and below. 54.05-20 Section 54.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-20 Impact test properties for service of 0 °F and...

  11. Microstructure and Charpy impact properties of 12 14Cr oxide dispersion-strengthened ferritic steels

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Baluc, N.

    2008-02-01

    This paper describes the microstructure and Charpy impact properties of 12-14 Cr ODS ferritic steels fabricated by mechanical alloying of pure Fe, Cr, W, Ti and Y 2O 3 powders in a Retsch ball mill in argon atmosphere, followed by hot isostatic pressing at 1100 °C under 200 MPa for 4 h and heat treatment at 850 °C for 1 h. Weak Charpy impact properties were obtained in the case of both types of as-hipped materials. In the case of 14Cr materials, the weak Charpy properties appeared related to a bimodal grain size distribution and a heterogeneous dislocation density between the coarse and fine grains. No changes in microstructure were evidenced after heat treatment at 850 °C. Significant improvement in the transition temperature and upper shelf energy of 12Cr materials was obtained by heat treatment at 850 °C for 1 h, which was attributed to the formation of smaller grains, homogenous in size and containing fewer dislocations, with respect to the as-hipped microstructure. This modified microstructure results in a good compromise between strength and Charpy impact properties.

  12. Physical properties of the drill core from the El'gygytgyn impact structure, NE Russia

    NASA Astrophysics Data System (ADS)

    Maharaj, Dharmindar; Elbra, Tiiu; Pesonen, Lauri J.

    2013-07-01

    The El'gygytgyn impact structure in northeast Russia was drilled in 2008/2009. The 3.5 Ma old structure has a rim-to-rim diameter of 18 km and is the only known impact structure that has been formed on a siliceous volcanic target. The petrophysical, rock- and paleomagnetic properties, including attempted reorientation of samples, along the El'gygytgyn drill core were analyzed. Physical properties, such as bulk density, porosity, seismic velocity, and electrical conductivity, clearly showed the propagation of shock and the associated fracturing. The grain density, however, was probably influenced by the postimpact hydrothermal activity and/or the distribution of impact melt. The highest values of electrical conductivity coincided with higher concentrations of particular metals as indicated by Raschke et al. (2012a). The rock- and paleomagnetic investigations showed iron-titanium oxides with varying oxidation/reduction states as the main magnetic fraction in the core samples and indicated them as carriers for remanent magnetization. With few exceptions, most samples showed normal polarity of characteristic remanent magnetization and confirmed that the impact occurred after the Gauss/Gilbert (approximately 3.596 Ma) reversal. Shallower inclinations than that expected for a 3.5 Ma dipole field were probably due to impact-related block movements and/or compaction.

  13. Impact properties of rubber-modified epoxy resin-graphite-fiber composites

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J.; Nir, Z.

    1984-01-01

    To improve the impact resistance of graphite-fiber composites, a commercial and an experimental epoxy resin were modified with liquid reactive rubber and a brominated epoxy resin. The commercial epoxy was a tetrafunctional resin, and the experimental epoxy was a trifunctional resin. The reactive rubber was a carboxyl-terminated butadiene-acrylonitrile copolymer. The rubber content was varied from 0 to 25 percent (wt). The brominated epoxy resin was used at Br levels of 4, 19, and 35 percent of the resin. Composites were prepared with woven graphite cloth reinforcement. The composites were evaluated by using flexural strength in the dry state and an elevated temperature after saturation with water. The impact properties were determined by measuring shear strength after falling-ball impact and instrumented impact. The rubber-modified, trifunctional resin exhibited better properties, when tested in hot-wet conditions in a heated oven at 366 K (after boiling the material for 2 h in demineralized water), than the tetrafunctional resin. Improved impact resistance was observed with the addition of the reactive rubber to the epoxy resin. Further improvement was observed with the addition of the brominated epoxy resin.

  14. Heat-treatment effect on impact properties of reduced-activation steels*1

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Maziasz, P. J.; Alexander, D. J.

    1991-03-01

    The effect of heat treatment on the impact behavior of eight experimental heats of reduced-activation ferritic steels was investigated. Steels with 2 {1}/{4}, 5, 9, and 12 wt% Cr and containing tungsten, vanadium, and tantalum were examined. Impact properties of steels with 2 {1}/{4} wt% Cr depended on microstructure, which was affected by cooling rate after austenitization. By heat-treating the 2 {1}/{4} wt% Cr steels to change the microstructure from a bainitic structure containing ferrite to one without ferrite, the ductile-brittle transition temperatures were reduced substantially. The cooling rate had essentially no effect on the high-chromium martensitic steels.

  15. Impact of environmental temperature on optical power properties of intraocular lenses.

    PubMed

    Walker, Bennett N; James, Robert H; Calogero, Don; Ilev, Ilko K

    2014-01-20

    Optical power properties of lenses and materials in general can be influenced by thermal changes of the material and surrounding medium. In the case of an intraocular lens (IOL) implant, the spherical power (SP), cylinder power, (CP), astigmatism, and spherical aberration are the critical fundamental properties that can significantly impact its efficacy. Directly evaluating how changes in temperature can affect these optical properties may show the importance of considering temperature when evaluating IOL optical characteristics. In this paper, we present a quantitative study on evaluating the impact of environmental temperature changes on IOL fundamental optical properties by testing IOL samples with different materials (e.g., hydrophobic and hydrophilic) and designs (e.g., monofocal and toric) to better encompass types of IOLs in conventional use today. The results from this study demonstrate that significant changes are observed as temperatures are changed from room temperature (20°C) to slightly above body temperature (40°C). Findings indicate that evaluating optical properties at arbitrary temperatures could significantly affect the characterization of IOLs that are already near the tolerance thresholds. PMID:24514132

  16. Impact of point defects on the electronic and transport properties of silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Iordanidou, K.; Houssa, M.; van den Broek, B.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A.

    2016-01-01

    We study the impact of various point defects on the structural, electronic and ballistic transport properties of armchair silicene nanoribbons, using the density functional theory and the non equilibrium Green’s function method. The effect of a Stone-Wales defect, an interior/edge vacancy and an edge dangling bond is examined. Our results show that structural imperfections can alter the electronic structure (energy band structure and density of states) of the nanoribbons and can either increase or decrease the ballistic current. The dependence of the transport properties on the position of the defects (sublattice A or B) and on their distance from the contact is also investigated.

  17. Tensile and Impact Properties of Thermoplastic Natural Rubber (TPNR) Filled with Carbon Nanotubes (MWNTs)

    NASA Astrophysics Data System (ADS)

    Tarawneh, Mou'ad. A.; Ahmad, Sahrim Hj.; Yahya, S. Y.; Rasid, Rozaidi; Hock, Yew Chin; Halim, Hazwani Binti

    2010-07-01

    This paper discusses the effect of multi-walled carbon nanotubes (MWNT) on the tensile and impact properties of thermoplastic natural rubber (TPNR) nanocomposite. The nanocomposite was prepared using melt blending method. MWNT were added to improve the mechanical properties of MWNTs/TPNR composites at different compositions which is 1, 3, 5, and 7 wt.%. The result of tensile test showed that tensile strength and Young's modulus increase in the presence of nanotubes and maximum value are obtained with 3 wt.% of MWNTs. On other hand, higher MWNTs concentration has caused the formation of aggregates. The elongation at break considerably decreased with increasing the percentage of MWNTs. The maximum impact strength is recorded with 5 wt.% of MWNTs. SEM micrograph has confirmed the homogenous dispersion of MWNTs in the TPNR matrix and promoted strong interfacial adhesion between MWNTs and the matrix which is improved mechanical significantly.

  18. Tensile and impact properties of vanadium-base alloys irradiated at <430°C

    NASA Astrophysics Data System (ADS)

    Chung, H. M.; Smith, D. L.

    1998-10-01

    Tensile and impact properties were investigated at <430°C on V-Cr-Ti, V-Ti-Si, and V-Ti alloys after irradiation to ≈2-46 dpa at 205-430°C in lithium or helium in the fast flux test facility (FFTF), high flux isotope reactor (HFIR), experimental breeder reactor II (EBR-II), and advanced test reactor (ATR). A 500-kg heat of V-4Cr-4Ti exhibited high ductile-brittle transition temperature and minimal uniform elongation as a result of irradiation-induced loss of work-hardening capability. Work-hardening capabilities of 30- and 100-kg heats of V-4Cr-4Ti varied significantly with irradiation conditions, although the 30-kg heat exhibited excellent impact properties after irradiation at ≈390-430°C. The origin of the significant variations in the work-hardening capability of V-4Cr-4Ti is not understood, although fabrication variables, annealing history, and contamination from the irradiation environment are believed to play important roles. A 15-kg heat of V-3Ti-1Si exhibited good work-hardening capability and excellent impact properties after irradiation at ≈390-430°C. Helium atoms, either charged dynamically or produced via transmutation of boron in the alloys, promote work-hardening capability in V-4Cr-4Ti and V-3Ti-1Si.

  19. Tensile impact properties of vanadium-base alloys irradiated at <430{degree}C.

    SciTech Connect

    Chung, H. M.

    1998-05-18

    Tensile and impact properties were investigated at <430 C on V-Cr-Ti, V-Ti-Si, and V-Ti alloys after irradiation to {approx}2-46 dpa at 205-430 C in lithium or helium in the Fast Flux Test Facility (FFTF), High Flux Isotope Reactor (HFIR), Experimental Breeder Reactor II (EBR-II), and Advanced Test Reactor (ATR). A 500-kg heat of V-4Cr-4Ti exhibited high ductile-brittle transition temperature and minimal uniform elongation as a result of irradiation-induced loss of work-hardening capability. Work-hardening capabilities of 30- and 100-kg heats of V-4Cr-4Ti varied significantly with irradiation conditions, although the 30-kg heat exhibited excellent impact properties after irradiation at {approx}390-430 C. The origin of the significant variations in the work-hardening capability of V-4Cr-4Ti is not understood, although fabrication variables, annealing history, and contamination from the irradiation environment are believed to play important roles. A 15-kg heat of V-3Ti-1Si exhibited good work-hardening capability and excellent impact properties after irradiation at {approx}390-430 C. Helium atoms, either charged dynamically or produced via transmutation of boron in the alloys, promote work-hardening capability in V-4Cr-4Ti and V-3Ti-1Si.

  20. Impact of annealing on electrical properties of Cu2ZnSnSe4 absorber layers

    NASA Astrophysics Data System (ADS)

    Weiss, Thomas Paul; Redinger, Alex; Rey, Germain; Schwarz, Torsten; Spies, Maria; Cojocura-Mirédin, Oana; Choi, P.-P.; Siebentritt, Susanne

    2016-07-01

    Reported growth processes for kesterite absorber layers generally rely on a sequential process including a final high temperature annealing step. However, the impact and details for this annealing process vary among literature reports and little is known on its impact on electrical properties of the absorber. We used kesterite absorber layers prepared by a high temperature co-evaporation process to explicitly study the impact of two different annealing processes. From electrical characterization it is found that the annealing process incorporates a detrimental deep defect distribution. On the other hand, the doping density could be reduced leading to a better collection and a higher short circuit current density. The activation energy of the doping acceptor was studied with admittance spectroscopy and showed Meyer-Neldel behaviour. This indicates that the entropy significantly contributes to the activation energy.

  1. Influence of Surface Properties and Impact Conditions on Adhesion of Insect Residues

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Smith, Joseph G.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Shanahan, Michelle H.; Penner, Ronald K.

    2015-01-01

    Insect residues can cause premature transition to turbulent flow on laminar flow airfoils. Engineered surfaces that mitigate the adhesion of insect residues provide, therefore, a route to more efficient aerodynamics and reduced fuel burn rates. Areal coverage and heights of residues depend not only on surface properties, but also on impact conditions. We report high speed photography of fruit fly impacts at different angles of inclination on a rigid aluminum surface, optical microscopy and profilometry, and contact angle goniometry to support the design of engineered surfaces. For the polyurethane and epoxy coatings studied, some of which exhibited superhydrophobicity, it was determined that impact angle and surface compositions play critical roles in the efficacy of these surfaces to reduce insect residue adhesion.

  2. Impact of the post fire management in some soil chemical properties. First results.

    NASA Astrophysics Data System (ADS)

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Úbeda, Xavi

    2016-04-01

    Post-fire management after severe wildfires has impact on soil properties. In Mediterranean environments management of fire affected areas is a common practice. This intervention may change soil chemical properties of the soil such as major cations. The aim of this work is to study the impact of different types of forest management in soil extractable calcium, magnesium, sodium and potassium after a severe wildfire. The study area is located in Ódena (Catalonia, Spain). The wildfire occurred at July 27th of 2015 and burned 1235 ha. After the fire an experimental plot was designed 9 plots with 2x2 meters (4 square meters). The different managements were: a) clear-cuted area and wood removed, b) no treatment); and c) clear-cutted. The results of the first sampling showed significant differences among all treatments in extractable calcium, sodium and potassium. The amount of these extractable elements was high in clear-cutted treatment in comparison to the others. No differences were identified in extractable magnesium. Overall, in the immediate period after the fire, burned area management, changed the studied soil properties. We are currently studying the evolution of this soil properties in these plots with the time

  3. Microfluidic Assay To Study the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration.

    PubMed

    Menon, Nishanth V; Chuah, Yon Jin; Phey, Samantha; Zhang, Ying; Wu, Yingnan; Chan, Vincent; Kang, Yuejun

    2015-08-12

    As an alternative to complex and costly in vivo models, microfluidic in vitro models are being widely used to study various physiological phenomena. It is of particular interest to study cell migration in a controlled microenvironment because of its vital role in a large number of physiological processes, such as wound healing, disease progression, and tissue regeneration. Cell migration has been shown to be affected by variations in the biochemical and physical properties of the extracellular matrix (ECM). To study the combinatorial impact of the ECM physical properties on cell migration, we have developed a microfluidic assay to induce migration of human bone marrow derived mesenchymal stem cells (hBMSCs) on polydimethylsiloxane (PDMS) substrates with varying combinatorial properties (hydrophobicity, stiffness, and roughness). The results show that although the initial cell adhesion and viability appear similar on all PDMS samples, the cell spreading and migration are enhanced on PDMS samples exhibiting intermediate levels of hydrophobicity, stiffness, and roughness. This study suggests that there is a particular range of substrate properties for optimal cell spreading and migration. The influence of substrate properties on hBMSC migration can help understand the physical cues that affect cell migration, which may facilitate the development of optimized engineered scaffolds with desired properties for tissue regeneration applications. PMID:26186177

  4. Ballistic Impact Properties of Zr-Based Amorphous Alloy Composites Reinforced with Woven Continuous Fibers

    NASA Astrophysics Data System (ADS)

    Kim, Gyeong Su; Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Song, Young Buem; Lee, Sunghak

    2012-03-01

    This study aims at investigating ballistic impact properties of Zr-based amorphous alloy (LM1 alloy) matrix composites reinforced with woven stainless steel or glass continuous fibers. The fiber-reinforced composites with excellent fiber/matrix interfaces were fabricated without pores and misinfiltration by liquid pressing process, and contained 35 to 41 vol pct of woven continuous fibers homogeneously distributed in the amorphous matrix. The woven-STS-continuous-fiber-reinforced composite consisted of the LM1 alloy layer of 1.0 mm in thickness in the upper region and the fiber-reinforced composite layer in the lower region. The hard LM1 alloy layer absorbed the ballistic impact energy by forming many cracks, and the fiber-reinforced composite layer interrupted the crack propagation and blocked the impact and traveling of the projectile, thereby resulting in the improvement of ballistic performance by about 20 pct over the LM1 alloy. According to the ballistic impact test data of the woven-glass-continuous-fiber-reinforced composite, glass fibers were preferentially fragmented to form a number of cracks, and the amorphous matrix accelerated the fragmentation of glass fibers and the initiation of cracks. Because of the absorption process of ballistic impact energy by forming very large amounts of cracks, fragments, and debris, the glass-fiber-reinforced composite showed better ballistic performance than the LM1 alloy.

  5. Mechanical properties of impact-assembled nanoparticle composites: Fabrication, measurements and simulation

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rajesh

    Nanomaterials have assumed substantial importance due to their exotic chemical, mechanical, optical and electro-magnetic properties. Our research focuses on producing nanoparticulate building blocks for producing and evaluating superhard films and micropatterns. Nanoparticles of Si, Ti, their carbides and nitrides are generated by injecting gas-phase precursors into a thermal plasma jet and expanding the flow through a convergent boron nitride nozzle into a low-pressure chamber. The particles subsequently deposit onto temperature-controlled silicon or molybdenum substrates via hypersonic impaction. High impact velocities of about ˜1650 m/s (calculated for a 20 nm SiC particle) are the primary mechanism by which nanoparticles are consolidated into films. We have developed an aerodynamically focused nanoparticle beam deposition method for micromolding of nanoparticulate MEMS components. Evaluation of basic mechanical properties of such materials is of significant interest as they have been proposed to be extremely hard, wear- and friction-resistant. For engineering purposes, the Young's modulus of a material is one of the most important properties tied to design of components and coatings. We have developed a Nanoindenter-aided load-deflection measurement system for evaluating the Young's modulus of our nanoparticle composites. The Nanoindenter deflects clamped-clamped beams machined from our deposits using focused ion beam (FIB) milling. The nanoparticle beams behave elastically for small deformations. Porosity variation in our deposits was linked to variation of measured Young's moduli for the FIB-milled beams. Finally we have used discrete element method models (using PFC3D, Itasca Consulting Group) with support from molecular dynamics simulations to create a multiscale framework to mimic the measured Young's modulus behavior of our nanoparticulate deposits. We have found that higher impact velocity of the particles leads to larger contact radii between impacting

  6. Dynamical properties measurements for asteroid, comet and meteorite material applicable to impact modeling and mitigation calculations

    SciTech Connect

    Furnish, M.D.; Boslough, M.B.; Gray, G.T. III; Remo, J.L.

    1994-07-01

    We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2--20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.

  7. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties.

    PubMed

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L; Ilies, Marc A

    2014-02-01

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact on the plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential, and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes, and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process and with transfection efficiency, cytotoxicity, and the internalization mechanism of the resultant nucleic acid complexes. We found that the blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. The transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to the transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of colipids, their nature, and amount present in lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically to obtain efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery. PMID:24377350

  8. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties

    PubMed Central

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E.; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L.; Ilies, Marc A.

    2014-01-01

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact towards plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process, and with transfection efficiency, cytotoxicity and internalization mechanism of the resultant nucleic acid complexes. We found that blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. Transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of co-lipids, their nature and amount present into lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically for obtaining efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery. PMID:24377350

  9. Impact of soil water property parameterization on atmospheric boundary layer simulation

    NASA Astrophysics Data System (ADS)

    Cuenca, Richard H.; Ek, Michael; Mahrt, Larry

    1996-03-01

    Both the form of functional relationships applied for soil water properties and the natural field-scale variability of such properties can significantly impact simulation of the soil-plant-atmosphere system on a diurnal timescale. Various input parameters for soil water properties including effective saturation, residual water content, anerobiosis point, field capacity, and permanent wilting point are incorporated into functions describing soil water retention, hydraulic conductivity, diffusivity, sorptivity, and the plant sink function. The perception of the meaning of these values and their variation within a natural environment often differs from the perspective of the soil physicist, plant physiologist, and atmospheric scientist. This article investigates the sensitivity of energy balance and boundary layer simulation to different soil water property functions using the Oregon State University coupled atmosphere-plant-soil (CAPS) simulation model under bare soil conditions. The soil parameterizations tested in the CAPS model include those of Clapp and Hornberger [1978], van Genuchten [1980], and Cosby et al. [1984] using initial atmospheric conditions from June 16, 1986 in Hydrologic Atmospheric Pilot Experiment-Modélisation du Bilan Hydrique (HAPEX-MOBILHY). For the bare soil case these results demonstrate unexpected model sensitivity to soil water property parameterization in partitioning all components of the diurnal energy balance and corresponding boundary layer development.

  10. Instrumented impact properties of zircaloy-oxygen and zircaloy-hydrogen alloys

    SciTech Connect

    Garde, A.M.; Kassner, T.F.

    1980-04-01

    Instrumented-impact tests were performed on subsize Charpy speciments of Zircaloy-2 and -4 with up to approx. 1.3 wt % oxygen and approx. 2500 wt ppM hydrogen at temperatures between 373 and 823/sup 0/K. Self-consistent criteria for the ductile-to-brittle transition, based upon a total absorbed energy of approx. 1.3 x 10/sup 4/ J/m/sup 2/, a dynamic fracture toughness of approx. 10 MPa.m/sup 1/2/, and a ductility index of approx. 0, were established relative to the temperature and oxygen concentration of the transformed BETA-phase material. The effect of hydrogen concentration and hydride morphology, produced by cooling Zircaloy-2 specimens through the temperature range of the BETA ..-->.. ..cap alpha..' = hydride phase transformation at approx. 0.3 and 3 K/s, on the impact properties was determined at temperatures between 373 and 673 K. On an atom fraction basis, oxygen has a greater effect than hydrogen on the impact properties of Zircaloy at temperatures between approx. 400 and 600 K. 34 figures.

  11. IMPACT OF ALUMINATE IONS ON THE PROPERTIES OF SALTSTONE GROUT MIXES

    SciTech Connect

    Harbour, J; Tommy Edwards, T; Erich Hansen, E; Vickie Williams, V

    2008-02-21

    It is important to identify and control the operational and compositional variables that impact the important processing and performance properties of Saltstone grout mixes. The grout that is produced at the Saltstone Production Facility (SPF) is referred to as Saltstone and is a waste form that immobilizes low concentrations of radionuclides as well as certain toxic metals. The Saltstone will be disposed of in vaults at Savannah River Site (SRS). An effort referred to as the Saltstone Variability Study has been initiated to achieve this goal. The protocols developed in this variability study are also ideally suited as a tool to assess the impact of proposed changes to the processing flow sheet for Liquid Waste Operations at SRS. One such proposal that is currently under consideration is to introduce a leaching step in the treatment of the High Level Waste (HLW) sludge to remove aluminum prior to vitrification at the Defense Waste Processing Facility (DWPF). This leachate would significantly increase the soluble aluminate concentration in the salt feed that will be processed at the SPF. Consequently, an initial study of the impact of increased aluminate concentration on the Saltstone grout properties was performed. Prior work by Lukens (1) showed that aluminate in the salt solutions increases the amount of heat generation.

  12. Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-11-01

    Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

  13. Impact of diacylglycerol and monoacylglycerol on the physical and chemical properties of stripped soybean oil.

    PubMed

    Chen, Bingcan; McClements, David Julian; Decker, Eric Andrew

    2014-01-01

    In this study, we determined the effect of diacylglycerol (DAG) and monoacylglycerol (MAG) on the oxidative stability of stripped soybean oil (SSO) and on the antioxidative effectiveness of α-tocopherol in SSO. We also examined the influence of DAG and MAG on the physical properties of SSO. DAG (0-2.5wt%) had little effect on the chemical stability of SSO and on the antioxidative activity of 40μM α-tocopherol in SSO (55°C). MAG (0-2.5wt%) had no remarkable impact on the chemical stability of SSO. The addition of MAG (0.5wt%) suppressed the effectiveness of α-tocopherol (40μM) in SSO. The addition of DAG did not cause an appreciable change in the interfacial tension (IFT) of SSO, indicating that it was not strongly surface active. MAG significantly decreased the interfacial tension of SSO, due to its strong surface active properties. Wide angle X-ray scattering (WAXS) analysis showed that DAG did not alter the structured organisation of SSO, which remained in an amorphous form, whereas MAG led to strong scattering, indicating the formation of crystals. The physical properties of DAG and MAG in the SSO may be related to the chemical stability of SSO and the effectiveness of antioxidants incorporated. These results can be used to better understand the physicochemical mechanisms by which minor components impact oxidation of bulk oils. PMID:24001854

  14. Impact of drying and thiel embalming on mechanical properties of achilles tendons.

    PubMed

    Verstraete, Matthias André; Van Der Straeten, Catherine; De Lepeleere, Bram; Opsomer, Gert-Jan; Van Hoof, Tom; Victor, Jan

    2015-11-01

    Biomechanical research and orthopedic training is regularly carried out on human cadavers. Given the post-mortem decay, these cadavers were usually frozen or embalmed. The embalming method according to Dr. Thiel was often praised for the preservation of natural texture. The main aim of this article was to quantitatively analyze the impact of this embalming technique on the biomechanical properties. To that extent, Achilles tendons (calcaneal tendons) of seven cadavers have been tested. For each cadaver, a first tendon was tested following a fresh-frozen conservation, the other following the Thiel embalming process. The results indicated a significant difference in Young's modulus between both groups (P values = 0.046). The secondary aim of this article was to analyze the impact of exposure to room conditions and associated dehydration on the biomechanical properties of cadaver tissue. Therefore, each tendon was tested before and after 2 hr of exposure to room conditions. The resulting dehydration caused a significant increase of the Young's modulus for the thawed fresh-frozen tendons. The properties of the Thiel embalmed tendons were not significantly altered. In conclusion, this research promoted the use of fresh-frozen specimens for biomechanical testing. Effort should, however, be made to minimize dehydration of the tested specimens. PMID:26378610

  15. Impact properties of irradiated HT9 from the fuel duct of FFTF

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Daniel Lewis, W.; Toloczko, Mychailo B.; Maloy, Stuart A.

    2012-02-01

    This paper reports Charpy impact test data for the ACO-3 duct material (HT9) from the Fast Flux Test Facility (FFTF) and its archive material. Irradiation doses for the specimens were in the range of 3-148 dpa and irradiation temperatures in the range of 378-504 °C. The impact tests were performed for the small V-notched Charpy specimens with dimensions of 3 × 4 × 27 mm at an impact speed of 3.2 m/s in a 25 J capacity machine. Irradiation lowered the upper-shelf energy (USE) and increased the transition temperatures significantly. The shift of ductile-brittle transition temperatures (ΔDBTT) was greater after relatively low temperature irradiation. The USE values were in the range of 5.5-6.7 J before irradiation and decreased to the range of 2-5 J after irradiation. Lower USEs were measured for lower irradiation temperatures and specimens with T-L orientation. The dose dependences of transition temperature and USE were not significant because of the radiation effect on impact behavior nearly saturated at the lowest dose of about 3 dpa. A comparison showed that the lateral expansion of specimens showed a linear correlation with absorbed impact energy, but with large scatter in the results. Size effect was also discussed to clarify the differences in the impact property data from subsize and standard specimens as well as to provide a basis for comparison of data from different specimens. The USE and ΔDBTT data from different studies were compared.

  16. Impact properties of irradiated HT9 from the fuel duct of FFTF

    SciTech Connect

    Byun, Thak Sang; Lewis, W. Daniel; Toloczko, Mychailo B.; Maloy, Stuart A.

    2012-02-01

    This paper reports Charpy impact test data for the ACO-3 duct material (HT9) from the Fast Flux Test Facility (FFTF) and its archive material. Irradiation doses for the specimens were in the range of 3– 148 dpa and irradiation temperatures in the range of 378–504 *C. The impact tests were performed for the small V-notched Charpy specimens with dimensions of 3 * 4 * 27 mm at an impact speed of 3.2 m/s in a 25 J capacity machine. Irradiation lowered the upper-shelf energy (USE) and increased the transition temperatures significantly. The shift of ductile–brittle transition temperatures (DDBTT) was greater after relatively low temperature irradiation. The USE values were in the range of 5.5–6.7 J before irradiation and decreased to the range of 2–5 J after irradiation. Lower USEs were measured for lower irradiation temperatures and specimens with T-L orientation. The dose dependences of transition temperature and USE were not significant because of the radiation effect on impact behavior nearly saturated at the lowest dose of about 3 dpa. A comparison showed that the lateral expansion of specimens showed a linear correlation with absorbed impact energy, but with large scatter in the results. Size effect was also discussed to clarify the differences in the impact property data from subsize and standard specimens as well as to provide a basis for comparison of data from different specimens. The USE and DDBTT data from different studies were compared.

  17. Global Geometric Properties of Martian Impact Craters: An Assessment from Mars Orbiter Laser Altimeter (MOLA) Digital Elevation Models

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.; Schnetzler, C.

    2000-01-01

    Global geometric characteristics of topographically fresh impact craters have been assessed, for the first time, from gridded MOLA topography. Global trends of properties such as depth/diameter differ from previous estimates. Regional differences are observed.

  18. Effects of post-weld heat treatment conditions on hardness, microstructures and impact properties of vanadium alloys

    NASA Astrophysics Data System (ADS)

    Nagasaka, T.; Muroga, T.; Grossbeck, M. L.; Yamamoto, T.

    2002-12-01

    Gas-tungsten-arc (GTA) weld joints were made from V-4Cr-4Ti alloys in which oxygen levels at the weld metal ranged from 73 to 355 wppm. Both the weld metal and the base metal of the joints showed hardening after the welding. In this study, the influence of post-weld heat treatment (PWHT) on hardness, microstructure and impact properties were investigated. Change in hardness due to annealing at 673 and 973-1273 K was shown to be caused by release of contaminant hydrogen and precipitate evolution, respectively. Results indicated that the precipitation hardening increased with oxygen level. Charpy impact properties did not change significantly due to annealing at 673 K, while fine precipitation at 1073 K degraded the impact property. No improvement of impact property by PWHT is expected at low oxygen level in the weld metal. Precipitation behavior during aging and irradiation may determine the performance of V-4Cr-4Ti weld joints.

  19. Electrokinetic soil remediation: Impact of aqueous phase properties on soil surface charge and electroosmotic efficiency

    SciTech Connect

    Vane, L.M.; Zang, G.M.

    1995-10-01

    The electrokinetic remediation of soils is described. The effect of pore fluid properties on the surface charge of clays was examined. Zeta potential results indicate that the electro-osmotic efficiency (flow/voltage ratio) in bentonite should be relatively insensitive to pH and ionic strength variations. The zeta potential of kaolinite, however, was found to be quite sensitive to pH. The electro-osmotic efficiency for kaolinite was found to be equally sensitive to pH. Zeta potential results further indicate that the electro-osmotic efficiency as well as the direction of electroosmosis in kaolinite will be impacted dramatically by the presence of metal cations. These results suggest that zeta potential measurements could be used to study the impact on electro osmotic efficiency of initial site conditions as well as conditions expected during an electrokinetic remediation process.

  20. Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

    SciTech Connect

    Brühwiler, Paul A.; Barbezat, Michel; Necola, Adly; Kohls, Doug J.; Bunk, Oliver; Schaefer, Dale W.; Pötschke, Petra

    2010-10-22

    We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0-2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorption are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorption.

  1. [Investigation of the chain structure and thermal property of xylene solubles of impact polypropylene copolymers].

    PubMed

    Luo, Hua-Lin; Zhao, Ying; Wu, Jin-Guang; Wang, Du-Jin

    2012-12-01

    Impact polypropylene copolymers (IPC) are in-situ blends of polypropylene homopolymer and ethylene-alpha-olefin copolymers formed in the reactor, which is a multiphasic complex material with isotactic polypropylene (iPP) as a matrix in which poly(ethylene-alpha-olefin) elastomeric copolymer is finely dispersed, and ethylene-alpha-olefin random copolymer (EPR) acts as an elastomer to improve the impact resistance properties of iPP at room temperature and low temperature. In the present, the content of xylene soluble is used to evaluate the content of EPR rubber phase in IPC. The content, the chain structure, and glass transition temperature (T(g)) of EPR rubber are critical to the toughness of IPC. In the present report, Fourier transform infrared spectroscopy(FTIR), nuclear magnetic resonance (NMR) and differential scanning calorimetry(DSC) were utilized to study the comonomer content, chain structure and thermal property of xylene soluble of two IPC prepared by different catalysts. The results indicated that there are small amount of ethylene-propylene segmented copolymers containing short methylene sequence that is crystallizable in the xylene soluble in addition to the ethylene-propylene random copolymers. And the sequence length of crystallizable methylene group of ethylene-propylene segmented copolymers in these two kinds of xylene soluble is different. The random distribution degree of ethylene and propylene monomer in the ethylene-propylene copolymers in these two kinds of xylene soluble is similar. The xylene soluble with lower content of PPP sequence and higher content of ethylene monomer has lower T(g), which will benefit the improvement of impact resistance property of polypropylene. PMID:23427568

  2. Magnetic Properties of Melt Particles of Suevitic Samples From the Bosumtwi Impact Structure, Ghana.

    NASA Astrophysics Data System (ADS)

    Elbra, T.; Pesonen, L. J.; Lehtinen, M.

    2006-12-01

    The magnetic anomaly over Bosumtwi impact structure has recently raised a debate about its origin. Plado et al. (2000) presented a magnetic model where a strongly remanently magnetized melt or melt-rich body was proposed as a source of this anomaly. Recent deep drilling through the Bosumtwi structure, however, failed to penetrate into the expected melt body. Also, the recent investigations of petrophysical parameters of samples from deep drill cores (Elbra et al., 2006) did not yield any strongly magnetic body. In order to find out whether the current drill cores simply lack the melt or the expected highly magnetized body escaped the drilling, we separated individual melt particles from deep drill core samples and from exposed suevitic rocks, and measured their magnetic properties. Preliminary results of our investigation show differences in magnetic properties between the melt from inside and outside the crater. The melt from drill core samples shows merely a paramagnetic signal of magnetic susceptibility and only a weak intensity of remanence. The melt from exposed rocks, however, shows slightly higher magnetizations. Currently, the more detailed rock-magnetic studies of separate melt inclusions, combined with X-ray diffraction measurements, are carried out in order to identify the nature of magnetic minerals in the melt and to verify if the melt is enough highly magnetic to be the source of the magnetic anomaly. References: Elbra T., Pesonen L.J. (2006) Petrophysical and rock-magnetic properties of impactites from deep drill core of Bosumtwi impact structure. Meteoritics and Planetary Science 41, Supplement, August, A49. Plado J., Pesonen L.J., Koeberl C., Elo S. (2000) The Bosumtwi meteorite impact structure, Ghana: A magnetic model. Meteoritics and Planetary Science 35, 723-732.

  3. Asteroid surface archaeology: Identification of eroded impact structures by spectral properties on (4) Vesta

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Nathues, A.; Schäfer, M.; Schmedemann, N.; Vincent, J.; Russell, C.

    2014-07-01

    Introduction: Vesta's surface material is characterized as a deep regolith [1,2], mobilized by countless impacts. The almost catastrophic impact near Vesta's south pole, which has created the Rheasilvia basin, and the partly overlapping older impact of similar size, Veneneia, have not only reshaped the areas of their interior (roughly 50 % of the Vesta surface), but also emplaced each time a huge ejecta blanket of similar size, thus covering the whole remaining surface. In this context, pristine and even younger morphologic features have been erased. However, the spectral signatures of the early differentiation and alteration products by impacts have partially remained in situ. While near the north pole several large old eroded impact features are visible, the equatorial zone close to the basin rims seems to be void of those. Since it is unlikely, that this zone has been entirely avoided by large projectiles, in this area the results of such impacts may have left morphologically not detectable remnants: Individual distribution of particle sizes and altered photometric properties, excavated layers, shock metamorphism, melt generation inside particles and on macroscopic scales, and emplacement of exogenous projectile material. An analysis by color ratio images and spatial profiles of diagnostic spectral parameters reveals such features. Results: Based on local spectroscopic evidence we have detected eroded impact features of three categories: 1) Small craters with diameters of a few kilometers, 2) Large craters or, if even larger, incipient impact basins, 3) Sub-global ejecta blankets. The eastern part of Feralia Planitia, diameter 140 km, has little evidence of a round outline in the shape model, but it features spectral gradients towards its center. A feature of similar size, centered north of Lucaria Tholus becomes only visible by a similar spectra gradient and a circular outline in specific spectral ratio mosaics. These features seem to be related to the

  4. Impact toughness and plastic properties of composite layered samples as compared to monolithic ones

    NASA Astrophysics Data System (ADS)

    Yakovleva, I. L.; Tereshchenko, N. A.; Mirzaev, D. A.; Panov, A. V.; Shaburov, D. V.

    2007-08-01

    Effects of testing conditions on the mechanical properties and fracture of a material in the course of impact loading have been studied. Using steels of various phase compositions (ferritic steel 08Kh18T1 and austenitic steel 10Kh18AG19) tested in a wide temperature range (from 20 to -196°C), the advantage of layered structures has been established as compared to monolithic. It has been shown that the testing of composite samples simulates the loading-affected behavior of the ferritic steel 08Kh18T1 with an inhomogeneous layered microstructure obtained during repeated hot rolling with a reduction of no less than 65%.

  5. Plasma Spray-PVD: Plasma Characteristics and Impact on Coating Properties

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Vaßen, R.

    2012-12-01

    Typical plasma characteristics of the plasma spray-physical vapour deposition (PS-PVD) process were investigated by optical emission spectroscopy. Electron temperatures were determined by Boltzmann plots while temperatures of the heavy species as well as electron densities were obtained by broadening analysis of spectral lines. The results show how the plasma properties and thermodynamic equilibrium conditions are affected by the admixture of hydrogen and the ambient chamber pressure. Some experimental examples of PS-PVD coatings demonstrate the impact on feedstock treatment and deposited microstructures.

  6. [Impact of directly compressed auxiliary materials on powder property of fermented cordyceps powder].

    PubMed

    Chen, Li-Hua; Yue, Guo-Chao; Guan, Yong-Mei; Yang, Ming; Zhu, Wei-Feng

    2014-01-01

    To investigate such physical indexes as hygroscopicity, angle of repose, bulk density, fillibility of compression of mixed powder of directly compressed auxiliary materials and fermented cordyceps powder by using micromeritic study methods. The results showed that spray-dried lactose Flowlac100 and microcrystalline cellulose Avicel PH102 had better effect in liquidity and compressibility on fermented cordyceps powder than pregelatinized starch. The study on the impact of directly compressed auxiliary materials on the powder property of fermented cordyceps powder had guiding significant to the research of fermented cordyceps powder tablets, and could provide basis for the development of fermented cordyceps powder tablets. PMID:24754170

  7. Analysis of Basis Weight Uniformity of Microfiber Nonwovens and Its Impact on Permeability and Filtration Properties

    NASA Astrophysics Data System (ADS)

    Amirnasr, Elham

    It is widely recognized that nonwoven basis weight non-uniformity affects various properties of nonwovens. However, few studies can be found in this topic. The development of uniformity definition and measurement methods and the study of their impact on various web properties such as filtration properties and air permeability would be beneficial both in industrial applications and in academia. They can be utilized as a quality control tool and would provide insights about nonwoven behaviors that cannot be solely explained by average values. Therefore, for quantifying nonwoven web basis weight uniformity we purse to develop an optical analytical tool. The quadrant method and clustering analysis was utilized in an image analysis scheme to help define "uniformity" and its spatial variation. Implementing the quadrant method in an image analysis system allows the establishment of a uniformity index that can be used to quantify the degree of uniformity. Clustering analysis has also been modified and verified using uniform and random simulated images with known parameters. Number of clusters and cluster properties such as cluster size, member and density was determined. We also utilized this new measurement method to evaluate uniformity of nonwovens produced with different processes and investigated impacts of uniformity on filtration and permeability. The results of quadrant method shows that uniformity index computed from quadrant method demonstrate a good range for non-uniformity of nonwoven webs. Clustering analysis is also been applied on reference nonwoven with known visual uniformity. From clustering analysis results, cluster size is promising to be used as uniformity parameter. It is been shown that non-uniform nonwovens has provide lager cluster size than uniform nonwovens. It was been tried to find a relationship between web properties and uniformity index (as a web characteristic). To achieve this, filtration properties, air permeability, solidity and

  8. Computational assessment of the impact of gamma-ray detector material properties on spectroscopic performance

    NASA Astrophysics Data System (ADS)

    Jordan, David V.; Baciak, James E.; McDonald, Benjamin S.; Hensley, Walter K.; Miller, Erin A.; Wittman, Richard S.; Siciliano, Edward R.

    2011-09-01

    Pacific Northwest National Laboratory (PNNL) is performing a computational assessment of the impact of several important gamma-ray detector material properties (e.g. energy resolution and intrinsic detection efficiency) on the scenario-specific spectroscopic performance of these materials. The research approach combines 3D radiation transport calculations, detector response modeling, and spectroscopic analysis of simulated energy deposition spectra to map the functional dependence of detection performance on the underlying material properties. This assessment is intended to help guide formulation of performance goals for new detector materials within the context of materials discovery programs, with an emphasis on applications in the threat reduction, nonproliferation, and safeguards/ verification user communities. The research results will also provide guidance to the gamma-ray sensor design community in estimating relative spectroscopic performance merits of candidate materials for novel or notional detectors.

  9. Tensile and impact properties of General Atomics 832864 heat of V-4Cr-4Ti alloy

    SciTech Connect

    Tsai, H.; Nowicki, L.J.; Gazda, J.; Billone, M.C.; Smith, D.L.; Johnson, W.R.; Trester, P.

    1998-09-01

    A 1300-kg heat of V-4Cr-4Ti alloy was procured by General Atomics (GA) for the DIII-D radiative divertor program. To determine the mechanical properties of this alloy, tensile and Charpy tests were conducted on specimens prepared from pieces of 4.8-mm-thick as-rolled plates, a major product form for the DIII-D application. The tensile tests were conducted at three temperatures, 26, 280 and 380 C, the last two being the anticipated peak temperatures during DIII-D boronization and postvent bake-out, respectively. Results from these tests show that the tensile and impact properties of the 832864 heat are comparable to those of the other smaller V-(4-5)Cr-(4-5)Ti alloy heats previously developed by the US Fusion Materials Program and that scale-up of vanadium alloy production can be successfully achieved as long as reasonable process control is implemented.

  10. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    This paper describes and discusses the propulsion-system problems that will most likely be encountered if the specifications of hydrocarbon-based jet fuels must undergo significant changes in the future and, correspondingly, the advances in technology that will be required to minimize the adverse impact of these problems. Several investigations conducted are summarized. Illustrations are used to describe the relative effects of selected fuel properties on the behavior of propulsion-system components and fuel systems. The selected fuel properties are those that are most likely to be relaxed in future fuel specifications. Illustrations are also used to describe technological advances that may be needed in the future. Finally, the technological areas needing the most attention are described, and programs that are under way to address these needs are briefly discussed.

  11. Impact of heat treatment and oxidation of Carbon-carbon composites on microstructure and physical properties

    NASA Astrophysics Data System (ADS)

    Iqbal, Sardar Sarwat

    Carbon-carbon (C/C) composites are notable among engineering materials in aerospace and defense industries possessing excellent specific mechanical, thermal, frictional and wear properties. C/C maintain their properties at temperatures where most of the high end alloys give in, and maintain their dimensional stability at temperatures above 2000 °C. C/C is frequently used in aircraft and automotive industries as brake materials. However, frictional performance is dependent on various parameters: microstructure, fiber type, fiber orientation distribution, fiber/matrix interfacial bond, heat treatment, and oxidation. The present study in dissertation provides an insight into the impact of heat treatment, and oxidation on microstructure, mechanical and thermal properties. The heat treatment (performed at 1800, 2100, 2400 °C in argon) of two-directional (2-D) pitch-fiber with charred resin carbon matrix, and three-directional (3-D) PAN-fiber with CVI carbon matrix influenced microstructure, mechanical and thermal properties. Microstructure characterized by polarized light microscopy (PLM), XRD, and Raman spectroscopy changed with increasing heat treatment temperature. The RL microstructure of 3-D C/C progressively highly organized, whereas ISO microstructure of 2-D C/C's charred resin hardly organized into an ordered structure as evident from Raman spectroscopy and Raman profiling of polished samples. Pitch-fiber organized more than the ISO microstructure of charred resin matrix. On the other, PAN-fiber became more ordered, but was organization was lower than pitch-fiber. Thermal conductivity increased for both (2-D, 3-D C/C) materials in comparison to non-heat treated (NHT) C/Cs. Thermal conductivity of oxidized samples decreased significantly than non-oxidized samples. In-plane thermal conductivity of 3-D C/C was much higher than that of 2-D C/C, and was attributed to the rough laminar (RL) microstructure of carbon matrix and continuous PAN-fiber when compared to

  12. Effect of austenitizing conditions on the impact properties of an alloyed austempered ductile iron of initially ferritic matrix structure

    SciTech Connect

    Delia, M.; Alaalam, M.; Grech, M.

    1998-04-01

    The effect of austenitizing conditions on the microstructure and impact properties of an austempered ductile iron (ADI) containing 1.6% Cu and 1.6% Ni as the main alloying elements was investigated. Impact tests were carried out on samples of initially ferritic matrix structure and which had been first austenitized at 850, 900, 950, and 1,000 C for 15 to 360 min and austempered at 360 C for 180 min. Results showed that the austenitizing temperature, T{sub {gamma}}, and time, t{sub {gamma}} have a significant effect on the impact properties of the alloy. This has been attributed to the influence of these variables on the carbon kinetics. Microstructures of samples austenitized at 950 and 1,000 C contain no pro-eutectoid ferrite. The impact properties of the former structures are independent of t{sub {gamma}}, while those solution treated at 1,000 C are generally low and show wide variation over the range of soaking time investigated. For fully ausferritic structures, impact properties fall with an increase in T{sub {gamma}}. This is particularly evident at 1,000 C. As the T{sub {gamma}} increases, the amount of carbon dissolved in the original austenite increases. This slows down the rate of austenite transformation and results in coarser structures with lower mechanical properties. Optimum impact properties are obtained following austenitizing between 900 and 950 C for 120 to 180 min.

  13. Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties

    NASA Technical Reports Server (NTRS)

    Ebmeier, S. K.; Sayer, A. M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-01-01

    The impact of volcanic emissions is a significant source of uncertainty in estimations of aerosol indirect radiative forcing, especially with respect to emissions from passive de-gassing and minor explosions. Understanding the impact of volcanic emissions on indirect radiative forcing is important assessing present day atmospheric properties and also to define the pre-industrial baseline to assess anthropogenic perturbations. We present observations of the time-averaged indirect aerosol effect within 200 km downwind of isolated island volcanoes in regions of low present-day aerosol burden using MODIS and AATSR data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (Reunion) are rotated about the volcanic vent according to wind direction, so that retrievals downwind of the volcano can be averaged to improve signal to noise ratio. The emissions from all three volcanoes, including those from passive degassing, strombolian activity and minor explosions lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference in effective radius ranging from 48 microns at the different volcanoes. A comparison of these observations with cloud properties at isolated islands with no significant source of aerosol suggests that these patterns are not purely orographic in origin. This approach sets out a first step for the systematic measurement of the effects of present day low altitude volcanic emissions on cloud properties, and our observations of unpolluted, isolated marine settings may capture processes similar to those in the preindustrial marine atmosphere.

  14. Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties

    NASA Astrophysics Data System (ADS)

    Ebmeier, S. K.; Sayer, A. M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-01-01

    The impact of volcanic emissions is a significant source of uncertainty in estimations of aerosol indirect radiative forcing, especially with respect to emissions from passive degassing and minor explosions. Understanding the impact of volcanic emissions on indirect radiative forcing is important for assessing present day atmospheric properties and also to define the pre-industrial baseline to assess anthropogenic perturbations. We present observations of the time-averaged indirect aerosol effect within 200 km downwind of isolated island volcanoes in regions of low present-day aerosol burden using MODIS and AATSR data. Retrievals of aerosol and cloud properties at Kīlauea (Hawai'i), Yasur (Vanuatu) and Piton de la Fournaise (Réunion) are rotated about the volcanic vent according to wind direction, so that retrievals downwind of the volcano can be averaged to improve signal to noise ratio. The emissions from all three volcanoes, including those from passive degassing, strombolian activity and minor explosions lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference in effective radius of 4-8 μm at the different volcanoes. A comparison of these observations with cloud properties at isolated islands with no significant source of aerosol suggests that these patterns are not purely orographic in origin. This approach sets out a first step for the systematic measurement of the effects of present day low altitude volcanic emissions on cloud properties. Our observations of unpolluted, isolated marine settings may also capture processes similar to those in the pre-industrial marine atmosphere.

  15. Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties

    NASA Astrophysics Data System (ADS)

    Ebmeier, S. K.; Mather, T. A.; Sayer, A. M.; Grainger, R. G.; Carboni, E.

    2014-12-01

    Aerosol indirect radiative effects - the alteration of cloud properties by atmospheric aerosol - have a large, but relatively uncertain impact on the Earth's radiative balance. Quantification of volcanic aerosol indirect effects contributes to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. The impact of emissions from passively degassing volcanoes and minor volcanic explosions are particularly poorly constrained. We present systematic satellite measurements of the time-averaged indirect aerosol effect over several years at multiple active and inactive volcanic islands (Moderate Resolution Imaging Spectroradiometer, 2000-2013 and Advanced Along-Track Scanning Radiometer 2002-2008). Retrievals of aerosol and cloud properties at Kilauea, Yasur and Piton de la Fournaise are rotated about the volcanic vent to be parallel to wind direction, so that average upwind and downwind values can be estimated. The emissions from all three volcanoes, including those from passive degassing, strombolian activity and minor explosions lead to measurably increased aerosol optical depth (<0.1) and decreased cloud droplet effective radius (<8 μm) downwind of the volcanoes. Furthermore, Top of Atmosphere Short Wave flux from NASA's Clouds and the Earth's Radiant Energy System (CERES) show downwind perturbations ranging from 10 to 45 Wm-2 within 400 km of degassing volcanoes. Comparison of these observations to cloud properties at isolated islands without degassing volcanoes demonstrates that these patterns are not purely orographic in origin. Our observations of unpolluted, isolated marine settings may capture processes similar to those in the pre-industrial marine atmosphere.

  16. IMPACT OF IRRADIATION AND THERMAL AGING ON DWPF SIMULATED SLUDGE PROPERTIES

    SciTech Connect

    Eibling, R; Michael Stone, M

    2006-10-16

    The research and development programs in support of the Defense Waste Processing Facility (DWPF) and other high-level waste vitrification processes require the use of both nonradioactive waste simulants and actual waste samples. While actual waste samples are the ideal materials to study, acquiring large quantities of actual waste is difficult and expensive. Tests utilizing actual high-level waste require the use of expensive shielded cells facilities to provide sufficient shielding for the researchers. Nonradioactive waste simulants have been used for laboratory testing, pilot-scale testing and full-scale integrated facility testing. These waste simulants were designed to reproduce the chemical and, if possible, the physical properties of the actual high-level waste. This technical report documents a study on the impact of irradiating a Sludge Batch 3 (SB3) simulant and of additional tests on aging a SB3 simulant by additional thermal processing. Prior simulant development studies examined methods of producing sludge and supernate simulants and processes that could be used to alter the physical properties of the simulant to more accurately mimic the properties of actual waste. Development of a precipitated sludge simulant for the River Protection Project (RPP) demonstrated that the application of heat for a period of time could significantly alter the rheology of the sludge simulant. The RPP precipitated simulant used distillation to concentrate the sludge solids and produced a reduction in sludge yield stress of up to 80% compared to the initial sludge properties. Observations at that time suggested that a substantial fraction of the iron hydroxide had converted to the oxide during the distillation. DWPF sludge simulant studies showed a much smaller reduction in yield stress ({approx}10%), demonstrated the impact of shear on particle size, and showed that smaller particle sizes yielded higher yield stress products. The current study documented in this report

  17. Impact of Deforestation on Cloud Properties and Rainfall Over the Costa Rica-Nicaraguan region

    NASA Astrophysics Data System (ADS)

    Ray, D. K.; Nair, U. S.; Welch, R. M.; Lawton, R. O.

    2002-12-01

    The Nicaraguan-Costa Rican region in Central America exhibits the typical pattern of complex deforestation now seen throughout the tropics. The region is a mixture of lowland, mostly converted to agriculture, and mountainous regions, where pristine forests still persist. At present the northern fertile plains of Costa Rica are mostly utilized for agriculture. However in the adjacent regions of southern Nicaragua lowland forests are relatively intact. The extensive agricultural areas of northern Costa Rica is a region of discontinuity in the proposed Mesoamerican Biological Corridor which would connect the montane forests in Costa Rica to the lowland forests in Nicaragua. The present study is part of a larger study which investigates the effects of continuing lowland deforestation and associated regional climate change in Central America on the stability of the entire proposed Mesoamerican Biological Corridor. The present work focuses on the effects of land use on the formation of cloudiness, cloud properties and rainfall in the forested regions of southern Nicaragua and the deforested regions of northern Costa Rica. Land surface and cloud properties are retrieved using the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data and products. The land surface properties retrieved are land surface temperature, albedo, Normalized Difference Vegetation Index (NDVI), Available Soil Moisture fraction and surface energy fluxes. The cloud properties retrieved are cloud optical thickness and effective radii. In addition, the frequency of cumulus cloudiness on hourly basis are derived from the Geostationary Operational Environmental Satellite (GOES) and rainfall is studied using Tropical Rainfall Measuring Mission (TRMM) satellite products. The correlations between the surface properties, cloud properties, cumulus cloudiness and rainfall as a function of ecosystem and topography is

  18. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations.

    PubMed

    Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle

    2016-09-01

    Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels. PMID:27137806

  19. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    NASA Astrophysics Data System (ADS)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.-M.

    2013-07-01

    Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2) and the main hydrates of the cement paste (portlandite and C-S-H). Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation). This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions) at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  20. Relationship between electrical and rheological properties of sewage sludge - Impact of temperature.

    PubMed

    Ségalen, C; Dieudé-Fauvel, E; Clément, J; Baudez, J C

    2015-04-15

    Rheological properties are key criteria for sewage sludge management but are difficult to determine in situ. Because the literature often links rheological characteristics to surface charges of particles that interact, the underlying electrostatic interactions could be key characteristics explaining the rheological behavior of sludge. This paper analyzed the impact of temperature on both rheological and electrical properties. Both liquid and solid properties appear to be related to electrical impedance spectroscopy measurements because they obey the same relationships with the same activation energies. Infinite viscosity follows an Arrhenius law with temperature, whereas the storage modulus shows VTF (Vogel-Tamman-Fulcher) behavior. Sludge electrical behavior can be modeled by an equivalent 2-branch parallel circuit whose respective impedances follow Arrhenius and VTF relationships. More interestingly, resistors are proportional to (dissipative) viscous characteristics, whereas capacitances are proportional to the (storage) elastic modulus. These similarities and relationships underlie the same interactions that seem to be involved in both rheological and electrical properties. These interdependences are quite logical but open new insights into sludge characterization. PMID:25634652

  1. 77 FR 55466 - Environmental Impact Statement for Short Range-Projects and Update of the Real Property Master...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... Department of the Army Environmental Impact Statement for Short Range-Projects and Update of the Real... proposed short-range improvement projects and the proposed update of the Real Property Master Plan (RPMP) for Fort Belvoir, VA. The EIS will analyze environmental impacts associated with the proposed...

  2. An interregional hedonic analysis of noxious facility impacts on local wages and property values

    SciTech Connect

    Clark, D.E.; Nieves, L.A.

    1991-12-31

    Claims of property value loss are commonly raised by homeowners when noxious facilities are sited or when new information about the hazards of existing facilities is made public. While the capitalization of externalities into land values is consistent with economic theory, empirical measurement of impacts has not generated consistent results. This is true both for hedonic measurements as well as other types of econometric analyses. While it is well established that job and site risks have similar impacts on regional labor markets, there are no studies relating the presence of a broad range of noxious facilities to local wage premiums. In contrast, this study employs an interregional framework in a hedonic analysis of both wage and property markets and considers eight different facility classifications. This paper discusses the development of the hedonic model employed in this study. It develops more fully the theoretical advantages of the intercity model and alternative methods of deriving implicit prices for environmental amenities and disamenities. The unique data base and the structure of the estimated model are described. It also includes a discussion of the research findings. Major conclusions and suggestions for further research are presented.

  3. An interregional hedonic analysis of noxious facility impacts on local wages and property values

    SciTech Connect

    Clark, D.E.; Nieves, L.A.

    1991-01-01

    Claims of property value loss are commonly raised by homeowners when noxious facilities are sited or when new information about the hazards of existing facilities is made public. While the capitalization of externalities into land values is consistent with economic theory, empirical measurement of impacts has not generated consistent results. This is true both for hedonic measurements as well as other types of econometric analyses. While it is well established that job and site risks have similar impacts on regional labor markets, there are no studies relating the presence of a broad range of noxious facilities to local wage premiums. In contrast, this study employs an interregional framework in a hedonic analysis of both wage and property markets and considers eight different facility classifications. This paper discusses the development of the hedonic model employed in this study. It develops more fully the theoretical advantages of the intercity model and alternative methods of deriving implicit prices for environmental amenities and disamenities. The unique data base and the structure of the estimated model are described. It also includes a discussion of the research findings. Major conclusions and suggestions for further research are presented.

  4. Effects of Various Heat Treatments on the Ballistic Impact Properties of Inconel 718 Investigated

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2000-01-01

    Uncontained failures of aircraft engine fan blades are serious events that can cause equipment damage and loss of life. Federal Aviation Administration (FAA) certification requires that all engines demonstrate the ability to contain a released fan blade with the engine running at full power. However, increased protection generally comes at the expense of weight. Proper choice of materials is therefore imperative to an optimized design. The process of choosing a good casing material is done primarily through trial and error. This costly procedure could be minimized if there was a better understanding of the relationships among static material properties, impact properties, and failure mechanisms. This work is part of a program being conducted at the NASA Glenn Research Center at Lewis Field to study these relationships. Ballistic impact tests were conducted on flat, square sheets of Inconel 718 that had been subjected to different heat treatments. Two heat treatments and the as-received condition were studied. In addition, results were compared with those from an earlier study involving a fourth heat treatment. The heat treatments were selected on the basis of their effects on the static tensile properties of the material. The impact specimens used in this study were 17.8-cm square panels that were centered and clamped over a 15.2-cm square hole in a 1.27-cm-thick steel plate. Three nominal plate thickness dimensions were studied, 1.0, 1.8, and 2.0 mm. For each thickness, all the specimens were taken from the same sheet of material. The projectile was a Ti-6Al-4V cylinder with a length of 25.4 mm, a diameter of 12.7 mm, and a mass ranging from 14.05 to 14.20 g. The projectiles were accelerated toward the specimens at normal incidence using a gas gun with a 2-m-long, 12.7-mm inner-diameter barrel. The ballistic limit for each heat treatment condition and thickness was determined by conducting a number of impact tests that bracketed as closely as possible the velocity

  5. Impacts of land use changes on physical and chemical soil properties in the Central Pyrenees

    NASA Astrophysics Data System (ADS)

    Nadal Romero, Estela; Hoitinga, Leo; Valdivielso, Sergio; Pérez Cardiel, Estela; Serrano Muela, Pili; Lasanta, Teodoro; Cammeraat, Erik

    2015-04-01

    Soils and vegetation tend to evolve jointly in relation to climate evolution and the impacts of human activity. Afforestation has been one of the main policies for environmental management of forest landscapes in Mediterranean areas. Afforestation has been based mainly on conifers because they are fast-growing species, and also because it was believed that this would lead to rapid restoration of soil properties and hydrological processes, and the formation of protective vegetation cover. This study analyses the effects of afforestation on physical and chemical soil properties. Specifically, we addressed this research question: (i) How do soil properties change after land abandonment? The 11 microsites considered were: Afforestation Pinus sylvestris (escarpment, terrace and close to the stem), Afforestation Pinus nigra (escarpment, terrace and close to the stem), natural shrubland, grasslands, bare lands, and undisturbed forest site (pine cover and close to the stem). An extensive single sampling was carried out in September 2014. We systematically collected 5 top soil samples (0-10 cm) and 3 deep soil samples (10-20 cm) per microsite (88 composite samples in total). These properties were analysed: (i) soil texture, (ii) bulk density, (iii) pH and electrical conductivity, (iv) total SOC, (v) Total Nitrogen, (vi) organic matter, (vii) CaCO3 and (viii) aggregate stability. Statistical tests have been applied to determine relationships between the different soil properties and are used to assess differences between different soil samples, land use areas and soil depths. Implications of reafforestation for soil development and environmental response are discussed. Acknowledgments This research was supported by a Marie Curie Intra-European Fellowship in the project "MED-AFFOREST" (PIEF-GA-2013-624974).

  6. Tensile and Impact Toughness Properties of Gas Tungsten Arc Welded and Friction Stir Welded Interstitial Free Steel Joints

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Balasubramanian, V.

    2011-02-01

    Welded regions of interstitial free (IF) steel grades in the vicinity of weld center exhibits larger grains because of the prevailing thermal conditions during weld metal solidification. This often causes inferior weld mechanical properties. In the present study, tensile properties, charpy impact toughness, microhardness, microstructure, lowest hardness distribution profile, and fracture surface morphology of the gas tungsten arc welded (GTAW) and friction stir welded joints were evaluated, and the results are compared. From this investigation, it is found that friction stir welded joint of IF steel showed superior tensile and impact properties compared with GTAW joint, and this is mainly due to the formation of very fine, equiaxed microstructure in the weld zone.

  7. New insights into the properties of contrail cirrus and their impact on climate from airborne experiments

    NASA Astrophysics Data System (ADS)

    Voigt, Christiane; Schumann, Ulrich; Minikin, Andreas; Schlager, Hans; Anderson, Bruce

    2016-04-01

    Current growth rates in aviation demand a profound scientific data base of contrail cirrus properties in order to accurately assess their climate impact. In particular, the differentiation of contrail cirrus in natural cirrus fields is challenging. Direct observations of contrail cirrus throughout their life cycle are scarce and therefore limit our understanding of the climate effects from contrail cirrus. Here, we give new insights into the growth, life-cycle and climate impact from contrail cirrus based on results from suite of aircraft experiments. NASA's ACCESSII mission focused on the detection of aircraft emissions and initial contrail stages. Nascent contrails were detected at cruise altitudes at 100 m distance to the engine exit. Contrail growth to 10-min contrail age was investigated during DLR's CONCERT campaigns. Finally, the objective of the ML-CIRRUS experiment was to study the life cycle and climate impact of contrail cirrus. The contrail measurements are related to previous observations and discussed in the context of recent developments in contrail modeling. Highlights include the quantification of the effects of aircraft type on contrail microphysics, the analysis of ice particle shapes and the quantitative distinction of contrail cirrus and natural cirrus.

  8. The Impact of Higher Waste Loading on Glass Properties: The Effects of Uranium and Thorium

    SciTech Connect

    Peeler, D.K.

    2003-12-02

    In this study, glasses are designed or selected to assess the impacts of U3O8 and ThO2 on various glass properties of interest. More specifically, glasses were fabricated in which Th replaced U (on a molar basis) to assess the impact of ThO2 on the durability response (as measured by the Product Consistency Test ) and viscosity. Based on the measured normalized boron release values, the results indicated that the Th-enriched glasses were less durable than their Ubased counterparts. Although molar substitution of Th or U had a negative impact, all of the glasses were more durable than the Environmental Assessment glass - the highest release being 7.39 g/L as compared to 16.695 g/L as reported for EA. With respect to model predictions, THERMOTM predicts that a molar substitution of thorium for uranium should increase glass durability. However, these data suggest that the signs and/or magnitudes of the Gi values associated with U3O8 and ThO2 are inconsistent with the theory on which the current model is based for the limited number of glasses tested. It should be noted that these glasses cover a narrow compositional region. With respect to the impact on viscosity, the data suggest that there may be a bias in the model. That is, the model currently does not contain a U3O8 or ThO2 term - but perhaps it should to account for their contributions to the measured (or actual) viscosity results. In addition, a series of glasses were produced to assess the impact of higher waste loadings on select glass properties. The PCT results suggest that durable glasses can be made at relatively high WLs (exceeding 40 wt percent). Comparisons between the measured PCTs and their predictions indicate that the current model is applicable, with all of the quenched glasses falling within the 95 percent confidence bands. The viscosity data for the higher WL glasses suggest that the current model may be extremely accurate for some systems but for different regions the model may be biased high

  9. Tensile and impact properties of V-4Cr-4Ti alloy heats 832665 and 832864

    NASA Astrophysics Data System (ADS)

    Bray, T. S.; Tsai, H.; Nowicki, L. J.; Billone, M. C.; Smith, D. L.; Johnson, W. R.; Trester, P. W.

    2000-12-01

    Two large heats of V-4Cr-4Ti alloy were produced in the US in the past few years. The first, 832665, was a 500 kg heat procured by the US Department of Energy for basic fusion structural materials research. The second, 832864, was a 1300 kg heat procured by General Atomics for the DIII-D radiative divertor upgrade. Both heats were produced by Oremet-Wah Chang (previously Teledyne Wah Chang of Albany). Tensile properties up to 800°C and Charpy V-notch impact properties down to liquid nitrogen temperature were measured for both heats. The product forms tested for both heats were rolled sheets annealed at 1000°C for 1 h in vacuum. Testing results show the behavior of the two heats to be similar and the reduction of strengths with temperature to be insignificant up to at least 750°C. Ductility of both materials is good in the test temperature range. Impact properties for both heats are excellent - no brittle failures at temperatures above -150°C. Compared to the data for previous smaller laboratory heats of 15-50 kg, the results show that scale-up of vanadium alloy ingot production to sizes useful for reactor blanket design can be successfully achieved as long as reasonable process control is implemented (H. Tsai, et al., Fusion Materials Semiannual Progress Report for Period Ending 30th June 1998, DOE/ER-0313/24, p. 3; H. Tsai, et al., Fusion Materials Semiannual Progress Report for Period Ending 31st December 1998, DOE/ER-0313/25, p. 3).

  10. Mechanical Properties and Sliding-impact Wear Resistance of Self-adhesive Resin Cements.

    PubMed

    Furuichi, T; Takamizawa, T; Tsujimoto, A; Miyazaki, M; Barkmeier, W W; Latta, M A

    2016-01-01

    The present study determined the mechanical properties and impact-sliding wear characteristics of self-adhesive resin cements. Five self-adhesive resin cements were used: G-CEM LinkAce, BeautiCem SA, Maxcem Elite, Clearfil SA Automix, and RelyX Unicem 2. Clearfil Esthetic Cement was employed as a control material. Six specimens for each resin cement were used to determine flexural strength, elastic modulus, and resilience according to ISO specification #4049. Ten specimens for each resin cement were used to determine the wear characteristics using an impact-sliding wear testing apparatus. Wear was generated using a stainless-steel ball bearing mounted inside a collet assembly. The maximum facet depth and volume loss were determined using a noncontact profilometer in combination with confocal laser scanning microscopy. Data were evaluated using analysis of variance followed by the Tukey honestly significantly different test (α=0.05). The flexural strength of the resin cements ranged from 68.4 to 144.2 MPa; the elastic modulus ranged from 4.4 to 10.6 GPa; and the resilience ranged from 4.5 to 12.0 MJ/m(3). The results for the maximum facet depth ranged from 25.2 to 235.9 μm, and volume loss ranged from 0.0107 to 0.5258 mm(3). The flexural properties and wear resistance were found to vary depending upon the self-adhesive resin cement tested. The self-adhesive cements tended to have lower mechanical properties than the conventional resin cement. All self-adhesive resin cements, apart from G-CEM LinkAce, demonstrated significantly poorer wear resistance than did the conventional resin cement. PMID:26918929

  11. [Impact of reclaimed water irrigation on soil chemical properties and culturable microorganisms ].

    PubMed

    Gong, Xue; Wang, Ji-hua; Guan, Jian-fei; Yang, Xue-chen; Chen, Dai-ci

    2014-09-01

    This research used batch soil column experiment to study the effects of irrigating with reclaimed water and tap water on the soil chemical properties and culturable microorganisms. The results indicated that reclaimed water could markedly increase the soil organic material (OM) and total nitrogen (TN) content, but it had no obvious effect on total phosphorus (TP), available phosphorus (AP) and pH value. Reclaimed water irrigation could significantly enhance the amounts of surface soil bacteria and actinomycetes at a depth of 0-20 cm, but it had little effect on the biomass of 20-40 cm and 40-60 cm soil layers. The dominant bacteria in tap water irrigation area was the genus Bacillus whereas that of reclaimed water irrigation area was the genus Acinetobacter. Tap water irrigation area had four endemic genera and reclaimed water irrigation area had six endemic genera. Reclaimed water had no obvious effect on the microbial community Shannon diversity of 0-20 cm soil layer, while it decreased Pielou evenness index, and improved Margalef richness index. Through SPSS 17. 0 correlation analysis between soil microbes quantity and soil chemical properties, it was shown that the soil microbes quantity was positively correlated with OM, TN, TP and AP, but negatively correlated with soil water content (SWC) and pH value. Based on CANOCO 4.5 detrended correspondence analysis (DCA) and redundancy analysis (RDA) between soil microbes species and soil chemical properties, it was shown that AP had the strongest correlation with the microbial community (P = 0.002). TN and TP had larger impact on Streptococcus, Aeromonas and Neisseria. OM and AP had larger impact on Aerococcus, Planococcus and Halobacterium. PMID:25518681

  12. Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of dehusked rice.

    PubMed

    Lee, H H; Loh, S P; Bong, C F J; Sarbini, S R; Yiu, P H

    2015-12-01

    Whole grains consumption promotes health benefits, but demonstrates controversial impacts from phytic acid in meeting requirements of good health. Therefore, this study was aimed to determine the nutrient bioaccessibility and antioxidant properties of rice cultivars named "Adan" or "Bario" and deduce the nutritional impact of phytic acid. Majority of the dehusked rice in the collection showed an acceptable level of in-vitro starch digestibility and in-vitro protein digestibility, but were poor in antioxidant properties and bioaccessibility of minerals (Ca, Fe and Zn). The drawbacks identified in the rice cultivars were due to relatively high phytic acid content (2420.6 ± 94.6 mg/100 g) and low phenolic content (152.39 ± 18.84 μg GAE/g). The relationship between phytic acid content and mineral bioaccessibility was strongest in calcium (r = 0.60), followed by iron (r = 0.40) and zinc (r = 0.27). Phytic acid content did not significantly correlate with in-vitro starch digestibility and in-vitro protein digestibility but showed a weak relationship with antioxidant properties. These suggest that phytic acid could significantly impair the mineral bioaccessibility of dehusked rice, and also act as an important antioxidant in non-pigmented rice. Bario rice cultivars offered dehusked rice with wide range of in-vitro digestibility of starch and protein, and also pigmented rice as a good source of antioxidants. However, there is a need to reduce phytic acid content in dehusked rice for improved mineral bioaccessibility among Bario rice cultivars. PMID:26604353

  13. Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties

    NASA Technical Reports Server (NTRS)

    Ebmeier, S.K.; Sayer, Andrew M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-01-01

    The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The timeaveraged indirect aerosol effects within 200 kilometers downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002-2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002- 2008) data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (la Reunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes - including those from passive degassing, Strombolian activity and minor explosions - lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2 - 8 micrometers at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Watts per square meter at distances of 150 - 400 kilometers from the volcano, with much greater local (less than 80 kilometers) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted

  14. Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties

    NASA Astrophysics Data System (ADS)

    Ebmeier, S. K.; Sayer, A. M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-10-01

    The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The time-averaged indirect aerosol effects within 200 km downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002-2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002-2008) data. Retrievals of aerosol and cloud properties at Kīlauea (Hawai'i), Yasur (Vanuatu) and Piton de la Fournaise (la Réunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes - including those from passive degassing, Strombolian activity and minor explosions - lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2-8 μm at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Wm-2 at distances of 150-400 km from the volcano, with much greater local (< 80 km) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted, isolated marine settings may capture processes similar to

  15. Impact of biomass burning on cloud properties in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Nenes, A.; Seinfeld, J. H.; Andreae, M. O.

    2003-01-01

    We used a one-dimensional (1-D) cloud parcel model to assess the impact of biomass-burning aerosol on cloud properties in the Amazon Basin and to identify the physical and chemical properties of the aerosol that influence droplet growth. Cloud condensation nuclei (CCN) measurements were performed between 0.15% and 1.5% supersaturation at ground-based sites in the states of Amazonas and Rondônia, Brazil during several field campaigns in 1998 and 1999 as part of the Large-Scale Biosphere-Atmosphere (LBA) Experiment in Amazonia. CCN concentrations measured during the wet season were low and resembled concentrations more typical of marine conditions than most continental sites. During the dry season, smoke aerosol from biomass burning dramatically increased CCN concentrations. The modification of cloud properties, such as cloud droplet effective radius and maximum supersaturation, is most sensitive at low CCN concentrations. Hence, we could expect larger interannual variation of cloud properties during the wet season that the dry season. We found that differences between CCN spectra from forested and deforested regions during the wet season are modest and result in modifications of cloud properties that are small compared to those between wet and dry seasons. Our study suggests that the differences in surface albedo, rather than cloud albedo, between forested and deforested regions may dominate the impact of deforestation on the hydrological cycle and convective activity during the wet season. During the dry season, on the other hand, cloud droplet concentrations may increase by up to 7 times, which leads to a model-predicted decrease in cloud effective radius by a factor of 2. This could imply a maximum indirect radiative forcing due to aerosol as high as ca. -27 W m-2 for a nonabsorbing cloud. Light-absorbing substances in smoke darken the Amazonian clouds and reduce the net radiative forcing, and a comparison of the Advanced Very High Resolution Radiometer (AVHRR

  16. Dynamic performance of a static or throwing droplet impact onto a solid substrate with different properties

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Li, Ya-Dong

    2016-03-01

    The dynamic performance of a static or throwing droplet impact onto a solid substrate with different properties is numerically studied in this work. After being released or horizontally thrown out, a two-dimensional droplet can fall freely under gravity. The substrate, which is below the droplet, is either hydrophilic/hydrophobic or inhomogeneous. To conduct numerical simulations, a hybrid method is adopted, in which the flow field is solved by using the lattice Boltzmann method and the interface is captured by solving the Cahn-Hilliard equation directly. Given a fixed distance between the droplet and the substrate (H∗), the effects of Bond number (Bo), Weber number (We), and surface property on the performance of droplet impingement are investigated in detail. With the increase of Bond number, the surface coverage area of a static droplet also increases. A hydrophilic surface or an inhomogeneous surface with small advancing/receding angle difference can lead to the breakup of droplet rim due to the bubble entrapment. Moreover, dependent on the Weber number and the surface property, the leading edge rim of a throwing droplet developing on an inhomogeneous surface may break up before or after it contacts the substrate. As a result, compared to the case of static droplet, the surface coverage area will be reduced due to the diffusion of small droplet segment.

  17. Mechanical property characterization and impact resistance of selected graphite/PEEK composite materials

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    1994-01-01

    To use graphite polyetheretherketone (PEEK) material on highly curved surfaces requires that the material be drapable and easily conformable to the surface. This paper presents the mechanical property characterization and impact resistance results for laminates made from two types of graphite/PEEK materials that will conform to a curved surface. These laminates were made from two different material forms. These forms are: (1) a fabric where each yarn is a co-mingled Celion G30-500 3K graphite fiber and PEEK thermoplastic fiber; and (2) an interleaved material of Celion G30-500 3K graphite fabric interleaved with PEEK thermoplastic film. The experimental results from the fabric laminates are compared with results for laminates made from AS4/PEEK unidirectional tape. The results indicate that the tension and compression moduli for quasi-isotropic and orthotropic laminates made from fabric materials are at least 79 percent of the modulus of equivalent laminates made from tape material. The strength of fabric material laminates is at least 80 percent of laminates made from tape material. The evaluation of fabric material for shear stiffness indicates that a tape material laminate could be replaced by a fabric material laminate and still maintain 89 percent of the shear stiffness of the tape material laminate. The notched quasi-isotropic compression panel failure strength is 42 to 46 percent of the unnotched quasi-isotropic laminate strength. Damage area after impact with 20 ft-lbs of impact energy is larger for the co-mingled panels than for the interleaved panels. The inerleaved panels have less damage than panels made from tape material. Residual compression strength of quasi-isotropic panels after impact of 20 ft-lbs of energy varies between 33 percent of the undamaged quasi-isotropic material strength for the tape material and 38 percent of the undamaged quasi-isotropic material strength for the co-mingled fabric material.

  18. Spectral properties of simulated impact glasses produced from martian soil analogue JSC Mars-1

    NASA Astrophysics Data System (ADS)

    Moroz, L. V.; Basilevsky, A. T.; Hiroi, T.; Rout, S. S.; Baither, D.; van der Bogert, C. H.; Yakovlev, O. I.; Fisenko, A. V.; Semjonova, L. F.; Rusakov, V. S.; Khramov, D. A.; Zinovieva, N. G.; Arnold, G.; Pieters, C. M.

    2009-07-01

    To simulate the formation of impact glasses on Mars, an analogue of martian bright soil (altered volcanic soil JSC Mars-1) was melted at relevant oxygen fugacities using a pulsed laser and a resistance furnace. Reduction of Fe3+ to Fe2+ and in some cases formation of nanophase Fe0 in the glasses were documented by Mössbauer spectroscopy and TEM studies. Reflectance spectra for several size fractions of the JSC Mars-1 sample and the glasses were acquired between 0.3 and 25 μm. The glasses produced from the JSC Mars-1 soil show significant spectral variability depending on the method of production and the cooling rate. In general, they are dark and less red in the visible compared to the original JSC Mars-1 soil. Their spectra do not have absorption bands due to bound water and structural OH, have positive spectral slopes in the near-infrared range, and show two broad bands centered near 1.05 and 1.9 μm, typical of glasses rich in ferrous iron. The latter bands and low albedo partly mimic the spectral properties of martian dark regions, and may easily be confused with mafic materials containing olivine and low-Ca pyroxene. Due to their disordered structures and vesicular textures, the glasses show relatively weak absorption features from the visible to the thermal infrared. These weak absorption bands may be masked by the stronger bands of mafic minerals. Positive near-infrared spectral slopes typical of fresh iron-bearing impact or volcanic glasses may be masked either by oxide/dust coatings or by aerosols in the Mars' atmosphere. As a result, impact glasses may be present on the surface of Mars in significant quantities that have been either misidentified as other phases or masked by phases with stronger infrared features. Spectrometers with sufficient spatial resolution and wavelength coverage may detect impact glasses at certain locations, e.g., in the vicinity of fresh impact craters. Such dark materials are usually interpreted as accumulations of mafic

  19. Impact of substrate on structure and electrical properties in lead-based ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Valanoor, Nagarajan Venkatasubramanian

    Current trends in semiconductor technology demand that ferroelectric materials be used in thin film form, rather than bulk, for integration and scaling purposes. An inevitable consequence of integration is substrate induced constraint and stress. Sources of this stress are the lattice and thermal mismatch between film and substrate, structural phase transformation which leads to spontaneous strains, and dislocation cores at the film substrate interface. In addition to classical stress relaxation mechanisms all highly tetragonal ferroelectrics relax internal stress via formation of polydomain (90° domains and not 180° domains) structures below the phase transformation, which brings about a change in the microstructure of the film. Hence it is possible to control the resultant microstructure by controlling the degree of polydomain relaxation. Obviously this affects the electrical and electro-mechanical properties and in turn the device performance. The goal of this research is to study this structure-property relationship of ferroelectric thin films where in the structure has been systematically modified by changing the substrate-induced effect. To investigate the effect of the substrate, epitaxial films of PbZr 0.2Ti0.8O3 were grown by pulsed laser deposition (PLD). Epitaxial films reduce the complexities introduced grain boundaries and multiple domain orientations. By systematically changing the thickness the spontaneous strain or c/a ratio can be varied. As a consequence polydomain formation varies as a function of film thickness. Thus this is an effective yet simple method to fully understand the impact of stress on structure-property inter-relationships. The theoretical background for these experiments is first laid out by a thermodynamic analysis of the polydomain formation. It leads to the construction of a domain stability map and indicates a presence of a critical thickness for polydomain formation. This is followed by an investigation of the impact of

  20. Effect of microstructure and non-metallic inclusions on the impact properties of flux-cored weld metals

    SciTech Connect

    Schumann, G.O.; French, I.E.

    1997-06-15

    Flux-cored weld metals are used in many critical fabricated steel structures such as offshore constructions. In such rigorous conditions, it is essential to maintain good low temperature toughness. In particular failure by cleavage must be avoided. The two basic factors determining fracture toughness are the general microstructure and the non-metallic inclusions. Additional factors that cause embrittlement of the weld metal are segregated microphases, nitrogen, and impurity elements. This work has shown that the amount of large inclusions in conjunction with the amount of grain boundary nucleated ferrite are the major factors, which determine the impact properties of flux-cored welds at all strength levels. Other factors such as segregated microphases, nitrogen and impurity elements may influence the impact properties but appeared minor in this case. The interaction between the inclusions and the grain boundary nucleated ferrite is critical. Good impact properties are achievable, (a) with high amounts of grain boundary nucleated ferrite, provided the amount of large inclusions is very low and (b) with small amounts of large inclusions, provided the amount of allotriomorphic ferrite is low. The frequency of large inclusions is the major factor determining the impact properties for flux-cored welds. A high frequency of large inclusions leads to low impact properties.

  1. Thermal Properties of Starch From New Corn Lines as Impacted by Environment and During Line Development

    SciTech Connect

    Elizabeth M. Lenihan

    2003-12-12

    The objectives of this research were to further characterize exotic by adapted corn inbreds by studying the impact of environment on their starch thermal properties, and investigating the development of starch thermal properties during kernel maturation by using differential scanning calorimetry (DSC). A method to expedite identification of unusual starch thermal traits was investigated by examining five corn kernels at a time, instead of one kernel, which the previous screening methods used. Corn lines with known thermal functions were blended with background starch (control) in ratios of unique starch to control starch, and analyzed by using DSC. Control starch was representative of typical corn starch. The values for each ratio within a mutant type were unique ({alpha} < 0.01) for most DSC measurements. These results supported the five-kernel method for rapidly screening large amounts of corn germplasm to identify unusual starch traits. The effects of 5 growing locations on starch thermal properties from exotic by adapted corn and Corn Belt lines were studied using DSC. The warmest location, Missouri, generally produced starch with greater gelatinization onset temperature (T{sub oG}), narrower range of gelatinization (R{sub G}), and greater enthalpy of gelatinization ({Delta}H{sub G}). The coolest location, Illinois, generally resulted in starch with lower T{sub oG}, wider R{sub G}, and lower {Delta}H{sub G}. Starch from the Ames 1 farm had thermal properties similar to those of Illinois, whereas starch from the Ames 2 farm had thermal properties similar to those of Missouri. The temperature at Ames 2 may have been warmer since it was located near a river; however, soil type and quality also were different. Final corn starch structure and function change during development and maturity. Thus, the changes in starch thermal properties during 5 stages of endosperm development from exotic by adapted corn and Corn Belt lines at two locations were studied by using DSC

  2. Impact of Texture Heterogeneity on Elastic and Viscoelastic Properties of Carbonates

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi

    This thesis discusses the impacts of fabric heterogeneity, fluids and fluid saturations, effective pressures, and frequency of investigation on the elastic and viscoelastic properties of calcite-rich limestone and chalk formations. Carbonate reservoirs have been analyzed either with empirical relations and analogs from siliciclastic reservoirs or using simplistic models. However, under the varying parameters mentioned above, their seismic response can be very different. The primary reason is because these rocks of biochemical origins readily undergo textural changes and support heterogeneous distribution of fluid flow and elastic properties. Thus, many current rock physics models are unable to predict the time-lapse elastic response in these reservoirs. I have measured elastic properties of calcite rich rocks in the seismic frequency range of 2 to 2000 Hz and at the ultrasonic frequency of 800 kHz. The samples selected for this study represent the typical heterogeneities found in carbonate formations. These measurements covering a large frequency range provide an understanding of the dispersion and attenuation mechanisms during seismic wave propagation in the subsurface. I find that a heterogeneous formation shows significant velocity dispersion and attenuations when saturated with brine, and even more on saturation with CO2. I also show that the shear modulus of carbonate rocks changes significantly (from 8% for brine saturation to 70% for CO2 saturation) upon fluid saturation with polar fluids. I evaluated rock physics models, such as Gassmann's and with uniform and patchy fluid substitution, and Hashin-Shtrikman to predict saturated elastic properties in carbonates. Fluid sensitivity is directly related to the initial stiffness of the rock instead of porosity, as normally assumed. The Gassmann model can predict elastic properties for uniform saturations - mostly in homogenous rocks. Heterogeneous rocks, however, are better modeled using a patchy fluid saturation

  3. Impact of intrinsic localized modes of atomic motion on materials properties

    SciTech Connect

    Manley, M E

    2010-01-20

    Recent neutron and x-ray scattering measurements show intrinsic localized modes (ILMs) in metallic uranium and ionic sodium iodide. Here, the role ILMs play in the behavior of these materials is examined. With the thermal activation of ILMs, thermal expansion is enhanced, made more anisotropic, and, at a microscopic level, becomes inhomogeneous. Interstitial diffusion, ionic conductivity, the annealing rate of radiation damage, and void growth are all influenced by ILMs. The lattice thermal conductivity is suppressed above the ILM activation temperature while no impact is observed in the electrical conductivity. This complement of transport properties suggests that ILMs could improve thermoelectric performance. Ramifications also include thermal ratcheting, a transition from brittle to ductile fracture, and possibly a phase transformation in uranium.

  4. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers.

    PubMed

    Sun, Baichuan; Barnard, Amanda S

    2016-08-01

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery. PMID:27404991

  5. The impact of whey protein preheating on the properties of emulsion gel bead.

    PubMed

    Ruffin, Emilie; Schmit, Tiffany; Lafitte, Géraldine; Dollat, Jean-Marie; Chambin, Odile

    2014-05-15

    Thermal treatment effect (70 or 80 °C for 5 or 30 min) was evaluated on functional properties of whey protein isolate (WPI) dispersions used for the development of novel vitamin A delivery systems based on emulsion gel beads. This process combines an (O/W) emulsion diluted by a polysaccharide solution and a cold-set gelation induced by salt addition. Pre-heated WPI had a significant impact on the denaturation degree and on the surface hydrophobicity, respectively studied by differential scanning calorimetry and fluorescence. Stronger heating conditions (i.e. duration or temperature) induced complete denaturation, an increase of surface hydrophobicity and of viscosity. Under these conditions, the final emulsion showed a decrease particle size and an enhancement of stability. The resulting beads offered better vitamin A yield and stability during storage. These delivery systems bring a good protection of vitamin A to pH changes and control the release of this lipophilic component. PMID:24423540

  6. Impact of observational incompleteness on the structural properties of protein interaction networks

    NASA Astrophysics Data System (ADS)

    Kuhnt, Mathias; Glauche, Ingmar; Greiner, Martin

    2007-01-01

    The observed structure of protein interaction networks is corrupted by many false positive/negative links. This observational incompleteness is abstracted as random link removal and a specific, experimentally motivated (spoke) link rearrangement. Their impact on the structural properties of gene-duplication-and-mutation network models is studied. For the degree distribution a curve collapse is found, showing no sensitive dependence on the link removal/rearrangement strengths and disallowing a quantitative extraction of model parameters. The spoke link rearrangement process moves other structural observables, like degree correlations, cluster coefficient and motif frequencies, closer to their counterparts extracted from the yeast data. This underlines the importance to take a precise modeling of the observational incompleteness into account when network structure models are to be quantitatively compared to data.

  7. Spectral properties of Titan's impact craters imply chemical weathering of its surface

    NASA Astrophysics Data System (ADS)

    Neish, C. D.; Barnes, J. W.; Sotin, C.; MacKenzie, S.; Soderblom, J. M.; Le Mouélic, S.; Kirk, R. L.; Stiles, B. W.; Malaska, M. J.; Le Gall, A.; Brown, R. H.; Baines, K. H.; Buratti, B.; Clark, R. N.; Nicholson, P. D.

    2015-05-01

    We examined the spectral properties of a selection of Titan's impact craters that represent a range of degradation states. The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. The progression is consistent with the chemical weathering of Titan's surface. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind. These observations support the idea that fluvial processes are active in Titan's equatorial regions.

  8. Impact of the tetrahedral distortion in the superconducting and magnetic properties of iron pnictides

    NASA Astrophysics Data System (ADS)

    Valenzuela, Belen; Calderon, Maria Jose; Bascones, Elena

    2010-03-01

    The origin of magnetism and superconductivity in iron pnictides is unknown. An added complexity in these materials is the strong impact in the electronic properties brought by small distortions of the As-Fe tetrahedra. We have proposed a five orbital tight binding model using the Slater-Koster framework that with just four parameters reproduce the bands and Fermi surface found with first principle calculations [1]. The good agreement between our results and DFT predictions extends to the orbital weight of each band. Using this model we study the magnetic and superconducting state and analyze how it depends on the distortion of the tetrahedron.[4pt] [1] M.J. Calder'on, B. Valenzuela and E. Bascones, Phys. Rev. B 80, 94531 (2009)

  9. Changes in the properties of solonetzic soil complexes in the dry steppe zone under anthropogenic impacts

    NASA Astrophysics Data System (ADS)

    Lyubimova, I. N.; Novikova, A. F.

    2016-05-01

    Long-term studies of changes in the properties of solonetzic soil complexes of the dry steppe zone under anthropogenic impacts (deep plowing, surface leveling, irrigation, and post-irrigation use) have been performed on the Privolzhskaya sand ridge and the Khvalyn and Ergeni plains. The natural morphology of solonetzic soils was strongly disturbed during their deep ameliorative plowing. At present, the soil cover consists of solonetzic agrozems (Sodic Protosalic Cambisols (Loamic, Aric, Protocalcic)), textural (clay-illuvial) calcareous agrozems (Eutric Cambisols (Loamic, Aric, Protocalcic)), agrosolonetzes (Endocalcaric Luvisols (Loamic, Aric, Cutanic, Protosodic), agrochestnut soils (Eutric Cambisols (Siltic, Aric)), and meadowchestnut soils (Haplic Kastanozems). No features attesting to the restoration of the initial profile of solonetzes have been found. The dynamics of soluble salts and exchangeable sodium differ in the agrosolonetzes and solonetzic agrozems. A rise in pH values takes place in the middle part of the soil profiles on the Khvalyn and Ergeni plains.

  10. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers

    NASA Astrophysics Data System (ADS)

    Sun, Baichuan; Barnard, Amanda S.

    2016-07-01

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove

  11. Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of Escherichia coli cells.

    PubMed

    Zhang, Wen; Hughes, Joseph; Chen, Yongsheng

    2012-06-01

    Despite a wealth of studies examining the toxicity of engineered nanomaterials, current knowledge on their cytotoxic mechanisms (particularly from a physical perspective) remains limited. In this work, we imaged and quantitatively characterized the biomechanical (hardness and elasticity), adhesive, and surface electrical properties of Escherichia coli cells with and without exposure to hematite nanoparticles (NPs) in an effort to advance our understanding of the cytotoxic impacts of nanomaterials. Both scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that E. coli cells had noticeable deformation with hematite treatment for 45 min with a statistical significance. The hematite-treated cells became significantly harder or stiffer than untreated ones, as evidenced by indentation and spring constant measurements. The average indentation of the hematite-treated E. coli cells was 120 nm, which is significantly lower (P < 0.01) than that of the untreated cells (approximately 400 nm). The spring constant of hematite-treated E. coli cells (0.28 ± 0.11 nN/nm) was about 20 times higher than that of untreated ones (0.01 ± 0.01 nN/nm). The zeta potential of E. coli cells, measured by dynamic light scattering (DLS), was shown to shift from -4 ± 2 mV to -27 ± 8 mV with progressive surface adsorption of hematite NPs, a finding which is consistent with the local surface potential measured by Kelvin probe force microscopy (KPFM). Overall, the reported findings quantitatively revealed the adverse impacts of nanomaterial exposure on physical properties of bacterial cells and should provide insight into the toxicity mechanisms of nanomaterials. PMID:22467500

  12. Impacts of Hematite Nanoparticle Exposure on Biomechanical, Adhesive, and Surface Electrical Properties of Escherichia coli Cells

    PubMed Central

    Zhang, Wen; Hughes, Joseph

    2012-01-01

    Despite a wealth of studies examining the toxicity of engineered nanomaterials, current knowledge on their cytotoxic mechanisms (particularly from a physical perspective) remains limited. In this work, we imaged and quantitatively characterized the biomechanical (hardness and elasticity), adhesive, and surface electrical properties of Escherichia coli cells with and without exposure to hematite nanoparticles (NPs) in an effort to advance our understanding of the cytotoxic impacts of nanomaterials. Both scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that E. coli cells had noticeable deformation with hematite treatment for 45 min with a statistical significance. The hematite-treated cells became significantly harder or stiffer than untreated ones, as evidenced by indentation and spring constant measurements. The average indentation of the hematite-treated E. coli cells was 120 nm, which is significantly lower (P < 0.01) than that of the untreated cells (approximately 400 nm). The spring constant of hematite-treated E. coli cells (0.28 ± 0.11 nN/nm) was about 20 times higher than that of untreated ones (0.01 ± 0.01 nN/nm). The zeta potential of E. coli cells, measured by dynamic light scattering (DLS), was shown to shift from −4 ± 2 mV to −27 ± 8 mV with progressive surface adsorption of hematite NPs, a finding which is consistent with the local surface potential measured by Kelvin probe force microscopy (KPFM). Overall, the reported findings quantitatively revealed the adverse impacts of nanomaterial exposure on physical properties of bacterial cells and should provide insight into the toxicity mechanisms of nanomaterials. PMID:22467500

  13. Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties.

    PubMed

    Zhang, Xin; Scott, Tom; Socha, Tyler; Nielsen, David; Manno, Michael; Johnson, Melissa; Yan, Yuqi; Losovyj, Yaroslav; Dowben, Peter; Aydil, Eray S; Leighton, Chris

    2015-07-01

    The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe(1-δ)S) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe(1-δ)S formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe(1-δ)S minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe(1-δ)S nanoregions in an FeS2 matrix), followed by metallicity when Fe(1-δ)S dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities. PMID:26087015

  14. The impact of algal properties and pre-oxidation on solid-liquid separation of algae.

    PubMed

    Henderson, Rita; Parsons, Simon A; Jefferson, Bruce

    2008-04-01

    Algae are traditionally classified according to biological descriptors which do not give information on surface characteristics that are important with respect to removal by water treatment processes. This review examines the character of freshwater algal populations from a water treatment perspective and evaluates the impact of their varying properties and the use of pre-oxidation on their removal by solid-liquid separation processes.. The characteristics shown to impact on treatment were morphology, motility, surface charge, cell density and the extracellular organic matter (EOM) composition and concentration. With the exception of density, these are not phyla specific. It was also shown that dissolved air flotation (DAF) was the most robust clarification method, where up to 99.8% removal was achieved compared to 94% for sedimentation when using metal coagulants. However, successful clarification relied heavily on the optimisation of preceding coagulation and flocculation and coagulant demand was important in this respect. Comparison of all available data reveals a relationship between cell surface area and coagulant demand. It is thus suggested that cell surface area would provide a basis for regrouping algae such that the classification is informative with respect to water treatment. However, the absolute coagulant demand is a result of both surface area and EOM influences. The latter are relatively poorly understood in comparison to natural organic matter (NOM) systems and this remains a limit in current knowledge. PMID:18261761

  15. PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K

    2005-09-28

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear and isothermal heating, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Differential scanning calorimetry, DSC, was used to monitor CP decomposition at linear heating rates of 1-7 C min{sup -1} in perforated pans and of 0.1-1.0 C min{sup -1} in sealed pans. The kinetic triplet was calculated using the LLNL code Kinetics05, and predictions for 210 and 240 C are compared to isothermal thermogravimetric analysis (TGA) experiments. Values are also reported for spark, friction, and impact sensitivity.

  16. Impact of apoptosis on the on-line measured dielectric properties of CHO cells.

    PubMed

    Zalai, Dénes; Tobak, Teodóra; Putics, Ákos

    2015-12-01

    Apoptosis is a common type of cell death in biopharmaceutical cell culture processes which causes decrease in viable cell density and product yield. The progression of apoptosis has been reported to influence the dielectric properties of mammalian cells; however, the on-line detection of these effects has been rarely described. This study provides a comprehensive analysis of the on-line detectability of dielectric changes upon apoptosis induction in an industrial fed-batch process of CHO cells expressing a recombinant monoclonal antibody. Using capacitance signals, measured at 25 frequencies, the impact of apoptosis on the dielectric spectra was investigated in eight bioreactor cultivations in which various process conditions were combined with two different apoptosis induction strategies (camptothecin treatment and glucose starvation). To differentiate the apoptosis-related information from the cell concentration-associated variance in the multivariate capacitance datasets, principal component analysis (PCA) was used. A second principal component, explaining an explicit proportion (>20%) of the variance, was identified to be related to dielectric changes induced by apoptosis. Furthermore, the analysis of caspase-3 and -7 activation and DNA fragmentation showed that the detected dielectric change occurred in the early phase of apoptosis. The presented results verify that apoptosis has a considerable impact on the dielectric features of CHO cells and it can be monitored on-line with the introduced tool-set combining capacitance measurement with multivariate data analysis. PMID:26440966

  17. The influence of body mass index and gender on the impact attenuation properties of flooring systems.

    PubMed

    Bhan, Shivam; Levine, Iris; Laing, Andrew C

    2013-12-01

    The biomechanical effectiveness of safety floors has never been assessed during sideways falls with human volunteers. Furthermore, the influence of body mass index (BMI) and gender on the protective capacity of safety floors is unknown. The purpose of this study was to test whether safety floors provide greater impact attenuation compared with traditional flooring, and whether BMI and gender modify their impact attenuation properties. Thirty participants (7 men and 7 women of low BMI; 7 men and 9 women of high BMI) underwent lateral pelvis release trials on 2 common floors and 4 safety floors. As a group, the safety floors reduced peak force (by up to 11.7%), and increased the time to peak force (by up to 25.5%) compared with a traditional institutional grade floor. Force attenuation was significantly higher for the low BMI group, and for males. Force attenuation was greatest for the low BMI males, averaging 26.5% (SD = 3.0) across the safety floors. These findings demonstrate an overall protective effect of safety floors during lateral falls on the pelvis, but also suggest augmented benefits for frail older adults (often with low body mass) who are at an increased risk of hip fracture. PMID:23429161

  18. Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole.

    PubMed

    Sun, Binbin; Lian, Fei; Bao, Qiongli; Liu, Zhongqi; Song, Zhengguo; Zhu, Lingyan

    2016-07-01

    The interaction between biochar (BC) and antibiotics with the presence of low molecular weight organic acids (LMWOAs) is largely unknown, although it is crucial for understanding the role of BC in reducing the bioavailability of antibiotics in rhizosphere. The impacts of two typical LMWOAs (citric and malic acids) on sorption of sulfamethoxazole (SMX) by crop-straw BCs produced at 300 °C (BCs300) and 600 °C (BCs600), respectively, were examined. The sorption of SMX on BCs increased more than 5 times with the concentration of LMWOAs increasing from 0 to 100 mmol/L, which was mainly attributed to the elevated microporosity of BCs (measured by CO2) after treated by LMWOAs. The pore development of BCs was mainly derived from the release of dissolved organic residues from BC by LMWOA washing. For H2O2-oxidized BCs, however, LMWOAs had little effect on SMX sorption by BCs300 but greatly increased that by BCs600, which can be explained by the distinct sorption mechanisms of SMX on BCs300 and BCs600. These results indicate that the impact of LMWOAs on SMX sorption is highly dependent on the properties of BCs and LMWOAs, as well as their interaction mechanisms. PMID:27077553

  19. Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens

    NASA Astrophysics Data System (ADS)

    Shahali, Y.; Pourpak, Z.; Moin, M.; Zare, A.; Majd, A.

    2009-02-01

    Epidemiological studies have demonstrated that urbanization and high levels of vehicle emissions correlated with the increasing trend of pollen-induced respiratory allergies. Numerous works have investigated the role of pollutants in the pathogenesis of respiratory diseases but impacts of anthropogenic pollution on pollen allergenic properties are still poorly understood. The objective of this survey was to evaluate impacts of the traffic-related pollution on the structure and allergenic protein content of Arizona cypress (Cupressus arizonica, CA) pollens, recognized as a rising cause of seasonal allergy in various regions worldwide. According to our results, traffic-related air pollution by its direct effects on the elemental composition of pollens considerably increased the fragility of the pollen exine, causing numerous cracks in its surface and facilitating pollen content liberation. Pollen grains were also covered by numerous submicronic orbicules which may act as effective vectors for pollen-released components into the lower regions of respiratory organs. On the other hand, this study provides us reliable explications about the low efficiency of standard commercial allergens in the diagnosis of the Arizona cypress pollen allergy in Tehran. Although traffic related pollution affects the allergenic components of CA pollens, the repercussions on the respiratory health of urban populations have yet to be clarified and need further investigations.

  20. Impact tensile properties and strength development mechanism of glass for reinforcement fiber

    NASA Astrophysics Data System (ADS)

    Kim, T.; Oshima, K.; Kawada, H.

    2013-07-01

    In this study, impact tensile properties of E-glass were investigated by fiber bundle testing under a high strain rate. The impact tests were performed employing two types of experiments. One is the tension-type split Hopkinson pressure bar system, and the other is the universal high-speed tensile-testing machine. As the results, it was found that not only the tensile strength but also the fracture strain of E-glass fiber improved with the strain rate. The absorbed strain energy of this material significantly increased. It was also found that the degree of the strain rate dependency of E-glass fibers on the tensile strength was varied according to fiber diameter. As for the strain rate dependency of the glass fiber under tensile loading condition, change of the small crack-propagation behaviour was considered to clarify the development of the fiber strength. The tensile fiber strength was estimated by employing the numerical simulation based on the slow crack-growth model (SCG). Through the parametric study against the coefficient of the crack propagation rate, the numerical estimation value was obtained for the various testing conditions. It was concluded that the slow crack-growth behaviour in the glass fiber was an essential for the increase in the strength of this material.

  1. Evaluating the impact of aquifer layer properties on geomechanical response during CO2 geological sequestration

    SciTech Connect

    Bao, Jie; Xu, Zhijie; Lin, Guang; Fang, Yilin

    2013-04-01

    Numerical models play an essential role in understanding the facts of carbon dioxide (CO2) geological sequestration in the life cycle of a storage reservoir. We present a series of test cases that reflect a broad and realistic range of aquifer reservoir properties to systematically evaluate and compare the impacts on the geomechanical response to CO2 injection. In this study, a coupled hydro-mechanical model was introduced to simulate the sequestration process, and a quasi-Monte Carlo sampling method was introduced to efficiently sample the value of aquifer properties and geometry parameters. Aquifer permeability was found to be of significant importance to the geomechanical response to the injection. To study the influence of uncertainty of the permeability distribution in the aquifer, an additional series of tests is presented, based on a default permeability distribution site sample with various distribution deviations generated by the Monte Carlo sampling method. The results of the test series show that different permeability distributions significantly affect the displacement and possible failure zone.

  2. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  3. Impact of lipid oxidization on biophysical properties of model cell membranes.

    PubMed

    Makky, Ali; Tanaka, Motomu

    2015-05-01

    The oxidization of glycerophospholipids in cell membranes due to aging and environmental stresses may cause a variety of pathological and physiological consequences. A variety of oxidized phospholipid products (OxPl) are produced by the chemical oxidization of unsaturated hydrocarbon chains, which would significantly change the physicochemical properties of cell membranes. In this work, we constructed cell membrane models in the absence and presence of two stable oxidized lipid products and investigated their impact on physical properties of supported membranes using quartz crystal microbalance with dissipation (QCM-D) and high-energy X-ray reflectivity (XRR). Our experimental findings suggest that the lipid oxidization up to 20 mol % leads to the rupture of vesicles right after the adsorption. Our XRR analysis unravels the membrane thinning and the decrease in the lateral ordering of lipids, which can be explained by the decrease in the lateral packing of hydrocarbon chains. Further studies on mechanics of membranes incorporating oxidized lipids can be attributed to the decrease in the bending rigidity and the increase in the permeability. PMID:25870900

  4. Psychometric Properties of Croatian and Slovenian Short Form of Oral Health Impact Profile Questionnaires

    PubMed Central

    Rener-Sitar, Ksenija; Petričević, Nikola; Čelebić, Asja; Marion, Ljubo

    2008-01-01

    Aim To develop Croatian and Slovenian versions of the 14-item Oral Health Impact Profile (OHIP) Questionnaire. Methods The English original version of the OHIP questionnaire was translated into Croatian (OHIP-CRO14) and Slovenian (OHIP-SVN14) language by a forward-backward translation method. The psychometric properties of the OHIP-CRO14 and OHIP-SVN14 were tested. Concurrent validity was tested on 623 subjects (193 Croatian and 430 Slovenian), test-retest reliability on 115 subjects (55 Croatian and 60 Slovenian), internal consistency on 678 subjects (218 Croatian and 460 Slovenian), and responsiveness on 51 patients (21 Croatian and 30 Slovenian) in demand of treatment (toothache). Results Concurrent validity was confirmed by the association between the OHIP summary scores and self-reported oral health (correlation coefficients ranged from 0.40 to 0.60, P<0.001). Test-retest reliability showed high intraclass correlation (correlation coefficients, 0.79-0.94). Internal consistency showed high Cronbach α (0.77-0.91). Responsiveness was confirmed by a significant difference between the mean OHIP score at baseline and follow-up (P<0.001 for both Croatian and Slovenian patients) and high effect size in Croatian and Slovenian patients in demand of treatment (3.00 and 0.57, respectively). Conclusion Psychometric properties of OHIP-CRO14 and OHIP-SVN14 render these instruments suitable for the assessment of Oral Health Related Quality of Life in Croatia and Slovenia. PMID:18717001

  5. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties.

    PubMed

    Bozorg, Ali; Gates, Ian D; Sen, Arindom

    2015-02-01

    Biofilm formation in natural and engineered porous systems can significantly impact hydrodynamics by reducing porosity and permeability. To better understand and characterize how biofilms influence hydrodynamic properties in porous systems, the genetically engineered bioluminescent bacterial strain Pseudomonas fluorescens HK44 was used to quantify microbial population characteristics and biofilm properties in a translucent porous medium. Power law relationships were found to exist between bacterial bioluminescence and cell density, fraction of void space occupied by biofilm (i.e. biofilm saturation), and hydraulic conductivity. The simultaneous evaluation of biofilm saturation and porous medium hydraulic conductivity in real time using a non-destructive approach enabled the construction of relative hydraulic conductivity curves. Such information can facilitate simulation studies related to biological activity in porous structures, and support the development of new models to describe the dynamic behavior of biofilm and fluid flow in porous media. The bioluminescence based approach described here will allow for improved understanding and control of industrially relevant processes such as biofiltration and bioremediation. PMID:25479429

  6. Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Faucher, Luc; Gossuin, Yves; Hocq, Aline; Fortin, Marc-André

    2011-07-01

    Ultra-small gadolinium oxide nanoparticles (US-Gd2O3) are used to provide 'positive' contrast effects in magnetic resonance imaging (MRI), and are being considered for molecular and cellular imaging applications. However, these nanoparticles can aggregate over time in aqueous medium, as well as when internalized into cells. This study is aimed at measuring in vitro, in aqueous medium, the impact of aggregation on the relaxometric properties of paramagnetic US-Gd2O3 particles. First, the nanoparticle core size as well as aggregation behaviour was assessed by HRTEM. DLS (hydrodynamic diameter) was used to measure the hydrodynamic diameter of nanoparticles and nanoaggregates. The relaxometric properties were measured by NMRD profiling, as well as with 1H NMR relaxometers. Then, the positive contrast enhancement effect was assessed by using magnetic resonance scanners (at 1.5 and 7 T). At every magnetic field, the longitudinal relaxivity (r1) decreased upon agglomeration, while remaining high enough to provide positive contrast. On the other hand, the transverse relaxivity (r2) slightly decreased at 0.47 and 1.41 T, but it was enhanced at higher fields (7 and 11.7 T) upon agglomeration. All NMRD profiles revealed a characteristic relaxivity peak in the range 60-100 MHz, suggesting the possibility to use US-Gd2O3 as an efficient 'positive-T1' contrast agent at clinical magnetic fields (1-3 T), in spite of aggregation.

  7. Impact of single and dual modifications on physicochemical properties of japonica and indica rice starches.

    PubMed

    Lee, Su-Jin; Hong, Joo Yeon; Lee, Eun-Jung; Chung, Hyun-Jung; Lim, Seung-Taik

    2015-05-20

    The japonica (JR) and indica (IR) rice starches were modified by acetylation, hydroxypropylation, cross-linking, and dual modification (cross-linked acetylation and cross-linked hydroxypropylation) and the effects of single and dual chemical modifications of JR and WR on the physicochemical properties were investigated. The JR had a greater substitution degree of acetyl or hydroxypropyl groups than IR. The dual-modified JR showed broader gelatinization temperature range than corresponding single-modified starches, but narrower it in IR. The dual-modified JR and IR showed higher pasting temperature and lower breakdown than their corresponding single-modified starches. The dual modification with JR and IR induced significant increase in gel hardness as compared to the corresponding unmodified and single-modified starches. The dual-modified JR had a greater hardness, gumminess, and chewiness than the dual-modified IR. The different impact of single and dual modification with JR and IR on the physicochemical properties could be due to the differences in the location and distribution of substituent groups on the starch molecules. PMID:25817645

  8. The impacts of optical properties on radiative forcing due to dust aerosol

    NASA Astrophysics Data System (ADS)

    Wang, H.; Shi, G. Y.; Li, S. Y.; Li, W.; Wang, B.; Huang, Y. B.

    2006-05-01

    There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering albedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.

  9. Impact of effective ocean optical properties on the Pacific subtropical cell: a CGCM study

    NASA Astrophysics Data System (ADS)

    Yamanaka, G.; Tsujino, H.; Ishizaki, H.; Nakano, H.; Hirabara, M.

    2012-12-01

    The choice of ocean radiant scheme is important for modeling the upper ocean. According to the ocean-only simulation (Yamanaka et al., 2012), introduction of the chlorophyll-a dependent ocean radiant scheme results in the decreased mixed layer depth (MLD), the enhanced subtropical cell (STC), and the cooling of the eastern tropical Pacific sea surface temperature (SST). They also found that the enhanced STC results from the velocity profile change associated with the decreased Ekman boundary layer. However, the impact is not well understood when the air-sea feedback process is at work. This study examines the impact of the effective ocean optical properties on the Pacific mean fields, especially focusing on the STC, using a coupled general circulation model (CGCM). The CGCM we employed is the Meteorological Research Institute Earth System Model (MRI-ESM1). The atmospheric model is TL159L48, and the ocean model has a horizontal resolution of 1 x 0.5 deg. with 51 levels in vertical. Experimental design basically follows the CMIP5 protocol. Two experiments (CTL and SLR runs) are performed to investigate the impact of the effective ocean optical properties. In the CTL run, a conventional ocean radiant heating scheme (Paul and Simpson, 1977) is used, whereas a new ocean radiant heating scheme is used in the SLR run, where the satellite-derived chlorophyll-a distribution is taken into consideration based on Morel and Antoine (1994) as well as the effect of the varying solar angle (Ishizaki and Yamanaka, 2010). Each experiment is integrated during the period from 1985 to 2005. It is found that introduction of the new ocean radiant scheme (SLR run) changes the long-term mean wind pattern in the Pacific: easterly winds are strengthened in the equatorial Pacific, but weakened in the off-equatorial region. In the tropical Pacific, the enhanced equatorial upwelling cools the equatorial SST and the MLD becomes shallower. This is similar to the ocean-only simulation, but is more

  10. Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material

    SciTech Connect

    Yang, Xiaoyu Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu

    2014-05-07

    The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

  11. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    NASA Astrophysics Data System (ADS)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  12. A Review of the Property Value Approach to Measuring the Welfare Impact of an Externality Excerpt from NUREG/CR-0989, PNL-2952 Vol. II Appendix B

    SciTech Connect

    RC. Adams

    1980-08-01

    This paper reviews 1) the quantitative measurement of the welfare impact due to an externality and 2) the empirical estimation of the welfare impact of an externality using the property value approach.

  13. Impact of roots, mycorrhizas and earthworms on soil physical properties as assessed by shrinkage analysis

    NASA Astrophysics Data System (ADS)

    Milleret, R.; Le Bayon, R.-C.; Lamy, F.; Gobat, J.-M.; Boivin, P.

    2009-07-01

    SummarySoil biota such as earthworms, arbuscular mycorrhizal fungi (AMF) and plant roots are known to play a major role in engineering the belowground part of the terrestrial ecosystems, thus strongly influencing the water budget and quality on earth. However, the effect of soil organisms and their interactions on the numerous soil physical properties to be considered are still poorly understood. Shrinkage analysis allows quantifying a large spectrum of soil properties in a single experiment, with small standard errors. The objectives of the present study were, therefore, to assess the ability of the method to quantify changes in soil properties as induced by single or combined effects of leek roots ( Allium porrum), AMF ( Glomus intraradices) and earthworms ( Allolobophora chlorotica). The study was performed on homogenised soil microcosms and the experiments lasted 35 weeks. The volume of the root network and the external fungal hyphae was measured at the end, and undisturbed soil cores were collected. Shrinkage analysis allowed calculating the changes in soil hydro-structural stability, soil plasma and structural pore volumes, soil bulk density and plant available water, and structural pore size distributions. Data analysis revealed different impacts of the experimented soil biota on the soil physical properties. At any water content, the presence of A. chlorotica resulted in a decrease of the specific bulk volume and the hydro-structural stability around 25%, and in a significant increase in the bulk soil density. These changes went with a decrease of the structural pore volumes at any pore size, a disappearing of the thinnest structural pores, a decrease in plant available water, and a hardening of the plasma. On the contrary, leek roots decreased the bulk soil density up to 1.23 g cm -3 despite an initial bulk density of 1.15 g cm -3. This increase in volume was accompanied with a enhanced hydro-structural stability, a larger structural pore volume at any

  14. Vertical migration of the toxic dinoflagellate Karenia brevis and the impact on ocean optical properties

    NASA Astrophysics Data System (ADS)

    Schofield, Oscar; Kerfoot, John; Mahoney, Kevin; Moline, Mark; Oliver, Matthew; Lohrenz, Steven; Kirkpatrick, Gary

    2006-06-01

    Vertical migration behavior is found in many harmful algal blooms; however, the corresponding impact on ocean optical properties has not been quantified. A near-monospecific population of the dinoflagellate Karenia brevis was encountered off the west coast of Florida. The community was tracked for 24 hours by following a Lagrangian drifter deployed at the beginning of the experiment. A suite of inherent optical and cellular measurements was made. Over the 24 hour period, the K. brevis population increased during the day with concentrations peaking in the late afternoon (1600 local daylight time) in the upper 2 m of the water column. The increase in K. brevis in surface waters resulted in enhanced reflectance at the sea surface with distinct spectral changes. There was a 22% decrease in the relative amount of the green reflectance due to increased pigment absorption. There was enhanced red (35%) and infrared (75%) light reflectance due to the increased particle backscatter and chlorophyll a fluorescence; however, the relative impact of the fluorescence was relatively small despite high cell numbers due to the significant fluorescence quenching present in K. brevis. The relative change in the blue light reflectance was not as large as the change in green light reflectance, which is surprising given the pigment absorption in the blue wavelengths of light. The increased blue light pigment absorption was offset by a significant decrease in nonalgal particle absorption. The inverse relationship between K. brevis and nonalgal particles was robust. This relationship may reflect low grazing on K. brevis populations due to the neurotoxins associated with this dinoflagellate. The low-grazing pressure may provide the mechanism by which this slow-growing dinoflagellate can achieve high cell numbers in the ocean.

  15. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries

    NASA Astrophysics Data System (ADS)

    Stewart, Sarah T.; Valiant, Gregory J.

    2006-10-01

    The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3-50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5-2.0 times deeper (≥5σo difference) with >50% larger cavities (≥2σo) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ˜6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45-70% of their transient cavity volumes, while highland craters preserve only 25-50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9-12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through

  16. Quantifying the impact of AGN and nebular emission on stellar population properties with REBETIKO

    NASA Astrophysics Data System (ADS)

    Cardoso, L. S. M.; Gomes, J. M.; Papaderos, P.

    2016-06-01

    Spectral synthesis enables the reconstruction of the star formation and chemical evolution histories (SFH & CEH) of a galaxy that are encoded in its spectral energy distribution (SED). Most state-of-the-art population synthesis codes however consider only purely stellar emission and are hence inadequate for modelling studies of galaxies where non-stellar emission components contribute significantly to the SED. This work combines evolutionary and population synthesis techniques to quantify the impact of active galactic nucleus (AGN) and nebular emission on the determination of the stellar population properties in galaxies. We have developed an evolutionary synthesis code called REBETIKO - Reckoning galaxy Emission By means of Evolutionary Tasks with Input Key Observables - to compute and study the time evolution of the SED of AGN-hosts and starburst galaxies. Our code takes into account the main ingredients of a galaxy's SED (e.g. non-thermal emission and/or nebular continuum and lines) for various commonly used parameterizations of the SFH, such as instantaneous burst, constant, exponentially decreasing, and gradually increasing peaking at a redshift between 1-10. Synthetic SEDs computed with REBETIKO have been subsequently fitted with the STARLIGHT population synthesis code (PSC) which can be regarded as representative for currently available state-of-the-art (i.e. purely stellar) PSCs. The objective is to study the impact of non-stellar SED components on the recovery of the true total stellar mass M_{star} and SFH of a galaxy, as well as other evolutionary properties, such as CEH and light- and mass-weighted mean stellar age and metallicity. We find that purely stellar fits in galaxies with a strong non-stellar continuum (e.g. Seyfert and/or starburst galaxies) can for instance overestimate M_{star} by up to 3 orders of magnitude, while the mean stellar age and metallicity can deviate from their true values up to 2 and 4 dex, respectively. These results imply

  17. Aircraft Measurements of Saharan dust properties and impact of atmospheric transport during Fennec

    NASA Astrophysics Data System (ADS)

    Ryder, Claire; Highwood, Ellie; Rosenberg, Phil; Trembath, Jamie; Brooke, Jennifer; Bart, Mark; Dean, Angela; Dorsey, James; Crosier, Jonny; McQuaid, Jim; Brindley, Helen; Banks, James; Marsham, John; Sodemann, Harald; Washington, Richard

    2013-04-01

    Measurements of Saharan dust from recent airborne campaigns have found variations in size distributions and optical properties across Saharan and sub-Saharan Africa. These variations have an impact on radiation and thus weather and climate, and are important to characterise and understand, in particular, to understand how they vary with time after dust uplift, transport, and height in the atmosphere. New in-situ aircraft measurements from the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert and the Atlantic Ocean will be presented and compared to previous airborne measurements. Size distributions extending to 300 μm will be shown, representing measurements extending further into the coarse mode than previously published for Saharan dust. The dust sampled by the aircraft covered a wide variety of loadings, dust source regions (Mali, Mauritania and Algeria) and dust ages (from fresh uplift to several days old). A significant coarse mode was present in the size distribution measurements with effective diameter up to 23 μm, and the mean size distribution showed greater concentrations of coarse mode than previous aircraft measurements. Single scattering albedo (SSA) values at 550nm calculated from these size distributions revealed high absorption from 0.77 to 0.95, with a mean of 0.85. Directly measured SSA values were higher (0.91 to 0.99) but new instrumentation revealed that these direct measurements, behind Rosemount inlets, overestimate the SSA by 0.02 to 0.20 depending on the concentration of coarse particles present. This is caused by inlet inefficiencies and pipe losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. This has a significant impact on atmospheric heating rates. The largest dust particles were encountered closest to the ground, and were most abundant in cases where dust was freshly uplifted. Number concentration, mass loading and extinction coefficient showed inverse

  18. Impact of land use practices on faunal abundance, nutrient dynamics and biochemical properties of desert pedoecosystem.

    PubMed

    Tripathi, G; Sharma, B M

    2005-11-01

    Increased dependence of resource-poor rural communities on soils of low inherent fertility are the major problem of desert agroecosystem. Agrisilviculture practices may help to conserve the soil biota for maintaining essential soil properties and processes in harsh climate. Therefore, the impacts of different land use systems on faunal density, nutrient dynamics and biochemical properties of soil were studied in agrisilviculture system of Indian desert. The selected fields had trees (Zizyphus mauritiana, Prosopis cineraria, Acacia nilotica) and crops (Cuminum cyminum, Brassica nigra, Triticum aestivum) in different combinations. Populations of Acari, Myriapoda, Coleoptera, Collembola, other soil arthropods and total soil fauna showed significant changes with respect to different land use practices and tree species, indicating a strong relation between above and below ground biodiversity. The Coleoptera exhibited greatest association with all agrisilviculture fields. The Z. mauritiana system indicated highest facilitative effects (RTE value) on all groups of soil fauna. Soil temperature, moisture, organic carbon, nitrate- and ammonical-nitrogen, available phosphorus, soil respiration and dehydrogenase activity were greater under tree than that of tree plus cropping system. It showed accumulation of nitrate-nitrogen in tree field and more utilization by crops in cultivated lands. Positive and significant correlation among organic carbon, nitrate- and ammonical-nitrogen, phosphorus, soil respiration and dehydrogenase activity clearly reflects increase in soil nutrients with the increase in microbial and other biotic activity. P. cineraria field was the best pedoecosystem, while C. cyminum was the best winter crop for cultivation in desert agroforestry system for soil biological health and soil sustainability. The increase in organic carbon, soil nutrients and microbial activity is associated with the increase in soil faunal population which reflect role of soil fauna

  19. Modeling of the Tritium Impact on Mechanical Properties of Structural Materials by Radiogenic Helium and Hydrogen Synergetic Effect Technique

    SciTech Connect

    Boitsov, I.E.; Grishechkin, S.K.; Zlatoustovskiy, S.V.; Yukhimchuk, A.A.

    2005-07-15

    The paper presents results of tritium-structural materials interaction modeling by simultaneous exposure to radiogenic helium-3 and hydrogen (both dissolved and external). This method of synergetic effect of radiogenic helium-3 and hydrogen is a radiation-safe technique to study the tritium impact on mechanical properties of structural materials. Applicability of the method is illustrated by technique and research results on the impact of high-pressure hydrogen (80MPa), helium-3 (concentration {approx}140appm) and their synergetic (hydrogen+{sup 3}He) effects on mechanical properties of CrNi40MoCuTiAl alloy in temperature range from 20 to 600 deg. C. It has been shown that joint effect of radiogenic helium-3 and hydrogen on mechanical properties of alloy can not be represented as the result of a simple summation of helium and hydrogen embrittlement. Proposed technique of synergetic impact of radiogenic helium-3 and hydrogen allows more correct simulation and investigation in the tritium impact on mechanical properties of materials than individual research in helium or hydrogen embrittlement.

  20. School Improvement and Urban Renewal: The Impact of a Turnaround School's Performance on Real Property Values in Its Surrounding Community

    ERIC Educational Resources Information Center

    Jacobson, Stephen L.; Szczesek, Jill

    2013-01-01

    This study investigates the economic impact of a "turnaround" school on real property values in its surrounding community as related to the argument introduced by Tiebout in 1956 correlating local public goods, in this case school success, to housing-location decision making. Using single-family home sales found on the Multiple Listing System and…

  1. Impact of the substitution of rice bran on rheological properties of dough and in the new product development.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice bran is a nutrient-rich co-product of the rice milling industries. The impact of adding 2-20% rice bran in wheat flour on the rheological behavior of the dough was investigated using the instruments, Farinograph, Consistograph, and Alveograph. The changes in physico-chemical properties were fo...

  2. 75 FR 65372 - Final Environmental Impact Statement for the Proposed Fee-to-Trust Conveyance of Property for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...This notice advises the public that the Bureau of Indian Affairs (BIA) is making available for public review the Final Environmental Impact Statement (FEIS) for the proposed conveyance of 125 acres of land that is currently held by the Cayuga Nation of New York in fee status into trust status. The uses of the properties, which include two convenience stores, would not change. The......

  3. The Rational Design of Selective Benzoxazepin Inhibitors of the α-Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of (S)-2-((2-(1-Isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326).

    PubMed

    Heffron, Timothy P; Heald, Robert A; Ndubaku, Chudi; Wei, BinQing; Augistin, Martin; Do, Steven; Edgar, Kyle; Eigenbrot, Charles; Friedman, Lori; Gancia, Emanuela; Jackson, Philip S; Jones, Graham; Kolesnikov, Aleksander; Lee, Leslie B; Lesnick, John D; Lewis, Cristina; McLean, Neville; Mörtl, Mario; Nonomiya, Jim; Pang, Jodie; Price, Steve; Prior, Wei Wei; Salphati, Laurent; Sideris, Steve; Staben, Steven T; Steinbacher, Stefan; Tsui, Vickie; Wallin, Jeffrey; Sampath, Deepak; Olivero, Alan G

    2016-02-11

    Inhibitors of the class I phosphoinositide 3-kinase (PI3K) isoform PI3Kα have received substantial attention for their potential use in cancer therapy. Despite the particular attraction of targeting PI3Kα, achieving selectivity for the inhibition of this isoform has proved challenging. Herein we report the discovery of inhibitors of PI3Kα that have selectivity over the other class I isoforms and all other kinases tested. In GDC-0032 (3, taselisib), we previously minimized inhibition of PI3Kβ relative to the other class I insoforms. Subsequently, we extended our efforts to identify PI3Kα-specific inhibitors using PI3Kα crystal structures to inform the design of benzoxazepin inhibitors with selectivity for PI3Kα through interactions with a nonconserved residue. Several molecules selective for PI3Kα relative to the other class I isoforms, as well as other kinases, were identified. Optimization of properties related to drug metabolism then culminated in the identification of the clinical candidate GDC-0326 (4). PMID:26741947

  4. Impact of a low intensity controlled-fire in some chemical soil properties.

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Hueso-González, Paloma; Aranda-Gómez, Francisco; Damián Ruiz-Sinoga, José

    2014-05-01

    Some changes in chemical soil properties can be observed after fires of low intensities. pH and electric conductivity tend to increase, while C/N ratio decrease. In the case of organic matter, the content can increase due to the massive incorporation of necromass including, especially, plants and roots. The aim of this study is to assess the impact of low intensity and controlled fire in some soil properties in field conditions. El Pinarillo experimental area is located in South of Spain. Two set of closed plots were installed (24 m2: 12 m length x 2 m width). One of them was remained as control with the original vegetation cover (Mediterranean matorral: Rosmarinus officinalis, Cistus clusii, Lavandula stoechas, Chamaeropos humilis, Thymus baetica), and the other one was burnt in a controlled-fire in 2011. Weather conditions and water content of vegetation influenced in the intensity of fire (low). After the controlled-fire, soil surface sample (0-5 cm) were taken in both set of plots (B, burnt soil samples; C, control soil samples). Some soil chemical properties were analysed: organic matter content (OM), C/N ratio, pH and electrical conductivity (EC). Some changes were observed in B corroborating a controlled-fire of low intensity. pH remained equal after fire (B: pH=7.7±0.11; C: pH=7.7±0.04). An increment was obtained in the case of EC (B: EC=0.45 mScm-1±0.08 mScm-1; C: EC=0.35 mScm-1±0.07 mScm-1) and OM (B: OM=8.7%±3.8%; C: pH=7.3%±1.5%). Finally, C/N ratio decreased after fire respect to the control and initial conditions (B: C/N=39.0±14.6; C: C/N =46.5±10.2).

  5. Fracture toughness and Charpy impact properties of several RAFMS before and after irradiation in HFIR

    NASA Astrophysics Data System (ADS)

    Sokolov, M. A.; Tanigawa, H.; Odette, G. R.; Shiba, K.; Klueh, R. L.

    2007-08-01

    As part of the development of candidate reduced-activation ferritic steels for fusion applications, several steels, namely F82H, 9Cr-2WVTa steels and F82H weld metal, are being investigated in the joint DOE-JAEA collaboration program. Within this program, three capsules containing a variety of specimen designs were irradiated at two design temperatures in the ORNL High Flux Isotope Reactor (HFIR). Two capsules, RB-11J and RB-12J, were irradiated in the HFIR removable beryllium positions with europium oxide (Eu 2O 3) thermal neutron shields in place. Specimens were irradiated up to 5 dpa. Capsule JP25 was irradiated in the HFIR target position to 20 dpa. The design temperatures were 300 °C and 500 °C. Precracked third-sized V-notch Charpy (3.3 × 3.3 × 25.4 mm) and 0.18 T DC(T) specimens were tested to determine transition and ductile shelf fracture toughness before and after irradiation. The master curve methodology was applied to evaluate the fracture toughness transition temperature, T0. Irradiation induced shifts of T0 and reductions of JQ were compared with Charpy V-notch impact properties. Fracture toughness and Charpy shifts were also compared to hardening results.

  6. Impact of Simulated Microgravity on Cytoskeleton and Viscoelastic Properties of Endothelial Cell

    PubMed Central

    Janmaleki, M.; Pachenari, M.; Seyedpour, S. M.; Shahghadami, R.; Sanati-Nezhad, A.

    2016-01-01

    This study focused on the effects of simulated microgravity (s-μg) on mechanical properties, major cytoskeleton biopolymers, and morphology of endothelial cells (ECs). The structural and functional integrity of ECs are vital to regulate vascular homeostasis and prevent atherosclerosis. Furthermore, these highly gravity sensitive cells play a key role in pathogenesis of many diseases. In this research, impacts of s-μg on mechanical behavior of human umbilical vein endothelial cells were investigated by utilizing a three-dimensional random positioning machine (3D-RPM). Results revealed a considerable drop in cell stiffness and viscosity after 24 hrs of being subjected to weightlessness. Cortical rigidity experienced relatively immediate and significant decline comparing to the stiffness of whole cell body. The cells became rounded in morphology while western blot analysis showed reduction of the main cytoskeletal components. Moreover, fluorescence staining confirmed disorganization of both actin filaments and microtubules (MTs). The results were compared statistically among test and control groups and it was concluded that s-μg led to a significant alteration in mechanical behavior of ECs due to remodeling of cell cytoskeleton. PMID:27581365

  7. The impact of antibiotics (benzylpenicillin, and nystatin) on the biological properties of ordinary chernozems

    NASA Astrophysics Data System (ADS)

    Akimenko, Yu. V.; Kazeev, K. Sh.; Kolesnikov, S. I.

    2014-09-01

    In recent years, the input of antibiotics into soils has sharply increased. We studied the impact antibiotics (benzylpenicillin, pharmasin, and nystatin) at different concentrations (100 and 600 mg/kg) on population densities of microorganisms and enzymatic activity of ordinary chernozems in model experiments. The applied doses of antibiotics had definite suppressing effects on population densities of microorganisms (up to 30-70% of the control) and on the soil enzymatic activity (20-70% of the control). Correlation analysis showed close correlation between the concentrations of antibiotics and the population densities of soil microorganisms ( r = -0.68-0.86). Amylolytic bacteria had the highest resistance to the antibiotics, whereas ammonifying bacteria had the lowest resistance. Among the studied enzymes belonging to oxidoreductases and hydrolases, catalase and phosphatase had the highest and the lowest resistance to the antibiotics, respectively. The effect of antibiotics on the biological properties of the chernozem lasted for a long time. The studied parameters were not completely recovered in 120 days.

  8. Mechanical property characterization and impact resistance of selected graphite/PEEK composite materials

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    1991-01-01

    To use graphite/PEEK material on highly curved surfaces requires that the material be drapable and easily conformable to the surface. The mechanical property characterization and impact resistance results are presented for laminates made from two types of graphite/PEEK materials that will conform to a curved surface. These laminates were made from two different material forms. These forms are: (1) a fabric where each yarn is a co-mingled Celion G30-500 3K graphite fiber and PEEK fiber; and (2) an interleaved material of Celion G30-500 3K graphite fiber interleaved with PEEK film. The experimental results from the fabric laminates are compared with results for laminates made from AS4/PEEK unidirectional tape. The results indicate that the tension and compression moduli for quasi-isotropic and orthotropic laminates made from fabric materials are at least 98 pct. of the modulus of equivalent laminates made from tape materials. The strength of fabric material laminates is at least 80 pct. of laminates made from tape material. The evaluation of the fabric material for shear stiffness indicates that a tape material laminate could be replaced by a fabric material laminate and still maintain 89 pct. of the shear stiffness of the tape material laminate.

  9. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity.

    PubMed

    Velmourougane, Kulandaivelu

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system. PMID:27042378

  10. Secondary materials: Engineering properties, environmental consequences, and social and economic impacts. Final report

    SciTech Connect

    Breslin, V.; Reaven, S.; Schwartz, M.; Swanson, L.; Zweig, M.; Bortman, M.; Schubel, J.

    1993-08-01

    This report investigates two secondary materials, plastic lumber made from mixed plastic waste, and cement blocks and structures made with incinerator ash. Engineering properties, environmental impacts, and energy costs and savings of these secondary materials are compared to standard lumber products and cement blocks. Market capacity and social acceptance of plastic lumber and stabilized ash products are analyzed. These secondary materials apparently have potential markets; however, their economic value is primarily that they will not take up landfill space. For plastic lumber and stabilized incinerator ash products, marine and highway construction seem ideal public works applications. Incinerator ash may be suitable to use in seawalls, jetties, fishing reefs, highway barriers, and roadbed applications. Docks, piers, highway sound barriers, parking stops, and park furniture may all be made from plastic lumber. To encourage public acceptance and improve the market potential of secondary materials, these activities could be beneficial: industry should emphasize developing useful, long-lived products; industry and governments should create product performance criteria; government should provide rigorous testing and demonstration programs; and government and industry should cooperate to improve public outreach and educational programs.

  11. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity

    PubMed Central

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system. PMID:27042378

  12. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  13. Ion-π interaction in impacting the nonlinear optical properties of ion-buckybowl complexes.

    PubMed

    Chen, He; Wang, Wen-Yong; Wang, Li; Zhu, Chang-Li; Fang, Xin-Yan; Qiu, Yong-Qing

    2016-03-01

    Ion-buckybowl complexes have received considerable attention in modern chemical research due to its fundamental and practical importance. Herein, we performed density functional theory (DFT) to calculate the geometical structure, binding interactions, dipole moments and the first hyperpolarizabilities (βtot) of ion-buckybowl complexes (ions are Cl(-) and Na(+), buckybowls are quadrannulene, corannulene and sumanene). It is found that the stabilities of ion-buckybowl compounds primarily originate from the interaction energy, which was proved by a new isomerization energy decomposition analysis approach. Plots of reduced density gradient mirror the ion-π weak interaction has been formed between the ions and buckybowls. Significantly, the buckybowl subunits cannot effectively impact the nonlinear optical (NLO), but the kind of ion has marked influence on the second-order NLO responses. The βtot values of Cl(-)-buckybowl complexes are all larger as compared to that of Na(+)-buckybowl complexes, which is attributed to the large charge-transfer (CT) from Cl(-) to buckybowl. Our present work will be beneficial for further theoretical and experimental studies on the NLO properties of ion-buckybowl compounds. PMID:26851864

  14. Deposition velocities and impact of physical properties on ozone removal for building materials

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Hsu, Shu-Chen

    2015-01-01

    This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.

  15. The formation, properties and impact of secondary organic aerosol: current and emerging issues

    NASA Astrophysics Data System (ADS)

    Hallquist, M.; Wenger, J. C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N. M.; George, C.; Goldstein, A. H.; Hamilton, J. F.; Herrmann, H.; Hoffmann, T.; Iinuma, Y.; Jang, M.; Jenkin, M.; Jimenez, J. L.; Kiendler-Scharr, A.; Maenhaut, W.; McFiggans, G.; Mentel, Th. F.; Monod, A.; Prévôt, A. S. H.; Seinfeld, J. H.; Surratt, J. D.; Szmigielski, R.; Wildt, J.

    2009-02-01

    Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with a description of the current state of knowledge on the global SOA budget and the atmospheric degradation mechanisms for SOA precursors. The topic of gas-particle partitioning theory is followed by an account of the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail; molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

  16. The formation, properties and impact of secondary organic aerosol: current and emerging issues

    NASA Astrophysics Data System (ADS)

    Hallquist, M.; Wenger, J. C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N. M.; George, C.; Goldstein, A. H.; Hamilton, J. F.; Herrmann, H.; Hoffmann, T.; Iinuma, Y.; Jang, M.; Jenkin, M. E.; Jimenez, J. L.; Kiendler-Scharr, A.; Maenhaut, W.; McFiggans, G.; Mentel, Th. F.; Monod, A.; Prévôt, A. S. H.; Seinfeld, J. H.; Surratt, J. D.; Szmigielski, R.; Wildt, J.

    2009-07-01

    Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

  17. Chemical precursor impact on the properties of Cu2ZnSnS4 absorber layer

    NASA Astrophysics Data System (ADS)

    Vashistha, Indu B.; Sharma, Mahesh C.; Sharma, S. K.

    2016-04-01

    In present work impact of different chemical precursor on the deposition of solar absorber layer Cu2ZnSnS4 (CZTS) were studied by Chemical Bath Deposition (CBD) method without using expensive vacuum facilities and followed by annealing. As compared to the other deposition methods, CBD method is interesting one because it is simple, reproducible, non-hazardous, cost effective and well suited for producing large-area thin films at low temperatures, although effect of precursors and concentration plays a vital role in the deposition. So, the central theme of this work is optimizing and controlling of chemical reactions for different chemical precursors. Further Effect of different chemical precursors i.e. sulphate and chloride is analyzed by structural, morphological, optical and electrical properties. The X-ray diffraction (XRD) of annealed CZTS thin film revealed that films were polycrystalline in nature with kestarite tetragonal crystal structure. The Atomic Force micrographs (AFM) images indicated total coverage compact film and as well as growth of crystals. The band gap of annealed CZTS films was found in the range of optimal band gap by absorption spectroscopy.

  18. Variability of aerosol optical depth and their impact on cloud properties in Pakistan

    NASA Astrophysics Data System (ADS)

    Alam, Khan; Khan, Rehana; Blaschke, Thomas; Mukhtiar, Azam

    2014-01-01

    This study analyzes seasonal and temporal variations in aerosol optical depth (AOD), and the impact of these variations on the properties of clouds over five cities in Pakistan, using Moderate Resolution Imaging Spectroradiometer (MODIS) data, obtained from the Terra satellite during the period (2001-2011). The obtained results indicated seasonal variation in AOD, with a high value of 2.3, in summer and low values of 0.2, in winter for the costal part of the region. The relationship between AOD and other cloud parameters, namely water vapor (WV), cloud fraction (CF), cloud optical thickness (COT), cloud liquid water path (CLWP), cloud top temperature (CTT), and cloud top pressure (CTP) were analyzed. On a temporal scale, latitudinal variations of both WV and AOD produce high correlations (>0.6) in some regions, and moderate correlations (0.4-0.6) in the other regions. An increasing trend in CF with AOD was found over urban regions in the period of observations. The CF values were higher for Lahore than the other selected regions during the whole period. During autumn and winter seasons the correlation was found to be positive between AOD and CLWP, while negative correlation was observed during the other seasons for all the selected regions. COT showed negative correlation with AOD at all locations except Karachi during spring and summer seasons.

  19. Impact of Simulated Microgravity on Cytoskeleton and Viscoelastic Properties of Endothelial Cell.

    PubMed

    Janmaleki, M; Pachenari, M; Seyedpour, S M; Shahghadami, R; Sanati-Nezhad, A

    2016-01-01

    This study focused on the effects of simulated microgravity (s-μg) on mechanical properties, major cytoskeleton biopolymers, and morphology of endothelial cells (ECs). The structural and functional integrity of ECs are vital to regulate vascular homeostasis and prevent atherosclerosis. Furthermore, these highly gravity sensitive cells play a key role in pathogenesis of many diseases. In this research, impacts of s-μg on mechanical behavior of human umbilical vein endothelial cells were investigated by utilizing a three-dimensional random positioning machine (3D-RPM). Results revealed a considerable drop in cell stiffness and viscosity after 24 hrs of being subjected to weightlessness. Cortical rigidity experienced relatively immediate and significant decline comparing to the stiffness of whole cell body. The cells became rounded in morphology while western blot analysis showed reduction of the main cytoskeletal components. Moreover, fluorescence staining confirmed disorganization of both actin filaments and microtubules (MTs). The results were compared statistically among test and control groups and it was concluded that s-μg led to a significant alteration in mechanical behavior of ECs due to remodeling of cell cytoskeleton. PMID:27581365

  20. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    SciTech Connect

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2009-12-02

    With wind energy expanding rapidly in the U.S. and abroad, and with an increasing number of communities considering wind power development nearby, there is an urgent need to empirically investigate common community concerns about wind project development. The concern that property values will be adversely affected by wind energy facilities is commonly put forth by stakeholders. Although this concern is not unreasonable, given property value impacts that have been found near high voltage transmission lines and other electric generation facilities, the impacts of wind energy facilities on residential property values had not previously been investigated thoroughly. The present research collected data on almost 7,500 sales of singlefamily homes situated within 10 miles of 24 existing wind facilities in nine different U.S. states. The conclusions of the study are drawn from eight different hedonic pricing models, as well as both repeat sales and sales volume models. The various analyses are strongly consistent in that none of the models uncovers conclusive evidence of the existence of any widespread property value impacts that might be present in communities surrounding wind energy facilities. Specifically, neither the view of the wind facilities nor the distance of the home to those facilities is found to have any consistent, measurable, and statistically significant effect on home sales prices. Although the analysis cannot dismiss the possibility that individual homes or small numbers of homes have been or could be negatively impacted, it finds that if these impacts do exist, they are either too small and/or too infrequent to result in any widespread, statistically observable impact.

  1. Impact properties of three-dimensional braided graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Gong, J. C.; Sankar, B. V.

    1991-01-01

    An experimental study of the response and damage of three-dimensional braided graphite/epoxy composite due to sub-perforation velocity impact was carried out in this research. Simply supported square plates were impacted with an instrumented impact pendulum and also a projectile fired by a gas gun. Hemispherical nose impactors of two different diameters, 12.7 mm and 25.4 mm, were used in the pendulum tests. In addition, static flexure tests were performed. Impact damage was assessed using X-radiography, and compression after impact tests. Damages involved in impacted braided panel are matrix cracking in resin pockets, separation of fiber tows, and fiber two breakage, mostly in fiber bundle crimp areas. A quasi-isotropic laminate was impact tested with pendulum for comparison of impact tolerance between the two composite systems.

  2. Aerosol Impacts on Microphysical and Radiative Properties of Stratocumulus Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Toohey, D. W.; Andrejczuk, M.; Anderson, J. R.; Adams, A.; Lytle, M.; George, R.; Wood, R.; Zuidema, P.; Leon, D.

    2011-12-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, cloud droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties along an E-W track from near the Chilean coast to remote areas offshore. Mean statistics from seven flights were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. The effect extends ~800 to 1000 km from shore. The additional particles are mainly sulfates from anthropogenic sources. Liquid water content and drizzle concentration tended to increase with distance from shore, but exhibited much greater variability. Analysis of the droplet residual measurements showed that not only were there more residual nuclei near shore, but that they tended to be larger than those offshore. Single particle analysis over a broad particle size range was used to reveal types and sources of CCN, which were primarily sulfates near shore. Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed due to the preferential activation of large aerosol particles. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, which initiate drizzle, contain the largest aerosol particles. However, the scavenging efficiency is not sharp as expected from a simple parcel activation model. A wide range of

  3. Impact damage resistance and residual property assessment of (0/+/-45/90)s SCS-6/Timetal 21S

    NASA Technical Reports Server (NTRS)

    Miller, Jennifer L.; Portanova, Marc A.; Johnson, W. Steven

    1995-01-01

    The impact damage resistance and residual mechanical properties of (0/ +/- 45/90)s SCS-6/Timetal 21S composites were evaluated. Both quasi-static indentation and drop-weight impact tests were used to investigate the impact behavior at two nominal energy levels (5.5 and 8.4 J) and determine the onset of internal damage. Through x-ray inspection, the extent of internal damage was characterized non-destructively. The composite strength and constant amplitude fatigue response were evaluated to assess the effects of the sustained damage. Scanning electron microscopy was used to characterize internal damage from impact in comparison to damage that occurs during mechanical loading alone. The effect of stacking sequence was examined by using specimens with the long dimension of the specimen both parallel (longitudinal) and perpendicular (transverse) to the 0 deg fiber direction. Damage in the form of longitudinal and transverse cracking occurred in all longitudinal specimens tested at energies greater than 6.3 J. Similar results occurred in the transverse specimens tested above 5.4 J. Initial load drop, characteristic of the onset of damage, occurred on average at 6.3 J in longitudinal specimens and at 5.0 J in transverse specimens. X-ray analysis showed broken fibers in the impacted region in specimens tested at the higher impact energies. At low impact energies, visible matrix cracking may occur, but broken fibers may not. Matrix cracking was noted along fiber swims and it appeared to depend on the surface quality of composite. At low impact energies, little damage has been incurred by the composite and the residual strength and residual life is not greatly reduced as compared to an undamaged composite. At higher impact energies, more damage occurred and a greater effect of the impact damage was observed.

  4. The Impacts of Thermal and Smouldering Remediation on Soil Properties Related to Rehabilitation and Plant Growth

    NASA Astrophysics Data System (ADS)

    Pape, A.; Knapp, C.; Switzer, C.

    2012-04-01

    Tens of thousands of sites worldwide are contaminated with toxic non-aqueous phase liquids (NAPLs) reducing their economic and environmental value. As a result a number of treatments involving heat and smouldering have been developed to desorb and extract or destroy these contaminants including; steam injection (<110°C), electrical heating (<110°C), microwave heating (ambient to 400°C),conductive heating (ambient to 800°C) and in-situ smouldering (800°C to 1200°C). Implemented correctly these treatments are efficient enough for the soil to be safe for use, but the heating may unintentionally reduce the capability of the soil to act as a growing media. To investigate the effects of elevated temperature soils samples were heated at fixed temperatures (ambient to 1000°C) for one hour or smouldered after artificial contamination. Temperatures up to 105°C resulted in very little change in soil properties but at 250°C nutrients became more available. At 500°C little organic matter or nitrogen remained in the soil and clay sized particles started to decompose and aggregate. By 1000°C total and available phosphorus were very low, cation exchange capacity had been reduced, pH had increased and the clay fraction had been completely lost. Similar changes were observed in smouldered soils with variations dependent upon remediation conditions. As a result the smouldered soils will require nutrient supplementation to facilitate plant growth. Nutrient addition will also improve the physical properties of the soil and serve to re-inoculate it with microbes, particularly if an organic source such as compost or sewage sludge is used. The soils may remain effective growing media during lower temperature treatments; however some sort of soil inoculant would also be beneficial as these temperatures are sufficient to sterilise the system, which may impact nutrient cycling. Further work involving months-long exposure to the elevated temperatures that are typical of thermal

  5. Experimental Techniques for Evaluating the Effects of Aging on Impact and High Strain Rate Properties of Triaxial Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas

    2010-01-01

    An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.

  6. Quantifying the impact of lithology upon the mechanical properties of rock

    NASA Astrophysics Data System (ADS)

    Weatherley, Dion

    2013-04-01

    The physical characteristics of rock, its lithology, undoubtedly influences its deformation under natural or engineering loads. Mineral texture, micro-damage, joints, bedding planes, inclusions, unconformities and faults are all postulated to alter the mechanical response of rock on different scales and under different stressing conditions. Whilst laboratory studies have elucidated some aspects of the relationship between lithology and mechanical properties, these small-scale results are difficult to extrapolate to lithospheric scales. To augment laboratory-derived knowledge, physics-based numerical modelling is a promising avenue [3]. Bonded particle models implemented using the Discrete Element Method (DEM [1]) are a practical numerical laboratory to investigate the interplay between lithology and the mechanical response of rock specimens [4]. Numerical rock specimens are represented as an assembly of indivisible spherical particles connected to nearest neighbours via brittle-elastic beams which impart forces and moments upon one-another as particles move relative to each other. By applying boundary forces and solving Newton's Laws for each particle, elastic deformation and brittle failure may be simulated [2]. Each beam interaction is defined by four model parameters: Young's modulus, Poisson's ratio, cohesive strength and internal friction angle. Beam interactions in different subvolumes of the specimen are assigned different parameters to model different rock types or mineral assemblages. Micro-cracks, joints, unconformities and faults are geometrically incorporated by fitting particles to either side of triangulated surfaces [5]. The utility of this modelling approach is verified by reproducing analytical results from fracture mechanics (Griffith crack propagation and wing-crack formation) and results of controlled laboratory investigations. To quantify the impact of particular lithologic structures on mechanical response, a range of control experiments are

  7. The psychomechanics of simulated sound sources: Material properties of impacted bars

    NASA Astrophysics Data System (ADS)

    McAdams, Stephen; Chaigne, Antoine; Roussarie, Vincent

    2004-03-01

    Sound can convey information about the materials composing an object that are often not directly available to the visual system. Material and geometric properties of synthesized impacted bars with a tube resonator were varied, their perceptual structure was inferred from multidimensional scaling of dissimilarity judgments, and the psychophysical relations between the two were quantified. Constant cross-section bars varying in mass density and viscoelastic damping coefficient were synthesized with a physical model in experiment 1. A two-dimensional perceptual space resulted, and the dimensions were correlated with the mechanical parameters after applying a power-law transformation. Variable cross-section bars varying in length and viscoelastic damping coefficient were synthesized in experiment 2 with two sets of lengths creating high- and low-pitched bars. In the low-pitched bars, there was a coupling between the bar and the resonator that modified the decay characteristics. Perceptual dimensions again corresponded to the mechanical parameters. A set of potential temporal, spectral, and spectrotemporal correlates of the auditory representation were derived from the signal. The dimensions related to mass density and bar length were correlated with the frequency of the lowest partial and are related to pitch perception. The correlate most likely to represent the viscoelastic damping coefficient across all three stimulus sets is a linear combination of a decay constant derived from the temporal envelope and the spectral center of gravity derived from a cochlear representation of the signal. These results attest to the perceptual salience of energy-loss phenomena in sound source behavior.

  8. Impact of controlled particle size nanofillers on the mechanical properties of segmented polyurethane nanocomposites

    SciTech Connect

    Finnigan, Bradley; Casey, Phil; Cookson, David; Halley, Peter; Jack, Kevin; Truss, Rowan; Martin, Darren

    2008-04-02

    The impact of average layered silicate particle size on the mechanical properties of thermoplastic polyurethane (TPU) nanocomposites has been investigated. At fixed addition levels (3 wt% organosilicate), an increase in average particle size resulted in an increase in stiffness. Negligible stiffening was observed for the smallest particles (30 nm) due to reduced long-range intercalation and molecular confinement, as well as ineffective stress transfer from matrix to filler. At low strain ({le}100%), an increase in filler particle size was associated with an increase in the rate of stress relaxation, tensile hysteresis, and permanent set. At high strain (1200%), two coexisting relaxation processes were observed. The rate of the slower (long-term) relaxation process, which is believed to primarily involve the hard segment rich structures, decreased on addition of particles with an average diameter of 200 nm or less. At high strain the tensile hysteresis was less sensitive to particle size, however the addition of particles with an average size of 200 nm or more caused a significant increase in permanent set. This was attributed to slippage of temporary bonds at the polymer-filler interface, and to the formation of voids at the sites of unaligned tactoids. Relative to the host TPU, the addition of particles with an average size of 30 nm caused a reduction in permanent set. This is a significant result because the addition of fillers to elastomers has long been associated with an increase in hysteresis and permanent set. At high strain, well dispersed and aligned layered silicates with relatively small interparticle distances and favourable surface interactions are capable of imparting a resistance to molecular slippage throughout the TPU matrix.

  9. Variability of Aerosol and its Impact on Cloud Properties Over Different Cities of Pakistan

    NASA Astrophysics Data System (ADS)

    Alam, Khan

    Interaction between aerosols and clouds is the subject of considerable scientific research, due to the importance of clouds in controlling climate. Aerosols vary in time in space and can lead to variations in cloud microphysics. This paper is a pilot study to examine the temporal and spatial variation of aerosol particles and their impact on different cloud optical properties in the territory of Pakistan using the Moderate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite data and Multi-angle Imaging Spectroradiometer (MISR) data. We also use Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to obtain origin of air masses in order to understand the spatial and temporal variability of aerosol concentrations. We validate data of MODIS and MISR by using linear correlation and regression analysis, which shows that there is an excellent agreement between data of these instruments. Seasonal study of Aerosol Optical Depth (AOD) shows that maximum value is found in monsoon season (June-August) over all study areas. We analyze the relationships between aerosol optical depth (AOD) and some cloud parameters like water vapor (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). We construct the regional correlation maps and time series plots for aerosol and cloud parameters mandatory for the better understanding of aerosol-cloud interaction. Our analyses show that there is a strong positive correlation between AOD and water vapor in all cities. The correlation between AOD and CF is positive for the cities where the air masses are moist while the correlation is negative for cities where air masses are relatively dry and with lower aerosol abundance. It shows that these correlations depend on meteorological conditions. Similarly as AOD increases Cloud Top Pressure (CTP) is decreasing while Cloud Top Temperature (CTT) is increasing. Key Words: MODIS, MISR, HYSPLIT, AOD, CF, CTP

  10. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems. PMID:23889602

  11. The psychomechanics of simulated sound sources: material properties of impacted bars.

    PubMed

    McAdams, Stephen; Chaigne, Antoine; Roussarie, Vincent

    2004-03-01

    Sound can convey information about the materials composing an object that are often not directly available to the visual system. Material and geometric properties of synthesized impacted bars with a tube resonator were varied, their perceptual structure was inferred from multidimensional scaling of dissimilarity judgments, and the psychophysical relations between the two were quantified. Constant cross-section bars varying in mass density and viscoelastic damping coefficient were synthesized with a physical model in experiment 1. A two-dimensional perceptual space resulted, and the dimensions were correlated with the mechanical parameters after applying a power-law transformation. Variable cross-section bars varying in length and viscoelastic damping coefficient were synthesized in experiment 2 with two sets of lengths creating high- and low-pitched bars. In the low-pitched bars, there was a coupling between the bar and the resonator that modified the decay characteristics. Perceptual dimensions again corresponded to the mechanical parameters. A set of potential temporal, spectral, and spectrotemporal correlates of the auditory representation were derived from the signal. The dimensions related to mass density and bar length were correlated with the frequency of the lowest partial and are related to pitch perception. The correlate most likely to represent the viscoelastic damping coefficient across all three stimulus sets is a linear combination of a decay constant derived from the temporal envelope and the spectral center of gravity derived from a cochlear representation of the signal. These results attest to the perceptual salience of energy-loss phenomena in sound source behavior. PMID:15058353

  12. Modeling the Impacts of Spatial Heterogeneity in the Castor Watershed on Runoff, Sediment, and Phosphorus Loss Using SWAT: I. Impacts of Spatial Variability of Soil Properties.

    PubMed

    Boluwade, Alaba; Madramootoo, Chandra

    2013-01-01

    Spatial accuracy of hydrologic modeling inputs influences the output from hydrologic models. A pertinent question is to know the optimal level of soil sampling or how many soil samples are needed for model input, in order to improve model predictions. In this study, measured soil properties were clustered into five different configurations as inputs to the Soil and Water Assessment Tool (SWAT) simulation of the Castor River watershed (11-km(2) area) in southern Quebec, Canada. SWAT is a process-based model that predicts the impacts of climate and land use management on water yield, sediment, and nutrient fluxes. SWAT requires geographical information system inputs such as the digital elevation model as well as soil and land use maps. Mean values of soil properties are used in soil polygons (soil series); thus, the spatial variability of these properties is neglected. The primary objective of this study was to quantify the impacts of spatial variability of soil properties on the prediction of runoff, sediment, and total phosphorus using SWAT. The spatial clustering of the measured soil properties was undertaken using the regionalized with dynamically constrained agglomerative clustering and partitioning method. Measured soil data were clustered into 5, 10, 15, 20, and 24 heterogeneous regions. Soil data from the Castor watershed which have been used in previous studies was also set up and termed "Reference". Overall, there was no significant difference in runoff simulation across the five configurations including the reference. This may be attributable to SWAT's use of the soil conservation service curve number method in flow simulation. Therefore having high spatial resolution inputs for soil data may not necessarily improve predictions when they are used in hydrologic modeling. PMID:24273353

  13. Impacts of the Cerro Grande fire on Homestead era and Manhattan Project properties at Los Alamos National Laboratory.

    SciTech Connect

    McGehee, E. D.; Isaacson, J.

    2001-01-01

    In May of 2000, the Cerro Grande Fire burned approximately 8,000 acres of Department of Energy (DOE) managed land at the Los Alamos National Laboratory (LANL). Although the fire was generally of low intensity, it impacted a significant number of LANL's cultural resources. Historic wooden properties were affected more heavily than prehistoric archaeological sites. This paper will provide an overview of the Homestead and Manhattan Project Periods at LANL and will discuss the effects of the Cerro Grande Fire on historic wooden properties. Post-fire cultural resource management issues will also be discussed.

  14. The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films

    SciTech Connect

    Bikowski, Andre; Welzel, Thomas; Ellmer, Klaus

    2013-06-17

    In order to study the impact of negative oxygen ion bombardment on the electronic transport properties of ZnO:Al films, a systematic magnetron sputtering study from ceramic targets with excitation frequencies from DC to 27 MHz, accompanied by strongly varying discharge voltages, has been performed. Higher plasma excitation frequencies significantly improve the transport properties of ZnO:Al films. The effect of the bombardment of the films by energetic particles (negative oxygen ions) can be explained by the dynamic equilibrium between the formation of acceptor-like oxygen interstitials compensating the extrinsic donors and the self-annealing of the interstitial defects at higher deposition temperatures.

  15. Impact of the monetary crisis on statistical properties of the Jakarta and Kuala Lumpur stock exchange indices

    NASA Astrophysics Data System (ADS)

    Mart, T.; Aminoto, T.

    2007-01-01

    Using the tools developed for statistical physics, we simultaneously analyze statistical properties of the Jakarta and Kuala Lumpur Stock Exchange indices. In spite of the small number of the data used in the analysis, the result still shows the universal behavior of complex systems previously found in the leading stock indices. We also analyze their properties before and after the crash caused by the monetary crisis. To locate the time position when the crash started we use the Omori law. We found that after the crash both stocks do not show a same statistical behavior. The impact of currency controls is observed in the distribution of the index returns.

  16. The Impact of Specific Prior Experiences on Infants' Extension of Animal Properties

    ERIC Educational Resources Information Center

    Furrer, Stephanie D.; Younger, Barbara A.

    2008-01-01

    We examined the influence of prior exposure to specific animal properties on 15-month-old infants' inductive generalization. Using picture books, 29 infants were trained on properties linked in a congruent or incongruent manner with four animal categories. A generalized imitation task was then administered to assess patterns of property extension…

  17. Effect of Ultrasonic Treatment on The Tensile and Impact Properties of Thermoplastic Natural Rubber Nanocomposites Reinforced with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Tarawneh, Mou'ad A.; Ahmad, Sahrim Hj.; Yahya, S. Y.; Rasid, Rozaidi

    2009-06-01

    This study investigates the effect of ultrasonic treatment on the mechanical properties of thermoplastic natural rubber (TPNR) nanocomposites reinforced with multi-walled nanotubes. The TPNR nanocomposites were prepared using melt blending method from polypropylene (PP), natural rubber (NR) and liquid natural rubber (LNR) as a compatibilizer, respectively, with 1% of Multi-wall nanotubes. The nanocomposite was prepared using the indirect technique (IDT) with the optimum processing parameters at 180° C with 80 rpm mixing speed and 11 minutes processing time. The results have showed that the good dispersion on nanotubes was achieved by ultrasonic treatment. The optimization of ultrasonic time indicated that the maximum tensile and impact properties occurred with 1 h ultrasonic treatment. The Young's modulus, tensile strength, elongation at break and impact strength have increased by almost 11%, 21%, 43% and 50%, respectively. The results from our study indicate that nanotubes have as excellent reinforcement filler in TPNR matrix.

  18. Effect of Ultrasonic Treatment on The Tensile and Impact Properties of Thermoplastic Natural Rubber Nanocomposites Reinforced with Carbon Nanotubes

    SciTech Connect

    Tarawneh, Mou'ad A.; Ahmad, Sahrim Hj.; Rasid, Rozaidi; Yahya, S. Y.

    2009-06-01

    This study investigates the effect of ultrasonic treatment on the mechanical properties of thermoplastic natural rubber (TPNR) nanocomposites reinforced with multi-walled nanotubes. The TPNR nanocomposites were prepared using melt blending method from polypropylene (PP), natural rubber (NR) and liquid natural rubber (LNR) as a compatibilizer, respectively, with 1% of Multi-wall nanotubes. The nanocomposite was prepared using the indirect technique (IDT) with the optimum processing parameters at 180 deg. C with 80 rpm mixing speed and 11 minutes processing time. The results have showed that the good dispersion on nanotubes was achieved by ultrasonic treatment. The optimization of ultrasonic time indicated that the maximum tensile and impact properties occurred with 1 h ultrasonic treatment. The Young's modulus, tensile strength, elongation at break and impact strength have increased by almost 11%, 21%, 43% and 50%, respectively. The results from our study indicate that nanotubes have as excellent reinforcement filler in TPNR matrix.

  19. Supplemental Information For: Asymmetric Distribution of Lunar Impact Basins Caused by Variations in Target Properties

    NASA Technical Reports Server (NTRS)

    Miljkovic, Katarina; Wieczorek, Mark; Collins, Gareth S.; Laneuville, Matthieu; Neumann, Gregory A.; Melosh, H. Jay; Solomon, Sean C.; Phillips, Roger J.; Smith, David E.; Zuber, Maria T.

    2014-01-01

    Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and uppermantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins up to two times larger than similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner Solar system impact bombardment

  20. Asymmetric distribution of lunar impact basins caused by variations in target properties.

    PubMed

    Miljkovićć, Katarina; Wieczorek, Mark A; Collins, Gareth S; Laneuville, Matthieu; Neumann, Gregory A; Melosh, H Jay; Solomon, Sean C; Phillips, Roger J; Smith, David E; Zuber, Maria T

    2013-11-01

    Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and upper mantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins with up to twice the diameter of similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner solar system impact bombardment. PMID:24202170

  1. Asymmetric Distribution of Lunar Impact Basins Caused by Variations in Target Properties

    NASA Technical Reports Server (NTRS)

    Miljkovic, Katarina; Wieczorek, Mark A.; Collins, Gareth S.; Laneuville, Matthieu; Neumann, Gregory A.; Melosh, H. Jay; Solomon, Sean C.; Phillips, Roger J.; Smith, David E.; Zuber, Maria T.

    2014-01-01

    Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and upper mantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins up to two times larger than similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner Solar system impact bombardment.

  2. Recovery of soil physical properties and microbiology in foresty drained peatlands from the impact of forest machinery

    NASA Astrophysics Data System (ADS)

    Lepilin, Dmitrii; Kimura, Bryn; Uusitalo, Jori; Laiho, Raija; Fritze, Hannu; Lauren, Ari; Tuittila, Eeva-Stiina

    2016-04-01

    Forestry-drained peatlands occupy approximately 5.7 million ha and represent almost one fourth of the total forest surface in Finland. They are subjected to the same silvicultural harvesting operations as upland forests. However, although the potential of timber harvesting to cause detrimental effects on soil is well documented in upland forests, the knowledge on environmental impact of harvesting machinery on peat soils is still lacking. To assess the impact of harvesting machines on peat physical properties and biology we collected soil samples from six peatland forests that were harvested by commonly employed Harvester and Forwarder. Samples were taken from trails formed by harvesting machinery (treatment plots) and outside of trails (control plots unaffected by machinery traffic) to a depth of 15 cm. To adders the recovery of soil properties after disturbance we sampled sites that form a chronosequence in respect to time since harvesting: 1 month (class I), 3-4 years (class II) and 14-15 years (class III). The physical and microbiological properties of soil samples were analyzed in laboratory. Harvesting operations with heavy machinery appeared to significantly increase the bulk density of peat in the machines' trails at recently harvested sites in comparison to control plots. Following change in bulk density there was change of pore size distribution with decreasing macrospores quantity. This led to slight decrease of total porosity and decrease of air filled porosity. Water retention capacity increased with increasing bulk density. CO2 evolution increased in the trails of class I site with where dissolved organic carbon concurrently decreased. While there was not impact of harvesting on microbial biomass or carbon, PLFA analysis indicated that machinery traffic caused a shift in microbial community structure. Results of class II and class III sites showed a recovery of physical properties within 16 years: treatment plots and control plots started to resemble

  3. JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System

    SciTech Connect

    Scott Tolbert; Steven Benson

    2008-02-29

    Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and

  4. Tailoring oxide properties: An impact on adsorption characteristics of molecules and metals

    NASA Astrophysics Data System (ADS)

    Honkala, Karoliina

    2014-12-01

    Both density functional theory calculations and numerous experimental studies demonstrate a variety of unique features in metal supported oxide films and transition metal doped simple oxides, which are markedly different from their unmodified counterparts. This review highlights, from the computational perspective, recent literature on the properties of the above mentioned surfaces and how they adsorb and activate different species, support metal aggregates, and even catalyse reactions. The adsorption of Au atoms and clusters on metal-supported MgO films are reviewed together with the cluster's theoretically predicted ability to activate and dissociate O2 at the Au-MgO(100)/Ag(100) interface, as well as the impact of an interface vacancy to the binding of an Au atom. In contrast to a bulk MgO surface, an Au atom binds strongly on a metal-supported ultra-thin MgO film and becomes negatively charged. Similarly, Au clusters bind strongly on a supported MgO(100) film and are negatively charged favouring 2D planar structures. The adsorption of other metal atoms is briefly considered and compared to that of Au. Existing computational literature of adsorption and reactivity of simple molecules including O2, CO, NO2, and H2O on mainly metal-supported MgO(100) films is discussed. Chemical reactions such as CO oxidation and O2 dissociation are discussed on the bare thin MgO film and on selected Au clusters supported on MgO(100)/metal surfaces. The Au atoms at the perimeter of the cluster are responsible for catalytic activity and calculations predict that they facilitate dissociative adsorption of oxygen even at ambient conditions. The interaction of H2O with a flat and stepped Ag-supported MgO film is summarized and compared to bulk MgO. The computational results highlight spontaneous dissociation on MgO steps. Furthermore, the impact of water coverage on adsorption and dissociation is addressed. The modifications, such as oxygen vacancies and dopants, at the oxide

  5. Impact damage resistance and residual property assessment of [0/{+-}45/90]{sub s} SCS-6/TIMETAL 21S

    SciTech Connect

    Miller, J.L.; Portanova, M.A.; Johnson, W.S.

    1997-12-31

    Titanium-matrix composites (TMCs) are candidate materials for high-temperature structural applications, such as gas turbine engines, where their high specific strength at elevated temperatures and good general corrosion resistance are beneficial. Here, the impact damage resistance and residual mechanical properties of [0/{+-}45/90]{sub s} SCS-6/TIMETAL 21S composites were evaluated.Both quasi-static indentation and drop-weight impact tests were used to investigate the impact behavior at two nominal energy levels and to determine the onset of internal damage. Through X-ray inspection, the extent of internal damage was characterized nondestructively. The composite strength and constant-amplitude fatigue response were evaluated to assess the effects of the sustained damage. SEM was used to characterize internal damage from impact in comparison to damage that occurs during mechanical loading alone. The effect of stacking sequence was examined by using specimens with the long dimension of the specimen both parallel and perpendicular to the 0{degree} fiber direction. Damage in the form of longitudinal and transverse cracking occurred in all longitudinal specimens tested at energies greater than 6.3 J. Similar results occurred in the transverse specimens tested above 5.4 J. Initial load drop, characteristic of the onset of damage, occurred on average at 6.3 J in longitudinal specimens and at 5.0 J in transverse specimens. X-ray analysis showed broken fibers in the impacted region in specimens tested at the higher impact energies. At low impact energies, visible matrix cracking may occur, but broken fibers may not. Matrix cracking was noted along fiber swims, and it appeared to depend on the surface quality of the composite. At low impact energies, little damage had been incurred by the composite and the residual strength and residual life was not greatly reduced as compared to an undamaged composite.

  6. Subtask 12F4: Effects of neutron irradiation on the impact properties and fracture behavior of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    Up-to-date results on the effects of neutron irradiation on the impact properties and fracture behavior of V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented in this paper, with an emphasis on the behavior of the U.S. reference alloys V-4Cr-4Ti containing 500-1000 wppm Si. Database on impact energy and cluctile-brittle transition temperature (DBTT) has been established from Charpy impact tests of one-third-size specimens irradiated at 420{degrees}C-600{degrees}C up to {approx}50 dpa in lithium environment in fast fission reactors. To supplement the Charpy impact tests fracture behavior was also characterized by quantitative SEM fractography on miniature tensile and disk specimens that were irradiated to similar conditions and fractured at -196{degrees}C to 200{degrees}C by multiple bending. For similar irradiation conditions irradiation-induced increase in DBTT was influenced most significantly by Cr content, indicating that irradiation-induced clustering of Cr atoms takes place in high-Cr (Cr {ge} 7 wt.%) alloys. When combined contents of Cr and Ti were {le}10 wt.%, effects of neutron irradiation on impact properties and fracture behavior were negligible. For example, from the Charpy-impact and multiple-bend tests there was no indication of irradiation-induced embrittlement for V-5Ti, V-3Ti-1Si and the U.S. reference alloy V-4Cr-4Ti after irradiation to {approx}34 dpa at 420{degrees}C to 600{degrees}C, and only ductile fracture was observed for temperatures as low as -196{degrees}C. 14 refs., 8 figs., 1 tab.

  7. Steel Processing Properties and Their Effect on Impact Deformation of Lightweight Structures

    SciTech Connect

    Simunovic, S

    2003-09-23

    The objective of the research was to perform a comprehensive computational analysis of the effects of material and process modeling approaches on performance of UltraLight Steel Auto Body (ULSAB) vehicle models. The research addressed numerous material related effects, impact conditions as well as analyzed the performance of the ULSAB vehicles in crashes against designs representing the current US vehicle fleet. This report is organized into three main sections. The first section describes the results of the computational analysis of ULSAB crash simulations that were performed using advanced material modeling techniques. The effects of strain-rate sensitivity on a high strength steel (HSS) intensive vehicle were analyzed. Frontal and frontal offset crash scenarios were used in a finite element parametric study of the ULSAB body structure. Comparisons are made between the crash results using the piece-wise-linear isotropic plasticity strain-rate dependent material model, and the isotropic plasticity material model based on quasi-static properties. The simulation results show the importance of advanced material modeling techniques for vehicle crash simulations due to strain-rate sensitivity and rapid hardening characteristics of advanced high strength steels. Material substitution was investigated for the main frontal crush structure using the material of similar yield stress a significantly different strain-rate and hardening characteristics. The objective of the research presented in Section 2 was to assess the influence of stamping process on crash response of ULSAB vehicle. Considered forming effects included thickness variations and plastic strain hardening imparted in the part forming process. The as-formed thickness and plastic strain for front crash parts were used as input data for vehicle crash analysis. Differences in structural performance between crash models with and without forming data were analyzed in order to determine the effects and feasibility of

  8. Impact of the seasonal evolution of snow properties on microwave emission model performance

    NASA Astrophysics Data System (ADS)

    Fuller, M.; Derksen, C.; Lemmetyinen, J.; Yackel, J.

    2010-12-01

    Snow cover exhibits great spatio-temporal variability, and is dynamically coupled with global hydrological and climatological processes. Accounting for snowpack evolution related to snow accumulation, metamorphosis, and melt are essential for both modeling and remote sensing applications. Microwave emission has frequency dependant relationships with snow water equivalent (SWE), but snow grain-size, snowpack layering, and snow liquid-water content can confuse the estimation of snow parameters with empirical stand-alone algorithms. This work presents an overview of seasonal snow and multi-frequency dual-polarization microwave emission measurements collected during the 2009-2010 winter season at a network of sites near Churchill, Manitoba, Canada. These observations were used to parameterize and evaluate model simulations of microwave snow emission using the multiple-layer version of the Helsinki University of Technology (HUT) microwave emission model. The HUT model is utilized in the European Space Agency’s (ESA) GlobSnow global snow monitoring service, applied to SWE and snow depth (SD) retrievals for the Northern Hemisphere. The HUT model used for forward brightness temperature simulations in the GlobSnow retrieval scheme is currently limited to one layer which necessitates idealizing physical properties of the entire snow pack. In this study, we explore the performance of simulations with the addition of a depth hoar layer and, when appropriate, an ice lens. Simulations for forest, lake, and open environments were synthesized through a scene simulation formulation of the HUT model to produce output suitable for comparison with measured brightness temperatures from the Advanced Microwave Scanning Radiometer (AMSR-E). While the multi-layer model better represents the vertical complexities of grain size and layering, implementation of a multi-layer approach remains a challenge due to model sensitivity with regard to the method of generalization of a complex snow

  9. Evaluating the impact of caprock and reservoir properties on potential risk of CO2 leakage after injection

    SciTech Connect

    Hou, Zhangshuan; Rockhold, Mark L.; Murray, Christopher J.

    2012-01-05

    Numerical models are essential tools for CO2 sequestration projects and should be included in the life cycle of a project. Common practice involves modeling the behavior of CO2 during and after injection using site-specific reservoir and caprock properties. Little has been done to systematically evaluate and compare the effects of a broad but realistic range of reservoir and caprock properties on potential CO2 leakage through caprock. Broad-based research addressing the impacts of caprock properties and their heterogeneity on seal permeation is absent. Efforts along this direction require obtaining information about the physically reasonable range of caprock and reservoir properties, effectively sampling the parameter space to fully explore the range of these properties, and performing flow and transport calculations using reliable numerical simulators. In this study, we identify the most important factors affecting CO2 leakage through intact caprock and try to understand the underlying mechanisms. We use caprock and reservoir properties from various field sites and literature data to identify the range of caprock thickness, permeability, and porosity that might occur. We use a quasi Monte Carlo sampling approach to ensure that the full range of caprock and seal properties is evaluated without bias. For each set of sampled properties, the migration of injected CO2 is simulated for up to 200 years using the water-salt-CO2 operational mode of the STOMP simulator. Preliminary results show that critical factors determining CO2 leakage rate through intact caprock are, in decreasing order of significance, the caprock thickness, caprock permeability, reservoir permeability, caprock porosity, and reservoir porosity. This study provides a function for prediction of potential CO2 leakage risk due to permeation of intact caprock, and identifies a range of acceptable seal thicknesses and permeability for sequestration projects. As a byproduct, the dependence of CO2 injectivity

  10. Impacts of deficit irrigation and altered rooting patterns on soil structure and associated soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of belowground systems and overall management impacts on soil health is needed to improve crop production and long-term sustainability under deficit irrigation. This study investigates effects of deficit irrigation on rooting patterns in maize and subsequent impacts on soil pr...

  11. Properties of largest fragment produced by hypervelocity impact of aluminum spheres with thin aluminum sheets

    NASA Technical Reports Server (NTRS)

    Piekutowski, Andrew J.

    1992-01-01

    Results are presented from hypervelocity impact tests in which 1.275 g spheres of 2017-T4 Al alloy were fired at normal incidence at eight thicknesses of 6061-T6 Al alloy sheets, with impact velocity of about 6.7 km/sec; additional data are presented for smaller and larger spheres than these, in the cases of other Al alloy impact bumpers. A large fragment of the projectile is observable at the center of the debris clouds generated upon impact. The velocity of these large fragments decreased continuously with increasing bumper thickness/projectile diameter ratio, from 99 percent to less than 80 percent of impact velocity; there is a linear increase in the size of the central projectile fragment with decreasing shock-induced stress in the projectile.

  12. Impact of Friedel oscillations on vapor-liquid equilibria and supercritical properties in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Huber, Landon; Delhommelle, Jerome

    2016-07-01

    We determine the impact of the Friedel oscillations on the phase behavior, critical properties, and thermodynamic contours in films [two dimensions (2 D )] and bulk phases [three dimensions (3 D )]. Using expanded Wang-Landau simulations, we calculate the grand-canonical partition function and, in turn, the thermodynamic properties of systems modeled with a linear combination of the Lennard-Jones and Dzugutov potentials, weighted by a parameter X (0 properties over a wide range of conditions. For 3 D systems, we are able to show that the critical parameters exhibit a linear dependence on X and that the loci for the thermodynamic state points, for which the system shows the same compressibility factor or enthalpy as an ideal gas, are two straight lines spanning the subcritical and supercritical regions of the phase diagram for all X values. Reducing the dimensionality to 2 D results in a loss of impact of the Friedel oscillation on the critical properties, as evidenced by the virtually constant critical density across the range of X values. Furthermore, our results establish that the straightness of the two ideality lines is retained in 2 D and is independent from the height of the first Friedel oscillation in the potential.

  13. Bacterial ice nuclei impact cloud lifetime and radiative properties and reduce atmospheric heat loss in the BRAMS simulation model

    NASA Astrophysics Data System (ADS)

    Costa, Tassio S.; Gonçalves, Fábio L. T.; Yamasoe, Marcia A.; Martins, Jorge A.; Morris, Cindy E.

    2014-08-01

    This study examines the effect of the bacterial species Pseudomonas syringae acting as ice nuclei (IN) on cloud properties to understand its impact on local radiative budget and heating rates. These bacteria may become active IN at temperatures as warm as -2 °C. Numerical simulations were developed using the Brazilian Regional Atmospheric Model System (BRAMS). To investigate the isolated effect of bacterial IN, four scenarios were created considering only homogeneous and bacterial ice nucleation, with 1, 10 and 100 IN per cubic meter of cloud volume and one with no bacteria. Moreover, two other scenarios were generated: the BRAMS default parameterization and its combination with bacterial IN. The model reproduced a strong convective cell over São Paulo on 3 March 2003. Results showed that bacterial IN may change cloud evolution as well as its microphysical properties, which in turn influence cloud radiative properties. For example, the reflected shortwave irradiance over an averaged domain in a scenario considering bacterial IN added to the BRAMS default parameterization was 14% lower than if bacteria were not considered. Heating rates can also be impacted, especially due to differences in cloud lifetime. Results suggest that the omission of bacterial IN in numerical models, including global cloud models, could neglect relevant ice nucleation processes that potentially influence cloud radiative properties.

  14. Impacts of an integrated crop-livestock system on soil properties to enhance precipitation capture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping/Livestock systems alter soil properties that are important in enhancing capture of precipitation by developing and maintaining water infiltration and storage. In this paper we will relate soil hydraulic conductivity and other physical properties on managed Old World Bluestem grassland, whea...

  15. Impact of petroleum products on soil composition and physical-chemical properties

    NASA Astrophysics Data System (ADS)

    Brakorenko, N. N.; Korotchenko, T. V.

    2016-03-01

    The article describes the grain-size distribution, physical and mechanical properties, swelling and specific electrical resistivity of soils before and after the contact with petroleum products. The changes in mechanical properties of soils contaminated with petroleum products have been stated. It leads to the increase in compressibility values, decline in internal friction angle and cohesion.

  16. Surface Structure Modification of ZnO and the Impact on Electronic Properties.

    PubMed

    Hewlett, Robert M; McLachlan, Martyn A

    2016-05-01

    Zinc oxide (ZnO) is a widely utilized, versatile material implemented in a diverse range of technological applications, particularly in optoelectronic devices, where its inherent transparency, tunable electronic properties, and accessible nanostructures can be combined to confer superior device properties. ZnO is a complex material with a rich and intricate defect chemistry, and its properties can be extremely sensitive to processing methods and conditions; consequently, surface modification of ZnO using both inorganic and organic species has been explored to control and regulate its surface properties, particularly at heterointerfaces in electronic devices. Here, the properties of ZnO are described in detail, particularly its surface chemistry, along with the role of defects in governing its electronic properties, and methods employed to modulate the behavior of as-grown ZnO. An outline is also given on how the native and modified oxide interact with molecular materials. To illustrate the diverse range of surface modification methods and their subsequent influence on electronic properties, a comprehensive review of the modification of ZnO surfaces at molecular interfaces in hybrid photovoltaic (hPV) and organic photovoltaic (OPV) devices is presented. This is a case study rather than a progress report, aiming to highlight the progress made toward controlling and altering the surface properties of ZnO, and to bring attention to the ways in which this may be achieved by using various interfacial modifiers (IMs). PMID:26936217

  17. The Impact of Property Wealth and Income Wealth on School Bond Elections.

    ERIC Educational Resources Information Center

    Jacobson, Thomas

    1997-01-01

    Examines the linkage between facility bond elections and the indicators of wealth (property valuation and income) and the appropriateness of relying on property valuations as the primary indicator of school district wealth. Results from 31 randomly selected schools in Nebraska show an unclear relationship between wealth factors and success in…

  18. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2001-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  19. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    1999-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  20. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2000-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  1. Property.

    ERIC Educational Resources Information Center

    Goldblatt, Steven M.

    In this chapter on decisions made by federal and state courts during 1983 concerning school property it is noted that no new trends emerged during the year. Among the topics addressed are the extent of school board authority over property use and other property matters; the attachment and detachment of land from school district holdings; school…

  2. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Several court cases involving acquisition, use, and disposal of property by institutions of higher education are briefly summarized in this chapter. Cases discussed touch on such topics as municipal annexation of university property; repurchase of properties temporarily allocated to faculty members; implications of zoning laws and zoning board…

  3. Constraining geologic properties and processes through the use of impact craters

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.

    2015-07-01

    Impact cratering is the one geologic process which is common to all solar system objects. Impact craters form by the resulting explosion between a solar system body and hypervelocity objects. Comparison with craters formed by chemical and nuclear explosions reveals that crater diameter is related to other morphometric characteristics of the crater, such as depth and rim height. These relationships allow scientists to use impact craters to probe the subsurface structure within the upper few kilometer of a planetary surface and to estimate the amounts and types of degradational processes which have affected the planet since crater formation. Crater size-frequency distribution analysis provides the primary mechanism for determining ages of planetary terrains and constraining the timing of resurfacing episodes. Thus, impact craters provide many important insights into the evolution of planetary surfaces.

  4. Identifying military impacts to archaeological resources based on differences in vertical stratification of soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Historic Preservation Act requires land-managing agencies to identify and account for their impacts on archaeological resources. Regulatory agencies that oversee compliance with historic preservation legislation frequently assume military training adversely affects archaeological resou...

  5. Impact Properties of Irradiated HT9 from the Fuel Duct of FFTF

    SciTech Connect

    Byun, Thak Sang; Maloy, S; Toloczko, M; Lewis, William Daniel

    2012-01-01

    This paper reports Charpy impact test data for the ACO-3 duct material (HT9) from the Fast Flux Test Facility (FFTF) and its archive material. Irradiation doses for the specimens were in the range of 3 148 dpa and irradiation temperatures in the range of 378 504 oC. The impact tests were performed for the small V-notched Charpy specimens with dimensions of 3 4 27 mm at an impact speed of 3.2 m/s in a 25J capacity machine. Irradiation lowered the upper-shelf energy (USE) and increased the transition temperatures significantly. The shift of transition temperatures was greater after relatively low temperature irradiation. The USE values were in the range of 5.5 6.7 J before irradiation and decreased to the range of 2 5 J after irradiation. Lower USEs were measured for lower irradiation temperatures and specimens with T-L orientation. For the irradiated specimens, the dose dependences of transition temperature and USE were not significant because of the radiation effect on impact behavior nearly saturated at the lowest dose of about 3 dpa. A comparison showed that the lateral expansion of specimens showed a linear correlation with absorbed impact energy, but with large scatter in the results. The size effect was also discussed to clarify the differences in the impact data of subsize and standard specimens.

  6. Thermal environment effects on strength and impact properties of boron-aluminum composites

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Lad, R. A.; Maisel, J. E.

    1977-01-01

    Thermal effects on fracture strength and impact energy were studied in 50 volume percent unidirectional composites of 143 and 203 micron boron fibers in 6061 and 1100 aluminum matrices. For 6061 matrix composites, strength was maintained to approximately 400 C in the cyclic tests and higher than 400 C in the static tests. For the 1100 matrix composites, strength degradation appeared near 260 C after cycling and higher than 260 C in static heating. This composite strength degradation is explained by a fiber degradation mechanism resulting from a boron-aluminum interface reaction. The impact energy absorption degraded significantly only above 400 C for both matrix alloys. Thus, while impact loss for the 6061 composite correlates with the fiber strength loss, other energy absorption processes appear to extend the impact resistance of the 1100 matrix composites to temperatures beyond where its strength is degraded. Interrupted impact tests on as-received and thermally cycled composites define the range of load over which the fibers break in the impact event.

  7. Impact of Associated Gases on Equilibrium and Transport Properties of a Stream: Molecular Simulation and Experimental Studies

    NASA Astrophysics Data System (ADS)

    Creton, Benoit; de Bruin, Theodorus; Le Roux, Dominique; Duchet-Suchaux, Pierre; Lachet, Véronique

    2014-02-01

    During the various carbon dioxide capture and storage (CCS) stages, an accurate knowledge of thermodynamic properties of streams is required for the correct sizing of plant units. The injected streams are not pure and often contain small amounts of associated gaseous components such as , , noble gases, etc. In this work, the thermodynamic behavior and transport properties of some -rich mixtures have been investigated using both experimental approaches and molecular simulation techniques such as Monte Carlo and molecular dynamics simulations. Using force fields available in the literature, we have validated the capability of molecular simulation techniques in predicting properties for pure compounds, binary mixtures, as well as multicomponent mixtures. These validations were performed on the basis of experimental data taken from the literature and the acquisition of new experimental data. As experimental data and simulation results were in good agreement, we proposed the use of simulation techniques to generate new pseudo-experimental data and to study the impact of associated gases on the properties of streams. For instance, for a mixture containing 92.0 mol% of , 4.0 mol% of , 3.7 mol% of Ar, and 0.3 mol% of , we have shown that the presence of associated gases leads to a decrease of 14 % and 21 % of the dense phase density and viscosity, respectively, as compared to pure properties.

  8. Effect of commercial cellulases and refining on kraft pulp properties: correlations between treatment impacts and enzymatic activity components.

    PubMed

    Cui, Li; Meddeb-Mouelhi, Fatma; Laframboise, François; Beauregard, Marc

    2015-01-22

    The importance of enzymes as biotechnological catalysts for paper industry is now recognized. In this study, five cellulase formulations were used for fibre modification. The number of PFI revolutions decreased by about 50% while achieving the same freeness value (decrease in CSF by 200 mL) with the enzymatic pretreatment. The physical properties of handsheets were modified after enzymatic pretreatment followed by PFI refining. A slight decrease in tear strength was observed with enzymes C1 and C4 at pH 7 while the most decrease in tear was observed after C2, C3, C5 treatments. C1 and C4 which had xylanase activity improved paper properties, while other enzymes had a negative impact. Therefore, the intricate balance between cellulolytic and hemicellulolytic activity is the key to optimizing biorefining and paper properties. It was also observed that C1 impact was pH dependent, which supports the importance of pH in developing an enzymatic strategy for refining energy reduction. PMID:25439885

  9. Effects of carbide precipitation on the strength and Charpy impact properties of low carbon Mn-Ni-Mo bainitic steels

    NASA Astrophysics Data System (ADS)

    Im, Young-Roc; Jun Oh, Yong; Lee, Byeong-Joo; Hwa Hong, Jun; Lee, Hu-Chul

    2001-08-01

    The effects of carbide precipitation on the strength and Charpy impact properties of tempered bainitic Mn-Ni-Mo steels have been investigated. An attempt has also been made to modify the microstructure of the steels in order to improve the Charpy properties, by controlling the alloy composition being guided by thermodynamic calculations of phase equilibria. Coarse rod type or agglomerated spherical type cementite particles in inter-lath region were considered to be mostly detrimental to Charpy impact properties. By reducing the precipitation of cementite through decreasing carbon content and/or by substituting it into fine M 2C carbides through increasing the molybdenum content, DBTT could be lowered significantly. Further decrease of DBTT could be achieved by substituting part of manganese content by nickel. Yield strength of tested alloys could be maintained at the level of a reference 0.2 wt% carbon alloy in spite of the significant reduction in carbon content, mainly by the increase in the precipitation of fine M 2C type carbides with increased molybdenum content.

  10. Impact of Wetting/Oven-Drying Cycles on the Mechanical and Physical Properties of Birch Plywood

    NASA Astrophysics Data System (ADS)

    Sooru, M.; Kasepuu, K.; Kask, R.; Lille, H.

    2015-11-01

    The objective of this study was to explore some physical and mechanical properties and the dimensional stability of birch (Betula sp.) nine-ply veneers glued with phenol-formaldehyde (PF) after 10 cycles of soaking/oven-drying. The properties to be determined were bending strength (BS), modulus of elasticity in bending (MOE), Janka hardness (JH) and thickness swelling (TS), which were tested according to the European Standards (EN). An analytical equation was used for approximation of the change in the physical and mechanical properties of the samples depending on the number of cycles. It was shown that the values of the studied properties were affected most by the first soaking and drying cycles after which BS and MOE decreased continuously while the values of JH and TS stabilized. After 10 cycles the final values of BS, MOE, JH and TS accounted for 75-81%, 95%, 82% and 98.5% of the initial values, respectively.

  11. The Impact of Organic Amendments on Soil Properties Under Mediterranean Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Hueso Gonzalez, Paloma; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose

    2014-05-01

    Soil erosion and unsustainable land uses produce adverse effect on SOC content. Soil management techniques and corrections can be applied for soil recovery, especially, with afforestation purposes. This study presents the short term effects of the application of different treatments and amendments on soil properties for soils included in several sets of closed plots located in the experimental area of Pinarillo (Nerja, Spain). The analysed soil properties were: pH, EC, Organic Carbon, total Nitrogen and total Carbon. In order to verify possible differences, we applied the test of Mann-Whitney U in corroboration with the previous homogeneity test of variance. The result of each strategy set compared to the initial condition shows at least one significant modification in the analysed soil properties. Electrical conductivity was the most changeable soil property respect to the initial condition. Similarly, organic carbon content and total organic carbon remained quite similar. However, when all of the strategy sets are compared among them, total carbon was the most significantly changeable property. Mulching, polymers and urban residue seem to highly modify the soil initial conditions. Although soil physic-chemical parameters generally used to evaluate soil quality change very slowly. The analysed soil properties shows significant differences between dry and wet season. This fact, could be indicating the effect of certain seasonality as it is usual in Mediterranean condition.

  12. Effects of Strain Rate Dependency of Material Properties in Low Velocity Impact

    NASA Astrophysics Data System (ADS)

    Minamoto, Hirofumi; Seifried, Robert; Eberhard, Peter; Kawamura, Shozo

    Impact processes are often analyzed using the coefficient of restitution which represents the kinetic energy loss during impact. In this paper the effect of strain rate dependency of the yield stress on the coefficient of restitution is investigated experimentally and numerically for the impact of a steel sphere against a steel rod. Finite Element simulations using strain-rate dependent material behavior are carried out. In addition, Finite Element simulations with elastic-plastic material behavior, which ignore the strain rate dependency, are carried out as well as elastic material behavior. Comparisons between the experiments and the simulations using strain-rate dependent material behavior show good agreement, and also prove the strong dependency of the coefficient of restitution on the strain rate dependency of the yield stress for steel. The results from both, the experiments and the simulations show also the strong influence of the wave propagation in the rod on the coefficient of restitution.

  13. Effect of tempering on quasi-static and impact fracture toughness and mechanical properties for 5140 H steel

    NASA Astrophysics Data System (ADS)

    Klepaczko, J. R.; Solecki, A.

    1984-05-01

    The effects of various thermal treatments, i.e., oil quench and different tempering conditions, on quasi-static and impact fracture toughness, stress-strain characteristics, hardness, and Charpy energy of 5140 H steel were examined. During quasi-static and impact loading notched round tensile specimens were used with a prefatigued crack. A specially designed device together with a pendulum hammer and electronic measuring system was used enabling testing of the opening mode fracture toughness at loading rates up to K1 = 3 x 106 MPa√m per second. It has been found that within the region of the lower tempering temperatures, 500 K≤ 650 K, the critical stress intensity factor KIc determined from impact testing is lower than that obtained during slow loading, whereas at the higher tempering temperatures, 650 K ≤ T* ≤ 900 K, dynamic KIu values show a tendency to be higher than their quasi-static counterparts. This behavior was analyzed quantitatively using the Hahn-Rosenfield model which relates tensile properties to fracture toughness. A good agreement was found between quasi-static experimental results and the model. The relation between Charpy energy Kv and the critical stress intensity factor KIc was also evaluated. Changes of the fracture toughness are discussed within the framework of SEM fractographs taken after quasi-static and impact tests.

  14. A STUDY OF THE PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-30

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  15. Shock wave properties of anorthosite and gabbro. [to model hypervelocity impact cratering on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.

    1985-01-01

    Huyoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from partial velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.

  16. Economic Impacts from the Boulder County, Colorado, ClimateSmart Loan Program: Using Property-Assessed Clean Energy Financing

    SciTech Connect

    Goldberg, M.; Cliburn, J. K.; Coughlin, J.

    2011-04-01

    This report examines the economic impacts (including job creation) from the Boulder County, Colorado, ClimateSmart Loan Program (CSLP), an example of Property-Assessed Clean Energy (PACE) financing. The CSLP was the first test of PACE financing on a multi-jurisdictional level (involving individual cities as well as the county government). It was also the first PACE program to comprehensively address energy efficiency measures and renewable energy, and it was the first funded by a public offering of both taxable and tax-exempt bonds.

  17. Influence of seat foam and geometrical properties on BioRID P3 kinematic response to rear impacts.

    PubMed

    Szabo, T J; Voss, D P; Welcher, J B

    2003-12-01

    As the primary interface with the human body during rear impact, the automotive seat holds great promise for mitigation of Whiplash Associated Disorders (WAD). Recent research has chronicled the potential influence of both seat geometrical and constitutive properties on occupant dynamics and injury potential. Geometrical elements such as reduced head to head restraint, rearward offset, and increased head restraint height have shown strong correlation with reductions in occupant kinematics. The stiffness and energy absorption of both the seating foam and the seat infrastructure are also influential on occupant motion; however, the trends in injury mitigation are not as clear as for the geometrical properties. It is of interest to determine whether, for a given seat frame and infrastructure, the properties of the seating foam alone can be tailored to mitigate WAD potential. Rear impact testing was conducted using three model year 2000 automotive seats (Chevrolet Camaro, Chevrolet S-10 pickup, and Pontiac Grand Prix), using the BioRID P3 anthropometric rear impact dummy. Each seat was distinct in construction and geometry. Each seat back was tested with various foams (i.e., standard, viscoelastic, low or high density). Seat geometries and infrastructures were constant so that the influence of the seating foams on occupant dynamics could be isolated. Three tests were conducted on each foam combination for a given seat (total of 102 tests), with a nominal impact severity of Delta V = 11 km/h (nominal duration of 100 msec). The seats were compared across a host of occupant kinematic variables most likely to be associated with WAD causation. No significant differences (p < 0.05) were found between seat back foams for tests within any given seat. However, seat comparisons yielded several significant differences (p < 0.05). The Camaro seat was found to result in several significantly different occupant kinematic variables when compared to the other seats. No significant

  18. Efficient simulation of the impact of interface grading on the transport and optical properties of semiconductor heterostructures

    SciTech Connect

    Lü, X.; Schrottke, L.; Luna, E.; Grahn, H. T.

    2014-06-09

    An efficient model is proposed to evaluate the impact of interface grading on the properties of semiconductor heterostructures. In the plane-wave approximation, the interface grading is taken into account by simply multiplying the Fourier components of the potential by a Gaussian function, which results only in a very small increase of the computation time. We show that the interface grading may affect the transition energies, the field strength for resonant coupling of subbands, and even the miniband formation in complex systems such as quantum-cascade lasers. This model provides a convenient tool for the incorporation of interface grading into the design of heterostructures.

  19. The impact of lone pair-π interactions on photochromic properties in 1-D naphthalene diimide coordination networks.

    PubMed

    Liu, Jian-Jun; Guan, Ying-Fang; Chen, Yong; Lin, Mei-Jin; Huang, Chang-Cang; Dai, Wen-Xin

    2015-10-21

    Lone pair-π interaction is an important but less studied binding force. Generally, it is too weak to influence the physical properties of supramolecular systems. Herein we reported the first example exhibiting the impact of lone pair-π interactions on photochromic properties of naphthalene diimide based coordination networks. In three isostructural 1-D networks, [(DPNDI)ZnX2] (DPNDI = N,N-di(4-pyridyl)-1,4,5,8-naphthalene diimide, X = Cl for 1, X = Br for 2 and X = I for 3), they exhibit different electron-transfer photochromic behaviors due to different lone pair-π interactions between the capped halogen atoms and electron-deficient DPNDI moieties. Specifically, 1 and 2 but not 3 are photochromic, which is attributed to a stronger lone pair-π interaction in 3 than those in 1 and 2. This study anticipates breaking a new path for designing novel photochromic materials through such unnoticeable supramolecular interactions. PMID:26388114

  20. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  1. Cooked rice texture and rice flour pasting properties; impacted by rice temperature during milling.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2015-03-01

    Rice milling plays a key factor in determining rice quality and value. Therefore accurate quality assessments are critical to the rice industry. This study was undertaken to assess the effect of exposing rice to elevated temperatures during milling, on cooked rice texture and rice flour pasting properties. Two long (Cybonnett and Francis) and one medium (Jupiter) rice (oryzae sativa L.) cultivars were milled using McGill laboratory mill for 30 and 40 s after warmed up the mill before milling. Four different milling temperatures per milling duration were achieved. Cooked rice texture properties were assessed using a uniaxial compression test and rice flour pasting properties measured using a TA-2000 rheometer. Results of this study showed that exposure of rice to high temperatures during milling significantly decreased cooked rice firmness. An increase in milled rice temperature after milling from 10.0 to 13.3 °C resulted in a 5.4 and 8.1 N decrease in cooked rice firmness. Although not always significant, the increase in milled rice temperature during milling resulted in an increase in cooked rice stickiness. The increase in milling temperature also showed significant increase in rice flour pasting properties. Changes in rice functional characteristics were attributed to the changes occurring to rice chemical constituents due to temperature exposure as indicated by the increase in rice protein hydrophobicity. Proteins are known to affect rice starch water holding capacity and other starch gelatinization properties. PMID:25745230

  2. Spatial variability of the properties of marsh soils and their impact on vegetation

    NASA Astrophysics Data System (ADS)

    Sidorova, V. A.; Svyatova, E. N.; Tseits, M. A.

    2015-03-01

    Spatial variability of the properties of soils and the character of vegetation was studied on seacoasts of the Velikii Island in the Kandalaksha Bay of the White Sea. It was found that the chemical and physicochemical properties of marsh soils (Tidalic Fluvisols) are largely dictated by the distance from the sea and elevation of the sampling point above sea level. The spatial distribution of the soil properties is described by a quadratic trend surface. With an increase in the distance from the sea, the concentration of ions in the soil solution decreases, and the organic carbon content and soil acidity become higher. The spatial dependence of the degree of variability in the soil properties is moderate. Regular changes in the soil properties along the sea-land gradient are accompanied by the presence of specific spatial patterns related to the system of temporary water streams, huge boulders, and beached heaps of sea algae and wood debris. The cluster analysis made it possible to distinguish between five soil classes corresponding to the following plant communities: barren surface (no permanent vegetation), clayey-sandy littoral with sparse halophytes, marsh with large rhizomatous grasses, and grass-forb-bunchberry vegetation of forest margins. The subdivision into classes is especially distinct with respect to the concentration of chloride ions. The following groups of factors affect the distribution of vegetation: the composition of the soil solution, the height above sea level, the pH of water suspensions, and the humus content.

  3. Impact of Land Use on Cloud Properties Over the Haiti/Dominican Republic

    NASA Astrophysics Data System (ADS)

    Welch, R. M.; Nair, U. S.; Ray, D. K.; Sanchez, A.; Perez, M.

    2002-12-01

    The focus of this study is the effect of land use characteristics and surface properties on the preferential formation of cloudiness, especially cumulus cloudiness over Haiti and Dominican Republic for the year 2001. A combination of satellite imagery and numerical modeling is used in this study. Satellite data and products from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite are used to retrieve surface properties such as land surface temperature, albedo, and Normalized Difference Vegetation Index (NDVI). The satellite data is then used to retrieve available soil moisture fraction and surface energy fluxes using the Soil Vegetation Atmospheric Transfer (SVAT) model. Cloud properties such as cloud optical thickness and effective radii are also retrieved over this region. In addition, the frequency of cumulus cloudiness on hourly basis is derived from Geostationary Observational Environmental Satellite (GOES). Rainfall over this region is examined using Tropical Rainfall Measuring Mission (TRMM) satellite products. Correlations between the various surface characteristics, cloud properties, cumulus cloudiness and rainfall are examined as a function of ecosystem and topography in this region. Finally, the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) is applied to selected regions of Haiti and Dominican Republic to simulate the rainfall and cloudiness patterns and to understand the interactions between the land use, cloudiness, cloud properties and rainfall.

  4. Impact of Composted Dairy Manure on pH Management and Physical Properties of Soilless Substrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy cow manure compost (DMC) was evaluated as a soilless substrate substitute for peat moss and dolomitic limestone in two experiments. The objectives were 1) to quantify the impact of DMC on substrate pH establishment and stabilization throughout crop time, 2) to test the effect of DMC on physic...

  5. Remediation/restoration of degraded soil I: Impact on soil chemical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterizations of nutrient dynamics influenced by different management in eroded sites in the central Great Plains Region are critical. The objectives of this study were to evaluate the impact of tillage practices and N treatments on changes in soil nutrient constituents. The eroded site was loca...

  6. Nutrient source and tillage impacts on tall fescue production and soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Festuca arundinacea Schreb.) grass provides a major forage base for many livestock production systems in the southeastern United States. Forage production with manure helps recycle nutrients with less environmental impacts. This two year study examined tall fescue forage production and ...

  7. The Impact of the Articulatory Properties of Phonemes on the Evolution of Preschool Children's Writing

    ERIC Educational Resources Information Center

    Martins, Margarida; Silva, Cristina; Pereira, Miguel

    2010-01-01

    Our aim was to analyze the impact of the characteristics of occlusive versus fricative phonemes used in writing programs on the evolution of preschool children's writing. The participants were 39 5-year-old graphoperceptive children. Their intelligence, number of letters known, and phonological skills were controlled. Their writing was evaluated…

  8. Pilot plant assessment of blend properties and their impact on critical power plant components

    SciTech Connect

    1996-10-01

    A series of tests were performed to determine the effects of blending eastern bituminous coals with western subbituminous coals on utility boiler operation. Relative to the baseline bituminous coal, the testing reported here indicated that there were significant impacts to boiler performance due to the blending of the eastern and western coals. Results indicated that fuel blending can be used to adequately control flue gas emissions of both SO{sub 2} and NO{sub x} at the expense of reduced milling efficiency, increased sootblowing in the high-temperature and low-temperature regions of the boiler and, to a lesser extent, decreased collection efficiency for an electrostatic precipitator. The higher reactivity of the subbituminous coal increased the overall combustion efficiency, which may tend to decrease the impact of milling efficiency losses. The extent of these impacts was directly related to the percentage of subbituminous coal in the blends. At the lowest blend ratios of subbituminous coal, the impacts were greatly reduced.

  9. Novel slow release nanocomposite nitrogen fertilizers: the impact of polymers on nanocomposite properties and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient use of fertilizers, especially nitrogen, is essential and strategic to agricultural production. Among the technologies that can contribute to efficient use of fertilizers are slow or controlled release products. This paper describes the impact on structure, urea release rate and function i...

  10. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Johnson, Margaret M.

    This chapter deals with 1981 cases involving disputes over property. Cases involving the detachment and attachment of land continue to dominate the property chapter with 11 cases reported, the same number summarized in last year's chapter. One case involving school board referenda raised the interesting question of whether or not a state could…

  11. Property.

    ERIC Educational Resources Information Center

    Bickel, Robert D.; Zeller, Trisha A.

    A number of cases related to property issues involving institutions of higher education are examined in this chapter. Cases discussed touch on such topics as funding for property and equipment acquisition; opposition to building construction or demolition; zoning issues; building construction and equipment contracts; and lease agreements. Current…

  12. Property.

    ERIC Educational Resources Information Center

    Goldblatt, Steven M.; Piele, Philip K.

    This chapter reviews 1982 cases related to school property. Cases involving citizen efforts to overturn school board decisions to close schools dominate the property chapter, and courts continue to uphold school board authority to close schools, transfer students, and sell or lease the buildings. Ten cases involving detachment and attachment of…

  13. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Chapter 7 of a book on school law, this chapter deals with 1979 cases involving disputes over property. Cases involving taxpayer attempts to prevent the construction of school buildings dominate this year's property chapter, as they did last year's. Yet, paradoxically, there is also a significant increase in cases in which taxpayers tried to…

  14. Impact of Stereospecific Intramolecular Hydrogen Bonding on Cell Permeability and Physicochemical Properties

    PubMed Central

    2014-01-01

    Profiling of eight stereoisomeric T. cruzi growth inhibitors revealed vastly different in vitro properties such as solubility, lipophilicity, pKa, and cell permeability for two sets of four stereoisomers. Using computational chemistry and NMR spectroscopy, we identified the formation of an intramolecular NH→NR3 hydrogen bond in the set of stereoisomers displaying lower solubility, higher lipophilicity, and higher cell permeability. The intramolecular hydrogen bond resulted in a significant pKa difference that accounts for the other structure–property relationships. Application of this knowledge could be of particular value to maintain the delicate balance of size, solubility, and lipophilicity required for cell penetration and oral administration for chemical probes or therapeutics with properties at, or beyond, Lipinski’s rule of 5. PMID:24524242

  15. Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China

    NASA Astrophysics Data System (ADS)

    Lu, X.; Yan, Y.; Sun, J.; Zhang, X.; Chen, Y.; Wang, X.; Cheng, G.

    2015-08-01

    Since the 1980s, alpine grasslands have been seriously degraded on the Tibetan Plateau. Grazing exclusion by fencing has been widely adopted to restore degraded grasslands. To clarify the effect of grazing exclusion on soil quality, we investigated soil properties and nutrients by comparing free grazing (FG) and grazing exclusion (GE) grasslands in Tibet. Soil properties, including soil bulk density, pH, particle size distributions, and proportion of aggregates, were not significant different between FG and GE plots. Soil organic carbon, soil available nitrogen, available phosphorus contents did not differ with grazing exclusion treatments in both 0-15 and 15-30 cm layer. However, soil total nitrogen and total phosphorus contents were remarkably reduced due to grazing exclusion at the 0-15 cm depth. Furthermore, growing season temperature and/or growing season precipitation had significant effects on almost all soil properties and nutrients indicators. This study demonstrates that grazing exclusion had no impact on most soil properties and nutrients in Tibet. Additionally, the potential shift of climate conditions should be considered when recommend any policies designed for alpine grasslands degraded soil restoration in the future. Nevertheless, because the results of the present study come from short term (6-8 years) grazing exclusion, the assessments of the ecological effects of the grazing exclusion management strategy on soil quality of degraded alpine grasslands in Tibet still need long term continued research.

  16. Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China

    NASA Astrophysics Data System (ADS)

    Lu, X.; Yan, Y.; Sun, J.; Zhang, X.; Chen, Y.; Wang, X.; Cheng, G.

    2015-11-01

    Since the 1980s, alpine grasslands have been seriously degraded on the Tibetan Plateau. Grazing exclusion by fencing has been widely adopted to restore degraded grasslands. To clarify the effect of grazing exclusion on soil quality, we investigated soil properties and nutrients by comparing free-grazing (FG) and grazing exclusion (GE) grasslands in Tibet. Soil properties - including soil bulk density, pH, particle size distributions, and proportion of aggregates - showed no significant difference between FG and GE plots. Soil organic carbon, soil available nitrogen, and available phosphorus contents did not differ with grazing exclusion treatments in both the 0-15 and 15-30 cm layer. However, soil total nitrogen and total phosphorus contents were remarkably reduced due to grazing exclusion at 0-15 cm depth. Furthermore, growing season temperature and/or growing season precipitation had significant effects on almost all soil property and nutrient indicators. This study demonstrates that grazing exclusion had no impact on most soil properties and nutrients in Tibet. Additionally, the potential shift of climate conditions should be considered when recommending any policy designed for restoration of degraded soil in alpine grasslands in the future. Nevertheless, because the results of the present study come from a short-term (6-8 years) grazing exclusion, the assessments of the ecological effects of the grazing exclusion management strategy on soil quality of degraded alpine grasslands in Tibet still need long-term continued research.

  17. Optical Properties and Climate Impacts of Tropospheric Aerosols that Undergo Long-Range Transport to the Arctic

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T.; Coffman, D.; Schulz, K.; Shank, L.; Jefferson, A.; Ogren, J.; Burkhart, J.; Shaw, G.

    2009-04-01

    Tropospheric aerosol particles undergo long range transport from the mid-latitudes to the Arctic each winter and spring. Once in the Arctic, aerosols may impact regional climate in several ways. Aerosols can affect climate directly by scattering and absorbing incoming solar radiation and indirectly by acting as cloud condensation nuclei and altering cloud properties. In addition, absorbing aerosol that is deposited onto ice and snow can lower the surface albedo and enhance the ice-albedo feedback mechanism. Measurements of aerosol properties relevant to climate forcing (chemical composition, light scattering, and light absorption) have been made by NOAA at Barrow, AK for over a decade. Measurements of aerosol chemical composition have been made over the same time period at the three more southern Alaskan sites of Poker Flat, Denali National Park, and Homer. In addition, in March and April of 2008, aerosol measurements were made during a NOAA research cruise (ICEALOT) to the Greenland, Norwegian and Barents Seas. Onboard the ship, measurements were made of aerosol optical and cloud nucleating properties. Results from the long-term measurements and ICEALOT will be presented in order to describe trends and climate-relevant properties of aerosol particles transported to the Arctic.

  18. Understanding Material Property Impacts on Co-Current Flame Spread: Improving Understanding Crucial for Fire Safety

    NASA Technical Reports Server (NTRS)

    Ruff, Gary (Technical Monitor); Rangwala, Ali S.; Buckley, Steven G.; Torero, Jose L.

    2004-01-01

    The prospect of long-term manned space flight brings fresh urgency to the development of an integrated and fundamental approach to the study of material flammability. Currently, NASA uses two tests, the upward flame propagation test and heat and visible smoke release rate test, to assess the flammability properties of materials to be used in space under microgravity conditions. The upward flame propagation test can be considered in the context of the 2-D analysis of Emmons. This solution incorporates material properties by a "mass transfer number", B in the boundary conditions.

  19. Life cycle impact assessment modeling for particulate matter: A new approach based on physico-chemical particle properties.

    PubMed

    Notter, Dominic A

    2015-09-01

    Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution. PMID:26001495

  20. Widows' and orphans' property disputes: the impact of AIDS in Rakai District, Uganda.

    PubMed

    Roys, C

    1995-11-01

    The 1991 census identified 44,000 orphans in the Rakai District of Uganda. The Child Social Care Project (CSCP) in the district helps ensure that orphaned children under 18 years who have lost one or both parents to AIDS receive the property rights to which they are entitled. The property rights of widows are also championed by the CSCP. The project has enjoyed considerable success in settling individual disputes. The CSCP has also had some success in enabling communities to deal appropriately with the conflicts without recourse to experts. The author notes that while it is important to promote the empowerment of women, the phrase is so overused that it is in danger of becoming meaningless. That said, a vital aspect of empowerment is economic independence. The CSCP helps women claim the right to own property, land, and housing, as well as to care for their children in the attempt to give them some degree of economic control over their destiny and that of their children. The paper discusses widows' and orphans' property disputes in sections on wills, customary law, and statutory law. The CSCP is described followed by a case study and consideration of gender and legal reform. PMID:12319864

  1. The impact of plant-based antimicrobials on sensory properties of organic leafy greens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant extracts and essential oils are well known for their antibacterial activity. However, studies concerning their effect on the organoleptic properties of treated foods are limited. The objective was to study the sensory attributes of organic leafy greens treated with plant antimicrobials and ide...

  2. Structural and Thermodynamic Properties of Amyloid-β Peptides: Impact of Fragment Size

    NASA Astrophysics Data System (ADS)

    Kitahara, T.; Wise-Scira, O.; Coskuner, O.

    2010-10-01

    Alzheimer's disease is a progressive neurodegenerative disease whose physiological characteristics include the accumulation of amyloid-containing deposits in the brain and consequent synapse and neuron loss. Unfortunately, most widely used drugs for the treatment can palliate the outer symptoms but cannot cure the disease itself. Hence, developing a new drug that can cure it. Most recently, the ``early aggregation and monomer'' hypothesis has become popular and a few drugs have been developed based on this hypothesis. Detailed understanding of the amyloid-β peptide structure can better help us to determine more effective treatment strategies; indeed, the structure of Amyloid has been studied extensively employing experimental and theoretical tools. Nevertheless, those studies have employed different fragment sizes of Amyloid and characterized its conformational nature in different media. Thus, the structural properties might be different from each other and provide a reason for the existing debates in the literature. Here, we performed all-atom MD simulations and present the structural and thermodynamic properties of Aβ1-16, Aβ1-28, and Aβ1-42 in the gas phase and in aqueous solution. Our studies show that the overall structures, secondary structures, and the calculated thermodynamic properties change with increasing peptide size. In addition, we find that the structural properties of those peptides are different from each other in the gas phase and in aqueous solution.

  3. Impact of further processing on dielectric properties of broiler poultry meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently in the U.S. more than 90% of the turkeys and more than 70% of the broilers are processed beyond the normal ready-to-cook stage. Up to 50% of raw poultry meat is marinated with mixtures of water, salts, and phosphates. Physical properties of foods provide essential data to the food industr...

  4. Impacts of Hydrate Pore Habit on Physical Properties of Hydrate Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Seol, Y.; Dai, S.; Choi, J. H.

    2014-12-01

    The physical properties of gas hydrate bearing sediments, to a large extent, are governed by the volume fraction and spatial distribution of the hydrate phase. For sediments containing the same amount of hydrates, their overall physical properties may vary several orders of magnitude depending on hydrate pore habit. We investigate the interplay among hydrate formation methods, hydrate pore habits, and fundamental physical properties of hydrate bearing sediments. We have developed a new method to synthesize noncementing hydrate in sands, a multi-properties characterization chamber to test the hydrate bearing sediments, and pore network models to simulate fluid flow processes in hydrate bearing sediments. We have found that (1) the growth pattern of hydrate crystal in the pore spaces of water saturated sediments is dominated by the relative magnitude of the capillary force (between hydrate crystal and pore fluid) and the skeleton force, which will result in pore-filling or grain-displacing type of hydrate pore character; (2) the existing capillary tube models of water permeability in hydrate bearing sediments are sensitive to pore geometry and hydrate pore habit; and (3) preliminary CT results suggest that hydrate nucleation in partially water saturated sands tends to agglomerate in patches, rather than in an uniformly-distributed contact-cementing morphology. Additional CT results with a small amount of fines (5wt%) and visualization via micro-CT of hydrate pore habits in sediments using different hydrate formation methods will be discussed.

  5. Corn and soybean rotation under reduced tillage management: impacts on soil properties, yield, and net return

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 4-yr field study was conducted from 2007 to 2010 at Stoneville, MS to examine the effects of rotating corn and soybean under reduced tillage conditions on soil properties, yields, and net return. The six rotation systems were continuous corn (CCCC), continuous soybean (SSSS), corn-soybean (CSCS),...

  6. Impact of deficit irrigation on sorghum physical and chemical properties and ethanol yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the effect of irrigation levels (five levels from 304.8 to 76.2 mm water) on the physical and chemical properties and ethanol fermentation performance of sorghum. Ten sorghum samples grown under semi-arid climatic conditions were harvested in 2011 from the...

  7. Impact of deficit irrigation on maize physical and chemical properties and ethanol yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the effect of irrigation levels (five levels from 102 to 457 mm of water) on the physical and chemical properties and ethanol fermentation performance of maize. Twenty maize samples with two crop rotation systems, grain sorghum–maize and maize–maize, were ...

  8. Impact of fatty ester composition on low temperature properties of biodiesel-petroleum diesel blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several biodiesel fuels along with neat fatty acid methyl esters (FAMEs) commonly encountered in biodiesel were blended with ultra-low sulfur diesel (ULSD) fuel at low blend levels permitted by ASTM D975 (B1-B5) and cold flow properties such as cloud point (CP), cold filter plugging point (CFPP), an...

  9. Landscape variation in soil properties and potential impacts on biofuel cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Goals: •Compare perennial grass systems v. a continuous corn (Zea mays) system in terms of soil inputs, soil property changes and yield •Potential benefits of perennials: can be grown on marginal crop land, potentially lower input levels, potentially higher biomass yield, and potentially increased s...

  10. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.

    PubMed

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina

    2016-03-01

    The simultaneous role of bacteria cell properties and porous media grain size on bacteria transport and deposition behavior was investigated in this study. Transport column experiments and numerical HYDRUS-1D simulations of three bacteria with different cell properties (Escherichia coli, Klebsiella oxytoca, and Rhodococcus rhodochrous) were carried out on two sandy media with different grain sizes, under saturated steady state flow conditions. Each bacterium was characterized by cell size and shape, cell motility, electrophoretic mobility, zeta potential, hydrophobicity and potential of interaction with the sand surface. Cell characteristics affected bacteria transport behavior in the fine sand, but similar bacteria breakthroughs and retardation factors observed in the coarse sand, indicated that bacteria transport was more depended on grain size than on bacteria cell properties. Retention decreased with increasing hydrophobicity and increased with increasing electrophoretic mobility of bacteria for both sand. The increasing sand grain size resulted in a decrease of bacteria retention, except for the motile E. coli, indicating that retention of this strain was more dependent on cell motility than on the sand grain size. Bacteria deposition coefficients obtained from numerical simulations of the retention profiles indicated that straining was an important mechanism affecting bacteria deposition of E. coli and Klebsiella sp., in the fine sand, but the attachment had the same importance as straining for R. rhodochrous. The results obtained in the coarse sand did not permit to discriminate the predominant mechanism of bacteria deposition and the relative implication of bacteria cell properties of this process. PMID:26705829

  11. Impact of Non-Invasively Induced Motor Deficits on Tibial Cortical Properties in Mutant Lurcher Mice

    PubMed Central

    Jindrová, Alena; Tuma, Jan; Sládek, Vladimír

    2016-01-01

    It has been shown that Lurcher mutant mice have significantly altered motor abilities, regarding their motor coordination and muscular strength because of olivorecebellar degeneration. We assessed the response of the cross-sectional geometry and lacuno-canalicular network properties of the tibial mid-diaphyseal cortical bone to motor differences between Lurcher and wild-type (WT) male mice from the B6CBA strain. The first data set used in the cross-sectional geometry analysis consists of 16 mice of 4 months of age and 32 mice of 9 months of age. The second data set used in the lacunar-canalicular network analysis consists of 10 mice of 4 months of age. We compared two cross-sectional geometry and four lacunar-canalicular properties by I-region using the maximum and minimum second moment of area and anatomical orientation as well as H-regions using histological differences within a cross section. We identified inconsistent differences in the studied cross-sectional geometry properties between Lurcher and WT mice. The biggest significant difference between Lurcher and WT mice is found in the number of canaliculi, whereas in the other studied properties are only limited. Lurcher mice exhibit an increased number of canaliculi (p < 0.01) in all studied regions compared with the WT controls. The number of canaliculi is also negatively correlated with the distance from the centroid in the Lurcher and positively correlated in the WT mice. When the Lurcher and WT sample is pooled, the number of canaliculi and lacunar volume is increased in the posterior Imax region, and in addition, midcortical H-region exhibit lower number of canaliculi, lacuna to lacuna distance and increased lacunar volume. Our results indicate, that the importance of precise sample selection within cross sections in future studies is highlighted because of the histological heterogeneity of lacunar-canalicular network properties within the I-region and H-region in the mouse cortical bone. PMID:27387489

  12. Impact of Non-Invasively Induced Motor Deficits on Tibial Cortical Properties in Mutant Lurcher Mice.

    PubMed

    Jindrová, Alena; Tuma, Jan; Sládek, Vladimír

    2016-01-01

    It has been shown that Lurcher mutant mice have significantly altered motor abilities, regarding their motor coordination and muscular strength because of olivorecebellar degeneration. We assessed the response of the cross-sectional geometry and lacuno-canalicular network properties of the tibial mid-diaphyseal cortical bone to motor differences between Lurcher and wild-type (WT) male mice from the B6CBA strain. The first data set used in the cross-sectional geometry analysis consists of 16 mice of 4 months of age and 32 mice of 9 months of age. The second data set used in the lacunar-canalicular network analysis consists of 10 mice of 4 months of age. We compared two cross-sectional geometry and four lacunar-canalicular properties by I-region using the maximum and minimum second moment of area and anatomical orientation as well as H-regions using histological differences within a cross section. We identified inconsistent differences in the studied cross-sectional geometry properties between Lurcher and WT mice. The biggest significant difference between Lurcher and WT mice is found in the number of canaliculi, whereas in the other studied properties are only limited. Lurcher mice exhibit an increased number of canaliculi (p < 0.01) in all studied regions compared with the WT controls. The number of canaliculi is also negatively correlated with the distance from the centroid in the Lurcher and positively correlated in the WT mice. When the Lurcher and WT sample is pooled, the number of canaliculi and lacunar volume is increased in the posterior Imax region, and in addition, midcortical H-region exhibit lower number of canaliculi, lacuna to lacuna distance and increased lacunar volume. Our results indicate, that the importance of precise sample selection within cross sections in future studies is highlighted because of the histological heterogeneity of lacunar-canalicular network properties within the I-region and H-region in the mouse cortical bone. PMID:27387489

  13. Impact of presowing laser irradiation of seeds on sugar beet properties

    NASA Astrophysics Data System (ADS)

    Sacała, E.; Demczuk, A.; Grzyś, E.; Prośba-Białczyk, U.; Szajsner, H.

    2012-07-01

    The aim of the experiment was to establish the influence of biostimulation on the sugar beet seeds. The seeds came from the specialized breeding program energ'hill or were irradiated by the laser in two doses. The impact of the biostimulation was analyzed by determining the nitrate reductase activity and the nitrate, chlorophyll and carotenoids contents in leaves, as well as, the dry matter and sugar concentration in mature roots. The field experiment was established for two sugar beet cultivars. Biostimulation by irradiation and a special seed breeding program energ'hill had a positive influence on some examined parameters (particularly on nitrate reductase activity in Ruveta and in numerous cases on photosynthetic pigments in both cultivars). Regarding the dry matter accumulation and sugar concentration this impact was more favourable for Tiziana than for Ruveta cultivar.

  14. Impact of corrosive mediums on mechanical properties of amorphous alloys under influence of impulse current

    NASA Astrophysics Data System (ADS)

    Pluzhnikova, Tatyana; Fedorov, Victor; Sidorov, Sergey; Gubanova, Victoria; Pluzhnikov, Sergey

    2016-01-01

    Impact of corrosion mediums (solutions of NACE and H2SO4, HCl) on σ - ɛ graphs for alloys has been studied at synchronous passage of electrical current impulses accompanying momentary dropping of mechanical stress. Relations between dropping of mechanical stress and density of impulse electrical current have been established in studied materials. Structural and morphological condition of surface has been researched after influence of corrosive mediums with different concentration in studied alloys.

  15. Physical Properties of Suevite Section of the Eyreville Core, Chesapeake Bay Impact Structure

    NASA Astrophysics Data System (ADS)

    Elbra, T.; Pesonen, L. J.

    2007-12-01

    Chesapeake is a 35 Ma old shallow marine, complex impact structure with a diameter of ca. 85 km. The structure has previously been mapped with shallow drillings. Recently, the deep drilling into inner crater zone near Cape Charles was carried out in order to provide constraints on cratering processes in multi-layered marine targets. The Eyreville-1 core includes three holes with total depth of 1766m (Gohn et al. 2006). We are analyzing the fragments of the Eyreville core including post-impact, impact and basement units of the structure. The sampling interval was chosen dense enough to allow high-resolution petrophysical, paleomagnetic and rock magnetic data to be extracted from the core. Hereby we report the preliminary petrophysical and rock-magnetic data from suevite section of Eyreville core B. Results obtained so far show large variations in magnetic susceptibility data of suevite section. Polymict lithic breccias and cataclasites in lower part of the section are characterized by low magnetic susceptibility (below 0.0003 SI). The upper part, however, consists of more magnetic (susceptibility up to 0.006 SI) suevites. The rock- magnetic measurements (including thermal behavior of magnetic susceptibility and magnetic hysteresis) show the presence of magnetites in lower part of the section. Upper part shows additionally a distinct change in the slope of the susceptibility curve also near 350C, which may indicate the presence of pyrrhotites or maghemites. More extensive studies will be applied in near future in order to clarify the magnetomineralogy and will be presented. References: G. S. Gohn, C. Koeberl, K. G. Miller, W. U. Reimold, C. S. Cockell, J. W. Horton, W. E. Sanford, M. A. Voytek, 2006. Chesapeake Bay Impact Structure Drilled. EOS, vol 87. nr 35

  16. Tensile and charpy impact properties of irradiated reduced-activation ferritic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1996-10-01

    Tensile tests were conducted on eight reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on the steels irradiated to 26-29 dpa. Irradiation was in the Fast Flux Test Facility at 365{degrees}C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15-17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20000 h at 365{degrees}C. Thermal aging had little effect on the tensile behavior or the ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in the upper-shelf energy (USE). After {approx}7 dpa, the strength of the steels increased and then remained relatively unchanged through 26-29 dpa (i.e., the strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness, as measured by an increase in DBTT and a decrease in the USE, remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels were the most irradiation resistant.

  17. Martian Polar Region Impact Craters: Geometric Properties From Mars Orbiter Laser Altimeter (MOLA) Observations

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Sakimoto, S. E. H.; Frawley, J. J.; Matias, A.

    1998-01-01

    The Mars Orbiter Laser Altimeter (MOLA) instrument onboard the Mars Global Surveyor (MGS) spacecraft has so far observed approximately 100 impact landforms in the north polar latitudes (>60 degrees N) of Mars. Correlation of the topography with Viking Orbiter images indicate that many of these are near-center profiles, and for some of the most northern craters, multiple data passes have been acquired. The northern high latitudes of Mars may contain substantial ground ice and be topped with seasonal frost (largely CO2 with some water), forming each winter. We have analyzed various diagnostic crater topologic parameters for this high-latitude crater population with the objective of characterizing impact features in north polar terrains, and we explore whether there is evidence of interaction with ground ice, frost, dune movement, or other polar processes. We find that there are substantial topographic variations from the characteristics of midlatitude craters in the polar craters that are not readily apparent from prior images. The transition from small simple craters to large complex craters is not well defined, as was observed in the midlatitude MOLA data (transition at 7-8 km). Additionally, there appear to be additional topographic complexities such as anomalously large central structures in many polar latitude impact features. It is not yet clear if these are due to target-induced differences in the formation of the crater or post-formation modifications from polar processes.

  18. The Properties of Chondrocyte Membrane Reservoirs and Their Role in Impact-Induced Cell Death

    PubMed Central

    Moo, Eng Kuan; Amrein, Matthias; Epstein, Marcelo; Duvall, Mike; Abu Osman, Noor Azuan; Pingguan-Murphy, Belinda; Herzog, Walter

    2013-01-01

    Impact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3–4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3–4%. However, experimental support for this proposal is lacking. The purpose of this study was to measure the accessible membrane reservoir size for different membrane strain rates using membrane tethering techniques with atomic force microscopy. We conducted atomic force spectroscopy on isolated chondrocytes (n = 87). A micron-sized cantilever was used to extract membrane tethers from cell surfaces at constant pulling rates. Membrane tethers could be identified as force plateaus in the resulting force-displacement curves. Six pulling rates were tested (1, 5, 10, 20, 40, and 80 μm/s). The size of the membrane reservoir, represented by the membrane tether surface areas, decreased exponentially with increasing pulling rates. The current results support our theoretical findings that chondrocytes exposed to impact loading die because of membrane ruptures caused by high tensile membrane strain rates. PMID:24094400

  19. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties.

    PubMed

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-03-01

    The present study was carried out to evaluate the impact of the effluents and the solid wastes generated by a giant pulp and paper mill in the northeastern part of India on soil mineralogy of the area. The impacts were monitored by analysis of soil samples from seven sites located in the potential impact zone and a control site where any kind of effluent discharge or solid waste dumping was absent. The soil belonged to medium texture type (sandy clay loam, sandy loam, loamy sand, and silt loam), and the soil aggregate analysis indicated higher levels of organic carbon, pH, electrical conductivity, effective cation exchange capacity, and mean weight diameter at sites receiving effluents and solid wastes from the pulp and paper mill. Depletion in soil silica level and in feldspar and quartz contents and rise in iron and calcium contents at the sites receiving effluents from the pulp and paper mill indicated significant influence on soil mineralogy. The soil contained a mixture of minerals consisting of tectosilicates (with silicate frameworks as in quartz or feldspar), phylosilicates (layered clays like kaolinite, smectite, chlorite, illite, etc.), and carbonates. Absence of pure clay minerals indicated a state of heterogeneous intermediate soil clay transformation. The significance of the mixed mineralogy in relation to the disposal of effluents and dumping of solid wastes is discussed in details. PMID:25663405

  20. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  1. Impact of reagent infiltration time on reaction patterns and pasting properties of modified maize and wheat starches.

    PubMed

    Hong, Jung Sun; BeMiller, James N; Huber, Kerry C

    2016-10-20

    The impact of granular and molecular reaction patterns on modified starch properties was investigated as a function of the length of time allowed for reagent to infiltrate starch granules. A fluorescent reagent [5-(4,6-dichlorotriazinyl)aminofluorescein] was dispersed in aqueous normal maize or wheat starch slurries (35%, w/v) for 0, 5, 10, 30, or 60min, after which reaction was initiated by increasing the pH to 11.5 and allowing reaction to proceed for 3h. With increasing lengths of infiltration, the reaction became increasingly homogeneous within the granule interior (matrix) and the AM:AP reactivity ratio increased (wheat starch), as assessed by confocal laser scanning microscopy (CLSM) and size-exclusion chromatography (refractive index and fluorescence detection), respectively. A longer reagent infiltration time also led to a more inhibited (i.e., cross-linked) pasting viscosity, suggesting that both granular and/or molecular reaction patterns were altered by varied reagent infiltration times to ultimately impact modified starch properties. PMID:27474633

  2. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    NASA Astrophysics Data System (ADS)

    Alling, B.; Körmann, F.; Grabowski, B.; Glensk, A.; Abrikosov, I. A.; Neugebauer, J.

    2016-06-01

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite temperature, which in turn correlates with the local atomic volumes. Without the explicit consideration of atomic vibrations, the mean local magnetic moment and mean field derived magnetic entropy of paramagnetic bcc Fe are larger compared to paramagnetic fcc Fe, which would indicate that the magnetic contribution stabilizes the bcc phase at high temperatures. In the present study we show that this assumption is not valid when the coupling between vibrations and magnetism is taken into account. At the γ -δ transition temperature (1662 K), the lattice distortions cause very similar magnetic moments of both bcc and fcc structures and hence magnetic entropy contributions. This finding can be traced back to the electronic densities of states, which also become increasingly similar between bcc and fcc Fe with increasing temperature. Given the sensitive interplay of the different physical excitation mechanisms, our results illustrate the need for an explicit consideration of vibrational disorder and its impact on electronic and magnetic properties to understand paramagnetic Fe. Furthermore, they suggest that at the γ -δ transition temperature electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe.

  3. How sea level rise and storm climate impact the looming morpho-economic bubble in coastal property value.

    NASA Astrophysics Data System (ADS)

    McNamara, D.; Keeler, A.; Smith, M.; Gopalakrishnan, S.; Murray, A.

    2012-12-01

    property is significantly reduced with the removal of nourishment subsidies, creating a temporary bubble in coastal property value. In both models, results show the extent to which rising sea level and changing storminess impact the size of the property value bubble. The utility of the optimal control model is that it provides an empirically grounded parameterization of the coupled human coastal system. The coupled agent-based physical coastline model is more difficult to constrain with current data, however the model provides insight into the dynamics of subjective beliefs about coastal risk, which depend on the weight agents place on scientific predictions and on the way they process signals from previous climate events. Results from this model illustrate how the dynamics of the property bubble burst depend on agent beliefs about their changing environment.

  4. Environmental and management impacts on temporal variability of soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2012-04-01

    Soil hydraulic properties underlie temporal changes caused by different natural and management factors. Rainfall intensity, wet-dry cycles, freeze-thaw cycles, tillage and plant effects are potential drivers of the temporal variability. For agricultural purposes it is important to determine the possibility of targeted influence via management. In no-till systems e.g. root induced soil loosening (biopores) is essential to counteract natural soil densification by settling. The present work studies two years of temporal evolution of soil hydraulic properties in a no-till crop rotation (durum wheat-field pea) with two cover crops (mustard and rye) having different root systems (taproot vs. fibrous roots) as well as a bare soil control. Soil hydraulic properties such as near-saturated hydraulic conductivity, flow weighted pore radius, pore number and macroporosity are derived from measurements using a tension infiltrometer. The temporal dynamics are then analysed in terms of potential driving forces. Our results revealed significant temporal changes of hydraulic conductivity. When approaching saturation, spatial variability tended to dominate over the temporal evolution. Changes in near-saturated hydraulic conductivity were mainly a result of changing pore number, while the flow weighted mean pore radius showed less temporal dynamic in the no-till system. Macroporosity in the measured range of 0 to -10 cm pressure head ranged from 1.99e-4 to 8.96e-6 m3m-3. The different plant coverage revealed only minor influences on the observed system dynamics. Mustard increased slightly the flow weighted mean pore radius, being 0.090 mm in mustard compared to 0.085 mm in bare soil and 0.084 mm in rye. Still pore radius changes were of minor importance for the overall temporal dynamics. Rainfall was detected as major driving force of the temporal evolution of structural soil hydraulic properties at the site. Soil hydraulic conductivity in the slightly unsaturated range (-7 cm to -10

  5. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE PAGESBeta

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militizer, B.

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximatelymore » taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (KQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  6. Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designsa)

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-01

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium-tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF "path" to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ˜2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP-based properties of DT

  7. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    SciTech Connect

    Hu, S. X. Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-15

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κ{sub QMD}), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ∼2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP

  8. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    SciTech Connect

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militizer, B.

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (KQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  9. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designsa)

    DOE PAGESBeta

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militizer, B.

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximatelymore » taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (KQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  10. Physical property data from the ICDP-USGS Eyreville cores A and B, Chesapeake Bay impact structure, Virginia, USA, acquired using a multisensor core logger

    USGS Publications Warehouse

    Pierce, H.A.; Murray, J.B.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.

  11. Phase transformation and impact properties in the experimentally simulated weld heat-affected zone of a reduced activation ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Chang-Hoon; Lee, Tae-Ho; Jang, Min-Ho; Park, Min-Gu; Han, Heung Nam

    2014-12-01

    In this work, the phase transformation and impact properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic (RAFM) steel are investigated. The HAZs were experimentally simulated using a Gleeble simulator. The base steel consisted of tempered martensite through normalizing at 1000 °C and tempering at 750 °C, while the HAZs consisted of martensite, δ-ferrite and a small volume of autotempered martensite. The impact properties using a Charpy V-notch impact test revealed that the HAZs showed poor impact properties due to the formation of martensite and δ-ferrite as compared with the base steel. In addition, the impact properties of the HAZs further deteriorated with an increase in the δ-ferrite fraction caused by increasing the peak temperature. The impact properties of the HAZs could be improved through the formation of tempered martensite after post weld heat treatment (PWHT), but they remained lower than that of the base steel because the δ-ferrite remained in the tempered HAZs.

  12. Variations in magnetic properties of target basalts with the direction of asteroid impact: Example from Lonar crater, India

    NASA Astrophysics Data System (ADS)

    Arif, Md.; Basavaiah, N.; Misra, S.; Deenadayalan, K.

    2012-08-01

    The Lonar crater in Maharashtra state, India, has been completely excavated on the Deccan Traps basalt (approximately 65 Ma) at approximately 570 ± 47 ka by an oblique impact of a possible chondritic asteroid that struck the preimpact target from the east at an angle of approximately 30-45o to the horizon where the total duration of the shock event was approximately 1 s. It is shown by our early work that the distribution of ejecta and deformation of target rocks around the crater rim are symmetrical to the east-west plane of impact (Misra et al. 2010). The present study shows that some of the rock magnetic properties of these shocked target basalts, e.g., low-field anisotropy of magnetic susceptibility (AMS), natural remanent magnetization (NRM)/bulk susceptibility (χ), and high-coercivity and high-temperature (HC_HT) magnetization component, are also almost symmetrically oriented with reference to the plane of impact. Studies on the relative displacements of K3 (minimum) AMS axes of shocked basalts from around the crater rim and from the adjacent target rocks to the approximately 2-3 km west of the crater center suggest that the impact stress could have branched out into the major southwestward and northwestward components in the downrange direction immediately after the impact. The biaxial distribution of AMS axes in stereographic plots for the unshocked basalts transforms mostly into triaxial distribution for the shocked basalts, although transitional type distribution also exists. The degree of anisotropy (P') of AMS ellipsoids of the shocked basalts decreases by approximately 2% when compared with those of the unshocked target (approximately 1.03). The NRM/χ (Am-1) values of the shocked basalts on the rim of the Lonar crater do not show much change in the uprange or downrange direction on and close to the east-west plane of impact, and the values are only approximately 1.5 times higher on average over the unshocked basalts around the crater. However, the

  13. Analysis of the Thermal Comfort and Impact Properties of the Neoprene-Spacer Fabric Structure for Preventing the Joint Damages

    PubMed Central

    Ghorbani, Ehsan; Hasani, Hossein; Rafeian, Homa; Hashemibeni, Batool

    2013-01-01

    Background: Frequent moves at the joint, plus external factors such as trauma, aging, and etc., are all reasons for joint damages. In order to protect and care of joints, the orthopedic textiles are used. To protect the joints, these textiles keep muscles warm to prevent shock. To produce orthopedic textiles, Neoprene foams have been traditionally used. These foams are flexible and resist impact, but are not comfortable enough and might cause problems for the consumer. This study introduces a new structure consisting of perforated Neoprene foam attached to the spacer fabric and also compares the properties of thermal and moisture comfort and impact properties of this structure in comparison with Neoprene foam. Methods: In order to measure the factors related to the samples lateral pressure behavior, a tensile tester was used. A uniform pressure is applied to the samples and a force – displacement curve is obtained. The test continues until the maximum compression force is reached to 50 N. The area under the curve is much greater; more energy is absorbed during the impact. In order to investigate the dynamic heat and moisture transfer of fabrics, an experimental apparatus was developed. This device made the simulation of sweating of human body possible and consisted of a controlled environmental chamber, sweating guarded hot plate, and data acquisition system. Results: The findings show that the Neoprene-spacer fabric structure represents higher toughness values compared to other samples (P ≤ 0.001). Neoprene-spacer fabric structure (A3) has higher rate of moisture transport than conventional Neoprene foam; because of undesirable comfort characteristics in Neoprene. Conclusions: Results of the tests indicate full advantage of the new structure compared with the Neoprene foam for use in orthopedic textiles (P ≤ 0.001). PMID:24049594

  14. Impact of electron doping on thermoelectric properties in filled skutterudite IrSb3

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Kikkawa, A.; Tokura, Y.; Taguchi, Y.

    2016-04-01

    We investigated the variation in electronic, thermal, and thermoelectric properties of skutterudite IrSb3 upon filling the voids with alkaline (Na or K) or alkaline-earth atoms (Sr or Ba). Specific heat measurements revealed that the fillers donate electrons with high effective mass, which dominate the electric transport properties of the system. Vibrations associated with the filler additionally contribute to the specific heat, and also scatter phonons efficiently in conjunction with the static disorder, giving rise to the reduced thermal conductivity. The dimensionless thermoelectric figure of merit Z T increases with temperature and electron concentration, and reaches to 0.44 for Ba0.4Ir4Sb12 at 685 K. The observed features for the filled IrSb3 are similar to those of filled CoSb3, indicating that n -type filled skutterudite antimonides have a potential as good thermoelectric materials universally.

  15. Impact of Fock terms on the isospin properties of nuclear matter

    NASA Astrophysics Data System (ADS)

    Sun, Bao Yuan; Zhao, Qian; Long, Wen Hui

    2016-05-01

    Several topics on the isospin properties of nuclear matter studied within the density-dependent relativistic Hartree-Fock theory are summarized. In detail, the effects of the Fock terms on the nuclear symmetry energy are listed, including the extra enhancement from the Fock terms of the isoscalar meson-nucleon coupling channels, the extra hyperon-induced suppression effect originating from the Fock channel, self-consistent tensor effects embedded automatically in the Fock diagrams, the enhanced density-dependent isospin-triplet potential part of the symmetry energy at high densities, a reduced kinetic symmetry energy at supranuclear density and so on. The results demonstrate the importance of the Fork diagram, especially from the isoscalar mesonnucleon coupling channels, on the isospin properties of the in-medium nuclear force.

  16. Impact of amylose content on starch physicochemical properties in transgenic sweet potato.

    PubMed

    Zhou, Wenzhi; Yang, Jun; Hong, Yan; Liu, Guiling; Zheng, Jianli; Gu, Zhengbiao; Zhang, Peng

    2015-05-20

    The intrinsic relationship between amylose content and starch physicochemical properties was studied using six representative starch samples (amylose content 0-65%) produced from transgenic sweet potato (cultivar Xushu22). The transgenic lines (waxy and high-amylose) and wild-type (WT) sweet potatoes were analyzed for amylose content, particle size and chain length distribution, X-ray diffraction analysis, thermal characteristics, pasting and rheological property. Compared to the WT starch, the waxy and high-amylose starches showed larger average granule sizes and had fewer short chains and more medium and long chains. X-ray diffractogram analysis revealed that high-amylose starches show a type-B crystal form with a markedly decreased degree of crystallinity in contrast to the type-A crystal form of the WT and waxy starches. In the high-amylose sweet potato starches, the rise of setback value and the reduction of breakdown value led to the high shear resistance as indicated by the higher G', G", and tanδ from the oscillation test. ΔH was not found to be decreased with the reduction of crystallinity. The shear stress resistance of starch gel after gelatinization was also enhanced as amylose content increased. Principal component analysis also confirmed that the amylose content greatly influenced the starch structure and properties, e.g., storage modulus, setback value, and average chain length. Thus, our study not only shed light on how amylose content affects starch properties but also identified novel starches that are available for various applications. PMID:25817686

  17. On the impact of indium distribution on the electronic properties in InGaN nanodisks

    SciTech Connect

    Benaissa, M. E-mail: benaissa@fsr.ac.ma; Sigle, W.; Aken, P. A. van; Ng, T. K.; Ooi, B. S.; El Bouayadi, R.; Jahangir, S.; Bhattacharya, P.

    2015-03-09

    We analyze an epitaxially grown heterostructure composed of InGaN nanodisks inserted in GaN nanowires in order to relate indium concentration to the electronic properties. This study was achieved with spatially resolved low-loss electron energy-loss spectroscopy using monochromated electrons to probe optical excitations—plasmons—at nanometer scale. Our findings show that each nanowire has its own indium fluctuation and therefore its own average composition. Due to this indium distribution, a scatter is obtained in plasmon energies, and therefore in the optical dielectric function, of the nanowire ensemble. We suppose that these inhomogeneous electronic properties significantly alter band-to-band transitions and consequently induce emission broadening. In addition, the observation of tailing indium composition into the GaN barrier suggests a graded well-barrier interface leading to further inhomogeneous broadening of the electro-optical properties. An improvement in the indium incorporation during growth is therefore needed to narrow the emission linewidth of the presently studied heterostructures.

  18. Impacts of compound properties and sediment characteristics on the sorption behaviour of pharmaceuticals in aquatic systems.

    PubMed

    Al-Khazrajy, Omar S A; Boxall, Alistair B A

    2016-11-01

    Sorption is a key factor in determining the persistence, attenuation and bioavailability of sediment-associated contaminants. However, our understanding of the sorption behaviour of pharmaceuticals in sediments is poor. In this study, we investigated the sorption behaviour of a diverse set of pharmaceuticals in a range sediment types. Sorption affinity of pharmaceuticals for all sediments was found to increase in the order mefenamic acidproperties. The analyses indicated that sorption is related to properties such as Log Dow of a compound in the sediment (lipophilicity corrected for the sediment pH), cation exchange capacity, clay%, organic carbon content and exchangeable Ca(2+), although, with the exception of atenolol, robust relationships between sediment properties and sorption were not obtained. Overall, the results demonstrate how complex the processes are that drive the sorption of pharmaceuticals in sediments and highlight the need for generation of further experimental data and further model development work. PMID:27270139

  19. The impact of individual nuclear properties on r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mumpower, M. R.; Surman, R.; McLaughlin, G. C.; Aprahamian, A.

    2016-01-01

    The astrophysical rapid neutron capture process or ' r process' of nucleosynthesis is believed to be responsible for the production of approximately half the heavy element abundances found in nature. This multifaceted problem remains one of the greatest open challenges in all of physics. Knowledge of nuclear physics properties such as masses, β-decay and neutron capture rates, as well as β-delayed neutron emission probabilities are critical inputs that go into calculations of r-process nucleosynthesis. While properties of nuclei near stability have been established, much still remains unknown regarding neutron-rich nuclei far from stability that may participate in the r process. Sensitivity studies gauge the astrophysical response of a change in nuclear physics input(s) which allows for the isolation of the most important nuclear properties that shape the final abundances observed in nature. This review summarizes the extent of recent sensitivity studies and highlights how these studies play a key role in facilitating new insight into the r process. The development of these tools promotes a focused effort for state-of-the-art measurements, motivates construction of new facilities and will ultimately move the community toward addressing the grand challenge of 'How were the elements from iron to uranium made?'.

  20. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, Volumes, and Physical-chemical Properties of Chemicals

    NASA Astrophysics Data System (ADS)

    Knightes, C. D.; Daiss, R.; Williams, L.; Singer, A.

    2015-12-01

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base fluid, proppant, and additives. Additives, comprised of one or more chemicals, are serve a specific engineering purpose (e.g., friction reducer, scale inhibitor, biocide). As part of the USEPA's Draft Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources, we investigated the different types, volumes injected, and physical-chemical properties of HF fluid chemicals. The USEPA identified 1,076 chemicals used in HF fluids, based on 10 sources covering chemical use from 2005 to 2013. These chemicals fall into different classes: acids, alcohols, aromatic hydrocarbons, bases, hydrocarbon mixtures, polysaccharides, and surfactants. The physical-chemical properties of these chemicals vary, which affects their movement through the environment if spilled. Properties range from fully miscible to insoluble, from highly hydrophobic to highly hydrophilic. Most of these chemicals are not volatile. HF fluid composition varies from site to site depending on a range of factors. No single chemical or set of chemicals are used at every site. A median of 14 chemicals are used per well, with a range of four to 28 (5th and 95th percentiles). Methanol was the chemical most commonly reported in FracFocus 1.0 (72% of disclosures), and hydrotreated light petroleum distillates and hydrochloric acid were both reported in over half the disclosures. Operators store chemicals on-site, often in multiple containers (typically in 760 to 1,500 L totes). We estimated that the total volume of all chemicals used per well ranges from approximately 10,000 to 110,000 L. The views expressed here are those of the authors and do not necessarily represent the views or policies of the USEPA.

  1. Atmospheric Aging and Its Impacts on Physical Properties of Soot Aerosols: Results from the 2009 SHARP/SOOT Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Khalizov, A. F.; Zheng, J.; Reed, C. C.; Collins, D. R.; Olaguer, E. P.

    2009-12-01

    Atmospheric aerosols impact the Earth energy balance directly by scattering solar radiation back to space and indirectly by changing the albedo, frequency, and lifetime of clouds. Carbon soot (or black carbon) produced from incomplete combustion of fossil fuels and biomass burning represents a major component of primary aerosols. Because of high absorption cross-sections over a broad range of the electromagnetic spectra, black carbon contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. In areas identified as aerosol hotspots, which include many megacities, solar heating by soot-containing aerosols is roughly comparable to heating due to greenhouse gases. In addition, light absorbing soot aerosols may reduce photolysis rates at the surface level, producing a noticeable impact on photochemistry. Enhanced light absorption and scattering by soot can stabilize the atmosphere, retarding vertical transport and exacerbating accumulation of gaseous and particulate matter (PM) pollutants within the planetary boundary layer. Less surface heating and atmospheric stabilization may decrease formation of clouds, and warming in the atmosphere can evaporate existing cloud droplets by lowering relative humidity. Furthermore, soot-containing aerosols represent a major type of PM that has adverse effects on human health. When first emitted, soot particles are low-density aggregates of loosely connected primary spherules. Freshly emitted soot particles are typically hydrophobic, but may become cloud condensation nuclei (CCN) during atmospheric aging by acquiring hydrophilic coatings. Hygroscopic soot particles, being efficient CCN, can exert indirect forcing on climate. In this talk, results will be presented on measurements of soot properties during the 2009 SHARP/SOOT Campaign. Ambient aerosols and fresh soot particles injected into a captured air chamber were monitored to

  2. Diminished Cartilage Creep Properties and Increased Trabecular Bone Density Following a Single, Sub-Fracture Impact of the Rabbit Femoral Condyle

    PubMed Central

    Borrelli, Joseph; Zaegel, Melissa A.; Martinez, Mario D.; Silva, Matthew J.

    2013-01-01

    Traumatic injury to articular cartilage can lead to post-traumatic arthritis. We used a custom pendulum device to deliver a single, near-fracture impact to the medial femoral condyles of rabbits. Impact was localized to a region ~3 mm in diameter, and impact stress averaged ~100 MPa. Animals were euthanized at 0, 1 and 6 months after impact. Cartilage mechanical properties from impacted and sham knees were evaluated by creep-indentation testing and periarticular trabecular bone was evaluated by microCT and histomorphometry. Impact caused immediate and statistically significant loss of cartilage thickness (-40% vs. sham) and led to a greater than two-fold increase in creep strain. From 0 to 6 months after impact, the ability of cartilage to recover from creep deformation became significantly impaired (percent recovery different from control at 1 and 6 months). At 1 month, there was a 33% increase in the trabecular bone volume fraction of the epiphysis beneath the site of impact compared to control, and increased bone formation was observed histologically. Taken together, these findings demonstrate that a single, high-energy impact below the fracture threshold leads to acute deleterious changes in the viscoelastic properties of articular cartilage that worsen with time, while at the same time stimulating increased bone formation beneath the impact site. PMID:20225288

  3. Protecting intellectual property associated with Canadian academic clinical trials--approaches and impact.

    PubMed

    Ross, Sue; Magee, Laura; Walker, Mark; Wood, Stephen

    2012-01-01

    Intellectual property is associated with the creative work needed to design clinical trials. Two approaches have developed to protect the intellectual property associated with multicentre trial protocols prior to site initiation. The 'open access' approach involves publishing the protocol, permitting easy access to the complete protocol. The main advantages of the open access approach are that the protocol is freely available to all stakeholders, permitting them to discuss the protocol widely with colleagues, assess the quality and rigour of the protocol, determine the feasibility of conducting the trial at their centre, and after trial completion, to evaluate the reported findings based on a full understanding of the protocol. The main potential disadvantage of this approach is the potential for plagiarism; however if that occurred, it should be easy to identify because of the open access to the original trial protocol, as well as ensure that appropriate sanctions are used to deal with plagiarism. The 'restricted access' approach involves the use of non-disclosure agreements, legal documents that must be signed between the trial lead centre and collaborative sites. Potential sites must guarantee they will not disclose any details of the study before they are permitted to access the protocol. The main advantages of the restricted access approach are for the lead institution and nominated principal investigator, who protect their intellectual property associated with the trial. The main disadvantages are that ownership of the protocol and intellectual property is assigned to the lead institution; defining who 'needs to know' about the study protocol is difficult; and the use of non-disclosure agreements involves review by lawyers and institutional representatives at each site before access is permitted to the protocol, significantly delaying study implementation and adding substantial indirect costs to research institutes. This extra step may discourage sites from

  4. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  5. A comparative study of the impact properties of sandwich materials with different cores

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, K. R.; Shankar, K.; Viot, P.; Guerard, S.

    2012-08-01

    Sandwich panels are made of two high strength skins bonded to either side of a light weight core and are used in applications where high stiffness combined with low structural weight is required. The purpose of this paper is to compare the mechanical response of several sandwich panels whose core materials are different. Sandwich panels with glass fibre-reinforced polymer face sheets were used, combined with five different cores; polystyrene foam, polypropylene honeycomb, two different density Balsa wood and Cork. All specimens were subjected to low velocity impact and their structural response (Force-displacement curves) were compared to quasistatic response of the panel tested using an hemispherical indenter.

  6. Impact properties of tungsten-based alloys under conditions of high-speed interaction

    NASA Astrophysics Data System (ADS)

    Afanas'eva, S. A.; Belov, N. N.; Biryukov, Yu. A.; Burkin, V. V.; Ishchenko, A. N.; Martsunova, L. S.; Tabachenko, A. N.; Khabibullin, M. V.; Yugov, N. T.

    2013-04-01

    Some aspects of obtaining alloys of the tungsten-nickel-iron-cobalt (TNIC) system have been investigated by the method of liquid-phase sintering of powder preparations, including those containing nano-size tungsten powders. By varying the initial porosity of the powder preparations, samples of highly porous composites have been obtained. A calculational-experimental method was used to investigate the penetrating power of cylindrical impactors made from TNIC alloys on steel plates. An increase in penetration depth with growth of porosity of the sample has been established in the considered range of impact speeds.

  7. Impact of anti-tacking agents on properties of gas-entrapped membrane and effervescent floating tablets.

    PubMed

    Kriangkrai, Worawut; Puttipipatkhachorn, Satit; Sriamornsak, Pornsak; Pongjanyakul, Thaned; Sungthongjeen, Srisagul

    2014-12-01

    Tackiness caused by the gas-entrapped membrane (Eudragit(®)RL 30D) was usually observed during storage of the effervescent floating tablets, leading to failure in floatation and sustained release. In this work, common anti-tacking agents (glyceryl monostearate (GMS) and talc) were used to solve this tackiness problem. The impact of anti-tacking agent on the properties of free films and corresponding floating tablets was investigated. GMS was more effective than talc in reducing tackiness of the film. Addition and increasing amount of anti-tacking agents lowered the film mechanical strength, but the coating films were still strong and flexible enough to resist the generated gas pressure inside the floating tablet. Wettability and water vapor permeability of the film decreased with increasing level of anti-tacking agents as a result of their hydrophobicity. No interaction between anti-tacking agents and polymer was observed as confirmed by Fourier transform infrared spectroscopy, powder X-ray diffractometry, and differential scanning calorimetry studies. Increasing amount of anti-tacking agents decreased time to float and tended to retard drug release of the floating tablets. Floating properties and drug release were also influenced by type of anti-tacking agents. The obtained floating tablets still possessed good floating properties and controlled drug release even though anti-tacking agent had some effects. The results demonstrated that the tackiness problem of the floating tablets could be solved by incorporating anti-tacking agent into the gas-entrapped membrane. PMID:24927669

  8. Effects of Mo, Cr, and V Additions on Tensile and Charpy Impact Properties of API X80 Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Han, Seung Youb; Shin, Sang Yong; Seo, Chang-Hyo; Lee, Hakcheol; Bae, Jin-Ho; Kim, Kisoo; Lee, Sunghak; Kim, Nack J.

    2009-08-01

    In this study, four API X80 pipeline steels were fabricated by varying Mo, Cr, and V additions, and their microstructures and crystallographic orientations were analyzed to investigate the effects of their alloying compositions on tensile properties and Charpy impact properties. Because additions of Mo and V promoted the formation of fine acicular ferrite (AF) and granular bainite (GB) while prohibiting the formation of coarse GB, they increased the strength and upper-shelf energy (USE) and decreased the energy transition temperature (ETT). The addition of Cr promoted the formation of coarse GB and hard secondary phases, thereby leading to an increased effective grain size, ETT, and strength, and a decreased USE. The addition of V resulted in a higher strength, a higher USE, a smaller effective grain size, and a lower ETT, because it promoted the formation of fine and homogeneous of AF and GB. The steel that contains 0.3 wt pct Mo and 0.06 wt pct V without Cr had the highest USE and the lowest ETT, because its microstructure was composed of fine AF and GB while its maintained excellent tensile properties.

  9. Sussing merger trees: the impact of halo merger trees on galaxy properties in a semi-analytic model

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Yi, Sukyoung K.; Elahi, Pascal J.; Thomas, Peter A.; Pearce, Frazer R.; Behroozi, Peter; Han, Jiaxin; Helly, John; Jung, Intae; Knebe, Alexander; Mao, Yao-Yuan; Onions, Julian; Rodriguez-Gomez, Vicente; Schneider, Aurel; Srisawat, Chaichalit; Tweed, Dylan

    2014-12-01

    A halo merger tree forms the essential backbone of a semi-analytic model for galaxy formation and evolution. Recent studies have pointed out that extracting merger trees from numerical simulations of structure formation is non-trivial; different tree building algorithms can give differing merger histories. These differences should be carefully understood before merger trees are used as input for models of galaxy formation. We investigate the impact of different halo merger trees on a semi-analytic model. We find that the z = 0 galaxy properties in our model show differences between trees when using a common parameter set. The star formation history of the universe and the properties of satellite galaxies can show marked differences between trees with different construction methods. Independently calibrating the semi-analytic model for each tree can reduce the discrepancies between the z = 0 global galaxy properties, at the cost of increasing the differences in the evolutionary histories of galaxies. Furthermore, the underlying physics implied can vary, resulting in key quantities such as the supernova feedback efficiency differing by factors of 2. Such a change alters the regimes where star formation is primarily suppressed by supernovae. Therefore, halo merger trees extracted from a common halo catalogue using different, but reliable, algorithms can result in a difference in the semi-analytic model. Given the uncertainties in galaxy formation physics, however, these differences may not necessarily be viewed as significant.

  10. Sussing Merger Trees: The Impact of Halo Merger Trees on Galaxy Properties in a Semi-Analytic Model

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Yi, Sukyoung

    2015-01-01

    Halo merger trees are essential backbones of a semi-analytic model for galaxy formation and evolution. Recent studies have pointed out that extracting merger trees from numerical simulations of structure formation using different tree building algorithms can give differing merger histories. To understand the uncertainties developed from these differences in galaxy formation models, we investigate the impact of different halo merger trees on galaxy properties in a semi-analytic model. We find that the galaxy properties in our model differ between trees when using a common parameter set. The star formation history and the number density of galaxies show marked differences between trees with different construction algorithms. The semi-analytic model can be calibrated for each tree to reduce the discrepancies between the z=0 global galaxy properties, at the cost of increasing the differences in the evolutionary histories of galaxies. The calibration is carries out by adjusting key quantities such as the supernova feedback efficiency differing by factor of 2. Such a change affects the regimes where star formation is primarily suppressed by supernovae. Therefore, halo merger trees extracted from a common halo catalogue using different, but reliable, algorithms can result in a difference in the semi-analytic model. Given the uncertainties in galaxy formation physics, however, these differences may not be viewed as significant.

  11. Impact Strength and Flexural Properties Enhancement of Methacrylate Silane Treated Oil Palm Mesocarp Fiber Reinforced Biodegradable Hybrid Composites

    PubMed Central

    Ibrahim, Nor Azowa; Ariffin, Hidayah; Yunus, Wan Md. Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites. PMID:25254230

  12. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.

    PubMed

    Eng, Chern Chiet; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites. PMID:25254230

  13. Flexural and impact properties of sandwich panels used in surfboard construction

    SciTech Connect

    Manning, J.A.; Crosky, A.G.; Bandyopadhyay, S.

    1993-12-31

    Surfboards represent a particularly simple example of sandwich panel construction and are conventionally made from a preshaped low density polyurethane foam core encased in an E-glass/polyester skin. They are made to minimum weight and thickness and as a result suffer durability problems. The boards are particularly prone to denting due to impact damage, causing principally cosmetic problems. More importantly, they frequently snap under normal service conditions. Recently, there has been considerable interest in the use of higher performance materials for the skins, notably S-glass and epoxy resin, to improve the durability of surfboards. This work examines the failure of simple parallel faced panels fabricated to simulate a section of a surfboard. It is shown that when loaded in four point bending, the panels fail by compression of the core and that this mode of failure produces the same characteristics as seen in service failures. Further, the flexural strength is dominated by the behavior of the core and is not improved appreciably by the use of S-glass or epoxy resin. On the other hand, the impact resistance is improved by the use of S-glass and further improved if epoxy resin is used as the matrix.

  14. Preparation of Plasma Cladding Gradient Wear-Resistant Layer and Study on Its Impact Fatigue Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Dekun; Liu, Yuan; Yin, Yan

    2016-02-01

    Plasma cladding technology is used to prepare plasma cladding gradient wear-resistant specimens, and the performance of these specimens is analyzed and compared with those of single cladding specimens. The results indicate that plasma cladding gradient wear-resistant layers implement the gradient changes in microstructure and hardness from the surface of the outer cladding layer to the fusion line and that the outer and inner cladding layers are well combined, the inner cladding layer can improve rapid decreases in hardness of single wear-resistant samples from the cladding layer to the matrix, changes in hardness from the outer to inner cladding layer are buffered, and the inner cladding layer performs important functions in the transition between the outer cladding layer and substrate. The highest hardness of the outer layer, which reaches 735 HV0.1, is approximately 3.9 times that of the matrix. The impact fatigue resistance performance of the plasma gradient cladding specimens is superior to that of single cladding specimens, and fatigue cracks begin to form only after 1 × 105 cyclical impacts.

  15. Geometric properties of Martian impact craters: Preliminary results from the Mars Orbiter Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Garvin, James B.; Frawley, James J.

    1998-12-01

    The Mars Orbiter Laser Altimeter (MOLA) acquired high spatial and vertical resolution topographic data for 18 tracks across the northern hemisphere of Mars during the Fall of 1997. It sampled 98 minimally degraded impact craters between the latitudes of 80°N and 12°S The best fitting depth (d) versus diameter (D) power-law relationship for these craters is: d = 0.14 D0.90 for simple varieties, and d = 0.25 D0.49 for complex structures. The simple-to-complex transition diameter is 8 km (+/-0.5 km). The cross-sectional “shape” of the crater cavities was determined by fitting a power-function to each profile. Variation in the exponent (n) suggest the craters flatten with increasing diameter and impact energy. The ejecta thickness is skewed suggesting that use of existing empirical expressions for the expected radial decay of ejecta thickness is inappropriate for Mars in most cases.

  16. Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions.

    PubMed

    Ahmed, Jasim; Thomas, Linu; Taher, Ayoub; Joseph, Antony

    2016-11-01

    Lentil starch (LS) dispersions (flour to water 1:4w/w) were subjected to high pressure (HP) treatment at 0.1, 400, 500 and 600MPa for 10min, followed by evaluation on the functional, particle size, rheological, pasting, and structural properties of post-process samples. Water holding capacity of pressurized starch increased with the pressure intensity due to increase in damaged starch. The amount of resistant starch increased from 5 to 6.8% after pressure treatment at 600MPa. An increase in starch granule particle size (196-207μm) was obvious after HP treatment. The lentil starch was completely gelatinized after pressure treatment at 600MPa for 10min as evidenced from differential scanning calorimetry, rheometry, X-ray diffraction (XRD) and scanning electron microscopy observation. The elastic modulus, G' of lentil starch gel was less frequency dependent, and higher in magnitude at high pressure (>500MPa) than at lower pressure range (≤400MPa). XRD analysis revealed the disappearance of two diffraction peak intensities at 14.86° and 22.82° at 600MPa for 10min, which confirms the transformation of crystalline to amorphous region of lentil starch. Pasting properties were significantly influenced by the pressure treatment especially at 600MPa, resulting in a considerable decrease in peak viscosity, breakdown and final viscosity, and an increase in peak time. It can be inferred that the functional properties of pressure-treated LS are mainly based on the structural destruction of granules. PMID:27516314

  17. Impact of radiation exposure on mechanical and superconducting properties of Bi-2212 superconductor ceramics

    NASA Astrophysics Data System (ADS)

    Rahman, A. A.; Hamid, N. A.; Asbullah, M. S. N.

    2013-06-01

    In the last few years, rapid improvements have been made to improve the quality of high-temperature superconductors. Amongst the high temperature superconductors, the Bi-based (BSCCO) consists of interest for various applications. Bi2Sr2CaCu2O8 (Bi-2212) have been used to make superconducting tapes and wires. Unlike conventional compound superconductors, the critical current, Ic of oxide superconducting tapes in the elastic strain is generally almost constant and degrades suddenly when it is subject to mechanical force by a strain beyond the limit. In this research, the Bi-2212 samples were prepared by solid state reaction method. Precursors oxide powders were pressed to pallets under hydrostatic pressure around 7 tons or 70 000 psi and then sintered at temperature of 850°C for 24 hours. The effect of radiation before and after irradiation on mechanical and superconducting properties of the samples was studied. Irradiation was carried out with a beam of 3 MeV, current of 10 mA and radiation dose of 100 and 200 KGray. The x-ray diffraction analysis is used to verify Bi-2212 phase. The samples were also characterized through electrical properties by using the four-point probe method. The microstructure of the samples was studied by using the scanning electron microscopy (SEM), and compression test was also conducted using the stress-strain relationship. The phase structure and electrical properties of the samples degrade slightly with irradiation exposure. Nevertheless the microstructure showed that when initial electron radiation dose was increased up to 100 kGray, the grain growth, texture and core density improved slightly but the grain growth, size and core density begin to deteriorate after the electron radiation dose is increased to 200 kGray. This may be due to the formation of larger size defects within the microstructure of the Bi-2212 phase as the radiation dose increases.

  18. Impact of phytoplankton community structure and function on marine particulate optical properties

    NASA Astrophysics Data System (ADS)

    McFarland, Malcolm Neil

    Phytoplankton are an ecologically important and diverse group of organisms whose distribution, abundance, and population dynamics vary significantly over small spatial (cm) and temporal (minutes) scales in the coastal ocean. Our inability to observe phytoplankton community structure and function at these small scales has severely limited our understanding of the fundamental ecological and evolutionary mechanisms that drive phytoplankton growth, mortality, adaptation and speciation. The goal of this dissertation was to enhance our understanding of phytoplankton ecology by improving in situ observational techniques based on the optical properties of cells, colonies, populations, and communities. Field and laboratory studies were used to determine the effects of phytoplankton species composition, morphology, and physiology on the inherent optical properties of communities and to explore the adaptive significance of bio-optically important cellular characteristics. Initial field studies found a strong association between species composition and the relative magnitude and shape of particulate absorption, scattering, and attenuation coefficient spectra. Subsequent field studies using scanning flow cytometry to directly measure optically important phytoplankton and non-algal particle characteristics demonstrated that the size and pigment content of large (>20 microm) phytoplankton cells and colonies vary significantly with the slope of particulate attenuation and absorption spectra, and with the ratio of particulate scattering to absorption. These relationships enabled visualization of phytoplankton community composition and mortality over small spatial and temporal scales derived from high resolution optical measurements acquired with an autonomous profiling system. Laboratory studies with diverse uni-algal cultures showed that morphological and physiological characteristics of cells and colonies can account for ˜30% of the optical variation observed in natural

  19. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Zhang, Fan

    2015-04-01

    Alpine meadow is one of widespread vegetation types of the Qinghai-Tibetan Plateau. It is undergoing degradation under the background of global climate change, human activities and overgrazing. Soil moisture is important to alpine meadow ecology for its water and energy transfer processes, therefore soil hydraulic properties become key parameters for local eco-hydrological processes studies. However, little research focus on the changes and it's mechanisms of soil hydraulic properties during the degradation processes. In this study, soil basic and hydraulic properties at 0-10 cm and 40-50 cm soil layer depths under different degraded alpine meadow were analyzed. Pearson correlations were adopted to study the relationships among the investigated factors and principal component analysis was performed to identify the dominant factor. Results show that with increasing degree of degradation, soil sand content increased while soil saturated hydraulic conductivity (Ks) as well as soil clay content, soil porosity decreased in the 0-10 cm soil layers, and organic matter and root gravimetric density decreased in both the 0-10 cm and 40-50 cm soil layers. For soil unsaturated hydraulic conductivity, it reduced more slowly with decreasing pressure head under degraded conditions than non-degraded conditions. However, soil moisture showed no significant changes with increasing degradation. Soil Ks was significantly correlated (P = 0.01) with bulk density, soil porosity, soil organic matter and root gravimetric density. Among these, soil porosity is the dominant factor explaining about 90% of the variability in total infiltration flow. Under non-degraded conditions, the infiltration flow principally depended on the presence of macropores. With increasing degree of degradation, soil macropores quickly changed to mesopores or micropores. The proportion of total infiltration flow through macropores and mesopores significantly decreased with the most substantial decrease observed for

  20. Impact of the Soak and the Malt on the Physicochemical Properties of the Sorghum Starches

    PubMed Central

    Claver, Irakoze Pierre; Zhang, Haihua; Li, Qin; Zhu, Kexue; Zhou, Huiming

    2010-01-01

    Starches were isolated from soaked and malted sorghum and studied to understand their physicochemical and functional properties. The swelling power (SP) and the water solubility index (WSI) of both starches were nearly similar at temperatures below 50 °C, but at more than 50 °C, the starch isolated from malted sorghum showed lower SP and high WSI than those isolated from raw and soaked sorghum. The pasting properties of starches determined by rapid visco-analyzer (RVA) showed that malted sorghum starch had a lower viscosity peak value (86 BU/RVU) than raw sorghum starch (454 BU/RVU). For both sorghum, X-ray diffractograms exhibited an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity ranged from 9.62 to 15.50%. Differential scanning calorimetry (DSC) revealed that raw sorghum starch showed an endotherm with a peak temperature (Tp) at 78.06 °C and gelatinization enthalpies of 2.83 J/g whereas five-day malted sorghum starch had a Tp at 47.22 °C and gelatinization enthalpies of 2.06 J/g. Storage modulus (G′) and loss modulus (G″) of all starch suspensions increased steeply to a maximum at 70 °C and then decreased with continuous heating. The structural analysis of malted sorghum starch showed porosity on the granule’s surface susceptible to the amylolysis. The results showed that physicochemical and functional properties of sorghum starches are influenced by soaking and malting methods. PMID:21152287

  1. Impact of interfacial magnetism on magnetocaloric properties of thin film heterostructures

    NASA Astrophysics Data System (ADS)

    Kirby, B. J.; Lau, J. W.; Williams, D. V.; Bauer, C. A.; Miller, Casey W.

    2011-03-01

    Polarized neutron reflectometry was used to determine the depth profile of the magnetic moment per Gd atom, mGd, in a Gd(30 nm)/W(5 nm) multilayer. Despite sharp interfaces observed by transmission electron microscopy, mGd is systematically suppressed near the Gd-W interfaces. Because the peak magnetic entropy change is proportional to mGd2/3, this results in a reduction of the maximum achievable magnetocaloric effect in Gd-W heterostructures. By extension, our results suggest that creating materials with Gd-ferromagnet interfaces may increase the mGd relative to the bulk, leading to enhanced magnetocaloric properties.

  2. Impact of densification on microstructure and transport properties of CaFe5O7

    NASA Astrophysics Data System (ADS)

    Delacotte, C.; Hébert, S.; Hardy, V.; Bréard, Y.; Maki, R.; Mori, T.; Pelloquin, D.

    2016-04-01

    Monophasic CaFe5O7 ceramic has been synthesized by solid state route. Its microstructural features have been studied by diffraction techniques and electron microscopy images before and after Spark Plasma Sintering (SPS) annealings. This work is completed by measurements of electrical and thermal properties. Especially, attention is focused around the structural and electronic transition at 360 K for which specific heat measurements have revealed a sharp peak. Densification by SPS techniques led to a significant improvement of electrical conductivity above 360 K.

  3. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  4. Electrical and rheological properties of sewage sludge--Impact of the solid content.

    PubMed

    Ségalen, C; Dieudé-Fauvel, E; Baudez, J C

    2015-10-01

    Sludge treatment is a multistep process during which sludge is mixed, pumped, thickened and dewatered. The total solid content (TSC) increases from a few grams to more than a hundred grams per liter and as underlined by the existing literature, rheological characteristics are key criteria for sludge management. However, these characteristics remain difficult to be determined in-situ and professionals are looking for alternative techniques to evaluate them. In that context, the potential of electrical measurements has been highlighted (Dieudé-Fauvel et al., 2009, 2014). This paper investigates the additional benefits of correlating both rheological and electrical properties for sludge characterization within the range of 1-23%TSC. On a rheological point of view, results are consistent with previous literature. In parallel, electrical impedance spectroscopy allowed us to define an equivalent electrical circuit to model the sludge electrical signature. Results highlight that the circuit parameters follow two regimes according to the range of solid content, similarly to rheological properties. This work opens new insights about sludge characterization and treatment monitoring. PMID:26304590

  5. Impact of parasitic thermal effects on thermoelectric property measurements by Harman method

    SciTech Connect

    Kwon, Beomjin Baek, Seung-Hyub; Keun Kim, Seong; Kim, Jin-Sang

    2014-04-15

    Harman method is a rapid and simple technique to measure thermoelectric properties. However, its validity has been often questioned due to the over-simplified assumptions that this method relies on. Here, we quantitatively investigate the influence of the previously ignored parasitic thermal effects on the Harman method and develop a method to determine an intrinsic ZT. We expand the original Harman relation with three extra terms: heat losses via both the lead wires and radiation, and Joule heating within the sample. Based on the expanded Harman relation, we use differential measurement of the sample geometry to measure the intrinsic ZT. To separately evaluate the parasitic terms, the measured ZTs with systematically varied sample geometries and the lead wire types are fitted to the expanded relation. A huge discrepancy (∼28%) of the measured ZTs depending on the measurement configuration is observed. We are able to separately evaluate those parasitic terms. This work will help to evaluate the intrinsic thermoelectric property with Harman method by eliminating ambiguities coming from extrinsic effects.

  6. Impact of symmetry on the ferroelectric properties of CaTiO{sub 3} thin films

    SciTech Connect

    Biegalski, Michael D.; Qiao, Liang; Gu, Yijia; Chen, Long-Qing; Mehta, Apurva; He, Qian; Borisevich, Albina; Takamura, Yayoi

    2015-04-20

    Epitaxial strain is a powerful tool to induce functional properties such as ferroelectricity in thin films of materials that do not possess ferroelectricity in bulk form. In this work, a ferroelectric state was stabilized in thin films of the incipient ferroelectric, CaTiO{sub 3}, through the careful control of the biaxial strain state and TiO{sub 6} octahedral rotations. Detailed structural characterization was carried out by synchrotron x-ray diffraction and scanning transmission electron microscopy. CaTiO{sub 3} films grown on La{sub 0.18}Sr{sub 0.82}Al{sub 0.59}Ta{sub 0.41}O{sub 3} (LSAT) and NdGaO{sub 3} (NGO) substrates experienced a 1.1% biaxial strain state but differed in their octahedral tilt structures. A suppression of the out-of-plane rotations of the TiO{sub 6} octahedral in films grown on LSAT substrates resulted in a robust ferroelectric I4 mm phase with remnant polarization ∼5 μC/cm{sup 2} at 10 K and T{sub c} near 140 K. In contrast, films grown on NGO substrates with significant octahedral tilting showed reduced polarization and T{sub c}. These results highlight the key role played by symmetry in controlling the ferroelectric properties of perovskite oxide thin films.

  7. Impact of a Reducing Agent on the Dynamic Surface Properties of Lysozyme Solutions.

    PubMed

    Tihonov, Michael M; Kim, Viktoria V; Noskov, Boris A

    2016-05-01

    Disulfide bond shuffling in the presence of the reducing agents dithiothreitol (DTT) or β-mercaptoethanol (BME) strongly affects the surface properties of lysozyme solutions. The addition of 0.32 mM DTT substantially alters the kinetic dependencies of the dynamic surface elasticity and surface tension relative to those of pure protein solutions. The significant increase in the dynamic surface elasticity likely relates to the cross-linking between lysozyme molecules and the formation of a dense layer of protein globules stabilized by intermolecular disulfide bonds at the liquid/gas interface. This effect differs from the previously described influence of chaotropic denaturants, such as guanidine hydrochloride (GuHCl) and urea, on the surface properties of lysozyme solutions. If both chaotropic and reducing agents are added to protein solutions simultaneously, their effects become superimposed. In the case of mixed lysozyme/GuHCl/DTT solutions, the dynamic surface elasticity near equilibrium decreases as the GuHCl concentration increases because of the gradual loosening of the cross-linked layer of protein globules but remains much higher than that of lysozyme/GuHCl solutions. PMID:27086995

  8. Impact of symmetry on the ferroelectric properties of CaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Biegalski, Michael D.; Qiao, Liang; Gu, Yijia; Mehta, Apurva; He, Qian; Takamura, Yayoi; Borisevich, Albina; Chen, Long-Qing

    2015-04-01

    Epitaxial strain is a powerful tool to induce functional properties such as ferroelectricity in thin films of materials that do not possess ferroelectricity in bulk form. In this work, a ferroelectric state was stabilized in thin films of the incipient ferroelectric, CaTiO3, through the careful control of the biaxial strain state and TiO6 octahedral rotations. Detailed structural characterization was carried out by synchrotron x-ray diffraction and scanning transmission electron microscopy. CaTiO3 films grown on La0.18Sr0.82Al0.59Ta0.41O3 (LSAT) and NdGaO3 (NGO) substrates experienced a 1.1% biaxial strain state but differed in their octahedral tilt structures. A suppression of the out-of-plane rotations of the TiO6 octahedral in films grown on LSAT substrates resulted in a robust ferroelectric I4 mm phase with remnant polarization ˜5 μC/cm2 at 10 K and Tc near 140 K. In contrast, films grown on NGO substrates with significant octahedral tilting showed reduced polarization and Tc. These results highlight the key role played by symmetry in controlling the ferroelectric properties of perovskite oxide thin films.

  9. The impact of the layer thickness on the thermodynamic properties of pd hydride thin film electrodes.

    PubMed

    Vermeulen, Paul; Ledovskikh, Alexander; Danilov, Dmitry; Notten, Peter H L

    2006-10-19

    Recently, a lattice gas model was presented and successfully applied to simulate the absorption/desorption isotherms of various hydride-forming materials. The simulation results are expressed by parameters corresponding to several energy contributions, e.g., interaction energies. However, the use of a model system is indispensable in order to show the strength of the simulations. The palladium-hydrogen system is one of the most thoroughly described metal hydrides found in the literature and is therefore ideal for this purpose. The effects of decreasing the thickness of Pd thin films on the isotherms have been monitored experimentally and subsequently simulated. An excellent fit of the lattice gas model to the experimental data is found, and the corresponding parameters are used to describe several thermodynamic properties. It is analyzed that the contribution of H-H interaction energies to the total energy and the influence of the host lattice energy are significantly and systematically changing as a function of Pd thickness. Conclusively, it has been verified that the lattice gas model is a useful tool to analyze thermodynamic properties of hydrogen storage materials. PMID:17034217

  10. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.

  11. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).

  12. Distinct impact of targeted actin cytoskeleton reorganization on mechanical properties of normal and malignant cells.

    PubMed

    Efremov, Yu M; Dokrunova, A A; Efremenko, A V; Kirpichnikov, M P; Shaitan, K V; Sokolova, O S

    2015-11-01

    The actin cytoskeleton is substantially modified in cancer cells because of changes in actin-binding protein abundance and functional activity. As a consequence, cancer cells have distinctive motility and mechanical properties, which are important for many processes, including invasion and metastasis. Here, we studied the effects of actin cytoskeleton alterations induced by specific nucleation inhibitors (SMIFH2, CK-666), cytochalasin D, Y-27632 and detachment from the surface by trypsinization on the mechanical properties of normal Vero and prostate cancer cell line DU145. The Young's modulus of Vero cells was 1300±900 Pa, while the prostate cancer cell line DU145 exhibited significantly lower Young's moduli (600±400 Pa). The Young's moduli exhibited a log-normal distribution for both cell lines. Unlike normal cells, cancer cells demonstrated diverse viscoelastic behavior and different responses to actin cytoskeleton reorganization. They were more resistant to specific formin-dependent nucleation inhibition, and reinforced their cortical actin after detachment from the substrate. This article is part of a Special Issue entitled: Mechanobiology. PMID:25970206

  13. Impact of cultivation of Mastocarpus stellatus in IMTA on the seaweeds chemistry and hybrid carrageenan properties.

    PubMed

    Azevedo, Gabriela; Domingues, Bernardo; Abreu, Helena; Sousa-Pinto, Isabel; Feio, Gabriel; Hilliou, Loic

    2015-02-13

    The biomass yield potential of Mastocarpus stellatus, a commercially attractive carrageenophyte for foods and pharmaceutics, was investigated by cultivating the seaweeds in the nutrient-rich outflow of a commercial fish farm. Results from two consecutive 4 weeks experiments indicate that the cultivation of this seaweed produces a mean biomass of 21 to 40.6 gDW m(-2) day(-1) depending on the time of the experiment. DRIFT and CP-MAS NMR analyses of seaweeds indicate that cultivation during May affected quantitatively the seaweeds chemistry, and thus the chemical and gelling properties of native extracts of kappa/iota-hybrid carrageenan (KI). Overall, algal growth leads to the production of more sulphated KI, the percentage increase varying between 27% and 44% for the two experiments. However, alkali treatment of seaweeds before extraction reduces the variations in gelling properties of KI induced by the algal growth. This study demonstrates the capacity of growing M. stellatus in an integrated multi-trophic aquaculture system for the sustainable production of high value polysaccharides. PMID:25458283

  14. Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors

    SciTech Connect

    Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.

    2015-03-11

    In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100 mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.

  15. Impact of morphological orientation in determining mechanical properties in triblock copolymer systems

    SciTech Connect

    Honeker, C.C.; Thomas, E.L.

    1996-08-01

    In contrast to other types of segmented multiblock thermoplastic elastomers, simple ABA block copolymers represent a class of well-defined nanostructured materials. Due to the inherent block lengths built in during the polymerization, the microdomain structure of block copolymers exhibits a size scale of typically 10-100 nm. The ability to control the individual chemistry of each block as well as the size and the shape of the domains in a block copolymer affords enormous advantages to tailor physical properties. By globally orienting the microdomains, a well-defined initial morphological state aids greatly in the interpretation and modeling of mechanical deformation and allows for exploitation of the inherent anisotropy of the cylindrical and lamellar structures. Several types of orientation techniques are reviewed. Experiments investigating structure-mechanical properties in styrene-diene triblock copolymers with spherical, cylindrical, and lamellar morphologies are discussed, with emphasis on the clarifying role of global morphological orientation in data interpretation. Composite theory which treats each microphase as a continuum describes small strain behavior of cylinders and lamellae quite well. Molecular variables such as the number of effective bridge vs loop conformations in the rubber midblock become more important at large strains. With controlled chemistry and morphology structure in influencing the deformation process is expected. 145 refs., 11 figs., 2 tabs.

  16. Impacts of Surface Energy on Lithium Ion Intercalation Properties of V2O5.

    PubMed

    Ma, Wenda; Zhang, Changkun; Liu, Chaofeng; Nan, Xihui; Fu, Haoyu; Cao, Guozhong

    2016-08-01

    Oxygen vacancies have demonstrated to be one of the most effective ways to alter electrochemical performance of electrodes for lithium ion batteries, though there is little information how oxygen vacancies affect the electrochemical properties. Vanadium pentoxide (V2O5) cathode has been investigated to explore the relationship among oxygen vacancies, surface energy, and electrochemical properties. The hydrogen-treated V2O5 (H-V2O5) sample synthesized via thermal treatment under H2 atmosphere possesses a high surface energy (63 mJ m(-2)) as compared to that of pristine V2O5 (40 mJ m(-2)) and delivers a high reversible capacity of 273.4 mAh g(-1) at a current density of 50 mA g(-1), retaining 189.0 mAh g(-1) when the current density increases to 2 A g(-1). It also displays a capacity retention of 92% after 100 cycles at 150 mA g(-1). The presence of surface oxygen vacancies increases surface energy and possibly serves as a nucleation center to facilitate phase transition during lithium ion intercalation and deintercalation processes. PMID:27400230

  17. Organic aggregate formation in aerosols and its impact on the physicochemical properties of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh

    Fatty acid salts and "humic" materials, found in abundance in atmospheric particles, are both anionic surfactants. Such materials are known to form organic aggregates or colloids in solution at very low aqueous concentrations. In a marine aerosol, micelle aggregates can form at a low fatty acid salt molality of ˜10 -3 m. In other types of atmospheric particles, such as biomass burning, biogenic, soil dust, and urban aerosols, "humic-like" materials exist in sufficient quantities to form micelle-like aggregates in solution. I show micelle formation limits the ability of surface-active organics in aerosols to reduce the surface tension of an atmospheric particle beyond about 10 dyne cm -1. A general phase diagram is presented for anionic surfactants to explain how surface-active organics can change the water uptake properties of atmospheric aerosols. Briefly such molecules can enhance and reduce water uptake by atmospheric aerosols at dry and humid conditions, respectively. This finding is consistent with a number of unexplained field and laboratory observations. Dry electron microscope images of atmospheric particles often indicate that organics may coat the surface of particles in the atmosphere. The surfactant phase diagram is used to trace the particle path back to ambient conditions in order to determine whether such coatings can exist on wet ambient aerosols. Finally, I qualitatively highlight how organic aggregate formation in aerosols may change the optical properties and chemical reactivity of atmospheric particles.

  18. Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors

    DOE PAGESBeta

    Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.

    2015-03-11

    In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100more » mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.« less

  19. Dynamic properties of meiosis-specific lamin C2 and its impact on nuclear envelope integrity

    PubMed Central

    Jahn, Daniel; Schramm, Sabine; Benavente, Ricardo

    2010-01-01

    A hallmark of meiosis is the precise pairing and the stable physical connection (synapsis) of the homologous chromosomes. These processes are essential prerequisite for their proper segregation. Pairing of the homologs during meiotic prophase I critically depends on characteristic movements of chromosomes. These movements, in turn, require attachment of meiotic telomeres to the nuclear envelope and their subsequent dynamic repositioning. Dynamic repositioning of meiotic telomeres goes along with profound structural reorganization of the nuclear envelope. The short A-type lamin C2 is thought to play a critical role in this process due to its specific expression during meiotic prophase I and the unique localization surrounding telomere attachments. Consistent with this notion, here we provide compelling evidence that meiosis-specific lamin C2 features a significantly increased mobility compared to somatic lamins as revealed by photobleaching techniques. We show that this property can be clearly ascribed to the lack of the N-terminal head and the significantly shorter α-helical coil domain. Moreover, expression of lamin C2 in somatic cells induces nuclear deformations and alters the distribution of the endogenous nuclear envelope proteins lamin B1, LAP2, SUN1 and SUN2. Together, our data define lamin C2 as a “natural lamin deletion mutant” that confers unique properties to the nuclear envelope which would be essential for dynamic telomere repositioning during meiotic prophase I. PMID:21327075

  20. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    SciTech Connect

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  1. Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties

    SciTech Connect

    Sinclair, Michael B.; Fan, Hongyou; Brener, Igal; Liu, Sheng; Luk, Ting S.; Li, Binsong

    2015-09-01

    QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. During the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.

  2. Thermal environment effects on strength and impact properties of boron-aluminum composites

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Lad, R. A.; Maisel, J. E.

    1978-01-01

    A systematic study was conducted regarding the degradation of fracture strength and impact energy in commercial B-Al composites in both static and cyclic thermal environments. The composites used in the study contained approximately 50 vol % boron fibers, unidirectionally aligned in either a 6061 Al or 1100 Al matrix. The tensile strengths of the composites after 3000 thermal cycles as a function of upper cycle temperature are presented in graphs. The temperature at which the strengths of 6061 Al matrix, B-Al composites were significantly degraded after 3000 cycles was noticeably higher than that for the 1100 Al matrix composites. Static heating at 420 C resulted in no significant strength degradation for the 6061 Al matrix composites. In the case of 1100 matrix composites, some degradation was observed at 420 C but markedly less than in the composites cycled to 420 C.

  3. Properties of cold ions produced by synchrotron radiation and by charged particle impact

    SciTech Connect

    Levin, J.C.; Biederman, C.; Cederquist, H.; O, C.S.; Short, R.T.; Sellin, I.A.

    1988-01-01

    Argon recoil ions produced by beams of 0.8 MeV/u Cl/sup 5 +/ have been detected by time-of-flight (TOF) techniques in coincidence with the loss of from one to five projectile electrons. Recoil-ion energies have been determined to be more than an order of magnitude higher than those of highly-charged ions produced by unmonochromatized synchrotron radiation. Charge-state distributions, however, show similarities, suggesting that loss of projectile electrons corresponds, in some cases, to inner-shell target ionization producing vacancy cascades. In an essential improvement to the usual multinomial description of ionization in the independent-electron-ejection model, we find the inclusion of Auger vacancy cascades significantly alters the description of the recoil ion spectra corresponding to projectile-electron loss. These conclusions are consistent with impact parameters inferred from determinations of mean recoil energy. 11 refs., 5 figs.

  4. Statistical investigation and thermal properties for a 1-D impact system with dissipation

    NASA Astrophysics Data System (ADS)

    Díaz I., Gabriel; Livorati, André L. P.; Leonel, Edson D.

    2016-05-01

    The behavior of the average velocity, its deviation and average squared velocity are characterized using three techniques for a 1-D dissipative impact system. The system - a particle, or an ensemble of non-interacting particles, moving in a constant gravitation field and colliding with a varying platform - is described by a nonlinear mapping. The average squared velocity allows to describe the temperature for an ensemble of particles as a function of the parameters using: (i) straightforward numerical simulations; (ii) analytically from the dynamical equations; (iii) using the probability distribution function. Comparing analytical and numerical results for the three techniques, one can check the robustness of the developed formalism, where we are able to estimate numerical values for the statistical variables, without doing extensive numerical simulations. Also, extension to other dynamical systems is immediate, including time dependent billiards.

  5. Impact of lubricant additives on the physicochemical properties and activity of three-way catalysts

    DOE PAGESBeta

    Toops, Todd J.; Lance, Michael J.; Qu, Jun; Viola, Michael B; Lewis, Samuel Arthur; Leonard, Donovan N.; Edward W. Hagaman; Xie, Chao

    2016-04-04

    As alternative lubricant anti-wear additives are sought to reduce friction and improve overall fuel economy, it is important that these additives are also compatible with current emissions control catalysts. In the present work, an oil-miscible phosphorous-containing ionic liquid (IL), trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P66614][DEHP]), is evaluated for its impact on three-way catalysts (TWC) and benchmarked against the industry standard zinc-dialkyl-dithio-phosphate (ZDDP). The TWCs are aged in different scenarios: neat gasoline (no-additive, or NA), gasoline+ZDDP, and gasoline+IL. The aged samples, along with the as received TWC, are characterized through various analytical techniques including catalyst reactivity evaluation in a bench-flow reactor. The temperaturesmore » of 50% conversion (T50) for the ZDDP-aged TWCs increased by 30, 24, and 25 °C for NO, CO, and C3H6, respectively, compared to the no-additive case. Although the IL-aged TWC also increased in T50 for CO and C3H6, it was notably less than ZDDP, 7 and 9 °C, respectively. Additionally, the IL-aged samples had higher water-gas-shift reactivity and oxygen storage capacity than the ZDDP-aged TWC. Characterization of the aged samples indicated the predominant presence of CePO4 in the ZDDP-aged TWC aged by ZDDP, while its formation was retarded in the case of IL where higher levels of AlPO4 is observed. Furthermore, the results in this work indicate that the phosphonium-phosphate IL potentially has less adverse impact on TWC than ZDDP.« less

  6. Impact of Camping on Soil Properties at Strawberry Lake, North Dakota, USA

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Tibor, Matthew A.

    2014-05-01

    Recreational activity at campsites can cause compaction and metal contamination of soils. This study compared the bulk densities, penetration resistance values, organic matter contents, and Zn, Mn, and Cu contents of soils sampled from zones of varying recreational activity within the campsites at Strawberry Lake, North Dakota, USA. The results of this study showed that there were statistically significant increases in the soil bulk densities and soil penetration resistance values compared to the controls. However, the low recreational intensity has not compacted the surface soils beyond an average of 1.36 g cm-3, which is not dense enough to hinder the root growth of the surrounding vegetation. There were no statistically significant differences between the soil organic matter content of the different activity zones at the 95% confidence interval. Zinc values were four orders of magnitude and Cu values three to four orders of magnitude below US EPA guideline limits. The EPA does not have guidelines for Mn, but Mn levels were lower than reported typical natural values for a nearby area. Therefore, metal contents were not high enough to be of concern. Taken together, these results were interpreted to indicate that the low-intensity camping activities that occur at Strawberry Lake campground have not had a significant negative impact on the soils found there. Additional information on this study can be found in Tibor and Brevik (2013). Reference Tibor, M.A., and E.C. Brevik. 2013. Anthropogenic Impacts on Campsite Soils at Strawberry Lake, North Dakota. Soil Horizons 54: doi:10.2136/sh13-06-0016.

  7. Morphological Adaptations for Digging and Climate-Impacted Soil Properties Define Pocket Gopher (Thomomys spp.) Distributions

    PubMed Central

    Marcy, Ariel E.; Fendorf, Scott; Patton, James L.; Hadly, Elizabeth A.

    2013-01-01

    Species ranges are mediated by physiology, environmental factors, and competition with other organisms. The allopatric distribution of five species of northern Californian pocket gophers (Thomomys spp.) is hypothesized to result from competitive exclusion. The five species in this environmentally heterogeneous region separate into two subgenera, Thomomys or Megascapheus, which have divergent digging styles. While all pocket gophers dig with their claws, the tooth-digging adaptations of subgenus Megascapheus allow access to harder soils and climate-protected depths. In a Northern Californian locality, replacement of subgenus Thomomys with subgenus Megascapheus occurred gradually during the Pleistocene-Holocene transition. Concurrent climate change over this transition suggests that environmental factors – in addition to soil – define pocket gopher distributional limits. Here we show 1) that all pocket gophers occupy the subset of less energetically costly soils and 2) that subgenera sort by percent soil clay, bulk density, and shrink-swell capacity (a mineralogical attribute). While clay and bulk density (without major perturbations) stay constant over decades to millennia, low precipitation and high temperatures can cause shrink-swell clays to crack and harden within days. The strong yet underappreciated interaction between soil and moisture on the distribution of vertebrates is rarely considered when projecting species responses to climatic change. Furthermore, increased precipitation alters the weathering processes that create shrink-swell minerals. Two projected outcomes of ongoing climate change—higher temperatures and precipitation—will dramatically impact hardness of soil with shrink-swell minerals. Current climate models do not include factors controlling soil hardness, despite its impact on all organisms that depend on a stable soil structure. PMID:23717675

  8. Small-Scale Drop Size Variability: Impact on Estimation of Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Knyazikhin, Y.; Myneni, R. B.; Marshak, A.; Wiscombe, W. J.; Larsen, M. L.; Martonchik, J. V.

    2005-01-01

    Most cloud radiation models and conventional data processing techniques assume that the mean number of drops of a given radius is proportional to volume. The analysis of microphysical data on liquid water drop sizes shows that, for sufficiently small volumes, this proportionality breaks down; the number of cloud drops of a given radius is instead proportional to the volume raised to a drop size-dependent nonunit power. The coefficient of proportionality, a generalized drop concentration, is a function of the drop size. For abundant small drops the power is unity as assumed in the conventional approach. However, for rarer large drops, it falls increasingly below unity. This empirical fact leads to drop clustering, with the larger drops exhibiting a greater degree of clustering. The generalized drop concentration shows the mean number of drops per cluster, while the power characterizes the occurrence frequency of clusters. With a fixed total number of drops in a cloud, a decrease in frequency of clusters is accompanied by a corresponding increase in the generalized concentration. This initiates a competing process missed in the conventional models: an increase in the number of drops per cluster enhances the impact of rarer large drops on cloud radiation while a decrease in the frequency suppresses it. Because of the nonlinear relationship between the number of clustered drops and the volume, these two opposite tendencies do not necessarily compensate each other. The data analysis suggests that clustered drops likely have a stronger radiative impact compared to their unclustered counterpart; ignoring it results in underestimation of the contribution from large drops to cloud horizontal optical path.

  9. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Reflecting widespread unhappiness with the growing tax burdens in this country, the most active area of litigation reported in the property chapter this year involves various attempts by taxpayers to prevent the construction or remodeling of public school facilities. While some taxpayers fought to keep schools from being built, others in New York…

  10. Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation.

    PubMed

    Magri, Andrea; Friederich, Pascal; Schäfer, Bernhard; Fattori, Valeria; Sun, Xiangnan; Strunk, Timo; Meded, Velimir; Hueso, Luis E; Wenzel, Wolfgang; Ruben, Mario

    2015-01-01

    We have studied the electronic properties and the charge carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olate)aluminium(III) (Al(Op)3) both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be -5.93 and -3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op)3 was successfully evaporated onto quartz substrates and was clearly identified in the absorption spectra of both the solution and the thin film. A structured steady state fluorescence emission was detected in solution, whereas a broad, red-shifted emission was observed in the thin film. This indicates the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op)3 into organic thin film transistors (TFTs) was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility between 0.6 × 10(-6) and 2.1 × 10(-6) cm(2)·V(-1)·s(-1) was measured. Theoretical simulations, on the other hand, predicted an electron mobility of 9.5 × 10(-6) cm(2)·V(-1)·s(-1) and a hole mobility of 1.4 × 10(-4) cm(2)·V(-1)·s(-1). The theoretical simulation for the hole mobility predicted an approximately one order of magnitude higher hole mobility than was observed in the experiment, which is considered to be in good agreement. The result for the electron mobility was, on the other hand, unexpected, as both the calculated electron mobility and chemical common sense (based on the capability of extended aromatic structures to efficiently accept and delocalize additional electrons) suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement. PMID:26171287

  11. Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

    PubMed Central

    Friederich, Pascal; Schäfer, Bernhard; Fattori, Valeria; Sun, Xiangnan; Strunk, Timo; Meded, Velimir; Hueso, Luis E; Wenzel, Wolfgang; Ruben, Mario

    2015-01-01

    Summary We have studied the electronic properties and the charge carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olate)aluminium(III) (Al(Op)3) both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be −5.93 and −3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op)3 was successfully evaporated onto quartz substrates and was clearly identified in the absorption spectra of both the solution and the thin film. A structured steady state fluorescence emission was detected in solution, whereas a broad, red-shifted emission was observed in the thin film. This indicates the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op)3 into organic thin film transistors (TFTs) was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility between 0.6 × 10−6 and 2.1 × 10−6 cm2·V−1·s−1 was measured. Theoretical simulations, on the other hand, predicted an electron mobility of 9.5 × 10−6 cm2·V−1·s−1 and a hole mobility of 1.4 × 10−4 cm2·V−1·s−1. The theoretical simulation for the hole mobility predicted an approximately one order of magnitude higher hole mobility than was observed in the experiment, which is considered to be in good agreement. The result for the electron mobility was, on the other hand, unexpected, as both the calculated electron mobility and chemical common sense (based on the capability of extended aromatic structures to efficiently accept and delocalize additional electrons) suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement. PMID:26171287

  12. Investigating the Impact of Updraft Velocity on Cirrus Cloud Properties Using the CAM5 Model Constrained with Field Measurements

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Comstock, J. M.; Wan, H.; Wang, M.

    2013-12-01

    Cirrus clouds composed of ice crystals play an important role in modifying the global radiative balance through scattering shortwave (SW) radiation and absorbing and emitting longwave (LW) terrestrial radiation. Updraft velocity in cirrus clouds determines the cooling rate for ice nucleation and thus influences the number concentration of ice crystals. It also plays an important role on the in-cloud supersaturation for ice crystal growth and thus the ice water content in cirrus clouds. However, there are still large uncertainties in the understanding of vertical velocity and its variability in cirrus cloud and its parameterization in global climate models, due to the scarcity of cirrus measurements. The DOE Atmospheric Radiation Measurement (ARM)'s Small Particles in Cirrus (SPartICus) campaign and the NASA's Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) conducted airborne measurements over central North America with special emphasis to investigate the properties of mid-latitude cirrus clouds, the processes affecting these properties and their impact on radiation. In this study we use the SPartICus/MACPEX observations to constrain and improve the parameterization of in-cloud subgrid updraft velocity in the Community Atmospheric Model version 5 (CAM5). Aircraft measurements of updraft velocities are mapped to 0.5x0.5 and 1x1 GCM grids to derive the sub-grid probability distribution frequency (sub-grid PDF) of velocities. The Liu and Penner (2005) ice nucleation scheme is called with each velocity sample inside a grid box to obtain the grid-box mean number of nucleated ice crystals. The characteristic updraft velocity (w*) for each grid box is inversely estimated by matching the grid-box mean ice crystal number. The relationship between w* and the mean and the standard deviation of sub-grid PDF of velocities inside a grid box is used to improve the current parameterization of w* in CAM5. Sensitivity tests with CAM5 are performed to assess the impact of

  13. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    NASA Astrophysics Data System (ADS)

    Logan, Timothy S.

    Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the

  14. Impact of anthropomorphic soil genesis on hydraulic properties: the case of cranberry production

    NASA Astrophysics Data System (ADS)

    Periard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean; Hallema, Dennis W.

    2014-05-01

    The construction of a cranberry field requires the installation of a drainage system which causes anthropic layering of the natural sequence of soil strata. Over the years, the soil hydraulic properties may change under the influence of irrigation and water table control. In fact, natural consolidation (drainage and recharge cycles), filtration and clogging soil pores by colloidal particle accelerated by water management will alter the hydrodynamic behavior of the soil (Gaillard et al., 2007; Wildenschild and Sheppard, 2013; Bodner et al., 2013). Today, advances in the field of tomography imagery allows the study a number of physicals processes of soils (Wildenschilds and Sheppard, 2013) especially for the transport of colloidal particles (Gaillard et al., 2007) and consolidation (Reed et al, 2006; Pires et al, 2007). Therefore, the main objective of this work is to analyze the temporal evolution of hydrodynamic properties of a sandy soil during repeated drainage and recharge cycles using a medical CT-scan. A soil columns laboratory experiment was setup in fall 2013, pressure head, input and output flow, tracer monitoring (KBr and ZrO2) and tomographic analyses have been used to quantify the temporal variation of the soil hydrodynamic properties of these soil columns. The results showed that the water management (irrigation and drainage) has strong effect on soil genesis and causes significant alteration of soil hydraulic properties, which may reduce soil drainage capacity. Knowledge about the mechanisms responsible of anthropic cranberry soil genesis will allow us to predict soil evolution according to several conditions (soil type, drainage system design, water management) to better anticipate and control their future negative effects on cranberry production. References: Bodner, G., P. Scholl and H.P. Kaul. 2013. Field quantification of wetting-drying cycles to predict temporal changes of soil pore size distribution. Soil and Tillage Research 133: 1-9. doi

  15. Impact of biting midges on residential property values in Hervey Bay, Queensland, Australia.

    PubMed

    Ratnayake, Jay; Dale, Pat E; Sipe, Neil G; Daniels, Peter

    2006-03-01

    Biting midges (Culicoides spp.) are an important environmental health issue in Hervey Bay, an area of rapid population growth in Australia. It is also the gateway to a World Heritage area (Great Sandy Strait) and a destination for tourists. The spread of housing developments into suburbs close to midge breeding habitats has led to a problem for the local government responsible for managing biting insects in its area. Suburbs with a severe biting midge problem were found to have significantly lower residential property values than less affected suburbs. The gross reduction in value in due to the midge problem was estimated to range from more than AUS dollar 25 million, based on actual sale price, to more than AUS dollar 55 million, based on the perceptions of the most severely affected residents. PMID:16646336

  16. Thermal energy storage material thermophysical property measurement and heat transfer impact

    NASA Technical Reports Server (NTRS)

    Tye, R. P.; Bourne, J. G.; Destarlais, A. O.

    1976-01-01

    The thermophysical properties of salts having potential for thermal energy storage to provide peaking energy in conventional electric utility power plants were investigated. The power plants studied were the pressurized water reactor, boiling water reactor, supercritical steam reactor, and high temperature gas reactor. The salts considered were LiNO3, 63LiOH/37 LiCl eutectic, LiOH, and Na2B4O7. The thermal conductivity, specific heat (including latent heat of fusion), and density of each salt were measured for a temperature range of at least + or - 100 K of the measured melting point. Measurements were made with both reagent and commercial grades of each salt.

  17. Impact of laver treatment practices on the geoenvironmental properties of sediments in the Ariake Sea.

    PubMed

    Du, Yan Jun; Hayashi, Shigenori; Shen, Shui-Long

    2014-04-15

    Since the 1970s, the catch of Tairagi and Agemaki shellfish that inhabit the shallow sediments of the Ariake Sea of Japan has fallen dramatically. This is partly accounted for by the Isahaya land reclamation dike project and by the increasingly frequent local red tides. A recent survey of local fisherman suggested that the decline in the shellfish harvest may also be due to the practice of laver treatment in the tidal flats of the Ariake Sea. We carried out field and laboratory investigations to determine whether the practice changes the geoenvironmental properties of the fine-grained sediments in the tidal flats. There were notable changes in the salt concentration, pH, and sulfide content between the sediments exposed to a laver treating agent and those without laver treatment. Based on these differences, we identified potential mechanisms by which the laver treating agent was transported into the sediments and influenced the sulfide levels. PMID:24629378

  18. Impact of dry heating on physicochemical properties of corn starch and lysine mixture.

    PubMed

    Ji, Ying; Yu, Jicheng; Xu, Yongbin; Zhang, Yinghui

    2016-10-01

    Corn starch was modified with lysine by dry heat treatment and to investigate how they can affect the pasting and structural properties of the treated starches. Dry heating with lysine reduced the pasting temperature and resulting in viscosity increase. The particle size of heated starch-lysine mixture increased, suggesting that starch granules were cross-linked to lysine. After dry heating, the onset temperature, peak temperature and conclusion temperature of corn starch-lysine mixture were lower than those of other starches. The degree of crystallinity decreased for the starch after dry heat treatment while these heated starch samples still have the same X-ray diffraction types as the original starch. PMID:27311503

  19. Impact of sputter deposition parameters on molybdenum nitride thin film properties

    NASA Astrophysics Data System (ADS)

    Stöber, L.; Konrath, J. P.; Krivec, S.; Patocka, F.; Schwarz, S.; Bittner, A.; Schneider, M.; Schmid, U.

    2015-07-01

    Molybdenum and molybdenum nitride thin films are presented, which are deposited by reactive dc magnetron sputtering. The influence of deposition parameters, especially the amount of nitrogen during film synthesization, to mechanical and electrical properties is investigated. The crystallographic phase and lattice constants are determined by x-ray diffraction analyses. Further information on the microstructure as well as on the biaxial film stress are gained from techniques such as transmission electron microscopy, scanning electron microscopy and the wafer bow. Furthermore, the film resistivity and the temperature coefficient of resistance are measured by the van der Pauw technique starting from room temperature up to 300 °C. Independent of the investigated physical quantity, a dominant dependence on the sputtering gas nitrogen content is observed compared to other deposition parameters such as the plasma power or the sputtering gas pressure in the deposition chamber.

  20. Impact of Plying on the Physical Properties of Vortex and Other Spun Yarns

    NASA Astrophysics Data System (ADS)

    Dhamija, Sudershan; Chowdhury, Amal; Chattopadhyay, Rabisankar

    2016-04-01

    The physical properties of two ply yarns made from vortex, ring, compact, and rotor singles have been investigated by changing ply twist factor. The physical parameters like yarn diameter, plied yarn length, twist liveliness have been found to be significantly affected by the ply twist factor. Though plying increases the yarn diameter for all, the percentage increase in diameter with respect to single yarn is the minimum for vortex yarns. The ply twist factor at which the real contraction starts is also the lowest for vortex yarns. Amongst the plied yarns, those made from rotor yarns show minimum twist liveliness. A minimum ply twist threshold exists below which hockles (a hole like structure) in ply yarns are observed.

  1. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    SciTech Connect

    Gayathri, S.; Sridharan, M. E-mail: m.sridharan@ece.sastra.edu; Kumar, N.; Krishnan, R. E-mail: m.sridharan@ece.sastra.edu; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.

    2013-12-15

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp{sup 2} bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp{sup 3} domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp{sup 2} fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm{sup 2}. The super low friction mechanism is explained by low sliding resistance of a-C/sp{sup 2} and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm{sup 2} is related to widening of the intergrain distance caused by transformation from sp{sup 2} to sp{sup 3} hybridized structure.

  2. The impacts of long-term intensive agriculture on the Vertisol properties in a calcareous region.

    PubMed

    Rezapour, Salar; Najari, S; Ghaemian, N

    2015-05-01

    Morphological, physicochemical, and mineralogical properties of Vertisols (Chromic Calcixererts, Typic Haploxererts, and Typic Calcixererts) influenced under farming practices and adjoining uncultivated soils were investigated in order to contribute to the understanding of changes derived by intensive cultivation (over five decades). The study revealed that A-horizon thickness enhanced from 20 cm in the uncultivated soil to 30 cm in the cultivated soil for Typic Haploxererts and Typic Calcixererts. Under cropping, calcium carbonate contents decreased (a drop of 10 to 53%) reflecting accelerated leaching and/or erosion by cultivation. For most of the studied soils, a pronounced depletion was recorded at values of soil organic carbon (23-64%), soluble cations (4-96%), and exchangeable cations (9-42%) after cropping. A considerable positive change in soil quality was observed with cultivation as recorded by a declining trend in soil electrical conductivity (a drop of 12 to 17%) and exchangeable sodium percentage (a drop of 9 to 12%). On average, the concentration of free and crystalline Fe oxides progressively increased for Chromic Calcixererts and Typic Calcixererts following intensive cultivation. Cropping operations considerably promoted the alteration of illite and chlorite minerals into expandable minerals linked with changes in soil physicochemical properties mainly the increase in cation exchange capacity. Land productivity index (LPI), evaluated based on parametric approach, suggested that Chromic Calcixererts and Typic Haploxererts highlighted a decreasing trend in LPI values (a drop of 5 to 7%) while Typic Calcixererts manifested an increasing pattern in the index (a rise of 13%) with long-term intensive cropping. PMID:25864078

  3. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  4. Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Baluc, N.

    2009-04-01

    Two types of oxide dispersion strengthened (ODS) ferritic steels, with the composition of Fe-14Cr-2W-0.3Ti-0.3Y 2O 3 (in weight percent), have been produced by mechanically alloying elemental powders of Fe, Cr, W, and Ti with Y 2O 3 particles either in argon atmosphere or in hydrogen atmosphere, degassing at various temperatures, and compacting the mechanically alloyed powders by hot isostatic pressing. It was found in particular that mechanical alloying in hydrogen yields a significant reduction in oxygen content in the materials, a lower dislocation density, and a strong improvement in the fast fracture properties of the ODS ferritic steels, as measured by Charpy impact tests.

  5. Impact of different polyimide-based substrates on the soft magnetic properties of NiFe thin films

    NASA Astrophysics Data System (ADS)

    Rittinger, Johannes; Taptimthong, Piriya; Jogschies, Lisa; Wurz, Marc C.; Rissing, Lutz

    2015-05-01

    We investigated the impact of polymer substrates on the magnetic properties of soft magnetic thin films. Experiments were carried out to evaluate the performance of AMR (anisotropic magnetoresistive) sensors deposited on polymeric substrates and to give indications for the design of future sensors on flexible substrates. Sputtered permalloy (NiFe 81/19) was used as a soft magnetic thin film layer. As substrate materials, liquid polyimide precursors and DuPont Kapton® HN foil were examined. Surface roughness was determined for each substrate material. The dynamic of soft magnetic behavior of the permalloy thin films was observed in a homogenous alternating magnetic field. Resulting R-Hcurves were evaluated in regard to the magnitude of the magnetoresistive effect (ΔR / R0-ratio), as well as the resulting magnetic anisotropy of the tested samples. B-H-curves were obtained by means of a vibrating sample magnetometer (VSM).

  6. Influence of Impact-Oscillatory Loading upon the Mechanical Properties of the VT-22 Titanium Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Chausov, M. G.; Pylypenko, A. P.; Berezin, V. B.; Markashova, L. I.; Kushnariova, O. S.; Hutsaylyuk, V. B.

    2016-06-01

    This study shows the effect of the specific impact-oscillatory loading (Dynamical nonequilibrium process) on the VT-22 titanium α+β-type alloy mechanical properties and microstructure. Experiments were conducted using modified universal testing machine. Physical research revealed that significant microstructural refinement of the alloy is observed after such type of loading, as the result of which the fine grains are formed with subgrain refinement which takes place within the basis of alloy. It was found that overall plastic deformation of this alloy can be increased by a factor 2.75 compared with its initial state without significant loss of strength. Also we show that such process can be used as a preliminary microstructure refinement method for such alloy.

  7. Impacts of maintenance channel dredging in a northern Adriatic coastal lagoon. I: Effects on sediment properties, contamination and toxicity

    NASA Astrophysics Data System (ADS)

    Guerra, Roberta; Pasteris, Andrea; Ponti, Massimo

    2009-10-01

    Conservation and management of coastal lagoons envisage direct human intervention. To prevent siltation and to preserve the hydrodynamics features of the lagoon system, the inner channels undergo regular maintenance dredging. Sediment properties (RDP, organic matter, grain size), trace metals (Cd, Cu, Cr, Hg, Ni, and Pb), and toxicity vs. the amphipod Corophium insidiosum and the luminescent bacterium Vibrio fischeri, were analysed before and after dredging operations in a coastal lagoon (Pialassa Baiona, Italy). To detect the actual impacts, disturbed sites were contrasted with multiple controls in two distinct times, i.e. before and after disturbance, according to a sampling design based on Beyond BACI principles. The integrated methodology here adopted suggests that dredging operations carried out are not likely to pose dramatic effects on environmental quality of the lagoon.

  8. Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells

    PubMed Central

    2010-01-01

    As an important step towards the realisation of silicon-based tandem solar cells using silicon quantum dots embedded in a silicon dioxide (SiO2) matrix, single-junction silicon quantum dot (Si QD) solar cells on quartz substrates have been fabricated. The total thickness of the solar cell material is 420 nm. The cells contain 4 nm diameter Si quantum dots. The impacts of post-metallisation treatments such as phosphoric acid (H3PO4) etching, nitrogen (N2) gas anneal and forming gas (Ar: H2) anneal on the cells’ electrical and photovoltaic properties are investigated. The Si QD solar cells studied in this work have achieved an open circuit voltage of 410 mV after various processes. Parameters extracted from dark I–V, light I–V and circular transfer length measurement (CTLM) suggest limiting mechanism in the Si QD solar cell operation and possible approaches for further improvement. PMID:21124642

  9. Temperature impact on W surface exposed to He plasma in LHD and its consequences for the material properties

    NASA Astrophysics Data System (ADS)

    Bernard, E.; Sakamoto, R.; Yoshida, N.; Yamada, H.

    2015-08-01

    A new temperature controlled material probe was designed for the exposure of W samples to He plasma in the LHD (Large Helical Device). TEM (Transmission Electron Microscopy) analysis allowed the study of the impact of He irradiation under high temperatures (up to 600 °C) on W microstructure: bubbles and dislocation loops are formed at the surface. A heavily damaged layer rich in both damages is formed at the very surface layer whose thickness increases with the incident fluence; beyond this layer, bubbles are observed much deeper than expected, rising concerns about the consequences for the material properties conservation. Nano-indentation measurements showed that the hardness of exposed tungsten indeed increases as the dislocation loops are formed and large bubbles appear in the material.

  10. Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations

    NASA Astrophysics Data System (ADS)

    Di Mauro, B.; Fava, F.; Ferrero, L.; Garzonio, R.; Baccolo, G.; Delmonte, B.; Colombo, R.

    2015-06-01

    In this paper, we evaluate the impact of mineral dust (MD) on snow radiative properties in the European Alps at ground, aerial, and satellite scale. A field survey was conducted to acquire snow spectral reflectance measurements with an Analytical Spectral Device (ASD) Field Spec Pro spectroradiometer. Surface snow samples were analyzed to determine the concentration and size distribution of MD in each sample. An overflight of a four-rotor Unmanned Aerial Vehicle (UAV) equipped with an RGB digital camera sensor was carried out during the field operations. Finally, Landsat 8 Operational Land Imager (OLI) data covering the central European Alps were analyzed. Observed reflectance evidenced that MD strongly reduced the spectral reflectance of snow, in particular, from 350 to 600 nm. Reflectance was compared with that simulated by parameterizing the Snow, Ice, and Aerosol Radiation radiative transfer model. We defined a novel spectral index, the Snow Darkening Index (SDI), that combines different wavelengths showing nonlinear correlation with measured MD concentrations (R2 = 0.87, root-mean-square error = 0.037). We also estimated a positive instantaneous radiative forcing that reaches values up to 153 W/m2 for the most concentrated sampling area. SDI maps at local scale were produced using the UAV data, while regional SDI maps were generated with OLI data. These maps show the spatial distribution of MD in snow after a natural deposition from the Saharan desert. Such postdepositional experimental data are fundamental for validating radiative transfer models and global climate models that simulate the impact of MD on snow radiative properties.

  11. Mechanical Properties of Lead-Free Solder Joints Under High-Speed Shear Impact Loading

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Kim, Ho-Kyung

    2014-09-01

    In this study we expanded on recently reported research by using a modified miniature Charpy impact-testing system to investigate the shear deformation behavior of Sn-3.0Ag-0.5Cu lead-free solder joints at high strain rates ranging from 1.1 × 103 s-1 to 5.5 × 103 s-1. The experimental results revealed that the maximum shear strength of the solder joint decreased with increasing load speed in the ranges tested in this study. For solder joints tested at a shear speed exceeding 1 m/s, corresponding to an approximate strain rate that exceeds 1950 s-1, the brittle fracture mode is the main failure mode, whereas lower strain rates result in a ductile-to-brittle transition in the fracture surfaces of solder joints. In addition, the mode II stress intensity factor (K II) used to evaluate the fracture toughness (K C) of an interfacial intermetallic compound layer between Sn-3.0Ag-0.5Cu solder and the toughness of copper substrate was found to decrease from 1.63 MPa m0.5 to 0.97 MPa m0.5 in the speed range tested here.

  12. Mechanical Properties of Lead-Free Solder Joints Under High-Speed Shear Impact Loading

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Kim, Ho-Kyung

    2014-11-01

    In this study we expanded on recently reported research by using a modified miniature Charpy impact-testing system to investigate the shear deformation behavior of Sn-3.0Ag-0.5Cu lead-free solder joints at high strain rates ranging from 1.1 × 103 s-1 to 5.5 × 103 s-1. The experimental results revealed that the maximum shear strength of the solder joint decreased with increasing load speed in the ranges tested in this study. For solder joints tested at a shear speed exceeding 1 m/s, corresponding to an approximate strain rate that exceeds 1950 s-1, the brittle fracture mode is the main failure mode, whereas lower strain rates result in a ductile-to-brittle transition in the fracture surfaces of solder joints. In addition, the mode II stress intensity factor ( K II) used to evaluate the fracture toughness ( K C) of an interfacial intermetallic compound layer between Sn-3.0Ag-0.5Cu solder and the toughness of copper substrate was found to decrease from 1.63 MPa m0.5 to 0.97 MPa m0.5 in the speed range tested here.

  13. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene.

    PubMed

    Sun, Ke; Kang, Mingjie; Zhang, Zheyun; Jin, Jie; Wang, Ziying; Pan, Zezhen; Xu, Dongyu; Wu, Fengchang; Xing, Baoshan

    2013-10-15

    Knowledge of the mineral effects of biochars on their sorption of hydrophobic organic contaminants (HOCs) is limited. Sorption of phenanthrene (PHE) by plant-residue derived biochars (PLABs) and animal waste-derived biochars (ANIBs) obtained at two heating treatment temperatures (HTTs) (450 and 600 °C) and their corresponding deashed biochars was investigated. The decreased surface polarity and increased bulk polarity of biochars after deashing treatment indicated that abundant minerals of biochars benefit external exposure of polar groups associated organic matter (OM). Organic carbon (OC)-normalized distribution coefficients (K(oc)) of PHE by biochars generally increased after deashing, likely due to enhancement of favorable and hydrophobic sorption sites caused by mineral removal. Positive correlation between PHE log K(oc) by PLABs and bulk polarity combined with negative correlation between PHE log K(oc) values by ANIBs and surface polarity suggested PLABs and ANIBs have different sorption mechanisms, probably attributed to their large variation of ash content because minerals influenced OM spatial arrangement within biochars. Results of this work could help us better understand the impact of minerals, bulk/surface polarity, and sorption domain arrangement of biochars on their HOCs sorption and predict the fate of HOCs in soils after biochar application. PMID:24025082

  14. Impact of firing on the OSL luminescence properties of natural quartz: A case study

    NASA Astrophysics Data System (ADS)

    Koul, D. K.; Polymeris, G. S.; Soni, A.; Kulkarni, M. S.

    2016-03-01

    A comprehensive study was carried out to observe the impact of firing on the behavior of different features of the optically stimulated luminescence (OSL) signal of geological quartz. The different features which could influence its use in different applications were studied. A comparison of nature of (i) thermoluminescence (TL) glow curves, (ii) OSL decay curves, (iii) pulse annealing curves, (iv) fast and slow components and (v) thermally transferred OSL (TT-OSL) emission of unfired and fired samples suggested a profound influence of thermal firing on the OSL signal. The composition of the OSL signal was seen to get altered by firing treatment; the magnitude of slow component losing its dominance to the fast component. This was true of pulse annealing also, the fired curve looked different from the unfired one. TT-OSL was observed to be larger in unfired sample as compared to the fired sample. Finally, firing was seen to enable reliable dose recovery using single aliquot regenerative (SAR) method, which has not been the case with the unfired sample studied here.

  15. Impact of hydrogen dilution on microstructure and optoelectronic properties of silicon films deposited using trisilane

    NASA Astrophysics Data System (ADS)

    Du, Wenhui; Yang, Xiesen; Povolny, Henry; Liao, Xianbo; Deng, Xunming

    2005-03-01

    We explored the deposition of hydrogenated amorphous silicon (a-Si : H) using trisilane (Si3H8) as a gas precursor in a radiofrequency plasma enhanced chemical vapour deposition process and studied the suitability of this material for photovoltaic applications. The impact of hydrogen dilution on the deposition rate and microstructure of the films is systematically examined. Materials deposited using trisilane are compared with that using disilane (Si2H6). It is found that when using Si3H8 as the gas precursor the deposition rate increases by a factor of ~1.5 for the same hydrogen dilution (R = [H2]/[Si3H8] or [H2]/[ Si2H6]). Moreover, the structural transition from amorphous to nanocrystalline occurs at a higher hydrogen dilution level for Si3H8 and the transition is more gradual as compared with Si2H6 deposited films. Single-junction n-i-p a-Si : H solar cells were prepared with intrinsic layers deposited using Si3H8 or Si2H6. The dependence of open circuit voltage (Voc) on hydrogen dilution was investigated. Voc greater than 1 V can be obtained when the i-layers are deposited at a hydrogen dilution of 180 and 100 using Si3H8 and Si2H6, respectively.

  16. Deflection by Kinetic Impact or Nuclear Ablation: Sensitivity to Asteroid Properties

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.

    2015-12-01

    Impulsive deflection of a threatening asteroid can be achieved by deploying either a kinetic impactor or a standoff nuclear device to impart a modest velocity change to the body. Response to each of these methods is sensitive to the individual asteroid's characteristics, some of which may not be well constrained before an actual deflection mission. Numerical simulations of asteroid deflection, using both hypervelocity impacts and nuclear ablation of the asteroid's surface, provide detailed information on asteroid response under a range of initial conditions. Here we present numerical results for the deflection of asteroids by both kinetic and nuclear methods, focusing on the roles of target body composition, strength, porosity, rotational state, shape, and internal structure. These results provide a framework for evaluating the planetary defense-related value of future asteroid characterization missions and capture some of the uncertainty that may be present in a real threat scenario. Part of this work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-005, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675914.

  17. Immune modulation property of Lactobacillus paracasei NCC2461 (ST11) strain and impact on skin defences.

    PubMed

    Benyacoub, J; Bosco, N; Blanchard, C; Demont, A; Philippe, D; Castiel-Higounenc, I; Guéniche, A

    2014-06-01

    The gut intestinal tract harbours a complex microbiota. Disturbances in the microbiota composition have been associated with several immune dysfunctions such as inflammatory diseases. Specific strains of probiotics have shown to beneficially influence the composition and/or metabolic activity of the endogenous microbiota. Taking advantage of the plasticity of the immune system, the probiotic strain NCC2461 (i.e. ST11 or CNCM I-2116) supports and/or restores homeostasis in reaction to different physiopathological conditions. The potential of NCC2461 to modulate both mucosal and systemic immune functions led us to test its impact on skin physiology. Even though clear mechanisms explaining gut-skin interaction are still lacking, a set of experimental and clinical data reviewed herein have shown that NCC2461 exerts its effects beyond the gut and confers benefits at the skin level. It contributes to the reinforcement of skin barrier function, decreases skin sensitivity and modulates the skin immune system leading to the preservation of skin homeostasis. PMID:24322880

  18. Impact of ancient charcoal kilns on chemical properties of several forest soils after 2 centuries

    NASA Astrophysics Data System (ADS)

    Dufey, Joseph; Hardy, Brieuc; Cornelis, Jean-Thomas

    2014-05-01

    Pyrogenic carbon plays a major role in soil biogeochemical processes and carbon budgets. Until the early 19th century, charcoal was the unique combustible used for iron metallurgy in Wallonia (Belgium). Traditional charcoal kilns were built directly in the forest: wood logs were piled into a mound and isolated from air oxygen with a covering of vegetation residues and soil before setting fire, inducing wood pyrolysis. Nowadays, ancient wood-charring platforms are still easy to identify on the forest floor as heightened domes of 10 meters in diameter characterized by a very dark topsoil horizon containing charcoal dust and fragments. Our goal is to assess the effects of wood charring at mound kiln sites on the properties of various forest soil types in Wallonia (Belgium), after two centuries. We sampled soil by horizon in 18 ancient kiln sites to 1.20 meter depth. The adjacent charcoal-unaffected soils were sampled the same way. We also collected recent charcoal fragments and topsoil samples from a still active charcoal kiln located close to Dole (France) to apprehend the evolution of soil properties over time. The pH, total carbon (C) and nitrogen (N) content, available phosphorus (Pav), cation exchange capacity at pH 7 (CEC), exchangeable cations (Ca++, Mg++, K+, Na+) and loss on ignition at 550°C (LI550) were measured on each soil sample. We separated the soil profiles in 5 groups based on the nature of soil substrate and pedogenesis for interpretation of the results. We show that the total carbon stock is significantly increased at kiln sites due to higher C concentrations and greater depth of the organo-mineral horizon. The C/N ratio in charcoal-enriched soil horizons is significantly higher than in the neighboring reference soils but clearly attenuated compared to pure wood-charcoal fragments. The CEC is higher in the charcoal-enriched soil horizons, not only due to higher C concentrations but also to increased CEC by carbon unit at kiln sites. The high

  19. Sewage sludge hydrochars: properties and agronomic impact as related to different production conditions

    NASA Astrophysics Data System (ADS)

    Paneque, Marina; María De la Rosa, José; Aragón, Carlos; Kern, Jürgen; Conte, Pellegrino; Knicker, Heike

    2015-04-01

    The huge amount of sewage sludge (SS) generated in wastewater treatment plants all over the world represents an environmental problem. Due to the high concentration of phosphorus and nitrogen in SS as well as other macro and micro nutrients it has been considered a suitable soil amendment. However, before being applied to soil a complete sterilization and elimination of pollutants should be carried out [1]. In this context, thermal treatments appear as a convenient methodology for producing SS byproducts useful for agronomic purposes. Hydrothermal carbonization (HTC) is a kind of pyrolysis characterized by the heating of the biomass in presence of water. This process shows an advantage compared to other thermal treatments for wet residues since dryness of the biomass prior to the thermal transformation is not necessary. The solid product which results from HTC is called hydrochar and it has been suggested to increase soil productivity [2]. However, the agronomic potential of hydrochars depends on the feedstock and production conditions. Additionally, possible toxic and risks have to be carefully evaluated. Thus, SS hydrochars appear as a potential soil amendment but further scientific research is needed to find its real capacity, optimal production conditions as well as possible environmental harmful effects. The aim of this study was to evaluate which are the most suitable production conditions, to transform SS into hydrochar. An additional goal of this work was to relate the hydrochars properties to its agronomic response. Therefore, hydrochars were produced from SS collected from the Experimental Wastewater Treatment plant of CENTA (http://www.centa.es/), located in Carrion de los Cespedes (Seville), under two different temperatures (200 and 260˚C) and residence times (30 min and 1h). With the hydrochars obtained, a greenhouse pot incubation study was carried out for 80 days. The pots contained 250 g of a Calcic Cambisol (IUSS Working Group WRB, 2007) and an

  20. Impact of precursor purity on optical properties and radiation detection of CsI:Tl scintillators

    NASA Astrophysics Data System (ADS)

    Saengkaew, Phannee; Sanorpim, Sakuntam; Jitpukdee, Manit; Cheewajaroen, Kulthawat; Yenchai, Chadet; Thong-aram, Decho; Yordsri, Visittapong; Thanachayanont, Chanchana; Nuntawong, Noppadon

    2016-08-01

    Cesium iodide doped with thallium (CsI:Tl) crystals was grown to develop the gamma-ray detectors by using low-cost raw materials. Effect of impurities on optical properties and radiation detection performance was investigated. By a modified homemade Bridgman-Stockbarger technique, CsI:Tl samples were grown in two levels of CsI and TlI reactant materials, i.e., having as a very high purity of 99.999 % and a high purity of 99.9 %. XRD measurements indicate CsI:Tl crystals having a good quality with a dominant (110) plane. Having a cubic structure, a lattice constant of CsI crystals of 0.4574 nm and a crystallite size of 43.539 nm were obtained. From the lower-purity raw materials, calcite was found in an orange crystal with a lattice constant of 0.4560 nm and a crystallite size of 43.089 nm. By PL measurements, the optical properties of the CsI:Tl crystals were analyzed. ~540-nm-wavelength PL peak was observed from the colorless high-purity crystal, and ~600-nm-wavelength PL peak was observed from the orange crystal. The brighter PL emission was obtained from the orange crystals suggesting impurities. CsI:Tl surface morphology by SEM exhibited a smooth surface with some parallel crystal facets. For electrical properties of high-quality CsI:Tl crystals, the electrical resistances were 230 ± 16 MΩ in cross-sectional direction and 714 ± 136 MΩ in vertical direction with respect to more homogeneous crystal quality in cross-sectional direction than that in vertical direction. TEM measurement was applied to evaluate the microstructure of colorless CsI:Tl crystal with different patterns of a cubic structure. Both CsI:Tl crystals show good efficiencies and good resolutions. Maintaining the same electronic conditions and amplifications, the colorless CsI:Tl scintillators represented a higher detection efficiency at 122 keV of Co-57 of 78.4 % and the energy resolution of 23.3 % compared to the detection efficiency of 75.9 % and the energy resolution of 34.6 % of the orange

  1. Impact of lipid-induced degradation on the mechanical properties of ultra-high molecular weight polyethylene for joint replacements.

    PubMed

    Sakoda, Hideyuki; Niimi, Shingo

    2016-01-01

    Gamma or electron beam irradiation of ultra-high molecular weight polyethylene (UHMWPE) used in artificial joints for sterilization and/or crosslinking purposes generates free radicals in the material, which causes long-term oxidative degradation of UHMWPE. Recently, another mechanism for the degradation of UHMWPE by the absorption of lipids during in vivo clinical use was proposed. However, knowledge on lipid-induced degradation is quite limited, compared with that on radical-induced degradation. In this study, lipid-induced degradation was simulated using squalene absorption and subsequent accelerated aging, and its impact on the mechanical properties of UHMWPE was evaluated. The simulated lipid-induced degradation caused an increased elastic modulus and decreased elongation with maximum degradation at the surfaces. These results imply that degradation of UHMWPE may occur during in vivo long-term use, even if free radicals are completely eliminated. Therefore, further investigation is required to clarify the impact of lipid-induced degradation on clinical outcomes, such as the wear and fatigue characteristics of UHMWPE components. PMID:26340645

  2. The Charpy impact properties of martensitic 10.6% Cr steel (MANET-1) before and after neutron exposure

    SciTech Connect

    Rieth, M.; Dafferner, B.; Rohrig, H.D.

    1994-12-31

    The MANET-I martensitic 10.6% Cr type of steel was developed as a potential structural material for the first wall and the blanket of a fusion device within the framework of the Nuclear Fusion Project. An extensive irradiation program (FRUST/SIENA) was elaborated to study the influence of radiation upon the Charpy impact characteristics. In addition to unirradiated reference specimens, 87 irradiated subsize Charpy specimens (3 x 4 x 27 mm{sup 3}) were examined under eight different heat treatments at irradiation temperatures between 287{degrees}C and 475{degrees}C and exposure doses of 5 dpa to 15 dpa. On the basis of the numerous test results and their interpretation it is possible to describe radiation induced material embrittlement, and, consequently, the deterioration of the Charpy impact properties. The description is limited, on the one hand, by the variations in the test results and, on the other hand, by the gaps in the test matrix. Therefore, additional investigations, especially in the low irradiation temperature and low dose regimes will be the subject of further ongoing work.

  3. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Zhang, Fan; Wang, Quanjiu; Chen, Yingying; Joswiak, Daniel R.

    2013-01-01

    SummaryAlpine meadow soil is an important ecosystem component of the Qinghai-Tibetan Plateau. However, the alpine meadow soil is undergoing serious degradation mainly due to global climate change, overgrazing, human activities and rodents. In this paper, spatial sequencing was chosen over time succession sequencing to study the changes of soil hydraulic properties under different degrees of alpine meadow degradation. Soil saturated hydraulic conductivity (Ks) and Gardner α both at the surface and at 40-50 cm depth were investigated in the field using tension infiltrometers. Soil physical and chemical properties, together with the root index at 0-10 cm and 40-50 cm soil layer depths were also analyzed. Pearson correlations were adopted to study the relationships among the investigated factors and principal component analysis was performed to identify the dominant factor. Results show that with increasing degree of degradation, soil sand content increased while soil Ks and Gardner α as well as soil clay content, soil porosity decreased in the 0-10 cm soil layers, and organic matter and root gravimetric density decreased in both the 0-10 cm and 40-50 cm soil layers. However, soil moisture showed no significant changes with increasing degradation. With decreasing pressure head, soil unsaturated hydraulic conductivity reduced more slowly under degraded conditions than non-degraded conditions. Soil Ks and Gardner α were significantly correlated (P = 0.01) with bulk density, soil porosity, soil organic matter and root gravimetric density. Among these, soil porosity is the dominant factor explaining about 90% of the variability in total infiltration flow. Under non-degraded conditions, the infiltration flow principally depended on the presence of macropores. With increasing degree of degradation, soil macropores quickly changed to mesopores or micropores. The proportion of total infiltration flow through macropores and mesopores significantly decreased with the most

  4. Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier.

    PubMed

    Werle, Sebastian

    2014-10-01

    This work presents results of experimental studies on the gasification process of granulated sewage sludge in a laboratory fixed bed gasifier. Nowadays, there is a large and pressing need for the development of thermal methods for sewage sludge disposal. Gasification is an example of thermal method that has several advantages over the traditional combustion. Gasification leads to a combustible gas, which can be used for the generation of useful forms of final energy. It can also be used in processes, such as the drying of sewage sludge directly in waste treatment plant. In the present work, the operating parameters were varied over a wide range. Parameters, such as air ratio λ = 0.12 to 0.27 and the temperature of air preheating t = 50 °C to 250 °C, were found to influence temperature distribution and syngas properties. The results indicate that the syngas heating value decreases with rising air ratio for all analysed cases: i.e. for both cold and preheated air. The increase in the concentration of the main combustible components was accompanied by a decrease in the concentration of carbon dioxide. Preheating of the gasification agent supports the endothermic gasification and increases hydrogen and carbon monoxide production. PMID:24938298

  5. Methanol Fractionation of Softwood Kraft Lignin: Impact on the Lignin Properties

    SciTech Connect

    Saito, Tomonori; Perkins, Joshua H; Vautard, Frederic; Meyer III, Harry M; Messman, Jamie M; Tolnai, Balazs; Naskar, Amit K

    2014-01-01

    The development of technologies to tune lignin properties for high-performance lignin-based materials is crucial for the utilization of lignin in various applications. Here, the effect of methanol (MeOH) fractionation on the molecular weight, molecular weight distribution, glass transition temperature (Tg), thermal decomposition, and chemical structure of lignin were investigated. Repeated MeOH fractionation of softwood Kraft lignin successfully removed the low-molecular-weight fraction. The separated high-molecular-weight lignin showed a Tg of 211 C and a char yield of 47%, much higher than those of asreceived lignin (Tg 153 C, char yield 41%). The MeOH-soluble fraction of lignin showed an increased low-molecular-weight fraction and a lower Tg (117 C) and char yield (32%). The amount of low-molecular-weight fraction showed a quantitative correlation with both 1/Tg and char yield in a linear regression. This study demonstrated the efficient purification or fractionation technology for lignin; it also established a theoretical and empirical correlation between the physical characteristics of fractionated lignins.

  6. An Analysis of the Impact of Selected Fuel Thermochemical Properties on Internal Combustion Engine Efficiency

    SciTech Connect

    Szybist, James P; Chakravathy, Kalyana; Daw, C Stuart

    2012-01-01

    In this study we model the effects of 23 different fuels on First and Second Law thermodynamic efficiency of an adiabatic internal combustion engine. First Law efficiency is calculated using lower heating value (LHV) while Second Law efficiency is calculated with exergy, which represents the inherent chemical energy available to produce propulsion. We find that First Law efficiency can deviate by as much as nine percentage points between fuels while Second Law efficiency exhibits a much smaller degree of variability. We also find that First and Second Law efficiency can be nearly the same for some fuels (methane and ethane) but differ substantially for other fuels (hydrogen and ethanol). The differences in First and Second Law efficiency are due to differences in LHV and exergy for a given fuel. In order to explain First Law efficiency differences between fuels as well as the differences between LHV and exergy, we introduce a new term: the molar expansion ratio (MER), defined as the ratio of product moles to reactant moles for complete stoichiometric combustion. We find that the MER is a useful expression for providing a physical explanation for fuel-specific efficiency differences as well as differences between First and Second Law efficiency. First and Second Law efficiency are affected by a number of other fuel-specific thermochemical properties, such as the ratio of specific heat and dissociation of combustion products.

  7. Impact of Anthropogenic Aerosol on the Properties of Shallow Maritime Cumulus Clouds

    NASA Astrophysics Data System (ADS)

    Gao, L.; Wilcox, E. M.; Shan, Y.

    2015-12-01

    The northern Indian Ocean region is frequently covered by cumulus clouds that are responsible for moistening the boundary layer and contribute to tropical deep convection. Because this region is uniquely located close to the highly polluted Indian plateau, air mass with high aerosol concentration can be easily transported to this area. These small cumulus clouds, coupled with the effects of aerosol, have a large potential to affect the regional and global albedo. The aerosol effects on cloud properties and atmospheric structures are examined in this work, using the UAV (Unmanned Aerial Vehicle) data that are observed from CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) and MAC (Maldives Autonomous unmanned aerial vehicle Campaign). On average, the high polluted cases show warmer temperature through the entire atmospheric column and higher relative humidity in boundary layer. The maximum temperature difference between high and low polluted cases can be found around the cloud layer altitude. In addition, the height of sub-cloud mixed layer is higher in low polluted cases. Clouds in high polluted cases are generally becoming narrower and taller than those in low polluted cases, and are associated with greater cloud water content and higher cloud droplet number concentrations, especially in small droplet range (diameters less than 10 micrometers). Meanwhile, the effective radius of cloud droplets decreases as the aerosol concentration increases. These facts indicate that the high polluted clouds are on average brighter with higher albedo.

  8. Terminal sterilization of alginate hydrogels: efficacy and impact on mechanical properties.

    PubMed

    Stoppel, Whitney L; White, Joseph C; Horava, Sarena D; Henry, Anna C; Roberts, Susan C; Bhatia, Surita R

    2014-05-01

    Terminal, or postprocessing, sterilization of composite biomaterials is crucial for their use in wound healing and tissue-engineered devices. Recent research has focused on optimizing traditional biomaterial formulations to create better products for commercial and academic use which incorporate hydrophobic compounds or secondary gel networks. To use a hydrogel in a clinical setting, terminal sterilization is necessary to ensure patient safety. Lyophilization, gamma-irradiation, and ethylene oxide treatment all have negative consequences when applied to alginate scaffolds for clinical use. Here, we aim to find alternative terminal sterilization methods for alginate and alginate-based composite hydrogels which maintain the structure of composite alginate networks for use in biomedical applications. A thorough investigation of the effect of common sterilization methods on swollen alginate-based hydrogels has not been reported and therefore, this work examines autoclaving, ethanol washing, and ultraviolet light as sterilization techniques for alginate and alginate/Pluronic® F68 composite hydrogels. Preservation of structural integrity is evaluated using shear rheology and analysis of water retention, and efficacy of sterilization is determined via bacterial persistence within the hydrogel. Results indicate that ethanol sterilization is the best method of those investigated because ethanol washing results in minimal effects on mechanical properties and water retention and eliminates bacterial persistence. Furthermore, this study suggests that ethanol treatment is an efficacious method for terminally sterilizing interpenetrating networks or other composite hydrogel systems. PMID:24259507

  9. NaOH treatment of chitosan films: Impact on macromolecular structure and film properties.

    PubMed

    Takara, E A; Marchese, J; Ochoa, N A

    2015-11-01

    In this paper, we examine the significance of treatment with NaOH on chitosan (CH) film structure to obtain biodegradable materials for several applications. In order to determine the structure of the films, an analysis based on SEM, FTIR spectroscopy and X-ray diffraction data was performed. In addition, the consequences of this treatment were evaluated by swelling index measurements and mechanical testing. As result of FTIR and X-ray analysis, three effects were identified: the deprotonation and phosphate extraction, which allowed new hydrogen bonds to form, and a higher CH deacetylation. These studies also revealed that two hydrated and anhydrous polymorphs were present in the CH-NaOH films. Moreover, the new hydrogen bond and the reduction of N-acetyl groups produced films with a more compact and disordered structure, reducing their swelling characteristics and increasing their brittleness. The introduction of a mild NaOH treatment is a versatile tool to obtain chitosan films with interesting and tunable properties. PMID:26256320

  10. Impacts of Biochar on Physical Properties and Erosion Potential of a Mudstone Slopeland Soil

    PubMed Central

    Chien, Wei-Hsin; Liou, Ruei-Cheng

    2014-01-01

    Food demand and soil sustainability have become urgent issues recently because of the global climate changes. This study aims to evaluate the application of a biochar produced by rice hull, on changes of physiochemical characteristics and erosion potential of a degraded slopeland soil. Rice hull biochar pyrolized at 400°C was incorporated into the soil at rates of 2.5%, 5%, and 10% (w/w) and was incubated for 168 d in this study. The results indicated that biochar application reduced the Bd by 12% to 25% and the PR by 57% to 92% after incubation, compared with the control. Besides, porosity and aggregate size increased by 16% to 22% and by 0.59 to 0.94 mm, respectively. The results presented that available water contents significantly increased in the amended soils by 18% to 89% because of the obvious increase of micropores. The water conductivity of the biochar-amended soils was only found in 10% biochar treatment, which might result from significant increase of macropores and reduction of soil strength (Bd and PR). During a simulated rainfall event, soil loss contents significantly decreased by 35% to 90% in the biochar-amended soils. In conclusion, biochar application could availably raise soil quality and physical properties for tilth increasing in the degraded mudstone soil. PMID:25548787

  11. Impact of lateral carrier confinement on electro-optical tuning properties of polariton condensates

    SciTech Connect

    Brodbeck, S.; Suchomel, H.; Amthor, M.; Wolf, A.; Kamp, M.; Schneider, C.; Höfling, S.

    2015-07-27

    Electro-optical measurements on exciton-polaritons below and above the condensation threshold are performed on high quality, pin-doped microcavities with embedded GaAs quantum wells. Applying an external electric field shifts the polariton emission by hundreds of μeV both in the linear and the nonlinear regime. We study three device geometries to investigate the influence of carrier confinement in the plane of the quantum well on the electro-optical tuning properties. In the conventional micropillar geometry, the electric field tuning behavior is dominated by the effects of carrier tunneling and electric field screening that manifest in a blueshift of the polariton emission. In stark contrast, for a planar sample geometry, we can significantly extend the range of electric fields and a redshift is observed. To separate the contributions of quantum confined Stark effect and reduced exciton oscillator strength to the energy shift, we study a third sample where the etching of micropillars is stopped just above the active region. In this semi-planar geometry, exciton and polariton emissions can be measured simultaneously. As for the planar geometry, redshifts of the polariton emission are observed below and above threshold that are well reproduced by theoretical shifts.

  12. Impacts of biochar on physical properties and erosion potential of a mudstone slopeland soil.

    PubMed

    Hseu, Zeng-Yei; Jien, Shih-Hao; Chien, Wei-Hsin; Liou, Ruei-Cheng

    2014-01-01

    Food demand and soil sustainability have become urgent issues recently because of the global climate changes. This study aims to evaluate the application of a biochar produced by rice hull, on changes of physiochemical characteristics and erosion potential of a degraded slopeland soil. Rice hull biochar pyrolized at 400°C was incorporated into the soil at rates of 2.5%, 5%, and 10% (w/w) and was incubated for 168 d in this study. The results indicated that biochar application reduced the Bd by 12% to 25% and the PR by 57% to 92% after incubation, compared with the control. Besides, porosity and aggregate size increased by 16% to 22% and by 0.59 to 0.94 mm, respectively. The results presented that available water contents significantly increased in the amended soils by 18% to 89% because of the obvious increase of micropores. The water conductivity of the biochar-amended soils was only found in 10% biochar treatment, which might result from significant increase of macropores and reduction of soil strength (Bd and PR). During a simulated rainfall event, soil loss contents significantly decreased by 35% to 90% in the biochar-amended soils. In conclusion, biochar application could availably raise soil quality and physical properties for tilth increasing in the degraded mudstone soil. PMID:25548787

  13. Optimised amylases extraction from oat seeds and its impact on bread properties.

    PubMed

    Ben Halima, Nihed; Borchani, Maha; Fendri, Imen; Khemakhem, Bassem; Gosset, David; Baril, Patrick; Pichon, Chantal; Ayadi, Mohamed-Ali; Abdelkafi, Slim

    2015-01-01

    Statistical approaches were employed for the optimisation of the extraction of amylolytic activity from oat (Avena sativa) seeds. The application of the response surface methodology allows us to determine a set of optimal conditions (ratio seed weight/buffer volume 0.1, germination days 10 days, temperature 20 °C and pH 5.6). Experiments carried out under these conditions led to amylase production yield of 91 U/g. Its maximal activity was in the pH 5.6 and at 55 °C. Study of the incorporation of the optimised oat extract into the bread formulation revealed an improvement of the sensory quality and the textural properties of fresh and stored bread. Three-dimensional elaborations of Confocal Laser Scanning Microscopy (CLSM) images were performed on crumb of the different breads to evaluate the influence of amylase activity on microstructure. The result showed improved baking characteristics as well as overall microscopic and macroscopic appearance. PMID:25453287

  14. Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus

    NASA Astrophysics Data System (ADS)

    Muhlbauer, Andreas; Ackerman, Thomas P.; Comstock, Jennifer M.; Diskin, Glenn S.; Evans, Stuart M.; Lawson, R. Paul; Marchand, Roger T.

    2014-04-01

    In situ microphysical observations of midlatitude cirrus collected during the Department of Energy Small Particles in Cirrus (SPARTICUS) field campaign are combined with an atmospheric state classification for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site to understand statistical relationships between cirrus microphysics and the large-scale meteorology. The atmospheric state classification is informed about the large-scale meteorology and state of cloudiness at the ARM SGP site by combining ECMWF ERA-Interim reanalysis data with 14 years of continuous observations from the millimeter-wavelength cloud radar. Almost half of the cirrus cloud occurrences in the vicinity of the ARM SGP site during SPARTICUS can be explained by three distinct synoptic conditions, namely, upper level ridges, midlatitude cyclones with frontal systems, and subtropical flows. Probability density functions (PDFs) of cirrus microphysical properties such as particle size distributions (PSDs), ice number concentrations, and ice water content (IWC) are examined and exhibit striking differences among the different synoptic regimes. Generally, narrower PSDs with lower IWC but higher ice number concentrations are found in cirrus sampled in upper level ridges, whereas cirrus sampled in subtropical flows, fronts, and aged anvils show broader PSDs with considerably lower ice number concentrations but higher IWC. Despite striking contrasts in the cirrus microphysics for different large-scale environments, the PDFs of vertical velocity are not different, suggesting that vertical velocity PDFs are a poor predictor for explaining the microphysical variability in cirrus. Instead, cirrus microphysical contrasts may be driven by differences in ice supersaturations or aerosols.

  15. Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires

    SciTech Connect

    Sun, Tao; Kang, Wei; Wang, Jianxiang

    2015-01-21

    We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence of the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion.

  16. Optically diffracting hydrogels for screening kinase activity in vitro and in cell lysate: impact of material and solution properties.

    PubMed

    MacConaghy, Kelsey I; Chadly, Duncan M; Stoykovich, Mark P; Kaar, Joel L

    2015-03-17

    Optically diffracting films based on hydrogel-encapsulated crystalline colloidal arrays have considerable utility as sensors for detecting enzymaticphosphorylation and, thus, in screening small molecule modulators of kinases. In this work, we have investigated the impact of hydrogel properties, as well as the role of the ionic character of the surrounding environment, on the optical sensitivity of kinase responsive crystalline colloidal array-containing hydrogels. In agreement with a model of hydrogel swelling, the optical sensitivity of such materials increased as the shear modulus and the Flory-Huggins interaction parameter between polymer and solvent decreased. Additionally, elimination of extraneous charges in the polymer backbone by exploiting azide-alkyne click chemistry to functionalize the hydrogels with a peptide substrate for protein kinase A further enhanced the sensitivity of the optically diffracting films. Increasing peptide concentration and, in turn, immobilized charge within the hydrogel network was shown to increase the optical response over a range of ionic strength conditions. Ultimately, we showed that, by tuning the hydrogel and solution properties, as little as 0.1 U/μL protein kinase A could be detected in short reaction times (i.e., 2 h), which is comparable to conventional biochemical kinase assays. We further showed that this approach can be used to detect protein kinase A activity in lysate from HEK293 cells. The sensitivity of the resulting films, coupled with the advantages of photonic crystal based sensors (e.g., label free detection), makes this approach highly attractive for screening enzymatic phosphorylation. PMID:25714913

  17. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges.

    PubMed

    Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control. PMID:26167539

  18. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges

    PubMed Central

    Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control. PMID:26167539

  19. Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Anshari, G. Z.; Afifudin, M.; Nuriman, M.; Gusmayanti, E.; Arianie, L.; Susana, R.; Nusantara, R. W.; Sugardjito, J.; Rafiastanto, A.

    2010-11-01

    Degradation of tropical peats is a global concern due to large Carbon emission and loss of biodiversity. The degradation of tropical peats usually starts when the government drains and clears peat forests into open peats used for food crops, oil palm and industrial timber plantations. Major properties of tropical peat forests are high in Water Contents (WC), Loss on Ignition (LOI) and Total Organic Carbon (TOC), and low in peat pH, Dry Bulk Density (DBD), and Total Nitrogen (TN). In this study, we investigated impacts of drainage and land use change on these properties. We collected peat samples from peat forests, logged over peat forest, industrial timber plantation, community agriculture, and oil palms. We used independent t-tests and oneway ANOVA to analyze mean differences of the research variables. We found that peat pH, DBD, and TN tend to increase. A significant decrease of C/N ratio in oil palm and agriculture sites importantly denotes a high rate of peat decompositions. Water contents, LOI, and TOC are relatively constants. We suggest that changes in pH, DBD, TN and atomic C/N ratio are important indicators for assessing tropical peat degradation. We infer that land use change from tropical peat forests into cleared and drained peats used for intensive timber harvesting, oil palms and industrial timber plantations in Indonesia has greatly degraded major ecological function of tropical peats as Carbon storage.

  20. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties.

    PubMed

    Jayaram, Vinay B; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-05-15

    Succinic acid (SA) was recently shown to be the major pH determining metabolite produced by yeast during straight-dough fermentation (Jayaram et al., 2013), reaching levels as high as 1.6 mmol/100 g of flour. Here, the impact of such levels of SA (0.8, 1.6 and 2.4 mmol/100 g flour) on yeastless dough properties was investigated. SA decreased the development time and stability of dough significantly. Uniaxial extension tests showed a consistent decrease in dough extensibility upon increasing SA addition. Upon biaxial extension in the presence of 2.4 mmol SA/100 g flour, a dough extensibility decrease of 47-65% and a dough strength increase of 25-40% were seen. While the SA solvent retention capacity of flour increased with increasing SA concentration in the solvent, gluten agglomeration decreased with gluten yield reductions of over 50%. The results suggest that SA leads to swelling and unfolding of gluten proteins, thereby increasing their interaction potential and dough strength, but simultaneously increasing intermolecular electrostatic repulsive forces. These phenomena lead to the reported changes in dough properties. Together, our results establish SA as an important yeast metabolite for dough rheology. PMID:24423552

  1. Impact properties and hardening behavior of laser and electron-beam welds of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Strain, R.V.; Tsai, H.C.; Park, J.H.; Smith, D.L.

    1996-10-01

    The authors are conducting a program to develop an optimal laser welding procedure that can be applied to large-scale fusion-reactor structural components to be fabricated from vanadium-base alloys. Results of initial investigation of mechanical properties and hardening behavior of laser and electron-beam (EB) welds of the production-scale heat of V-4Cr-4Ti (500-kg Heat 832665) in as-welded and postwelding heat-treated (PWHT) conditions are presented in this paper. The laser weld was produced in air using a 6-kW continuous CO{sub 2} laser at a welding speed of {approx}45 mm/s. Microhardness of the laser welds was somewhat higher than that of the base metal, which was annealed at a nominal temperature of {approx}1050{degrees}C for 2 h in the factory. In spite of the moderate hardening, ductile-brittle transition temperatures (DBTTs) of the initial laser ({approx}80{degrees}C) and EB ({approx}30{degrees}C) welds were significantly higher than that of the base metal ({approx}{minus}170{degrees}C). However, excellent impact properties, with DBTT < {minus}80{degrees}C and similar to those of the base metal, could be restored in both the laser and EB welds by postwelding annealing at 1000{degrees}C for 1 h in vacuum.

  2. Geochemical modeling of trivalent chromium migration in saline-sodic soil during Lasagna process: impact on soil physicochemical properties.

    PubMed

    Lukman, Salihu; Bukhari, Alaadin; Al-Malack, Muhammad H; Mu'azu, Nuhu D; Essa, Mohammed H

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75%. PMID:25152905

  3. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    PubMed Central

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  4. Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties.

    PubMed

    Jelusic, Masa; Lestan, Domen

    2014-03-15

    We applied a multi-level approach assessing the quality, toxicity and functioning of Pb, Zn and Cd contaminated/remediated soil from a vegetable garden in Meza Valley, Slovenia. Contaminated soil was extracted with EDTA and placed into field experimental plots equipped with lysimeters. Soil properties were assessed by standard pedological analysis. Fractionation and leachability of toxic metals were analyzed by sequential extraction and TCLP and metal bioaccessibility by UBM tests. Soil respiration and enzyme activities were measured as indicators of soil functioning. Remediation reduced the metal burden by 80, 28 and 72% for Pb, Zn and Cd respectively, with a limited impact on soil pedology. Toxic metals associated with labile soil fractions were largely removed. No shifts between labile and residual fractions were observed during the seven months of the experiment. Initial metal leaching measured through lysimeters eventually ceased. However, remediation significantly diminished potential soil enzyme activity and no trends were observed of the remediated soil recovering its biological properties. Soil washing successfully removed available forms of Pb, Zn and Cd and thus lowered the human and environmental hazards of the remediated soil; however, remediation also extracted the trace elements essential for soil biota. In addition to reduced water holding capacity, soil health was not completely restored. PMID:24315027

  5. Impact of particle size distribution on rheological and textural properties of chocolate models with reduced fat content.

    PubMed

    Do, T-A L; Hargreaves, J M; Wolf, B; Hort, J; Mitchell, J R

    2007-11-01

    With an increasing consumption of lipids nowadays, decreasing the fat content in food products has become a trend. Chocolate is a fat-based suspension that contains about 30%wt fat. Reducing fat content causes an increase in the molten chocolate viscosity. This leads to 2 major issues: difficulties in the process and a loss of eating quality in the final product, reported to have poor in-mouth melting properties, remain hard, and difficult to swallow. Literature shows that optimizing the particle size distribution (PSD), that is, having one with an increased packing fraction, can decrease the viscosity of highly concentrated suspensions. This study focuses on the impact of the PSD and fat content on the rheological properties, melting behavior, and hardness of chocolate models (dispersions of sugar in fat). We show that optimizing the PSD while reducing the fat content to a critical amount (22%wt) can decrease the viscosity of the molten material and reduce the hardness of the crystallized chocolate models. Melting in the mouth, characterized by an in vitro collapse speed, is faster for the samples with an optimized PSD. The decrease in the viscosity by optimizing the PSD in systems with a constant fraction of medium phase is based on the decrease of interparticle contact, reducing the particle aggregates strength, and structure buildup during flow or meltdown. In its crystallized state, the particle network is less interconnected, providing less resistance to breakage and meltdown. PMID:18034724

  6. Measuring workplace trauma response in Australian paramedics: an investigation into the psychometric properties of the Impact of Event Scale

    PubMed Central

    Hogan, Nicola; Costello, Shane; Boyle, Malcolm; Williams, Brett

    2015-01-01

    Introduction Investigation into the psychological effects of violence toward health care workers and its associated trauma is increasing. The Impact of Event Scale (IES) provides a measure of current, subjective, emotional distress symptomatic of a specific traumatic event. However, its validity among paramedics is largely unknown. Problem The purpose of this study was to investigate the psychometric properties and factor structure of the IES with a sample of Australian paramedics. Methods The study aimed to investigate the psychometric properties and factor structure of the 15-item IES with a sample of Australian paramedics using Exploratory Factor Analysis with model fit statistics as found in confirmatory analysis. Results Maximum Likelihood Factor Analysis with Varimax rotation supported the hypothesis that a two-factor solution would provide the best fit of the data. Procrustes rotation provided further support for this hypothesis indicating that the factors, labeled “Intrusion” and “Avoidance”, as well as the individual items of the 12-item final model, were a good fit to an ideal solution. Conclusion The revision of the scale has improved its validity for use in the general population of paramedics, improving the potential for its use in trauma-related research. PMID:26719731

  7. Impact of mass-loss on the evolution and pre-supernova properties of red supergiants

    NASA Astrophysics Data System (ADS)

    Meynet, G.; Chomienne, V.; Ekström, S.; Georgy, C.; Granada, A.; Groh, J.; Maeder, A.; Eggenberger, P.; Levesque, E.; Massey, P.

    2015-03-01

    Context. The post-main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate, and the effect of a close companion. Aims: We study the change in the red supergiant (RSG) lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor and the structure of the stars at that time for various mass-loss rates during the RSG phase and for two different initial rotation velocities. Methods: Stellar models were computed with the Geneva code for initial masses between 9 and 25 M⊙ at solar metallicity (Z = 0.014) with 10 times and 25 times the standard mass-loss rates during the RSG phase, with and without rotation. Results: The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and in turn on the luminosity function of RSGs. An observed RSG is associated with a model of higher initial mass when models with an enhanced RSG mass-loss rate are used to deduce that mass. At solar metallicity, models with an enhanced mass-loss rate produce significant changes in the populations of blue, yellow, and RSGs. When extended blue loops or blueward excursions are produced by enhanced mass-loss, the models predict that a majority of blue (yellow) supergiants are post-RSG objects. These post-RSG stars are predicted to show much lower surface rotational velocities than similar blue supergiants on their first crossing of the HR gap. Enhanced mass-loss rates during the RSG phase have little impact on the Wolf-Rayet populations. The position in the HRD of the end point of the evolution depends on the mass of the hydrogen envelope. More precisely, whenever at the pre-supernova stage the H-rich envelope contains more than about 5% of the initial mass, the star is a RSG, and whenever

  8. Psychometric properties of fatigue severity and fatigue impact scales in postpolio patients.

    PubMed

    Oncu, Julide; Atamaz, Funda; Durmaz, Berrin; On, Arzu

    2013-12-01

    We evaluate the reliability, validity, and responsiveness of the Fatigue Severity Scale (FSS) and the Fatigue Impact Scale (FIS) and to determine whether these scales are potentially applicable for measuring fatigue in postpolio patients (PPS). After the Turkish adaptation of FSS and FIS using a forward-backward procedure, the scales were administered to 48 PPS patients without additional health problems that may induce fatigue. Reliability studies were carried out by determination of intraclass correlation coefficient and internal consistency by the Cronbach-α coefficient. Validity was tested by within-scale analyses and analyses against the external criteria including convergent validity and discriminant validity. Correlations with the Notthingham Health Profile (NHP), fatigue, pain and cramp severity (visual analog scale), and manual muscle testing were performed. Sensitivity to changes was determined by standardized response mean values. All patients completed scales, suggesting their satisfactory acceptance. Reliability studies were satisfactory, with higher Cronbach-α values and intraclass correlation coefficients than 0.80. The FSS score was correlated moderately with visual analog scale-fatigue (r=0.41) and the NHP-energy dimension (r=0.29). All FIS scores except cognitive scores were moderately related to the NHP-social isolation score (r=0.40, 0.37, and 0.43 for FIS-physical, social, and total scores, respectively). There was also a significant correlation between the FIS-physical score and the NHP-energy score (r=0.31). On the basis of the standardized response mean values, response to treatment for these two questionnaires was satisfactory (P=0.00). The Turkish versions of FSS and FIS were reliable, sensitive to clinical changes, and also well accepted by patients with PPS. Although they had somewhat satisfactory convergent validity, the absence of strong correlations did not support the validity entirely. PMID:23903028

  9. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  10. Impact of Bottom Trawling on Deep-Sea Sediment Properties along the Flanks of a Submarine Canyon

    PubMed Central

    Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel

    2014-01-01

    The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400–800 m depth range. To explore the degree of alteration of surface sediments (0–50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y−1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298

  11. Effects of Microstructure on Tensile, Charpy Impact, and Crack Tip Opening Displacement Properties of Two API X80 Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Shin, Sang Yong

    2013-06-01

    The effects of microstructure on tensile, Charpy impact, and crack tip opening displacement (CTOD) properties of two API X80 pipeline steels were investigated in this study. Two API X80 pipeline steels consisting of acicular ferrite and granular bainite, and a small amount of hard phases such as martensite and secondary phases have elongated grains along the rolling direction, so that they show different mechanical properties as the specimens' directions change. The 90 deg specimens have high tensile strength due to the low stress concentration on the fine hard phases and the high loads for the deformation of the elongated grains. In contrast, the 30 deg specimens have less elongated grains and larger hard phases such as martensite, with the size of about 3 μm, than the 90 deg specimens. Hence, the 30 deg specimens have low tensile strength because of the high stress concentration on the large hard phases and the low loads to deform grains. In the 90 deg specimen, brittle crack propagation surfaces are even since cracks propagate in a straight line along the elongated grain structure. In the 30 deg specimen, however, brittle crack propagation surfaces are uneven, and secondary cracks are observed, because of the zigzag brittle crack propagation path. In the CTOD properties, the 90 deg specimens have maximum forces of higher magnitude than the 30 deg specimens, because of the elongated grain structure. However, CTODs of the 90 deg specimens are lower than those of the 30 deg specimens because of the low plastic deformation areas by the elongated grains in the 90 deg specimens.

  12. Sugar cane management with humic extract and organic and mineral fertilizer: impacts on Oxisol some physical properties

    NASA Astrophysics Data System (ADS)

    Alves, M. C.; Campos, F. S.; Souza, Z. M.

    2012-04-01

    The present investigation has as objective to study the impact of cultive systems, humic extract and organic and mineral fertilizers on Oxisol some physical properties cultivated of sugar cane. It was developed in Aparecida do Taboado, Mato Grosso do Sul, Brazil, in Manufactores Alcoolvale. The study was in sugar cane culture implanted on 3th and 4th cycle. The experimental design was at randomized blocks following scheme in zone with eight treatments and four replications. The two treatments in main zone were represented by cultivation systems (with and without chisel) and the subzone fertilization (T1-mineral, T2-mineral+sugar cane residue, T3-mineral+humic and fulvic acids and T4-mix of mineral, sugar cane residue and humic and fulvic acids). In three soil layers: 0.00-0.05; 0.10-0.20 and 0.20-0.40 m were studied the physical soil properties: macroporosity, microporosity, total porosity and soil bulk density. Also evaluate the technological quality of sugar cane. The conclusions are: the application of mineral fertilizer+sugar cane residue+humic extract (Humitec ®) and cropping system with chisel were more effective in improving soil physical; the system of crop of sugar cane ratton implanted in the 2th and 3th cycle, without the use of chisel was better in the recovery of soil physical properties; the crop system without the chisel and the combination of mineral fertilizer+sugar cane residue was promising to increase of Brix, Pol juice, Pol sugar cane and total recoverable sugars Pol.

  13. Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon.

    PubMed

    Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel

    2014-01-01

    The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400-800 m depth range. To explore the degree of alteration of surface sediments (0-50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y-1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298

  14. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.

    2016-08-01

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.

  15. Are Extracted Materials Truly Representative of Original Samples? Impact of C18 Extraction on CDOM Optical and Chemical Properties.

    PubMed

    Andrew, Andrea A; Del Vecchio, Rossana; Zhang, Yi; Subramaniam, Ajit; Blough, Neil V

    2016-01-01

    Some properties of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) can be easily measured directly on whole waters, while others require sample concentration and removal of natural salts. To increase CDOM content and eliminate salts, solid phase extraction (SPE) is often employed. Biases following extraction and elution are inevitable, thus raising the question of how truly representative the extracted material is of the original. In this context, we investigated the wavelength dependence of extraction efficiency for C18 cartridges with respect to CDOM optical properties using samples obtained from the Middle Atlantic Bight (MAB) and the Equatorial Atlantic Ocean (EAO). Further, we compared the optical changes of C18 extracts and the corresponding whole water following chemical reduction with sodium borohydride (NaBH4). C18 cartridges preferentially extracted long-wavelength absorbing/emitting material for samples impacted by riverine input. Extraction efficiency overall decreased with offshore distance away from riverine input. Spectral slopes of C18-OM samples were also almost always lower than those of their corresponding CDOM samples supporting the preferential extraction of higher molecular weight absorbing material. The wavelength dependence of the optical properties (absorption, fluorescence emission, and quantum yield) of the original water samples and their corresponding extracted material were very similar. C18 extracts and corresponding water samples further exhibited comparable optical changes following NaBH4 reduction, thus suggesting a similarity in nature (structure) of the optically active extracted material, independent of geographical locale. Altogether, these data suggested a strong similarity between C18 extracts and corresponding whole waters, thus indicating that extracts are representative of the CDOM content of original waters. PMID:26904536

  16. Are extracted materials truly representative of original samples? Impact of C18 extraction on CDOM optical and chemical properties

    NASA Astrophysics Data System (ADS)

    Andrew, Andrea; Del Vecchio, Rossana; Zhang, Yi; Subramaniam, Ajit; Blough, Neil

    2016-02-01

    Some properties of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) can be easily measured directly on whole waters, while others require sample concentration and removal of natural salts. To increase CDOM content and eliminate salts, solid phase extraction is often employed. Biases following extraction and elution are inevitable, thus raising the question of how truly representative the extracted material is of the original. In this context, we investigated the wavelength dependence of extraction efficiency for C18 cartridges with respect to CDOM optical properties using samples obtained from the Middle Atlantic Bight (MAB) and the Equatorial Atlantic Ocean (EAO). Further, we compared the optical changes of C18 extracts and the corresponding whole water following chemical reduction with sodium borohydride (NaBH4). C18 cartridges preferentially extracted long-wavelength absorbing/emitting material for samples impacted by riverine input. Extraction efficiency overall decreased with offshore distance away from riverine input. Spectral slopes of C18-OM samples were also almost always lower than those of their corresponding CDOM samples supporting the preferential extraction of higher molecular weight absorbing material. The wavelength dependence of the optical properties (absorption, fluorescence emission and quantum yield) of the original water samples and their corresponding extracted material were very similar. C18 extracts and corresponding water samples further exhibited comparable optical changes following NaBH4 reduction, thus suggesting a similarity in nature (structure) of the optically active extracted material, independent of geographical locale. Altogether, these data suggested a strong similarity between C18 extracts and corresponding whole waters, thus indicating that extracts are representative of the CDOM content of original waters.

  17. Are Extracted Materials Truly Representative of Original Samples? Impact of C18 Extraction on CDOM Optical and Chemical Properties

    PubMed Central

    Andrew, Andrea A.; Del Vecchio, Rossana; Zhang, Yi; Subramaniam, Ajit; Blough, Neil V.

    2016-01-01

    Some properties of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) can be easily measured directly on whole waters, while others require sample concentration and removal of natural salts. To increase CDOM content and eliminate salts, solid phase extraction (SPE) is often employed. Biases following extraction and elution are inevitable, thus raising the question of how truly representative the extracted material is of the original. In this context, we investigated the wavelength dependence of extraction efficiency for C18 cartridges with respect to CDOM optical properties using samples obtained from the Middle Atlantic Bight (MAB) and the Equatorial Atlantic Ocean (EAO). Further, we compared the optical changes of C18 extracts and the corresponding whole water following chemical reduction with sodium borohydride (NaBH4). C18 cartridges preferentially extracted long-wavelength absorbing/emitting material for samples impacted by riverine input. Extraction efficiency overall decreased with offshore distance away from riverine input. Spectral slopes of C18-OM samples were also almost always lower than those of their corresponding CDOM samples supporting the preferential extraction of higher molecular weight absorbing material. The wavelength dependence of the optical properties (absorption, fluorescence emission, and quantum yield) of the original water samples and their corresponding extracted material were very similar. C18 extracts and corresponding water samples further exhibited comparable optical changes following NaBH4 reduction, thus suggesting a similarity in nature (structure) of the optically active extracted material, independent of geographical locale. Altogether, these data suggested a strong similarity between C18 extracts and corresponding whole waters, thus indicating that extracts are representative of the CDOM content of original waters. PMID:26904536

  18. The Geographic Information System techniques impact analyze of Office's Properties in Barcelona

    NASA Astrophysics Data System (ADS)

    Garcia, P. A.; Biere, R. A.; Moix, M. B.

    2007-05-01

    The changes in the characteristics and needs in the cities structures means new challenges in the space to the economics activities. The increasing predominance of the tertiary industry, of offices or I+D buildings, like an effect of the economic transformation implies new forms, new technical characteristics and similar alternatives locations accordant with a changing demand. The project that is presented here, is developed by the Centre of Land Policy and Valuations of the University Polytechnic of Catalonia for the company "Servicios de Geo-marketing Inmobiliario S.L.' (SGMI, Real State Geo- marketing Services S.L.) The process consists in the generation of a geographic information system to the analyses of the characteristics office's buildings of Barcelona in the sense to introduce the property office's buildings of Barcelona into a database for the geo-marketing. This application allows the access to the necessary information of technical and constructive characteristics of the office's buildings, summoned by the most emblematic or central locations to the best technical level in their constructions towards facilitating the maximum knowledge the citizen in order to assure the choice according to the needs for every profile of demand. The work has consisted basically in defining the technical criteria of evaluation of the building, to systematize those characteristics in some indicators (variable) capable of expressing the level of quality of every variable, to establish a system measurement of greater to smaller value explained to the quality. Systematizing the collection of information of a total of 683 buildings of Barcelona and of some municipalities of its periphery, through a visit to every building, to process the data obtained to a database and to standardize the value of quality for every indicator and set of indicators towards determining a final qualification, obtained from the different physical, constructive and qualitative characteristics of

  19. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films

    SciTech Connect

    Gillinger, M.; Schneider, M.; Bittner, A.; Schmid, U.; Nicolay, P.

    2015-02-14

    Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 h in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.

  20. Hydrothermally synthesized titanate nanostructures: impact of heat treatment on particle characteristics and photocatalytic properties.

    PubMed

    Kiatkittipong, Kunlanan; Scott, Jason; Amal, Rose

    2011-10-01

    The role titanate particle structure plays in governing its characteristics upon calcining and their ensuing influence on photocatalytic performance was investigated. Titanate nanotubes and nanoribbons were prepared by hydrothermal treatment of Aeroxide P25 and then calcined at temperatures in the range 200 - 800 °C. Heat treatment directly transformed the nanotubes to anatase while nanoribbon transformation to anatase occurred via a TiO(2)(B) intermediate phase. The nanoribbon structure also provided an increased resistance to sintering, allowing for retention of the original {010} facet of the titanate nanosheets up to 800 °C. The changing material properties with calcining were found to influence the capacity of the particles to photodegrade oxalic acid and methanol. The nanotubes provided an optimum photoactivity following calcination at 500 °C with this point representing a transition between the relative dominance of crystal phase and surface area on performance. The comparatively smaller initial surface area of the nanoribbons consigned this characteristic to a secondary role in influencing photoactivity with the changes to crystal phase dominating the continually improving performance with calcination up to 800 °C. The structural stability imparted by the nanoribbon architecture during calcination, in particular its retention of the {010} facet at temperatures >700 °C, advanced its photocatalytic performance compared with the nanotubes. This was especially the case for methanol photooxidation whose primary degradation mechanism relies on hydroxyl radical attack and was facilitated by the {010} facet. The effect was not as pronounced for oxalic acid due to its higher adsorption on TiO(2) and therefore greater susceptibility to oxidation by photogenerated holes. This study demonstrates that, apart from modulating sintering effects and changes to crystal phase, the titanate nanostructure influences particle crystallography which can be beneficial for

  1. Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus

    SciTech Connect

    Muhlbauer, Andreas; Ackerman, Thomas P.; Comstock, Jennifer M.; Diskin, G. S.; Evans, Stuart; Lawson, Paul; Marchand, Roger

    2014-04-16

    In situ microphysical observations 3 of mid-latitude cirrus collected during the Department of Energy Small Particles in Cirrus (SPAR-TICUS) field campaign are combined with an atmospheric state classification for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site to understand statistical relationships between cirrus microphysics and the large-scale meteorology. The atmospheric state classification is informed about the large-scale meteorology and state of cloudiness at the ARM SGP site by combining ECMWF ERA-Interim reanalysis data with 14 years of continuous observations from the millimeter-wavelength cloud radar. Almost half of the cirrus cloud occurrences in the vicinity of the ARM SGP site during SPARTICUS can be explained by three distinct synoptic condi- tions, namely upper-level ridges, mid-latitude cyclones with frontal systems and subtropical flows. Probability density functions (PDFs) of cirrus micro- physical properties such as particle size distributions (PSDs), ice number con- centrations and ice water content (IWC) are examined and exhibit striking differences among the different synoptic regimes. Generally, narrower PSDs with lower IWC but higher ice number concentrations are found in cirrus sam- pled in upper-level ridges whereas cirrus sampled in subtropical flows, fronts and aged anvils show broader PSDs with considerably lower ice number con- centrations but higher IWC. Despite striking contrasts in the cirrus micro- physics for different large-scale environments, the PDFs of vertical velocity are not different, suggesting that vertical velocity PDFs are a poor predic-tor for explaining the microphysical variability in cirrus. Instead, cirrus mi- crophysical contrasts may be driven by differences in ice supersaturations or aerosols.

  2. Impact of calcification state on the inherent optical properties of Emiliania huxleyi coccoliths and coccolithophores

    NASA Astrophysics Data System (ADS)

    Bi, Lei; Yang, Ping

    2015-04-01

    Understanding the inherent optical properties (IOPs) of coccoliths and coccolithophores is important in oceanic radiative transfer simulations and remote sensing implementations. In this study, the invariant imbedding T-matrix method (II-TM) is employed to investigate the IOPs of coccoliths and coccolithophores. The Emiliania huxleyi (Ehux) coccolith and coccolithophore models are built based on observed biometric parameters including the eccentricity, the number of slits, and the rim width of detached coccoliths. The calcification state that specifies the amount of calcium of a single coccolith is critical in the determination of the size-volume/mass relationship (note, the volume/mass of coccoltihs at different calcification states are different although the diameters are the same). The present results show that the calcification state, namely, under-calcification, normal-calcification, or over-calcification, significantly influences the backscattering cross section and the phase matrix. Furthermore, the linear depolarization ratio of the light scattered by coccoliths is sensitive to the degree of calcification, and provides a potentially valuable parameter for interpreting oceanic remote sensing data. The phase function of an ensemble of randomly oriented coccolithophores has a similar pattern to that of individual coccoliths, but the forward scattering is dominant in the coccolithophores due to the large geometric cross sections. The linear depolarization ratio associated with coccolithophores is found to be larger than that for coccoliths as polarization is more sensitive to multiple scattering than the phase function. The simulated coccolithophore phase matrix numerical results are compared with laboratory measurements. For scattering angles larger than 100°, an increase of the phase function with respect to the scattering angle is confirmed based on the present coccolithophore model while the spherical approximation fails.

  3. Impact of dehulling and germination on nutrients, antinutrients, and antioxidant properties in horsegram.

    PubMed

    Pal, R S; Bhartiya, Anuradha; ArunKumar, R; Kant, Lakshmi; Aditya, J P; Bisht, J K

    2016-01-01

    The changes in chemical composition, antioxidant activity and minerals content of horse gram seed after dehulling and germination of 12 advance lines were investigated. Dehulled samples had a higher protein content compared with the raw and germinated. Total soluble sugars (TSS) content increased significantly (p ≤ 0.05) after dehulling (29.31 %) and germination (98.73 %) whereas, the total lipids increased (10.98 %) significantly (p ≤ 0.05) after dehulling and decreased (36.41 %) significantly (p ≤ 0.05) after germination. Dehulling and germination significantly decreased the amount of phytic acid (PA), tannin (TN) and oxalic acid (OA). Trypsin inhibitor units decreased (26.79 %) significantly (p ≤ 0.05) after germination. The minerals (Ca, Fe and Cu) composition of the germinated horsegram flour samples was significantly higher than the raw and dehulled flour. The functional properties of flours were studied and found that the bulk density (11.85 %) and oil absorption capacity (18.92 %) significantly increased after germination. Raw samples followed by germinated samples showed the highest concentrations of phytochemicals responsible for the antioxidant activity and also the antioxidant capacities. principal component analysis revealed that in case of dehulled samples; TN, polyphenols, DPPH and ABTS radical inhibition, TSS, total antioxidant, OA, protein, FRAP value, Ca and Zn had positive correlation among themselves while in case of germinated samples, protein, oil absorption capacity, FRAP value, OA, total flavonoids, DPPH radical inhibition, Ca and Cu had positive correlation among themselves. Present study suggest that germination combined with dehulling process improved quality of horsegram by enhancing the nutritive value and reducing the antinutrients. PMID:26787953

  4. The impact of ionic liquid fluorinated moieties on their thermophysical properties and aqueous phase behaviour

    PubMed Central

    Neves, Catarina M. S. S.; Kurnia, Kiki A.; Shimizu, Karina; Marrucho, Isabel M.; Rebelo, Luís Paulo N.; Coutinho, João A. P.; Freire, Mara G.; Lopes, José N. Canongia

    2014-01-01

    In this work, we demonstrate that the presence of fluorinated alkyl chains in Ionic Liquids (ILs) is highly relevant in terms of their thermophysical properties and aqueous phase behaviour. We have measured and compared the density and viscosity of pure 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [C2C1im][FAP], with that of pure 1-ethyl-3-methylimidazolium hexafluorophosphate, [C2C1im][PF6], at atmospheric pressure and in the (288.15 to 363.15) K temperature range. The results show that the density of [C2C1im][PF6] is lower than that of [C2C1im][FAP], while the viscosity data reveal the opposite trend. The fluid phase behaviour of aqueous solutions of the two ILs was also evaluated under the same conditions and it was found that the mutual solubilities of [C2C1im][FAP] and water are substantially lower than those verified with [C2C1im][PF6]. The experimental data were lastly interpreted at a molecular level using Molecular Dynamics (MD) simulation results revealing that the interactions between the IL ions and the water molecules are mainly achieved via the six fluorine atoms of [PF6]− and the three analogues in [FAP]−. The loss of three interaction centres when replacing [PF6]− by [FAP]−, coupled with the bulkiness and relative inertness of the three perfluoroethyl groups, reduces its mutual solubility with water and also contributes to a lower viscosity displayed by the pure [FAP]-based IL as compared to that of the [PF6]-based compound. PMID:25179181

  5. Antifungal Properties of Cationic Phenylene Ethynylenes and Their Impact on β-Glucan Exposure.

    PubMed

    Pappas, Harry C; Sylejmani, Rina; Graus, Matthew S; Donabedian, Patrick L; Whitten, David G; Neumann, Aaron K

    2016-08-01

    Candida species are the cause of many bloodstream infections through contamination of indwelling medical devices. These infections account for a 40% mortality rate, posing a significant risk to immunocompromised patients. Traditional treatments against Candida infections include amphotericin B and various azole treatments. Unfortunately, these treatments are associated with high toxicity, and resistant strains have become more prevalent. As a new frontier, light-activated phenylene ethynylenes have shown promising biocidal activity against Gram-positive and -negative bacterial pathogens, as well as the environmental yeast Saccharomyces cerevisiae In this study, we monitored the viability of Candida species after treatment with a cationic conjugated polymer [poly(p-phenylene ethynylene); PPE] or oligomer ["end-only" oligo(p-phenylene ethynylene); EO-OPE] by flow cytometry in order to explore the antifungal properties of these compounds. The oligomer was found to disrupt Candida albicans yeast membrane integrity independent of light activation, while PPE is able to do so only in the presence of light, allowing for some control as to the manner in which cytotoxic effects are induced. The contrast in killing efficacy between the two compounds is likely related to their size difference and their intrinsic abilities to penetrate the fungal cell wall. Unlike EO-OPE-DABCO (where DABCO is quaternized diazabicyclo[2,2,2]octane), PPE-DABCO displayed a strong propensity to associate with soluble β-glucan, which is expected to inhibit its ability to access and perturb the inner cell membrane of Candida yeast. Furthermore, treatment with PPE-DABCO unmasked Candida albicans β-glucan and increased phagocytosis by Dectin-1-expressing HEK-293 cells. In summary, cationic phenylene ethynylenes show promising biocidal activity against pathogenic Candida yeast cells while also exhibiting immunostimulatory effects. PMID:27161628

  6. Sewage sludge hydrochars: properties and agronomic impact as related to different production conditions

    NASA Astrophysics Data System (ADS)

    Paneque, Marina; María De la Rosa, José; Aragón, Carlos; Kern, Jürgen; Conte, Pellegrino; Knicker, Heike

    2015-04-01

    The huge amount of sewage sludge (SS) generated in wastewater treatment plants all over the world represents an environmental problem. Due to the high concentration of phosphorus and nitrogen in SS as well as other macro and micro nutrients it has been considered a suitable soil amendment. However, before being applied to soil a complete sterilization and elimination of pollutants should be carried out [1]. In this context, thermal treatments appear as a convenient methodology for producing SS byproducts useful for agronomic purposes. Hydrothermal carbonization (HTC) is a kind of pyrolysis characterized by the heating of the biomass in presence of water. This process shows an advantage compared to other thermal treatments for wet residues since dryness of the biomass prior to the thermal transformation is not necessary. The solid product which results from HTC is called hydrochar and it has been suggested to increase soil productivity [2]. However, the agronomic potential of hydrochars depends on the feedstock and production conditions. Additionally, possible toxic and risks have to be carefully evaluated. Thus, SS hydrochars appear as a potential soil amendment but further scientific research is needed to find its real capacity, optimal production conditions as well as possible environmental harmful effects. The aim of this study was to evaluate which are the most suitable production conditions, to transform SS into hydrochar. An additional goal of this work was to relate the hydrochars properties to its agronomic response. Therefore, hydrochars were produced from SS collected from the Experimental Wastewater Treatment plant of CENTA (http://www.centa.es/), located in Carrion de los Cespedes (Seville), under two different temperatures (200 and 260˚C) and residence times (30 min and 1h). With the hydrochars obtained, a greenhouse pot incubation study was carried out for 80 days. The pots contained 250 g of a Calcic Cambisol (IUSS Working Group WRB, 2007) and an

  7. Comparison of impact of the different hydrophilic carriers on the properties of piperazine-containing drug.

    PubMed

    Ahmed, M O

    2001-05-01

    The objective of this study was to determine the impact of a series of nonionic surfactants on the solubility of piperazine-containing drug (meclizine, MZ) in comparison to that of natural cyclodextrins (alpha-CD and beta-CD) and dimethyl-beta-cyclodextrin (DM-beta-CD). The solubility of the drug was studied in either CDs solutions or nonionic surfactant solutions. Three classes of nonionic surfactants were used namely; polyoxyethylene (POE) sorbitan fatty acid esters (polysorbates), POE fatty acid esters (Myrjs) and polyethylene oxide (PEO) fatty alcohol ethers (Brijs and Eumulgins). The solubility of MZ was increased linearly with the increasing surfactant concentration, indicating that micellar solubilization follows the partition model. It was found that the longer the hydrocarbon chain in a homologous series, the more efficient is the solubilizing power of surfactant. For example, polysorbate 80 (Tween-80) is a more efficient solubilizer than polysorbate 20 (Tween-20), indicating that the drug was incorporated in the core of micelle more than the capsular region of the micelle. On the other hand, in case of POE fatty acid esters, the solubilizing power increased with decreasing polyoxyethylene chain as Myrj 53 was more efficient than Myrj 59. In class of PEO fatty alcohol ethers, the shorter the hydrophilic chain and longer lipophilic chain, the more efficient was the solubilizing capacity. Thus, Brij 58 was more efficient solubilizer than Brij 35 and Eumulgin C1000 was more active than Eumulgin C1500. Comparatively, Eumulgin C1000 had the highest solubilizing power for MZ among the studied PEO fatty alcohol ethers and other groups of surfactants. The solubility action of surfactants toward MZ was increased by raising the temperature of the surfactant solutions from 30 to 45 degrees C. Hydrophilic macromolecules (PEG 1000 and PEG 6000) or cosolvents (glycerol and propylene glycol) have a very slight effect on the solubility of MZ and confirm the predominance

  8. Impact of long-term land application of broiler litter on environmentally related soil properties

    SciTech Connect

    Kingery, W.L.; Wood, C.W.; Mullins, G.L.

    1994-01-01

    The largest portion of Alabama`s rapidly growing poultry industry is geographically concentrated in the Sand Mountain region of northern Alabama. The result is that large amounts of waste are applied to relatively small areas of agricultural soils. A study was conducted to determine the effects of long-term broiler waste (litter) application on environmentally related soil conditions in the region. The region has an average annual rainfall of 1325 mm, which is evenly distributed throughout the year, a thermic temperature regime, and soils in the region are of the Ultisol order. In each of four major broiler-producing counties, three pairs of sites consisting of long-term (15-28 yr) littered and nonlittered fields on matching soil series and maintained under perennial tall fescue (Festuca arundinacea Schreb.) were sampled. Soil cores were taken to 3 m or lithic contact and depth-incremented samples (0-15, 15-30, and each subsequent 30-cm interval) were analyzed for organic C, total N, NO{sub 3}-N, pH, electrical conductivity, and acid-extractable P, K, Ca, Mg, Co, and Zn. Litter application increased organic C and total N to depths of 15 and 30 cm, respectively, as compared with nonlittered soils, whereas pH was 0.5 units higher to a depth of 60 cm under littered soils. Significant accumulation of NO{sub 3}N was found in littered soils to or near bedrock. Extractable P concentrations in littered soils were more than six times greater than in nonlittered soils to a depth of 60 cm. Elevated levels of extractable K, Ca, and Mg to depths greater than 60 cm also were found as a result of long-term litter use. Extractable Cu and Zn had accumulated in littered soils to a depth of 45 cm. These findings indicate that long-term land application of broiler litter, at present rates, has altered soil chemical conditions and has created a potential for adverse environmental impacts in the Sand Mountain region of Alabama. 43 refs., 6 figs., 3 tabs.

  9. Hybrid processes in enzymatically gelled gelatin: impact on , macroscopic properties and cellular response.

    PubMed

    Bode, Franziska; da Silva, Marcelo Alves; Smith, Paul; Lorenz, Christian D; McCullen, Seth; Stevens, Molly M; Dreiss, Cécile A

    2013-07-01

    Physical, chemical and hybrid tilapia fish gelatin hydrogels were investigated by small-angle neutron scattering (), molecular dynamic simulations and their biological effect in cell cultures studied; results from the different experimental techniques were then correlated and linked to the rheological properties of the gels (F. Bode et al., Biomacromolecules, 2011, 12, 3741-3752). Hydrogels were obtained by cross-linking with the microbial enzyme transglutaminase (mTGase) under two conditions: above and below gelatin physical temperature (ca. 23 °C). Hydrogels cross-linked at 37 °C, from the sol-state, are referred to as 'chemical' gels (C); hydrogels cross-linked at 21 °C, thus with concurrent physical , are referred to as 'physical-co-chemical' gels (PC). The data were appropriately described by a combination of a Lorentzian and a power law model. For physical gels, the correlation length (ξ) obtained from the fits decreased linearly with gelatin concentration, from 42 to 26 Å for 3.5 to 10% w/w gelatin, respectively. Independently of temperature, all physical gels at a given concentration showed a similar correlation length ξ (26 ± 2 Å), with no significant difference with the sol-state (23 ± 2 Å). In both C and PC gels, ξ increased with mTGase concentration over the range studied: 40 to 167 Å for 10 and 40 U mTGase per g gelatin in C gels (after 120 min cross-linking) and 40 to 82 Å for 10 and 40 U mTGase per g gelatin for PC gels. ξ reached a plateau at the highest mTGase concentration studied for both types of gels. In addition, kinetic studies on C gels revealed that ξ increased linearly with time in the first two hours and grew faster with increasing mTGase concentration. ξ values in the PC gels were smaller than in the corresponding C gels. Cell proliferation studies showed that the gels were compatible with cell growth and indicated no statistically relevant dependence on mTGase concentration for C gels. For PC gels, cell proliferation

  10. Microstructural impacts on the electrical properties of copper and titanium substituted bismuth vanadates

    NASA Astrophysics Data System (ADS)

    Ring, Kevin

    In the search for a material that can exceed the performance of YSZ as an ionic oxide conductor at intermediate temperatures (300°C to 600°C) a group of Aurivillius phase ceramics dubbed the BIMEVOX (Bi 2V1-xMexO5.5-delta) family has garnered much attention over the past 20 years. Novel results regarding the influence of microstructure on electrical properties were obtained by non-conventional methods of fabrication and characterization. Approaches included: uniaxial, load assisted sintering, molten salt synthesis, templated grain growth, and the use of ion blocking electrodes to measure the partial electronic conductivity. Molten salt synthesis methods successfully produced high aspect ratio platelets of both BiCuVOx (Bi2V0.9Cu0.1O 5.5-delta) and BiCuTiVOx (Bi2V0.9Cu0.05 Ti0.05O5.5-delta), at a variety of temperatures and times. Uniaxial load assisted sintering (or "hot-forging") when combined with templated grain growth produced high density (rho>95% theoretical) samples of moderate texture (F(00l) up to 29%). Impedance spectroscopy measurements indicated that increased texture and grain size reduce the thermal stability of BiCuVOx below the critical gamma-phase transition temperature. Measurements of total conductivity were made with changing oxygen partial pressure down to 10-4 atm of oxygen between temperatures of 400°C and 550°C. Under those conditions, total conductivity was invariant, confirming published results of operation within the ionic compensated regime. Partial electronic conductivity and electronic transference numbers were estimated by asymmetric DC polarization measurements down to 10-6 atm of oxygen between 500°C and 550°C. The results indicate that the partial pressure of oxygen in normal air is already below the intrinsic minimum of conductivity at 500°C and that electronic conductivity may become significant (te>0.01) no lower than 10-6 atm of oxygen. The culmination of research since its first publication poses uncertainty regarding

  11. Impact of catchment degree on peat properties in peat deposits of eutrophic bog

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Golubina, O. A.; Rodikova, A. V.; Shinkeeva, N. A.; Bubina, A. B.

    2010-05-01

    Fundamental works of many investigators show that according to the biophysical properties peat deposit (PD) is divided into 2 layers: active and inert. It is interesting to analyze the supposed changes in PD of eutrophic bog according to different data (physical, chemical and biological). The researches were carried out at two plots of one bog (points 1 and 2, positions 56° 21' NL, 84° 47' EL, Russia, Siberia). Agricultural afforestation (pine planting) was made at one of them (point 2) 60 years ago. Now this plot is absolutely identical in ground cover to 1 point, but other conditions are significantly changed. In spring bog water level is at the depth of 20cm at 2 point (at 1 point it is near water face), it lows up to 53 cm during summer time (at 1 point - up to 37 cm). According to redox conditions zone of anoxic-oxic conditions reaches meter depth at 2 points. PDs don't significantly differ in activity of ammonifiers but in activity of cellulose-lytic aerobic microflora it follows that it is more active at 2 point in PD active layer. In spite of good aeration, more favorable conditions were created also for anaerobic cellulose-fermenting microflora in PD of 2 point in comparison with 1 one. Activity analysis of denitrifying agents and microflora of other physiological groups also showed high activity of biota at the plot with afforestation amelioration. This fact was confirmed by high coefficient of mineralization. Time of drainage effect created by afforestation amelioration influenced group composition of peat organic matter which builds up PD of examined plots. According to fractional and group composition data fracture of hard-to-hydrolyze organic matters decreased during the process of microflora activating at the plot with afforestation amelioration but FA content increased. Fractional composition of nitrogen showed that content of mineral nitrogen compounds definitely increased. Thus, 60 years of surface drainage influenced composition change of peat

  12. Land-use change impacts on hydrologic soil properties and implications for overland-flow in a periurban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Steenhuis, Tammo S.; Walsh, Rory P. D.; Soares, Daniel; Ferreira, António J. D.; Coelho, Celeste O. A.

    2013-04-01

    Global urbanization affects land-use, soil properties and runoff generation and has implications on flow connectivity in the landscape. Understanding how various forms of the urban mosaic affects the landscape functioning is still a challenge. The aim of our research is to: 1) understand spatio-temporal variability of soil hydrological properties of land-uses in a periurban Mediterranean environment and the impacts on runoff processes; 2) assess the impacts of urbanizing mosaic features of periurban areas on flow connectivity and streamflow response. The study is carried out in a Portuguese typical urbanizing environment, the Ribeira dos Covões (6 km2 catchment). In the last 50 years, the catchment has changed from being rural into urban. By 2009, although still dominated by forest (66%), the catchment urban areas (30%) exhibited a distinctive pattern involving sets of gardens and walls, with derelict land in between properties. The study combines field surveys and hydrological monitoring to assess spatio-temporal dynamics of land-use contributions to surface hydrology. Over a one year period, nine monitoring campaigns were carried out to assess the variability of water-repellency, soil moisture and water infiltration in different land-use categories. In 2010 fall, nine 8mx2m runoff plots were installed in the forest areas, as well as a continuous-recording network that includes three rain-gauges and nine water-level recorders. This network provides continuous data on hydrological response to rainfall at the catchment outlet and in eight sub-catchments. The results revealed high spatio-temporal variability in soil hydrological properties with significant differences between land-uses. In summer, soil hydrophobicity is widespread and most severe in forest areas, resulting in very low soil-matrix infiltration and thereby promoting Hortonian overland-flow. In wet periods, water-repellency almost vanished, with infiltration rates at forest sites increasing to12mm

  13. Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula).

    PubMed

    Sellin, Arne; Sack, Lawren; Õunapuu, Eele; Karusion, Annika

    2011-07-01

    Responses of leaf and shoot hydraulic conductance to light quality were examined on shoots of silver birch (Betula pendula), cut from lower ('shade position') and upper thirds of the crowns ('sun position') of trees growing in a natural temperate forest stand. Hydraulic conductances of leaf blades (K(lb) ), petioles (K(P) ) and branches (i.e. leafless stem; K(B) ) were determined using a high pressure flow meter in steady state mode. The shoots were exposed to photosynthetic photon flux density of 200-250 µmol m⁻² s⁻¹ using white, blue or red light. K(lb) depended significantly on both light quality and canopy position (P<0.001), K(B) on canopy position (P<0.001) and exposure time (P=0.014), and none of the three factors had effect on K(P) . The highest values of K(lb) were recorded under the blue light (3.63 and 3.13×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ for the sun and shade leaves, respectively), intermediate values under white light (3.37 and 2.46×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ , respectively) and lowest values under red light (2.83 and 2.02×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹, respectively). Light quality has an important impact on leaf hydraulic properties, independently of light intensity or of total light energy, and the specific light receptors involved in this response require identification. Given that natural canopy shade depletes blue and red light, K(lb) may be decreased both by reduced fluence and shifts in light spectra, indicating the need for studies of the natural heterogeneity of K(lb) within and under canopies, and its impacts on gas exchange. PMID:21414012

  14. Impacts of industrial waste resources on maize (Zea mays L.) growth, yield, nutrients uptake and soil properties.

    PubMed

    Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung

    2014-10-01

    Discharging untreated highly acidic (pH<4.0), organic and nutrients rich monosodium glutamate wastewater (MW), and highly alkaline (pH>10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances. PMID:24507456

  15. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    SciTech Connect

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in

  16. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, J. R.; Toohey, D. W.; Andrejczuk, M.; Adams, A.; Lytle, M.; George, R. C.; Wood, R.; Saide, P.; Spak, S.; Zuidema, P.; Leon, D.

    2013-03-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500-1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower liquid water paths

  17. The Effect of Ballistic Impacts on the High Cycle Fatigue Properties of Ti-48Al-2Nb-2Cr (at.%)

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Austin, C. M.; Erdman, O.

    2000-01-01

    The ability of gamma - TiAl to withstand potential foreign and/or domestic object damage is a technical risk to the implementation of gamma - TiAl in low pressure turbine (LPT) blade applications. The overall purpose of the present study was to determine the influence of ballistic impact damage on the high cycle fatigue strength of gamma - TiAl simulated LPT blades. Impact and specimen variables included ballistic impact energy, projectile hardness, impact temperature, impact location, and leading edge thickness. The level of damage induced by the ballistic impacting was studied and quantified on both the impact (front) and backside of the specimens. Multiple linear regression was used to model the cracking and fatigue response as a function of the impact variables. Of the impact variables studied, impact energy had the largest influence on the response of gamma - TiAl to ballistic impacting. Backside crack length was the best predictor of remnant fatigue strength for low energy impacts (<0.74J) whereas Hertzian crack length (impact side damage) was the best predictor for higher energy impacts. The impacted gamma - TiAl samples displayed a classical mean stress dependence on the fatigue strength. For the fatigue design stresses of a 6th stage LPT blade in a GE90 engine, a Ti-48Al-2Nb-2Cr LPT blade would survive an impact of normal service conditions.

  18. Impact of the ice phase on a mesoscale convective system: Implication of cloud parameterization and cloud radiative properties

    SciTech Connect

    Chin, H.N.S.; Bradley, M.M.; Molenkamp, C.R.; Grant, K.E.; Chuang, C.

    1991-08-01

    This study attempts to provide further understanding of the effect of the ice phase on cloud ensemble features which are useful for improving GCM cumulus parameterization. In addition, cloud model results are used to diagnose the radiative properties of anvils in order to assess cloud/radiation interaction and its feedback on the larger-scale climate for the future work. The heat, moisture and mass budget analyses of a simulated squall line system indicate that, at least for this type of system, the inclusion of the ice phase in the microphysics does not considerably change the net cloud heating and drying effects and the feedback on the large-scale motion. Nonetheless, its impact on the radiative properties of clouds significantly influences not only the squall line system itself, but also the larger-scale circulation due to the favorable stratification for long-lasting anvil clouds. The water budget suggests a simple methodology to parameterize the microphysical effect without considering it as a model physics module. Further application of the water budget might also be used to parameterize the cloud transport of condensates in the anvil cloud region, which allows the GCM columns to interact with each other. The findings of this study suggest that the ice phase could be ignored in the cloud parameterization in order to save significant amounts of computational resources and to simplify the model physics. More scientific effort should, however, be focused on the effect of the ice phase to further explore cloud feedback on the large-scale climate through the radiative process. The cloud/radiation interaction and its feedback on the larger-scale climate will be addressed in a companion study by coupling the radiative transfer model with the cloud model. 19 refs., 13 figs.

  19. Optical properties of PM2.5 and the impacts of chemical compositions in the coastal city Xiamen in China.

    PubMed

    Deng, Junjun; Zhang, Yanru; Hong, Youwei; Xu, Lingling; Chen, Yanting; Du, Wenjiao; Chen, Jinsheng

    2016-07-01

    Continuous in situ measurements of optical properties of fine aerosols (PM2.5) were conducted in the urbanized coastal city Xiamen in Southeast China from November 2013 to January 2014. PM2.5 samples were also collected and chemical compositions including organic carbon (OC), elemental carbon (EC) and water-soluble inorganic ions were determined to investigate the impacts of chemical compositions on aerosol optical properties. Average values of scattering coefficient (bscat), absorption coefficient (babs), extinction coefficient (bext) and single scattering albedo (SSA) were 164.0Mm(-1), 22.4Mm(-1), 187.0Mm(-1) and 0.88, respectively. bscat, babs and bext showed obvious bi-modal diurnal variations with high values in the morning and at night while low value in the early afternoon, whereas SSA exhibited an opposite diurnal variation. Average bscat and babs were largest in the wind direction of southwest and were larger with slower wind. babs was mainly affected by EC, while bscat was affected by ammonium, sulfate, nitrate and OC. The IMPROVE formula was applied to estimate bext based on the chemical species. Results shows that ammonium sulfate was the largest contributor, accounting for 36.4% of bext, followed by organic matter (30.6%), ammonium nitrate (20.1%), EC (9.0%) and sea salt (3.9%). The deterioration in visibility was mainly led by increases in secondary aerosols including sulfate and nitrate. Backward trajectories analysis showed that during the sampling period Xiamen was significantly affected by the air masses originating from the Northern and Northeastern areas. Air masses from the Northern associated with relative higher bext and less relative contribution from ammonium sulfate and more relative contribution from ammonium nitrate, organic matter and sea salt. PMID:27037888

  20. Regional trends of aerosol optical depth and their impact on cloud properties over Southern India using MODIS data

    NASA Astrophysics Data System (ADS)

    Gopal, K. Rama; Obul Reddy, K. Raja; Balakrishnaiah, G.; Arafath, S. MD.; Kumar Reddy, N. Siva; Rao, T. Chakradhar; Reddy, T. Lokeswara; Reddy, R. Ramakrishna

    2016-08-01

    Remote sensing of global aerosols has constituted a great scientific interest in a variety of applications related to global warming and climatic change. In the present study we investigate the spatial and temporal variations of aerosol optical properties and its impact on various properties of clouds over Southern India for the last ten years (2005-2014) by using Moderate Resolution Imaging Spectroradiometer (MODIS) data retrieved from the onboard Terra and Aqua satellites. The spatial distributions of annual mean lowest Aerosol Optical Depth (AOD) value is observed in Bangalore (BLR) (0.22±0.04) and the highest AOD value is noted in Visakhapatnam (VSK) (0.39±0.05). Similarly high Fine Mode Fraction (FMF) is noticed over VSK and Thiruvananthapuram (TVM), while lower values are observed in Anantapur (ATP), Hyderabad (HYD), Pune (PUNE) and BLR. From the results, a negative correlation was found between AOD and Cloud Top Temperature (CTT), Cloud Top Pressure (CTP) where as, a positive correlation was observed between AOD and Cloud Fraction (CF), Water Vapor (WV) over the selected regions. Monthly average AOD and FMF are plotted for analysis of the trends of aerosol loading in a long-term scale and both values showed statistically significant enhancing trend over all regions as derived from the MODIS measurements. Further, the annual variation of spatial correlation between MODIS and MISR (Multi - Angle Imaging Spectro Radiometer) AOD has been analyzed and the correlation coefficients are found to be higher in two of the regions VSK and PUNE (>0.8), and considerably lower for TVM (<0.7).

  1. Toxicity of Functional Nano-Micro Zinc Oxide Tetrapods: Impact of Cell Culture Conditions, Cellular Age and Material Properties

    PubMed Central

    Papavlassopoulos, Heike; Mishra, Yogendra K.; Kaps, Sören; Paulowicz, Ingo; Abdelaziz, Ramzy; Elbahri, Mady; Maser, Edmund; Adelung, Rainer; Röhl, Claudia

    2014-01-01

    With increasing production and applications of nanostructured zinc oxide, e.g., for biomedical and consumer products, the question of safety is getting more and more important. Different morphologies of zinc oxide structures have been synthesized and accordingly investigated. In this study, we have particularly focused on nano-micro ZnO tetrapods (ZnO-T), because their large scale fabrication has been made possible by a newly introduced flame transport synthesis approach which will probably lead to several new applications. Moreover, ZnO-T provide a completely different morphology then classical spherical ZnO nanoparticles. To get a better understanding of parameters that affect the interactions between ZnO-T and mammalian cells, and thus their biocompatibility, we have examined the impact of cell culture conditions as well as of material properties on cytotoxicity. Our results demonstrate that the cell density of fibroblasts in culture along with their age, i.e., the number of preceding cell divisions, strongly affect the cytotoxic potency of ZnO-T. Concerning the material properties, the toxic potency of ZnO-T is found to be significantly lower than that of spherical ZnO nanoparticles. Furthermore, the morphology of the ZnO-T influenced cellular toxicity in contrast to surface charges modified by UV illumination or O2 treatment and to the material age. Finally, we have observed that direct contact between tetrapods and cells increases their toxicity compared to transwell culture models which allow only an indirect effect via released zinc ions. The results reveal several parameters that can be of importance for the assessment of ZnO-T toxicity in cell cultures and for particle development. PMID:24454775

  2. Examining the Impact of Overlying Aerosols on the Retrieval of Cloud Optical Properties from Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-01-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  3. Aircraft measurements of the impacts of urban plume on cloud activation properties during GoAmazon - preliminary results

    NASA Astrophysics Data System (ADS)

    Mei, F.; Comstock, J. M.; Wang, J.; Tomlinson, J. M.; Hubbe, J. M.; Schmid, B.; Martin, S. T.; Longo, K.; Kuang, C.; Chand, D.; Pekour, M. S.; Shilling, J. E.

    2014-12-01

    Currently, the indirect effects of atmospheric aerosols remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially a result of our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturations. One of the objectives of the US Department of Energy (DOE) Green Ocean Amazon Project (GoAmazon) is to understand the influence of the emission from Manaus, a tropical megacity, on aerosol size, concentration, and chemical composition, and their impact on aerosol cloud condensation nuclei (CCN) spectrum. During the GoAmazon study, size distributions, CCN spectra and chemical composition of aerosols both under pristine conditions and inside Manaus plume were measured in-situ from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods, one conducted in the wet season (Feb 22- March 24, 2014) and the other in dry season (Sep 1 - Oct 10, 2014). Aerosol size distributions were measured by a Fast Integrated Mobility Spectrometer (FIMS) and compared with the merged size distribution from two other instruments, an Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), and a Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT). Optical measurements of light scattering by nephelometer and absorption by a particle soot absorption photometer (PSAP) were combined with number/size distributions data in a iterative method, which retrieves the effective imaginary refractive index of the particles at a wavelength of 545 nm. Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.). CCN number concentration was measured by a DMT dual column CCN counter at two supersaturations 0.25% and 0.5%. Based on the aerosol properties mentioned above, CCN closure is carried out. In addition, the sensitivity of calculated CCN

  4. The Impact of Escape Alternative Position Change in Multiple-Choice Test on the Psychometric Properties of a Test and Its Items Parameters

    ERIC Educational Resources Information Center

    Hamadneh, Iyad Mohammed

    2015-01-01

    This study aimed at investigating the impact changing of escape alternative position in multiple-choice test on the psychometric properties of a test and it's items parameters (difficulty, discrimination & guessing), and estimation of examinee ability. To achieve the study objectives, a 4-alternative multiple choice type achievement test…

  5. Intramolecular didehydro-Diels-Alder reaction and its impact on the structure-function properties of environmentally sensitive fluorophores.

    PubMed

    Brummond, Kay M; Kocsis, Laura S

    2015-08-18

    Reaction discovery plays a vital role in accessing new chemical entities and materials possessing important function.1 In this Account, we delineate our reaction discovery program regarding the [4 + 2] cycloaddition reaction of styrene-ynes. In particular, we highlight our studies that lead to the realization of the diverging reaction mechanisms of the intramolecular didehydro-Diels-Alder (IMDDA) reaction to afford dihydronaphthalene and naphthalene products. Formation of the former involves an intermolecular hydrogen atom abstraction and isomerization, whereas the latter is formed via an unexpected elimination of H2. Forming aromatic compounds by a unimolecular elimination of H2 offers an environmentally benign alternative to typical oxidation protocols. We also include in this Account ongoing work focused on expanding the scope of this reaction, mainly its application to the preparation of cyclopenta[b]naphthalenes. Finally, we showcase the synthetic utility of the IMDDA reaction by preparing novel environmentally sensitive fluorophores. The choice to follow this path was largely influenced by the impact this reaction could have on our understanding of the structure-function relationships of these molecular sensors by taking advantage of a de novo construction and functionalization of the aromatic portion of these compounds. We were also inspired by the fact that, despite the advances that have been made in the construction of small molecule fluorophores, access to rationally designed fluorescent probes or sensors possessing varied and tuned photophysical, spectral, and chemical properties are still needed. To this end, we report our studies to correlate fluorophore structure with photophysical property relationships for a series of solvatochrom