Science.gov

Sample records for 12micron seyfert sample

  1. The Far-Infrared Energy Distributions of Seyfert and Starburst Galaxies in the Local Universe: Infrared Space Observatory Photometry of the 12 Micron Active Galaxy Sample

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Andreani, Paola; Malkan, Matthew A.

    2002-06-01

    New far-infrared photometry with ISOPHOT aboard the Infrared Space Observatory (ISO) is presented for 58 galaxies with homogeneous published data for another 32 galaxies, all belonging to the 12 μm galaxy sample-in total, 29 Seyfert 1 galaxies, 35 Seyfert 2 galaxies, and 12 starburst galaxies, or about half of the 12 μm active galaxy sample, plus 14 normal galaxies for comparison. ISO and Infrared Astronomical Satellite (IRAS) data are used to define color-color diagrams and spectral energy distributions (SEDs). Thermal dust emission at two temperatures (one cold at 15-30 K and one warm at 50-70 K) can fit the 60-200 μm SED, with a dust emissivity law proportional to the inverse square of the wavelength. Seyfert 1 galaxies and Seyfert 2 galaxies are indistinguishable longward of 100 μm, while, as already seen by IRAS, the former have flatter SEDs shortward of 60 μm. A mild anticorrelation is found between the [200-100] color and the ``60 μm excess.'' We infer that this is due to the fact that galaxies with a strong starburst component and thus a strong 60 μm flux have a steeper far-infrared turnover. In non-Seyfert galaxies, increasing the luminosity corresponds to increasing the star formation rate, which enhances the 25 and 60 μm emission. This shifts the peak emission from around 150 μm in the most quiescent spirals to shorter than 60 μm in the strongest starburst galaxies. To quantify these trends further, we identified with the IRAS colors three idealized infrared SEDs: pure quiescent disk emission, pure starburst emission, and pure Seyfert nucleus emission. Even between 100 and 200 μm, the quiescent disk emission remains much cooler than the starburst component. Seyfert galaxies have 100-200 μm SEDs ranging from pure disks to pure starbursts, with no apparent contribution from their active nuclei at those wavelengths. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France

  2. Multiwavelength Energy Distributions and Bolometric Luminosities of the 12 Micron Galaxy Sample

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Malkan, Matthew A.; Rush, Brian; Carrasco, Luis; Recillas-Cruz, Elsa

    1995-11-01

    Aperture photometry from our own observations and the literature is presented for the 12 microns galaxies in the near-infrared J, H, and K bands and, in some cases, in the L band. These data are corrected to "total" near-infrared magnitudes (with a typical uncertainty of 0.3 mag) for a direct comparison with our IRAS fluxes which apply to the entire galaxy. The corrected data are used to derive integrated total near-infrared and far-infrared luminosities. We then combine these with blue photometry and an estimate of the flux contribution from cold dust at wavelengths longward of 100 microns to derive the first bolometric luminosities for a large sample of galaxies. The presence of nonstellar radiation at 2-3 microns correlates very well with nonstellar IRAS colors. This enables us to identify a universal Seyfert nuclear continuum from near- to far-infrared wavelengths. Thus, there is a sequence of infrared colors which runs from a pure "normal galaxy" to a pure Seyfert/quasar nucleus. Seyfert 2 galaxies fall close to this same sequence, although only a few extreme narrow-line Seyfert galaxies have quasar-like colors, and these show strong evidence of harboring an obscured broad-line region. A corollary is that the host galaxies of Seyfert nuclei have normal near- to far-infrared spectra on average. Starburst galaxies lie significantly off the sequence, having a relative excess of 60 microns emission probably as a result of stochastically heated dust grains. We use these correlations to identify several combinations of infrared colors which discriminate between Seyfert 1 and 2 galaxies, LINERs, and ultraluminous starbursts. In the infrared, Seyfert 2 galaxies are much more like Seyfert 1s than they are like starbursts, presumably because both kinds of Seyferts are heated by a single central source, rather than a distributed region of star formation. Moreover, combining the [25-2.2 mum] color with the [60-12 mum] color, it appears that Seyfert 1 galaxies are

  3. Infrared reflectance spectra (4-12 micron) of lunar samples

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.

    1991-01-01

    Presented here are infrared reflectance spectra of a typical set of Apollo samples to illustrate spectral character in the mid-infrared (4 to 12 microns) of lunar materials and how the spectra varies among three main forms: soil, breccia, and igneous rocks. Reflectance data, to a close approximation, are the inverse of emission spectra; thus, for a given material the spectral reflectance (R) at any given wavelength is related to emission (E) by 1 - R equals E. Therefore, one can use reflectance spectra of lunar samples to predict how emission spectra of material on the lunar surface will appear to spectrometers on orbiting spacecraft or earthbound telescopes. Spectra were measured in the lab in dry air using a Fourier Transform Infrared spectrometer. Shown here is only the key portion (4 to 12 microns) of each spectrum relating to the principal spectral emission region for sunlit lunar materials and to where the most diagnostic spectral features occur.

  4. wssa_utils: WSSA 12 micron dust map utilities

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2014-02-01

    wssa_utils contains utilities for accessing the full-sky, high-resolution maps of the WSSA 12 micron data release. Implementations in both Python and IDL are included. The code allows users to sample values at (longitude, latitude) coordinates of interest with ease, transparently mapping coordinates to WSSA tiles and performing interpolation. The wssa_utils software also serves to define a unique WSSA 12 micron flux at every location on the sky.

  5. Radio structures of Seyfert galaxies. VII - Extension of a distance-limited sample

    NASA Technical Reports Server (NTRS)

    Ulvestad, James S.; Wilson, Andrew S.

    1989-01-01

    The VLA has been used at 6 and 20 cm to observe 27 Seyfert galaxies with recessional velocities less than 4600 km/s that had not been mapped previously. The sample shows weak trends for Seyfert 2 galaxies to have more luminous and larger radio sources than Seyfert 1 galaxies. A 20 cm radio luminosity function is constructed for each Seyfert type and shown to be fairly flat for powers betwen 10 to the 20th and 10 to the 23rd W/Hz. About 10 percent of the galaxies in the present sample may have flat-spectrum components contributing a substantial amount of their total flux density at centimeter wavelengths.

  6. X-ray spectral survey with XMM-Newton of a complete sample of nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Cappi, M.; Panessa, F.; Bassani, L.; Dadina, M.; Di Cocco, G.; Comastri, A.; della Ceca, R.; Filippenko, A. V.; Gianotti, F.; Ho, L. C.; Malaguti, G.; Mulchaey, J. S.; Palumbo, G. G. C.; Piconcelli, E.; Sargent, W. L. W.; Stephen, J.; Trifoglio, M.; Weaver, K. A.

    2006-02-01

    Results obtained from an X-ray spectral survey of nearby Seyfert galaxies using XMM-Newton are reported. The sample was optically selected, well defined, complete in B magnitude, and distance limited: it consists of the nearest (D ⪉22 Mpc) 27 Seyfert galaxies (9 of type 1, 18 of type 2) taken from the Ho et al. (1997a, ApJS, 112, 315) sample. This is one of the largest atlases of hard X-ray spectra of low-luminosity active galaxies ever assembled. All nuclear sources except two Seyfert 2s are detected between 2 and 10 keV, half for the first time ever, and average spectra are obtained for all of them. Nuclear luminosities reach values down to 1038 erg s-1. The shape of the distribution of X-ray parameters is affected by the presence of Compton-thick objects (⪆30% among type 2s). The latter have been identified either directly from their intense FeK line and flat X-ray spectra, or indirectly with flux diagnostic diagrams which use isotropic indicators. After taking into account these highly absorbed sources, we find that (i) the intrinsic X-ray spectral properties (i.e., spectral shapes and luminosities above 2 keV) are consistent between type 1 and type 2 Seyferts, as expected from "unified models"; (ii) Seyfert galaxies as a whole are distributed fairly continuously over the entire range of N_H, between 1020 and 1025 cm-2; and (iii) while Seyfert 1s tend to have lower NH and Seyfert 2s tend to have the highest, we find 30% and 10% exceptions, respectively. Overall the sample is of sufficient quality to well represent the average intrinsic X-ray spectral properties of nearby active galactic nuclei, including a proper estimate of the distribution of their absorbing columns. Finally, we conclude that, with the exception of a few cases, the present study agrees with predictions of unified models of Seyfert galaxies, and extends their validity down to very low luminosities.

  7. Mid-IR Spectra of HED Meteorites and Synthetic Pyroxenes: Reststrahlen Features (9-12 micron)

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2010-01-01

    In an earlier study. Hamilton (2000) mapped the behavior of the 9-12 micron reststrahlen structures with composition in a suite of primarily natural terrestrial pyroxenes. Here we examine the same set of reststrahlen features in the spectra of diogenites and eucrites and place them in the context of the terrestrial samples and of a suite of well-characterized synthetic pyroxenes. The results will be useful to the interpretation of mid-IR spectra of 4 Vesta and other basaltic asteroids.

  8. The brightest high-latitude 12-micron IRAS sources

    NASA Technical Reports Server (NTRS)

    Hacking, P.; Beichman, C.; Chester, T.; Neugebauer, G.; Emerson, J.

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) Point Source catalog was searched for sources brighter than 28 Jy (0 mag) at 12 microns with absolute galactic latitude greater than 30 deg excluding the Large Magellanic Cloud. The search resulted in 269 sources, two of which are the galaxies NGC 1068 and M82. The remaining 267 sources are identified with, or have infrared color indices consistent with late-type stars some of which show evidence of circumstellar dust shells. Seven sources are previously uncataloged stars. K and M stars without circumstellar dust shells, M stars with circumstellar dust shells, and carbon stars occupy well-defined regions of infrared color-color diagrams.

  9. A Hubble Space Telescope Survey of Extended [O III] λ5007 Emission in a Far-Infrared Selected Sample of Seyfert Galaxies: Observations

    NASA Astrophysics Data System (ADS)

    Schmitt, H. R.; Donley, J. L.; Antonucci, R. R. J.; Hutchings, J. B.; Kinney, A. L.

    2003-10-01

    We present a Hubble Space Telescope (HST) survey of extended [O III] emission for a sample of 60 Seyfert galaxies (22 Seyfert 1 galaxies and 38 Seyfert 2 galaxies), selected based on their far-infrared properties. The observations for 42 of these galaxies were done in a snapshot survey with WFPC2. The remaining 18 were obtained from the HST archive, most of which were observed with the same configuration. These observations cover 68% of the objects in the sample defined by Kinney et al. and create a valuable data set for the study of the narrow-line region (NLR) properties of Seyfert galaxies. In this paper, we present the details of the observations, reductions, and measurements. We also discuss the extended structure of individual sources, and the relation of this emission to the radio and host galaxy morphology. We also address how representative the subsample of [O III]-imaged galaxies is of the entire sample, and possible selection effects that may affect this comparison of the properties of Seyfert 1 and Seyfert 2 galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  10. INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF SEYFERT GALAXIES: SPITZER SPACE TELESCOPE OBSERVATIONS OF THE 12 {mu}m SAMPLE OF ACTIVE GALAXIES

    SciTech Connect

    Gallimore, J. F.; Yzaguirre, A.; Jakoboski, J.; Stevenosky, M. J.; Axon, D. J.; O'Dea, C. P.; Robinson, A.; Baum, S. A.; Buchanan, C. L.; Elitzur, M.; Elvis, M.

    2010-03-01

    The mid-infrared spectral energy distributions (SEDs) of 83 active galaxies, mostly Seyfert galaxies, selected from the extended 12 {mu}m sample are presented. The data were collected using all three instruments, Infrared Array Camera (IRAC), Infrared Spectrograph (IRS), and Multiband Imaging Photometer for Spitzer (MIPS), aboard the Spitzer Space Telescope. The IRS data were obtained in spectral mapping mode, and the photometric data from IRAC and IRS were extracted from matched, 20'' diameter circular apertures. The MIPS data were obtained in SED mode, providing very low-resolution spectroscopy (R {approx} 20) between {approx}55 and 90 {mu}m in a larger, 20'' x 30'' synthetic aperture. We further present the data from a spectral decomposition of the SEDs, including equivalent widths and fluxes of key emission lines; silicate 10 {mu}m and 18 {mu}m emission and absorption strengths; IRAC magnitudes; and mid-far-infrared spectral indices. Finally, we examine the SEDs averaged within optical classifications of activity. We find that the infrared SEDs of Seyfert 1s and Seyfert 2s with hidden broad line regions (HBLRs, as revealed by spectropolarimetry or other technique) are qualitatively similar, except that Seyfert 1s show silicate emission and HBLR Seyfert 2s show silicate absorption. The infrared SEDs of other classes within the 12 {mu}m sample, including Seyfert 1.8-1.9, non-HBLR Seyfert 2 (not yet shown to hide a type 1 nucleus), LINER, and H II galaxies, appear to be dominated by star formation, as evidenced by blue IRAC colors, strong polycyclic aromatic hydrocarbon emission, and strong far-infrared continuum emission, measured relative to mid-infrared continuum emission.

  11. INFRARED DIAGNOSTICS FOR THE EXTENDED 12 {mu}m SAMPLE OF SEYFERTS

    SciTech Connect

    Baum, Stefi A.; Noel-Storr, Jacob; Dorn, Meghan; Staudaher, Shawn; Gallimore, Jack F.; O'Dea, Christopher P.; Axon, David J.; Robinson, Andy; Buchanan, Catherine L.; Elitzur, Moshe

    2010-02-10

    We present an analysis of Spitzer IRS spectroscopy of 83 active galaxies from the extended 12 {mu}m sample. We find rank correlations between several tracers of star formation which suggest that (1) the polycyclic aromatic hydrocarbon feature is a reliable tracer of star formation, (2) there is a significant contribution to the heating of the cool dust by stars, and (3) the H{sub 2} emission is also primarily excited by star formation. The 55-90 versus 20-30 spectral index plot is also a diagnostic of the relative contribution of starburst to active galactic nuclei (AGNs). We see there is a large change in spectral index across the sample: {Delta}{alpha} {approx} 3 for both indices. Thus, the contribution to the IR spectrum from the AGN and starburst components can be comparable in magnitude but the relative contribution also varies widely across the sample. We find rank correlations between several AGN tracers. We find correlations of the ratios [O III]lambda5007/[O IV] 26 {mu}m and [O III]lambda5007/[Ne V] 14 {mu}m with the silicate strength which we adopt as an orientation indicator. This suggests that some of the [O III]lambda5007 emission in these Seyferts is subject to orientation dependent obscuration as found by Haas et al. for radio galaxies and quasars. There is no correlation of [Ne V] equivalent width with the silicate 10 {mu}m strength, indicating that the [Ne V] emission is not strongly orientation dependent. This suggests that the obscuring material (e.g., torus) is not very optically thick at 14 {mu}m consistent with the results of Buchanan et al. We search for correlations between AGN and starburst tracers and we conclude that the AGN and starburst tracers are not correlated. This is consistent with our conclusion that the relative strength of the AGN and starburst components varies widely across the sample. Thus, there is no simple link between AGN fueling and black hole growth and star formation in these galaxies. The density diagnostic [Ne V] 14

  12. Microvariability in Seyfert galaxies

    USGS Publications Warehouse

    Carini, M.T.; Noble, J.C.; Miller, H.R.

    2003-01-01

    We present the results of a search for microvariability in a sample of eight Seyfert galaxies. Microvariability (i.e., variations occurring on timescales of tens of minutes to hours) has been conclusively demonstrated to exist in the class of active galactic nuclei (AGNs) known as blazars. Its existence in other classes of AGNs is far less certain. We present the results of a study of eight Seyfert 1 galaxies, which were intensively monitored in order to determine whether such variations exist in these objects. Only one object, Ark 120, displayed any evidence of microvariations. The implications of these results with respect to current models of the mechanisms responsible for the observed emission in Seyfert galaxies are discussed. We compare our results with those obtained from other studies of microvariability in different classes of AGNs.

  13. SEYFERT GALAXIES: NUCLEAR RADIO STRUCTURE AND UNIFICATION

    SciTech Connect

    Lal, Dharam V.; Shastri, Prajval; Gabuzda, Denise C.

    2011-04-10

    A radio study of a carefully selected sample of 20 Seyfert galaxies that are matched in orientation-independent parameters, which are measures of intrinsic active galactic nucleus power and host galaxy properties, is presented to test the predictions of the unified scheme hypothesis. Our sample sources have core flux densities greater than 8 mJy at 5 GHz on arcsec scales due to the feasibility requirements. These simultaneous parsec-scale and kiloparsec-scale radio observations reveal (1) that Seyfert 1 and Seyfert 2 galaxies have an equal tendency to show compact radio structures on milliarcsecond scales, (2) the distributions of parsec-scale and kiloparsec-scale radio luminosities are similar for both Seyfert 1 and Seyfert 2 galaxies, (3) there is no evidence for relativistic beaming in Seyfert galaxies, (4) similar distributions of source spectral indices in spite of the fact that Seyferts show nuclear radio flux density variations, and (5) the distributions of the projected linear size for Seyfert 1 and Seyfert 2 galaxies are not significantly different as would be expected in the unified scheme. The latter could be mainly due to a relatively large spread in the intrinsic sizes. We also find that a starburst alone cannot power these radio sources. Finally, an analysis of the kiloparsec-scale radio properties of the CfA Seyfert galaxy sample shows results consistent with the predictions of the unified scheme.

  14. Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Laha, S.; Guainazzi, M.; Dewangan, G.; Chakravorty, S.; Kembhavi, A.

    2014-07-01

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. We could put a strict lower limit on the detection fraction of 50%. We find a gap in the distribution of the ionisation parameter in the range 0.5

  15. A Comprehensive Study of 2000 Narrow Line Seyfert 1 Galaxies from the Sloan Digital Sky Survey. I. The Sample

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyan; Wang, Tinggui; Yuan, Weimin; Lu, Honglin; Dong, Xiaobo; Wang, Junxian; Lu, Youjun

    2006-09-01

    This is the first paper in a series dedicated to the study of the emission-line and continuum properties of narrow line Seyfert 1 galaxies (NLS1s). We carried out a systematic search for NLS1s from objects assigned as ``QSOs'' or ``galaxies'' in the spectroscopic sample of the Sloan Digital Sky Survey Data Release 3 (SDSS DR3) by a careful modeling of their emission lines and continua. The result is a uniform sample comprising ~2000 NLS1s. This sample dramatically increases the number of known NLS1s by a factor of ~10 over previous compilations. This paper presents the parameters of the prominent emission lines and continua, which were measured accurately with typical uncertainties <10%. Taking advantage of such an unprecedented large and uniform sample with accurately measured spectral parameters, we carried out various statistical analyses, some of which were only possible for the first time. The main results found are as follows. (1) Within the overall Seyfert 1 population, the incidence of NLS1s is strongly dependent on the optical, X-ray, and radio luminosities as well as the radio loudness. The fraction of NLS1s peaks around SDSS g-band absolute magnitude Mg~-22 mag in the optical and ~1043.2 ergs s-1 in the soft X-ray band, and decreases quickly as the radio loudness increases. (2) On average the relative Fe II emission, R4570=Fe II λλ4434-4684/Hβ, in NLS1s is about twice that in normal active galactic nuclei (AGNs) and is anticorrelated with the broad component width of the Balmer emission lines. (3) The well-known anticorrelation between the width of broad low-ionization lines and the soft X-ray spectral slope for broad line AGNs extends down to FWHM~1000 km s-1 in NLS1s, but the trend appears to reverse at still smaller line widths. (4) The equivalent width of Hβ and Fe II emission lines are strongly correlated with the Hβ and continuum luminosities. (5) We do not find any difference between NLS1s and normal AGNs in regard to the narrow line region

  16. Self- and foreign-gas broadening of ethane lines determined from diode laser measurements at 12 microns

    NASA Technical Reports Server (NTRS)

    Blass, W. E.; Halsey, G. W.; Jennings, D. E.

    1987-01-01

    Self- and foreign-gas broadening of ethane lines have been measured in the nu9 band at 12 microns. A coefficient of 0.125 per cm atm was determined for self broadening. Foreign-gas broadening coefficients determined are (in per cm atm) 0.090 for N2, 0.069 for He, 0.068 for Ar, 0.108 for H2, and 0.096 for CH4. Results are given for a sample temperature of 296 K.

  17. [O III] line properties in two samples of radio-emitting narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Berton, M.; Foschini, L.; Ciroi, S.; Cracco, V.; La Mura, G.; Di Mille, F.; Rafanelli, P.

    2016-06-01

    The [O III] λλ 4959, 5007 lines are a useful proxy to test the kinematic of the narrow-line region (NLR) in active galactic nuclei (AGN). In AGN, and particularly in narrow-line Seyfert 1 galaxies (NLS1s) these lines often show few peculiar features, such as blue wings, often interpreted as outflowing component, and a shift - typically toward lower wavelengths - of the whole spectroscopic feature in some exceptional sources, the so-called blue outliers, which are often associated to strong winds. We investigated the incidence of these peculiarities in two samples of radio-emitting NLS1s, one radio-loud and one radio-quiet. We also studied a few correlations between the observational properties of the [O III] lines and those of the AGN. Our aim was to understand the difference between radio-quiet and radio-loud NLS1s, which may in turn provide useful information on the jet formation mechanism. We find that the NLR gas is much more perturbed in radio-loud than in radio-quiet NLS1s. In particular the NLR dynamics in γ-ray emitting NLS1s appears to be highly disturbed, and this might be a consequence of interaction with the relativistic jet. The less frequently perturbed NLR in radio-quiet NLS1s suggests instead that these sources likely do not harbor a fully developed relativistic jet. Nonetheless blue-outliers in radio-quiet NLS1s are observed, and we interpret them as a product of strong winds.

  18. A Uniformly Selected Sample of Low-mass Black Holes in Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Dong, Xiao-Bo; Ho, Luis C.; Yuan, Weimin; Wang, Ting-Gui; Fan, Xiaohui; Zhou, Hongyan; Jiang, Ning

    2012-08-01

    We have conducted a systematic search of low-mass black holes (BHs) in active galactic nuclei (AGNs) with broad Hα emission lines, aiming at building a homogeneous sample that is more complete than previous ones for fainter, less highly accreting sources. For this purpose, we developed a set of elaborate, automated selection procedures and applied it uniformly to the Fourth Data Release of the Sloan Digital Sky Survey. Special attention is given to AGN-galaxy spectral decomposition and emission-line deblending. We define a sample of 309 type 1 AGNs with BH masses in the range 8 × 104-2 × 106 M ⊙ (with a median of 1.2 × 106 M ⊙), using the virial mass estimator based on the broad Hα line. About half of our sample of low-mass BHs differs from that of Greene & Ho, with 61 of them discovered here for the first time. Our new sample picks up more AGNs with low accretion rates: the Eddington ratios of the present sample range from <~ 0.01 to ~1, with 30% below 0.1. This suggests that a significant fraction of low-mass BHs in the local universe are accreting at low rates. The host galaxies of the low-mass BHs have luminosities similar to those of L* field galaxies, optical colors of Sbc spirals, and stellar spectral features consistent with a continuous star formation history with a mean stellar age of less than 1 Gyr.

  19. New H2O masers in Seyfert and FIR bright galaxies. III. The southern sample

    NASA Astrophysics Data System (ADS)

    Surcis, G.; Tarchi, A.; Henkel, C.; Ott, J.; Lovell, J.; Castangia, P.

    2009-08-01

    Context: A relationship between the water maser detection rate and far infrared (FIR) flux densities was established as a result of two 22 GHz maser surveys in a complete sample of galaxies ({Dec>-30°) with {100 μ m} flux densities of >50 Jy and >30 Jy. Aims: We attempted to discover new maser sources and investigate the galaxies hosting the maser spots by extending previous surveys to southern galaxies with particular emphasis on the study of their nuclear regions. Methods: A sample of 12 galaxies with {Dec<-30° and S100 μ m>50 Jy was observed with the 70-m telescope of the Canberra deep space communication complex (CDSCC) at Tidbinbilla (Australia) in a search for water maser emission. The average 3σ noise level of the survey was 15 mJy for a {0.42 km s-1} channel, corresponding to a detection threshold of ˜ 0.1 L⊙ for the isotropic maser luminosity at a distance of 25 Mpc. Results: Two new detections are reported: a kilomaser with an isotropic luminosity L{H2O}˜5 L⊙ in NGC 3620 and a maser with about twice this luminosity in the merger system NGC 3256. The detections have been followed-up by continuum and spectral line interferometric observations with the Australia Telescope Compact Array (ATCA). In NGC 3256, a fraction (about a third) of the maser emission originates in two hot spots associated with star formation activity, which are offset from the galactic nuclei of the system. The remaining emission may originate in weaker centres of maser activity distributed over the central 50''. For NGC 3620, the water maser is coincident with the nuclear region of the galaxy. Our continuum observations indicate that the nature of the nuclear emission is probably linked to particularly intense star formation. Including the historical detection in NGC 4945, the water maser detection rate in the southern sample is 15% (3/20), consistent with the northern sample. The high rate of maser detections in the complete all-sky FIR sample (23%, 15/65) confirms the

  20. Statistical analysis of thermal IR (10-12 micron) emission from the lunar surface

    NASA Astrophysics Data System (ADS)

    Pugacheva, S. G.

    Brightness data analyzed by Saari and Shorthill are used in a statistical study of thermal 10-12 micron emission from the lunar surface. A digital model of the distribution of surface brightness temperature is described, and isotherm contour maps of the lunar-globe surface for full and new moon periods are constructed. A table of selenographic coordinates and brightness temperatures of 150 sections of the lunar surface with temperature anomalies is presented.

  1. Temperature dependence of intensities of the 8-12 micron bands of CFCl3

    NASA Technical Reports Server (NTRS)

    Nanes, R.; Silvaggio, P. M.; Boese, R. W.

    1980-01-01

    The absolute intensities of the 8-12 micron bands from Freon 11 (CFCl3) were measured at temperatures of 294 and 216 K. Intensities of the bands centered at 798, 847, 934, and 1082 per cm are all observed to depend on temperature. The temperature dependence for the 847 and 1082 per cm fundamental regions is attributed to underlying hot bands; for the nu2 + nu5 combination band (934 per cm), the observed temperature dependence is in close agreement with theoretical prediction. The implication of these results on atmospheric IR remote-sensing is briefly discussed.

  2. RADIO VARIABILITY IN SEYFERT NUCLEI

    SciTech Connect

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2009-09-20

    Comparison of 8.4 GHz radio images of a sample of eleven, early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in five of them over a seven year period. Four Seyferts (NGC 2110, NGC 3081, MCG -6-30-15, and NGC 5273) show a decline in their 8.4 GHz nuclear flux density between 1992 and 1999, while one (NGC 4117) shows an increase; the flux densities of the remaining six Seyferts (Mrk 607, NGC 1386, Mrk 620, NGC 3516, NGC 4968, and NGC 7465) have remained constant over this period. New images of MCG -5-23-16 are also presented. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission is seen, with four out of five marginally resolved or unresolved nuclei showing a change in nuclear flux density, while five out of six extended sources show no nuclear variability despite having unresolved nuclear sources. NGC 2110 is the only source in our sample with significant extended radio structure and strong nuclear variability ({approx}38% decline in nuclear flux density over seven years). The observed nuclear flux variability indicates significant changes are likely to have occurred in the structure of the nucleus on scales smaller than the VLA beam size (i.e., within the central {approx}0.''1 (15 pc)), between the two epochs, possibly due to the appearance and fading of new components or shocks in the jet, consistent with previous detection of subparsec-scale nuclear structure in this Seyfert. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet

  3. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    SciTech Connect

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [O III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  4. A low-luminosity type-1 QSO sample . IV. Molecular gas contents and conditions of star formation in three nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Moser, Lydia; Krips, Melanie; Busch, Gerold; Scharwächter, Julia; König, Sabine; Eckart, Andreas; Smajić, Semir; García-Marin, Macarena; Valencia-S., Mónica; Fischer, Sebastian; Dierkes, Jens

    2016-03-01

    We present a pilot study of ~3'' resolution observations of low CO transitions with the Submillimeter Array in three nearby Seyfert galaxies, which are part of the low-luminosity quasi-stellar object (LLQSOs) sample consisting of 99 nearby (z = 0.06) type-1 active galactic nuclei (AGN) taken from the Hamburg/ESO quasi-stellar object (QSO) survey. Two sources were observed in 12CO(2-1) and 13CO(2-1) and the third in 12CO(3-2) and HCO+(4-3). None of the sources is detected in continuum emission. More than 80% of the 12CO detected molecular gas is concentrated within a diameter (FWHM) < 1.8 kpc. 13CO is tentatively detected, while HCO+ emission could not be detected. All three objects show indications of a kinematically decoupled central unresolved molecular gas component. The molecular gas masses of the three galaxies are in the range Mmol = (0.7-8.7) × 109M⊙. We give lower limits for the dynamical masses of Mdyn> 1.5 × 109M⊙ and for the dust masses of Mdust> 1.6 × 106M⊙. The R21 = 12CO/13CO(2-1) line luminosity ratios show Galactic values of R21 ~ 5-7 in the outskirts and R21 ≳ 20 in the central region, similar to starbursts and (ultra)luminous infrared galaxies ((U)LIRGs; i.e. LIRGs and ULIRGs), implying higher temperatures and stronger turbulence. All three sources show indications of 12CO(2-1)/12CO(1-0) ratios of ~0.5, suggesting a cold or diffuse gas phase. Strikingly, the 12CO(3-2)/(1-0) ratio of ~1 also indicates a higher excited phase. Since these galaxies have high infrared luminosities of LIR ≥ 1011L⊙ and seem to contain a circumnuclear starburst with minimum surface densities of gas and star formation rate (SFR) around Σmol = 50-550 M⊙pc-2 and ΣSFR = 1.1-3.1 M⊙ kpc-2 yr-1, we conclude that the interstellar medium in the centers of these LIRG Seyferts is strongly affected by violent star formation and better described by the ULIRG mass conversion factor.

  5. A Sample of Seyfert-2 Galaxies with Ultraluminous Galaxy-wide Narrow-line Regions: Quasar Light Echoes?

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Diaz, R.; Holhjem, K.; Levenson, N. A.; Winge, C.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc-3 at z ~ 0.3, these "green beans" (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 1043 erg s-1, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Based on observations

  6. Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Mumma, M. J.; Kostiuk, T.; Huffman, H.; Degnan, J.

    1990-01-01

    A demonstration-prototype CO2-laser heterodyne spectrometer operating at 9-12 microns and suitable for long-term space missions is described and illustrated with extensive diagrams, drawings, photographs, and graphs of test performance data. The spectrometer has total volume 0.63 cu m, mass 30 kg, and power requirement 60-70 W, compatible with miniature-class Space Shuttle experiment payload specifications. It comprises three modules: (1) an optical front end with reflecting optics, a 2-GHz BW HgCdTe photomixer, and a 0-2-GHz 40-dB RF preamplifier; (2) a local oscillator with an RF-excited waveguide CO2 laser, a 75-percent-efficiency RF amplifier, a stepper-driven grating mode selector, and an etalon stabilized for over 30,000 h of use; and (3) an RF-filter-bank spectral-line receiver with a 25-MHz RF channel, 1.6-GHz IF spectral coverage, onboard instrument control, a serial link to the host computer, and highly integrated design.

  7. A high resolution atlas of the galactic plane at 12 microns and 25 microns

    NASA Technical Reports Server (NTRS)

    Price, Stephan D.; Korte, Rose M.; Sample, Rebecca S.; Kennealy, John P.; Gonsalves, Robert A.

    1994-01-01

    High resolution images of the 12 micron and 25 micron IRAS survey data from each HCON crossing the Galactic Plane are being created for those regions that the original IRAS processing labeled as confused. This encompasses the area within 100 deg longitude of the Galactic Center and within 3 deg to 10 deg of the Plane. The procedures used to create the images preserve the spatial resolution inherent in the IRAS instrument. The images are separated into diffuse and point source components and candidate sources are extracted from the point source image after non-linear spatial sharpening. Fluxes are estimated by convolving the candidate sources with the point response function and cross-correlating with the original point source image. A source is considered real if it is seen on at least two HCON's with a rather generous flux match but a stringent position criterion. A number of fields spanning a range of source densities from low to high have been examined. Initial analysis indicates that the imaging and extraction works quite well up to a source density of about 100 sources per square degree or down to roughly 0.8 Janskys.

  8. Spatially Resolved Infrared Spectroscopy of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Knop, Robert Andrew, Jr.

    This thesis presents infrared spectroscopy of the circumnuclear regions of 23 Seyfert galaxies. Observations are spectrally resolved with a resolution of λΔλ~1000 and spatially resolved to ~1'', corresponding to ~102 pc for the objects in the sample. The instrument used for the observations, the Palomar Near-Infrared Spectrometer, is described, and problems peculiar to reduction of data from it are discussed. The lines observed include Paβ, Brγ, (FeII) (λ=1.2567μm), and H2 (λ=2.1213μm). In nine objects, the coronal line (SIX) (λ=1.2524μm) is also detected. Spatially resolved line emission is clearly visible in approximately half of the objects observed. The data for five of the objects showing the best spatially resolved infrared line emission are analyzed in detail. These objects include Seyfert 1.5 galaxy NGC 4151 and Seyfert 2 galaxies Mk 1066, NGC 2110, NGC 4388, and Mk 3. The data for the remaining objects is presented in tabular form, and each object is discussed briefly. The data argue that processes associated with the Seyfert nucleus are responsible for the bulk of the observed (FeII) emission. Kinematic and spatial associations can be drawn between features in the (FeII) line profiles and other processes associated with the active nucleus, such as outflows seen in ionized optical emission and radio lobes. Most of the (FeII) appears to emerge from partially ionized regions excited by nuclear x-rays, with an additional contribution from fast shocks. Some of the H2 emission also appears to be associated with the nuclear activity. However, in some cases the H2 emission is observed to have a different spatial distribution from (FeII) and the H+ emission. The H2 emission is probably thermally excited. No significant differences are found between the infrared line emission of Seyfert and Seyfert 1.x galaxies.

  9. The mass function of Seyfert 1 nuclei

    NASA Technical Reports Server (NTRS)

    Padovani, P.; Burg, R.; Edelson, R. A.

    1990-01-01

    The first mass function of Seyfert 1 nuclei is derived from optical spectra of the complete CfA sample of Seyfert galaxies by estimating the mass for each object from a dynamical relation. An independent estimate is also derived using a complete infrared-selected sample. The two mass functions are indistinguishable. The mean mass of Seyfert 1 nuclei is about 2 x 10 to the 7th solar masses, and the integrated mass density is about 6 x 10 to the 11th solar masses/cu Gpc. This is approximately two orders of magnitude less than the value inferred from the energetics associated with quasar counts. A careful analysis of the various parameters and assumptions involved suggests that this large difference is not due to systematic errors in the determinations. Therefore, the bulk of mass related to the accretion processes connected with past quasar activity does not reside in Seyfert 1 nuclei. Instead, the remnants of past activity must be present in a much larger number of galaxies, and a one-to-one relation between distant and local active galactic nuclei seems then to be excluded.

  10. Multiwavelength tests of the dusty torus model for Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Mulchaey, John S.; Koratkar, Anuradha; Ward, Martin J.; Wilson, Andrew S.; Whittle, Mark; Antonucci, Robert R. J.; Kinney, Anne L.; Hurt, Todd

    1994-01-01

    We present a compilation of emission properties for a sample of 116 Seyfert galaxies based on both previously unpublished data and measurements available in the literature. These measurements include fluxes in the emission lines (O III) lambda(5007) and H-beta, as well as the infrared (25-60 microns), ultraviolet (1450 A), soft (0.2-4 keV), and hard (2-10 keV) X-ray continua. These are used to try to distinguish between isotropic and anisotropic emission properties of Seyfert galaxies. The distribution functions of (O III) lambda 5007 infrared, and hard X-ray continuum are similar for Seyfert 1's and Seyfert 2's, consistent with these properties being isotropic. The ultraviolet and soft X-ray continua of Seyfert 2's are underluminous relative to the type 1's suggesting photons at these energies escape from the central source anisotropically. There is a correlation between the ultraviolet continuum and emission-line fluxes in Seyfert 1's consistent with the idea that the central engine is responsible for powering the line emission. No such correlation is found for the Seyfert 2's. Instead, the scatter in the plot of ultraviolet continuum versus line emission suggests the true nuclear continuum luminosity is not seen at Earth in these objects. These properties are consistent with those expected in the dusty torus model.

  11. Seyfert Spectral Database: 10 Years Of Rxte Observations

    NASA Astrophysics Data System (ADS)

    Mattson, Barbara; Weaver, K.; Reynolds, C.

    2008-05-01

    What does the core of an active galactic nucleus truly look like? Do all Seyfert 2s have a Seyfert 1 at their core? How does the environment of their central regions affect our view of the central engine? We explore these questions with a systematic X-ray spectral study of bright Seyfert galaxies observed by the Rossi X-Ray Timing Explorer (RXTE). We develop a database of spectral fits of 821 time-resolved spectra from 39 Seyfert galaxies fitted to a standard model including the effects of a power-law X-ray spectrum reprocessed and absorbed by material around the black hole. We find a complex relationship between the iron line equivalent width (EW) and the underlying power law index (Γ) in the Seyfert 1 sample, which may be caused by dilution of a disk spectrum (which includes the narrow iron line) by a beamed jet component and, hence, could be used as a diagnostic of jet-dominance. The same relationship does not hold for the Seyfert 2 sample, and may indicate that these sources show more complex environments. We also see the X-ray Baldwin effect (an anti-correlation between the 2-10 keV X-ray luminosity and EW) for the Seyfert 1 sample and Seyfert 1 sub-classifications, but not for each individual galaxy. In addition, our sample shows a strong correlation between R and Γ for all spectra in the sample, but we find that it is likely the result of a modeling degeneracy.

  12. A millimeter-wave survey of CO emission in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Heckman, T. M.; Blitz, L.; Wilson, A. S.; Armus, L.; Miley, G. K.

    1989-01-01

    Emission in the 115 GHz 1-0 line of CO has been detected in 18 Seyfert galaxies in a sample of 43. The CO properties of 29 Seyferts in the Revised Shapley Ames Catalog (RSA) are compared with the CO properties of normal galaxies of the same Hubble type. These RSA type 2 Seyferts have an average ratio of CO-to-blue luminosity that is about twice as large as that of the normal galaxies, but the RSA type 1 Seyferts have normal CO luminosities. The RSA type 2 Seyfert galaxies have an unusually large average ratio of CO luminosity-to-H I mass compared to normal disk galaxies. The RSA type 2 Seyferts have an average far-IR luminosity that is about four times larger than a non-Seyfert comparison sample, while the RSA type 1 Seyferts are not significantly more luminous than the non-Seyferts. The result imply that the two classes of Seyferts are intrinsically different from one another and that one class cannot evolve into another in less than a few million years.

  13. A millimeter-wave survey of CO emission in Seyfert galaxies

    SciTech Connect

    Heckman, T.M.; Blitz, L.; Wilson, A.S.; Armus, L.; Miley, G.K.; Leiden, Rijksuniversiteit, Sterrewacht )

    1989-07-01

    Emission in the 115 GHz 1-0 line of CO has been detected in 18 Seyfert galaxies in a sample of 43. The CO properties of 29 Seyferts in the Revised Shapley Ames Catalog (RSA) are compared with the CO properties of normal galaxies of the same Hubble type. These RSA type 2 Seyferts have an average ratio of CO-to-blue luminosity that is about twice as large as that of the normal galaxies, but the RSA type 1 Seyferts have normal CO luminosities. The RSA type 2 Seyfert galaxies have an unusually large average ratio of CO luminosity-to-H I mass compared to normal disk galaxies. The RSA type 2 Seyferts have an average far-IR luminosity that is about four times larger than a non-Seyfert comparison sample, while the RSA type 1 Seyferts are not significantly more luminous than the non-Seyferts. The result imply that the two classes of Seyferts are intrinsically different from one another and that one class cannot evolve into another in less than a few million years. 129 refs.

  14. Population Analysis of Seyfert Galaxies in the Coma Abell-1367 Supercluster

    NASA Astrophysics Data System (ADS)

    Jones, Megan; Wilcots, E. M.; Hess, K. M.

    2013-01-01

    In the hopes of finding a possible source of intergalactic heating, we are studying the population of active galaxies residing in and out of groups along the Coma-Abell 1367 supercluster to look at the occurrence of Seyfert galaxies. We report on the distribution of Seyfert galaxies as a function of environment across the supercluster and probe the characteristics of the population of groups that currently host at least one Seyfert. Of the 66 groups sampled, there are 11 groups containing one Seyfert and 6 groups containing multiple Seyferts, which leaves 49 groups without any activity. We have yet to determine whether the occurrence of Seyferts is dependent on environmental factors. So far, we have not identified a correlation between environment and AGN activity; activity occurs pretty evenly both within and outside of galaxy groups. However, there does seem to be some correlation between the size of the group and the the percentage of Seyfert activity; one group with over 250 members has a much smaller amount of Seyferts by percentage (9 Seyferts) than other groups with 10 or less members. We explore the effect of Seyfert activity on the intergalactic medium in galaxy groups.

  15. Jet Directions in Seyfert Galaxies: Radio Continuum Imaging Data

    NASA Astrophysics Data System (ADS)

    Schmitt, H. R.; Ulvestad, J. S.; Antonucci, R. R. J.; Kinney, A. L.

    2001-02-01

    We present the results of VLA A-array 8.46 GHz continuum imaging of 55 Seyfert galaxies (19 Seyfert 1's and 36 Seyfert 2's). These galaxies are part of a larger sample of 88 Seyfert galaxies, selected from mostly isotropic properties, the flux at 60 μm, and warm infrared 25-60 μm colors. These images are used to study the structure of the radio continuum emission of these galaxies and their position angles, in the case of extended sources. These data, combined with information from broadband B and I observations, have been used to study the orientation of radio jets relative to the plane of their host galaxies (Kinney et al.).

  16. A decade of Rossi X-ray Timing Explorer Seyfert observations: An RXTE Seyfert spectral database

    NASA Astrophysics Data System (ADS)

    Mattson, Barbara Jo

    2008-10-01

    With over forty years of X-ray observations, we should have a grasp on the X- ray nature of active galactic nuclei (AGN). The unification model of Antonucci and Miller (1985) offered a context for understanding observations by defining a "typical" AGN geometry, with observed spectral differences explained by line- of-sight effects. However, the emerging picture is that the central AGN is more complex than unification alone can describe. We explore the unified model with a systematic X-ray spectral study of bright Seyfert galaxies observed by the Rossi X-Ray Timing Explorer (RXTE) over its first 10 years. We develop a spectral-fit database of 821 time-resolved spectra from 39 Seyfert galaxies fitted to a model describing the effects of an X-ray power-law spectrum reprocessed and absorbed by material in the central AGN region. We observe a relationship between radio and X-ray properties for Seyfert 1s, with the spectral parameters differing between radio-loud and radio-quiet Seyfert 1s. We also find a complex relationship between the Fe K equivalent width ( EW ) and the power-law photon index (Gamma) for the Seyfert 1s, with a correlation for the radio-loud sources and an anti-correlation for the radio- quiet sources. These results can be explained if X-rays from the relativistic jet in radio-loud sources contribute significantly to the observed spectrum. We observe scatter in the EW-Gamma relationship for the Seyfert 2s, suggesting complex environments that unification alone cannot explain. We see a strong correlation between Gamma and the reflection fraction ( R ) in the Seyfert 1 and 2 samples, but modeling degeneracies are present, so this relationship cannot be trusted as instructive of the AGN physics. For the Seyfert 1 sample, we find an anticorrelation between EW and the 2 to 10 keV luminosity ( L x ), also known as the X-ray Baldwin effect. This may suggest that higher luminosity sources contain less material or may be due to a time-lag effect. We do not

  17. Hα Imaging of Nearby Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.

    2016-05-01

    We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z < 0.03) Seyfert galaxies in the 12 μm active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10‑15 erg cm‑2 s‑1 arcsec‑2, and corrected these images for [N ii] emission and extinction. We separated the Hα emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log(L Hα /erg s‑1) > 41.5) would still be identified as

  18. Hα Imaging of Nearby Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.

    2016-05-01

    We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z < 0.03) Seyfert galaxies in the 12 μm active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10‑15 erg cm‑2 s‑1 arcsec‑2, and corrected these images for [N ii] emission and extinction. We separated the Hα emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log(L Hα /erg s‑1) > 41.5) would still be identified as

  19. Warm absorbers in X-rays (WAX), a comprehensive high-resolution grating spectral study of a sample of Seyfert galaxies - I. A global view and frequency of occurrence of warm absorbers.

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Guainazzi, Matteo; Dewangan, Gulab C.; Chakravorty, Susmita; Kembhavi, Ajit K.

    2014-07-01

    We present results from a homogeneous analysis of the broad-band 0.3-10 keV CCD resolution as well as of the soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterize warm absorbers (WAs) along the line of sight to the active nucleus. We significantly detect WAs in 65 per cent of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates. We find a gap in the distribution of the ionization parameter in the range 0.5 < log ξ < 1.5 which we interpret as a thermally unstable region for WA clouds. This may indicate that the WA flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe Kα lines are similar to those sources which do not have broadened emission lines. Therefore, the detected broad Fe Kα emission lines are bona fide and not artefacts of ionized absorption in the soft X-rays. The WA parameters show no correlation among themselves, with the exception of the ionization parameter versus column density. The shallow slope of the log ξ versus log vout linear regression (0.12 ± 0.03) is inconsistent with the scaling laws predicted by radiation or magnetohydrodynamic-driven winds. Our results also suggest that WA and ultra fast outflows do not represent extreme manifestation of the same astrophysical system.

  20. Spectral characterization of igneous rocks in the 8- to 12-micron region

    NASA Technical Reports Server (NTRS)

    Walter, Louis S.; Salisbury, John W.

    1989-01-01

    This paper investigates the crystal-chemistry basis for the variation in spectral behavior of ingneous rocks, with the purpose of developing relationships useful for applications in the lithologic characterization of terrestrial and extraterrestrial surfaces. A new parameter is proposed for characterizing general rock and mineral type. The parameter, SCFM, defined as the ratio SiO2/(SiO2 + CaO + FeO + MgO), reflects the degree of depolymerization of the silica tetrahedra in both fine-grained and coarse-grained igneous rocks, and is a good descriptor of the composition of these rocks. Using spectra obtained in the laboratory on coarse-particulate mineral and solid-rock samples, the SCFM parameter was used to assess the effects of variations in the rock composition on the location, number, and width of spectral bands. A regression analysis of bands varying in width from 0.2 micron to 1.4 microns versus the SCFM value resulted in correlation coefficients ranging from 0.88 to 0.97.

  1. Constraining the Active Galactic Nucleus Contribution in a Multiwavelength Study of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S.B.; Schmitt, H.R.; Crenshaw, D.M.; Deo, R.P.; Mushotzky, R.F.; Bruhweiler, F.C.

    2008-01-01

    We have studied the relationship between the high- and low-ionization [O IV] (lambda)25.89 microns, [Ne III] (lambda)15.56 microns, and [Ne II] (lambda)12.81 microns emission lines with the aim of constraining the active galactic nuclei (AGNs) and star formation contributions for a sample of 103 Seyfert galaxies.We use the [O IV] and [Ne II] emission as tracers for the AGN power and star formation to investigate the ionization state of the emission-line gas.We find that Seyfert 2 galaxies have, on average, lower [O IV]/[Ne II] ratios than Seyfert 1 galaxies. This result suggests two possible scenarios: (1) Seyfert 2 galaxies have intrinsically weaker AGNs, or (2) Seyfert 2 galaxies have relatively higher star formation rates than Seyfert 1 galaxies. We estimate the fraction of [Ne II] directly associated with the AGNs and find that Seyfert 2 galaxies have a larger contribution from star formation, by a factor of approx.1.5 on average, than what is found in Seyfert 1 galaxies. Using the stellar component of [Ne II] as a tracer of the current star formation, we found similar star formation rates in Seyfert 1 and Seyfert 2 galaxies.We examined the mid- and far-infrared continua and found that [Ne II] is well correlated with the continuum luminosity at 60 microns and that both [Ne III] and [O IV] are better correlated with the 25 micron luminosities than with the continuum at longer wavelengths, suggesting that the mid-infrared continuum luminosity is dominated by the AGN, while the far-infrared luminosity is dominated by star formation. Overall, these results test the unified model of AGNs and suggest that the differences between Seyfert galaxies cannot be solely due to viewing angle dependence.

  2. The Non-Stellar Infrared Continuum of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, Almudena; Quillen, Alice C.; Simpson, Chris; Efstathiou, Andreas; Ward, Martin J.

    2000-01-01

    JHKL'M (1 - 5 micrometers) imaging of a sample of Seyfert 2 galaxies is presented. We have performed an accurate estimate of the near-infrared non-stellar nuclear fluxes. We confirm that the near-infrared nuclear continuum between 1 and 2.2microns of some Seyfert 2s is dominated by stellar emission, whereas the continuum emission at longer wavelengths (lambda = 3 - 5 micrometers) is almost entirely non-stellar in origin. The non-stellar spectral energy distributions (SED) in the infrared (up to 15 micrometers) of Seyfert galaxies show a variety of shapes, and they are well reproduced with the tapered disk models of Efstathiou & Rowan-Robinson (1995). We have used two models, one including an optically thin cone component found to fit the SED of NGC 1068, and a coneless model. Although our modelling of the SEDs does not allow us to favor either model to account for all the observed SEDs, we find that the viewing angle towards the central source is well constrained by both models. The galaxies in our sample have fitted values of the viewing angle in the range Theta(sub V) = 0 deg - 64 deg, for the assumed model parameters. We have also investigated non-stellar color-color diagrams (L' - M vs. H - M and L' - M vs. H - L'). The colors of the Seyfert galaxies with viewing angles Theta(sub v) less than 30 deg are better reproduced with the cone model. These diagrams provide a good means to separate Seyfert 2s with moderate obscuration (A(sub V) approx. less than 20 mag from hard X-ray observations) from those with high obscuration. The ground-based 4.8 microns and ISO 9.6 microns luminosities are well correlated with the hard X-ray luminosities of Seyfert ls and 2s. These continuum emissions appear as a good indicator of the AGN luminosity, at least in the cases of hard X-ray Compton-thin Seyfert galaxies (N(sub H) less than or = 10(exp 24)/sq cm). We finally stress the finding that some Compton thick galaxies show bright non-stellar emission at 5 microns This suggests

  3. Ultraviolet spectra of QSOs, BL Lacertae objects, and Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Lanzetta, Kenneth M.; Turnshek, David A.; Sandoval, Jennifer

    1993-01-01

    Motivated by the possibility of detecting strong absorption features toward extragalactic background objects, we present optimally extracted and co-added IUE spectra of QSOs, BL Lac objects, and Seyfert galaxies. These spectra together with those presented (in a similar work) by Kinney et al. form an essentially complete sample of the SWP, LWP, and LWR observations of QSOs, BL Lac objects, and Seyfert galaxies with redshifts z greater than 0.05 available in the IUE merged observation log as of 1991 December.

  4. Ultraviolet spectra of QSOs, BL Lacertae objects, and Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Lanzetta, Kenneth M.; Turnshek, David A.; Sandoval, Jennifer

    1993-02-01

    Motivated by the possibility of detecting strong absorption features toward extragalactic background objects, we present optimally extracted and co-added IUE spectra of QSOs, BL Lac objects, and Seyfert galaxies. These spectra together with those presented (in a similar work) by Kinney et al. form an essentially complete sample of the SWP, LWP, and LWR observations of QSOs, BL Lac objects, and Seyfert galaxies with redshifts z greater than 0.05 available in the IUE merged observation log as of 1991 December.

  5. Deficiency of ''Thin'' Stellar Bars in Seyfert Host Galaxies

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Peletier, Reynier F.; Knapen, Johan

    1999-01-01

    Using all available major samples of Seyfert galaxies and their corresponding control samples of closely matched non-active galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in non-active galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., 'fat' or 'weak' bars) in Seyferts, compared to non-active galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, in redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their non-active counterparts on scales of a few kpc.

  6. THE DIFFERENCE IN NARROW Fe K{alpha} LINE EMISSION BETWEEN SEYFERT 1 AND SEYFERT 2 GALAXIES

    SciTech Connect

    Liu Teng; Wang Junxian E-mail: jxw@ustc.edu.c

    2010-12-20

    We compile a sample of 89 Seyfert galaxies with both [O IV] 25.89 {mu}m line luminosities observed by Spitzer IRS and X-ray spectra observed by XMM-Newton EPIC. Using [O IV] emission as a proxy for active galactic nucleus (AGN) intrinsic luminosity, we find that although type 2 AGNs have higher line equivalent widths, the narrow Fe K{alpha} lines in Compton-thin and Compton-thick Seyfert 2 galaxies are 2.9{sup +0.8}{sub -0.6} and 5.6{sup +1.9}{sub -1.4} times weaker in terms of luminosity than Seyfert 1 galaxies, respectively. This indicates that different correction factors need to be applied for various types of AGNs before the narrow Fe K{alpha} line luminosity could serve as an intrinsic AGN luminosity indicator. We also find that Seyfert 1 galaxies in our sample have on average marginally larger line widths and higher line centroid energies, suggesting contamination from highly ionized Fe line or broader line emission from much smaller radius, but this effect is too weak to explain the large difference in narrow Fe K{alpha} line luminosity between type 1 and type 2 AGNs. This is the first observational evidence showing that the narrow Fe K{alpha} line emission in AGNs is anisotropic. The observed difference is consistent with theoretical calculations assuming a smoothly distributed obscuring torus and could provide independent constraints on the clumpiness of the torus.

  7. Far-infrared properties of optically-selected quasars and Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Edelson, R. A.; Malkan, M. A.

    1987-01-01

    Pointed IRAS observations and ground based observations are used to determine the infrared properties of optically selected galaxies and quasars. The use of complete, unbiased, optically selected samples means that statistical tests can be applied to probe the underlying properties of active galactic nuclei (AGNs). The near infrared to millimeter spectral energy distributions (SEDs) were studied of the CfA Seyfert galaxies, a well defined, unbiased sample of 25 Type 1 and 23 Type 2 Seyfert galaxies selected by optical spectroscopy. Data given show strong trends in the infrared SEDs. Strong evidence is also given that the infrared spectra of Seyfert 2 galaxies are dominated by thermal emission from warm dust, while nonthermal emission is more important in the spectra of quasars and luminous Seyfert 1 nuclei.

  8. A demonstration of CMOS VLSI circuit prototyping in support of the site facility using the 1.2 micron standard cell library developed by National Security Agency

    NASA Technical Reports Server (NTRS)

    Smith, Edwyn D.

    1991-01-01

    Two silicon CMOS application specific integrated circuits (ASICs), a data generation chip, and a data checker chip were designed. The conversion of the data generator circuitry into a pair of CMOS ASIC chips using the 1.2 micron standard cell library is documented. The logic design of the data checker is discussed. The functions of the control circuitry is described. An accurate estimate of timing relationships is essential to make sure that the logic design performs correctly under practical conditions. Timing and delay information are examined.

  9. A spectropolarimetric atlas of Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Smith, J. E.; Young, S.; Robinson, A.; Corbett, E. A.; Giannuzzo, M. E.; Axon, D. J.; Hough, J. H.

    2002-09-01

    We present optical spectropolarimetry of the nuclei of 36 Seyfert 1 galaxies, obtained with the William Herschel and the Anglo-Australian Telescopes from 1996 to 1999. In 20 of these, the optical emission from the active nucleus is intrinsically polarized. We have measured a significant level of polarization in a further seven objects but these may be heavily contaminated by Galactic interstellar polarization. The intrinsically polarized Seyfert 1 galaxies exhibit a variety of characteristics, with the average polarization ranging from <0.5 to 5 per cent and with many showing variations in both the degree and position angle of polarization across the broad Hα emission line. We identify a small group of Seyfert 1 galaxies that exhibit polarization properties similar to those of Seyfert 2 galaxies in which polarized broad lines have been discovered. These objects represent direct observational evidence that a Seyfert 2-like far-field polar scattering region is also present in Seyfert 1 galaxies. Several other objects have features that can be explained in terms of equatorial scattering of line emission from a rotating disc. We propose that much of the diversity in the polarization properties of Seyfert galaxies can be understood in terms of a model involving both equatorial and polar scattering, the relative importance of the two geometries as sources of polarized light being determined principally by the inclination of the system axis to the line of sight.

  10. On the relation between Seyfert 2 accretion rate and environment at z < 0.1

    NASA Astrophysics Data System (ADS)

    Coldwell, Georgina V.; Gurovich, Sebastián; Díaz Tello, Jorge; Söchting, Ilona K.; Lambas, Diego G.

    2014-01-01

    We analyse different properties of the small-scale environment of Seyfert 2 for two samples selected according to the accretion rate parameter , R, from the Sloan Digital Sky Survey, Data Release 7 survey. We compare the results with two control samples of non-active galaxies that cover the same redshift range, luminosity, colours, morphology, age and stellar mass content. Our study shows that both high and low accretion rate subsamples reside in bluer and lower density environments than the control samples. However, we find that this difference is at least two times stronger for the low accretion rate Seyferts. In the vicinity of Seyfert 2, red galaxies have systematically lower values of stellar mass as compared with corresponding control samples. The lower values of stellar mass for red neighbours is more significant at higher density environments and it is more evident for low accretion rate Seyfert. We also find that this effect is independent of the host's stellar mass. Our results are consistent with a scenario where active galactic nucleus occurrence is higher in lower/medium density environments with a higher merger rate and a lack of a dense intergalactic medium (that can strip gas from these systems) that provide suitable conditions for the central black hole feeding. We find this particularly evident for the low accretion rate Seyferts that could compensate through the intergalactic medium the lack of gas of their hosts.

  11. The Nature of the Ultraviolet Continuum in Type 2 Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Heckman, T.; Krolik, J.; Meurer, G.; Calzetti, D.; Kinney, A.; Koratkar, A.; Leitherer, C.; Robert, C.; Wilson, A.

    1995-10-01

    Type 2 Seyfert nuclei are well known to contain a "featureless continuum" which makes a significant contribution in the optical and ultraviolet. However, the nature of this featureless continuum is not clear. Recent optical spectropolarimetry shows that only a minor part of the optical featureless continuum can be light from a hidden Seyfert 1 nucleus scattered into our line of sight. In this paper, we show that this is also true in the ultraviolet. We have used International Ultraviolet Explorer (IUE) spectra of 20 of the brightest type 2 Seyfert nuclei to construct an ultraviolet spectral template. While the continuum is well detected in the template, there is no detectable broad-line region (BLR). Comparing this template to a similar spectral template of type 1 Seyfert nuclei implies that no more than 20% of the Seyfert 2 template's continuum can be light from a hidden Seyfert 1 nucleus scattered by dust or warm electrons. One obvious possibility is that most of the nuclei in our sample are "pure" type 2 Seyfert galaxies that do not contain a hidden type 1 Seyfert nucleus (e.g., we have a clear view of the central engine in the ultraviolet, and it simply lacks a broad-line region). This is not compatible with the evidence that at least some Seyfert 2 galaxies can be unified with Seyfert 1 galaxies on the basis of viewing geometry, unless there are two types of Seyfert 2 galaxies. As an alternative, we consider the possibility of Seyfert 1 light scattered off very hot electrons (T > 10^7^ K). The BLR emission lines can then be broadened beyond recognition in our data. However, a scatterer this hot is inconsistent with optical spectropolarimetry. Optically-thin thermal emission from the type of warm mirror seen in NGC 1068 cannot produce the ultraviolet continuum we observe because the equivalent width of Lyα and He II λ1640 are at least an order of magnitude too small in the Seyfert 2 template, and the observed ultraviolet continuum is generally much too red to

  12. Diffuse emission and pathological Seyfert spectra

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    In this annual ROSAT status report, the diffuse emission and spectra from Seyfert galaxies are examined. Three papers are presented and their contents include the soft x-ray properties and spectra of a binary millisecond pulsar, the PSPC and HRI observations of a Starburst/Seyfert 2 Galaxy, and an analysis of the possibility of x-ray luminous starbursts in the Einstein Medium Sensitivity Survey.

  13. Low-level water vapor fields from the VISSR atmospheric sounder (VAS) split window channels at 11 and 12 microns. [visible infrared spin scan radiometer

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L.; Robinson, W.

    1982-01-01

    A series of high-resolution water vapor fields were derived from the 11 and 12 micron channels of the VISSR Atmospheric Sounder (VAS) on GOES-5. The low-level tropospheric moisture content was separated from the surface and atmospheric radiances by using the differential adsorption across the 'split window' along with the average air temperature from imbedded radiosondes. Fields of precipitable water are presented in a time sequence of five false color images taken over the United States at 3-hour intervals. Vivid subsynoptic and mesoscale patterns evolve at 15 km horizontal resolution over the 12-hour observing period. Convective cloud formations develop from several areas of enhanced low-level water vapor, especially where the vertical water vapor gradient relatively strong. Independent verification at radiosonde sites indicates fairly good absolute accuracy, and the spatial and temporal continuity of the water vapor features indicates very good relative accuracy. Residual errors are dominated by radiometer noise and unresolved clouds.

  14. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, i.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  15. The Variability of Seyfert 1.8 and 1.9 Galaxies at 1.6 Microns.

    PubMed

    Quillen; Shaked; Alonso-Herrero; McDonald; Lee; Rieke; Rieke

    2000-03-20

    We present a study of Seyfert 1.5-2.0 galaxies observed at two epochs with the Hubble Space Telescope (HST) at 1.6 µm. We find that unresolved nuclear emission from nine of 14 nuclei varies at the level of 10%-40% on timescales of 0.7-14 months, depending upon the galaxy. A control sample of Seyfert galaxies lacking unresolved sources and galaxies lacking Seyfert nuclei show less than 3% instrumental variation in equivalent aperture measurements. This proves that the unresolved sources are nonstellar and associated with the central parsecs of active galactic nuclei. Unresolved sources in Seyfert 1.8 and 1.9 galaxies are not usually detected in HST optical surveys; however, high angular resolution infrared observations will provide a way to measure time delays in these galaxies. PMID:10702122

  16. Detection of Mixed-Phase Clouds over the Arctic Using MODIS 6.7-12 micron Data

    NASA Astrophysics Data System (ADS)

    Spangenberg, D. A.; Minnis, P.; Shupe, M. D.; Poellot, M. R.; Wang, Z.

    2005-12-01

    Over the Arctic, clouds containing both ice crystals and supercooled liquid droplets are a common occurrence and need to be taken into account in determining cloud microphysical properties. Presently, these mixed-phase (MIXP) clouds are detected fairly well by ground-based techniques, however, no information on their spatial extent is available. Satellite data has excellent spatial coverage and provides a means to extend the information on cloud phase away from the ground sites. To accomplish this goal, an Arctic cloud phase model is developed to detect MIXP clouds using Moderate Resolution Imaging Spectroradiometer (MODIS) data taken onboard the Terra and Aqua satellites. The model utilizes three water vapor and two cloud-top temperature channels in the 6.7-12 μm wavelength range. To develop the model, a wide range of cloud systems were sampled where the brightness temperature (BT) data from MODIS was compared to surface-based phase retrievals at the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) Barrow site. Cloud phase can be linked to specific sets of thermal and moisture structures existing between the upper part of the cloud and the upper troposphere. These structures are, in turn, reflected in the MODIS BT data. Results from the ARM MODIS cloud-phase model (AMCPM) are compared to surface-based retrievals over the ARM-NSA Barrow site and to in-situ data from the Citation aircraft which flew during the ARM Mixed-Phase Arctic Cloud Experiment. Since the AMCPM only uses channels in the infrared part of the spectrum, it can be applied to both daytime and nighttime scenes with no discontinuities in the output phase. Preliminary results are encouraging with an agreement between MODIS and the surface-based retrievals of over 75 %. The MIXP clouds considered here are those having generally between 10 and 90 % liquid water out of the total water content. The model should be applied to high-latitude regions only and even there, it is unclear how

  17. The Role of Environment in Fueling Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Hicks, Erin Kathleen Strobel

    2015-08-01

    We consider the role of environment in fueling of Seyfert AGN through a combined analysis of Hubble Space Telescope images and integral field spectroscopy of the ISM in a sample of local AGN. Using visible and near-infrared Hubble Space Telescope images and color maps of over a 100 galaxies we determine the distribution of the cold ISM, as traced by dust. We also measure the two-dimensional distribution and kinematics of the molecular gas, traced by H2 1-0 S(1) emission at 2.12 μm, down to scales of tens of parsecs using OSIRIS at Keck and SINFONI on VLT for a subset of approximately 20 of these galaxies. Informed by these kinematic measurements of the ISM we classify the nuclear dust morphologies of the full sample of galaxies and interpret the significance of these morphologies in terms of inflow. Our relatively small precursor sample (Hicks et al. 2009, Davies et al. 2014) hinted at a connection between the host galaxy environment and the primary mechanism driving gas inward such that fueling of AGN in isolated galaxies occurs primarily via secular processes (e.g. nuclear spirals) and galaxies in groups of 10-15 members via accretion of external gas. Using our expanded sample that now has the ability to reveal statistically significant trends we explore the potential influence of the galaxy environment on the fueling of Seyfert AGN.

  18. Challenges, constraints, and results of lens design for 17 micron-bolometer focal plane arrays in 8-12 micron waveband

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert; Franks, John

    2011-06-01

    In the 8-12 micron waveband Focal Plane Arrays (FPA) are available with a 17 micron pixel pitch in different arrays sizes (e.g. 512 x 480 pixels and 320 x 240 pixels) and with excellent electrical properties. Many applications become possible using this new type of IR-detector which will become the future standard in uncooled technology. Lenses with an f-number faster than f/1.5 minimize the diffraction impact on the spatial resolution and guarantee a high thermal resolution for uncooled cameras. Both effects will be quantified. The distinction between Traditional f-number (TF) and Radiometric f-number (RF) is discussed. Lenses with different focal lengths are required for applications in a variety of markets. They are classified by their Horizontal field of view (HFOV). Respecting the requirements for high volume markets, several two lens solutions will be discussed. A commonly accepted parameter of spatial resolution is the Modulation Transfer Function (MTF)-value at the Nyquist frequency of the detector (here 30cy/mm). This parameter of resolution will be presented versus field of view. Wide Angle and Super Wide Angle lenses are susceptible to low relative illumination in the corner of the detector. Measures to reduce this drop to an acceptable value are presented.

  19. Bright emission lines in new Seyfert galaxies

    SciTech Connect

    Afanasev, V.L.; Denisiuk, E.K.; Lipovetskii, V.A.; Shapovalova, A.I.

    1983-01-01

    Observational data are given on bright emission lines (H-alpha, H-beta, and forbidden N II, S II, and O III) for 14 recently discovered Seyfert galaxies. The investigated objects can be divided into three groups, which correspond approximately to the first (5 objects), the intermediate (4 objects), and the second (4 objects) Seyfert types. Attention is drawn to the properties of the galaxy Markaryan 1018, which has features of both the first and the second type and is distinguished by the weakness of its emission lines, which is probably due to a gas deficit. 7 references.

  20. Nuevas Galaxias Seyfert 1 Australes

    NASA Astrophysics Data System (ADS)

    Maza, J.; Ruiz, M. T.

    1987-05-01

    En 1984 se inició una extensión del "survey" de Tololo que de- sarrollara en 1975 Smith, con la cámara Curtis-Schmidt y el prisma UV delgado. Utilizando placas IIIaJ horneadas, sin filtro, expues tas 90 minutos sin ensanchamiento se han obtenido a la fecha más de 150 placas que cubren la zona entre -20° y -45° a latitudes galácticas mayores de 20°; se presenta un detalle de las franjas que comprende el survey Calan-Tololo, indicando el grado de completitud de las mismas. Se ha encontrado un gran número de galaxias con líneas de emisión entre las cuales las más frecuentes, más de 300, son galaxias irregulares con formación estelar violenta ("starburst galaxies"). Se ha encontrado un número de cuasares cercano a 100; casi todos ellos tienen la linea Lyman alfa en la zona entre 3300 y 5300 A, que corresponde a un rango de corrimientosal rojo 1.7< z <3.3 el cuasar con mayor corri- miento al rojo encontrado a la fecha en el survey tiene z = 3.1. La información detallada sobre cuasares y galaxias tipo "starburst" será presentada en otro lugar. Entre los objetos más interesantes encontrados en el survey Calán- Tololo destacan unas 50 nuevas galaxias Seyfert 1. Estas galaxias han sido encontradas por su fuerte exceso UV y su brillante núcleo, más que por sus intensas lineas de emisión. Hemos observado espectroscópicamente, en el Observatorio Interamericano de Cerro Tololo, 37 de ellas para las cuales se presentan cartas de identificación, coordenadas y los datos espectroscópicos obtenidos.

  1. Satellite remote sensing of H2SO4 aerosol using the 8- to 12-microns window region: Application to Mount Pinatubo

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Strabala, Kathleen I.

    1994-01-01

    Monitoring stratospheric aerosols containing H2SO4 using the brightness temperature (BT) difference between 11 and 8.3 microns (BT(sub 8)-BT(sub 11)) spectral channels is demonstrated using theoretical calculations and satellite observations. Assuming an aqueous solution of 50% and 75% sulfuric acid, radiative transfer calculations indicate that over oceans an increase in the optical depth of the stratospheric aerosol results in an increase in BT(sub 8)-BT(sub 11). Theoretical simulations suggest that the technique is sensitive to visible optical depths greater than approximately 0.15. The simulations also demonstrate a lack of sensitivity to the particle size distribution. Changes in pre- and post-Pinatubo observations by the High-resolution Infrared Radiation Sounder 2 (HIRS2) on board the NOAA 10 are consistent with observed optical depth measurements and confirm the sensitivity of these channels to the presence of the aerosol. The technique is also applied to cold tropical convective clouds and desert regions where the signal, though evident, is less conclusive. Time series analysis is applied to the NOAA 10 and NOAA 12 combined BT(sub 8-BT(sub 11) observations to detect the periodicity of the spread of the volcanic aerosol. Over a region of the southern Pacific a 18- to 26-day period is present. Model simulations were conducted to demonstrate a trispectral with observations near 8, 11, and 12 microns. The trispectral approach has high potential in that the spectral signature of cirrus, water vapor, and H2SO4 aerosols are different. Observations from NOAA 10 and NOAA 11 are combined to demonstrate the capabilities of these infrared wavelengths of detecting the aerosol. The signal is clearly evident when a region of the South Atlantic is compared for pre- and post-Pinatubo conditions.

  2. Infrared spectroscopy of starburst and Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Moorwood, A. F. M.; Oliva, E.

    1994-03-01

    We present and discuss some recent results ofgroundbased IR spectroscopie studies ofstarburst and Seyfert galaxies through the 1-5 μm atmospheric windows. Of particular interest in this spectral range are H and He recombination lines, stellar CO and other absorption bands which can provide information on the stellar populations; [SiVI, VII, IX], [CaVIII] and [SIX] coronal lines in Seyferts and [FeII] and ro-vibrational H2 lines from circumnuclear gas excited by high energy photons and winds associated with recently formed hot stars, SN/SNR and AGN. Recent progress in the latter case has largely been achieved through the first use of 2D arrays to obtain maps and images of the extended line emission in several relatively nearby galaxies.

  3. Narrow-Line Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    2000-01-01

    The primary work during this year has been the analysis and interpretation of our HST spectra from two extreme Narrow-line Seyfert 1 galaxies (NLS1s) Infrared Astronomy Satellite (IRAS) 13224-3809 and 1H 0707-495. This work has been presented as an invited talk at the workshop entitled "Observational and theoretical progress in the Study of Narrow-line Seyfert 1 Galaxies" held in Bad Honnef, Germany December 8-11, as a contributed talk at the January 2000 AAS meeting in Atlanta, Georgia, and as a contributed talk at the workshop "Probing the Physics of Active Galactic Nuclei by Multiwavelength Monitoring" held at Goddard Space Flight Center June 20-22, 2000.

  4. Giant Broad Line Regions in Dwarf Seyferts

    NASA Astrophysics Data System (ADS)

    Devereux, Nicholas A.

    2016-01-01

    High angular resolution spectroscopy obtained with the Hubble Space Telescope has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, the relationship between velocity and radius may be established, given a kinematic model for the BLR gas. In this way, one can determine the inner and outer radii of the BLRs by modeling the shape of their broad emission line profiles. In the present contribution, high quality spectra obtained with the Space Telescope Imaging Spectrograph are used to constrain the size of the BLR in the dwarf Seyfert nuclei of M81, NGC 3998, NGC 4203, NGC 3227, NGC 4051, and NGC 3516.

  5. Giant Broad Line Regions in Dwarf Seyferts

    NASA Astrophysics Data System (ADS)

    Devereux, Nick

    2015-12-01

    High angular resolution spectroscopy obtained with the Hubble Space Telescope (HST) has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group, and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, the relationship between velocity and radius may be established, given a kinematic model for the BLR gas. In this way, one can determine the inner and outer radii of the BLRs by modeling the shape of their broad emission line profiles. In the present contribution, high quality spectra obtained with the Space Telescope Imaging Spectrograph (STIS) are used to constrain the size of the BLR in the dwarf Seyfert nuclei of M81, NGC 3998, NGC 4203, NGC 3227, NGC 4051 and NGC 3516.

  6. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    NASA Technical Reports Server (NTRS)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  7. Near-Infrared Coronal Lines in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Portilla, J. G.; Tejeiro, J. M.; Rodríguez-Ardila, A.

    2006-06-01

    Seyfert galaxies show in their spectra coronal lines (CLs). Researchers have proposed a physical region responsible of the emission of CLs named Coronal Line Region (CLR). Some authors have suggested that CLR is well extended to the NLR; others propose its location between the BLR and NLR while others suggest that CLR is situated in the inner face of the obscuring torus. The goal of this work is contribute to the discussion about the location of the CLR. Our hypothesis is that they are emitted in the inner walls of the torus. Spectral analysis of a sample of Seyfert 1 (Sy1) and Seyfert 2 (Sy2) galaxies can give insights about the location of the CLR. We took NIR spectra of the five Sy1 and five Sy2 galaxies. Those spectra were taken in at the NASA 3-m IRTF using the SpeX spectrome-ter. CLs are observed in all the objects of the sample. [Si VI] λ1.963 μm, is present in all of them; [S VIII] λ0.991 μm, is also present (except in H1143-182 and Mrk 1066); it is frequent to observe too [S IX] λ1.252 μm, and [Si X] λ1.430 μm. [Si VI] λ1.963 μm is observed in both types of galaxies. Values for FWHM, assuming Gaussian profiles, for the [Si VI] λ1.963 μm range from 250 to 530 km/s whilst those for S [IX] λ1.252 μm and [Si X] λ1.43 μm tend to be higher: 300 to 1150 and 260 to 1320 km/s, respectively. This seems to suggest that, for CL, those species with higher ionization potential present higher bulk velocity of the emitting clouds and therefore are situated nearer to the central mass concentration. The apparent fact that CL from species of higher ionization potential (χ) are preferentially observed in Sy1 rather than Sy2 seems to be coherent with the existence of a obscuring torus required by unified models for an active galactic nucleus (AGN): the Sy1 type shows internal regions of the AGN, including the BLR and internal parts of the torus. It is feasible then, that some of the high-χ coronal emission (i.e. [Si X]) are produced in the inner wall of the

  8. Mid-J CO Emission in Nearby Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, Miguel; Spinoglio, Luigi; Busquet, Gemma; Glenn, Jason; Isaak, Kate; Kamenetzky, Julia; Rangwala, Naseem; Schirm, Maximilien R. P.; Baes, Maarten; Barlow, Michael J.; Boselli, Alessandro; Cooray, Asantha; Cormier, Diane

    2012-12-01

    We study for the first time the complete sub-millimeter spectra (450 GHz to 1550 GHz) of a sample of nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) onboard Herschel. The CO ladder (from Jup = 4 to 12) is the most prominent spectral feature in this range. These CO lines probe warm molecular gas that can be heated by ultraviolet photons, shocks, or X-rays originated in the active galactic nucleus or in young star-forming regions. In these proceedings we investigate the physical origin of the CO emission using the averaged CO spectral line energy distribution (SLED) of six Seyfert galaxies. We use a radiative transfer model assuming an isothermal homogeneous medium to estimate the molecular gas conditions. We also compare this CO SLED with the predictions of photon and X-ray dominated region (PDR and XDR) models.

  9. The Keck OSIRIS Nearby AGN Survey: The Nuclear Gas and Stellar Structure in the Central 200 pc of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hicks, E.

    2015-09-01

    We present the first results from the KONA (Keck OSIRIS Nearby AGN) survey, which used the integral field unit OSIRIS plus adaptive optics to probe down to scales of 5-10 parsecs in a sample of 40 Seyfert galaxies. With these K-band data we measure the two-dimensional distribution and kinematics of the nuclear stars, molecular gas, and ionized gas within the central few hundred parsecs. In the majority of the galaxies the molecular gas, traced by 1-0 S(1) H2, is in circular rotation in a geometrically thick disk that is co- spatial with the stellar disk inferred from the stellar kinematics. A significant fraction of the Seyferts exhibit kinematic signatures of inflow and/or outflow in the molecular gas that is superimposed on this disk rotation. The ionized gas in most galaxies shows evidence of outflows, and, in many cases, is interacting with the interstellar medium traced by the molecular gas. The sample consists of both type 1 and type 2 Seyferts, allowing for a statistical comparison of the nuclear stellar and gas properties in the subsamples and the identification of significant contributors to possible orientation effects. Differences in the prevalence of the primary fueling mechanisms inferred from the gas kinematics in the type 1 and 2 subsamples, as well as evolution of the nuclear properties with AGN luminosity, are investigated. The nuclear regions of Seyfert 2s known to have a hidden broadline region are also compared with the Seyfert 1s and non-HBLR Seyfert 2s, including characterization of the stellar population via spectral fitting.

  10. He I 10830 emission in Seyfert galaxies and QSOs

    NASA Technical Reports Server (NTRS)

    Levan, P. D.; Puetter, R. C.; Smith, H. E.; Rudy, R. J.

    1984-01-01

    He I line fluxes at 10830 A are reported for eight type-1 Seyfert galaxies, three QSOs and two type-2 Seyfert galaxies. The data are combined with He I line fluxes at 5876 A in order to obtain the ratio 10830/5876. The He I flux values resulting from this ratio are compared to fiducial values measured in gaseous nebulae. It is found that the values for gaseous nebulae are very similar to values observed in type-2 Seyfert galaxies, but are considerably larger than He I line flux values for type-1 Seyfert galaxies and QSOs. The data indicate the presence of high dust reddening and powerful optical depth effects in the type-2 Seyfert galaxies.

  11. The featureless continua and hydrogen lines of Seyfert 2 galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Antonucci, R. R. J.; Ward, M. J.; Wilson, A. S.; Whittle, M.

    1991-01-01

    Optical and ultraviolet spectra taken in similar sized large apertures for 15 Seyfert 2 galaxies are presented. Measurements of emission-line strengths of Ly-alpha, H-alpha, and H-beta are used together with measurements of the ultraviolet slopes to estimate the ratio of recombination photons to ionizing photons. The photon ratios indicate that the ionizing continuum is being emitted anisotropically for at least six of the eight objects with UV slope measurements. The median value of the UV slope is indistinguishable from the UV slope of Seyfert 1 galaxies. This result suggests that in the occultation/reflection picture of Seyfert nuclei, the reflecting particles are free electrons and not dust. Previous observations of variability in Mrk 477 are verified, and it is shown that this galaxy exhibits characteristics of both Seyfert 1 and Seyfert 2 galaxies.

  12. Optical, near, infrared and ultraviolet monitoring of the Seyfert 1 galaxy Markarian 335

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Sun, W.-H.; Turner, T. J.; Hintzen, P. M.

    1990-01-01

    Preliminary results of a multifrequency monitoring campaign for the bright, Seyfert 1 galactic nuclei Mkn335 are presented. Nearly uniform sampling at 3 day intervals is achieved quasi simultaneously at each wavelength band. Wavelength dependent variability is seen at the 20 to 30 percent level. Interpretation of variability in terms of geometrically thin, optically thick accretion disk models is discussed. The inferred blackhole masses and accretion rates are discussed. Possible correlation between continuum and emission line variations is discussed.

  13. X-ray variability in AGN: LINER vs. Seyfert 2

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, Lorena; Masegosa, Josefa; Gonzalez-Martin, Omaira; Marquez, Isabel

    2015-09-01

    Although variability is a general property characterizing active galactic nuclei (AGN), it is not well stablished if the changes occur in the same way in every nuclei . The main purpose of this work is to study the X-ray variability pattern(s) in low luminosity AGN in a large sample, including 18 low ionization nuclear emission line regions (LINERs) and 26 type 2 Seyferts (Sy2), using the public archives in Chandra and/or XMM-Newton. Spectra of the same source gathered at different epochs were simultaneously fitted to study long term variations, whereas the variability patterns were studied allowing different parameters to vary during the spectral fit. Whenever possible, short term variations from the analysis of the light curves and long term UV flux variability were studied. Short term variations are not found at X-rays, but variations in timescales of months/years is very common in both families. The main driver of the long term X-ray variations seems to be related to changes in the nuclear power in both LINERs and Sy2, but other variability patterns cannot be discarded in a few cases, because changes of the column density or at soft energies are also found. The X-ray variations occur in the same way in LINERs and type 2 Seyferts, i.e., related to the nuclear continuum, but they might have different accretion mechanisms. As absorption variations and changing-look sources are not observed in LINERs, but UV nuclear variations are common, we speculate that the BLR and the torus might disappear in these sources.

  14. Nuclear Star Formation Activity and Black Hole Accretion in Nearby Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Esquej, P.; Alonso-Herrero, A.; González-Martín, O.; Hönig, S. F.; Hernán-Caballero, A.; Roche, P.; Ramos Almeida, C.; Mason, R. E.; Díaz-Santos, T.; Levenson, N. A.; Aretxaga, I.; Rodríguez Espinosa, J. M.; Packham, C.

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, \\dot{M}_BH) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (~0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ~65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M ⊙ yr-1 kpc-2) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ~65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and \\dot{M}_BH and showed that numerical simulations reproduce our observed relation fairly well.

  15. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    SciTech Connect

    Esquej, P.; Alonso-Herrero, A.; Hernán-Caballero, A.; González-Martín, O.; Ramos Almeida, C.; Rodríguez Espinosa, J. M.; Roche, P.; Mason, R. E.; Díaz-Santos, T.; Levenson, N. A.; Aretxaga, I.; Packham, C.

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot {sub BH}) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M {sub ☉} yr{sup –1} kpc{sup –2}) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot {sub BH} and showed that numerical simulations reproduce our observed relation fairly well.

  16. VizieR Online Data Catalog: Atlas of HST STIS spectra of Seyfert galaxies (Spinelli+, 2006)

    NASA Astrophysics Data System (ADS)

    Spinelli, P. F.; Storchi-Bergmann, T.; Brandt, C. H.; Calzetti, D.

    2008-05-01

    We present a compilation of spectra of 101 Seyfert galaxies obtained with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), covering the UV and/or optical spectral range. Information on all the available spectra have been collected in a Mastertable, which is a very useful tool for anyone interested in a quick glance at the existent STIS spectra for Seyfert galaxies in the HST archive, and it can be recovered electronically. Nuclear spectra of the galaxies have been extracted in windows of 0.2" for an optimized sampling (as this is the slit width in most cases) and combined in order to improve the signal-to-noise ratio and provide the widest possible wavelength coverage. These combined spectra are also available electronically, at http://www.if.ufrgs.br/~pat/atlas.htm . (3 data files).

  17. A statistical study of properties of Seyfert and starburst galaxies

    NASA Technical Reports Server (NTRS)

    Dahari, Oved; De Robertis, Michael M.

    1988-01-01

    Spectral and morphological data for 282 Seyfert and emission-line galaxies spanning radio to X-ray wavelengths are compiled. The data include a large number of optical emission-line measurements which have not been reported previously. These data are intended to provide a convenient summary of the relevant properties of these galaxies, as well as a data base to search for correlations among the various parameters in order to obtain a better understanding of the active galaxy phenomenon. The paper presents the data and analyzes the distributions of various properties of Seyfert 1 and Seyfert 2 galaxies and starburst galaxies. It is found that Seyferts 2s have a higher 60 micron/forbidden O III 5007 A flux ratio than Seyfert 1s. This result, combined with the fact that Seyfert 2s are more heavily reddened, indicate that they have a higher dust content. It is also found that starburst nuclei are comparable to Seyfert 2s in far-infrared and 20 cm luminosities, although their optical spectra are markedly different.

  18. Mid-infrared interferometry of Seyfert galaxies: Challenging the Standard Model

    NASA Astrophysics Data System (ADS)

    López-Gonzaga, N.; Jaffe, W.

    2016-06-01

    Aims: We aim to find torus models that explain the observed high-resolution mid-infrared (MIR) measurements of active galactic nuclei (AGN). Our goal is to determine the general properties of the circumnuclear dusty environments. Methods: We used the MIR interferometric data of a sample of AGNs provided by the instrument MIDI/VLTI and followed a statistical approach to compare the observed distribution of the interferometric measurements with the distributions computed from clumpy torus models. We mainly tested whether the diversity of Seyfert galaxies can be described using the Standard Model idea, where differences are solely due to a line-of-sight (LOS) effect. In addition to the LOS effects, we performed different realizations of the same model to include possible variations that are caused by the stochastic nature of the dusty models. Results: We find that our entire sample of AGNs, which contains both Seyfert types, cannot be explained merely by an inclination effect and by including random variations of the clouds. Instead, we find that each subset of Seyfert type can be explained by different models, where the filling factor at the inner radius seems to be the largest difference. For the type 1 objects we find that about two thirds of our objects could also be described using a dusty torus similar to the type 2 objects. For the remaining third, it was not possible to find a good description using models with high filling factors, while we found good fits with models with low filling factors. Conclusions: Within our model assumptions, we did not find one single set of model parameters that could simultaneously explain the MIR data of all 21 AGN with LOS effects and random variations alone. We conclude that at least two distinct cloud configurations are required to model the differences in Seyfert galaxies, with volume-filling factors differing by a factor of about 5-10. A continuous transition between the two types cannot be excluded.

  19. SEARCH FOR GAMMA-RAY EMISSION FROM X-RAY-SELECTED SEYFERT GALAXIES WITH FERMI-LAT

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D.; Buson, S.; Bonamente, E.; Brigida, M.; Bruel, P.; and others

    2012-03-10

    We report on a systematic investigation of the {gamma}-ray properties of 120 hard X-ray-selected Seyfert galaxies classified as 'radio-quiet' objects, utilizing the three-year accumulation of Fermi Large Area Telescope (LAT) data. Our sample of Seyfert galaxies is selected using the Swift Burst Alert Telescope 58 month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F{sub 14-195keV} {>=} 2.5 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} at high Galactic latitudes (|b| > 10 Degree-Sign ). In order to remove 'radio-loud' objects from the sample, we use the 'hard X-ray radio loudness parameter', R{sub rX}, defined as the ratio of the total 1.4 GHz radio to 14-195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with R{sub rX} <10{sup -4}, we did not find a statistically significant {gamma}-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323-G077 and NGC 6814. The mean value of the 95% confidence level {gamma}-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is {approx_equal} 4 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} , and the upper limits derived for several objects reach {approx_equal} 1 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} . Our results indicate that no prominent {gamma}-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi-LAT upper limits derived for our sample probe the ratio of {gamma}-ray to X-ray luminosities L{sub {gamma}}/L{sub X} < 0.1, and even <0.01 in some cases. The obtained results impose novel constraints on the models for high-energy radiation of 'radio-quiet' Seyfert galaxies.

  20. Absorption and Reflection in the Seyfert 2 Galaxy NGC4388

    NASA Astrophysics Data System (ADS)

    Blanco, Philip

    We propose to observe NGC4388, the brightest Seyfert 2 observed in hard X-rays (Johnson et al. 1994). The determination of the hard X-ray/gamma-ray spectrum of this object will test the unified AGN model, according to which Seyfert 2s contain the same intrinsic hard X-ray/Gamma-ray sources as Seyfert 1s, but are seen through an optically thick obscuring torus. A measurement of the hard X-ray spectrum and any short term time variability will then allow us to model the physical processes responsible for the emission. Such studies are also important in assessing the contribution of Seyfert 2s to the cosmic X-ray background.

  1. Changing-type Seyfert NGC 2617 brightens again

    NASA Astrophysics Data System (ADS)

    Oknyansky, V. L.; Huseynov, N. A.; Lipunov, V. M.; Gorbovskoy, E. S.; Kuznetsov, A. S.; Balanutza, P. V.; Metlov, V. I.; Gaskell, C. M.

    2016-05-01

    We report another brightening of NGC 2617, an AGN which underwent a dramatic change from a largely obscured Seyfert 1.8 to an unobscured Seyfert 1 between 2003 to 2013 (Shappee et al. 2013, ATel #5010; Shappee et al. 2014, ApJ, 788, 48). Spectroscopy and BVRIJHK photometry from January 2016 revealed that NGC 2617 was continuing to be in a high state (Oknyansky et al. 2016, ATel#9015).

  2. The coronal parameters of local Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Marinucci, A.; Tortosa, A.; NuSTAR AGN Physics Working Group

    2016-05-01

    One of the open problems for AGN is the nature of the primary X-ray emission: It is likely due to Comptonization of soft UV photons, but the optical depth and temperature of the emitting corona were largely unknown before the launch of the Nuclear Spectroscopic Telescope Array (NuSTAR). It is the first focusing hard X-ray telescope on orbit, ∼ 100 times more sensitive in the 10-79 keV band compared to previous observatories, enabling the study of AGN at high energies with high precision. We present and discuss the results on the hot corona parameters of active galactic nuclei that have been recently measured with NuSTAR (often in coordination with XMM-Newton, Suzaku, or wift) with unprecedented accuracy, in a number of local Seyfert galaxies.

  3. TESTING THE UNIFICATION MODEL FOR ACTIVE GALACTIC NUCLEI IN THE INFRARED: ARE THE OBSCURING TORI OF TYPE 1 AND 2 SEYFERTS DIFFERENT?

    SciTech Connect

    Ramos Almeida, C.; Levenson, N. A.; Radomski, J. T.; Alonso-Herrero, A.; Asensio Ramos, A.; Rodriguez Espinosa, J. M.; Perez Garcia, A. M.; Mason, R.; DIaz-Santos, T.

    2011-04-20

    We present new mid-infrared imaging data for three Type-1 Seyfert galaxies obtained with T-ReCS on the Gemini-South Telescope at subarcsecond resolution. Our aim is to enlarge the sample studied in a previous work to compare the properties of Type-1 and Type-2 Seyfert tori using clumpy torus models and a Bayesian approach to fit the infrared (IR) nuclear spectral energy distributions. Thus, the sample considered here comprises 7 Type-1, 11 Type-2, and 3 intermediate-type Seyferts. The unresolved IR emission of the Seyfert 1 galaxies can be reproduced by a combination of dust heated by the central engine and direct active galactic nucleus (AGN) emission, while for the Seyfert 2 nuclei only dust emission is considered. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Unification schemes of AGN account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold and that the immediate dusty surroundings of Type-1 and Type-2 Seyfert nuclei are intrinsically different. The Type-2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type-1 tori. The larger the covering factor of the torus, the smaller the probability of having a direct view of the AGN, and vice versa. In our sample, Seyfert 2 tori have larger covering factors (C{sub T} = 0.95 {+-} 0.02) and smaller escape probabilities (P{sub esc} = 0.05% {+-} {sup 0.08}{sub 0.03}%) than those of Seyfert 1 (C{sub T} = 0.5 {+-} 0.1; P{sub esc} = 18% {+-} 3%). All the previous differences are significant according to the Kullback-Leibler divergence. Thus, on the basis of the results presented here, the classification of a Seyfert galaxy as a Type-1 or Type-2 depends more on the intrinsic properties of the torus rather than on its mere inclination toward us, in contradiction with the simplest unification model.

  4. X-ray spectral variability of Seyfert 2 galaxies

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.

    2015-07-01

    Context. Variability across the electromagnetic spectrum is a property of active galactic nuclei (AGN) that can help constrain the physical properties of these galaxies. Nonetheless, the way in which the changes happen and whether they occur in the same way in every AGN are still open questions. Aims: This is the third in a series of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern(s) in a sample of optically selected Seyfert 2 galaxies. Methods: We use the 26 Seyfert 2s in the Véron-Cetty and Véron catalog with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source were simultaneously fitted, and we let different parameters vary in the model. Whenever possible, short-term variations from the analysis of the light curves and/or long-term UV flux variations were studied. We divided the sample into Compton-thick and Compton-thin candidates to account for the degree of obscuration. When transitions between Compton-thick and thin were obtained for different observations of the same source, we classified it as a changing-look candidate. Results: Short-term variability at X-rays was studied in ten cases, but variations are not found. From the 25 analyzed sources, 11 show long-term variations. Eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related to absorbers at hard X-rays are less common, and in many cases these variations are accompanied by variations in the nuclear continuum. At UV frequencies, only NGC 5194 (out of six sources) is variable, but the changes are not related to the nucleus. We report two changing-look candidates, MARK 273 and NGC 7319

  5. Warm absorbers in X-rays (WAX), a comprehensive high-resolution grating spectral study of a sample of Seyfert Galaxies - II. Warm absorber dynamics and feedback to galaxies

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Guainazzi, Matteo; Chakravorty, Susmita; Dewangan, Gulab C.; Kembhavi, Ajit K.

    2016-04-01

    This paper is a sequel to the extensive study of warm absorber (WA) in X-rays carried out using high-resolution grating spectral data from XMM-Newton satellite (WAX-I). Here we discuss the global dynamical properties as well as the energetics of the WA components detected in the WAX sample. The slope of WA density profile (n ∝ r-α) estimated from the linear regression slope of ionization parameter ξ and column density NH in the WAX sample is α = 1.236 ± 0.034. We find that the WA clouds possibly originate as a result of photoionized evaporation from the inner edge of the torus (torus wind). They can also originate in the cooling front of the shock generated by faster accretion disc outflows, the ultrafast outflows, impinging on to the interstellar medium or the torus. The acceleration mechanism for the WA is complex and neither radiatively driven wind nor MHD-driven wind scenario alone can describe the outflow acceleration. However, we find that radiative forces play a significant role in accelerating the WA through the soft X-ray absorption lines, and also with dust opacity. Given the large uncertainties in the distance and volume filling factor estimates of the WA, we conclude that the kinetic luminosity ĖK of WA may sometimes be large enough to yield significant feedback to the host galaxy. We find that the lowest ionization states carry the maximum mass outflow, and the sources with higher Fe M UTA absorption (15-17 Å) have more mass outflow rates.

  6. Variable Iron K(alpha) Lines in Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Gelbord, J.; Yaqoob, T.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We find that variability of the iron K alpha line is common in Seyfert 1 galaxies. Using data from the ASCA archive for objects that have been observed more than once during the mission, we study the time-averaged spectra from individual observations, thereby probing variability on timescales that range from days to years. Since the statistics of the data do not warrant searches for line variability in terms of a complex physical model, we use a simple Gaussian to model the gross shape of the line and then use the centroid energy, intensity, and equivalent width as robust indicators of changes in the line profile. We find that approximately 70% of Seyfert 1 galaxies (10 out of 15) show variability in at least one of these parameters: the centroid energy, intensity, and equivalent width vary in six, four, and eight sources, respectively. Because of the low signal-to-noise ratio, limited sampling, and time averaging, we consider these results to represent lower limits to the rate of incidence of variability. In most cases changes in the line do not appear to track changes in the continuum. In particular, we find no evidence for variability of the line intensity in NGC 4151, suggesting an origin in a region larger than the putative accretion disk, where most of the iron line has been thought to originate. Mrk 279 is investigated on short timescales. The time-averaged effective line energy (as measured by the Gaussian center energy, which is weighted by emission in the entire line profile) is 6.5 keV in the galaxy rest frame. As the continuum flux increases by 20% in a few hours, the Fe K line responds within approximately 10,000 seconds with the effective line energy increasing by 0.22 keV (approximately 10,500 kilometers per second). We also examine the ROSAT PSPC spectrum of Mrk 279 but find inconsistencies with ASCA. Problems with the ASCA and ROSAT calibration that affect simultaneous spectral fits at low energies are discussed in an appendix.

  7. EXTENDED NARROW-LINE EMISSION IN THE BRIGHT SEYFERT 1.5 GALAXY HE 2211-3903

    SciTech Connect

    Scharwaechter, J.; Dopita, M. A.; Zuther, J.; Fischer, S.; Eckart, A.; Komossa, S.

    2011-08-15

    Extended narrow-line regions (ENLRs) and extended emission-line regions have been the focus of integral field spectroscopy aiming at the inner kiloparsecs of nearby Seyfert galaxies as well as the larger environment of high-redshift QSOs. Based on observations with the Wide Field Spectrograph at the 2.3 m telescope of the Australian National University, we present spatially resolved emission-line diagnostics of the bright Seyfert 1.5 galaxy HE 2211-3903 which is drawn from a sample of the brightest Seyfert galaxies at z < 0.06 with luminosities around the classical Seyfert/QSO demarcation. In addition to the previously known spiral arms of HE 2211-3903, the emission-line maps reveal a large-scale ring with a radius of about 6 kpc which is connected to the active galactic nucleus (AGN) through a bar-like structure. The overall gas kinematics indicates a disk rotation pattern. The emission-line ratios show Seyfert-type, H II region-type, and composite classifications, while there is no strong evidence of LINER-type ratios. Shock ionization is likely to be negligible throughout the galaxy. The composite line ratios are explained via a mixing line between AGN and H II region photoionization. Composite line ratios are predominantly found in between the H II regions in the circum-nuclear region, the bar-like structure to the east of the nucleus, and the eastern half of the ring, suggesting AGN photoionization of the low-density interstellar medium in an ENLR on galaxy scales. The line ratios in the nucleus indicate N enrichment, which is discussed in terms of chemical enrichment by Wolf-Rayet and asymptotic giant branch stars during past and ongoing nuclear starburst activity.

  8. HNC, HCN and CN in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-Beaupuits, J. P.; Aalto, S.; Gerebro, H.

    2007-12-01

    Aims:Bright HNC 1-0 emission, rivalling that of HCN 1-0, has been found towards several Seyfert galaxies. This is unexpected since traditionally HNC is a tracer of cold (10 K) gas, and the molecular gas of luminous galaxies like Seyferts is thought to have bulk kinetic temperatures surpassing 50 K. There are four possible explanations for the bright HNC: (a) large masses of hidden cold gas; (b) chemistry dominated by ion-neutral reactions; (c) chemistry dominated by X-ray radiation; and (d) HNC enhanced through mid-IR pumping. In this work, we distinguish the cause of the bright HNC and to model the physical conditions of the HNC and HCN emitting gas. Methods: We have used SEST, JCMT and IRAM 30 m telescopes to observe HNC 3-2 and HCN 3-2 line emission in a selection of 5 HNC-luminous Seyfert galaxies. We estimate and discuss the excitation conditions of HCN and HNC in NGC 1068, NGC 3079, NGC 2623 and NGC 7469, based on the observed 3-2/1-0 line intensity ratios. We also observed CN 1-0 and 2-1 emission and discuss its role in photon and X-ray dominated regions. Results: HNC 3-2 was detected in 3 galaxies (NGC 3079, NGC 1068 and NGC 2623). Not detected in NGC 7469. HCN 3-2 was detected in NGC 3079, NGC 1068 and NGC 1365, it was not detected in NGC 2623. The HCN 3-2/1-0 ratio is lower than 0.3 only in NGC 3079, whereas the HNC 3-2/1-0 ratio is larger than 0.3 only in NGC 2623. The HCN/HNC 1-0 and 3-2 line ratios are larger than unity in all the galaxies. The HCN/HNC 3-2 line ratio is lower than unity only in NGC 2623, which makes it comparable to galaxies like Arp 220, Mrk 231 and NGC 4418. Conclusions: We conclude that in three of the galaxies the HNC emissions emerge from gas of densities n ⪉ 105 cm-3, where the chemistry is dominated by ion-neutral reactions. The line shapes observed in NGC 1365 and NGC 3079 show that these galaxies have no circumnuclear disk. In NGC 1068 the emission of HNC emerges from lower (<105 cm-3) density gas than HCN (>105 cm-3

  9. Mid-Infrared Silicate Dust Features in Seyfert 1 Spectra

    NASA Astrophysics Data System (ADS)

    Thompson, Grant D.; Levenson, N. A.; Sirocky, M. M.; Uddin, S.

    2007-12-01

    Silicate dust emission dominates the mid-infrared spectra of galaxies, and the dust produces two spectral features, at 10 and 18 μm. These features' strengths (in emission or absorption) and peak wavelengths reveal the geometry of the dust distribution, and they are sensitive to the dust composition. We examine mid-infrared spectra of 32 Seyfert 1 active galactic nuclei (AGN), observed with the Infrared Spectrograph aboard the Spitzer Space Telescope. In the spectra, we typically find the shorter-wavelength feature in emission, at an average peak wavelength of 10.0 μm, although it is known historically as the "9.7 μm" feature. In addition, peak wavelength increases with feature strength. The 10 and 18 μm feature strengths together are sensitive to the dust geometry surrounding the central heating engine. Numerical calculations of radiative transfer distinguish between clumpy and smooth distributions, and we find that the surroundings of these AGN (the obscuring "tori" of unified AGN schemes) are clumpy. Polycyclic aromatic hydrocarbon (PAH) features are associated with star formation, and we find strong PAH emission (luminosity ≥ 1042 erg/s) in only four sources, three of which show independent evidence for starbursts. We will explore the effects of luminosity on dust geometry and chemistry in a comparison sample of quasars. We acknowledge work supported by the NSF under grant number 0237291.

  10. Hydrogen line ratios in Seyfert galaxies and low redshift quasars

    NASA Technical Reports Server (NTRS)

    Kriss, G. R.

    1984-01-01

    New observations of the Lymal alpha radiation/hydrogen alpha radiation ratio in a set of X-ray selected active galactic nuclei and an archival study of International Ultraviolet Explorer (IUE) observations of Lymal alpha low redshift quasars and Seyfert galaxies have been used to form a large sample for studying the influence of soft X-rays on the enhancement of Balmer emission in the broad line region. In common models of broad line clouds, the Balmer lines are formed deep in the interior, largely by collisional excitation. Heating within the clouds is provided by soft X-ray radiation, while Lymal alpha is formed mainly by recombination after photoionization. The ratio Lymal alpha/Halpha is expected to depend weakly on the ratio of ionizing ultraviolet luminosity to X-ray luminosity (L sub UV/l sub x). If the Lymal alpha luminosity is used as a measure of L sub UV' a weak dependence of Lymal/H alpha on the X-ray luminosity is found similar to previous results.

  11. The nuclear and integrated FIR emission of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    García-González, J.

    2015-09-01

    We present far-infrared (70-500micron) observations obtained with Herschel/PACS and SPIRE of 33 Seyfert galaxies from the Revised Shapley-Ames (RSA) catalogue. We selected these galaxies because they are nearby (median distance of 33Mpc) and have estimates of the nuclear and integrated star formation rates (SFR) from mid-infrared sub-arcsecond resolution and Spitzer/IRS spectroscopy, respectively. We measure the far-infrared nuclear (1kpc), 2kpc, and integrated spectral energy distributions (SEDs) from the Herschel images and estimate the unresolved nuclear emission at 70micron where Herschel provides the best angular resolution (median 0.9kpc). The goal is to select galaxies in our sample whose 70micron is mostly due to dust heated by the AGN. We will compare the 70micron emission together with existing nuclear 1-10micron SEDs and 8-13micron spectroscopy with clumpy torus model predictions. To estimate the AGN-produced 70micron emission we use a number of criteria. These include: (1) elevated nuclear 70/160 micron colours with respect to the typical colours of star forming galaxies, (2) 70micron excess emission with respect to the fit of the far-infrared SEDs with a grey body, (3) dust temperature higher than typical values of star forming galaxies, and (4) comparison of nuclear SFR obtained from 70 microns and mid-IR indicators.

  12. Transition (LINER/HII) nuclei as evolved Composite (Seyfert 2/Starburst) nuclei

    NASA Astrophysics Data System (ADS)

    Storchi-Bergmann, Thaisa; Brandt, C. H.; Cid Fernandes, R.; Schmitt, H. R.; González Delgado, R.

    2004-11-01

    We compare the circumnuclear stellar population and environmental properies of Seyfert and Composite (Seyfert + Starburst) nuclei with those of LINERs and LINER/HII transition galaxies (TOs), and discuss evidence for evolution from Seyfert/Composite to LINER/TO nuclei.

  13. PSPC soft x-ray observations of Seyfert 2 galaxies

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Urry, C. M.; Mushotzky, R. F.

    1993-01-01

    We present the results from ROSAT PSPC soft x-ray (0.1-2.0 keV) observations of six Seyfert 2 galaxies, chosen from the brightest Seyfert 2s detected with the Einstein Imaging Proportional Counter. All of the targets were detected with the ROSAT PSPC. Spatial analysis shows that the source density within a few arcmin of each Seyfert 2 galaxy is a factor of approximately eight higher than in the rest of the inner field of view of the PSPC images. In NGC1365 it appears that the serendipitous sources may be x-ray binary systems in the host galaxy. The proximity of the serendipitous sources, typically within a few arcmin of the target Seyfert 2, means that previous x-ray observations of the Seyfert 2 galaxies have been significantly contaminated, and that source confusion is important on a spatial scale of approximately 1 arcmin. Some spectra, most notably Mrk3 and NGC1365, indicate the presence of a high equivalent width soft x-ray line blend consistent with unresolved iron L and oxygen K emission.

  14. An Expanded RXTE Survey of Long-Term X-ray Variability in Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Edelson, R.

    2004-01-01

    The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogenous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from approx. 1 day to approx. 3.5 years. 2-10 keV variability on time scales of approx. 1 day, as probed by ASCA, are included. All sources exhibit stronger X-ray variability towards longer time scales, with variability amplitudes saturating at the longest time scales, but the increase is greater for relatively higher luminosity sources. The well-documented anticorrelation between variability amplitude and luminosity is confirmed on all time scales. However, anticorrelations between variability amplitude and black hole mass estimate are evident on only the shortest time scales probed. The data are consistent with the models of power spectral density (PSD) movement described in Markowitz et al. (2003) and McHardy et al. (2004), whereby Seyfert 1 galaxies variability can be described by a single, universal PSD shape whose cutoff frequency scales with black hole mass. The best-fitting scaling relations between variability time scale, black hole mass and X-ray luminosity support an average accretion rate of 2% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all time scales. Color-flux diagrams support also Seyfert 1s' softening as they brighten. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.

  15. Relativistic Fe Kα line study in Seyfert 1 galaxies observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Mantovani, G.; Nandra, K.; Ponti, G.

    2016-06-01

    We present an analysis of a sample of Seyfert 1 galaxies observed with Suzaku. The aim of this work is to examine critically the evidence for a relativistic Fe Kα line in the X-ray spectra of these active galactic nuclei. The sample was compiled from those sources in which a relativistic component was missing in at least one XMM-Newton observation. We analysed the Suzaku spectra of these objects in order to have more constraints on the high-energy emission, including the Compton reflection hump. The results show that the relativistic Fe Kα line is detected (at >95 per cent confidence) in all sources observed with high-signal-to-noise ratio (e.g. where the counts in the 5-7 keV energy band are ≳4 × 104). This is in agreement with the idea that relativistic lines are a ubiquitous feature in the spectra of Seyfert galaxies, but are often difficult to detect without very high-quality data. We also investigate the relation between the Fe Kα line and the reflection continuum at high energies. For most of the sample, the strength of the reflection component is consistent with that of the line. There are exceptions in both senses, however i.e. where the reflection continuum is strong but with weak line emission, and vice versa. These observations present a challenge for standard reflection models.

  16. Erratum: A Comparison of Radio Axis with Host Galaxy Plane Axis in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Schmitt, Henrique R.; Kinney, Anne L.; Storchi-Bergmann, Thaisa; Antonucci, Robert

    1997-08-01

    In the paper ``A Comparison of Radio Axis with Host Galaxy Plane Axis in Seyfert Galaxies'' by Henrique R. Schmitt, Anne L. Kinney, Thaisa Storchi-Bergmann, & Robert Antonucci (ApJ, 477, 623 [1997]), there are errors in Table 1 and Figure 6, and there is a reference to a previous work that should be stated. With respect to the latter, the authors compare the position angle of small-scale radio structures in Seyfert galaxies with the position angle of their host galaxy major axis. In their analysis they find a zone of avoidance, where the small-scale radio axis avoids close alignment with the host galaxy minor axis. The authors wish to note that J. S. Ulvestad and A. S. Wilson (ApJ, 285, 439 [1984]) already observed a paucity of radio structures aligned with the host galaxy minor axis in Seyfert 2 galaxies, although on a smaller sample. Ulvestad & Wilson was referenced in their paper as Ulvestad & Wilson (1984b). In Table 1 there were errors in the references listed in the note to the table. A new version of Table 1 with correct references is given here, and the following reference entries should be added to the reference list of the original paper: Mulchaey, J. S., Wilson, A. S., & Tsvetanov, Z. I. 1996, ApJS, 102, 309; Oke, J. B., & Lauer, T. R. 1979, ApJ, 230, 360; Simkin, S. M. 1975, ApJ, 200, 567. Figure 6a was printed twice, once correctly and once incorrectly in place of Figure 6c. The correct version of Figure 6c appears below.

  17. X-RAY OUTFLOWS IN THE SWIFT BURST ALERT DETECTED SEYFERT 1s

    SciTech Connect

    Winter, Lisa M.

    2010-12-20

    Previous surveys of outflows in low-redshift active galactic nuclei (AGNs) have relied on the analysis of sources selected primarily for their optical/X-ray brightness and are therefore biased. Toward determining the outflow properties of local AGNs, we detect warm absorption signatures of O VII and O VIII absorption edges in the available Suzaku/XMM-Newton CCD spectra of an unbiased sample of 44 Seyfert 1-1.5 sources selected in the very hard X-rays (14-195 keV) with the Swift Burst Alert Telescope. From our analysis, we find that O VII and O VIII absorption edges are present in 41% of the sample. This fraction is dependent on luminosity, with outflow detections in 60% of low-luminosity and 30% of high-luminosity sources. However, grating spectroscopy of the highest luminosity sources reveals that {approx}80% of these sources have ionized absorbers, but that the ionization states are higher/lower than produces the O VII and O VIII edges. This suggests that ionized absorption may be present in all local Seyfert 1s.

  18. X-Ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Edelson, R.; Vaughan, S.; Uttley, P.; George, I. M.; Griffiths, R. E.; Kaspi, S.; Lawrence, A.; McHandy, I.; Nandra, K.

    2003-01-01

    By combining complementary monitoring observations spanning long, medium and short time scales, we have constructed power spectral densities (PSDs) of six Seyfert 1 galaxies. These PSDs span approx. greater than 4 orders of magnitude in temporal frequency, sampling variations on time scales ranging from tens of minutes to over a year. In at least four cases, the PSD shows a "break," a significant departure from a power law, typically on time scales of order a few days. This is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass compact systems with breaks on time scales of seconds. NGC 3783 shows tentative evidence for a doubly-broken power law, a feature that until now has only been seen in the (much better-defined) PSDs of low-state XRBs. It is also interesting that (when one previously-observed object is added to make a small sample of seven), an apparently significant correlation is seen between the break time scale T and the putative black hole mass M(sub BH), while none is seen between break time scale and luminosity. The data are consistent with the linear relation T = M(sub BH) /10(exp 6.5) solar mass; extrapolation over 6-7 orders of magnitude is in reasonable agreement with XRBs. All of this strengthens the case for a physical similarity between Seyfert 1s and XRBs.

  19. The morphology of minor axis gaseous outflows in edge-on Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Robitaille, T. P.; Rossa, J.; Bomans, D. J.; van der Marel, R. P.

    2007-03-01

    Context: Spiral galaxies often have extended outflows that permeate beyond the region of the disk. Such outflows have been seen both in starburst galaxies, actively star forming galaxies and galaxies with an AGN. In the latter galaxies it is unknown whether the large-scale outflows are driven by star formation activity or purely by the active nucleus. Aims: The aim of our investigation is to study the frequency of extended minor-axis outflows in edge-on Seyfert galaxies to investigate the role of the AGN, the circumnuclear environment and star formation activity within the disk regions, and their importance for IGM enrichment on large scales. Methods: We obtained optical narrowband imaging observations of a distance limited, northern hemisphere sample of 14 edge-on Seyfert spiral galaxies. Because of the distance-limited nature of the sample, it is restricted to relatively low-luminosity Seyfert galaxies. The data were obtained with BUSCA attached to the 2.2 m telescope at the Calar Alto observatory. Narrowband imaging in two different ionizational stages (Hα and [O iii] ) was performed to attempt a discrimination between processes associated with the active nucleus and those connected to star forming activity within the disk. The median 3-σ sensitivities for detection of high-latitude extended emission in the sample galaxies are 3.6×10-17 erg s-1 cm-2 arcsec-2 for the Hα images and 6.9×10-17 erg s-1 cm-2 arcsec-2 for the [O iii] images. We use the data to study the distribution of extraplanar emission with respect to the AGN and the underlying disk H ii regions. Results: The Hα morphology of the Seyfert galaxies is usually complex, but only in three out of 14 galaxies did we find evidence for minor axis disk outflows. At the sensitivity of our observations [O iii] emission is generally detected only in the nuclear region. For Ark 79 we present the first evidence of a secondary nuclear component, best visible in the [O iii] image, which has a linear

  20. Thick discs, and an outflow, of dense gas in the nuclei of nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Davies, R. I.; Burtscher, L.; Contursi, A.; Genzel, R.; González-Alfonso, E.; Graciá-Carpio, J.; Janssen, A.; Lutz, D.; Orban de Xivry, G.; Rosario, D.; Schnorr-Müller, A.; Sternberg, A.; Sturm, E.; Tacconi, L.

    2016-05-01

    We discuss the dense molecular gas in central regions of nearby Seyfert galaxies, and report new arcsec resolution observations of HCN (1-0) and HCO+ (1-0) for three objects. In NGC 3079, the lines show complex profiles as a result of self-absorption and saturated continuum absorption. H13CN reveals the continuum absorption profile, with a peak close to the galaxy's systemic velocity that traces disc rotation, and a second feature with a blue wing extending to -350 km s-1 that most likely traces a nuclear outflow. The morphological and spectral properties of the emission lines allow us to constrain the dense gas dynamics. We combine our kinematic analysis for these three objects, as well as another with archival data, with a previous comparable analysis of four other objects, to create a sample of eight Seyferts. In seven of these, the emission line kinematics imply thick disc structures on radial scales of ˜100 pc, suggesting such structures are a common occurrence. We find a relation between the circum-nuclear LHCN and Mdyn that can be explained by a gas fraction of 10 per cent and a conversion factor αHCN ˜ 10 between gas mass and HCN luminosity. Finally, adopting a different perspective to probe the physical properties of the gas around active galactic nuclei, we report on an analysis of molecular line ratios which indicates that the clouds in this region are not self-gravitating.

  1. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    SciTech Connect

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A.; Tamura, Kazuyuki

    2013-07-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r {approx}< 1 kpc) host-galaxy morphology are correlated. Currently, this relationship has only been established qualitatively, by visual inspection of the core morphologies of low-redshift (z < 0.035) Seyfert host galaxies. We re-establish this empirical relationship in Hubble Space Telescope optical imaging by visual inspection of a catalog of 85 local (D < 63 Mpc) Seyfert galaxies. We also attempt to re-establish the core morphology-Seyfert class relationship using an automated, non-parametric technique that combines both existing classification parameter methods (the adapted CAS and G-M {sub 20}) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  2. X-ray evidence of an obscured nucleus in the type 2 Seyfert galaxy Mkn3

    NASA Astrophysics Data System (ADS)

    Awaki, H.; Koyama, K.; Kunieda, H.; Tawara, Y.

    1990-08-01

    Seyfert galaxies are classified as type 1 or 2 according to the presence or absence of broad emission lines in the optical spectrum. The high velocities indicated by the broad lines in Seyfert 1 galaxies are taken to be good evidence of a compact, massive object, as are the strong and variable hard X-ray sources that are also generally observed in these objects. In contrast, Seyfert 2 galaxies possess neither of these characteristics, so the theory that they too have an accreting massive blackhole is less compelling. Since the discovery by spectropolarimetry of a 'hidden' Seyfert 1 nucleus in the prototypical Seyfert 2, NGC1068, the long-standing hope that the two classes may be unified has been revived. Here from observations by the Ginga satellite that another Seyfert 2, Mkn3, has the X-ray spectral signature of a hidden type 1 nucleus.

  3. Extinction, profile asymmetry, and tidal effects in Seyfert and starburst galaxies

    NASA Technical Reports Server (NTRS)

    Dahari, Oved; De Robertis, Michael M.

    1988-01-01

    Possible correlations between luminosity, extinction, and morphological properties of 246 Seyfert and starburst galaxies are investigated. It is shown that the asymmetry of the forbidden O III 5007 A profile is correlated with the signature of dust in both Seyfert types, and therefore establishes a direct connection between them. A positive correlation is found between soft X-ray luminosities and optical reddening for Seyfert 2's and a negative correlation for Seyfert 1's. These and other correlations are discussed in the context of current models of active nuclei. No statistically significant differences are found between Seyferts with and without companions, except that interacting Seyfert 2's have excess infrared and radio-continuum emission.

  4. Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability

    NASA Technical Reports Server (NTRS)

    Edelson, R. A.; Pike, G. F.; Krolik, J. H.

    1990-01-01

    A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.

  5. Brackett alpha and gamma Observations of Starburst and Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Kawara, Kimiaki; Nishida, Minoru; Phillips, M. M.

    1989-02-01

    Br (Brackett) α and γ line fluxes of starburst and Seyfert galaxies are presented. The Bra line has been detected in seven of 12 galaxies. These data are combined with published Brackett line fluxes of M82 and NGC 253 to examine the relation between the extinction, A_v_, derived from the Brα/Brγ ratio and the optical depth, τ(10), of the silicate absorption at 10 microns. Generally speaking, a line of slope A_v_/τ(10) = 14 fits the data well, which is the same relation as found in the Milky Way. In the type 2 Seyferts NGC 1068 and NGC 5506, the observed Brα/Brγ ratios may not be simply explained by case B recombination with heavy extinction. The extinction values derived from Brα/Brγ are compared with those determined from optical and X-ray observations, and the implications are discussed.

  6. The physical state of the obscuring torus in Seyfert galaxies

    SciTech Connect

    Krolik, J.H.; Lepp, S. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA )

    1989-12-01

    Calculations are presented describing the ionization, chemical, and thermal state of molecular material in the obscuring tori close to the nuclei of many Seyfert galaxies. These are unusual molecular clouds: their electron fractions are about .001 and their temperatures are about 1000 K. Cooling is accomplished primarily by radiation of NIR H2 lines and FIR CO lines. High-J (C-12)(O-16) rotational lines should eventually be detectable from the nearer Seyfert galaxies. Medium-J lines due to (C-13)(O-16) and (C-12)(O-18) as well as (C-12)(O-16) should also be strong. Because ordinary molecular clouds are weak in these lines, the nuclear CO emissions can be distinguished from CO emission farther out in the host galaxy's disk. 28 refs.

  7. Discovery of Relativistic Outflow in the Seyfert Galaxy Ark 564

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Mathur, S.; Krongold, Y.; Nicastro, F.

    2013-07-01

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as Kα transitions of O VII (two lines) and O VI at outflow velocities of ~0.1c. These lines are detected at 6.9σ, 6.2σ, and 4.7σ, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectral fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find \\dot{E}(outflow)/L_{bol} lower limit of >=0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved.

  8. A comprehensive analysis of the hard X-ray spectra of bright Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Lubiński, P.; Beckmann, V.; Gibaud, L.; Paltani, S.; Papadakis, I. E.; Ricci, C.; Soldi, S.; Türler, M.; Walter, R.; Zdziarski, A. A.

    2016-05-01

    Hard X-ray spectra of 28 bright Seyfert galaxies observed with INTEGRAL were analysed together with the X-ray spectra from XMM-Newton, Suzaku and RXTE. These broad-band data were fitted with a model assuming a thermal Comptonization as a primary continuum component. We tested several model options through a fitting of the Comptonized continuum accompanied by a complex absorption and a Compton reflection. Both the large data set used and the model space explored allowed us to accurately determine a mean temperature kTe of the electron plasma, the Compton parameter y and the Compton reflection strength R for the majority of objects in the sample. Our main finding is that a vast majority of the sample (20 objects) is characterized by kTe < 100 keV, and only for two objects we found kTe > 200 keV. The median kTe for entire sample is 48_{-14}^{+57} keV. The distribution of the y parameter is bimodal, with a broad component centred at ≈0.8 and a narrow peak at ≈1.1. A complex, dual absorber model improved the fit for all data sets, compared to a simple absorption model, reducing the fitted strength of Compton reflection by a factor of about 2. Modest reflection (median R ≈ 0.32) together with a high ratio of Comptonized to seed photon fluxes point towards a geometry with a compact hard X-ray emitting region well separated from the accretion disc. Our results imply that the template Seyferts spectra used in the population synthesis models of active galactic nuclei (AGN) should be revised.

  9. The nuclear and integrated far-infrared emission of nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    García-González, J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Pereira-Santaella, M.; Ramos-Almeida, C.; Acosta-Pulido, J. A.; Díaz-Santos, T.; Esquej, P.; González-Martín, O.; Ichikawa, K.; López-Rodríguez, E.; Povic, M.; Roche, P. F.; Sánchez-Portal, M.

    2016-06-01

    We present far-infrared (FIR) 70-500 μm imaging observations obtained with Herschel/Photodetector Array Camera (PACS) and Spectral and Photometric Imaging REceiver (SPIRE) of 33 nearby (median distance of 30 Mpc) Seyfert galaxies from the Revised Shapley-Ames (RSA) catalogue. We obtain the FIR nuclear (r = 1 kpc and r = 2 kpc) and integrated spectral energy distributions (SEDs). We estimate the unresolved nuclear emission at 70 μm and we fit the nuclear and integrated FIR SEDs with a grey body model. We find that the integrated FIR emission of the RSA Seyferts in our sample is dominated by emission from the host galaxy, with dust properties similar to those of normal galaxies (non-AGN). We use four criteria to select galaxies whose nuclear 70 μm emission has a significant AGN contribution: (1) elevated 70/160 μm flux ratios, (2) spatially resolved, high dust temperature gradient, (3) 70 μm excess emission with respect to the fit of the FIR SEDs with a grey body, and (4) excess of nuclear SFR obtained from 70 μm over SFR from mid-infrared indicators. 16 galaxies (48 per cent of the initial sample) satisfy at least one of these conditions, whereas 10 satisfy half or more. After careful examination of these, we select six bona fide candidates (18 per cent of the initial sample) and estimate that ˜40-70 per cent of their nuclear (r = 1-2 kpc) 70 μm emission is contributed by dust heated by the AGN.

  10. NEUTRAL GAS OUTFLOWS AND INFLOWS IN INFRARED-FAINT SEYFERT GALAXIES

    SciTech Connect

    Krug, Hannah B.; Veilleux, Sylvain; Rupke, David S. N. E-mail: veilleux@astro.umd.ed

    2010-01-10

    Previous studies of the Na I D interstellar absorption line doublet have shown that galactic winds occur in most galaxies with high infrared luminosities. However, in infrared-bright composite systems where a starburst coexists with an active galactic nucleus (AGN), it is unclear whether the starburst, the AGN, or both are driving the outflows. The present paper describes the results from a search for outflows in 35 infrared-faint Seyferts with 10{sup 9.9}< L{sub IR}/L{sub sun} < 10{sup 11}, or, equivalently, star formation rates (SFRs) of approx0.4-9 M{sub sun} yr{sup -1}, to attempt to isolate the source of the outflow. We find that the outflow detection rates for the infrared-faint Seyfert 1s (6%) and Seyfert 2s (18%) are lower than previously reported for infrared-luminous Seyfert 1s (50%) and Seyfert 2s (45%). The outflow kinematics of infrared-faint and infrared-bright Seyfert 2 galaxies resemble those of starburst galaxies, while the outflow velocities in Seyfert 1 galaxies are significantly larger. Taken together, these results suggest that the AGN does not play a significant role in driving the outflows in most infrared-faint and infrared-bright systems, except the high-velocity outflows seen in Seyfert 1 galaxies. Another striking result of this study is the high rate of detection of inflows in infrared-faint galaxies (39% of Seyfert 1s, 35% of Seyfert 2s), significantly larger than in infrared-luminous Seyferts (15%). This inflow may be contributing to the feeding of the AGN in these galaxies, and potentially provides more than enough material to power the observed nuclear activity over typical AGN lifetimes.

  11. Infrared emission in Seyfert 2 galaxies - Reprocessed radiation from a dusty torus?

    NASA Technical Reports Server (NTRS)

    Storchi-Bergmann, Thaisa; Mulchaey, John S.; Wilson, Andrew S.

    1992-01-01

    New and existing data for a sample of nine Seyfert 2 galaxies with known 'ionization cones' are combined in order to test whether collimation results from shadowing of radiation from a small isotropic nuclear source by a thick dusty torus. The number of ionizing photons emitted by the compact nucleus is calculated from the emission-line ratios measured for gas within the cones. On the assumption that this compact nuclear source radiates isotropically, the optical-UV power incident on the torus, which is expected to be reradiated in the IR, is determined. It is found that the observed IRAS luminosities are consistent with the torus model in eight of the nine objects with sufficient data to perform the calculation. It is concluded that the data are generally consistent with collimation and reradiation by a dusty torus.

  12. Radio lobes and forbidden O III profile substructure in Seyfert galaxies

    SciTech Connect

    Whittle, M.; Pedlar, A.; Unger, S.W.; Axon, D.J.; Meurs, E.J.A.

    1988-03-01

    High spatial and spectral resolution observations are presented for 10 Seyfert galaxies in the H-beta-forbidden O III 5007 A spectral region. In most of the objects, there is evidence for forbidden O III profile substructure, which appears to be most conspicuous close to the location of a radio lobe. The relative intensities of forbidden O III component emission and ambient forbidden O III emission vary greatly from object to object. A control sample shows little evidence for spatially resolved forbidden O III profile substructure. The forbidden O III components usually have high excitation. The component velocities can fall well outside the maximum galactic rotation amplitude and, in some cases, are opposite to the sense of rotation. This strongly suggests that the component gas does not rotate with the rest of the galactic gas but is instead undergoing systematic outflow. 47 references.

  13. THE RELATIONSHIP BETWEEN BLACK HOLE GROWTH AND STAR FORMATION IN SEYFERT GALAXIES

    SciTech Connect

    Diamond-Stanic, Aleksandar M.; Rieke, George H.

    2012-02-20

    We present estimates of black hole accretion rates (BHARs) and nuclear, extended, and total star formation rates for a complete sample of Seyfert galaxies. Using data from the Spitzer Space Telescope, we measure the active galactic nucleus (AGN) luminosity using the [O IV] {lambda}25.89 {mu}m emission line and the star-forming luminosity using the 11.3 {mu}m aromatic feature and extended 24 {mu}m continuum emission. We find that black hole growth is strongly correlated with nuclear (r < 1 kpc) star formation, but only weakly correlated with extended (r > 1 kpc) star formation in the host galaxy. In particular, the nuclear star formation rate (SFR) traced by the 11.3 {mu}m aromatic feature follows a relationship with the BHAR of the form SFR{proportional_to} M-dot{sub BH}{sup 0.8}, with an observed scatter of 0.5 dex. This SFR-BHAR relationship persists when additional star formation in physically matched r = 1 kpc apertures is included, taking the form SFR{proportional_to} M-dot{sub BH}{sup 0.6}. However, the relationship becomes almost indiscernible when total SFRs are considered. This suggests a physical connection between the gas on sub-kiloparsec and sub-parsec scales in local Seyfert galaxies that is not related to external processes in the host galaxy. It also suggests that the observed scaling between star formation and black hole growth for samples of AGNs will depend on whether the star formation is dominated by a nuclear or an extended component. We estimate the integrated black hole and bulge growth that occurs in these galaxies and find that an AGN duty cycle of 5%-10% would maintain the ratio between black hole and bulge masses seen in the local universe.

  14. Near-Infrared Coronal Lines in Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Viegas, S. M.; Pastoriza, M. G.; Prato, L.

    2002-11-01

    We report spectroscopic observations in the wavelength region 0.8-2.4 μm aimed at detecting near-infrared coronal lines in a sample of five narrow-line and one broad-line Seyfert 1 galaxies. Our measurements show that [Si VI] 1.963 μm, [S IX] 1.252 μm, and [S VIII] 0.991 μm are present in most of the objects and are useful tracers of nuclear activity. Line ratios between coronal and low-ionization forbidden lines are larger in narrow-line Seyfert 1 galaxies. A positive correlation between FHWM and ionization potential of the forbidden lines is observed. Some coronal lines have widths similar to those of lines emitted in the broad-line region (BLR), indicating that part of their flux originates in gas close to the outer portions of the BLR. Most coronal lines are blueshifted relative to the systemic velocity of the galaxy, and this shift increases with the increase in line width. Asymmetries toward the blue are observed in the profiles of high-ionization Fe lines, suggesting that the emitting gas is related to winds or outflows, most probably originating in material that is being evaporated from the torus. This scenario is supported by models that combine the effects of shock ionization and photoionization by a central continuum source in the gas clouds. The agreement between the coronal line emission predicted by the models and the observations is satisfactory; the models reproduced the whole range of coronal line intensities observed. We also report the detection of [Fe XIII] 1.074, 1.079 μm in three of our objects and the first detection of [P II] 1.188 μm and [Ni II] 1.191 μm in a Seyfert 1 galaxy, Ark 564. Using the ratio [P II]/[Fe II], we deduced that most Fe present in the outer narrow-line region of Ark 564 is locked up in grains and that the influence of shocks is negligible.

  15. High-Resolution Emission-Line Imaging of Seyfert Galaxies. II. Evidence for Anisotropic Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew S.; Ward, Martin J.; Haniff, Christopher A.

    1988-11-01

    In the preceding paper, we describe a direct imaging survey of Seyfert galaxies with "linear" radio structures and find that the major axes and spatial scales of the circumnuclear emission-line gas are very similar to those of the radio continuum sources. In the present paper, the nature of this close connection between thermal and relativistic gases is assessed in detail. Models in which the kinetic energy of the radio jets or plasmoids powers shock waves, which ionize the gas, seem energetically feasible but disagree with the off-nuclear line intensity ratios. Ionization by relativistic electrons is negligible, but they may contribute to the heating of the gas. We favor a scenario in which the radio jets and plasmoids shock, accelerate, and compress ambient and entrained gas, but the dominant source of ionization is the nonstellar nuclear ultraviolet continuum. This ultraviolet source appears to be partially beamed along the axis of the radio jet. Photoionization by ultraviolet synchrotron radiation generated via shocks in the ejecta may also contribute, especially in Seyfert 2 galaxies. A comparison between the number of ionizing photons, N_i_, inferred by extrapolation of the directly observed continuum, and the number of ionizing photons, N_Hβ_, required to generate the Hβ emission has been made for six galaxies in our sample. In at least two galaxies, we find N_i_ << N_Hβ_, suggesting that the gas is exposed to a higher ionizing flux than inferred from direct observations of the nucleus, and supporting the idea of partial beaming. Similarly, the energy in the continuum between 100 A and 1 micron, if emitted isotropically, is inadequate to fuel the thermal nuclear infrared sources, implying that the radiating dust is heated by a more luminous optical-ultraviolet source. We speculate that the nuclear infrared emission of Seyfert 2 galaxies arises from dust in molecular clouds exposed to the partially beamed radiation, and we predict that the 10 micron

  16. A spectrophotometric atlas of Narrow-Line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.; Gonçalves, A. C.

    2001-06-01

    We have compiled a list of 83 objects classified as Narrow-Line Seyfert 1 galaxies (NLS1s) or known to have a broad Balmer component narrower than 2 000 km s-1. Of these, 19 turned out to have been spectroscopically misidentified in previous studies; only 64 of the selected objects are genuine NLS1s. We have spectroscopically observed 59 of them and tried to characterize their Narrow and Broad-Line Regions (NLR and BLR) by fitting the emission-lines with Gaussian and/or Lorentzian profiles. In most cases, the broad Balmer components are well fitted by a single Lorentzian profile, confirming previous claims that Lorentzian rather than Gaussian profiles are better suited to reproduce the shape of the NLS1s broad emission lines. This has consequences concerning their FWHMs and line ratios: when the broad Balmer components are fitted with a Lorentzian, most narrow line regions have line ratios typical of Seyfert 2s while, when a Gaussian profile is used for fitting the broad Balmer components, the line ratios are widely scattered in the usual diagnostic diagrams (Veilleux & Osterbrock \\cite{vei87}); moreover, the FWHM of the best fitting Lorentzian is systematically smaller than the FWHM of the Gaussian. We find that, in general, the [O III] lines have a relatively narrow Gaussian profile ( ~ 200-500 km s-1 FWHM) with often, in addition, a second broad ( ~ 500-1 800 km s-1 FWHM), blueshifted Gaussian component. We do not confirm that the [O III] lines are weak in NLS1s. As previously suggested, there is a continuous transition of all properties between NLS1s and classical Broad-Line Seyfert 1 Galaxies (BLS1s) and the limit of 2000 km s-1 used to separate the two species is arbitrary; R4570, the ratio of the Fe II to the Hβ fluxes, could be a physically more meaningful parameter to distinguish them.

  17. Near-infrared long-slit spectra of Seyfert galaxies: gas excitation across the central kiloparsec

    NASA Astrophysics Data System (ADS)

    van der Laan, T. P. R.; Schinnerer, E.; Böker, T.; Armus, L.

    2013-12-01

    Context. The excitation of the gas phase of the interstellar medium can be driven by various mechanisms. In galaxies with an active nucleus, such as Seyfert galaxies, both radiative and mechanical energy from the central black hole, or the stars in the disk surrounding it may play a role. Aims: We investigate the relative importance and range of influence of the active galactic nucleus for the excitation of ionized and molecular gas in the central kiloparsec of its host galaxy. Methods: We present H- and K-band long-slit spectra for a sample of 21 nearby (D < 70 Mpc) Seyfert galaxies obtained with the NIRSPEC instrument on the Keck telescope. For each galaxy, we fit the nebular line emission, stellar continua, and warm molecular gas as a function of distance from the nucleus. Results: Our analysis does not reveal a clear difference between the nucleus proper and off-nuclear environment in terms of excitation mechanisms, suggesting that the influence of an AGN reaches far into the disk of the host galaxy. The radial variations in emission line ratios indicate that, while local mechanisms do affect the gas excitation, they are often averaged out when measuring over extended regions. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.Table 4 and Appendix A are available in electronic form at http://www.aanda.orgThe fully calibrated long-slit spectra and fitting are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A99

  18. Probing the Absorption Structures in Seyfert Galaxies with X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gelbord, J.

    2001-12-01

    The paradigm of the unified model for Seyfert galaxies has had many successes in explaining the range of phenomena observed in active galaxies. However, the structures invoked in this scenario have been difficult to observe due to their limited sizes and due to contaminating flux from other regions. As a result, some of these structures, notably the putative obscuring torus, are poorly constrained. The difficulty in isolating the emission from the central regions can be mitigated (but not eliminated!) by focusing upon high-energy radiation, which is dominated by direct and reprocessed radiation from the nuclear region. We have drawn upon the large number of X-ray spectra available in the ASCA archive in order to study the distribution of properties in a large sample of high-energy observations. Furthermore, by uniformly processing the data ourselves, we minimize systematic effects. One asset of X-rays is that they provide a sensitive probe of absorbers in the line of sight toward the central region, because photoelectric absorption cuts off the continuum at low energies. In the ASCA bandpass column densities of ~1021-23 cm-2 can be measured. This is an interesting range of densities because it allows us to distinguish between absorption in a torus or possibly a warped accretion disk (where column densities are expected to be high) and absorption taking place at larger scales in the host galaxy (where column densities are expected to be closer to Galactic values of 1020-21 cm-2). This data is then compared to data from other wavebands. Published radio studies (e.g.: Nagar & Wilson 1999, Kinney et al. 2000) have put constraints on the orientations of the accretion systems in Seyfert galaxies. We combine these and the X-ray measurements for the ~50 sources in these studies which have ASCA data in order to constrain the various possible absorption structures and test the unification scenario.

  19. The Warm Absorber of the Seyfert Galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Andrade, M.; Krongold, Y.; Elvis, M.; Nicastro, F.; Binette, L.; Brickhouse, N.

    2008-04-01

    We present a spectral analysis of the X-ray Chandraof the Seyfert 1 Galaxy NGC 5548. The warm absorber present in this object was modeled with the code PHASE. We detected two different outflow velocity systems in this source. One of the absorbing systems has outflow velocity of -1091+/-63 km s(-1) and the other of -568+/-49 km s(-1) . Each system required two absorption components with different ionization level to fit the observed features. Each velocity system may consist of a multi-phase medium.

  20. Masas de agujeros negros en Narrow Line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Schmidt, E.; Ferreiro, D.; Oio, G.; Vega, L.; Donoso, L.

    We describe two of the ways to estimate black hole masses in AGN, and then we estimate the black hole masses of 13 Narrow Line Seyfert 1 galaxies with the two methods: virial masses, using the correlation found by Greene & Ho (2005, ApJ, 630, 122); and the correlation found by Tremaine et al. (2002, ApJ, 574, 740). For this work we analyzed the optical spectroscopy data we obtained from CASLEO (San Juan). We compare the results obtained through both methods. FULL TEXT IN SPANISH

  1. Seyfert's Sextet (HGC 79): An Evolved Stephan's Quintet?

    NASA Astrophysics Data System (ADS)

    Durbala, A.; Sulentic, J.; Rosado, M.; Del Olmo, A.; Perea, J.; Plana, H.

    Scanning Fabry-Perot interferometers MOS/SIS (3.6m CFHT)+PUMA (2.1m OAN-SPM, México) and the long-slit spectrograph ALFOSC (2.5m NOT, La Palma) were used to measure the kinematics of gas and stars in Seyfert's Sextet (HCG79). We interpret it as a highly evolved group that formed from sequential acquistion of mostly late-type galaxies that are now slowly coalescing and undergoing strong secular evolution. We find evidence for possible feedback as revealed by accretion and minor merger events in two of the most evolved members.

  2. Einstein SSS+MPC observations of Seyfert type galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Turner, T. J.; Mushotzky, R. F.; Weaver, K.

    1989-01-01

    The X-ray spectra of 27 Seyfert galaxies measured with the Solid State Spectrometer (SSS) onboard the Einstein Observatory is investigated. This new investigation features the utilization of simultaneous data from the Monitor Proportional Counter (MPC) and automatic correction for systematic effects in the SSS. The new results are that the best-fit single power law indices agree with those previously reported, but that soft excesses are inferred for at least 20 percent of the measured spectra. The soft excesses are consistent with either an approximately 0.25 keV black body or Fe-L line emission.

  3. Einstein SSS+MPC observations of Seyfert type galaxies

    NASA Astrophysics Data System (ADS)

    Holt, S. S.; Turner, T. J.; Mushotzky, R. F.; Weaver, K.

    1989-11-01

    The X-ray spectra of 27 Seyfert galaxies measured with the Solid State Spectrometer (SSS) onboard the Einstein Observatory is investigated. This new investigation features the utilization of simultaneous data from the Monitor Proportional Counter (MPC) and automatic correction for systematic effects in the SSS. The new results are that the best-fit single power law indices agree with those previously reported, but that soft excesses are inferred for at least 20 percent of the measured spectra. The soft excesses are consistent with either an approximately 0.25 keV black body or Fe-L line emission.

  4. Detection of Ni 2 lambda 7378 in six Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Oke, J. B.

    1985-01-01

    A line due to Ni 2 7378 in the Seyfert galaxies NGC 1068, 2110, 3227, 4151, 5506, and Arp 102 B was detected. The average Ni abundance is about 2 times solar, which is 5 times less than in the filaments of the Crab Nebula. This argues for nucleosynthetic processing in the latter. The Ni 2 line is spatially revolved in NGC 1068, and shows at least a factor of 4 enhancement in the Ni abundance away from the nucleus. The off-nuclear abundance of Ni in NGC 1068 approaches that of the Crab, which strongly suggests that type supernovae enriched the off-nuclear gas clouds.

  5. Accretion tori and cones of ionizing radiation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.

    1990-01-01

    The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.

  6. Ultraviolet and optical spectra of high-ionization Seyfert galaxies with narrow lines

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. Michael; Peterson, Bradley M.; Korista, Kirk T.; Wagner, R. Mark; Aufdenberg, Jason P.

    1991-01-01

    Ultraviolet and optical spectra are presented for three unusual Seyfert galaxies (Mrk 1239, Mrk 42, and Mrk 493) that resemble Seyfert 1 galaxies in that they have strong high-ionization lines and strong nonstellar continua, but resemble Seyfert 2 galaxies in that the widths of their permitted lines are as narrow as the widths of their forbidden lines. The He II lambda 1640 and He II lambda 4686 lines are used to determine an upper limit to the reddening experienced by the emission lines. Published optical data show that these particular high-ionization narrow-line (HINL) Seyferts have low lambda 5007 H beta ratios and strong Fe II emission, which suggest the presence of high-density regions. The low Lalpha/H-beta ratios in these objects indicate that high-density clouds are indeed present, and, like the broad-line region clouds in Seyfert 1 galaxies, these clouds have large optical depths with partially ionized zones. Overall, the line ratios and continuum fluxes of these particular HINL Seyferts are indistinguishable from those of broad-lined Seyfert 1 galaxies.

  7. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    SciTech Connect

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei; Zhang, Jin; Xue, Zi-Wei; Zhang, Shuang-Nan

    2015-01-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.

  8. Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948 0022 in March-July 2009

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R. Berenji, B.; Bloom, E.D.; Bonamente, E. Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; Caliandro, G.A.; /more authors..

    2012-03-29

    Following the recent discovery of {gamma} rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to {gamma} rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to {gamma}-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the {gamma}-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.

  9. Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948+0022 in 2009 March-July

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Celotti, A.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Collmar, W.; Conrad, J.; Costamante, L.; Cutini, S.; de Angelis, A.; de Palma, F.; Silva, E. Do Couto e.; Drell, P. S.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fortin, P.; Foschini, L.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Hays, E.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuss, M.; Lande, J.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Max-Moerbeck, W.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; McGlynn, S.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Nestoras, I.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Parent, D.; Pavlidou, V.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Readhead, A.; Reimer, O.; Reposeur, T.; Richards, J. L.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Shaw, M. S.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wehrle, A. E.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Zensus, J. A.; Ziegler, M.; Fermi/LAT Collaboration; Angelakis, E.; Bailyn, C.; Bignall, H.; Blanchard, J.; Bonning, E. W.; Buxton, M.; Canterna, R.; Carramiñana, A.; Carrasco, L.; Colomer, F.; Doi, A.; Ghisellini, G.; Hauser, M.; Hong, X.; Isler, J.; Kino, M.; Kovalev, Y. Y.; Kovalev, Yu. A.; Krichbaum, T. P.; Kutyrev, A.; Lahteenmaki, A.; van Langevelde, H. J.; Lister, M. L.; Macomb, D.; Maraschi, L.; Marchili, N.; Nagai, H.; Paragi, Z.; Phillips, C.; Pushkarev, A. B.; Recillas, E.; Roming, P.; Sekido, M.; Stark, M. A.; Szomoru, A.; Tammi, J.; Tavecchio, F.; Tornikoski, M.; Tzioumis, A. K.; Urry, C. M.; Wagner, S.

    2009-12-01

    Following the recent discovery of γ rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to γ rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to γ-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the γ-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.

  10. Spectrophotometry of Seyfert 2 galaxies and narrow-line radio galaxies

    NASA Technical Reports Server (NTRS)

    Koski, A. T.

    1978-01-01

    Results are reported for a spectrophotometric survey of several Seyfert 2 galaxies, intermediate Seyferts, and narrow-line radio galaxies. The emission-line spectra of the galaxies are analyzed, emphasizing line intensities, reddening, temperatures, densities, line strength correlations, line widths, and redshift differences. The continuous spectra are examined, and possible ionization sources are considered. It is found that: (1) there are no distinguishing differences between the spectra of Seyfert 2 galaxies and narrow-line radio galaxies; (2) the emission spectra are rich in lines from a wide range of ionization levels; (3) the continuum is starlight diluted by an underlying continuous spectrum; (4) the line widths of both classes of galaxies have the same distribution; (5) there appear to be regions of high and low ionization in the Seyfert 2 and narrow-line radio galaxies; (6) photoionization seems quite likely as the energy input to the gas; and (7) all the galaxies show a UV excess in their spectra.

  11. Reflection at Large Distance from the Central Engine in Seyferts

    NASA Astrophysics Data System (ADS)

    Malzac, J.; Petrucci, O.

    We consider the possibility that most of the reflection component, observed in the hard X-ray spectra of Seyfert galaxies, could be formed on an extended medium, at large distance from the central source of primary radiation (e.g. on a torus). Then, the reflector cannot respond to the rapid fluctuations of the primary source. The observed reflected flux is controlled by the time-averaged primary spectrum rather than the instantaneous (observed) one. We show that this effect strongly influence the spectral fits parameters derived under the assumption of a reflection component consistent with the primary radiation. We find that a pivoting primary power-law spectrum with a nearly constant Comptonised luminosity may account for the reported correlation between the reflection amplitude R and the spectral index Γ.

  12. INDECENT EXPOSURE IN SEYFERT 2 GALAXIES: A CLOSE LOOK

    SciTech Connect

    Tran, Hien D.; Lyke, J. E.; Mader, Jeff A.

    2011-01-10

    NGC 3147, NGC 4698, and 1ES 1927+654 are active galaxies that are classified as Seyfert 2s, based on the line ratios of strong narrow emission lines in their optical spectra. However, they exhibit rapid X-ray spectral variability and/or little indication of obscuration in X-ray spectral fitting, contrary to expectation from the active galactic nucleus (AGN) unification model. Using optical spectropolarimetry with LRIS and near-infrared spectroscopy with NIRSPEC at the W. M. Keck Observatory, we conducted a deep search for hidden polarized broad H{alpha} and direct broad Pa{beta} or Br{gamma} emission lines in these objects. We found no evidence for any broad emission lines from the active nuclei of these galaxies, suggesting that they are unobscured, completely 'naked' AGNs that intrinsically lack broad-line regions.

  13. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    SciTech Connect

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Horne, Keith; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Minezaki, T.; Siverd, R. J.; Bord, D. J.; and others

    2014-11-10

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M {sub BH} ≈ 1 × 10{sup 7} M {sub ☉}, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  14. Line asymmetry in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Bautista, Manuel; Kallman, Timothy

    2005-01-01

    We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.

  15. STIS UV Observations of the Seyfert 1 Galaxy Mrk 766

    NASA Astrophysics Data System (ADS)

    Kaiser, M. E.; Reynolds, C. S.; Wilms, J.

    2002-12-01

    We present ultraviolet spectra of the z=0.0129 Narrow Line Seyfert 1 galaxy Mrk 766. For wavelengths extending from ~1150-3100 Å we have obtained low spectral resolution, ~1-2 Å, observations with HST/STIS. Our STIS spectrum of Mrk 766 exhibits emission from Lyman α , NV λ 1240, CIVλ 1549, CIII]λ 1909, and MgII λ 2800. We will present results for fits to an intrinsic absorber and discuss our results in the context of the standard warm absorber model and an alternative model presented by Branduardi-Raymont et al. (2001) for the XMM-Newton X-ray observations along this line of sight. Support for these observations was provided by contract NAS5-30403.

  16. Observational effects of interaction in the Seyfert galaxy NGC 7469

    NASA Technical Reports Server (NTRS)

    Pronik, I. I.; Metik, L.

    1990-01-01

    Some pecularities of the circummucleus of the Seyfert galaxy NGC 7469 were revealed, plausibly caused by interaction with the satellite IC 5283 and a starlike detail, situated on the edge of the west spiral branch 14 seconds from the nucleus. Shock excited H II regions were noted in the part of NGC 7469 turned toward the satellite IC 5283. The galaxy's central radio structure (lambda approx. 6 cm) stretches in the direction toward the satellite IC 5283 and the starlike detail. The spectum and color index of the starlike detail suggest that it is a cluster of early type stars (M sub V = -19 sup m) and dust clouds (A sub V = 3 sup m), in NGC 7469.

  17. NICMOS POLARIMETRY OF 'POLAR-SCATTERED' SEYFERT 1 GALAXIES

    SciTech Connect

    Batcheldor, D.; Robinson, A.; Axon, D. J.; Young, S.; Quinn, S.; Smith, J. E.; Hough, J.; Alexander, D. M.

    2011-09-01

    The nuclei of Seyfert 1 galaxies exhibit a range of optical polarization characteristics that can be understood in terms of two scattering regions producing orthogonal polarizations: an extended polar scattering region (PSR) and a compact equatorial scattering region (ESR), located within the circum-nuclear torus. Here we present NICMOS 2.0 {mu}m imaging polarimetry of six 'polar-scattered' Seyfert 1 (S1) galaxies, in which the PSR dominates the optical polarization. The unresolved nucleus (<0.''58) is significantly polarized in only three objects, but five of the six exhibit polarization in a 0.''58-1.''5 circum-nuclear annulus. In Fairall 51 and ESO 323-G077, the polarization position angle at 2 {mu}m ({theta}{sub 2}{sub {mu}m}) is consistent with the average for the optical spectrum ({theta}{sub v}), implying that the nuclear polarization is dominated by polar scattering at both wavelengths. The same is probably true for NGC 3227. In both NGC 4593 and Mrk 766, there is a large difference between {theta}{sub 2}{sub {mu}m} and {theta}{sub v} off-nucleus, where polar scattering is expected to dominate. This may be due to contamination by interstellar polarization in NGC 4593, but there is no clear explanation in the case of the strongly polarized Mrk 766. Lastly, in Mrk 1239, a large change ({approx}60{sup 0}) in {theta}{sub 2}{sub {mu}m} between the nucleus and the annulus indicates that the unresolved nucleus and its immediate surroundings have different polarization states at 2 {mu}m, which we attribute to the ESR and PSR, respectively. A further implication is that the source of the scattered 2 {mu}m emission in the unresolved nucleus is the accretion disk, rather than torus hot dust emission.

  18. A GMRT study of Seyfert galaxies NGC 4235 and NGC 4594: evidence of episodic activity?

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Srivastava, S.; Singh, V.; Gallimore, J. F.; Ishwara-Chandra, C. H.; Ananda, Hota

    2016-06-01

    Low-frequency observations at 325 and 610 MHz have been carried out for two `radio-loud' Seyfert galaxies, NGC 4235 and NGC 4594 (Sombrero galaxy), using the Giant Meterwave Radio Telescope (GMRT). The 610 MHz total intensity and 325-610 MHz spectral index images of NGC 4235 tentatively suggest the presence of a `relic' radio lobe, most likely from a previous episode of active galactic nucleus (AGN) activity. This makes NGC 4235 only the second known Seyfert galaxy after Mrk 6 to show signatures of episodic activity. Spitzer and Herschel infrared spectral energy distribution (SED) modelling using the CLUMPYDREAM code predicts star formation rates (SFRs) that are an order of magnitude lower than those required to power the radio lobes in these Seyferts (˜0.13-0.23 M⊙ yr-1 compared to the required SFR of ˜2.0-2.7 M⊙ yr-1 in NGC 4594 and NGC 4235, respectively). This finding along with the detection of parsec and sub-kpc radio jets in both Seyfert galaxies, that are roughly along the same position angles as the radio lobes, strongly support the suggestion that Seyfert lobes are AGN powered. SED modelling supports the `true' type 2 classification of NGC 4594: this galaxy lacks significant dust obscuration as well as a prominent broad-line region. Between the two Seyfert galaxies, there is an inverse relation between their radio-loudness and Eddington ratio and a direct relation between their Eddington-scaled jet power and bolometric power.

  19. Observational model of the ionized gas in Seyfert and radio-galaxy nuclei*

    PubMed Central

    Osterbrock, Donald E.

    1978-01-01

    Equivalent widths of the total emission-line Hβ in Seyfert 1, Seyfert 2, and intermediate-type Seyfert galaxies, expressed in terms of the featureless continuum, all have approximately the same frequency distribution. This suggests that the energy-input mechanism to both the narrow-line, low-density gas and the broad-line, high-density gas is photoionization by the featureless continuum. The reason for the weakness of the narrow emission lines in extreme Seyfert 1 galaxies is then the absorption of most of the ionizing photons in the dense gas near the central source. The statistics of line widths can be fitted by a model in which the dense gas has typical rotational velocity 5000 km/sec and typical turbulent velocity 2000 km/sec. A model is proposed in which the dense gas forms a rotating, turbulent disk with dimension ≈0.1 pc and height/diameter ≈2/5. Seyfert 2 galaxies are objects with little dense gas, and intermediate-type Seyfert galaxies are objects in which the dense gas is optically thin to ionizing radiation at least along the poles. Most radio galaxies have strong narrow emission lines, suggesting that escape of radio plasma can only occur where some ionizing photons can also escape from the dense gas. Other predictions, implications, and tests of this model are discussed. Images PMID:16592488

  20. TORUS AND ACTIVE GALACTIC NUCLEUS PROPERTIES OF NEARBY SEYFERT GALAXIES: RESULTS FROM FITTING INFRARED SPECTRAL ENERGY DISTRIBUTIONS AND SPECTROSCOPY

    SciTech Connect

    Alonso-Herrero, Almudena; Ramos Almeida, Cristina; Mason, Rachel; Asensio Ramos, Andres; Rodriguez Espinosa, Jose Miguel; Perez-Garcia, Ana M.; Roche, Patrick F.; Levenson, Nancy A.; Elitzur, Moshe; Packham, Christopher; Young, Stuart; Diaz-Santos, Tanio

    2011-08-01

    We used the CLUMPY torus models and a Bayesian approach to fit the infrared spectral energy distributions and ground-based high angular resolution mid-infrared spectroscopy of 13 nearby Seyfert galaxies. This allowed us to put tight constraints on torus model parameters such as the viewing angle i, the radial thickness of the torus Y, the angular size of the cloud distribution {sigma}{sub torus}, and the average number of clouds along radial equatorial rays N{sub 0}. We found that the viewing angle i is not the only parameter controlling the classification of a galaxy into type 1 or type 2. In principle, type 2s could be viewed at any viewing angle i as long as there is one cloud along the line of sight. A more relevant quantity for clumpy media is the probability for an active galactic nucleus (AGN) photon to escape unabsorbed. In our sample, type 1s have relatively high escape probabilities, P{sub esc} {approx} 12%-44%, while type 2s, as expected, tend to have very low escape probabilities. Our fits also confirmed that the tori of Seyfert galaxies are compact with torus model radii in the range 1-6 pc. The scaling of the models to the data also provided the AGN bolometric luminosities L{sub bol}(AGN), which were found to be in good agreement with estimates from the literature. When we combined our sample of Seyfert galaxies with a sample of PG quasars from the literature to span a range of L{sub bol}(AGN) {approx} 10{sup 43}-10{sup 47} erg s{sup -1}, we found plausible evidence of the receding torus. That is, there is a tendency for the torus geometrical covering factor to be lower (f{sub 2} {approx} 0.1-0.3) at high AGN luminosities than at low AGN luminosities (f{sub 2} {approx} 0.9-1 at {approx}10{sup 43}-10{sup 44} erg s{sup -1}). This is because at low AGN luminosities the tori appear to have wider angular sizes (larger {sigma}{sub torus}) and more clouds along radial equatorial rays. We cannot, however, rule out the possibility that this is due to

  1. The INTEGRAL high energy cut-off distribution of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Malizia, Angela; Ubertini, Pietro; Bird, Antony; Bazzano, Angela; Stephen, John; Molina, Manuela; Bassani, Loredana

    We present the primary continuum parameters, the photon index and the high energy cut-off, of Seyfert galaxies extracted from the INTEGRAL complete sample of AGN. We performed a broad band (0.3-100 keV) spectral analysis by fitting simultaneously the soft and hard X-ray spectra obtained by XMM and INTEGRAL/IBIS-Swift/BAT respectively in order to investigate the general properties of these parameters in particular their distribution and mean values. We present the mean photon index for the t type 1 and type 2 objects of the whole sample as well as their mean high energy cut-off. This is the first time that the cut-off energy is constrained in a such large number of AGN. Using the main parameters of the primary continuum, we are able to obtain the actual physical parameters of the Comptonizing region i.e. the plasma temperature kTe the optical depth tau. Finally, with the high S/N spectra starting to come from NuSTAR it will soon be possible to better constrain the cut-off values in many AGN, allowing the determination of more physical models and so to better understand the continuum emission and geometry of the region surrounding black holes.

  2. Is there a connection between broad absorption line quasars and narrow-line Seyfert 1 galaxies?

    SciTech Connect

    Grupe, Dirk; Nousek, John A.

    2015-02-01

    We consider whether broad absorption line quasars (BAL QSOs) and narrow-line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt and Gallagher and Boroson. For this purpose, we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/L{sub Edd}, although BAL QSOs have slightly lower L/L{sub Edd}. BAL QSOs and NLS1s in general have high Fe ii/Hβ and low [O iii]/Hβ ratios following the classic “Boroson and Green” eigenvector 1 relation. We also found that the mass accretion rates M-dot of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 M{sub ⊙} yr{sup −1}. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M−σ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample, we find eigenvector 1 to correspond to the Eddington ratio L/L{sub Edd}, and eigenvector 2 to black hole mass.

  3. Is There a Connection between Broad Absorption Line Quasars and Narrow-Line Seyfert 1 Galaxies?

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk; Nousek, John. A.

    2015-02-01

    We consider whether broad absorption line quasars (BAL QSOs) and narrow-line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt & Gallagher and Boroson. For this purpose, we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/{{L}Edd}, although BAL QSOs have slightly lower L/{{L}Edd}. BAL QSOs and NLS1s in general have high Fe ii/Hβ and low [O iii]/Hβ ratios following the classic “Boroson & Green” eigenvector 1 relation. We also found that the mass accretion rates \\dot{M} of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 {{M}⊙ } yr-1. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M-σ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample, we find eigenvector 1 to correspond to the Eddington ratio L/{{L}Edd}, and eigenvector 2 to black hole mass.

  4. Two-dimensional Spectroscopy in the Circumnuclear Region of the Seyfert 1 Ring Galaxy NGC 985

    NASA Astrophysics Data System (ADS)

    Arribas, S.; Mediavilla, E.; del Burgo, C.; García-Lorenzo, B.

    1999-02-01

    We present two-dimensional optical spectroscopy of the central region (9.4"×12.2") of the Seyfert 1 ring galaxy NGC 985 obtained with an optical fiber system (two-dimensional Fiber ISIS System). The 95 spectra presented here include the Hβ-[O III] λλ4959, 5007 emission lines and the Mg I b absorption lines, which permit the study of the distribution and kinematics of the ionized gas and the stars in two dimensions. In agreement with the results of other authors, the continuum maps show the presence of two maxima: the bright Seyfert 1 nucleus and a second nucleus located about 3.7" to the northwest. These observations confirm that this second nucleus is an extragalactic object at the same redshift as that of NGC 985. These observations indicate an anisotropic distribution of the ionized gas around the Seyfert nucleus. Despite this, the velocity field of the ionized gas shows a rather regular pattern, its general kinematic properties being similar to those found in other unperturbed spiral Seyfert galaxies. Many of the spectra in the region between the Seyfert and the secondary nucleus have asymmetric and relatively broad [O III] emission-line profiles. The kinematic center of the stellar velocity field is located in the neighborhood of the Seyfert nucleus, suggesting that this nucleus is related to the main stellar component. Therefore, these observations support the hypothesis that NGC 985 is the result of a two-galaxy collision in which the intruder (elliptical or spheroidal) galaxy would be what is now the secondary nucleus, while the Seyfert activity is associated with the nucleus of the primary disk galaxy. In spite of the strong disruption that defines the large-scale morphology of NGC 985, the stellar and ionized gas kinematics do not appear significantly perturbed in the circumnuclear region.

  5. Broad-band properties of the CfA Seyfert Galaxies. II - Infrared to millimeter properties

    NASA Technical Reports Server (NTRS)

    Edelson, R. A.; Malkan, M. A.; Rieke, G. H.

    1987-01-01

    IR and mm observations of the 48 Seyfert 1 and 2 galaxies (SG1s and SG2s) of the CfA sample (Huchra and Berg, 1987) are reported. Data obtained (1) in the NIR using the 1.55-m reflector at Stewart Observatory and the 3-m IRTF during 1984-1986, (2) in the FIR with IRAS, and (3) at 1.3 mm using the 12-m NRAO telescope at KPNO in June 1984 are presented in extensive tables and graphs and characterized in detail. None of the objects was detected at 1.3 mm, and the IR spectra of the SG2s are found to be significantly steeper (indicating thermal emission) than those of SG1s and QSOs (nonthermal emission). Turnover in the IR emission below 100 microns (in half of the objects detected at three or more IRAS wavelengths) is shown to be consistent with an accretion disk in dust-free SG1s and with unusually warm (35-65 K) dust in SG2s. It is inferred that a 60-100-micron cool excess is masking turnover in the other SGs, so that a general association of SG nuclei with strong star formation can be confirmed.

  6. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  7. Variations of the ultraviolet Fe II and Balmer continuum emission in the Seyfert galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Maoz, D.; Netzer, H.; Peterson, B. M.; Bechtold, J.; Bertram, R.; Bochkarev, N. G.; Carone, T. E.; Dietrich, M.; Filippenko, A. V.; Kollatschny, W.

    1993-01-01

    We present measurements of the Balmer continuum/Fe II emission blend between 2160 and 4130 A in the Seyfert galaxy NGC 5548. The measurements are from spectra obtained as part of the combined space-based and ground-based monitoring program of this object in 1988-1989. An iterative scheme is used to determine and subtract the continuum emission underlying the emission blend so as to obtain a light curve sampled once every four days. The small blue bump is an important component of the emission-line cooling, constituting about one third of the line flux in this object. Its flux varies with an amplitude of approximately +/- 20 percent about the mean, similar to the amplitude of the Balmer line variations during the same period. Its light curve resembles that of Ly-alpha, with a lag of about 10 days behind the continuum variations. The bump variation amplitude is independent of the wavelength interval where it is measured, which indicates that both the Balmer continuum and Fe II emission have comparable variation amplitudes. These results suggest that the Fe II UV multiplets and the Balmer continuum are emitted in the same parts of the broad-line region as most other broad emission lines in this object.

  8. Evidence for a supermassive black hole in the nucleus of the Seyfert galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. Michael; Blackwell, James H., Jr.

    1990-01-01

    The international campaign to monitor the variable Seyfert 1 galaxy NGC 5548 with the IUE has provided an extensive and well-sampled set of spectroscopic observations. These observations are used to study the response of the C IV 1550 A emission-line profile to changes in the photoionizing continuum. Near the end of the IUE campaign, the continuum flux at 1440 A and the total C IV flux dopped by factors of 2.9 and 1.8, respectively, in 16 days. The red wing of the C IV profile responded more rapidly to the sharp continuum drop than the blue wing, indicating that clouds in the inner broad-line region (BLR) are undergoing gravitational infall. These results provide direct evidence that the central engine is a supermassive object, presumably a black hole, with a mass on the order of 10 to the 7th solar masses. Analysis of the profile variations also demonstrates that excess emission in the blue wing of C IV is from a component that is physically distinct from the bulk of the BLR.

  9. MARKARIAN 6: SHOCKING THE ENVIRONMENT OF AN INTERMEDIATE SEYFERT

    SciTech Connect

    Mingo, B.; Hardcastle, M. J.; Croston, J. H.; Evans, D. A.; Hota, A.; Kharb, P.; Kraft, R. P.

    2011-04-10

    Markarian 6 is a nearby (D {approx} 78 Mpc) Seyfert 1.5, early-type galaxy, with a double set of radio bubbles. The outer set spans {approx}7.5 kpc and is expanding into the halo regions of the host galaxy. We present an analysis of our new Chandra observation, together with archival XMM-Newton data, to look for evidence of emission from shocked gas around the external radio bubbles, both from spatially resolved regions in Chandra and from spectral analysis of the XMM-Newton data. We also look for evidence of a variable absorbing column along our line of sight to Mrk 6, to explain the evident differences seen in the active galactic nucleus (AGN) spectra from the various, non-contemporaneous, observations. We find that the variable absorption hypothesis explains the differences between the Chandra and XMM-Newton spectra, with the Chandra spectrum being heavily absorbed. The intrinsic N{sub H} varies from {approx}8 x 10{sup 21} atoms cm{sup -2} to {approx}3 x 10{sup 23} atoms cm{sup -2} on short timescales (2-6 years). The past evolution of the source suggests this is probably caused by a clump of gas close to the central AGN, passing in front of us at the moment of the observation. Shells of thermal X-ray emission are detected around the radio bubbles, with a temperature of {approx}0.9 keV. We estimate a temperature of {approx}0.2 keV for the external medium using luminosity constraints from our Chandra image. We analyze these results using the Rankine-Hugoniot shock jump conditions, and obtain a Mach number of {approx}3.9, compatible with a scenario in which the gas in the shells is inducing a strong shock in the surrounding interstellar medium (ISM). This could be the third clear detection of strong shocks produced by a radio-powerful Seyfert galaxy. These results are compatible with previous findings on Centaurus A and NGC 3801, supporting a picture in which these AGN-driven outflows play an important role in the environment and evolution of the host galaxy.

  10. Parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Berton, M.; Foschini, L.; Ciroi, S.; Cracco, V.; La Mura, G.; Lister, M. L.; Mathur, S.; Peterson, B. M.; Richards, J. L.; Rafanelli, P.

    2015-06-01

    Flat-spectrum radio-loud narrow-line Seyfert 1 galaxies (NLS1s) are a recently discovered class of γ-ray emitting active galactic nuclei (AGN), that exhibit some blazar-like properties which are explained with the presence of a relativistic jet viewed at small angles. When blazars are observed at larger angles they appear as radio-galaxies, and we expect to observe an analogue parent population for beamed NLS1s. However, the number of known NLS1s with the jet viewed at large angles is not enough. Therefore, we tried to understand the origin of this deficit. Current hypotheses about the nature of parent sources are steep-spectrum radio-loud NLS1s, radio-quiet NLS1s and disk-hosted radio-galaxies. To test these hypotheses we built three samples of candidate sources plus a control sample, and calculated their black hole mass and Eddington ratio using their optical spectra. We then performed a Kolmogorov-Smirnov statistical test to investigate the compatibility of our different samples with a beamed population. Our results indicate that, when the inclination angle increases, a beamed source appears as a steep-spectrum radio-loud NLS1, or possibly even as a disk-hosted radio-galaxy with low black hole mass and high Eddington ratio. Further investigations, involving larger complete samples and observations at radio frequency, are needed to understand the incidence of disk-hosted radio-galaxies in the parent population, and to assess whether radio-quiet NLS1s can play a role, as well. Appendix A is available in electronic form at http://www.aanda.org

  11. Rapid X-ray variability in the Seyfert galaxy NGC 6814. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Tennant, A. F.; Mushotzky, R. F.; Boldt, E. A.; Swank, J. H.

    1981-01-01

    The HEAO-1 A-2 high time resolution X-ray observations of the X-ray emitting Seyfert I Galaxy NGC 6814 are reported. In sharp distinction with a sample of over 30 active galactic nuclei this object showed strong X-ray variability on timescales less than 3 hours. The mean flux on a timescale of 90 minutes varied by a factor of approximately 2.5 corresponding to Delta L sub x being approximately 1 x 10 to the 43rd power ergs/sec. An autocorrelation analysis shows a characteristic time for variability of 100 (+60 or -25) seconds. There is no indication of spectral variability with an upper limit on a change in the power law spectral index of the absolute value of Delta gamma .37, for a factor two change in intensity. The constraints of such rapid variability on a wide variety of X-ray source mechanisms are considered.

  12. Testing for X-ray Periodicities in Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Deep Survey instrument on the Extreme Ultraviolet Explorer obtained long, continuous light-curves of 10 Seyfert galaxies with durations of 5-33 days each. We present a uniform reduction of these data, which account for a total of 209 days of observation. Several of the light curves are uniquely suited to a search for periodicity or QPOs in the range of hours to days that might be expected from dynamical effects in the inner accretion disks around approximately 10(exp 8) solar mass black holes. Power spectra show features in three of the longest observations that could be transient periods: 0.9 days in RX J0437.4-4711, 2.1 days in Ton S180, and 5.8 days in 1H 0419-577. These period values seem to be unrelated to the length of the observations, which are similar in the three cases, but they do roughly scale as the luminosity of the objects, which would be expected in a dynamical scenario if the black hole masses also scale with luminosity. The significance of these periods will be evaluated in a future publication by using the method of Timmer & Konig (1995), which properly takes into account the red-noise properties of AGN light curves.

  13. Reflection at large distance from the central engine in Seyferts

    NASA Astrophysics Data System (ADS)

    Malzac, Julien; Petrucci, Pierre-Olivier

    2002-11-01

    We consider the possibility that most of the reflection component, observed in the hard X-ray spectra of Seyfert galaxies, could be formed on an extended medium, at large distance from the central source of primary radiation (e.g. on a torus). Then, the reflector cannot respond to the rapid fluctuations of the primary source. The observed reflected flux is controlled by the time-averaged primary spectrum rather than the instantaneous (observed) one. We show that this effect strongly influences the spectral fit parameters derived under the assumption of a reflection component consistent with the primary radiation. We find that a pivoting primary power-law spectrum with a nearly constant Comptonized luminosity may account for the reported correlation between the reflection amplitude R and the spectral index Γ, and simultaneously produces an iron line EW that is nearly independent of Γ. We emphasize the effects of the modelling of the primary component on the determination of the reflection amplitude, and show that in NGC 5548, when these effects are taken into account, the RXTE data are consistent with the reflection features being produced mainly at large distance from the central source.

  14. Herschel-SPIRE spectroscopy of nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Sacchi, N.; Spinoglio, L.; Wilson, C. D.; Kamenetzky, J.; Rangwala, N.; Rykala, A.; Isaak, K. G.; Bendo, G. J.; Bradford, M.; Glenn, J.; Maloney, P. R.; Schirm, M. R. P.; Auld, R.; Baes, M.; Barlow, M. J.; Bock, J. J.; Boselli, A.; Buat, V.; Castro-Rodriguez, N.; Chanial, P.; Charlot, S.; Ciesla, L.; Clements, D. L.; Cooray, A.; Cormier, D.; Cortese, L.; Davies, J. I.; Dwek, E.; Eales, S. A.; Elbaz, D.; Galametz, M.; Galliano, F.; Gear, W. K.; Gomez, H. L.; Griffin, M.; Hony, S.; Levenson, L. R.; Lu, N.; Madden, S.; O'Halloran, B.; Okumura, K.; Oliver, S.; Page, M. J.; Panuzzo, P.; Papageorgiou, A.; Parkin, T. J.; Perez-Fournon, I.; Pohlen, M.; Rigby, E. E.; Roussel, H.; Sauvage, M.; Schulz, B.; Smith, M. W. L.; Stevens, J. A.; Sundar, S.; Symeonidis, M.; Trichas, M.; Vaccari, M.; Vigroux, L.; Wozniak, H.; Wright, G. S.; Zeilinger, W. W.

    2011-05-01

    We present the 450-1550 GHz spectra of three nearby Seyfert galaxies (NGC1068, NGC7130 and NGC7582) taken with the Herschel SPIRE FTS. For the case of NGC1068 we reconstruct the nuclear spectral line energy distribution (SLED) of the CO lines, applying nonLTE radiative transfer and a Bayesian likelihood analysis to estimate the physical properties of the molecular gas in the circumnuclear region. Groundbased observations of the low-J transitions with high (few arcsec) angular resolution are required to reconstruct the nuclear SLED avoiding contamination from colder molecular gas on larger galactic scales. We find evidence for a very warm molecular gas component with a density ~10^3.9 cm-3, similar to that found in previous works (Papadopoulos & Seaquist 1999, Usero et al. 2004, Kamenetzky et al. 2011), but with a much higher temperature (~ 550 K instead of 20-160 K). The higher-J transitions of CO are compatible with being excited in X-ray dissociation regions (XDR). However, in order to explain the entire CO SLED a comparable contribution from photodissociation regions (PDR) is required.

  15. HST Images of Seyfert's Sextet: The Candidate Globular Cluster Population

    NASA Astrophysics Data System (ADS)

    Palma, C.; Zonak, S. G.; Hunsberger, S. D.; Durrell, P. R.; Gallagher, S. C.; Charlton, J. C.; English, J.

    2001-12-01

    We present Hubble Space Telescope images of the dense galaxy group, Seyfert's Sextet (Hickson Compact Group 79). This group includes four galaxies with concordant redshifts, a fifth background galaxy, and a bright tidal feature. From UBVI (F336W, F439W, F555W, and F814W) images, we identify globular cluster candidates (GCCs) associated with both the interacting galaxies and the lower surface brightness tidal features. The population of GCCs is compared to both stellar population models and to other interacting groups of galaxies, such as Stephan's Quintet, the Antennae, and other Toomre sequence mergers. Few point sources are detected in the U filter, which indicates that it is unlikely for there to have been much star cluster formation within the past 100 Myr or so. However, a number of sources are detected in B, V, and I. The GCC colors are used to constrain their ages and to elicit information on the star formation history of this interacting group. We gratefully acknowledge support from the NSF (grant AST 00-71223) and from STScI (grant HST-GO-08717.04-A).

  16. Suzaku confirms NGC 3660 is an unabsorbed Seyfert 2

    NASA Astrophysics Data System (ADS)

    Rivers, Elizabeth; Brightman, Murray; Bianchi, Stefano; Matt, Giorgio; Nandra, Kirpal; Ueda, Yoshihiro

    2016-06-01

    An enigmatic group of objects, unabsorbed Seyfert 2s may have intrinsically weak broad line regions, obscuration in the line of sight to the BLR but not to the X-ray corona, or so much obscuration that the X-ray continuum is completely suppressed and the observed spectrum is actually scattered into the line of sight from nearby material. NGC 3660 has been shown to have weak broad optical/near-infrared lines, no obscuration in the soft X-ray band, and no indication of "changing look" behavior. The only previous hard X-ray detection of this source by Beppo-SAX seemed to indicate that the source might harbor a heavily obscured nucleus. However, our analysis of a long-look Suzaku observation of this source shows that this is not the case, and that this source has a typical power-law X-ray continuum with normal reflection and no obscuration. We conclude that NGC 3660 is confirmed to have no unidentified obscuration and that the anomolously high Beppo-SAX measurement must be due to source confusion or similar, being inconsistent with our Suzaku measurements as well as non-detections from Swift-Burst Alert Telescope (BAT) and Rossi X-ray Timing Explorer (RXTE).

  17. Warm absorber in Seyfert-1 galaxies observed with ASCA.

    NASA Astrophysics Data System (ADS)

    Otani, C.; Kii, T.; Fabian, A. C.; Reynolds, C. S.; Iwasawa, K.; Inoue, H.; Tanaka, Y.; Matsuoka, M.

    1996-02-01

    The authors present the results of ASCA observations of the warm absorber in five Seyfert-1 galaxies and one quasar. The most important result is the detection of the continuous increase in O VIII absorption depth in MCG -6-30-15 within half a day with the continuum decrease. If this change is due to the recombination of O IX ions, the density and radius for increased O VIII ions should be n ⪆ 106cm-3 and R ⪉ 1017cm, respectively. It is also shown that the filling factor of the matter should be very small, implying that the warm absorber is probably clumpy. These results suggest this warm absorber as some link to the broad line region (BLR). On the other hand, no significant change in O VII was observed in MCG -6-30-15. These results are explained by two distinct warm absorbers in the line-of-sight unless some unknown reason causes the stability of O VII near the BLR; one of them corresponding to O VIII is located near the BLR, and another corresponding to O VII is located far outside from the BLR.

  18. Suzaku confirms NGC 3660 is an unabsorbed Seyfert 2

    NASA Astrophysics Data System (ADS)

    Rivers, Elizabeth; Brightman, Murray; Bianchi, Stefano; Matt, Giorgio; Nandra, Kirpal; Ueda, Yoshihiro

    2016-02-01

    An enigmatic group of objects, unabsorbed Seyfert 2s may have intrinsically weak broad line regions, obscuration in the line of sight to the BLR but not to the X-ray corona, or so much obscuration that the X-ray continuum is completely suppressed and the observed spectrum is actually scattered into the line of sight from nearby material. NGC 3660 has been shown to have weak broad optical/near-infrared lines, no obscuration in the soft X-ray band, and no indication of "changing look" behavior. The only previous hard X-ray detection of this source by Beppo-SAX seemed to indicate that the source might harbor a heavily obscured nucleus. However, our analysis of a long-look Suzaku observation of this source shows that this is not the case, and that this source has a typical power-law X-ray continuum with normal reflection and no obscuration. We conclude that NGC 3660 is confirmed to have no unidentified obscuration and that the anomolously high Beppo-SAX measurement must be due to source confusion or similar, being inconsistent with our Suzaku measurements as well as non-detections from Swift-Burst Alert Telescope (BAT) and Rossi X-ray Timing Explorer (RXTE).

  19. The New Spectral Picture of Seyfert 1 AGNs

    NASA Astrophysics Data System (ADS)

    Miyake, K.; Noda, H.; Yamada, S.; Makishima, K.

    2014-07-01

    X-ray spectra of active galactic nuclei (AGNs) were so far considered to consist of a single power-law (PL) like primary component and a reflection component accompanied by an FeKα line. However, the assumption of ``single primary component'' has not been confirmed observationally. To overcome this limitation, we developed a method that can decompose observed AGN spectra model-independently using time-variability (Noda et al. 2011, 2013). We applied it to the bright and variable Seyfert 1 AGN, IC4329A. It was observed by Suzaku 5 times in 2007, and once in 2012. Using our method, the time-averaged spectra have been successfully decomposed into a fast-variable component and a slowly-variable one. While the former can be regarded as a PL with photon index Γ~2.1, the latter is explained as a sum of the distant reflection component and a harder PL with Γ~1.4. This harder PL component, observed in all observations of IC 4329A and in many other AGNs (Noda et al. 2011, 2013), can be interpreted neither as partially-covered Γ~2.1 PL, nor relativistic reflection that varies with the primary. Therefore, the Γ~1.4 PL is considered to be another primary component. Its recognition has a big impact on our understanding of the AGN central engine.

  20. Rapid x-ray variability from the Seyfert 1 galaxy NGC 4051

    SciTech Connect

    Marshall, F.E.; Holt, S.S.; Mushotzky, R.F.; Becker, R.H.

    1983-06-15

    Strong variable x-ray emission from the nearby low-luminosity Seyfert 1 galaxy NGC 4051 has been discovered during observations with the imaging proportional counter (IPC) of the Einstein Observatory. During one 2304 s observation, the x-ray flux more than doubled in an approximately linear fashion, and a 70% increase for 150 s was seen during another 968 s observation. We present evidence that the x-ray spectrum of NGC 4051 is unusually soft compared with Seyfert 1 galaxies or OSOs. The emission mechanism is probably not synchrotron or synchrotron self-Compton, but the emission can be plausibly explained by various black hole accretion models.

  1. Photometry of the 'Seyfert Sextet' /VV 115/ and the anonymous galaxy 1558.2 + 2100

    NASA Technical Reports Server (NTRS)

    Martins, D. H.; Chincarini, G.

    1976-01-01

    Photometric observations of the Seyfert Sextet (VV 115) are analyzed. Apparent integrated magnitudes are derived relative to the sky brightness, and isophotal maps are given for the field. No evidence for interaction between NGC 6027 and d is found. Luminosity profiles are given for NGC 6027, a, b, and d, with the d profile having been corrected for seeing effects in one dimension. The corrected profile parameters favor the interpretation of d as a highly luminous background galaxy at its cosmological distance. The nearby anonymous galaxy 1558.2 + 2100 is similarly studied, with no clear evidence of photometric peculiarities detected. Its interaction with the Seyfert Sextet appears to be excluded.

  2. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Cappi, M.; Reeves, J.; Nemmen, R.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. The absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. This strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The observed parameters and correlations are consistent with both radiation pressure through Compton scattering and MHD processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, have a sufficiently high mechanical power to significantly contribute to the AGN feedback.

  3. THE DIFFERENT NATURE OF SEYFERT 2 GALAXIES WITH AND WITHOUT HIDDEN BROAD-LINE REGIONS

    SciTech Connect

    Wu Yuzhong; Zhang Enpeng; Liang Yanchun; Zhang Chengmin; Zhao Yongheng E-mail: yzhao@nao.cas.cn

    2011-04-01

    We compile a large sample of 120 Seyfert 2 galaxies (Sy2s) which contains 49 hidden broad-line region (HBLR) Sy2s and 71 non-HBLR Sy2s. From the difference in the power sources between two groups, we test whether HBLR Sy2s are dominated by active galactic nuclei (AGNs) and whether non-HBLR Sy2s are dominated by starbursts. We show that (1) HBLR Sy2s have larger accretion rates than non-HBLR Sy2s; (2) HBLR Sy2s have larger [Ne V] {lambda}14.32/[Ne II] {lambda}12.81 and [O IV] {lambda}25.89/[Ne II] {lambda}12.81 line ratios than non-HBLR Sy2s; and (3) HBLR Sy2s have smaller IRAS f{sub 60}/f{sub 25} flux ratios, which show the relative strength of the host galaxy and nuclear emission, than non-HBLR Sy2s. Consequently, we suggest that HBLR Sy2s and non-HBLR Sy2s are AGN dominated and starburst dominated, respectively. In addition, non-HBLR Sy2s can be classified into luminous (L{sub [OIII]}>10{sup 41} erg s{sup -1}) and less luminous (L{sub [OIII]} < 10{sup 41} erg s{sup -1}) samples, when considering only their obscuration. We suggest that (1) the invisibility of polarized broad lines (PBLs) in the luminous non-HBLR Sy2s depends on the obscuration and (2) the invisibility of PBLs in the less luminous non-HBLR Sy2s depends on the very low Eddington ratio rather than the obscuration.

  4. The nuclear and extended mid-infrared emission of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    García-Bernete, I.; Ramos Almeida, C.; Acosta-Pulido, J. A.; Alonso-Herrero, A.; González-Martín, O.; Hernán-Caballero, A.; Pereira-Santaella, M.; Levenson, N. A.; Packham, C.; Perlman, E. S.; Ichikawa, K.; Esquej, P.; Díaz-Santos, T.

    2016-08-01

    We present subarcsecond resolution mid-infrared (MIR) images obtained with 8-10 m-class ground-based telescopes of a complete volume-limited (DL <40 Mpc) sample of 24 Seyfert galaxies selected from the Swift/BAT nine month catalog. We use those MIR images to study the nuclear and circumnuclear emission of the galaxies. Using different methods to classify the MIR morphologies on scales of ˜400 pc, we find that the majority of the galaxies (75-83%) are extended or possibly extended and 17-25% are point-like. This extended emission is compact and it has low surface brightness compared with the nuclear emission, and it represents, on average, ˜30% of the total MIR emission of the galaxies in the sample. We find that the galaxies whose circumnuclear MIR emission is dominated by star formation show more extended emission (650±700 pc) than AGN-dominated systems (300±100 pc). In general, the galaxies with point-like MIR morphologies are face-on or moderately inclined (b/a˜0.4-1.0), and we do not find significant differences between the morphologies of Sy1 and Sy2. We used the nuclear and circumnuclear fluxes to investigate their correlation with different AGN and SF activity indicators. We find that the nuclear MIR emission (the inner ˜70 pc) is strongly correlated with the X-ray emission (the harder the X-rays the better the correlation) and with the [O IV] λ25.89 μm emission line, indicating that it is AGN-dominated. We find the same results, although with more scatter, for the circumnuclear emission, which indicates that the AGN dominates the MIR emission in the inner ˜400 pc of the galaxies, with some contribution from star formation.

  5. Bipolar Nuclear Outflow from the Seyfert 1 Galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.

    1994-12-01

    The S0/Sa galaxy NGC 5548 hosts a Seyfert 1 nucleus. Echo mapping of its broad optical-line-emitting region yields a radial extent R <~ 20 light days = (1)/(60) pc, or 70 h microarcseonds for H_0 = 100 h km s(-1) Mpc(-1) (Peterson 1993). Using data from larger radii, what boundary conditions can be imposed on the geometry and velocity field of the broad line region? R <~ 1400 h(-1) pc: Bipolar radio continuum lobes straddle a central radio component in NGC 5548. These lobes, which emit optically-thin synchrotron radiation with a 4-cm power of 10(21) h(-2) W Hz(-1) , trace bipolar outflow from the nucleus (Wilson & Ulvestad 1982; Wrobel 1994). R <~ 720 h(-1) pc: The radio lobes of NGC 5548 share the elongation position angle of the [OIII] narrow-line gas, with the broadest known line widths occuring NW of the nucleus at these radii (Wilson et al. 1989). This hints that some narrow-line gas receives additional mechanical energy from the bipolar outflow feeding the radio lobes, a situation analogous to the narrow-line superbubble in NGC 3079 (Veilleux et al. 1994). R <~ 10 h(-1) pc: Blueshifted absorption in the broad CIV lines proves that some gas is flowing out of the nucleus of NGC 5548, with observed speeds of 1200 km s(-1) relative to systemic (Shull & Sachs 1993). This absorption line outflow may have, or be able to achieve, a bipolar shape via the disk-focusing scheme proposed for NGC 3079 (Duric & Seaquist 1988; Veilleux et al. 1994).

  6. The X-ray Power Density Spectrum of the Seyfert 2 Galaxy NGC 4945: Analysis and Application of the Method of Light Curve Simulations

    SciTech Connect

    Mueller, Martin; /SLAC

    2010-12-16

    The study of the power density spectrum (PDS) of fluctuations in the X-ray flux from active galactic nuclei (AGN) complements spectral studies in giving us a view into the processes operating in accreting compact objects. An important line of investigation is the comparison of the PDS from AGN with those from galactic black hole binaries; a related area of focus is the scaling relation between time scales for the variability and the black hole mass. The PDS of AGN is traditionally modeled using segments of power laws joined together at so-called break frequencies; associations of the break time scales, i.e., the inverses of the break frequencies, with time scales of physical processes thought to operate in these sources are then sought. I analyze the Method of Light Curve Simulations that is commonly used to characterize the PDS in AGN with a view to making the method as sensitive as possible to the shape of the PDS. I identify several weaknesses in the current implementation of the method and propose alternatives that can substitute for some of the key steps in the method. I focus on the complications introduced by uneven sampling in the light curve, the development of a fit statistic that is better matched to the distributions of power in the PDS, and the statistical evaluation of the fit between the observed data and the model for the PDS. Using archival data on one AGN, NGC 3516, I validate my changes against previously reported results. I also report new results on the PDS in NGC 4945, a Seyfert 2 galaxy with a well-determined black hole mass. This source provides an opportunity to investigate whether the PDS of Seyfert 1 and Seyfert 2 galaxies differ. It is also an attractive object for placement on the black hole mass-break time scale relation. Unfortunately, with the available data on NGC 4945, significant uncertainties on the break frequency in its PDS remain.

  7. A Spectral Variability Survey of X-ray Reflection and Absorption in Seyfert AGN using the Rossi X-ray Timing Explorer Database

    NASA Astrophysics Data System (ADS)

    Markowitz, Alex

    The Rossi X-ray Timing Explorer (RXTE) is the current longest-running X-ray mission. It has collected data on over 130 Active Galactic Nuclei (AGN) over its 15-year lifetime. We plan to systematically analyze the broad X-ray spectra of all AGN observed with RXTE to produce the ultimate and complete spectral sample with which to solidify the legacy of RXTE towards AGN science and towards understanding the nature of reprocessing and reflection processes in Seyferts. In many cases, RXTE conducted sustained monitoring spanning a baseline of many years, so our proposed time-averaged spectral analysis reduces the ambiguity inherent in individual snapshots due to source variability, thereby providing the community with long-term average X-ray spectral properties as well as identifying any state changes in sources. We will also perform time- and flux-resolved spectroscopy to search for variability in the Fe K alpha emission line in response to X-ray continuum flux variations to constrain its location via reverberation mapping, e.g., material commensurate with the optical Broad Line Region or a parsec- scale torus. Our proposed work will place important constraints on the location and homogeneity of the Compton-thick circumnuclear accreting gas. We will also search for variations in the line-of-sight column density of absorbing material in Seyferts to test classical Seyfert 1/2 unification schemes against newer models which rely on distributions of clumps of gas and for which X-ray absorption is a viewing-angle dependent probability, and provide observational constraints for these latter models. This research supports NASA Strategic Goal 2 by expanding scientific understanding of the universe in which we live, how the universe works, and how the observable universe came to be.

  8. UBVRI simultaneous observations of the nucleus of Seyfert galaxy NGC 5548 in 1993-1999

    NASA Astrophysics Data System (ADS)

    Merkulova, N. I.

    2002-05-01

    An ongoing program on photometric and spectral monitoring of some bright Seyfert galaxies has been carried out at the Crimean Astrophysical Observatory since 1989. Results of photometric observations of NGC 5548 obtained with the 1.25 m telescope are reported in this paper; it focuses on the analysis of intranight variations. During 44 observational nights in 1993-1999 in each spectral band of the Johnson UBVRI system, 672 measurements have been performed simultaneously through the round aperture (diameter 15\\arcsec) using differential photometry techniques. The estimated accuracy of each measurement is about 0.01 mag. The peak amplitude R_max = Fmax /Fmin = 2.99 for the whole light curve was observed in the U band, while the minimum amplitude Fmax /Fmin =1.37 occurred in the I band during the full observation period. UBVRI observations and good sampled data of international monitoring campaigns of NGC 5548, were used to calculate Structure Functions. A comparison is made of the characteristics of the long and short time scale variations of NGC 5548 with those of NGC 4151, NGC 7469 and NGC 1275. In order to examine the intranight variations of the nucleus of NGC 5548, standard deviations (SD) of the nightly averaged flux F, and a measure of intranight variability - SD/F were calculated for each night. Using this parameter, a probability characteristics is introduced, and duty cycles (the fraction of time when the galaxy is variable), characterizing the efficiency of the central energy source, were evaluated. It is concluded that intranight variability is really transient in character and manifests itself with different probabilities for different galaxies.

  9. Infrared spectroscopy of Seyfert 2 galaxies: A look through the obscuring Torus?

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Veilleux, Sylvain; Hill, Gary J.

    1994-01-01

    We present both high-resolution (R = 1260) and low-resolution (R = 345 and 425) J-band spectra of a sample of 15 Seyfert 2 galaxies. Our goal is to look for broad Pa beta lines, indicating broad-line regions which are hidden by dust from our view at optical wavelengths. Of the 15 objects studied here, three have broad Pa beta lines: MCG-05.23.16, Mrk 463E, and NGC 2992. Mrk 176 and NGC 5728 may also have weak broad lines. In NGC 5506, previously reported to have broad Pa beta and hydrogen alpha lines, we find that the Pa beta line profile is continuous and has the same shape as the nearby line (Fe II) lambda 1.2567, which should not have a broad component. We interpret these observations as gas from the narrow-line region (NLR) with no broad component. In NGC 5506, however, the NLR profiles become broader with increasing wavelength, indicating that highly reddened wings are becoming more readily visible at the longer wavelengths. We confirm the correlation of (O I) lambda 6300/hydrogen alpha and (Fe II) lambda 1.644/Br gamma (the latter transformed to (Fe II) lambda 1.2567/Pa beta to compare with our data) found by previous authors when comparing active galactic nuclei (AGNs), supernova remnants, starbursts, and H II regions. The correlation confirms that in all of these objects both (O I) lambda 6300 and the (Fe II) lines come from partially ionized regions in which hydrogen is mostly neutral. Comparison of the infrared optical depths with column depths determined from X-ray data show a general tendency for the objects with detected broad Pa beta to have lower X-ray columns.

  10. A Kinematic Study of the Nuclear Stellar Populations in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    García-Rissmann, Aurea; Cid Fernandes, Roberto; Asari, N. V.; Vega, Luis Rodolfo; Schmitt, Henrique; González Delgado, Rosa

    2005-05-01

    Recent studies in the optical and UV have detected circumnuclear starbursts in 40% of nearby Seyfert-2 galaxies; about half of the remaining 60% present a UV excess whose nature is not well known, mainly because of the limitations of the current stellar population analysis techniques in the optical and UV domains. A possible way to circumvent these difficulties is to use a determination of the mass-to-light (M/L) ratio, obtained with a combination of velocity dispersion measurements and photometric information. Dynamical information in AGN (particularly in type 2) is better determined from NIR spectroscopic data, where the stellar absorption features are less affected by the nuclear continuum dilution. In this work, we present preliminary results of a spectroscopic survey of more than 60 Seyfert nuclei (mainly Seyfert 2s), conducted at ESO/La Silla and at KPNO. For many of these objects we have complementary data, such as HST images, optical and (in some cases) UV spectroscopy. The long-slit spectroscopy for the purpose of this project was performed around the NIR Ca II triplet lines at 8498, 8542 and 8662Å. Here we describe the analysis steps taken so far, and present the first results concerning velocity dispersion measurements in nuclear regions. With these data we aim to investigate the ambiguous Seyfert 2 nuclei nature, thus contributing to a better understanding of the AGN-starburst connection.

  11. Hubble Space Telescope images of the Seyfert galaxies NGC 5929 and MCG 8-11-11

    NASA Technical Reports Server (NTRS)

    Bower, Gary A.; Wilson, Andrew S.; Mulchaey, John S.; Miley, George K.; Heckman, Timothy M.; Krolik, Julian H.

    1994-01-01

    We present the initial results of a program to obtain high resolution images of Seyfert galaxies with the Planetary Camera aboard the Hubble Space Telescope (HST). In this paper we discuss the images of the type 2 Seyfert NGC 5929 and the type 1.5 Seyfert MCG 8-11-11 (= UGC 3374). The images were obtained in the emission lines of (O III) lambda lambda 4959 and 5007 A and H alpha + (N II) lambda lambda 6548 and 6583 A and their adjacent continua. The high-excitation gas in the narrow line region (NLR) of NGC 5929 is resolved into individual clouds in the central 1 sec .5. Although the (O III) emission is clearly not spherically symmetric with respect to the nucleus, it does not define a distinct 'bicone' morphology, as observed by the HST in a few other Seyfert galaxies. We find no direct evidence for the reddening and/or obscuration effects characteristic of a dusty torus, which, in the context of 'unified models', is expected to obscure the active galactic nucleus (AGN) in type 2 Seyfert galaxies. The correspondence between the emission line gas and the radio morphology suggests that the structure of the NLR in NGC 5929 is governed by matter ejected from the AGN. A comparison of the recombination rate of hydrogen in the brightest emission line cloud with an upper limit on the ionizing luminosity emitted toward Earth provides no evidence that the central ionizing source radiates anisotropically. The images of MCG 8-11-11 show only an unresolved nuclear source. No emission line gas associated with the extended radio source is detected. We estimate upper limits on the intensity of extended line emission in this galaxy and examine their significance.

  12. X-ray selected quasars and Seyfert galaxies - Cosmological evolution, luminosity function, and contribution to the X-ray background

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Stocke, J. T.

    1984-01-01

    The cosmological evolution and the X-ray luminosity function of quasars and Seyfert galaxies (active galactic nuclei /AGNs/) are derived and discussed. The sample used consists of 56 objects extracted from the expanded Einstein Observatory Medium Sensitivity Survey, and it is exclusively defined by its X-ray properties. The distribution in space of X-ray selected AGNs is confirmed to be strongly nonuniform; the amount of cosmological evolution required by the data is in agreement with a previous determination based on a smaller sample of objects. The X-ray luminosity function (XLF) is derived. The high-luminosity part of the XLF is satisfactorily described by a power law of slope gamma approximately 3.6. A significant flattening is observed at low luminosities. The simultaneous determination of the cosmological evolution and of the X-ray luminosity function of AGNs is then used to estimate the contribution to the extragalactic diffuse X-ray background. Using the best fit values for the evolution of AGNs and for their volume density, it is found that they contribute approximately 80 percent of the 2 keV diffuse X-ray background. Uncertainties in this estimate are still rather large; however, it seems difficult to reconcile the data with a contribution much less than 50 percent.

  13. The continuum of type 1 Seyfert galaxies. I - A single form modified by the effects of dust

    NASA Technical Reports Server (NTRS)

    Ward, Martin; Elvis, Martin; Fabbiano, G.; Carleton, N. P.; Willner, S. P.

    1987-01-01

    Broad-band measurements from 1 to 20 microns of 26 emission-line active galactic nuclei (AGNs), mainly Seyfert 1 galaxies, have been made. These data have been combined with previous optical and infrared photometry and IRAS 12, 25, 60 and 100 micron fluxes, giving a total sample of 37 AGNs, all of which have hard X-ray measurements. The sample includes all the emission-line AGNs identified in the Piccinotti et al. (1982) survey. When corrected for stellar contributions in the near-infrared, the continuum energy distributions can be classified observationally into three types: (1) bare, minimally reddened AGNs; (2) reddened AGNs; and (3) AGNs for which the far-infrared emission is contaminated by the host galaxy. These classifications reflect a range of luminosities and different environments rather than intrinsic differences in the primary continuum of the AGNs. The data are consistent with a single underlying form of active galaxy continuum modified by the presence of dust and of the host galaxy.

  14. A radio detection survey of narrow-line Seyfert 1 galaxies using very long baseline interferometry at 22 GHz

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Oyama, Tomoaki; Kono, Yusuke; Yamauchi, Aya; Suzuki, Syunsaku; Matsumoto, Naoko; Tazaki, Fumie

    2016-05-01

    We conducted a high-sensitivity radio detection survey for 40 narrow-line Seyfert 1 (NLS1) galaxies using a very long baseline interferometry (VLBI) technique at 22 GHz through phase-referencing long-time integration and using a newly developing recorder with a data rate of 8 Gbps, which is a candidate of the next generation VLBI data recording systems of the Japanese VLBI Network. The baseline sensitivity was typically a few mJy. The observations resulted in a detection rate of 12/40 for our radio-selected NLS1 sample: 11 out of the 12 detected NLS1s showed inverted radio spectra between 1.4 and 22 GHz on the basis of the Very Large Array flux densities and the VLBI detections. These high fractions suggest that a compact radio core with a high brightness temperature is frequently associated with NLS1 nuclei. On the other hand, at least half of the sample indicated apparently steep spectra even with the limited VLBI sensitivity. Both the inverted and the steep spectrum radio sources are included in the NLS1 population.

  15. TESTING THE EVOLUTIONARY SEQUENCE BETWEEN HIDDEN BROAD-LINE REGION (HBLR) AND NON-HBLR SEYFERT 2 GALAXIES WITH THE 4000 A BREAK STRENGTHS

    SciTech Connect

    Yu, Po-Chieh; Hwang, Chorng-Yuan; Huang, Kui-Yun; Ohyama, Youichi E-mail: hwangcy@astro.ncu.edu.tw E-mail: ohyama@asiaa.sinica.edu.tw

    2013-05-01

    We compare the 4000 A break (D{sub n} (4000)) strength in the central kpc of hidden broad-line region (HBLR) and non-HBLR Seyfert 2 galaxies to investigate the origin of these galaxies. Our results show that the D{sub n} (4000) strengths in the nuclear regions of the non-HBLR Seyfert 2 galaxies are larger than those in the HBLR galaxies. We also show that the D{sub n} (4000) strength is not related to the morphology of host galaxies. These results imply that the non-HBLR Seyfert 2 galaxies have an older stellar population in nuclear regions than the HBLR galaxies. This suggests that an evolutionary connection might exist between non-HBLR and HBLR Seyfert 2 galaxies. We propose a potential evolutionary scenario and a modified unification model for Seyfert galaxies. In this scheme, Seyfert 1 and HBLR Seyfert 2 galaxies evolve into unabsorbed and absorbed non-HBLR Seyfert 2 galaxies. We also discuss the implications of our results in the hydrogen column density distribution of the non-HBLR Seyfert 2 galaxies.

  16. Spectroscopic Observations of Steep Spectrum Narrow-Line Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Leighly, Karen

    1999-01-01

    ROSAT observations of narrow-line Seyfert 1s found consistently steep spectra and rapid variability, but ASCA observations show more diversity, very different to classical Seyfert 1s. However, in 3 NLS1s, ASCA finds common characteristics of these exciting new class of AGN (active galactic nuclei): a very strong high temperature soft excess, weak hard tail, a possible blue shifted ionized oxygen edge, and rapid large amplitude variability characterized by flares and quiescent periods. It is necessary to observe many more such objects in order to understand the physical processes underlying the different phenomenology in ASCA. ASCA observations of two NLS1s discovered by ROSAT's all sky survey were proposed and an observation of one of these objects, RX J0439-45, was awarded. The results of spectral and variability analysis are included in Leighly 1999ab, and preliminary results are found in Leighly 1998ab.

  17. Models relating the radio emission and ionised gas in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Pedlar, A.; Unger, S. W.; Axon, D. J.; Dyson, J. E.

    1987-01-01

    Possible models are discussed in which the radio emitting components in Seyfert II nuclei can compress and accelerate the ambient nuclear medium to produce the characteristics of the narrow line region. A first order model, which considers only the expansion of the radio components, is briefly described. However, in many Seyfert nuclei it appears that the linear motion of the radio components is also important. This can result in shock heating of the ambient medium, and if the cooling time is long enough, can lead to a displacement between the radio component and the associated emission lines. This effect may be present in NGC 1068 and NGC 5929 and by considering ram pressure balance and the cooling length it is possible to estimate lobe velocities and ambient densities.

  18. The effect of suprathermal protons on the physical conditions in Seyfert galaxy nuclei

    NASA Technical Reports Server (NTRS)

    Ptak, R.; Stoner, R.

    1974-01-01

    The physical conditions in a high density hydrogen gas heated and ionized by suprathermal protons were investigated, with application to the gas in the nuclear region of Seyfert galaxies. The gas is assumed optically thick to Lyman and Balmer line radiation. Mechanisms by which the radiation from the gas can balance the heating by the fast protons were investigated, and minimum values for the mass of gas were estimated. Under certain conditions, the suprathermal atoms themselves can cool the ambient gas by rescattering the line radiation into the optically thin region in the wings of the line. This mechanism, called optical reverberation, can enhance the broad component of the hydrogen lines produced by inelastic atomic collisions and yield line widths consistent with those observed in Seyfert and quasar spectra. Also discussed is the possibility of achieving dynamic equilibrium of the ambient gas by balancing the momentum transfer from the suprathermals with gravitational attraction of a massive central source.

  19. A global look at X-ray time lags in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Kara, E.; Alston, W.; Fabian, A.

    2016-05-01

    X-ray reverberation, where light-travel time delays map out the compact geometry around the inner accretion flow in supermassive black holes, has been discovered in several of the brightest, most variable and well-known bare Seyfert galaxies. In this work, we expand the study of X-ray time lags to all Seyfert galaxies in the XMM-Newton archive above a nominal rms and exposure level. We find that reverberation is found in > 50% of sources (with > 99% confidence). We also find that the low-frequency hard lag (which is likely associated with the coronal emission) is found in > 80% of sources, suggesting that most sources with X-ray variability show intrinsic variability from the nuclear region. We update the known iron K lag amplitude vs. black hole mass relation.

  20. The broad emission line and continuum variations of Seyfert galaxies. I - Time scales and amplitudes

    NASA Technical Reports Server (NTRS)

    Rosenblatt, Edward I.; Malkan, Matthew A.; Sargent, Wallace L. W.; Readhead, Anthony C. S.

    1992-01-01

    Spectroscopic observations of 13 Seyfert 1 galaxies made from 1979 to 1984 at Palomar and Steward Observatories were analyzed for Balmer-line and optical continuum variability. The majority of the galaxies showed significant variations, particularly in the continuum. Typical peak-to-peak changes for H-beta and H-gamma integrated line fluxes were 100-200 percent, while the continua varied by 200-350 percent. In several cases, Balmer-line and continuum variations were found to be strongly correlated, as expected for photoionization by a central continuum source. However, these correlations were found to be highly nonlinear. Significant correlations were found between variability amplitude and global AGN properties such as luminosity. Moreover, a significant number of variations occurring on short time scales constrains the size of the broad-line region in Seyfert galaxies to about 90 lt-days across or less.

  1. Connection between the rapidly varying and smooth components in the light curves of Seyfert galaxies

    SciTech Connect

    Gagen-Torn, V.A.

    1987-11-01

    It is shown that for some Seyfert galaxies whose light curves contain a fast (burst) component and a smooth component (components I and II) the amplitude of the flux variation of component I is proportional to the flux of component II. Since components I and II are also identical in their color characteristics, it is very probable that the variability is due to a single smoothly varying and fluctuating source.

  2. IUE Spectra and photoionization models of the Seyfert 2 glaxies NGC 7674 and I Zw 92

    NASA Technical Reports Server (NTRS)

    Kraemer, Steven B.; Wu, Chi-Chao; Crenshaw, D. Michael; Harrington, J. Patrick

    1994-01-01

    The physical conditions in the narrow-line regions of two Seyfert 2 galaxies, NGC 7674 and I Zw 92, are examined using IUE spectra, published optical spectra and multifrequency observations, and photoionization models. For each Seyfert galaxy, the emission-line fluxes were dereddened using the He II lambda(1640)/lambda(4686) ratio. Photoionization models were calculated using a power-law index determined from the He II lambda(4686)/H-beta ratio; the index is very similar to that obtained from a fit to the observed multifrequency continuum from the infrared to the X-rays. The models were calculated in a way that minimized the number of assumptions, and given the uncertainties in the reddening corrections, the calculated ratios match nearly all of the dereddened ratios successfully. a multicomponent model (three components with different densities and ionization parameters) was required to fit the spectrum of I Zw 92, whereas a single component was sufficient for NGC 7674. The CNO abundances are close to solar, although a reduced abundance of up to one-third solar for one or more of the heavy elements is possible. In contrast to a previous study of Mrk 3, dust inside the narrow-line region (NLR) louds was not required to fit the spectra of these two Seyfert galaxies, although the emission lines experience considerable reddening from external dust. Higher signal-to-noise spectra in the UV are essential for placing further restrictions on the reddening and physical conditions in the narrow-line regions of Seyfert galaxies.

  3. Discovery of Relativistic Outflows in the Seyfert Galaxies Ark 564 and Mrk 590

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Mathur, S.

    2014-07-01

    Outflows are ubiquitous in AGNs, manifested by blueshifted absorption lines in the soft X-ray and UV bands and have outflow velocities of 100-1000 km s^{-1}. The discovery of ultra-fast outflows (0.1 c) exhibited by blueshifted absorption lines in the hard X-ray band has added an intriguing aspect to the rich field of AGN outflows. The significance of these absorption line detections is often questioned and with only a few lines observed, accurate parametrization of the photoionized plasma becomes difficult. We recently discovered relativistic outflows in the soft X-ray band in two Seyfert galaxies; these detections are robust and alleviate earlier concerns about statistical significance of the lines in the hard X-ray band. I will discuss the our recent results on the discovery of high velocity outflows in the narrow line Seyfert 1 galaxies Ark 564 and Mrk 590. These absorbers are identified through multiple absorption lines at blueshift of 0.1c-0.17c detected in the Chandra HETG-MEG spectra. These high-velocity outflows have ionization parameter and column density typical of low-velocity outflows, but much higher velocity, probing a distinct region in the velocity versus ionization/column parameter space. The presence of such relativistic outflows in Seyfert galaxies poses a challenge to theoretical models of AGN winds. I will briefly discuss existing models and future prospects.

  4. Discovery of Relativistic Outflows in the Seyfert Galaxies Ark 564 and Mrk 590

    NASA Astrophysics Data System (ADS)

    Gupta, Anjali; mathur, Smita

    2015-08-01

    Outflows are ubiquitous in AGNs, manifested by blueshifted absorption lines in the soft X-ray and UV bands and have outflow velocities of 100-1000 km s-1. The discovery of ultra-fast outflows (0.1 c) exhibited by blueshifted absorption lines in the hard X-ray band has added an intriguing aspect to the rich field of AGN outflows. The significance of these absorption line detections is often questioned and with only a few lines observed, accurate parametrization of the photoionized plasma becomes difficult. We recently discovered relativistic outflows in the soft X-ray band in two Seyfert galaxies; these detections are robust and alleviate earlier concerns about statistical significance of the lines in the hard X-ray band. I will discuss the our recent results on the discovery of high velocity outflows in the narrow line Seyfert 1 galaxies Ark 564 and Mrk 590. These absorbers are identified through multiple absorption lines at blueshift of 0.1c-0.17c detected in the Chandra HETG-MEG spectra. These high-velocity outflows have ionization parameter and column density typical of low-velocity outflows, but much higher velocity, probing a distinct region in the velocity versus ionization/column parameter space. The presence of such relativistic outflows in Seyfert galaxies poses a challenge to theoretical models of AGN winds. I will briefly discuss existing models and future prospects.

  5. A study of the structure and kinematics of the narrow-line region in Seyfert galaxies

    SciTech Connect

    Veilleux, S.

    1989-01-01

    The results of a high resolution study of the narrow emission line profiles of 16 Seyfert galaxies are presented. It is shown that the line profile parameters published in earlier low resolution studies are sometimes strongly influenced by resolution effects. In spite of these important systematic errors, many of the results derived from low resolution data are confirmed in the high resolution data. The narrow line profiles of Seyfert galaxies have a stronger base relative to core than a Gaussian. Most of the emission lines present a blueward asymmetry in the lower portion of their profile. In some galaxies, the line widths and/or line asymmetries are correlated with the ionization potential and/or critical density of the lines. There is a weak correlation between the line asymmetry and the dust content of the narrow line region (NLR). The large scatter in this relation, the absence of a similar correlation in Seyfert 1 to 1.5 galaxies, and the presence of a blue asymmetry in galaxies with dustfree line-emitting regions suggest that dust obscuration is not the only mechanism responsible for the line asymmetry in active galaxies. An optically-thick disk close to the nucleus is proposed as the other source of line asymmetry. An important result is that the host galaxy is probably playing a role in the kinematics of some of the gas in the NLR. A multicomponent model of the NLR is proposed to explain these results.

  6. A UNIQUE X-RAY UNABSORBED SEYFERT 2 GALAXY: IRAS F01475-0740

    SciTech Connect

    Huang Xingxing; Wang Junxian; Tan Ying; Yang Huan; Huang Yafang E-mail: jxw@ustc.edu.cn

    2011-06-10

    X-ray unabsorbed Seyfert 2 galaxies appear to have X-ray absorption column densities that are too low (N{sub H} < 10{sup 22} cm{sup -2}) to explain the absence of broad emission lines in their optical spectra, challenging the standard active galactic nucleus (AGN) unification model. In this Letter, we report Suzaku exposure on the X-ray unabsorbed Seyfert 2 galaxy IRAS F01475-0740, in which a hidden broad-line region was detected through spectropolarimetric observation. The X-ray data show rapid and significant variations on timescales down to 5 ks, indicating that we are viewing its central engine directly. A newly obtained optical spectrum and previous optical/X-ray data suggest that state transition is unlikely in this source. These make IRAS F01475-0740 a very peculiar X-ray unabsorbed Seyfert 2 galaxy which can only be explained by absorption from materials with abnormally high dust-to-gas ratio (by a factor of >4 larger than Galactic). This is in contrast to most AGNs, which typically show dust-to-gas ratios 3-100 times lower than the Galactic.

  7. Extended far-infrared emission and star formation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Marston, A. P.

    1994-01-01

    An investigation into the extended distribution of far-infrared (FIR) emission associated with nearby Seyfert galaxies is made using a set of MEM reconstructions of IRAS Chopped Photometric Channel (CPC) data (Marston 1993). The data is compared to a set of HII/starburst galaxy images similarly processed in order to compare distributions and FIR color properties. It is shown that the central 1 kpc or so of Seyfert galaxies show extended FIR emission. FIR colors suggest that the bulk of this emission is not directly associated with an active nucleus. They further suggest that the origins of the majority of the emission is from heated dust associated with star formation surrounding the nucleus rather than dust heated by the active nucleus. Nearby Seyfert galaxies are shown to have a higher concentration of far-infrared emission from their centers than the HII/starburst galaxies and a number appear to reside in disk galaxies with relatively low ongoing star formation in their disks. An example of this is NGC 7582 which has a smooth disk but an active nucleus/starbust center.

  8. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  9. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  10. A study of the structure and kinematics of the narrow-line region in Seyfert galaxies. III. Individual objects

    SciTech Connect

    Veilleux, S. )

    1991-03-01

    An individual analysis is presented of the narrow-line profiles of 16 Seyfert galaxies. Substructure is observed in all but one of the sample objects. A direct relationship between the radio structure and these emission-line components is proposed in about half of the objects. The emission-line components generally have flux ratios which are quite similar to the rest of the narrow-line gas. These results suggest that the radio-emitting plasma strongly affects the kinematics of the thermal gas of the narrow-line region (NLR), but not its ionization state. Evidence for ionization/density stratification of the gas in the NLR is found in 4(ionization)/5(density) of the 11 objects for which a multispecies analysis is possible. The stronger cases of stratification are found in the objects whose emission lines present a minimum of profile substructure. A multicomponent model of the NLR is proposed to explain the results of this paper and previous ones. 192 refs.

  11. Upholding the unified model for active galactic nuclei: VLT/FORS2 spectropolarimetry of Seyfert 2 galaxies

    NASA Astrophysics Data System (ADS)

    Ramos Almeida, C.; Martínez González, M. J.; Asensio Ramos, A.; Acosta-Pulido, J. A.; Hönig, S. F.; Alonso-Herrero, A.; Tadhunter, C. N.; González-Martín, O.

    2016-09-01

    The origin of the unification model for active galactic nuclei (AGN) was the detection of broad hydrogen recombination lines in the optical polarized spectrum of the Seyfert 2 galaxy (Sy2) NGC 1068. Since then, a search for the hidden broad-line region (HBLR) of nearby Sy2s started, but polarized broad lines have only been detected in ˜30-40 per cent of the nearby Sy2s observed to date. Here we present new VLT/FORS2 optical spectropolarimetry of a sample of 15 Sy2s, including Compton-thin and Compton-thick sources. The sample includes six galaxies without previously published spectropolarimetry, some of them normally treated as non-hidden BLR (NHBLR) objects in the literature, four classified as NHBLR, and five as HBLR based on previous data. We report ≥4σ detections of a HBLR in 11 of these galaxies (73 per cent of the sample) and a tentative detection in NGC 5793, which is Compton-thick according to the analysis of X-ray data performed here. Our results confirm that at least some NHBLRs are misclassified, bringing previous publications reporting differences between HBLR and NHBLR objects into question. We detect broad Hα and Hβ components in polarized light for 10 targets, and just broad Hα for NGC 5793 and NGC 6300, with line widths ranging between 2100 and 9600 km s-1. High bolometric luminosities and low column densities are associated with higher polarization degrees, but not necessarily with the detection of the scattered broad components.

  12. The Swift Burst Alert Telescope Detected Seyfert 1 Galaxies: X-Ray Broadband Properties and Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T.

    2012-01-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I K[alpha] emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with Nwarm [approx] 1021 cm-2, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat [Gamma] [approx] 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  13. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Astrophysics Data System (ADS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-10-01

    We present line profiles and profile parameters for the narrow-line regions (NLRs) of six Seyfert I galaxies with high-ionization lines: MCG 8-11-I1, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] λ6087 and, when possible, [Fe X] λ6374 profiles to determine if these lines are more likely formed in a physically distinct coronal line region" or are formed throughout the NLR along with lines of lower critical density (n_cr_) and/or ionization potential (IP). We discuss correlations of velocity shift and width with n_cr_ and IP. In some objects, lines of high IP and/or n_cr_ are systematically broader than those of low IP/n_cr_. Of particular interest, however, are objects that show no correlations of line width with either IP or n_cr_ In these objects, lines of high and low IP/n_cr_ are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n_cr_ are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper (Paper II), we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n_cr_ can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the full width at half- maximum (FWHM) and IP and/or n_cr_. The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. In Paper II, we present models in which FWHM correlations with IP and/or n_cr_ result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our observational study produce line

  14. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our

  15. An X-Ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Chiang, James

    2002-06-01

    Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, & Ryde for the X-ray binary Cyg X-1 and later applied to Seyfert galaxies by Zdziarski, Lubiński, & Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum and, as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those that have been observed from these objects can, in principle, be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate that satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the heretofore poorly measured hard X-ray continuum above ~50 keV in type 1 Seyfert galaxies. Conversely, forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft γ-ray telescopes, such as those aboard the International Gamma-Ray Astrophysics Laboratory, in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

  16. Environment of Seyfert 2 galaxies: the group of galaxies around NGC5252.

    NASA Astrophysics Data System (ADS)

    Freudling, W.; Prieto, M. Almudena

    1996-02-01

    The relatively large neutral hydrogen contents and enhanced density of companion galaxies around Seyfert 2 galaxies suggests that tidal interaction could play a major role in the evolution of Seyfert 2 galaxies. Recent observations of the distribution of neutral hydrogen in the active S0 galaxy NGC5252 have shown a disturbed morphology which suggests that the HI in this galaxy could have been acquired through interaction with neighboring galaxies (Prieto & Freudling 1993 and 1995). We have searched for other HI rich galaxies within a radius of 25 arcmin and a redshift range of +/-600km/s around the center location and redshift of NGC5252. A total of five galaxies were found, four of them are cataloged galaxies with no previous redshifts available. These five galaxies were mapped with the VLA in order to search for signs of recent tidal interactions. The maps and derived HI parameters are presented and compared to the one of NGC5252, the sixth member of the group. Two of the galaxies (UGC 8635) are an interacting pair. No signs of other recent interactions were found. Using the Arecibo telescope, we also searched for intergalactic neutral hydrogen between the group members as another potential source of gas for NGC5252. Upper limits on intergroup gas are given for three positions. The lack of evidence for interaction among the galaxies could be interpreted in two different ways. Either interaction occurred in the distant past and triggered activity in this galaxy over a long period of time. Alternatively, factors other than the gas supply might be responsible for the observation that Seyfert 2 galaxies tend to be surrounded by a region of enhanced galaxy density.

  17. Discovery of a deep Seyfert-2 galaxy at z = 0.222 behind NGC 300

    NASA Astrophysics Data System (ADS)

    Combi, J. A.; García, F.; Rodríguez, M. J.; Gamen, R.; Cellone, S. A.

    2016-08-01

    We report on the unveiling of the nature of the unidentified X-ray source 3XMM J005450.3-373849 as a Seyfert-2 galaxy located behind the spiral galaxy NGC 300 using Hubble Space Telescope data, new spectroscopic Gemini observations and available XMM-Newton and Chandra data. We show that the X-ray source is positionally coincident with an extended optical source, composed of a marginally resolved nucleus/bulge, surrounded by an elliptical disc-like feature and two symmetrical outer rings. The optical spectrum is typical of a Seyfert-2 galaxy redshifted to z = 0.222 ± 0.001, which confirms that the source is not physically related to NGC 300. At this redshift the source would be located at 909 ± 4 Mpc (comoving distance in the standard model). The X-ray spectra of the source are well fitted by an absorbed power-law model. By tying NH between the six available spectra, we found a variable index Γ running from ˜2 in 2000-2001 to 1.4-1.6 in the 2005-2014 period. Alternatively, by tying Γ, we found variable absorption columns of NH ˜ 0.34 × 10-22 cm-2 in 2000-2001, and 0.54-0.75 × 10-22 cm-2 in the 2005-2014 period. Although we cannot distinguish between a spectral or absorption origin, from the derived unabsorbed X-ray fluxes, we are able to assure the presence of long-term X-ray variability. Furthermore, the unabsorbed X-ray luminosities of 0.8-2 × 1043 erg s-1 derived in the X-ray band are in agreement with a weakly obscured Seyfert-2 AGN at z ≈ 0.22.

  18. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  19. Discovery of a deep Seyfert-2 galaxy at z = 0.222 behind NGC 300

    NASA Astrophysics Data System (ADS)

    Combi, J. A.; García, F.; Rodríguez, M. J.; Gamen, R.; Cellone, S. A.

    2016-04-01

    We report on the unveiling of the nature of the unidentified X-ray source 3XMM J005450.3-373849 as a Seyfert 2 galaxy located behind the spiral galaxy NGC 300 using Hubble Space Telescope data, new spectroscopic Gemini observations and available XMM-Newton and Chandra data. We show that the X-ray source is positionally coincident with an extended optical source, composed by a marginally resolved nucleus/bulge, surrounded by an elliptical disc-like feature and two symmetrical outer rings. The optical spectrum is typical of a Seyfert 2 galaxy redshifted to z = 0.222 ± 0.001, which confirms that the source is not physically related to NGC 300. At this redshift the source would be located at 909±4 Mpc (comoving distance in the standard model). The X-ray spectra of the source are well-fitted by an absorbed power-law model. By tying NH between the six available spectra, we found a variable index Γ running from ˜2 in 2000-2001 years, to 1.4-1.6 in the 2005-2014 period. Alternatively, by tying Γ, we found variable absorption columns of NH ˜ 0.34 × 10-22 cm-2 in 2000-2001 years, and 0.54 - 0.75 × 10-22 cm-2 in the 2005-2014 period. Although we cannot distinguish between an spectral or absorption origin, from the derived unabsorbed X-ray fluxes, we are able to assure the presence of long-term X-ray variability. Furthermore, the unabsorbed X-ray luminosities of 0.8 - 2 ×1043 erg s-1 derived in the X-ray band are in agreement with a weakly obscured Seyfert-2 AGN at z ≈ 0.22.

  20. An X-Ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Chiang, James; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert. galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, and Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubifiski, and Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can, in principle, be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the heretofore poorly measured hard X-ray continuum above approximately 50 keV in type 1 Seyfert galaxies. Conversely, forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft gamma-ray telescopes, such as those aboard the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

  1. The line-emitting regions of the exceptional Seyfert galaxy Markarian 359

    SciTech Connect

    Veilleux, S. )

    1991-02-01

    The results of a kinematic study of the narrow- and broad-line regions in Mrk 359 are presented. The emission-line profiles between 4600 and 7500 A are used to derive the physical characteristics of the line-emitting gas. Many aspects of the emission-line profiles of Mrk 359 make this object an exceptional Seyfert galaxy: extremely small widths of both the forbidden lines and the broad component of the permitted lines, absence of profile substructure, large blueward asymmetry of the high-ionization forbidden lines despite the apparent absence of reddening in the narrow-line region. Various scenarios are proposed to explain these results. 65 refs.

  2. Periodicity analysis of the radio light curve of the Seyfert galaxy III Zw 2

    NASA Astrophysics Data System (ADS)

    Li, H. Z.; Xie, G. Z.; Dai, H.; Chen, L. E.; Yi, T. F.; Tang, Y. K.; Bao, Y. Y.; Lü, L. Z.; Na, W. W.; Ren, J. Y.

    2010-02-01

    We have analyzed the radio light curves of the Seyfert galaxy III Zw 2 at 22 and 37 GHz taken from the database of Metsähovi Radio Observatory, and found evidence of quasi-periodic activity. The light curves show great activity, with very complicated non-sinusoidal variations. Period of Pobs = 5.14 ± 0.19 yr was consistently identified by three methods: the Jurkevich method, the power spectrum intensity estimation method and the discrete correlation function method. The variability period of about 5.14 yr in III Zw 2 is caused most likely by the helical motion of the jet.

  3. Revealing the coronal properties of Seyfert galaxies with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marinucci, A.; NuSTAR Team

    2014-07-01

    The Nuclear Spectroscopic Telescope Array, or NuSTAR, launched on June 13, 2012, is the first orbiting telescope to focus high energy X-ray light above 10 keV. Compared to the previous generation of coded aperture observatories, this change in technology provides NuSTAR with 10x sharper images and 100x improved sensitivity. We will present and discuss the key parameters describing the hot corona of AGN that have been recently measured, with unprecedented accuracy, in a number of Seyfert galaxies.

  4. The Mg II line profile in the Seyfert galaxy NGC 4151: A new outflowing component

    NASA Technical Reports Server (NTRS)

    Leech, Kieron J.; Penston, M. V.; Snijders, M. A. J.; Gull, T.

    1986-01-01

    The Mg II 2795, 2802A doublet in the Seyfert galaxy NGC 4151 was examined to search for velocity systems in absorption and emission. Evidence for a narrow, outflowing absorption system in Mg II having a velocity of +825 km/sec relative to the Sun, -165 km/sec relative to the systemic velocity of NGC 4151 is presented. This feature is not present in Ly alpha or C IV and possible explanations for this are considered. For the Mg II and C IV lines a model decomposition of the line profile is shown.

  5. The Mg II line profile in the Seyfert galaxy NGC 4151 - A new outflowing component

    NASA Technical Reports Server (NTRS)

    Leech, Kieron J.; Penston, M. V.; Snijders, M. A. J.; Gull, T. R.

    1987-01-01

    This paper examines the Mg II 2795-2802 A doublet in the Seyfert galaxy NGC 4151 at a higher resolution than has previously been used, searching for velocity systems in absorption and emission. Evidence is presented for a new, narrow, outflowing absorption system in Mg II having a velocity of 825 km/s relative to the sun, and -165 km/s relative to the systemic velocity of NGC 4151. This feature is not present in Ly-alpha or C IV and possible explanations for this are considered. For the Mg II and C IV lines, a model decomposition of the line profile is presented.

  6. Broad Hβ Emission-line Variability in a Sample of 102 Local Active Galaxies

    NASA Astrophysics Data System (ADS)

    Runco, Jordan N.; Cosens, Maren; Bennert, Vardha N.; Scott, Bryan; Komossa, S.; Malkan, Matthew A.; Lazarova, Mariana S.; Auger, Matthew W.; Treu, Tommaso; Park, Daeseong

    2016-04-01

    A sample of 102 local (0.02 ≤ z ≤ 0.1) Seyfert galaxies with black hole masses MBH > 107M⊙ was selected from the Sloan Digital Sky Survey (SDSS) and observed using the Keck 10 m telescope to study the scaling relations between MBH and host galaxy properties. We study profile changes of the broad Hβ emission line within the three to nine year time frame between the two sets of spectra. The variability of the broad Hβ emission line is of particular interest, not only because it is used to estimate MBH, but also because its strength and width are used to classify Seyfert galaxies into different types. At least some form of broad-line variability (in either width or flux) is observed in the majority (∼66%) of the objects, resulting in a Seyfert-type change for ∼38% of the objects, likely driven by variable accretion and/or obscuration. The broad Hβ line virtually disappears in 3/102 (∼3%) extreme cases. We discuss potential causes for these changing look active galactic nuclei. While similar dramatic transitions have previously been reported in the literature, either on a case-by-case basis or in larger samples focusing on quasars at higher redshifts, our study provides statistical information on the frequency of Hβ line variability in a sample of low-redshift Seyfert galaxies.

  7. Is HE 0436-4717 Anemic? A deep look at a bare Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Bonson, K.; Gallo, L. C.; Vasudevan, R.

    2015-06-01

    A multi-epoch, multi-instrument analysis of the Seyfert 1 galaxy HE 0436-4717 is conducted using optical to X-ray data from XMM-Newton and Swift (including the Burst Alert Telescope). Fitting of the UV-to-X-ray spectral energy distribution shows little evidence of extinction and the X-ray spectral analysis does not confirm previous reports of deep absorption edges from O VIII. HE 0436-4717 is a `bare' Seyfert with negligible line-of-sight absorption making it ideal to study the central X-ray emitting region. Three scenarios were considered to describe the X-ray data: partial covering absorption, blurred reflection, and soft Comptonization. All three interpretations describe the 0.5-10.0 keV spectra well. Extrapolating the models to 100 keV results in poorer fits for the partial covering model. When also considering the rapid variability during one of the XMM-Newton observations, the blurred reflection model appears to describe all the observations in the most self-consistent manner. If adopted, the blurred reflection model requires a very low iron abundance in HE 0436-4717. We consider the possibilities that this is an artefact of the fitting process, but it appears possible that it is intrinsic to the object.

  8. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to ‑3.2 ≲ log U ≲ ‑3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  9. Infrared coronal emission lines and the possibility of their laser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Avi

    1993-01-01

    Results are presented from detailed balance calculations, and a compilation of atomic data and other model calculations designed to support upcoming ISO and current observing programs involving IR coronal emission lines, together with a table with a complete line list of infrared transitions within the ground configurations 2s2 2p(k), 3s2 3p(k), and the first excited configurations 2s 2p and 3s 3p of highly ionized astrophysically abundant elements. The temperature and density parameter space for dominant cooling via IR coronal lines is presented, and the relationship of IR and optical coronal lines is discussed. It is found that, under physical conditions found in Seyfert nuclei, 14 of 70 transitions examined have significant population inversions in levels that give rise to IR coronal lines. Several IR coronal line transitions were found to have laser gain lengths that correspond to column densities of 10 exp 24-25/sq cm which are modeled to exist in Seyfert nuclei. Observations that can reveal inverted level populations and laser gain in IR coronal lines are suggested.

  10. Radio Continuum Variability and Molecular Gas Reservoirs in the Type-Transitioning Seyfert Galaxy Mrk 590

    NASA Astrophysics Data System (ADS)

    Koay, Jun Yi; Vestergaard, Marianne; Casasola, Viviana; Peterson, Bradley M.

    2015-08-01

    Sometime between 2006 and 2012, the broad Hβ emission line of Mrk 590, once classified as a bona-fide Seyfert 1 galaxy, has completely disappeared! The optical-UV continuum emission has decreased to the point where it can be fully accounted for by stellar population models of the host galaxy. As such, Mrk 590 would now be classified as a Seyfert 1.9 or 2 galaxy, which goes against the prevailing scheme of AGN classification and unification where the presence of broad emission lines depends only on source orientation. Similar decreases in X-ray and radio continuum fluxes show that the central engine of Mrk 590 may be turning off or transitioning into a radiatively inefficient mode of accretion. We discuss the origin of the compact, unresolved radio emission in Mrk 590 and the physics of its variability in relation to the variability observed at other wavelengths, based on archival radio data and new VLBI observations. We also present recent ALMA observations of the CO(3-2) spectral line and sub-mm continuum emission; these provide the strongest limits to date on the molecular gas mass in the central ~100 pc, plus reveal the gas distribution and kinematics in the central kpc, to determine if this intriguing AGN is indeed running out of fuel.

  11. Detection of faint BLR components in the starburst/Seyfert galaxy NGC 6221 and measure of the central BH mass

    NASA Astrophysics Data System (ADS)

    La Franca, Fabio; Onori, Francesca; Ricci, Federica; Bianchi, Stefano; Marconi, Alessandro; Sani, Eleonora; Vignali, Cristian

    2016-04-01

    In the last decade, using single epoch virial based techniques in the optical band, it has been possible to measure the central black hole mass on large type 1 Active Galactive Nuclei (AGN) samples. However these measurements use the width of the broad line region as a proxy of the virial velocities and are therefore difficult to be carried out on those obscured (type 2) or low luminosity AGN where the nuclear component does not dominate in the optical. Here we present the optical and near infrared spectrum of the starburst/Seyfert galaxy NGC 6221, observed with X-shooter/VLT. Previous observations of NGC 6221 in the X-ray band shows an absorbed (N_H=8.5 +/- 0.4 x 10^21 cm^-2) spectrum typical of a type 2 AGN with luminosity log(L_14-195/ erg s^-1) = 42.05, while in the optical band its spectrum is typical of a reddened (A_V=3) starburst. Our deep X-shooter/VLT observations have allowed us to detect faint broad emission in the H_alpha, HeI and Pa_beta lines (FWHM=1400-2300 km s^-1) confirming previous studies indicating that NGC 6221 is a reddened starbust galaxy which hosts an AGN. We use the measure of the broad components to provide a first estimate of its central black hole mass (M_BH = 10^6.6+/-0.3 Msol, lambda_Edd=0.01-0.03), obtained using recently calibrated virial relations suitable for moderately obscured (N_H<10^24 cm^-2) AGN.

  12. X-ray bumps, iron K-alpha lines, and X-ray suppression by obscuring tori in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Madau, Piero; Zycki, Piotr T.

    1994-01-01

    We investigate the X-ray spectral properties of unobscured type 1 and obscured type 2 Seyferts as predicted by the unified Seyfert scheme. We consider the reprocessing of X-ray photons by photoelectric absorption, iron fluorescence, and Compton downscattering in the obscuring tori surrounding these active nuclei, and compute by Monte Carlo methods the reprocessed spectra as a function of the viewing angle. Depending on the optical depth and shape of the torus, and on the viewing angle, the X-ray flux can be suppressed by substantial factors when our line of sight is obscured. We show that an immediate consequence of the existence of an obscuring thick torus is the production in the spectra of type 1 Seyfert galaxies of a bump in the continuum above 10-20 keV and an Fe K-alpha line with significant equivalent width. In those type 2 Seyferts for which the hard X-ray spectrum has been substantially suppressed, the equivalent width of the Fe K-alpha line in the transmitted spectrum can be very large.

  13. The Wasilewski sample of emission-line galaxies - Follow-up CCD imaging and spectroscopic and IRAS observations

    NASA Technical Reports Server (NTRS)

    Bothun, Gregory D.; Schmitz, Mark; Halpern, Jules P.; Lonsdale, Carol J.; Impey, Chris

    1989-01-01

    The results of an extensive imaging and spectroscopic follow-up of the objective prism-selected emission line galaxy (ELG) sample of Wasilewski (1982) are presented. Fluxes at 12, 25, 60, and 100 microns were also obtained from the coadded IRAS survey data. ELGs found by objective prism surveys are found to be generally small and underluminous galaxies which usually have higher than average optical surface brightness. The Seyfert detection rate in objective prism surveys is roughly 10 percent and the ratio of the space densities of Seyfert 2 to Seyfert 1 galaxies is significantly larger than unity. Most of the galaxies selected by objective prism surveys are star-forming, late-type spirals which often show disturbed morphology. About 25 percent of the galaxies detected by the surveys are faint, high-excitation metal-poor compact H II regions.

  14. Unveiling the Physics of Low-luminosity AGNs through X-Ray Variability: LINER versus Seyfert 2

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.; Perea, J.

    2016-06-01

    X-ray variability is very common in active galactic nuclei (AGNs), but these variations may not occur similarly in different families of AGNs. We aim to disentangle the structure of low-ionization nuclear emission-line regions (LINERs) compared to Seyfert 2s by the study of their spectral properties and X-ray variations. We assembled the X-ray spectral parameters and variability patterns, which were obtained from simultaneous spectral fittings. Major differences are observed in the X-ray luminosities and the Eddington ratios, which are higher in Seyfert 2s. Short-term X-ray variations were not detected, while long-term changes are common in LINERs and Seyfert 2s. Compton-thick sources generally do not show variations, most probably because the AGN is not accesible in the 0.5–10 keV energy band. The changes are mostly related to variations in the nuclear continuum, but other patterns of variability show that variations in the absorbers and at soft energies can be present in a few cases. We conclude that the X-ray variations may occur similarly in LINERs and Seyfert 2s, i.e., they are related to the nuclear continuum, although they might have different accretion mechanisms. Variations at UV frequencies are detected in LINER nuclei but not in Seyfert 2s. This is suggestive of at least some LINERs having an unobstructed view of the inner disk where the UV emission might take place, with UV variations being common in them. This result might be compatible with the disappeareance of the torus and/or the broad-line region in at least some LINERs.

  15. Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Prabhakar, Vedavvathi

    Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars Vijayakumar H. Doddamani*and P. Vedavathi Department of Physics, Bangalore University, Bangalore-560056, *Corresponding author:drvkdmani@gmail.com, Abstract The line and continuum flux variability is a hallmark phenomenon of Seyfert 1 galaxies and quasars. Large amplitude luminosity variability is observed in AGNs from x-rays through radio waves over a wide-ranging timescales from minutes to years. The combinations of high luminosity and short variability time scales suggests, that the power of AGN is produced by a phenomena more efficient in terms of energy release per unit mass than ordinary stellar processes. The basic structure of AGNs thus developed based on the variability studies consists of a central super massive black hole surrounded by an accretion disk or more generally optically thick plasma radiating brightly at UV and soft X-ray wavelengths. The variability studies have been important tools of understanding the physics of the central regions of AGNs, which in general cannot be resolved with the existing or planned ground and space telescopes. Therefore, we have undertaken a study of the simultaneous ultraviolet line and continuum flux variability studies in MRK501, ESOB113-IG45 (also called as Fairall 9), MRK1506, MRK1095 V*GQCOM, PG1211+143, MRK205, PG1226+023 (also known as 3C273), PG1351+640, MRK 1383, MRK876 and QSO2251-178 as these objects have been repeatedly observed by IUE satellite over several years.. It is observed that Fairall 9, MRK 1095 and 3C273 exhibit the large amplitude variability (» 30 times) over the observed timescale, which spans several years. The remaining nine objects exhibit small amplitude (» 5 times) variability over the long time scale of observations. The highest amplitude variability is observed in Lya with a least in the MgII line. The amplitude of variability decreases in the order of Lya, CIV and Mg II, lines. These

  16. Reverberation measurements of the inner radius of the dust torus in 17 Seyfert galaxies

    SciTech Connect

    Koshida, Shintaro; Minezaki, Takeo; Yoshii, Yuzuru; Sakata, Yu; Sugawara, Shota; Kobayashi, Yukiyasu; Suganuma, Masahiro; Enya, Keigo; Tomita, Hiroyuki; Aoki, Tsutomu; Peterson, Bruce A. E-mail: minezaki@ioa.s.u-tokyo.ac.jp

    2014-06-20

    We present the results of a dust reverberation survey for 17 nearby Seyfert 1 galaxies, which provides the largest homogeneous data collection for the radius of the innermost dust torus. A delayed response of the K-band light curve after the V-band light curve was found for all targets, and 49 measurements of lag times between the flux variation of the dust emission in the K band and that of the optical continuum emission in the V band were obtained by the cross-correlation function analysis and also by an alternative method for estimating the maximum likelihood lag. The lag times strongly correlated with the optical luminosity in the luminosity range of M{sub V} = –16 to –22 mag, and the regression analysis was performed to obtain the correlation log Δt (days) = –2.11 – 0.2 M{sub V} assuming Δt∝L {sup 0.5}, which was theoretically expected. We discuss the possible origins of the intrinsic scatter of the dust lag-luminosity correlation, which was estimated to be approximately 0.13 dex, and we find that the difference of internal extinction and delayed response of changes in lag times to the flux variations could have partly contributed to intrinsic scatter. However, we could not detect any systematic change of the correlation with the subclass of the Seyfert type or the Eddington ratio. Finally, we compare the dust reverberation radius with the near-infrared interferometric radius of the dust torus and the reverberation radius of broad Balmer emission lines. The interferometric radius in the K band was found to be systematically larger than the dust reverberation radius in the same band by the about a factor of two, which could be interpreted by the difference between the flux-weighted radius and response-weighted radius of the innermost dust torus. The reverberation radius of the broad Balmer emission lines was found to be systematically smaller than the dust reverberation radius by about a factor of four to five, which strongly supports the unified

  17. THE SWIFT BURST ALERT TELESCOPE DETECTED SEYFERT 1 GALAXIES: X-RAY BROADBAND PROPERTIES AND WARM ABSORBERS

    SciTech Connect

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T. R.

    2012-02-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I K{alpha} emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with N{sub warm} {approx} 10{sup 21} cm{sup -2}, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat {Gamma} {approx} 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  18. The Mass of the Central Black Hole in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Onken, Christopher A.; Peterson, Bradley M.

    2004-01-01

    Improved analysis of ultraviolet and optical monitoring data on the Seyfert 1 galaxy NGC 3783 provides evidence for the existence of a supermassive, (8.7 +/- 1.1) x 10(exp 6) solar mass, black hole in this galaxy. By using recalibrated spectra from the International Ultraviolet Explorer satellite and ground-based optical data, as well as refined techniques of reverberation mapping analysis, we have reduced the statistical uncertainties in the response of the emission lines to variations in the ionizing continuum. The different time lags in the emission-line responses indicate a stratification in the ionization structure of the broad-line region and are consistent with the virial relationship suggested by the analysis of similar active galaxies.

  19. Ultraviolet and optical spectrophotometry of the Seyfert 1.8 galaxy Markarian 609

    NASA Technical Reports Server (NTRS)

    Rudy, Richard J.; Cohen, Ross D.; Ake, T. B.

    1988-01-01

    Ultraviolet and optical observations of the Seyfert 1.8 galaxy Mrk 609 were collected simultaneously. The observations reveal strong line and continuum emission in the UV, an increase in the flux of H-beta and He I 5876, and a decrease in the H-alpha/H-beta value since the measurements by Osterbrock (1978, 1981), as well as an extended population of early-type stars, which is considered to be the source powering the larger part of the far-IR emission. Special attention is given to the origin of steep broad-line Balmer decrement measured by Osterbrock, since the strong UV continuum and the emission lines of Mrk 609 observed rule out reddening as the cause of the Balmer decrement. It is suggested that smaller-than-normal optical depths are likely to be the cause of the decrement.

  20. The radio source and bipolar nebulosity in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Miyaji, Takamitsu; Wilson, Andrew S.; Perez-Fournon, Ismael

    1992-01-01

    Results of radio continuum and optical emission-line observations of the type 1 Seyfert galaxy NGC 3516 are presented. The radio maps reveal an elongated one-sided curved structure, which comprises a series of small-scale 'blobs' and extends up to 4 kpc from the nucleus. This radio structure is aligned and cospatial with one side of the double-sided and highly symmetric Z-shaped emission-line structure. It is argued that these morphological features are associated with a bipolar gaseous outflow from the nucleus of NGC 3516. The radio 'blobs' are elongated roughly perpendicular to the apparent local direction of the outflow, a result which is interpreted in terms of synchrotron emission from outflow-driven shock waves.

  1. Optical monitoring observations of two γ-ray narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Wu, Chao; Wang, Jing; Wei, Jianyan

    2016-04-01

    1H 0323+342 is a rather radio-loud narrow-line Seyfert 1 galaxy (NLS1) with γ-ray emission. Optical observations were carried out in B and R bands which covered 6 nights in 2011 to obtain light curves of 1H 0323+342. The difference image subtraction method was used to deal with the data of 1H 0323+342 because of the existence of extended host galaxy. Optical variability on day timescale was reported here. We also monitored the first γ-ray NLS1 SDSS J094857.3+002225 and confirmed the existence of intranight optical variability (INOV). These indicated the existence of a relativistic jet in these NLS1s.

  2. Radio-loud narrow-line Seyfert 1 galaxies with high-velocity outflows

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D.; Zensus, J. A.

    2016-02-01

    We have studied four radio-loud Narrow-line Seyfert 1 (NLS1) galaxies with extreme optical emission-line shifts, indicating radial outflow velocities of up 2450 km s-1. The shifts are accompanied by strong line broadening, up to 2270 km s-1 in [NeV]. A significant ionization stratification (higher line shift at higher ionization potential) of most ions implies that we see a large-scale wind rather than single, localized jet-cloud interactions. The observations are consistent with a scenario, where the signatures of outflows are maximized because of a pole-on view into the central engine of these radio-loud NLS1 galaxies.

  3. Near-infrared spectrophotometry of four Seyfert 1 galaxies and NGC 1275

    NASA Technical Reports Server (NTRS)

    Rudy, R. J.; Jones, B.; Levan, P. D.; Puetter, R. C.; Smith, H. E.; Willner, S. P.; Tokunaga, A. T.

    1982-01-01

    Low-resolution spectrophotometry from 2 to 4 microns is reported for the four Seyfert 1 galaxies Mrk 335, 3C 120, Mrk 509, NGC 7469, and the peculiar emission-line galaxy NGC 1275. The spectrum of NGC 7469 exhibits a strong 3.3-micron dust feature, indicating a thermal origin for the bulk of its considerable nonstellar infrared emission. NGC 1275 has a large stellar contribution to its infrared flux at wavelengths shortward of 3 microns. The spectrum from 3 to 4 microns fits a power law which fits the 10-micron and 20-micron broad bands, as well. A thermal model which can explain the spectrum of NGC 1275 is discussed. Mrk 335 displays a complex spectrum suggestive of thermal dust emission. 3C 120 and Mrk 509 have nonstellar infrared emission shortward of 2 microns, but the data are ambiguous as to whether this emission is thermal or nonthermal in origin.

  4. Deep Optical Imaging of a Compact Group of Galaxies: Seyfert's Sextet

    NASA Astrophysics Data System (ADS)

    Nishiura, Shingo; Murayama, Takashi; Shimada, Masashi; Sato, Yasunori; Nagao, Tohru; Molikawa, Kohji; Taniguchi, Yoshiaki; Sanders, D. B.

    2000-11-01

    To investigate the dynamical status of Seyfert's Sextet (SS), we have obtained a deep optical (VR+I) image of this group. Our image shows that a faint envelope, down to a surface brightness μoptical(AB)~=27 mag arcsec-2, surrounds the member galaxies. This envelope is irregular in shape. It is likely that this shape is attributed either to recent-past or to ongoing galaxy interactions in SS. If the member galaxies have experienced a number of mutual interactions over a long timescale, the shape of the envelope should be rounder. Therefore, the irregularly shaped morphology suggests that SS is in an early phase of dynamical interaction among the member galaxies. It is interesting to note that the soft X-ray image obtained with ROSAT (Pildis, Bregman, & Evrard) is significantly similar in morphology. We discuss the possible future evolution of SS briefly.

  5. Line profiles and the kinematics of the narrow-line region in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    De Robertis, M. M.; Shaw, Richard A.

    1990-01-01

    High signal-to-noise ratio and long-slit CCD spectra at about 100 km/sec resolution have been obtained for six high-ionization Seyfert galaxies. By subtracting the stellar absorption features with the aid of continuum templates, and using deblending techniques, the asymmetry indices of a number of optical emission-line profiles were measured, spanning a wide range in both ionization potential and critical density in each galaxy. The fundamental problem of the cloud-motion direction in the narrow-line region (NLR) has been studied, using these measurements and on the assumption that the preponderance of blueward profile asymmetries requires radial motion as well as a source of extinction. Simple and spherically symmetric NLR simulations are performed to demonstrate that infall and outflow models can be distinguished by comparing asymmetry indices as a function of ionization potential and critical density.

  6. Molecular tori in Seyfert galaxies - Feeding the monster and hiding it

    NASA Astrophysics Data System (ADS)

    Krolik, Julian H.; Begelman, Mitchell C.

    1988-06-01

    Much evidence exists that the majority of Seyfert nuclei are surrounded by a geometrically and optically thick torus of dusty, obscuring gas a few parsecs from the center. The authors discuss the principal properties of the gas in the torus. It is almost certainly not smoothly distributed; most of its mass is gathered into clouds. The balance between cloud merger and tidal shearing ensures that the covering factor of these clouds in the axial direction is of order unity and determines the shape of the cloud-size distribution function. It is shown that the same viscous heating responsible for the large geometrical thickness of the obscuring region removes the angular momentum from enough clouds to permit them to be captured by the central black hole, fueling its activity and stabilizing the balance between evaporation and dissipative inflow.

  7. Optical polarization of the Seyfert galaxies IC 4329A and MRK 376

    NASA Technical Reports Server (NTRS)

    Martin, P. G.; Stockman, H. S.; Angel, J. R. P.; Maza, J.; Beaver, E. A.

    1982-01-01

    Measurements of the optical polarizations of the two highly polarized Seyfert 1 galaxies IC 4329A and Mrk 376 are presented. Continuum and line polarization of the two objects were observed with the Steward Observatory 2.25-m telescope using a two-channel photoelectric Pockels cell polarimeter, a single-channel scanner, and a digicon attached to a flint prism spectrograph. Results indicate that, for both galaxies, the emission line polarization and underlying continuum polarization are identical, rising toward short wavelengths, and therefore must be explained by a common mechanism. Such a mechanism is suggested to involve polarization produced by aligned grains in the galactic disk. A model for polarization in IC 4329A by this mechanism predicts a grain size three times smaller than Galactic polarizing grains, as well as a visual extinction of about 2 magnitudes, a gas to dust mass ratio close to 100 and a polarization to extinction ratio comparable to the Galactic ratio.

  8. Einstein Observatory SSS and MPC observations of the complex X-ray spectra of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Turner, T. J.; Weaver, K. A.; Mushotzky, R. F.; Holt, S. S.; Madejski, G. M.

    1991-11-01

    The X-ray spectra of 25 Seyfert galaxies measured with the Solid State Spectrometer on the Einstein Observatory have been investigated. This new investigation utilizes simultaneous data from the Monitor Proportional Counter, and automatic correction for systematic effects in the Solid State Spectrometer which were previously handled subjectively. It is found that the best-fit single-power-law indices generally agree with those previously reported, but that soft excesses of some form are inferred for about 48 percent of the sources. One possible explanation of the soft excess emission is a blend of soft X-ray lines, centered around 0.8 keV. The implications of these results for accretion disk models are discussed.

  9. The effect of suprathermal protons on the physical conditions in Seyfert galaxy nuclei II

    NASA Technical Reports Server (NTRS)

    Stoner, R.; Ptak, R.

    1975-01-01

    The radiative transfer of Ly-alpha, Ly-beta, and H-alpha in a hydrogen gas containing dust was considered with application to the nuclear gas in Seyfert galaxies. By neglecting the direct escape of line radiation and by averaging over the gas, the radiation transfer in space is suppressed and the frequency transfer only is considered. The dust degrades the line radiation via frequency-independent absorption, converting the energy to infrared luminosity. The source functions in the lines were solved, using appropriate approximations, in order to determine under what conditions the narrow component of the Balmer line radiation from the gas can be self-absorbed and degraded without similar degradation of the broad component, which originates from the suprathermals themselves. The results are used to find self-consistent values for the temperature and ionization of the gas for various amounts of dust and various concentrations of suprathermal particles.

  10. Modelling of the X-ray broad absorption features in Narrow-Line Seyfert 1s

    NASA Astrophysics Data System (ADS)

    Porquet, Delphine; Mouchet, Martine; Dumont Anne-Marie

    2000-09-01

    We investigate the origin of the broad absorption features detected near 1-1.4 keV in several Narrow-Line Seyfert 1 galaxies, by modelling the absorbing medium with various physical parameters, using the ionization code PEGAS. The observed properties of the X-ray absorption features can be reproduced by taking into account the peculiar soft X-ray excess which is well fitted by a blackbody plus an underlying power law. We equally stress that the emission coming from the absorbing medium (related to the covering factor) has a strong influence on the resulting X-ray spectrum, in particular on the apparent position and depth of the absorption features. A non-solar iron abundance may be required to explain the observed deep absorption. We also investigate the influence of an additional collisional ionization process ("hybrid case") on the predicted absorption features.

  11. Optical monitoring of the Seyfert galaxy NGC 4151 and possible periodicities in its historical light curve

    NASA Astrophysics Data System (ADS)

    Guo, Di-Fu; Hu, Shao-Ming; Tao, Jun; Yin, Hong-Xing; Chen, Xu; Pan, Hong-Jian

    2014-08-01

    We report B, V and R band CCD photometry of the Seyfert galaxy NGC 4151 obtained with the 1.0 m telescope at Weihai Observatory of Shandong University and the 1.56 m telescope at Shanghai Astronomical Observatory from 2005 December to 2013 February. Combining all available data from literature, we have constructed a historical light curve from 1910 to 2013 to study the periodicity of the source using three different methods (the Jurkevich method, the Lomb-Scargle periodogram method and the Discrete Correlation Function method). We find possible periods of P1 = 4 ± 0.1, P2 = 7.5 ± 0.3 and P3 = 15.9 ± 0.3 yr.

  12. The structure of the broad-line region in the Seyfert galaxy Markarian 590

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Ali, Babar; Horne, Keith; Bertram, Ray; Lame, Nancy J.; Pogge, Richard W.; Wagner, R. M.

    1993-01-01

    We have undertaken a nine-month study of continuum and emission-line variability in the Seyfert galaxy Mrk 590 in order to determine the structure of the broad-line region. The H-beta variations are found to lag behind those of the optical continuum by about 19 days. We apply a maximum entropy method to solve for the transfer function which relates the line and continuum variability. This analysis suggests that there is a deficit of emission-line response due to gas along the line of sight to the continuum source, as in the case of NGC 5548, although these data do not allow us to reject with confidence models with significant line-of-sight response. We also show that the H-beta line variability is apparently confined to the core of the emission line, as suggested previously by Ferland, Korista, and Peterson (1990).

  13. The new primary X-ray component confirmed in the Seyfert I galaxy IC 4329A

    NASA Astrophysics Data System (ADS)

    Miyake, Katsuma; Noda, Hirofumi; Yamada, Shin'ya; Makishima, Kazuo; Nakazawa, Kazuhiro

    2016-06-01

    The bright and highly variable Seyfert I active galactic nucleus IC 4329A was observed with Suzaku five times in 2007 August, with intervals of ˜5 days and a net exposure of 24-31 ks each. Another longer observation was carried out in 2012 August with a net exposure of 118 ks. In the six observations, a source was detected in 2-45 keV with an average 2-10 keV fluxes of (0.67-1.2) × 10-10 erg cm-2 s-1. Its intensity changed by a factor of 2 among the five observations in 2007, and 1.5 within the 2012 observation. A difference of spectrum among these observations revealed that the variability of IC 4329A was carried mainly by a power-law component with a photon index Γ ˜ 2.0. However, in addition to this primary component and its associated reflection, the broad-band Suzaku data required another, harder, and less-variable component with Γ ˜ 1.4. The presence of this new continuum was also confirmed by analyzing the same six data sets through the spectral decomposition technique developed by Noda et al. (2013a, ApJ, 771, 100). This Γ ˜ 1.4 continuum is considered to be a new primary component that has not been recognized in the spectra of IC 4329A so far, although it was recently identified in those of several other Seyfert I galaxies (Noda et al. 2013a, ApJ, 771, 100; Noda et al. 2014, ApJ, 794, 2).

  14. Properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Berton, M.; Caccianiga, A.; Ciroi, S.; Cracco, V.; Peterson, B. M.; Angelakis, E.; Braito, V.; Fuhrmann, L.; Gallo, L.; Grupe, D.; Järvelä, E.; Kaufmann, S.; Komossa, S.; Kovalev, Y. Y.; Lähteenmäki, A.; Lisakov, M. M.; Lister, M. L.; Mathur, S.; Richards, J. L.; Romano, P.; Sievers, A.; Tagliaferri, G.; Tammi, J.; Tibolla, O.; Tornikoski, M.; Vercellone, S.; La Mura, G.; Maraschi, L.; Rafanelli, P.

    2015-03-01

    We have conducted a multiwavelength survey of 42 radio loud narrow-1ine Seyfert 1 galaxies (RLNLS1s), selected by searching among all the known sources of this type and omitting those with steep radio spectra. We analyse data from radio frequencies to X-rays, and supplement these with information available from online catalogues and the literature in order to cover the full electromagnetic spectrum. This is the largest known multiwavelength survey for this type of source. We detected 90% of the sources in X-rays and found 17% at γ rays. Extreme variability at high energies was also found, down to timescales as short as hours. In some sources, dramatic spectral and flux changes suggest interplay between a relativistic jet and the accretion disk. The estimated masses of the central black holes are in the range ~106-8 M⊙, lower than those of blazars, while the accretion luminosities span a range from ~0.01 to ~0.49 times the Eddington limit, with an outlier at 0.003, similar to those of quasars. The distribution of the calculated jet power spans a range from ~1042.6 to ~1045.6 erg s-1, generally lower than quasars and BL Lac objects, but partially overlapping with the latter. Once normalised by the mass of the central black holes, the jet power of the three types of active galactic nuclei are consistent with each other, indicating that the jets are similar and the observational differences are due to scaling factors. Despite the observational differences, the central engine of RLNLS1s is apparently quite similar to that of blazars. The historical difficulties in finding radio-loud narrow-line Seyfert 1 galaxies might be due to their low power and to intermittent jetactivity. Tables 4-9 and Figs. 8-13 are available in electronic form at http://www.aanda.org

  15. RXTE Observations of the Seyfert 2 Galaxy MrK 348

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Georgantopoulos, Ioannis; Warwick, Robert S.

    2000-01-01

    We present RXTE monitoring observations of the Seyfert 2 galaxy Mrk 348 spanning a 6 month period. The time-averaged spectrum in the 3-20 keV band shows many features characteristic of a Compton-thin Seyfert 2 galaxy, namely a hard underlying power-law continuum (Gamma approximately equal 1.8) with heavy soft X-ray absorption (N(sub H) approximately 10(exp 23)/sq cm) plus measurable iron K.alpha emission (equivalent width approximately 100 eV) and, at high energy, evidence for a reflection component (R approximately < 1). During the first half of the monitoring period the X-ray continuum flux from Mrk 348 remained relatively steady. However this was followed by a significant brightening of the source (by roughly a factor of 4) with the fastest change corresponding to a doubling of its X-ray flux on a timescale of about 20 days. The flux increase was accompanied by a marked softening of X-ray spectrum most likely attributable to a factor approximately 3 decline in the intrinsic line-of-sight column density. In contrast the iron K.alpha line and the reflection components showed no evidence of variability. These observations suggest a scenario in which the central X-ray source is surrounded by a patchy distribution of absorbing material located within about a light-week of the nucleus of Mrk 348. The random movement of individual clouds within the absorbing screen, across our line of sight, produces substantial temporal variations in the measured column density on timescales of weeks to months and gives rise to the observed X-ray spectral variability. However, as viewed from the nucleus the global coverage and typical thickness of the cloud layer remains relatively constant.

  16. A JET MODEL FOR THE BROADBAND SPECTRUM OF THE SEYFERT 1 GALAXY NGC 4051

    SciTech Connect

    Maitra, Dipankar; Miller, Jon M.; King, Ashley; Markoff, Sera

    2011-07-10

    Recent radio very long baseline interferometry observations of the {approx} parsec-scale nuclear region of the narrow line Seyfert 1 galaxy NGC 4051 hint toward the presence of outflowing plasma. From available literature we have collected high-quality, high-resolution broadband spectral energy distribution (SED) data of the nuclear region of NGC 4051 spanning from radio through X-rays, to test whether the broadband SED can be explained within the framework of a relativistically outflowing jet model. We show that once the contribution from the host galaxy is taken into account, the broadband emission from the active galactic nucleus (AGN) of NGC 4051 can be well described by the jet model. Contributions from dust and ongoing star formation in the nuclear region tend to dominate the IR emission even at the highest resolutions. In the framework of the jet model, the correlated high variability of the extreme-ultraviolet and X-rays compared to other wavelengths suggests that the emission at these wavelengths is optically thin synchrotron originating in the particle acceleration site(s) in the jet very close (few r{sub g}= GM{sub BH}/c{sup 2}) to the central supermassive black hole of mass M{sub BH}. Our conclusions support the hypothesis that narrow line Seyfert 1 galaxies (which NGC 4051 is a member of) harbor a 'jetted' outflow with properties similar to what has already been seen in low-luminosity AGNs and stellar mass black holes in hard X-ray state.

  17. The new primary X-ray component confirmed in the Seyfert I galaxy IC 4329A

    NASA Astrophysics Data System (ADS)

    Miyake, Katsuma; Noda, Hirofumi; Yamada, Shin'ya; Makishima, Kazuo; Nakazawa, Kazuhiro

    2016-04-01

    The bright and highly variable Seyfert I active galactic nucleus IC 4329A was observed with Suzaku five times in 2007 August, with intervals of ˜5 days and a net exposure of 24-31 ks each. Another longer observation was carried out in 2012 August with a net exposure of 118 ks. In the six observations, a source was detected in 2-45 keV with an average 2-10 keV fluxes of (0.67-1.2) × 10-10 erg cm-2 s-1. Its intensity changed by a factor of 2 among the five observations in 2007, and 1.5 within the 2012 observation. A difference of spectrum among these observations revealed that the variability of IC 4329A was carried mainly by a power-law component with a photon index Γ ˜ 2.0. However, in addition to this primary component and its associated reflection, the broad-band Suzaku data required another, harder, and less-variable component with Γ ˜ 1.4. The presence of this new continuum was also confirmed by analyzing the same six data sets through the spectral decomposition technique developed by Noda et al. (2013a, ApJ, 771, 100). This Γ ˜ 1.4 continuum is considered to be a new primary component that has not been recognized in the spectra of IC 4329A so far, although it was recently identified in those of several other Seyfert I galaxies (Noda et al. 2013a, ApJ, 771, 100; Noda et al. 2014, ApJ, 794, 2).

  18. VLBI Imaging of the Double Peaked Emission Line Seyfert KISSR 1494

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Das, M.; Paragi, Z.; Subramanian, S.; Chitta, L. P.

    2015-02-01

    We present here the results from dual-frequency phase-referenced Very Long Baseline Interferometry observations of the Seyfert galaxy KISSR 1494, which exhibits double peaked emission lines in its Sloan Digital Sky Survey spectrum. We detect a single radio component at 1.6 GHz, but not at 5 GHz, implying a spectral index steeper than -1.5 ± 0.5 (S νvpropνα). The high brightness temperature of the radio component (~1.4 × 107 K) and the steep radio spectrum support a non-thermal synchrotron origin. A crude estimate of the black hole mass derived from the M BH-σsstarf relation is ~1.4 ± 1.0 × 108 M ⊙ it is accreting at an Eddington rate of ~0.02. The radio data are consistent with either the radio emission coming from the parsec-scale base of a synchrotron wind originating in the magnetized corona above the accretion disk, or from the inner ionized edge of the accretion disk or torus. In the former case, the narrow line region (NLR) clouds may form a part of the broad outflow, while in the latter, the NLR clouds may form a part of an extended disk beyond the torus. The radio and NLR emission may also be decoupled so that the radio emission originates in an outflow while the NLR is in a disk and vice versa. While with the present data it is not possible to clearly distinguish between these scenarios, there appears to be greater circumstantial evidence supporting the coronal wind picture in KISSR 1494. From the kiloparsec-scale radio emission, the time-averaged kinetic power of this outflow is estimated to be Q ≈ 1.5 × 1042 erg s-1, which is typical of radio outflows in low-luminosity active galactic nuclei. This supports the idea that radio "jets" and outflowing coronal winds are indistinguishable in Seyfert galaxies.

  19. SUBMILLIMETER LINE SPECTRUM OF THE SEYFERT GALAXY NGC 1068 FROM THE HERSCHEL-SPIRE FOURIER TRANSFORM SPECTROMETER

    SciTech Connect

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Schirm, Maximilien R. P.; Wilson, Christine D.; Parkin, Tara J.; Glenn, Jason; Kamenetzky, Julia; Rangwala, Naseem; Maloney, Philip R.; Bendo, George J.; Madden, Suzanne C.; Boselli, Alessandro; Cooray, Asantha; Page, Mathew J.

    2012-10-20

    The first complete submillimeter spectrum (190-670 {mu}m) of the Seyfert 2 galaxy NGC 1068 has been observed with the SPIRE Fourier transform spectrometer on board the Herschel Space Observatory. The sequence of CO lines (J {sub up} = 4-13), lines from H{sub 2}O, the fundamental rotational transition of hydrogen fluoride, two o-H{sub 2}O{sup +} lines, and one line each from CH{sup +} and OH{sup +} have been detected, together with the two [C I] lines and the [N II] 205 {mu}m line. The observations in both single pointing mode with sparse image sampling and in mapping mode with full image sampling allow us to disentangle two molecular emission components, one due to the compact circumnuclear disk (CND) and one from the extended region encompassing the star-forming ring (SF-ring). Radiative transfer models show that the two CO components are characterized by densities of n(H{sub 2}) = 10{sup 4.5} and 10{sup 2.9} cm{sup -3} and temperatures of T {sub kin} = 100 K and 127 K, respectively. A comparison of the CO line intensities with the photodissociation region (PDR) and X-ray-dominated region (XDR) models, together with the other observational constraints, such as the observed CO surface brightness and the radiation field, indicates that the best explanation for the CO excitation of the CND is an XDR with a density of n(H{sub 2}) {approx} 10{sup 4} cm{sup -3} and an X-ray flux of 9 erg s{sup -1} cm{sup -2}, consistent with illumination by the active galactic nucleus, while the CO lines in the SF-ring are better modeled by a PDR. The detected water transitions, together with those observed with the Herschel PACS spectrometer, can be modeled by a large velocity gradient model with low temperature (T {sub kin} {approx} 40 K) and high density (n(H{sub 2}) in the range 10{sup 6.7}-10{sup 7.9} cm{sup -3}). The emission of H{sub 2}O{sup +} and OH{sup +} are in agreement with PDR models with cosmic-ray ionization. The diffuse ionized atomic component observed through the [N

  20. CONTRIBUTION OF THE ACCRETION DISK, HOT CORONA, AND OBSCURING TORUS TO THE LUMINOSITY OF SEYFERT GALAXIES: INTEGRAL AND SPITZER OBSERVATIONS

    SciTech Connect

    Sazonov, S.; Churazov, E.; Krivonos, R.; Revnivtsev, M.; Sunyaev, R.; Vikhlinin, A.; Hickox, R. C.; Gorjian, V.; Werner, M. W.; Fabian, A. C.; Forman, W. R.

    2012-10-01

    We estimate the relative contributions of the supermassive black hole (SMBH) accretion disk, corona, and obscuring torus to the bolometric luminosity of Seyfert galaxies, using Spitzer mid-infrared (MIR) observations of a complete sample of 68 nearby active galactic nuclei (AGNs) from the INTEGRAL all-sky hard X-ray (HX) survey. This is the first HX-selected (above 15 keV) sample of AGNs with complementary high angular resolution, high signal-to-noise, MIR data. Correcting for the host galaxy contribution, we find a correlation between HX and MIR luminosities: L{sub 15{mu}m}{proportional_to}L{sup 0.74{+-}0.06}{sub HX}. Assuming that the observed MIR emission is radiation from an accretion disk reprocessed in a surrounding dusty torus that subtends a solid angle decreasing with increasing luminosity (as inferred from the declining fraction of obscured AGNs), the intrinsic disk luminosity, L{sub Disk}, is approximately proportional to the luminosity of the corona in the 2-300 keV energy band, L{sub Corona}, with the L{sub Disk}/L{sub Corona} ratio varying by a factor of 2.1 around a mean value of 1.6. This ratio is a factor of {approx}2 smaller than for typical quasars producing the cosmic X-ray background. Therefore, over three orders of magnitude in luminosity, HX radiation carries a large, and roughly comparable, fraction of the bolometric output of AGNs. We estimate the cumulative bolometric luminosity density of local AGNs at {approx}(1-3) Multiplication-Sign 10{sup 40} erg s{sup -1} Mpc{sup -3}. Finally, the Compton temperature ranges between kT{sub c} Almost-Equal-To 2 and Almost-Equal-To 6 keV for nearby AGNs, compared to kT{sub c} Almost-Equal-To 2 keV for typical quasars, confirming that radiative heating of interstellar gas can play an important role in regulating SMBH growth.

  1. Cinemática y masas de agujeros negros en galaxias activas del tipo "Narrow Line Seyfert 1"

    NASA Astrophysics Data System (ADS)

    Oío, G.; Schmidt, E.; Vega Neme, L. R.

    We apply a spectral synthesis method to Narrow Line Seyfert 1 active galax- ies with public spectra available. Our goal will be to obtain the stellar ve- locity dispersions, and then the central black hole masses via the Tremaine relation. We comment several problems we found in fitting this type of objects and the possibility of obtaining masses through the emission lines. FULL TEXT IN SPANISH

  2. He II lambda 1640/lambda 4686 and Ly-alpha/H-beta ratios in the extraordinary Seyfert galaxy Markarian 359

    NASA Technical Reports Server (NTRS)

    Macalpine, G. M.; Davidson, K.; Gull, T. R.; Wu, C.-C.

    1985-01-01

    The exceptionally narrow-lined Seyfert 1 galaxy Mrk 359 is ideally suited for determining reddening via the He II lambda 1640/lambda 4686 emission-line ratio. Here the validity of He II lines as a reddening indicator for quasars and Seyfert galaxies is reexamined and confirmed in the context of the most complete photoionization models available. In addition, lambda 1640 equivalent width measurements are shown to support previous contentions of substantial differences between observed and intrinsic quasar far-ultraviolet continua. Then IUE satellite and ground-based spectral data are presented, with the surprising result that both the lambda 1640/lambda 4686 and Ly-alpha/H-beta ratios do not differ greatly from case B recombination values in Mrk 359. This object is only slightly reddened, and it shows no evidence for extended, high-optical-depth H(+)/H(0) transition regions in the line-emitting gas. The very narrow lines and lack of deep transition regions and/or reddening may be related. In addition, Mrk 359 has low luminosity compared with most other Seyfert 1 galaxies, measured emission lines suggest an unusually high ionization parameter, and there is a hint of low nitrogen abundance. Further work is needed to examine possible relationships among all these peculiar properties.

  3. A Stellar Dynamical Black Hole Mass for Broad-Lined Seyfert Galaxy NGC 6814 and Comparison to Results from Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Manne-Nicholas, Emily; Batiste, Merida; Valluri, Monica; Bentz, Misty C.; Onken, Christopher A.; Ferrarese, Laura

    2016-01-01

    We present a stellar dynamical mass for the supermassive black hole in the nearby (z=0.005) broad-lined Seyfert galaxy NGC 6814 and compare it to the published reverberation-based mass. NGC 6814 is only the third galaxy for which the comparison of these two techniques has been accomplished in the same galaxy. Though stellar dynamical modeling is currently thought to be the most direct way of measuring a SMBH mass, it is quite limited because it can only be performed on nearby galaxies that have a spatially resolvable (or nearly so) black hole gravitational sphere of influence. In contrast, reverberation mapping, which relies on time resolution and not spatial resolution, can be used to constrain black hole masses in even the most distant quasars. Reverberation masses, however, carry with them an uncertainty based on the unknown geometry of the photoionized broad line region. This uncertainty affects our ability to accurately measure masses of AGN not just for reverberation masses, but also for the thousands of masses that rely on the reverberation sample for their calibration. This comparison of the mass of the central supermassive black hole in NGC 6814 using both stellar dynamical and reverberation mapping techniques is part of a larger effort to directly compare these techniques in several galaxies. The more galaxies for which this comparison can be performed, the better we will be able to understand the scatter and potential biases in black hole masses and therefore supermassive black hole evolution across cosmic time.

  4. VLBI IMAGING OF THE DOUBLE PEAKED EMISSION LINE SEYFERT KISSR 1494

    SciTech Connect

    Kharb, P.; Das, M.; Subramanian, S.; Chitta, L. P.; Paragi, Z.

    2015-02-01

    We present here the results from dual-frequency phase-referenced Very Long Baseline Interferometry observations of the Seyfert galaxy KISSR 1494, which exhibits double peaked emission lines in its Sloan Digital Sky Survey spectrum. We detect a single radio component at 1.6 GHz, but not at 5 GHz, implying a spectral index steeper than –1.5 ± 0.5 (S {sub ν}∝ν{sup α}). The high brightness temperature of the radio component (∼1.4 × 10{sup 7} K) and the steep radio spectrum support a non-thermal synchrotron origin. A crude estimate of the black hole mass derived from the M {sub BH}-σ{sub *} relation is ∼1.4 ± 1.0 × 10{sup 8} M {sub ☉}; it is accreting at an Eddington rate of ∼0.02. The radio data are consistent with either the radio emission coming from the parsec-scale base of a synchrotron wind originating in the magnetized corona above the accretion disk, or from the inner ionized edge of the accretion disk or torus. In the former case, the narrow line region (NLR) clouds may form a part of the broad outflow, while in the latter, the NLR clouds may form a part of an extended disk beyond the torus. The radio and NLR emission may also be decoupled so that the radio emission originates in an outflow while the NLR is in a disk and vice versa. While with the present data it is not possible to clearly distinguish between these scenarios, there appears to be greater circumstantial evidence supporting the coronal wind picture in KISSR 1494. From the kiloparsec-scale radio emission, the time-averaged kinetic power of this outflow is estimated to be Q ≈ 1.5 × 10{sup 42} erg s{sup –1}, which is typical of radio outflows in low-luminosity active galactic nuclei. This supports the idea that radio ''jets'' and outflowing coronal winds are indistinguishable in Seyfert galaxies.

  5. The Detection of Circumnuclear X-Ray Emission from the Seyfert Galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    George, I. M.; Turner, T. J.; Netzer, H.; Kraemer, S. B.; Ruiz, J.; Chelouche, D.; Crenshaw, D. M.; Yaqoob, T.; Nandra, K.; Mushotzky, R. F.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present the first high-resolution, X-ray image of the circumnuclear regions of the Seyfert 1 galaxy NGC 3516, using the Chandra X-ray Observatory (CXO). All three of the CXO observations reported were performed with one of the two grating assemblies in place, and here we restrict our analysis to undispersed photons (i.e. those detected in the zeroth-order). A previously-unknown X-ray source is detected approximately 6 arcsec (1.1h(sub 75)(exp -1) kpc) NNE of the nucleus (position angle approximately 29 degrees) which we designate CXOU 110648.1 + 723412. Its spectrum can be characterized as a power law with a photon index (Gamma) approximately 1.8 - 2.6, or as thermal emission with a temperature kT approximately 0.7 - 3 keV. Assuming a location within NGC 3516, isotropic emission implies a luminosity L approximately 2 - 8 x 10(exp 39)h(sub 75)(exp-2) erg s(exp -1) in the 0.4 - 2 keV band. If due to a single point source, the object is super-Eddington for a 1.4 solar mass neutron star. However, multiple sources or a small, extended source cannot be excluded using the current data. Large-scale extended S-ray emission is also detected out to approximately 10 arcsec (approximately 2h(sub 75)(exp -1) kpc) from the nucleus to the NE and SW, and is approximately aligned with the morphologies of the radio emission and extended narrow emission line region (ENLR). The mean luminosity of this emission is 1 - 5 x 10(exp 37)h(sub 75)(exp -2) erg s(exp -1) arcsec(exp -2), in the 0.4 - 2 keV band. Unfortunately the current data cannot usefully constrain its spectrum. These results are consistent with earlier suggestions of circumnuclear X-ray emissi in NGC 3516 based on ROSAT observations, and thus provide the first clear detection of extended X-ray emission in a Seyfert 1.0 galaxy. If the extended emission is due to scattering of the nuclear X-ray continuum, then the pressure in the X-ray emitting gas is at least two orders of magnitude too small to provide the confining

  6. High-Resolution X-Ray Spectroscopy of the Seyfert 2 Galaxy Circinus with Chandra

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Netzer, Hagai; Kaspi, Shai; Brandt, W. N.; Chartas, G.; Garmire, G. P.; Nousek, John A.; Weaver, K. A.

    2000-01-01

    Results from a 60 ks Chandra High Energy Transmission Grating Spectrometer (HETGS) observation of the nearby Seyfert 2 Circinus are presented. The spectrum shows a wealth of emission lines at both soft and hard X-rays, including lines of Ne, Mg, Si, S, Ar, Ca, and Fe, and a prominent Fe K(alpha) line at 6.4 keV. We identify several of the He-like components and measure several of the Lyman lines of the N-like ions. The lines' profiles are unresolved at the limited signal-to-noise ratio of the data. Our analysis of the zeroth-order image in a companion paper constrains the size of the emission region to be 20-60 pc, suggesting that emission within this volume is almost entirely due to the reprocessing of the obscured central source. Here we show that a model containing two distinct components can reproduce almost all the observed properties of this gas. The ionized component can explain the observed intensities of the ionized species, assuming twice-solar composition and an N is proportional r(exp -1.5) density distribution. The neutral component is highly concentrated, well within the 0.8" point source, and is responsible for almost all of the observed K(alpha) (6.4 keV) emission. Circinus seems to be different than Mkn 3 in terms of its gas distribution.

  7. SBS 0846+513: a new γ-ray-emitting narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Raiteri, C. M.; Angelakis, E.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Max-Moerbeck, W.; Perkins, J. S.; Readhead, A. C. S.; Richards, J. L.; Stawarz, Ł.; Donato, D.

    2012-10-01

    We report Fermi Large Area Telescope (LAT) observations of the radio-loud active galactic nucleus SBS 0846+513 (z = 0.5835), optically classified as a narrow-line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at γ-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October-2011 August. In particular, a strong γ-ray flare was observed in 2011 June reaching an isotropic γ-ray luminosity (0.1-300 GeV) of 1.0 × 1048 erg s-1, comparable to that of the brightest flat spectrum radio quasars, and showing spectral evolution in γ rays. An apparent superluminal velocity of (8.2 ± 1.5)c in the jet was inferred from 2011 to 2012 Very Long Baseline Array (VLBA) images, suggesting the presence of a highly relativistic jet. Both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and γ-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.

  8. Kinematics of ionized gas in the barred Seyfert galaxy NGC 4151

    NASA Astrophysics Data System (ADS)

    Asif, M. W.; Mundell, C. G.; Pedlar, A.

    2005-05-01

    We have determined the structure and kinematics of ionized gas in the weak oval bar of the archetypal Seyfert 1 galaxy, NGC 4151, using the TAURUS Fabry-Perot interferometer to simultaneously map the distribution and kinematics of Hβ emission. We also present broad-band ultraviolet imaging of the host galaxy, obtained with XMM-Newton, which shows the detailed distribution of star formation in the bar and in the optically faint outer spiral arms. We compare the distribution and kinematics of ionized gas with that previously determined in neutral hydrogen by Mundell & Shone; we suggest that the distribution of bright, patchy ultraviolet emission close to the HI shocks is consistent with ionization by star clusters that have formed in compressed pre-shock gas. These clusters then travel ballistically through the gaseous shock to ionize gas downstream along the leading edge of the bar. In addition, we detect, for the first time, ionized gas within the shock itself, which is streaming to smaller radii in the same manner as the neutral gas.

  9. UV and X-ray variability of the narrow-line Seyfert 1 galaxy Ark 564

    NASA Astrophysics Data System (ADS)

    Ezhikode, Savithri H.; Dewangan, Gulab C.; Misra, Ranjeev; Tripathi, Shruti; Sajeeth Philip, Ninan; Kembhavi, Ajit K.

    2016-07-01

    We analyze eight XMM-Newton observations of the bright Narrow Line Seyfert 1 galaxy Arakelian 564 (Ark 564). These observations, separated by ∼ 6 days, allow us to look for correlations between the simultaneous ultraviolet (UV) emission (from the Optical Monitor) with not only the X-ray flux but also with different X-ray spectral parameters. The X-ray spectra from all the observations are found to be adequately fitted by a double Comptonization model where the soft excess and the hard X-ray power law are represented by thermal Comptonization in a low temperature plasma and hot corona, respectively. Apart from the fluxes of each component, the hard X-ray power law index is found to be variable. These results suggest that the variability is associated with changes in the geometry of the inner region. The UV emission is found to be variable and well correlated with the high energy index while the correlations with the fluxes of each component are found to be weaker. Using viscous timescale arguments we rule out the possibility that the UV variation is due to the fluctuating accretion rate in the outer disk. If the UV variation is driven by X-ray reprocessing, then our results indicate that the strength of the X-ray reprocessing depends more on the geometry of the X-ray producing inner region rather than on the X-ray luminosity alone.

  10. Seyfert galaxy narrow-line regions. I - Observations of forbidden O III lambda 5007

    NASA Technical Reports Server (NTRS)

    Vrtilek, J. M.; Carleton, N. P.

    1985-01-01

    High-resolution (23 km/s) spectra of the forbidden O III emission line at 500.7 nm from the nuclear regions of 32 Seyfert galaxies and low-redshift QSOs have been obtained at the Smithsonian Institution/University of Arizona Multiple Mirror Telescope. The properties of the data are summarized by a group of measures which efficiently describe the entire line profiles, are stable in the presence of noise, and have easily visualized geometric meaning. The distributions of line profile measures are shown. In particular, typical forbidden O III FWHM values of 200-520 km/s (mean + or - 1 sigma) and a highly significant tendency for the lines to fall off more slowly on the blue than on the red side of the peak have been found, in agreement with previous work. Using galaxian system velocities obtained from absorption-line measurements, the distribution of differences between forbidden O III emission-line velocities and galaxian system velocities has been determined; in disagreement with previous work, this distribution has been found to be consistent with symmetry about zero difference velocity.