Science.gov

Sample records for 12s rrna gene

  1. Molecular systematics of hystricognath rodents: evidence from the mitochondrial 12S rRNA gene.

    PubMed

    Nedbal, M A; Allard, M W; Honeycutt, R L

    1994-09-01

    Nucleotide sequence variation among 22 representatives of 14 families of hystricognathid rodents was examined using an 814-bp region of the mitochondrial 12S ribosomal RNA (rRNA) gene composing domains I-III. The purpose of this study was twofold. First, the phylogenetic relationships among Old World phiomorph (primarily African) and New World caviomorph (primarily South American) families were investigated, with a special emphasis on testing hypotheses pertaining to the origin of New World families and the identification of major monophyletic groups. Second, divergence times derived from molecular data were compared to those suggested by the fossil record. The resultant 12S rRNA gene phylogeny, analyzed separately and in combination with other morphological and molecular data, supported a monophyletic Caviomorpha. This finding is counter to the idea of a multiple origin for the South American families. The most strongly supported relationships within the Caviomorpha were a monophyletic Octodontoidea (containing five families) and the placement of New World porcupines (family Erethizontidae) as the most divergent family. Although comparisons to other data were more equivocal, the most parsimonious 12S rRNA trees also supported a monophyletic Phiomorpha that could be subdivided into two major groups, a clade containing the Thryonomyoidea (Thryonomyidae and Petromuridae) plus Bathyergidae and the more divergent Hystricidae (Old World porcupines). No significant differences in rates of 12S rRNA gene divergence were observed for hystricognathids in comparison to other rodent groups. Although time since divergence estimates were influenced by the fossil dates chosen to calibrate absolute rates, the overall divergence times derived from both transversions only and Kimura corrected distances and calibrations using two independent dates revealed a divergence time between Old and New World groups dating in the Eocene. PMID:7820285

  2. Application of 12S rRNA gene for the identification of animal-derived drugs.

    PubMed

    Luo, Jiaoyang; Yan, Dan; Zhang, Da; Han, Yumei; Dong, Xiaoping; Yang, Yong; Deng, Kejun; Xiao, Xiaohe

    2011-01-01

    PURPOSE. Animal-derived drugs are the major source of biological products and traditional medicine, but they are often difficult to identify, causing confusion in the clinical application. Among these medicinal animals, a number of animal species are endangered, leading to the destruction of biodiversity. The identification of animal-derived drugs and their alternatives would be a first step toward biodiversity conservation and safe medication. Until now, no effective method for identifying animal-derived drugs has been demonstrated; DNA-based species identification presents a brand-new technique. METHODS. We designed primers to amplify a 523-bp fragment of 12S rRNA and generated sequences for 13 individuals within six medicinal animal species. We examined the efficiency of species recognition based on this sequence, and we also tested the taxonomic affiliations against the GenBank database. RESULTS. All the tested drugs were identified successfully, and a visible gap was found between the inter-specific and intra-specific variation. We further demonstrated the importance of data exploration in DNA-based species identification practice by examining the sequence characteristics of relative genera in GenBank. This region of the 12S rRNA gene had a 100% success rate of species recognition within the six medicinal animal species. CONCLUSIONS. We propose that the 12S rRNA locus might be universal for identifying animal-derived drugs and their adulterants. The development of 12S rRNA for indentifying animal-derived drugs that share a common gene target would contribute significantly to the clinical application of animal-derived drugs and the conservation of medicinal animal species. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page. PMID:21906480

  3. Identification of goat cashmere and sheep wool by PCR-RFLP analysis of mitochondrial 12S rRNA gene.

    PubMed

    Geng, Rong-Qing; Yuan, Chao; Chen, Yu-Lin

    2012-12-01

    The efficacy of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial 12S rRNA gene in identification of goat cashmere and sheep wool samples was evaluated. The specific fragments of the mitochondrial 12S rRNA gene, which were about 440 bp, were obtained using the PCR. Restriction enzyme digestion of the PCR products with endonucleases BspT I and Hinf I revealed species-specific RFLP patterns. Application of this technique on mixed samples could identify goat cashmere and sheep wool from each other within the proportion of 8:1. The technique, however, could detect only one species when the proportion of mixture was more than 9:1. The PCR-RFLP technique was demonstrated to possess potential value in precise identification of goat cashmere and sheep wool. PMID:22943150

  4. Phylogenetic relationships within caniform carnivores based on analyses of the mitochondrial 12S rRNA gene.

    PubMed

    Ledje, C; Arnason, U

    1996-12-01

    The complete 12S rRNA gene of 32 carnivore species, including four feliforms and 28 caniforms, was sequenced. The sequences were aligned on the basis of their secondary structures and used in phylogenetic analyses that addressed several evolutionary relationships within the Caniformia. The analyses showed an unresolved polytomy of the basic caniform clades; pinnipeds, mustelids, procyonids, skunks, Ailurus (lesser panda), ursids, and canids. The polytomy indicates a major diversification of caniforms during a relatively short period of time. The lesser panda was distinct from other caniforms, suggesting its inclusion in a monotypic family, Ailuridae. The giant panda and the bears were joined on the same branch. The skunks are traditionally included in the family Mustelidae. The present analysis, however, showed a less close molecular relationship between the skunks and the remaining Mustelidae (sensu stricto) than between Mustelidae (sensu stricto) and Procyonidae, making Mustelidae (sensu lato) paraphyletic. The results suggest that the skunks should be included in a separate family, Mephitidae. Within the Pinnipedia, the grouping of walrus, sea lions, and fur seals was strongly supported. Analyses of a combined set of 12S rRNA and cytochrome b data were generally consistent with the findings based on each gene. PMID:8995061

  5. Mutational analysis of the mitochondrial 12S rRNA and tRNA{sup Ser(UCN)} genes in Tunisian patients with nonsyndromic hearing loss

    SciTech Connect

    Mkaouar-Rebai, Emna . E-mail: emna_mkaouar@mail2world.com; Tlili, Abdelaziz; Masmoudi, Saber; Louhichi, Nacim; Charfeddine, Ilhem; Amor, Mohamed Ben; Lahmar, Imed; Driss, Nabil; Drira, Mohamed; Ayadi, Hammadi; Fakhfakh, Faiza

    2006-02-24

    We explored the mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNA{sup Ser(UCN)} gene. We report here First mutational screening of the mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene.

  6. Sequence Characterization of Mitochondrial 12S rRNA Gene in Mouse Deer (Moschiola indica) for PCR-RFLP Based Species Identification

    PubMed Central

    Siddappa, Chandra Mohan; Saini, Mohini; Das, Asit; Sharma, Anil K.; Gupta, Praveen K.

    2013-01-01

    Mitochondrial 12S rRNA has proven to be a useful molecular marker for better conservation and management of the endangered species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the mitochondrial 12S rRNA gene has proven to be a reliable and efficient tool for the identification of different Indian deer species of family cervidae. In the present study, mitochondrial 12S rRNA gene sequence of mouse deer (Moschiola indica) belonging to the family Tragulidae was characterized and analysed in silico for its use in species identification. Genomic DNA was isolated from the hair follicles and mitochondrial 12S rRNA gene was amplified using universal primers. PCR product was cloned and sequenced for the first time. The sequence of mouse deer showed 90.04, 90.08, 90.04, 91.2, 90.04, and 90.08% identities with sika deer, sambar, hog deer, musk deer, chital, and barking deer, respectively. Restriction mapping in Lasergene (DNAstar Inc., Madison, WI, USA) revealed that mouse deer mitochondrial 12S rRNA gene sequence can be differentiated from the other deer species in PCR-RFLP using RsaI, DdeI, BsrI, and BstSFI. With the help of predicted pattern, mouse deer can be identified using genomic DNA from a variety of biomaterials, thereby providing molecular aid in wildlife forensics and conservation of the species. PMID:24455258

  7. New polymorphic mtDNA restriction site in the 12S rRNA gene detected in Tunisian patients with non-syndromic hearing loss

    SciTech Connect

    Mkaouar-Rebai, Emna Tlili, Abdelaziz; Masmoudi, Saber; Charfeddine, Ilhem; Fakhfakh, Faiza

    2008-05-09

    The 12S rRNA gene was shown to be a hot spot for aminoglycoside-induced and non-syndromic hearing loss since several deafness-associated mtDNA mutations were identified in this gene. Among them, we distinguished the A1555G, the C1494T and the T1095C mutations and C-insertion or deletion at position 961. One hundred Tunisian patients with non-syndromic hearing loss and 100 hearing individuals were analysed in this study. A PCR-RFLP analysis with HaeIII restriction enzyme showed the presence of the A1555G mutation in the 12S rRNA gene in only one out of the 100 patients. In addition, PCR-RFLP and radioactive PCR revealed the presence of a new HaeIII polymorphic restriction site in the same gene of 12S rRNA site in 4 patients with non-syndromic hearing loss. UVIDOC-008-XD analyses showed the presence of this new polymorphic restriction site with a variable heteroplasmic rates at position +1517 of the human mitochondrial genome. On the other hand, direct sequencing of the entire mitochondrial 12S rRNA gene in the 100 patients and in 100 hearing individuals revealed the presence of the A750G and A1438G polymorphisms and the absence of the C1494T, T1095C and 961insC mutations in all the tested individuals. Sequencing of the whole mitochondrial genome in the 4 patients showing the new HaeIII polymorphic restriction site revealed only the presence of the A8860G transition in the MT-ATP6 gene and the A4769G polymorphism in the ND2 gene.

  8. Evaluation of the 16S and 12S rRNA genes as universal markers for the identification of commercial fish species in South Africa.

    PubMed

    Cawthorn, Donna-Mareè; Steinman, Harris Andrew; Witthuhn, R Corli

    2012-01-01

    The development of DNA-based methods for the identification of fish species is important for fisheries research and control, as well as for the detection of unintentional or fraudulent species substitutions in the marketplace. The aim of this study was to generate a comprehensive reference database of DNA sequences from the mitochondrial 16S and 12S ribosomal RNA (rRNA) genes for 53 commercial fish species in South Africa and to evaluate the applicability of these genetic markers for the identification of fish at the species level. The DNA extracted from all target species was readily amplified using universal primers targeting both rRNA gene regions. Sequences from the 16S and 12S rRNA genes were submitted to GenBank for the first time for 34% and 53% of the fish species, respectively. Cumulative analysis of the 16S rRNA gene sequences revealed mean conspecific, congeneric and confamilial Kimura two parameter (K2P) distances of 0.03%, 0.70% and 5.10% and the corresponding values at the 12S level were 0.03%, 1.00% and 5.57%. K2P neighbour-joining trees based on both sequence datasets generally clustered species in accordance with their taxonomic classifications. The nucleotide variation in both the 16S and 12S sequences was suitable for identifying the large majority of the examined fish specimens to at least the level of genus, but was found to be less useful for the explicit differentiation of certain congeneric fish species. It is recommended that one or more faster-evolving DNA regions be analysed to confirm the identities of closely-related fish species in South Africa. PMID:21963445

  9. Population genetic structure of Cheyletus malaccensis (Acari: Cheyletidae) in China based on mitochondrial COI and 12S rRNA genes.

    PubMed

    Yang, Xiaoqiang; Ye, Qingtian; Xin, Tianrong; Zou, Zhiwen; Xia, Bin

    2016-06-01

    Cheyletus malaccensis is a predatory mite widely distributed in grain storages. It has been regarded as an important biological control agent for pest mites. In this study, we investigated the population genetic structure of C. malaccensis distributed in China based on the partial regions of mitochondrial COI and 12S rRNA genes. We collected 256 individuals of C. malaccensis from stored grain in 34 sites of China. We detected 50 COI gene haplotypes and nine 12S rRNA gene haplotypes. There were three clades in the haplotype network and Bayesian and maximum parsimony phylogenetic trees based on COI sequences, and two based on 12S rRNA sequences. The clustering of haplotypes was not correlated with their geographical distributions. The analysis of molecular variance, AMOVA, indicated that the genetic differentiation between populations was relatively weak. The major genetic differentiation was found within populations. We suggest that the genetic structure of C. malaccensis observed in this study may be the result of long-term climate fluctuations and recent human disturbances. PMID:26947027

  10. Phylogenetic reconstruction of the wolf spiders (Araneae: Lycosidae) using sequences from the 12S rRNA, 28S rRNA, and NADH1 genes: implications for classification, biogeography, and the evolution of web building behavior.

    PubMed

    Murphy, Nicholas P; Framenau, Volker W; Donnellan, Stephen C; Harvey, Mark S; Park, Yung-Chul; Austin, Andrew D

    2006-03-01

    Current knowledge of the evolutionary relationships amongst the wolf spiders (Araneae: Lycosidae) is based on assessment of morphological similarity or phylogenetic analysis of a small number of taxa. In order to enhance the current understanding of lycosid relationships, phylogenies of 70 lycosid species were reconstructed by parsimony and Bayesian methods using three molecular markers; the mitochondrial genes 12S rRNA, NADH1, and the nuclear gene 28S rRNA. The resultant trees from the mitochondrial markers were used to assess the current taxonomic status of the Lycosidae and to assess the evolutionary history of sheet-web construction in the group. The results suggest that a number of genera are not monophyletic, including Lycosa, Arctosa, Alopecosa, and Artoria. At the subfamilial level, the status of Pardosinae needs to be re-assessed, and the position of a number of genera within their respective subfamilies is in doubt (e.g., Hippasa and Arctosa in Lycosinae and Xerolycosa, Aulonia and Hygrolycosa in Venoniinae). In addition, a major clade of strictly Australasian taxa may require the creation of a new subfamily. The analysis of sheet-web building in Lycosidae revealed that the interpretation of this trait as an ancestral state relies on two factors: (1) an asymmetrical model favoring the loss of sheet-webs and (2) that the suspended silken tube of Pirata is directly descended from sheet-web building. Paralogous copies of the nuclear 28S rRNA gene were sequenced, confounding the interpretation of the phylogenetic analysis and suggesting that a cautionary approach should be taken to the further use of this gene for lycosid phylogenetic analysis. PMID:16503280

  11. Correspondence regarding Ballana et al., "Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment".

    PubMed

    Abreu-Silva, R S; Batissoco, A C; Lezirovitz, K; Romanos, J; Rincon, D; Auricchio, M T B M; Otto, P A; Mingroni-Netto, R C

    2006-05-12

    Ballana et al. [E. Ballana, E. Morales, R. Rabionet, B. Montserrat, M. Ventayol, O. Bravo, P. Gasparini, X. Estivill, Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment, Biochem. Biophys. Res. Commun. 341 (2006) 950-957] detected a T1291C mutation segregating in a Cuban pedigree with hearing impairment. They interpreted it as probably pathogenic, based on family history, RNA conformation prediction and its absence in a control group of 95 Spanish subjects. We screened a sample of 203 deaf subjects and 300 hearing controls (110 "European-Brazilians" and 190 "African-Brazilians") for the mitochondrial mutations A1555G and T1291C. Five deaf subjects had the T1291C substitution, three isolated cases and two familial cases. In the latter, deafness was paternally inherited or segregated with the A1555G mutation. This doesn't support the hypothesis of T1291C mutation being pathogenic. Two "African-Brazilian" controls also had the T1291C substitution. Six of the seven T1291C-carriers (five deaf and two controls) had mitochondrial DNA of African origin, belonging to macrohaplogroup L1/L2. Therefore, these data point to T1291C substitution as most probably an African non-pathogenic polymorphism. PMID:16574076

  12. Species authentication of commercial beef jerky based on PCR-RFLP analysis of the mitochondrial 12S rRNA gene.

    PubMed

    Chen, Shi-Yi; Liu, Yi-Ping; Yao, Yong-Gang

    2010-11-01

    In this study, we determined species-specific variations by analyzing the mitochondrial 12S rRNA gene sequence variation (∼440 bp) in 17 newly obtained sequences and 90 published cattle, yak, buffalo, goat, and pig sequences, which represent 62 breeds and 17 geographic regions. Based on the defined species-specific variations, two endonucleases, Alu I and Bfa I, were selected for species authentication using raw meat/tissue samples and the PCR-RFLP method. Goat and pig were identified using the Alu I enzyme, while cattle, yak, and buffalo were identified by digestion with Bfa I. Our approach had relatively high detection sensitivity of cattle DNA in mixed cattle and yak products, with the lowest detectable threshold equaling 20% of cattle DNA in a mixed cattle/yak sample. This method was successfully used to type commercial beef jerky products, which were produced by different companies utilizing various processing technologies. Our results show that several yak jerky products might be implicated in commercial fraud by using cattle meat instead of yak meat. PMID:21115170

  13. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    SciTech Connect

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin . E-mail: min-xin.guan@chmcc.org

    2006-04-21

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations.

  14. Relationships between parasitoid wasps (Hymenoptera: Braconidae: Opiinae), fruit flies (Diptera: Tephritidae) and their host plants based on 16S rRNA, 12S rRNA, and ND1 gene sequences

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. J.; Md-Zain, B. M.; Yaakop, S.

    2013-11-01

    Opiinae is among the l0 largest subfamilies under the family Braconidae. Opiines species have great potential as natural enemies against fruit fly pests. Before using them as a biological control agent, construction of the phylogenetic trees could facilitate in the molecular identification of individual species and their relationships among members of the Opiines, as well as between Opiines and their host plants. Larval specimens of tephritids were collected from four crop species at five localities throughout the Peninsular Malaysia. A total of 44 specimens of opiines had successfully emerged from the hosts, fruit fly larvae. The DNA sequences of 12S and 16S rRNA were obtained for the braconids while the mitochondrial ND1 sequences were obtained for the tephritids species through polymerase chain reaction. Maximum Parsimony and Bayesian trees were constructed by using PAUP 4.0b10 and MrBayes 3.1.2 to identify the relationships among the taxa. This study illustrates the phylogenetic relationships among parasitoid opiines collected and reared from parasitized fruit flies. The phylogenetic trees constructed based on the mitochondrial 12S and 16S rRNA sequences exhibited similar topology and sequence divergence. The opiines were divided into several clades and subclades according to the genus and species. Each clade also was supported by the similar host plants with high support values. However, their pests were not specific, except for Bactrocera cucurbitae. This study has reconfirmed the associations between Opiinae, tephritids, and host plants based on molecular data.

  15. GJB2 and mitochondrial 12S rRNA susceptibility mutations in sudden deafness.

    PubMed

    Chen, Kaitian; Sun, Liang; Zong, Ling; Wu, Xuan; Zhan, Yuan; Dong, Chang; Cao, Hui; Tang, Haocheng; Jiang, Hongyan

    2016-06-01

    Genetic susceptibility may play an important role in the pathogenesis of sudden deafness. However, the specific genes involved are largely unknown. We sought to explore the frequency of GJB2 and mitochondrial 12S rRNA susceptibility mutations in patients with sudden deafness. Between September 2011 and May 2012, 62 consecutive patients with sudden deafness were seen. In 50 of these, no etiological factors for sudden deafness were found. We detected GJB2 and mitochondrial 12S rRNA variants by direct sequencing in these 50 patients and in 53-aged matched controls with normal hearing. In addition, we undertook functional analyses of the mitochondrial mutations which we detected, applying structural and phylogenetic analysis. GJB2 sequencing identified six mutations, including three pathogenic mutations (c.235delC, c.299-300delAT, c.109G>A) and three polymorphisms, in the study participants, giving an allele frequency of 15.0 %. A homozygous c.109G>A mutation was detected in two participants. A total of 16 variants in mitochondrial 12S rRNA gene were identified in the participants. No significant differences were found in GJB2 heterozygosity or in mitochondrial 12S rRNA variants between patients with sudden deafness and in controls. Our results suggest that the homozygous GJB2 c.109G>A mutation may be a cause of sudden deafness involving both ears. This finding should increase awareness of the likely role of genetic factors in the etiology of sudden deafness in general. PMID:26119842

  16. MRPS18CP2 alleles and DEFA3 absence as putative chromosome 8p23.1 modifiers of hearing loss due to mtDNA mutation A1555G in the 12S rRNA gene

    PubMed Central

    Ballana, Ester; Mercader, Josep Maria; Fischel-Ghodsian, Nathan; Estivill, Xavier

    2007-01-01

    Background Mitochondrial DNA (mtDNA) mutations account for at least 5% of cases of postlingual, nonsyndromic hearing impairment. Among them, mutation A1555G is frequently found associated with aminoglycoside-induced and/or nonsyndromic hearing loss in families presenting with extremely variable clinical phenotypes. Biochemical and genetic data have suggested that nuclear background is the main factor involved in modulating the phenotypic expression of mutation A1555G. However, although a major nuclear modifying locus was located on chromosome 8p23.1 and regardless intensive screening of the region, the gene involved has not been identified. Methods With the aim to gain insights into the factors that determine the phenotypic expression of A1555G mutation, we have analysed in detail different genetic and genomic elements on 8p23.1 region (DEFA3 gene absence, CLDN23 gene and MRPS18CP2 pseudogene) in a group of 213 A1555G carriers. Results Family based association studies identified a positive association for a polymorphism on MRPS18CP2 and an overrepresentation of DEFA3 gene absence in the deaf group of A1555G carriers. Conclusion Although none of the factors analysed seem to have a major contribution to the phenotype, our findings provide further evidences of the involvement of 8p23.1 region as a modifying locus for A1555G 12S rRNA gene mutation. PMID:18154640

  17. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    PubMed Central

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-01-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome

  18. Prevalence of Mitochondrial 12S rRNA Mutations Associated with Aminoglycoside Ototoxicity

    ERIC Educational Resources Information Center

    Guan, Min-Xin

    2005-01-01

    The mitochondrial DNA (mtDNA) 12S rRNA is a hot spot for mutations associated with both aminoglycoside-induced and nonsyndromic hearing loss. Of those, the homoplasmic A1555G and C1494T mutations at a highly conserved decoding region of the 12S rRNA have been associated with hearing loss. These two mutations account for a significant number of…

  19. The A1555G Mutation in the 12S rRNA Gene of Human mtDNA: Recurrent Origins and Founder Events in Families Affected by Sensorineural Deafness

    PubMed Central

    Torroni, Antonio; Cruciani, Fulvio; Rengo, Chiara; Sellitto, Daniele; López-Bigas, Núria; Rabionet, Raquel; Govea, Nancy; López de Munain, Adolfo; Sarduy, Maritza; Romero, Lourdes; Villamar, Manuela; del Castillo, Ignacio; Moreno, Felipe; Estivill, Xavier; Scozzari, Rosaria

    1999-01-01

    Summary The mtDNA variation of 50 Spanish and 4 Cuban families affected by nonsyndromic sensorineural deafness due to the A1555G mutation in the 12S rRNA gene was studied by high-resolution RFLP analysis and sequencing of the control region. Phylogenetic analyses of haplotypes and detailed survey of population controls revealed that the A1555G mutation can be attributed to ⩾30 independent mutational events among the 50 Spanish families and that it occurs on mtDNA haplogroups that are common in all European populations. This indicates that the relatively high detection rate of this mutation in Spain is not due to sampling biases or to a single major founder event. Moreover, the distribution of these mutational events on different haplogroups is compatible with a random occurrence of the A1555G mutation and tends to support the conclusion that mtDNA backgrounds do not play a significant role in the expression of the mutation. Overall, these findings appear to indicate that the rare detection of this mutation in other populations is most likely due to inadequacy in patient ascertainment and molecular screening. This probable lack of identification of the A1555G mutation in subjects affected by sensorineural hearing loss implies that their maternally related relatives are not benefiting from presymptomatic detection and information concerning their increased risk of ototoxicity due to aminoglycoside treatments. PMID:10521300

  20. Mutations of mitochondrial 12S rRNA in gastric carcinoma and their significance

    PubMed Central

    Han, Cheng-Bo; Ma, Jia-Ming; Xin, Yan; Mao, Xiao-Yun; Zhao, Yu-Jie; Wu, Dong-Ying; Zhang, Su-Min; Zhang, Yu-Kui

    2005-01-01

    AIM: To detect the variations of mitochondrial 12S rRNA in patients with gastric carcinoma, and to study their significance and the relationship between these variations and the genesis of gastric carcinoma. METHODS: PCR amplified mitochondrial 12S rRNA of 44 samples including 22 from gastric carcinoma tissues and 22 from adjacent normal tissues, was detected by direct DNA sequencing. Then laser capture microdissection technique (LCM) was used to separate the cancerous cells and dysplasia cells with specific mutations. Denaturing high performance liquid chromatography (DHPLC) plus allele-specific PCR (AS-PCR), nest-PCR and polyacrylamide gel electrophoresis (PAGE) were used to further evaluate this mutant property and quantitative difference of mutant type between cancerous and dysplasia cells. Finally, RNAdraw biosoft was used to analyze the RNA secondary structure of mutant-type 12S rRNA. RESULTS: Compared with Mitomap database, some new variations were found, among which np652 G insertion and np716 T-G transversion were found only in cancerous tissues. There was a statistic difference in the frequency of 12S rRNA variation between intestinal type (12/17, 70.59%) and diffusive type (5/17, 29.41%) of gastric carcinoma (P<0.05). DHPLC analysis showed that 12S rRNA np652 G insertion and np716 T-G transversion were heteroplasmic mutations. The frequency of 12S rRNA variation in cancerous cells was higher than that in dysplasia cells (P<0.01). 12S rRNA np652 G insertion showed obviously negative effects on the stability of 12S rRNA secondary structure, while others such as T-G transversion did not. CONCLUSION: The mutations of mitochondrial 12S rRNA may be associated with the occurrence of intestinal-type gastric carcinoma. Most variations exist both in gastric carcinomas and in normal tissues, and they might not be the characteristics of tumors. However, np652 G insertion and np716 T-G transversion may possess some molecular significance in gastric carcinogenesis

  1. Mitochondrial 12S rRNA A827G mutation is involved in the genetic susceptibility to aminoglycoside ototoxicity

    SciTech Connect

    Xing Guangqian; Chen Zhibin; Wei Qinjun; Tian Huiqin; Li Xiaolu; Zhou Aidong; Bu Xingkuan; Cao Xin . E-mail: caoxin@njmu.edu.cn

    2006-08-11

    We have analyzed the clinical and molecular characterization of a Chinese family with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluations revealed that only those family members who had a history of exposure to aminoglycoside antibiotics subsequently developed hearing loss, suggesting mitochondrial genome involvement. Sequence analysis of the mitochondrial 12S rRNA and tRNA{sup Ser(UCN)} genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, a mutation that was identified previously in a few sporadic patients and in another Chinese family with non-syndromic deafness. The pathogenicity of the A827G mutation is strongly supported by the occurrence of the same mutation in two independent families and several genetically unrelated subjects. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly conserved in mammals. It is possible that the alteration of the tertiary or quaternary structure of this rRNA by the A827G mutation may lead to mitochondrial dysfunction, thereby playing a role in the pathogenesis of hearing loss and aminoglycoside hypersensitivity. However, incomplete penetrance of hearing impairment indicates that the A827G mutation itself is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Indeed, aminoglycosides may contribute to the phenotypic manifestation of the A827G mutation in this family. In contrast with the congenital or early-onset hearing impairment in another Chinese family carrying the A827G mutation, three patients in this pedigree developed hearing loss only after use of aminoglycosides. This discrepancy likely reflects the difference of genetic backgrounds, either mitochondrial haplotypes or nuclear modifier genes, between two families.

  2. Frequency and spectrum of mitochondrial 12S rRNA variants in 440 Han Chinese hearing impaired pediatric subjects from two otology clinics

    PubMed Central

    2011-01-01

    Background Aminoglycoside ototoxicity is one of the common health problems. Mitochondrial 12S rRNA mutations are one of the important causes of aminoglycoside ototoxicity. However, the incidences of 12S rRNA mutations associated with aminoglycoside ototoxicity are less known. Methods A total of 440 Chinese pediatric hearing-impaired subjects were recruited from two otology clinics in the Ningbo and Wenzhou cities of Zhejiang Province, China. These subjects underwent clinical, genetic evaluation and molecular analysis of mitochondrial 12S rRNA. Resultant mtDNA variants were evaluated by structural and phylogenetic analysis. Results The study samples consisted of 227 males and 213 females. The age of all participants ranged from 1 years old to 18 years, with the median age of 9 years. Ninety-eight subjects (58 males and 40 females) had a history of exposure to aminoglycosides, accounting for 22.3% cases of hearing loss in this cohort. Molecular analysis of 12S rRNA gene identified 41 (39 known and 2 novel) variants. The incidences of the known deafness-associated 1555A > G, 1494C > T and 1095T > C mutations were 7.5%, 0.45% and 0.91% in this entire hearing-impaired subjects, respectively, and 21.4%, 2% and 2% among 98 subjects with aminoglycoside ototoxicity, respectively. The structural and phylogenetic evaluations showed that a novel 747A > G variant and known 839A > G, 1027A > G, 1310C > T and 1413T > C variants conferred increased sensitivity to aminoglycosides or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants were polymorphisms. Of 44 subjects carrying one of definite or putative deafness-related 12S rRNA variants, only one subject carrying the 1413T > C variant harbored the 235DelC/299DelAT mutations in the GJB2 gene, while none of mutations in GJB2 gene was detected in other 43 subjects. Conclusions Mutations in mitochondrial 12S rRNA accounted for ~30% cases

  3. Phylogenetic analysis of oryx species using partial sequences of mitochondrial rRNA genes.

    PubMed

    Khan, H A; Arif, I A; Al Farhan, A H; Al Homaidan, A A

    2008-01-01

    We conducted a comparative evaluation of 12S rRNA and 16S rRNA genes of the mitochondrial genome for molecular differentiation among three oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) with respect to two closely related outgroups, addax and roan. Our findings showed the failure of 12S rRNA gene to differentiate between the genus Oryx and addax, whereas a 342-bp partial sequence of 16S rRNA accurately grouped all five taxa studied, suggesting the utility of 16S rRNA segment for molecular phylogeny of oryx at the genus and possibly species levels. PMID:19048493

  4. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  5. Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss

    PubMed Central

    Lu, Jianxin; Li, Zhiyuan; Zhu, Yi; Yang, Aifen; Li, Ronghua; Zheng, Jing; Cai, Qin; Peng, Guanghua; Zheng, Wuwei; Tang, Xiaowen; Chen, Bobei; Chen, Jianfu; Liao, Zhisu; Yang, Li; Li, Yongyan; You, Junyan; Ding, Yu; Yu, Hong; Wang, Jindan; Sun, Dongmei; Zhao, Jianyue; Xue, Ling; Wang, Jieying; Guan, Min-Xin

    2010-01-01

    In this report, we investigated the frequency and spectrum of mitochondrial 12S rRNA variants in a large cohort of 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mutational analysis of 12S rRNA gene in these subjects identified 68 (54 known and 14 novel) variants. The frequencies of known 1555A>G and 1494C>T mutations were 3.96% and 0.18%, respectively, in this cohort with nonsyndromic and aminoglycoside-induced hearing loss. Prevalence of other putative deafness-associated mutation at positions 1095 and 961 were 0.61% and 1.7% in this cohort, respectively. Furthermore, the 745A>G, 792C>T, 801A>G, 839A>G, 856A>G, 1027A>G, 1192C>T, 1192C>A, 1310C>T, 1331A>G, 1374A>G and 1452T>C variants conferred increased sensitivity to ototoxic drugs or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants appeared to be polymorphisms. Moreover, 65 Chinese subjects carrying the 1555A>G mutation exhibited bilateral and sensorineural hearing loss. A wide range of severity, age-of-onset and audiometric configuration was observed among these subjects. In particular, the sloping and flat shaped patterns were the common audiograms in individuals carrying the 1555A>G mutation. The phenotypic variability in subjects carrying these 12S rRNA mutations indicated the involvement of nuclear modifier genes, mitochondrial haplotypes, epigenetic and environmental factors in the phenotypic manifestation of these mutations. Therefore, our data demonstrated that mitochondrial 12S rRNA is the hot spot for mutations associated with aminoglycoside ototoxicity. PMID:20100600

  6. Allele-specific PCR for detecting the deafness-associated mitochondrial 12S rRNA mutations.

    PubMed

    Ding, Yu; Xia, Bo-Hou; Liu, Qi; Li, Mei-Ya; Huang, Shui-Xian; Zhuo, Guang-Chao

    2016-10-10

    Mutations in mitochondrial 12S rRNA (MT-RNR1) are the important causes of sensorineural hearing loss. Of these mutations, the homoplasmic m.1555A>G or m.1494C>T mutation in the highly conserved A-site of MT-RNR1 gene has been found to be associated with both aminoglycoside-induced and non-syndromic hearing loss in many families worldwide. Since the m.1555A>G and m.1494C>T mutations are sensitive to ototoxic drugs, therefore, screening for the presence of these mutations is important for early diagnosis and prevention of deafness. For this purpose, we recently developed a novel allele-specific PCR (AS-PCR) which is able to simultaneously detect these mutations. To assess its accuracy, in this study, we employed this method to screen the frequency of m.1555A>G and m.1494C>T mutations in 200 deafness patients and 120 healthy subjects. Consequently, four m.1555A>G and four m.1494C>T mutations were identified; among these, only one patient with the m.1494C>T mutation had an obvious family history of hearing loss. Strikingly, clinical evaluation showed that this family exhibited a high penetrance of hearing loss. In particular, the penetrances of hearing loss were 80% with the aminoglycoside included and 20% when excluded. PCR-Sanger sequencing of the mitochondrial genomes confirmed the presence of the m.1494C>T mutation and identified a set of polymorphisms belonging to mitochondrial haplogroup A. However, the lack of functional variants in mitochondrial and nuclear modified genes (GJB2 and TRMU) in this family indicated that mitochondrial haplogroup and nuclear genes may not play important roles in the phenotypic expression of the m.1494C>T mutation. Thus, other modification factors, such as environmental factor, aminoglycosides or epigenetic modification may have contributed to the high penetrance of hearing loss in this family. Taken together, our data showed that this assay is an effective approach that could be used for detection the deafness-associated MT-RNR1

  7. Interordinal mammalian relationships: evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences.

    PubMed

    Lavergne, A; Douzery, E; Stichler, T; Catzeflis, F M; Springer, M S

    1996-10-01

    The complete mitochondrial 12S rRNA sequences of 5 placental mammals belonging to the 3 orders Sirenia, Proboscidea, and Hyracoidea are reported together with phylogenetic analyses (distance and parsimony) of a total of 51 mammalian orthologues. This 12S rRNA database now includes the 2 extant proboscideans (the African and Asiatic elephants Loxodonta africana and Elephas maximus), 2 of the 3 extant sirenian genera (the sea cow Dugong dugon and the West Indian manatee Trichechus manatus), and 2 of the 3 extant hyracoid genera (the rock and tree hyraxes Procavia capensis and Dendrohyrax dorsalis). The monophyly of the 3 orders Sirenia, Proboscidea, and Hyracoidea is supported by all kinds of analysis. There are 23 and 3 diagnostic subsitutions shared by the 2 proboscideans and the 2 hyracoids, respectively, but none by the 2 sirenians. The 2 proboscideans exhibit the fastest rates of 12S rRNA evolution among the 11 placental orders studied. Based on various taxonomic sampling methods among eutherian orders and marsupial outgroups, the most strongly supported clade in our comparisons clusters together the 3 orders Sirenia, Proboscidea, and Hyracoidea in the superorder Paenungulata. Within paenungulates, the grouping of sirenians and proboscideans within the mirorder Tethytheria is observed. This branching pattern is supported by all analyses by high bootstrap percentages (BPs) and decay indices. When only one species is selected per order or suborder, the taxonomic sampling leads to a relative variation in bootstrap support of 53% for Tethytheria (BPs ranging from 44 to 93%) and 7% for Paernungulata (92-99%). When each order or suborder is represented by two species, this relative variation decreased to 10% for Tethytheria (78-87%) and 3% for Paenungulata (96-99%). Two nearly exclusive synapomorphies for paenungulates are identified in the form of one transitional compensatory change, but none were detected for tethytherians. Such a robust and reliable resolution of

  8. Variable rRNA gene copies in extreme halobacteria

    SciTech Connect

    Sanz, J.L.; Marin, I.; Ramirez, L.; Amils, R. ); Abad, J.P.; Smith, C.L. )

    1988-08-25

    Using PFG electrophoresis techniques, the authors have examined the organization of rRNA gene in halobacterium species. The results show that the organization of rRNA genes among closely related halobacteria is quite heterogeneous. This contrasts with the high degree of conservation of rRNA sequence. The possible mechanism of such rRNA gene amplification and its evolutionary implications are discussed.

  9. Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A>G associated hearing loss.

    PubMed

    O'Sullivan, Mary; Rutland, Paul; Lucas, Deirdre; Ashton, Emma; Hendricks, Sebastian; Rahman, Shamima; Bitner-Glindzicz, Maria

    2015-02-15

    The mitochondrial DNA mutation m.1555A>G predisposes to hearing loss following aminoglycoside antibiotic exposure in an idiosyncratic dose-independent manner. However, it may also cause maternally inherited hearing loss in the absence of aminoglycoside exposure or any other clinical features (non-syndromic hearing loss). Although m.1555A>G was identified as a cause of deafness more than twenty years ago, the pathogenic mechanism of this mutation of ribosomal RNA remains controversial. Different mechanistic concepts have been proposed. Most recently, evidence from cell lines and animal models suggested that patients with m.1555A>G may have more 12S rRNA N6, N6-dimethyladenosine (m(6) 2A) methylation than controls, so-called 'hypermethylation'. This has been implicated as a pathogenic mechanism of mitochondrial dysfunction but has yet to be validated in patients. 12S m(6) 2A rRNA methylation, by the mitochondrial transcription factor 1 (TFB1M) enzyme, occurs at two successive nucleotides (m.1584A and m.1583A) in close proximity to m.1555A>G. We examined m(6) 2A methylation in 14 patients with m.1555A>G, and controls, and found all detectable 12S rRNA transcripts to be methylated in both groups. Moreover, different RNA samples derived from the same patient (lymphocyte, fibroblast and lymphoblast) revealed that only transformed cells contained some unmethylated 12S rRNA transcripts, with all detectable 12S rRNA transcripts derived from primary samples m(6) 2A-methylated. Our data indicate that TFB1M 12S m(6) 2A rRNA hypermethylation is unlikely to be a pathogenic mechanism and may be an artefact of previous experimental models studied. We propose that RNA methylation studies in experimental models should be validated in primary clinical samples to ensure that they are applicable to the human situation. PMID:25305075

  10. Mitochondrial haplotypes may modulate the phenotypic manifestation of the deafness-associated 12S rRNA 1555A>G mutation

    PubMed Central

    Lu, Jianxin; Qian, Yaping; Li, Zhiyuan; Yang, Aifen; Zhu, Yi; Li, Ronghua; Yang, Li; Tang, Xiaowen; Chen, Bobei; Ding, Yu; Li, Yongyan; You, Junyan; Zheng, Jing; Tao, Zhihua; Zhao, Fuxin; Wang, Jindan; Sun, Dongmei; Zhao, Jianyue; Meng, Yanzi; Guan, Min-Xin

    2009-01-01

    Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of ~3.96% for the 1555A>G mutation in this hearing impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30 years old, with the average of 14.5 years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient’s mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G

  11. Prevalence of the A1555G (12S rRNA) and tRNASer(UCN) mitochondrial mutations in hearing-impaired Brazilian patients.

    PubMed

    Abreu-Silva, R S; Lezirovitz, K; Braga, M C C; Spinelli, M; Pirana, S; Della-Rosa, V A; Otto, P A; Mingroni-Netto, R C

    2006-02-01

    Mitochondrial mutations are responsible for at least 1% of the cases of hereditary deafness, but the contribution of each mutation has not yet been defined in African-derived or native American genetic backgrounds. A total of 203 unselected hearing-impaired patients were screened for the presence of the mitochondrial mutation A1555G in the 12S rRNA gene and mutations in the tRNASer(UCN) gene in order to assess their frequency in the ethnically admixed Brazilian population. We found four individuals with A1555G mutation (2%), which is a frequency similar to those reported for European-derived populations in unselected samples. On the other hand, complete sequencing of the tRNASer(UCN) did not reveal reported pathogenic substitutions, namely A7445G, 7472insC, T7510C, or T7511C. Instead, other rare substitutions were found such as T1291C, A7569G, and G7444A. To evaluate the significance of these findings, 110 "European-Brazilians" and 190 "African-Brazilians" unrelated hearing controls were screened. The T1291C, A7569G and G7444A substitutions were each found in about 1% (2/190) of individuals of African ancestry, suggesting that they are probably polymorphic. Our results indicate that screening for the A1555G mutation is recommended among all Brazilian deaf patients, while testing for mutations in the tRNASer(UCN) gene should be considered only when other frequent deafness-causing mutations have been excluded or in the presence of a maternal transmission pattern. PMID:16470309

  12. Complete sequence and gene organization of the Nosema spodopterae rRNA gene.

    PubMed

    Tsai, Shu-Jen; Huang, Wei-Fone; Wang, Chung-Hsiung

    2005-01-01

    By sequencing the entire ribosomal RNA (rRNA) gene of Nosema spodopterae, we show here that its gene organization follows a pattern similar to the Nosema type species, Nosema bombycis, i.e. 5'-large subunit rRNA (2,497 bp)-internal transcribed spacer (185 bp)-small subunit rRNA (1,232 bp)-intergenic spacer (277 bp)-5S rRNA (114 bp)-3'. Gene sequences and the secondary structures of large subunit rRNA, small subunit rRNA, and 5S rRNA are compared with the known corresponding sequences and structures of closely related microsporidia. The results suggest that the Nosema genus may be heterogeneous and that the rRNA gene organization may be a useful characteristic for determining which species are closely related to the type species. PMID:15702980

  13. Regulation of Arabidopsis thaliana 5S rRNA Genes.

    PubMed

    Vaillant, Isabelle; Tutois, Sylvie; Cuvillier, Claudine; Schubert, Ingo; Tourmente, Sylvette

    2007-05-01

    The Arabidopsis thaliana genome comprises around 1,000 copies of 5S rRNA genes encoding both major and minor 5S rRNAs. In mature wild-type leaves, the minor 5S rRNA genes are silent. Using different mutants of DNA methyltransferases (met1, cmt3 and met1 cmt3), components of the RNAi pathway (ago4) or post-translational histone modifier (hda6/sil1), we show that the corresponding proteins are needed to maintain proper methylation patterns at heterochromatic 5S rDNA repeats. Using reverse transcription-PCR and cytological analyses, we report that a decrease of 5S rDNA methylation at CG or CNG sites in these mutants leads to the release of 5S rRNA gene silencing which occurred without detectable changes of the 5S rDNA chromatin structure. In spite of severely reduced DNA methylation, the met1 cmt3 double mutant revealed no increase in minor 5S rRNA transcripts. Furthermore, the release of silencing of minor 5S rDNAs can be achieved without increased formation of euchromatic loops by 5S rDNA, and is independent from the global heterochromatin content. Additionally, fluorescence in situ hybridization with centromeric 180 bp repeats confirmed that these highly repetitive sequences, in spite of their elevated transcriptional activity in the DNA methyltransferase mutants (met1, cmt3 and met1 cmt3), remain within chromocenters of the mutant nuclei. PMID:17412735

  14. Coexistence of mitochondrial 12S rRNA C1494T and CO1/tRNA{sup Ser(UCN)} G7444A mutations in two Han Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing loss

    SciTech Connect

    Yuan Huijun; Chen Jing; Liu Xin; Cheng Jing; Wang Xinjian; Yang Li; Yang Shuzhi; Cao Juyang; Kang Dongyang; Dai Pu; Zha, Suoqiang; Han Dongyi Young Wieyen Guan Minxin

    2007-10-12

    Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNA{sup Ser(UCN)} G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNA{sup Ser(UCN)} G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families.

  15. Leuconostoc pseudomesenteroides WCFur3 partial 16S rRNA gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used a partial 535 base pair 16S rRNA gene sequence to identify a bacterial isolate. Fatty acid profiles are consistent with the 16S rRNA gene sequence identification of this bacterium. The isolate was obtained from a compost bin in Fort Collins, Colorado, USA. The 16S rRNA gene sequen...

  16. Extremely low penetrance of deafness associated with the mitochondrial 12S rRNA mutation in 16 Chinese families: Implication for early detection and prevention of deafness

    SciTech Connect

    Dai Pu; Liu Xin; Han Dongyi . E-mail: hdy301@263.net; Qian Yaping; Huang Deliang; Yuan Huijun; Li Weiming; Yu Fei; Zhang Ruining; Lin Hongyan; He Yong; Yu Youjun; Sun Quanzhu; Qin Huaiyi; Li Ronghua; Zhang Xin; Kang Dongyang; Cao Juyang; Young Wieyen . E-mail: ywy301@163.net; Guan Minxin |. E-mail: min-xin.guan@cchmc.org

    2006-02-03

    Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of 16 Chinese pedigrees (a total of 246 matrilineal relatives) with aminoglycoside-induced impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: being bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss, ranging from 4% to 18%, with an average of 8%. In particular, nineteen of 246 matrilineal relatives in these pedigrees had aminoglycoside-induced hearing loss. Mutational analysis of the mtDNA in these pedigrees showed the presence of homoplasmic 12S rRNA A1555G mutation, which has been associated with hearing impairment in many families worldwide. The extremely low penetrance of hearing loss in these Chinese families carrying the A1555G mutation strongly supports the notion that the A1555G mutation itself is not sufficient to produce the clinical phenotype. Children carrying the A1555G mutation are susceptible to the exposure of aminoglycosides, thereby inducing or worsening hearing impairment, as in the case of these Chinese families. Using those genetic and molecular approaches, we are able to diagnose whether children carry the ototoxic mtDNA mutation. Therefore, these data have been providing valuable information and technology to predict which individuals are at risk for ototoxicity, to improve the safety of aminoglycoside therapy, and eventually to decrease the incidence of deafness.

  17. Phylogenetic relationships among Japanese species of the family Sciuridae (Mammalia, Rodentia), inferred from nucleotide sequences of mitochondrial 12S ribosomal RNA genes.

    PubMed

    Oshida, T; Masuda, R; Yoshida, M C

    1996-08-01

    In order to investigate phylogenetic relationships of the family Sciuridae living in Japan, we sequenced partial regions (379 bases) of mitochondrial 12S rRNA genes in six species of Japanese and other Asian squirrels. Phylogenetic trees constructed by sequence data indicated that two genera of flying squirrels (Petaurista and Pteromys) were clustered in a group distinct from non-flying squirrels, suggesting a possible monophyletic relationships of these flying squirrels. The evolutionary distance between the Japanese squirrel (Sciurus lis) from Honshu island and the Eurasian red squirrel (Sciurus vulgaris) from Hokkaido island was comparable to intraspecific distances of the remaining species examined. PMID:8940915

  18. Mitochondrial COX2 G7598A Mutation May Have a Modifying Role in the Phenotypic Manifestation of Aminoglycoside Antibiotic-Induced Deafness Associated with 12S rRNA A1555G Mutation in a Han Chinese Pedigree

    PubMed Central

    Chen, Tianbin; Liu, Qicai; Jiang, Ling; Liu, Can

    2013-01-01

    Recent studies suggest that certain mitochondrial haplogroup markers and some specific variants in mitochondrial haplogroup may also influence the phenotypic expression of particular mitochondrial disorders. In this report, the clinical, genetic, and molecular characterization were identified in a Chinese pedigree with the aminoglycoside antibiotic (AmAn)-induced deafness and nonsyndromic hearing loss (NSHL). The pathogenic gene responsible for this hereditary NSHL pedigree was determined by Microarray chip, which possessed the nine NSHL hot-spot mutations, including GJB2 (35delG, 176dell6bp, 235de1C, and 299delAT), GJB3 (538C>T), SLC26A4 (IVS7-2A>G and 2168A>G), and mitochondrial DNA (mtDNA) 12S rRNA (C1494T and A1555G). Only the homoplasmic A1555G mutation was detected, which was confirmed by direct sequencing. Also, real-time amplification refractory mutation system quantitative polymerase chain reaction methodology was performed to calculate the A1555G mutation load. The proband's complete mtDNA genome were amplified and direct sequencing was performed to determine the mitochondrial haplogroup and private mutations. The proband's mitochondrial haplogroup belonges to M7b1 and a private mutation MTCOX2 G7598A (p.Ala 5 Thr) is found. Phylogenetic analysis of COX2 polypeptide sequences demonstrates that the alanine residue is relatively conserved, but owing to the missense mutation (p.Ala 5 Thr), its side chain hydrophobicity will be changed, and what is more, as it is adjacent to a glutamine residue, which is highly conserved and hydrophilic, in an evolutionary stable domain; G7598A (p.Ala 5 Thr) may alter the protein secondary structure and physiological function of COX2 and, thus, aggravate the mitochondrial dysfunction conferred by the A1555G mutation. Furthermore, the G7598A mutation is absent in 100 unrelated healthy controls; therefore, G7598A (p.Ala 5 Thr) in the mitochondrial haplogoup M7b1 may have a modifying role, enhancing its penetrance and severity

  19. The coexistence of mitochondrial ND6 T14484C and 12S rRNA A1555G mutations in a Chinese family with Leber's hereditary optic neuropathy and hearing loss

    SciTech Connect

    Wei Qiping; Zhou Xiangtian; Yang Li; Sun Yanhong; Zhou Jian; Li Guang; Jiang, Robert; Lu Fan; Qu Jia . E-mail: jqu@wzmc.net; Guan Minxin . E-mail: min-xin.guan@cchmc.org

    2007-06-15

    We report here the clinical, genetic and molecular characterization of one three-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON) and hearing loss. Four of 14 matrilineal relatives exhibited the moderate central vision loss at the average age of 12.5 years. Of these, one subject exhibited both LHON and mild hearing impairment. Sequence analysis of the complete mitochondrial genomes in the pedigree showed the presence of homoplasmic LHON-associated ND6 T14484C mutation, deafness-associated 12S rRNA A1555 mutation and 47 other variants belonging to Eastern Asian haplogroup H2. None of other mitochondrial variants was evolutionarily conserved and functional significance. Therefore, the coexistence of the A1555G mutation and T14484C mutations in this Chinese family indicate that the A1555G mutation may play a synergistic role in the phenotypic manifestation of LHON associated ND6 T14484C mutation. However, the incomplete penetrance of vision and hearing loss suggests the involvement of nuclear modifier genes and environmental factors in the phenotypic expression of these mtDNA mutations.

  20. Physical map location of the human carboxypeptidase M gene (CPM) distal to D12S375 and proximal to D12S8 at chromosome 12q15

    SciTech Connect

    Kas, K.; Schoenmakers, E.F.P.M.; Van de Ven, W.J.M.

    1995-11-20

    Chromosome aberrations involving human chromosome 12 region q13-q15 are frequently observed in a wide variety of solid tumors, benign as well as malignant ones. In an approach to isolating through positional cloning the pathogenetically relevant genes, we have carried out directional chromosome walking from locus D12S8 toward the centromere. This resulted in the construction of a YAC contig consisting of 75 overlapping YAC clones, the composite insert DNA of which was about 6.5 Mb, and, more recently, in the identification of the high-mobility group protein gene, HMGI-C, as the target gene consistently found to be rearranged by the chromosome 12 aberrations in at least eight different mesenchymal tumor types. To establish sequence-tagged sites (STSs), we sequenced the ends of a number of YAC clones using the methodology described by Geurts et al. Within the right end sequences of CEPH mark 1 YAC 499C5, originally designated RM46 and now also known as D12S1501, a BLAST search revealed a stretch of 135 nucleotides that matches perfectly with known cDNA sequences of the human carboxypeptidase M gene, the chromosomal localization of which has not yet been established. The region of sequence identity starts at nucleotide 794 of the HUMC-ARM{sup 2} cDNA and ends coinciding with a splice donor site at nucleotide 930. It should be noted that the sequence similarity extends 2 bp into the intron sequence. 11 refs., 2 figs.

  1. Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states

    PubMed Central

    Pontvianne, Frederic; Blevins, Todd; Chandrasekhara, Chinmayi; Mozgová, Iva; Hassel, Christiane; Pontes, Olga M.F.; Tucker, Sarah; Mokroš, Petr; Muchová, Veronika; Fajkus, Jiří; Pikaard, Craig S.

    2013-01-01

    Eukaryotes can have thousands of 45S ribosomal RNA (rRNA) genes, many of which are silenced during development. Using fluorescence-activated sorting techniques, we show that active rRNA genes in Arabidopsis thaliana are present within sorted nucleoli, whereas silenced rRNA genes are excluded. DNA methyltransferase (met1), histone deacetylase (hda6), or chromatin assembly (caf1) mutants that disrupt silencing abrogate this nucleoplasmic–nucleolar partitioning. Bisulfite sequencing data indicate that active nucleolar rRNA genes are nearly completely demethylated at promoter CGs, whereas silenced genes are nearly fully methylated. Collectively, the data reveal that rRNA genes occupy distinct but changeable nuclear territories according to their epigenetic state. PMID:23873938

  2. Tetrathiobacter kashmirensis Strain CA-1 16S rRNA gene complete sequence.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used 1326 base pair 16S rRNA gene sequence methods to confirm the identification of a bacterium as Tetrathiobacter kashmirensis. Morphological, biochemical characteristics, and fatty acid profiles are consistent with the 16S rRNA gene sequence identification of the bacterium. The isolate...

  3. The Regulation of rRNA Gene Transcription during Directed Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Liu, Zhong; Zhao, Rui; Giles, Keith E.

    2016-01-01

    It has become increasingly clear that proper cellular control of pluripotency and differentiation is related to the regulation of rRNA synthesis. To further our understanding of the role that the regulation of rRNA synthesis has in pluripotency we monitored rRNA synthesis during the directed differentiation of human embryonic stem cells (hESCs). We discovered that the rRNA synthesis rate is reduced ~50% within 6 hours of ACTIVIN A treatment. This precedes reductions in expression of specific stem cell markers and increases in expression of specific germ layer markers. The reduction in rRNA synthesis is concomitant with dissociation of the Pol I transcription factor, UBTF, from the rRNA gene promoter and precedes any increase to heterochromatin throughout the rRNA gene. To directly investigate the role of rRNA synthesis in pluripotency, hESCs were treated with the Pol I inhibitor, CX-5461. The direct reduction of rRNA synthesis by CX-5461 induces the expression of markers for all three germ layers, reduces the expression of pluripotency markers, and is overall similar to the ACTIVIN A induced changes. This work indicates that the dissociation of UBTF from the rRNA gene, and corresponding reduction in transcription, represent early regulatory events during the directed differentiation of pluripotent stem cells. PMID:27299313

  4. The mitochondrial 12S gene is a suitable marker of populations of Sarcoptes scabiei from wombats, dogs and humans in Australia.

    PubMed

    Skerratt, L F; Campbell, N J H; Murrell, A; Walton, S; Kemp, D; Barker, S C

    2002-04-01

    We sequenced part of the mitochondrial 12S ribosomal RNA gene of 23 specimens of Sarcoptes scabiei from eight wombats, one dog and three humans. Twelve of the 326 nucleotide positions varied among these mites and there were nine haplotypes (sequences) that differed by 1-8 nucleotides. Phylogenetic analyses indicated that these mites were from two lineages: (1) mites from wombats from Victoria, Australia, and mites from the humans and dog from the Northern Territory, Australia (haplotypes 1-4, 9); and (2) mites from the humans and dog from the Northern Territory (haplotypes 5-8). Mites from the three different hosts (wombats, a dog and humans) had not diverged phylogenetically; rather, these mites had similar 12S sequences. Thus, we conclude that these mites from wombats, humans and a dog are closely related, and that they diverged from a common ancestor relatively recently. This conclusion is consistent with the argument that people and/or their dogs introduced to Australia the S. scabiei mites that infect wombats in Australia . So, S. scabiei, which has been blamed for the extinction of populations of wombats in Australia, may be a parasitic mite that was introduced to Australia with people and/or their dogs. These data show that the mitochondrial 12S rRNA gene may be a suitable population marker of S. scabiei from wombats, dogs and humans in Australia. PMID:11999028

  5. Strain identification and 5S rRNA gene characterization of the hyperthermophilic archaebacterium Sulfolobus acidocaldarius.

    PubMed Central

    Durovic, P; Kutay, U; Schleper, C; Dennis, P P

    1994-01-01

    A commonly used laboratory Sulfolobus strain has been unambiguously identified as Sulfolobus acidocaldarius DSM639. The 5S rRNA gene from this strain was cloned and sequenced. It differs at 17 of 124 positions from the identical 5S rRNA sequences from Sulfolobus solfataricus and a strain apparently misidentified as S. acidocaldarius. Analysis of the transcripts from the 5S rRNA gene failed to identify any precursor extending a significant distance beyond the 5' or 3' boundary of the 5S rRNA-coding sequence. This result suggests that the primary transcript of the 5S rRNA gene corresponds in length (within 1 or 2 nucleotides) to the mature 5S rRNA sequence found in 50S ribosomal subunits. Images PMID:8288546

  6. Compilation of 5S rRNA and 5S rRNA gene sequences

    PubMed Central

    Specht, Thomas; Wolters, Jörn; Erdmann, Volker A.

    1990-01-01

    The BERLIN RNA DATABANK as of Dezember 31, 1989, contains a total of 667 sequences of 5S rRNAs or their genes, which is an increase of 114 new sequence entries over the last compilation (1). It covers sequences from 44 archaebacteria, 267 eubacteria, 20 plastids, 6 mitochondria, 319 eukaryotes and 11 eukaryotic pseudogenes. The hardcopy shows only the list (Table 1) of those organisms whose sequences have been determined. The BERLIN RNA DATABANK uses the format of the EMBL Nucleotide Sequence Data Library complemented by a Sequence Alignment (SA) field including secondary structure information. PMID:1692116

  7. Diversity of 5S rRNA genes within individual prokaryotic genomes

    PubMed Central

    Pei, Anna; Li, Hongru; Oberdorf, William E; Alekseyenko, Alexander V.; Parsons, Tamasha; Yang, Liying; Gerz, Erika A.; Lee, Peng; Xiang, Charlie; Nossa, Carlos W.; Pei, Zhiheng

    2012-01-01

    We examined intragenomic variation of paralogous 5S rRNA genes to evaluate the concept of ribosomal constraints. In a dataset containing 1168 genomes from 779 unique species, 96 species exhibited >3% diversity. Twenty seven species with >10% diversity contained a total of 421 mismatches between all pairs of the most dissimilar copies of 5S rRNA genes. The large majority (401 of 421) the diversified positions were conserved at the secondary structure level. The high diversity was associated with partial rRNA operon, split operon, or spacer length-related divergence. In total, these findings indicated that there were tight ribosomal constraints on paralogous 5S rRNA genes in a genome despite of the high degree of diversity at the primary structure level. There is supplementary material. PMID:22765222

  8. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

    PubMed

    Hao, Huijing; Liang, Junrong; Duan, Ran; Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method. PMID:26808495

  9. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence

    PubMed Central

    Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method. PMID:26808495

  10. Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications.

    PubMed

    Herzog, M; Maroteaux, L

    1986-11-01

    We present the complete sequence of the nuclear-encoded small-ribosomal-subunit RNA inferred from the cloned gene sequence of the dinoflagellate Prorocentrum micans. The dinoflagellate 17S rRNA sequence of 1798 nucleotides is contained in a family of 200 tandemly repeated genes per haploid genome. A tentative model of the secondary structure of P. micans 17S rRNA is presented. This sequence is compared with the small-ribosomal-subunit rRNA of Xenopus laevis (Animalia), Saccharomyces cerevisiae (Fungi), Zea mays (Planta), Dictyostelium discoideum (Protoctista), and Halobacterium volcanii (Monera). Although the secondary structure of the dinoflagellate 17S rRNA presents most of the eukaryotic characteristics, it contains sufficient archaeobacterial-like structural features to reinforce the view that dinoflagellates branch off very early from the eukaryotic lineage. PMID:16578795

  11. Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications

    PubMed Central

    Herzog, Michel; Maroteaux, Luc

    1986-01-01

    We present the complete sequence of the nuclear-encoded small-ribosomal-subunit RNA inferred from the cloned gene sequence of the dinoflagellate Prorocentrum micans. The dinoflagellate 17S rRNA sequence of 1798 nucleotides is contained in a family of 200 tandemly repeated genes per haploid genome. A tentative model of the secondary structure of P. micans 17S rRNA is presented. This sequence is compared with the small-ribosomal-subunit rRNA of Xenopus laevis (Animalia), Saccharomyces cerevisiae (Fungi), Zea mays (Planta), Dictyostelium discoideum (Protoctista), and Halobacterium volcanii (Monera). Although the secondary structure of the dinoflagellate 17S rRNA presents most of the eukaryotic characteristics, it contains sufficient archaeobacterial-like structural features to reinforce the view that dinoflagellates branch off very early from the eukaryotic lineage. PMID:16578795

  12. Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species.

    PubMed

    Park, Y K; Park, K C; Park, C H; Kim, N S

    2000-02-29

    Chromosomal localization and sequence analysis of the 5S rRNA gene were carried out in five Capsicum species. Fluorescence in situ hybridization revealed that chromosomal location of the 5S rRNA gene was conserved in a single locus at a chromosome which was assigned to chromosome 1 by the synteny relationship with tomato. In sequence analysis, the repeating units of the 5S rRNA genes in the Capsicum species were variable in size from 278 bp to 300 bp. In sequence comparison of our results to the results with other Solanaceae plants as published by others, the coding region was highly conserved, but the spacer regions varied in size and sequence. T stretch regions, just after the end of the coding sequences, were more prominant in the Capsicum species than in two other plants. High G x C rich regions, which might have similar functions as that of the GC islands in the genes transcribed by RNA PolII, were observed after the T stretch region. Although we could not observe the TATA like sequences, an AT rich segment at -27 to -18 was detected in the 5S rRNA genes of the Capsicum species. Species relationship among the Capsicum species was also studied by the sequence comparison of the 5S rRNA genes. While C. chinense, C. frutescens, and C. annuum formed one lineage, C. baccatum was revealed to be an intermediate species between the former three species and C. pubescens. PMID:10774742

  13. Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis

    PubMed Central

    Chandrasekhara, Chinmayi; Mohannath, Gireesha; Blevins, Todd; Pontvianne, Frederic; Pikaard, Craig S.

    2016-01-01

    In eukaryotes, scores of excess ribosomal RNA (rRNA) genes are silenced by repressive chromatin modifications. Given the near sequence identity of rRNA genes within a species, it is unclear how specific rRNA genes are reproducibly chosen for silencing. Using Arabidopsis thaliana ecotype (strain) Col-0, a systematic search identified sequence polymorphisms that differ between active and developmentally silenced rRNA gene subtypes. Recombinant inbred mapping populations derived from three different ecotype crosses were then used to map the chromosomal locations of silenced and active RNA gene subtypes. Importantly, silenced and active rRNA gene subtypes are not intermingled. All silenced rRNA gene subtypes mapped to the nucleolus organizer region (NOR) on chromosome 2 (NOR2). All active rRNA gene subtypes mapped to NOR4. Using an engineered A. thaliana line in which a portion of Col-0 chromosome 4 was replaced by sequences of another ecotype, we show that a major rRNA gene subtype silenced at NOR2 is active when introgressed into the genome at NOR4. Collectively, these results reveal that selective rRNA gene silencing is not regulated gene by gene based on mechanisms dependent on subtle gene sequence variation. Instead, we propose that a subchromosomal silencing mechanism operates on a multimegabase scale to inactivate NOR2. PMID:26744421

  14. The 12S rRNA A1555G mutation in the mitochondrial haplogroup D5a is responsible for maternally inherited hypertension and hearing loss in two Chinese pedigrees

    PubMed Central

    Chen, Hong; Zheng, Jing; Xue, Ling; Meng, Yanzi; Wang, Yan; Zheng, Bingjiao; Fang, Fang; Shi, Suxue; Qiu, Qiaomeng; Jiang, Pingping; Lu, Zhongqiu; Mo, Jun Qin; Lu, Jianxin; Guan, Min-Xin

    2012-01-01

    We reported here clinical, genetic evaluations and molecular analysis of mitochondrial DNA (mtDNA) in two Han Chinese families carrying the known mitochondrial 12S rRNA A1555G mutation. In contrast with the previous data that hearing loss as a sole phenotype was present in the maternal lineage of other families carrying the A1555G mutation, matrilineal relatives among these two Chinese families exhibited both hearing loss and hypertension. Of 21 matrilineal relatives, 9 subjects exhibited both hearing loss and hypertension, 2 individuals suffered from only hypertension and 1 member had only hearing loss. The average age at onset of hypertension in the affected matrilineal relatives of these families was 60 and 46 years, respectively, whereas those of hearing loss in these two families were 33 and 55 years, respectively. Molecular analysis of their mtDNA identified distinct sets of variants belonging to the Eastern Asian haplogroup D5a. In contrast, the A1555G mutation occurred among other mtDNA haplogroups D, B, R, F, G, Y, M and N, respectively. Our data further support that the A1555G mutation is necessary but by itself insufficient to produce the clinical phenotype. The other modifiers are responsible for the phenotypic variability of matrilineal relatives within and among these families carrying the A1555G mutation. Our investigation provides the first evidence that the 12S rRNA A1555G mutation leads to both of hearing loss and hypertension. Thus, our findings may provide the new insights into the understanding of pathophysiology and valuable information for management and treatment of maternally inherited hearing loss and hypertension. PMID:22317974

  15. The 12S rRNA A1555G mutation in the mitochondrial haplogroup D5a is responsible for maternally inherited hypertension and hearing loss in two Chinese pedigrees.

    PubMed

    Chen, Hong; Zheng, Jing; Xue, Ling; Meng, Yanzi; Wang, Yan; Zheng, Bingjiao; Fang, Fang; Shi, Suxue; Qiu, Qiaomeng; Jiang, Pingping; Lu, Zhongqiu; Mo, Jun Qin; Lu, Jianxin; Guan, Min-Xin

    2012-06-01

    We reported here clinical, genetic evaluations and molecular analysis of mitochondrial DNA (mtDNA) in two Han Chinese families carrying the known mitochondrial 12S rRNA A1555G mutation. In contrast with the previous data that hearing loss as a sole phenotype was present in the maternal lineage of other families carrying the A1555G mutation, matrilineal relatives among these two Chinese families exhibited both hearing loss and hypertension. Of 21 matrilineal relatives, 9 subjects exhibited both hearing loss and hypertension, 2 individuals suffered from only hypertension and 1 member had only hearing loss. The average age at onset of hypertension in the affected matrilineal relatives of these families was 60 and 46 years, respectively, whereas those of hearing loss in these two families were 33 and 55 years, respectively. Molecular analysis of their mtDNA identified distinct sets of variants belonging to the Eastern Asian haplogroup D5a. In contrast, the A1555G mutation occurred among other mtDNA haplogroups D, B, R, F, G, Y, M and N, respectively. Our data further support that the A1555G mutation is necessary but by itself insufficient to produce the clinical phenotype. The other modifiers are responsible for the phenotypic variability of matrilineal relatives within and among these families carrying the A1555G mutation. Our investigation provides the first evidence that the 12S rRNA A1555G mutation leads to both of hearing loss and hypertension. Thus, our findings may provide the new insights into the understanding of pathophysiology and valuable information for management and treatment of maternally inherited hearing loss and hypertension. PMID:22317974

  16. A yeast transcription system for the 5S rRNA gene.

    PubMed Central

    van Keulen, H; Thomas, D Y

    1982-01-01

    A cell-free extract of yeast nuclei that can specifically transcribe cloned yeast 5S rRNA genes has been developed. Optima for transcription of 5S rDNA were determined and conditions of extract preparation leading to reproducible activities and specificities established. The major in vitro product has the same size and oligonucleotide composition as in vivo 5S rRNA. The in vitro transcription extract does not transcribe yeast tRNA genes. The extract does increase the transcription of tRNA genes packaged in chromatin. Images PMID:7145700

  17. Sequence heterogeneity in the two 16S rRNA genes of Phormium yellow leaf phytoplasma.

    PubMed Central

    Liefting, L W; Andersen, M T; Beever, R E; Gardner, R C; Forster, R L

    1996-01-01

    Phormium yellow leaf (PYL) phytoplasma causes a lethal disease of the monocotyledon, New Zealand flax (Phormium tenax). The 16S rRNA genes of PYL phytoplasma were amplified from infected flax by PCR and cloned, and the nucleotide sequences were determined. DNA sequencing and Southern hybridization analysis of genomic DNA indicated the presence of two copies of the 16S rRNA gene. The two 16S rRNA genes exhibited sequence heterogeneity in 4 nucleotide positions and could be distinguished by the restriction enzymes BpmI and BsrI. This is the first record in which sequence heterogeneity in the 16S rRNA genes of a phytoplasma has been determined by sequence analysis. A phylogenetic tree based on 16S rRNA gene sequences showed that PYL phytoplasma is most closely related to the stolbur and German grapevine yellows phytoplasmas, which form the stolbur subgroup of the aster yellows group. This phylogenetic position of PYL phytoplasma was supported by 16S/23S spacer region sequence data. PMID:8795200

  18. Bacterial metabarcoding by 16S rRNA gene ion torrent amplicon sequencing.

    PubMed

    Fantini, Elio; Gianese, Giulio; Giuliano, Giovanni; Fiore, Alessia

    2015-01-01

    Ion Torrent is a next generation sequencing technology based on the detection of hydrogen ions produced during DNA chain elongation; this technology allows analyzing and characterizing genomes, genes, and species. Here, we describe an Ion Torrent procedure applied to the metagenomic analysis of 16S rRNA gene amplicons to study the bacterial diversity in food and environmental samples. PMID:25343859

  19. Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda

    PubMed Central

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258

  20. Rare Events of Intragenus and Intraspecies Horizontal Transfer of the 16S rRNA Gene

    PubMed Central

    Tian, Ren-Mao; Cai, Lin; Zhang, Wei-Peng; Cao, Hui-Luo; Qian, Pei-Yuan

    2015-01-01

    Horizontal gene transfer (HGT) of operational genes has been widely reported in prokaryotic organisms. However, informational genes such as those involved in transcription and translation processes are very difficult to be horizontally transferred, as described by Woese’s complexity hypothesis. Here, we analyzed all of the completed prokaryotic genome sequences (2,143 genomes) in the NCBI (National Center for Biotechnology Information) database, scanned for genomes with high intragenomic heterogeneity of 16S rRNA gene copies, and explored potential HGT events of ribosomal RNA genes based on the phylogeny, genomic organization, and secondary structures of the ribosomal RNA genes. Our results revealed 28 genomes with relatively high intragenomic heterogeneity of multiple 16S rRNA gene copies (lowest pairwise identity <98.0%), and further analysis revealed HGT events and potential donors of the heterogeneous copies (such as HGT from Chlamydia suis to Chlamydia trachomatis) and mutation events of some heterogeneous copies (such as Streptococcus suis JS14). Interestingly, HGT of the 16S rRNA gene only occurred at intragenus or intraspecies levels, which is quite different from the HGT of operational genes. Our results improve our understanding regarding the exchange of informational genes. PMID:26220935

  1. Molecular phylogeny of pneumocystis based on 5.8S rRNA gene and the internal transcribed spacers of rRNA gene sequences.

    PubMed

    Li, ZiHui; Feng, XianMin; Lu, SiQi; Zhang, Fan; Wang, FengYun; Huang, Song

    2008-05-01

    To clarify the phylogenetic relationships and species status of Pneumocystis, the 5.8S rRNA gene and the internal transcribed spacers (ITS, 1 and 2) of Pneumocystis rRNA derived from rat, gerbil and human were amplified, cloned and sequenced. The genetic distance matrix of six Pneumocystis species compared with other fungi like Taphrina and Saccharomyces indicated that the Pneumocystis genus contained multiple species including Pneumocystis from gerbil. The phylogenetic tree also showed that Pneumocystis from human and monkey formed one group and four rodent Pneumocystis formed another group. Among the four members, Pneumocystis wakefieldiae was most closely related to Pneumocystis murina and Pneumocystis carinii, and was least related to gerbil Pneumocystis. PMID:18785590

  2. Nucleolin Is Required for DNA Methylation State and the Expression of rRNA Gene Variants in Arabidopsis thaliana

    PubMed Central

    Pontvianne, Frédéric; Abou-Ellail, Mohamed; Douet, Julien; Comella, Pascale; Matia, Isabel; Chandrasekhara, Chinmayi; DeBures, Anne; Blevins, Todd; Cooke, Richard; Medina, Francisco J.; Tourmente, Sylvette; Pikaard, Craig S.; Sáez-Vásquez, Julio

    2010-01-01

    In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1). Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre–rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis. PMID:21124873

  3. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana.

    PubMed

    Pontvianne, Frédéric; Abou-Ellail, Mohamed; Douet, Julien; Comella, Pascale; Matia, Isabel; Chandrasekhara, Chinmayi; Debures, Anne; Blevins, Todd; Cooke, Richard; Medina, Francisco J; Tourmente, Sylvette; Pikaard, Craig S; Sáez-Vásquez, Julio

    2010-11-01

    In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1). Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis. PMID:21124873

  4. Rhizobium sp. strain BN4 (a selenium oxyanion-reducing bacterium) 16S rRNA gene complete sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used 1482 base pair 16S rRNA gene sequence methods in conjunction with other biochemical and morphological studies to confirm the identification of a bacterium (refer to as the BN4 strain) as a Rhizobium sp. The 16S rRNA gene sequence places it with the Rhizobium clade that includes R. d...

  5. Clinical and molecular analysis of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss associated with the mitochondrial 12S rRNA C1494T mutation

    SciTech Connect

    Wang Qiuju; Li Qingzhong; Han Dongyi . E-mail: hdy301@263.net; Zhao Yali; Zhao Lidong; Qian Yaping; Yuan Hu; Li Ronghua; Zhai Suoqiang; Young Wieyen . E-mail: ywy301@263.net; Guan Minxin . E-mail: min-xin.guan@chmcc.org

    2006-02-10

    We report here the clinical, genetic, and molecular characterization of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Five of nine matrilineal relatives had aminoglycoside-induced hearing loss. These matrilineal relatives exhibited variable severity and audiometric configuration of hearing impairment, despite sharing some common features: being bilateral and having sensorineural hearing impairment. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified 16 variants and the homoplasmic 12S rRNA C1494T mutation, which was associated with hearing loss in the other large Chinese family. In fact, the occurrence of the C1494T mutation in these genetically unrelated pedigrees affected by hearing impairment strongly indicated that this mutation is involved in the pathogenesis of aminoglycoside-induced and nonsyndromic hearing loss. However, incomplete penetrance of hearing loss indicated that the C1494T mutation itself is not sufficient to produce a clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Those mtDNA variants, showing no evolutional conservation, may not have a potential modifying role in the pathogenesis of the C1494T mutation. However, nuclear background seems to contribute to the phenotypic variability of matrilineal relatives in this family. Furthermore, aminoglycosides modulate the expressivity and penetrance of deafness associated with the C1494T mutation in this family.

  6. Sequence and phylogenetic analysis of SSU rRNA gene of five microsporidia.

    PubMed

    Dong, ShiNan; Shen, ZhongYuan; Xu, Li; Zhu, Feng

    2010-01-01

    The complete small subunit rRNA (SSU rRNA) gene sequences of five microsporidia including Nosema heliothidis, and four novel microsporidia isolated from Pieris rapae, Phyllobrotica armta, Hemerophila atrilineata, and Bombyx mori, respectively, were obtained by PCR amplification, cloning, and sequencing. Two phylogenetic trees based on SSU rRNA sequences had been constructed by using Neighbor-Joining of Phylip software and UPGMA of MEGA4.0 software. The taxonomic status of four novel microsporidia was determined by analysis of phylogenetic relationship, length, G+C content, identity, and divergence of the SSU rRNA sequences. The results showed that the microsporidia isolated from Pieris rapae, Phyllobrotica armta, and Hemerophila atrilineata have close phylogenetic relationship with the Nosema, while another microsporidium isolated from Bombyx mori is closely related to the Endoreticulatus. So, we temporarily classify three novel species of microsporidia to genus Nosema, as Nosema sp. PR, Nosema sp. PA, Nosema sp. HA. Another is temporarily classified into genus Endoreticulatus, as Endoreticulatus sp. Zhenjiang. The result indicated as well that it is feasible and valuable to elucidate phylogenetic relationships and taxonomic status of microsporidian species by analyzing information from SSU rRNA sequences of microsporidia. PMID:19768503

  7. A renaissance for the pioneering 16S rRNA gene

    SciTech Connect

    Tringe, Susannah; Hugenholtz, Philip

    2008-09-07

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the last quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  8. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing.

    PubMed Central

    Schmidt, T M; DeLong, E F; Pace, N R

    1991-01-01

    The phylogenetic diversity of an oligotrophic marine picoplankton community was examined by analyzing the sequences of cloned ribosomal genes. This strategy does not rely on cultivation of the resident microorganisms. Bulk genomic DNA was isolated from picoplankton collected in the north central Pacific Ocean by tangential flow filtration. The mixed-population DNA was fragmented, size fractionated, and cloned into bacteriophage lambda. Thirty-eight clones containing 16S rRNA genes were identified in a screen of 3.2 x 10(4) recombinant phage, and portions of the rRNA gene were amplified by polymerase chain reaction and sequenced. The resulting sequences were used to establish the identities of the picoplankton by comparison with an established data base of rRNA sequences. Fifteen unique eubacterial sequences were obtained, including four from cyanobacteria and eleven from proteobacteria. A single eucaryote related to dinoflagellates was identified; no archaebacterial sequences were detected. The cyanobacterial sequences are all closely related to sequences from cultivated marine Synechococcus strains and with cyanobacterial sequences obtained from the Atlantic Ocean (Sargasso Sea). Several sequences were related to common marine isolates of the gamma subdivision of proteobacteria. In addition to sequences closely related to those of described bacteria, sequences were obtained from two phylogenetic groups of organisms that are not closely related to any known rRNA sequences from cultivated organisms. Both of these novel phylogenetic clusters are proteobacteria, one group within the alpha subdivision and the other distinct from known proteobacterial subdivisions. The rRNA sequences of the alpha-related group are nearly identical to those of some Sargasso Sea picoplankton, suggesting a global distribution of these organisms. Images PMID:2066334

  9. Transcriptional Activity of rRNA Genes in Barley Cells after Mutagenic Treatment.

    PubMed

    Kwasniewska, Jolanta; Jaskowiak, Joanna

    2016-01-01

    In the present study, the combination of the micronucleus test with analysis of the activity of the rRNA genes in mutagen-treated Hordeum vulgare (barley) by maleic hydrazide (MH) cells was performed. Simultaneously fluorescence in situ hybridization (FISH) with 25S rDNA as probes and an analysis of the transcriptional activity of 35S rRNA genes with silver staining were performed. The results showed that transcriptional activity is always maintained in the micronuclei although they are eliminated during the next cell cycle. The analysis of the transcriptional activity was extended to barley nuclei. MH influenced the fusion of the nucleoli in barley nuclei. The silver staining enabled detection of the nuclear bodies which arose after MH treatment. The results confirmed the usefulness of cytogenetic techniques in the characterization of micronuclei. Similar analyses can be now extended to other abiotic stresses to study the response of plant cells to the environment. PMID:27257817

  10. Transcriptional Activity of rRNA Genes in Barley Cells after Mutagenic Treatment

    PubMed Central

    2016-01-01

    In the present study, the combination of the micronucleus test with analysis of the activity of the rRNA genes in mutagen-treated Hordeum vulgare (barley) by maleic hydrazide (MH) cells was performed. Simultaneously fluorescence in situ hybridization (FISH) with 25S rDNA as probes and an analysis of the transcriptional activity of 35S rRNA genes with silver staining were performed. The results showed that transcriptional activity is always maintained in the micronuclei although they are eliminated during the next cell cycle. The analysis of the transcriptional activity was extended to barley nuclei. MH influenced the fusion of the nucleoli in barley nuclei. The silver staining enabled detection of the nuclear bodies which arose after MH treatment. The results confirmed the usefulness of cytogenetic techniques in the characterization of micronuclei. Similar analyses can be now extended to other abiotic stresses to study the response of plant cells to the environment. PMID:27257817

  11. Characterization of the genus Bifidobacterium by automated ribotyping and 16S rRNA gene sequences.

    PubMed

    Sakata, Shinji; Ryu, Chun Sun; Kitahara, Maki; Sakamoto, Mitsuo; Hayashi, Hidenori; Fukuyama, Masafumi; Benno, Yoshimi

    2006-01-01

    In order to characterize the genus Bifidobacterium, ribopatterns and approximately 500 bp (Escherichia coli positions 27 to 520) of 16S rRNA gene sequences of 28 type strains and 64 reference strains of the genus Bifidobacterium were determined. Ribopatterns obtained from Bifidobacterium strains were divided into nine clusters (clusters I-IX) with a similarity of 60%. Cluster V, containing 17 species, was further subdivided into 22 subclusters with a similarity of 90%. In the genus Bifidobacterium, four groups were shown according to Miyake et al.: (i) the Bifidobacterium longum infantis-longum-suis type group, (ii) the B. catenulatum-pseudocatenulatum group, (iii) the B. gallinarum-saeculare-pullorum group, and (iv) the B. coryneforme-indicum group, which showed higher than 97% similarity of the 16S rRNA gene sequences in each group. Using ribotyping analysis, unique ribopatterns were obtained from these species, and they could be separated by cluster analysis. Ribopatterns of six B. adolescentis strains were separated into different clusters, and also showed diversity in 16S rRNA gene sequences. B. adolescentis consisted of heterogeneous strains. The nine strains of B. pseudolongum subsp. pseudolongum were divided into five subclusters. Each type strain of B. pseudolongum subsp. pseudolongum and B. pseudolongum subsp. globosum and two intermediate groups, which were suggested by Yaeshima et al., consisted of individual clusters. B. animalis subsp. animalis and B. animalis subsp. lactis could not be separated by ribotyping using Eco RI. We conclude that ribotyping is able to provide another characteristic of Bifidobacterium strains in addition to 16S rRNA gene sequence phylogenetic analysis, and this information suggests that ribotyping analysis is a useful tool for the characterization of Bifidobacterium species in combination with other techniques for taxonomic characterization. PMID:16428867

  12. Greengenes: Chimera-checked 16S rRNA gene database and workbenchcompatible in ARB

    SciTech Connect

    DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie,E.L; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.

    2006-02-01

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that incongruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3% of environmental sequences and 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  13. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    PubMed

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586

  14. Characterization of Xanthomonas campestris Pathovars by rRNA Gene Restriction Patterns

    PubMed Central

    Berthier, Yvette; Verdier, Valérie; Guesdon, Jean-Luc; Chevrier, Danièle; Denis, Jean-Baptiste; Decoux, Guy; Lemattre, Monique

    1993-01-01

    Genomic DNA of 191 strains of the family Pseudomonadaceae, including 187 strains of the genus Xanthomonas, was cleaved by EcoRI endonuclease. After hybridization of Southern transfer blots with 2-acetylamino-fluorene-labelled Escherichia coli 16+23S rRNA probe, 27 different patterns were obtained. The strains are clearly distinguishable at the genus, species, and pathovar levels. The variability of the rRNA gene restriction patterns was determined for four pathovars of Xanthomonas campestris species. The 16 strains of X. campestris pv. begoniae analyzed gave only one pattern. The variability of rRNA gene restriction patterns of X. campestris pv. manihotis strains could be related to ecotypes. In contrast, the variability of patterns observed for X. campestris pv. malvacearum was not correlated with pathogenicity or with the geographical origins of the strains. The highest degree of variability of DNA fingerprints was observed within X. campestris pv. dieffenbachiae, which is pathogenic to several hosts of the Araceae family. In this case, variability was related to both host plant and pathogenicity. Images PMID:16348894

  15. Efficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization.

    PubMed

    Anahtar, Melis N; Bowman, Brittany A; Kwon, Douglas S

    2016-01-01

    There is a growing appreciation for the role of microbial communities as critical modulators of human health and disease. High throughput sequencing technologies have allowed for the rapid and efficient characterization of bacterial communities using 16S rRNA gene sequencing from a variety of sources. Although readily available tools for 16S rRNA sequence analysis have standardized computational workflows, sample processing for DNA extraction remains a continued source of variability across studies. Here we describe an efficient, robust, and cost effective method for extracting nucleic acid from swabs. We also delineate downstream methods for 16S rRNA gene sequencing, including generation of sequencing libraries, data quality control, and sequence analysis. The workflow can accommodate multiple samples types, including stool and swabs collected from a variety of anatomical locations and host species. Additionally, recovered DNA and RNA can be separated and used for other applications, including whole genome sequencing or RNA-seq. The method described allows for a common processing approach for multiple sample types and accommodates downstream analysis of genomic, metagenomic and transcriptional information. PMID:27168460

  16. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    PubMed Central

    Ziesemer, Kirsten A.; Mann, Allison E.; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T.; Brandt, Bernd W.; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C.; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A.; MacDonald, Sandy J.; Thomas, Gavin H.; Collins, Matthew J.; Lewis, Cecil M.; Hofman, Corinne; Warinner, Christina

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586

  17. Efficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization

    PubMed Central

    Anahtar, Melis N.; Bowman, Brittany A.; Kwon, Douglas S.

    2016-01-01

    There is a growing appreciation for the role of microbial communities as critical modulators of human health and disease. High throughput sequencing technologies have allowed for the rapid and efficient characterization of bacterial communities using 16S rRNA gene sequencing from a variety of sources. Although readily available tools for 16S rRNA sequence analysis have standardized computational workflows, sample processing for DNA extraction remains a continued source of variability across studies. Here we describe an efficient, robust, and cost effective method for extracting nucleic acid from swabs. We also delineate downstream methods for 16S rRNA gene sequencing, including generation of sequencing libraries, data quality control, and sequence analysis. The workflow can accommodate multiple samples types, including stool and swabs collected from a variety of anatomical locations and host species. Additionally, recovered DNA and RNA can be separated and used for other applications, including whole genome sequencing or RNA-seq. The method described allows for a common processing approach for multiple sample types and accommodates downstream analysis of genomic, metagenomic and transcriptional information. PMID:27168460

  18. Turkey fecal microbial community structure and functional gene diversity revealed by 16S rRNA gene and metagenomic sequences.

    PubMed

    Lu, Jingrang; Domingo, Jorge Santo

    2008-10-01

    The primary goal of this study was to better understand the microbial composition and functional genetic diversity associated with turkey fecal communities. To achieve this, 16S rRNA gene and metagenomic clone libraries were sequenced from turkey fecal samples. The analysis of 382 16S rRNA gene sequences showed that the most abundant bacteria were closely related to Lactobacillales (47%), Bacillales (31%), and Clostridiales (11%). Actinomycetales, Enterobacteriales, and Bacteroidales sequences were also identified, but represented a smaller part of the community. The analysis of 379 metagenomic sequences showed that most clones were similar to bacterial protein sequences (58%). Bacteriophage (10%) and avian viruses (3%) sequences were also represented. Of all metagenomic clones potentially encoding for bacterial proteins, most were similar to low G+C Gram-positive bacterial proteins, particularly from Lactobacillales (50%), Bacillales (11%), and Clostridiales (8%). Bioinformatic analyses suggested the presence of genes encoding for membrane proteins, lipoproteins, hydrolases, and functional genes associated with the metabolism of nitrogen and sulfur containing compounds. The results from this study further confirmed the predominance of Firmicutes in the avian gut and highlight the value of coupling 16S rRNA gene and metagenomic sequencing data analysis to study the microbial composition of avian fecal microbial communities. PMID:18974945

  19. Phylogenetic analysis of complete rRNA gene sequence of Nosema philosamiae isolated from the lepidopteran Philosamia cynthia ricini.

    PubMed

    Zhu, Feng; Shen, Zhongyuan; Xu, Xiaofang; Tao, Hengping; Dong, Shinan; Tang, Xudong; Xu, Li

    2010-01-01

    ABSTRACT. The microsporidian Nosema philosamiae is a pathogen that infects the eri-silkworm Philosamia cynthia ricini. The complete sequence of rRNA gene (4,314 bp) was obtained by polymerase chain reaction amplification with specific primers and sequencing. The sequence analysis showed that the organization of the rRNA of N. philosamiae was similar to the pattern of Nosema bombycis. Phylogenetic analysis of rRNA gene sequences revealed that N. philosamiae had a close relationship with other Nosema species, confirming that N. philosamiae is correctly assigned to the genus Nosema. PMID:20384905

  20. Genes involved in the synthesis of the exopolysaccharide methanolan by the obligate methylotroph Methylobacillus sp strain 12S.

    PubMed

    Yoshida, Takako; Ayabe, Yuko; Yasunaga, Masaaki; Usami, Yusuke; Habe, Hiroshi; Nojiri, Hideaki; Omori, Toshio

    2003-02-01

    Methylobacillus sp. strain 12S produces an exopolysaccharide (EPS), methanolan, composed of glucose, mannose and galactose. Twenty-four ORFs flanking a Tn5 insertion site in an EPS-deficient mutant were identified, and 21 genes (epsCBAKLDEFGHIJMNOPQRSTU) were predicted to participate in methanolan synthesis on the basis of the features of the primary sequence. Gene disruption analyses revealed that epsABCEFGIJNOP and epsR are required for methanolan synthesis, whereas epsKD and epsH are not essential. EpsFG and EpsE showed homology with Wzc (chain length regulator) and Wza (export protein) of group 1 capsule-producing Escherichia coli, suggesting that methanolan was synthesized via a Wzy-like biosynthesis system. This possibility was supported by the fact that the putative hydropathy profiles of EpsH and EpsM were similar to those of Wzx and Wzy, which are also involved in the flipping of the repeating unit in the cytoplasmic membrane and the polymerization of the capsule in the Wzy-dependent system. EpsBJNOP and EpsR are probably glycosyltransferases involved in the synthesis of the repeating unit onto the lipid carrier. In particular, EpsB appeared to catalyse the initial transfer of the glucose moiety. On the basis of their predicted location in the cells, it is proposed that EpsI and EpsL are involved in methanolan export to the cell surface. E. coli strains expressing EpsQ, EpsS and EpsT showed enhanced activities of GDP-mannose pyrophosphorylase, UDP-galactose 4-epimerase and UDP-glucose pyrophosphorylase, respectively, revealing that they were responsible for the production of the activated compositional sugars of methanolan. EpsU contains a conserved a lytic transglycosylase motif, indicating that it could participate in the degradation of polysaccharides. EpsA and EpsK, which have conserved DNA-binding and cAMP-binding motifs, respectively, were deduced to be transcriptional regulators. In particular, EpsA seems to positively regulate the transcription of

  1. Analysis, Optimization and Verification of Illumina-Generated 16S rRNA Gene Amplicon Surveys

    PubMed Central

    Nelson, Michael C.; Morrison, Hilary G.; Benjamino, Jacquelynn; Grim, Sharon L.; Graf, Joerg

    2014-01-01

    The exploration of microbial communities by sequencing 16S rRNA genes has expanded with low-cost, high-throughput sequencing instruments. Illumina-based 16S rRNA gene sequencing has recently gained popularity over 454 pyrosequencing due to its lower costs, higher accuracy and greater throughput. Although recent reports suggest that Illumina and 454 pyrosequencing provide similar beta diversity measures, it remains to be demonstrated that pre-existing 454 pyrosequencing workflows can transfer directly from 454 to Illumina MiSeq sequencing by simply changing the sequencing adapters of the primers. In this study, we modified 454 pyrosequencing primers targeting the V4-V5 hyper-variable regions of the 16S rRNA gene to be compatible with Illumina sequencers. Microbial communities from cows, humans, leeches, mice, sewage, and termites and a mock community were analyzed by 454 and MiSeq sequencing of the V4-V5 region and MiSeq sequencing of the V4 region. Our analysis revealed that reference-based OTU clustering alone introduced biases compared to de novo clustering, preventing certain taxa from being observed in some samples. Based on this we devised and recommend an analysis pipeline that includes read merging, contaminant filtering, and reference-based clustering followed by de novo OTU clustering, which produces diversity measures consistent with de novo OTU clustering analysis. Low levels of dataset contamination with Illumina sequencing were discovered that could affect analyses that require highly sensitive approaches. While moving to Illumina-based sequencing platforms promises to provide deeper insights into the breadth and function of microbial diversity, our results show that care must be taken to ensure that sequencing and processing artifacts do not obscure true microbial diversity. PMID:24722003

  2. Greengenes, a Chimera-checked 16S rRNA gene database and workbenchcompatible with ARB

    SciTech Connect

    DeSantis, Todd Z.; Hugenholtz, Philip; Larsen, Neils; Rojas,Mark; Brodie, Eoin L.; Keller, Keith; Huber, Thomas; Dalevi, Daniel; Hu,Ping; Andersen, Gary L.

    2006-04-10

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that in congruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3 percent of environmental sequences and 0.2 percent of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  3. Preliminary study on mitochondrial 16S rRNA gene sequences and phylogeny of flatfishes (Pleuronectiformes)

    NASA Astrophysics Data System (ADS)

    You, Feng; Liu, Jing; Zhang, Peijun; Xiang, Jianhai

    2005-09-01

    A 605 bp section of mitochondrial 16S rRNA gene from Paralichthys olivaceus, Pseudorhombus cinnamomeus, Psetta maxima and Kareius bicoloratus, which represent 3 families of Order Pleuronectiformes was amplified by PCR and sequenced to show the molecular systematics of Pleuronectiformes for comparison with related gene sequences of other 6 flatfish downloaded from GenBank. Phylogenetic analysis based on genetic distance from related gene sequences of 10 flatfish showed that this method was ideal to explore the relationship between species, genera and families. Phylogenetic trees set-up is based on neighbor-joining, maximum parsimony and maximum likelihood methods that accords to the general rule of Pleuronectiformes evolution. But they also resulted in some confusion. Unlike data from morphological characters, P. olivaceus clustered with K. bicoloratus, but P. cinnamomeus did not cluster with P. olivaceus, which is worth further studying.

  4. Analysis of a 5S rRNA gene cloned from Euplotes eurstomus

    SciTech Connect

    Roberson, A.E.; Wolffe, A.; Olins, D.E.

    1987-05-01

    The macronucleus of the hypotrichous ciliated protozoan Euplotes eurystomus lends itself to the study of eukaryotic gene and chromatin structure because native macronuclear DNA exists as linear, gene-sized fragments between 400 and 20,000 bp in length. The macronuclear chromatin, while arranged in a typical nucleosomal structure, is freely soluble in low ionic strength buffers without treatment by nucleases. Thus, specific genes may be enriched as native, intact chromatin molecules. The 5S rRNA gene from Euplotes has been cloned to facilitate investigation of 5S gene-chromatin following characterization of the gene at the DNA level. It has been demonstrated that the gene, while in circular or linear form, can be transcribed in vitro by a Xenopus oocyte nuclear extract. The transcript generated in vitro is 120 nucleotides in length and is synthesized by RNA polymerase III. Anti-Xenopus TFIIIA antibodies recognize a Euplotes macronuclear chromatin-associated protein which is approx. 80 KD in size. It has been established that the sequence of the telomere flanking the 5S gene in Euplotes eurystomus is the same telomeric sequence published for Euplotes aediculatus.

  5. Mechanistic Study on the Nuclear Modifier Gene MSS1 Mutation Suppressing Neomycin Sensitivity of the Mitochondrial 15S rRNA C1477G Mutation in Saccharomyces cerevisiae

    PubMed Central

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations. PMID:24595024

  6. Phylogenetic analysis of the Listeria monocytogenes based on sequencing of 16S rRNA and hlyA genes.

    PubMed

    Soni, Dharmendra Kumar; Dubey, Suresh Kumar

    2014-12-01

    The discrimination between Listeria monocytogenes and Listeria species has been detected. The 16S rRNA and hlyA were PCR amplified with set of oligonucleotide primers with flank 1,500 and 456 bp fragments, respectively. Based on the differences in 16S rRNA and hlyA genes, a total 80 isolates from different environmental, food and clinical samples confirmed it to be L. monocytogenes. The 16S rRNA sequence similarity suggested that the isolates were similar to the previously reported ones from different habitats by others. The phylogenetic interrelationships of the genus Listeria were investigated by sequencing of 16S rRNA and hlyA gene. The 16S rRNA sequence indicated that genus Listeria is comprised of following closely related but distinct lines of descent, one is the L. monocytogenes species group (including L. innocua, L. ivanovii, L. seeligeri and L. welshimeri) and other, the species L. grayi, L. rocourtiae and L. fleischmannii. The phylogenetic tree based on hlyA gene sequence clearly differentiates between the L. monocytogenes, L. ivanovii and L. seeligeri. In the present study, we identified 80 isolates of L. monocytogenes originating from different clinical, food and environmental samples based on 16S rRNA and hlyA gene sequence similarity. PMID:25205124

  7. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    PubMed Central

    Langille, Morgan G. I.; Zaneveld, Jesse; Caporaso, J. Gregory; McDonald, Daniel; Knights, Dan; Reyes, Joshua A.; Clemente, Jose C.; Burkepile, Deron E.; Vega Thurber, Rebecca L.; Knight, Rob; Beiko, Robert G.; Huttenhower, Curtis

    2013-01-01

    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available. PMID:23975157

  8. rRNA gene restriction patterns of Haemophilus influenzae biogroup aegyptius strains associated with Brazilian purpuric fever.

    PubMed Central

    Irino, K; Grimont, F; Casin, I; Grimont, P A

    1988-01-01

    The rRNA gene restriction patterns of 92 isolates of Haemophilus influenzae biogroup aegyptius, associated with conjunctivitis or Brazilian purpuric fever in the State of São Paulo, Brazil, were studied with 16 + 23S rRNA from Escherichia coli as a probe. All strains were classified into 15 patterns. Isolates from Brazilian purpuric fever cases were seen only in patterns 3 (most frequently) and 4 (rarely), whereas isolates from conjunctivitis were found in all 15 patterns. The study demonstrated that rRNA from E. coli can serve as a probe for molecular epidemiology. Images PMID:2459153

  9. Molecular Evolution of Mycoplasma capricolum subsp. capripneumoniae Strains, Based on Polymorphisms in the 16S rRNA Genes

    PubMed Central

    Pettersson, Bertil; Bölske, Göran; Thiaucourt, François; Uhlén, Mathias; Johansson, Karl-Erik

    1998-01-01

    Mycoplasma capricolum subsp. capripneumoniae belongs to the so-called Mycoplasma mycoides cluster and is the causal agent of contagious caprine pleuropneumonia (CCPP). All members of the M. mycoides cluster have two rRNA operons. The sequences of the 16S rRNA genes of both rRNA operons from 20 strains of M. capricolum subsp. capripneumoniae of different geographical origins in Africa and Asia were determined. Nucleotide differences which were present in only one of the two operons (polymorphisms) were detected in 24 positions. The polymorphisms were not randomly distributed in the 16S rRNA genes, and some of them were found in regions of low evolutionary variability. Interestingly, 11 polymorphisms were found in all the M. capricolum subsp. capripneumoniae strains, thus defining a putative ancestor. A sequence length difference between the 16S rRNA genes in a poly(A) region and 12 additional polymorphisms were found in only one or some of the strains. A phylogenetic tree was constructed by comparative analysis of the polymorphisms, and this tree revealed two distinct lines of descent. The nucleotide substitution rate of strains within line II was up to 50% higher than within line I. A tree was also constructed from individual operonal 16S rRNA sequences, and the sequences of the two operons were found to form two distinct clades. The topologies of both clades were strikingly similar, which supports the use of 16S rRNA sequence data from homologous operons for phylogenetic studies. The strain-specific polymorphism patterns of the 16S rRNA genes of M. capricolum subsp. capripneumoniae may be used as epidemiological markers for CCPP. PMID:9573185

  10. PCR primers to amplify 16S rRNA genes from cyanobacteria.

    PubMed Central

    Nübel, U; Garcia-Pichel, F; Muyzer, G

    1997-01-01

    We developed and tested a set of oligonucleotide primers for the specific amplification of 16S rRNA gene segments from cyanobacteria and plastids by PCR. PCR products were recovered from all cultures of cyanobacteria and diatoms that were checked but not from other bacteria and archaea. Gene segments selectively retrieved from cyanobacteria and diatoms in unialgal but nonaxenic cultures and from cyanobionts in lichens could be directly sequenced. In the context of growing sequence databases, this procedure allows rapid and phylogenetically meaningful identification without pure cultures or molecular cloning. We demonstrate the use of this specific PCR in combination with denaturing gradient gel electrophoresis to probe the diversity of oxygenic phototrophic microorganisms in cultures, lichens, and complex microbial communities. PMID:9251225

  11. Organization of rRNA structural genes in the archaebacterium Thermoplasma acidophilum.

    PubMed Central

    Tu, J; Zillig, W

    1982-01-01

    In the archaebacterium Thermoplasma acidophilum, each of the structural genes for 5S, 16S and 23S rRNA occur once per genome. In contrast to those of eubacteria and eukaryotes, they appear unlinked. The distance between the 16S and the 23S rDNA is at least 7.5 Kb, that between 23S and 5S rDNA at least 6 Kb and that between 16S and 5S rDNA at least 1.5 Kb. No linkage between those genes has been found by the analysis of recombinant plasmids carrying Bam HI and Hind III rDNA fragments as by hybridizing those plasmids to fragments of Thermoplasma DNA generated by 6 individual restriction endonucleases, recognizing hexanucleotide sequences. Images PMID:7155894

  12. rRNA Gene Expression of Abundant and Rare Activated-Sludge Microorganisms and Growth Rate Induced Micropollutant Removal.

    PubMed

    Vuono, David C; Regnery, Julia; Li, Dong; Jones, Zackary L; Holloway, Ryan W; Drewes, Jörg E

    2016-06-21

    The role of abundant and rare taxa in modulating the performance of wastewater-treatment systems is a critical component of making better predictions for enhanced functions such as micropollutant biotransformation. In this study, we compared 16S rRNA genes (rDNA) and rRNA gene expression of taxa in an activated-sludge-treatment plant (sequencing batch membrane bioreactor) at two solids retention times (SRTs): 20 and 5 days. These two SRTs were used to influence the rates of micropollutant biotransformation and nutrient removal. Our results show that rare taxa (<1%) have disproportionally high ratios of rRNA to rDNA, an indication of higher protein synthesis, compared to abundant taxa (≥1%) and suggests that rare taxa likely play an unrecognized role in bioreactor performance. There were also significant differences in community-wide rRNA expression signatures at 20-day SRT: anaerobic-oxic-anoxic periods were the primary driver of rRNA similarity. These results indicate differential expression of rRNA at high SRTs, which may further explain why high SRTs promote higher rates of micropollutant biotransformation. An analysis of micropollutant-associated degradation genes via metagenomics and direct measurements of a suite of micropollutants and nutrients further corroborates the loss of enhanced functions at 5-day SRT operation. This work advances our knowledge of the underlying ecosystem properties and dynamics of abundant and rare organisms associated with enhanced functions in engineered systems. PMID:27196630

  13. Discordant 16S and 23S rRNA gene phylogenies for the genus Helicobacter: implications for phylogenetic inference and systematics.

    PubMed

    Dewhirst, Floyd E; Shen, Zeli; Scimeca, Michael S; Stokes, Lauren N; Boumenna, Tahani; Chen, Tsute; Paster, Bruce J; Fox, James G

    2005-09-01

    Analysis of 16S rRNA gene sequences has become the primary method for determining prokaryotic phylogeny. Phylogeny is currently the basis for prokaryotic systematics. Therefore, the validity of 16S rRNA gene-based phylogenetic analyses is of fundamental importance for prokaryotic systematics. Discrepancies between 16S rRNA gene analyses and DNA-DNA hybridization and phenotypic analyses have been noted in the genus Helicobacter. To clarify these discrepancies, we sequenced the 23S rRNA genes for 55 helicobacter strains representing 41 taxa (>2,700 bases per sequence). Phylogenetic-tree construction using neighbor-joining, parsimony, and maximum likelihood methods for 23S rRNA gene sequence data yielded stable trees which were consistent with other phenotypic and genotypic methods. The 16S rRNA gene sequence-derived trees were discordant with the 23S rRNA gene trees and other data. Discrepant 16S rRNA gene sequence data for the helicobacters are consistent with the horizontal transfer of 16S rRNA gene fragments and the creation of mosaic molecules with loss of phylogenetic information. These results suggest that taxonomic decisions must be supported by other phylogenetically informative macromolecules, such as the 23S rRNA gene, when 16S rRNA gene-derived phylogeny is discordant with other credible phenotypic and genotypic methods. This study found Wolinella succinogenes to branch with the unsheathed-flagellum cluster of helicobacters by 23S rRNA gene analyses and whole-genome comparisons. This study also found intervening sequences (IVSs) in the 23S rRNA genes of strains of 12 Helicobacter species. IVSs were found in helices 10, 25, and 45, as well as between helices 31' and 27'. Simultaneous insertion of IVSs at three sites was found in H. mesocricetorum. PMID:16109952

  14. Investigation of histone H4 hyperacetylation dynamics in the 5S rRNA genes family by chromatin immunoprecipitation assay.

    PubMed

    Burlibașa, Liliana; Suciu, Ilinca

    2015-12-01

    Oogenesis is a critical event in the formation of female gamete, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the presence of H4 acetylation of the oocyte and somatic 5S rRNA genes in Triturus cristatus, using chromatin immunoprecipitation assay (ChIP). Our findings suggest that some epigenetic mechanisms such as histone acetylation could be involved in the transcriptional regulation of 5S rRNA gene families. PMID:25315165

  15. Sequencing and characterization of full-length sequence of 18S rRNA gene from the reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Variation within this gene is rare but it has been observed in few metazoan species. For the first time, we h...

  16. Intragenomic heterogeneity in the 16S rRNA genes of Flavobacterium columnare and relevance to genomovar assignment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is the causative agent of columnaris disease which severely impacts channel catfish production in the USA and may be emerging as an important pathogen in the rainbow trout industry. The 16S rRNA gene is a housekeeping gene commonly used for bacterial taxonomy and genotyping...

  17. Characterization of the 18S rRNA Gene for Designing Universal Eukaryote Specific Primers

    PubMed Central

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M.; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies. PMID:24516555

  18. The Unique 16S rRNA Genes of Piezophiles Reflect both Phylogeny and Adaptation▿ †

    PubMed Central

    Lauro, Federico M.; Chastain, Roger A.; Blankenship, Lesley E.; Yayanos, A. Aristides; Bartlett, Douglas H.

    2007-01-01

    In the ocean's most extreme depths, pressures of 70 to 110 megapascals prevent the growth of all but the most hyperpiezophilic (pressure-loving) organisms. The physiological adaptations required for growth under these conditions are considered to be substantial. Efforts to determine specific adaptations permitting growth at extreme pressures have thus far focused on relatively few γ-proteobacteria, in part due to the technical difficulties of obtaining piezophilic bacteria in pure culture. Here, we present the molecular phylogenies of several new piezophiles of widely differing geographic origins. Included are results from an analysis of the first deep-trench bacterial isolates recovered from the southern hemisphere (9.9-km depth) and of the first gram-positive piezophilic strains. These new data allowed both phylogenetic and structural 16S rRNA comparisons among deep-ocean trench piezophiles and closely related strains not adapted to high pressure. Our results suggest that (i) the Circumpolar Deep Water acts as repository for hyperpiezophiles and drives their dissemination to deep trenches in the Pacific Ocean and (ii) the occurrence of elongated helices in the 16S rRNA genes increases with the extent of adaptation to growth at elevated pressure. These helix changes are believed to improve ribosome function under deep-sea conditions. PMID:17158629

  19. rRNA genes from the lower chordate Herdmania momus: structural similarity with higher eukaryotes.

    PubMed Central

    Degnan, B M; Yan, J; Hawkins, C J; Lavin, M F

    1990-01-01

    Ascidians, primitive chordates that have retained features of the likely progenitors to all vertebrates, are a useful model to study the evolutionary relationship of chordates to other animals. We have selected the well characterized ribosomal RNA (rRNA) genes to investigate this relationship, and we describe here the cloning and characterization of an entire ribosomal DNA (rDNA) tandem repeat unit from a lower chordate, the ascidian Herdmania momus. rDNA copy number and considerable sequence differences were observed between two H. momus populations. Comparison of rDNA primary sequence and rRNA secondary structures from H. momus with those from other well characterized organisms, demonstrated that the ascidians are more closely related to other chordates than invertebrates. The rDNA tandem repeat makes up a larger percentage (7%) of the genome of this animal than in other higher eukaryotes. The total length of the spacer and transcribed region in H. momus rDNA is small compared to most higher eukaryotes, being less than 8 kb, and the intergenic spacer region consists of smaller internal repeats. Comparative analysis of rDNA sequences has allowed the construction of secondary structures for the 18S, 5.8S and 26S rRNAs. Images PMID:2263465

  20. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses

    PubMed Central

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Background Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. Methods The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Results Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Conclusion Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3–100%. However, the

  1. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons.

    PubMed

    Olson, Nathan D; Lund, Steven P; Zook, Justin M; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B

    2015-03-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing(®), or Ion Torrent PGM(®). The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  2. Strengths and Limitations of 16S rRNA Gene Amplicon Sequencing in Revealing Temporal Microbial Community Dynamics

    PubMed Central

    Poretsky, Rachel; Rodriguez-R, Luis M.; Luo, Chengwei; Tsementzi, Despina; Konstantinidis, Konstantinos T.

    2014-01-01

    This study explored the short-term planktonic microbial community structure and resilience in Lake Lanier (GA, USA) while simultaneously evaluating the technical aspects of identifying taxa via 16S rRNA gene amplicon and metagenomic sequence data. 16S rRNA gene amplicons generated from four temporally discrete samples were sequenced with 454 GS-FLX-Ti yielding ∼40,000 rRNA gene sequences from each sample and representing ∼300 observed OTUs. Replicates obtained from the same biological sample clustered together but several biases were observed, linked to either the PCR or sequencing-preparation steps. In comparisons with companion whole-community shotgun metagenome datasets, the estimated number of OTUs at each timepoint was concordant, but 1.5 times and ∼10 times as many phyla and genera, respectively, were identified in the metagenomes. Our analyses showed that the 16S rRNA gene captures broad shifts in community diversity over time, but with limited resolution and lower sensitivity compared to metagenomic data. We also identified OTUs that showed marked shifts in abundance over four close timepoints separated by perturbations and tracked these taxa in the metagenome vs. 16S rRNA amplicon data. A strong summer storm had less of an effect on community composition than did seasonal mixing, which revealed a distinct succession of organisms. This study provides insights into freshwater microbial communities and advances the approaches for assessing community diversity and dynamics in situ. PMID:24714158

  3. Identification of Scopulariopsis species by partial 28S rRNA gene sequence analysis.

    PubMed

    Jagielski, Tomasz; Kosim, Kinga; Skóra, Magdalena; Macura, Anna Barbara; Bielecki, Jacek

    2013-01-01

    The genus Scopulariopsis contains over 30 species of mitosporic moulds, which although usually saprophytic may also act as opportunistic pathogens in humans. They have mainly been associated with onychomycosis, and only sporadically reported as a cause of deep tissue infections or systemic disease. Identification of Scopulariopsis species still largely relies on phenotype-based methods. There is a need for a molecular diagnostic approach, that would allow to reliably discriminate between different Scopulariopsis species. The aim of this study was to apply sequence analysis of partial 28S rRNA gene for species identification of Scopulariopsis clinical isolates. Although the method employed did reveal some genetic polymorphism among Scopulariopsis isolates tested, it was not enough for species delineation. For this to be achieved, other genetic loci, within and beyond the rDNA operon, need to be investigated. PMID:24459837

  4. Improved PCR primers to amplify 16S rRNA genes from NC10 bacteria.

    PubMed

    He, Zhanfei; Wang, Jiaqi; Hu, Jiajie; Zhang, Hao; Cai, Chaoyang; Shen, Jiaxian; Xu, Xinhua; Zheng, Ping; Hu, Baolan

    2016-06-01

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction (AOM-NIR) is ecologically significant for mitigating the methane-induced greenhouse effect. The microbes responsible for this reaction, NC10 bacteria, have been widely detected in diverse ecosystems. However, some defects were discovered in the commonly used NC10-specific primers, 202F and qP1F. In the present work, the primers were redesigned and improved to overcome the defects found in the previous primers. A new nested PCR method was developed using the improved primers to amplify 16S ribosomal RNA (rRNA) genes from NC10 bacteria. In the new nested PCR method, the qP1mF/1492R and 1051F/qP2R primer sets were used in the first and second rounds, respectively. The PCR products were sequenced, and more operational taxonomic units (OTUs) of the NC10 phylum were obtained using the new primers compared to the previous primers. The sensitivity of the new nested PCR was tested by the serial dilution method, and the limit of detection was approximately 10(3) copies g(-1) dry sed. for the environmental samples compared to approximately 10(5) copies g(-1) dry sed. by the previous method. Finally, the improved primer, qP1mF, was used in quantitative PCR (qPCR) to determine the abundance of NC10 bacteria, and the results agreed well with the activity of AOM-NIR measured by isotope tracer experiments. The improved primers are able to amplify NC10 16S rRNA genes more efficiently than the previous primers and useful to explore the microbial community of the NC10 phylum in different systems. PMID:27020287

  5. Identification of the Microbiota in Carious Dentin Lesions Using 16S rRNA Gene Sequencing

    PubMed Central

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4–76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. PMID:25083880

  6. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing.

    PubMed

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4-76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. PMID:25083880

  7. Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S rRNA Gene-Based Analysis Protocol

    PubMed Central

    Foroni, Elena; Duranti, Sabrina; Turroni, Francesca; Lugli, Gabriele Andrea; Sanchez, Borja; Martín, Rebeca; Gueimonde, Miguel; van Sinderen, Douwe; Margolles, Abelardo; Ventura, Marco

    2013-01-01

    Assessing the distribution of 16S rRNA gene sequences within a biological sample represents the current state-of-the-art for determination of human gut microbiota composition. Advances in dissecting the microbial biodiversity of this ecosystem have very much been dependent on the development of novel high-throughput DNA sequencing technologies, like the Ion Torrent. However, the precise representation of this bacterial community may be affected by the protocols used for DNA extraction as well as by the PCR primers employed in the amplification reaction. Here, we describe an optimized protocol for 16S rRNA gene-based profiling of the fecal microbiota. PMID:23869230

  8. Karyotypic diversification in Mytilus mussels (Bivalvia: Mytilidae) inferred from chromosomal mapping of rRNA and histone gene clusters

    PubMed Central

    2014-01-01

    Background Mussels of the genus Mytilus present morphologically similar karyotypes that are presumably conserved. The absence of chromosome painting probes in bivalves makes difficult verifying this hypothesis. In this context, we comparatively mapped ribosomal RNA and histone gene families on the chromosomes of Mytilus edulis, M. galloprovincialis, M. trossulus and M. californianus by fluorescent in situ hybridization (FISH). Results Major rRNA, core and linker histone gene clusters mapped to different chromosome pairs in the four taxa. In contrast, minor rRNA gene clusters showed a different behavior. In all Mytilus two of the 5S rDNA clusters mapped to the same chromosome pair and one of them showed overlapping signals with those corresponding to one of the histone H1 gene clusters. The overlapping signals on mitotic chromosomes became a pattern of alternate 5S rRNA and linker histone gene signals on extended chromatin fibers. Additionally, M. trossulus showed minor and major rDNA clusters on the same chromosome pair. Conclusion The results obtained suggest that at least some of the chromosomes bearing these sequences are orthologous and that chromosomal mapping of rRNA and histone gene clusters could be a good tool to help deciphering some of the many unsolved questions in the systematic classification of Mytilidae. PMID:25023072

  9. Prevalence of 16S rRNA methylase genes among β-lactamase-producing Enterobacteriaceae clinical isolates in Saudi Arabia

    PubMed Central

    Al Sheikh, Yazeed A.; Marie, Mohammed Ali M.; John, James; Krishnappa, Lakshmana Gowda; Dabwab, Khaled Homoud M.

    2014-01-01

    Background Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide. Methods To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and β-Lactamase (blaTEM-1, blaSHV-12, blaCTX-M-14) genes, we screened all phenotypic positive β-Lactamase producing enterobacteriaceae by polymerase chain reaction (PCR) targeting above genes. A total of 330 enterobacteriaceae strains were collected during study period out of that 218 isolates were identified phenotypically as β-Lactamase producers, which include 50 (22.9%) Escherichia coli; 92 (42.2%) Klebsiella pneumoniae, 44 (20.2%), Citrobactor freundii and 32 (14.7%) Enterobacter spp. Results Among this 218, only 188 isolates harbored the resistant gene for β-Lactamase production. Major β-Lactamase producing isolates were bla TEM-1 type. 122 (56 %) isolates were found to produce any one of the 16S rRNA methylase genes. A total of 116 isolates co produced β-Lactamase and at least one 16S rRNA methylases gene Co production of armA gene was found in 26 isolates with rmtB and in 4 isolates with rmtC. The rmtA and rmtD genes were not detected in any of the tested isolates. Six isolates were positive for a 16S rRNA methylase gene alone. Conclusion β-Lactamase producing isolates appears to coexist with 16S rRNA methylase predominantly armA and rmtB genes in the same isolate. We conclude the major β-Lactamase and 16S rRNA methylases co-producer was K. pneumoniae followed by E. coli. We suggest further work on evaluating other β-lactamases types and novel antibiotic resistance mechanisms among Enterobacteriaceae. PMID:25005152

  10. Sequence variation within the rRNA gene loci of 12 Drosophila species

    PubMed Central

    Stage, Deborah E.; Eickbush, Thomas H.

    2007-01-01

    Concerted evolution maintains at near identity the hundreds of tandemly arrayed ribosomal RNA (rRNA) genes and their spacers present in any eukaryote. Few comprehensive attempts have been made to directly measure the identity between the rDNA units. We used the original sequencing reads (trace archives) available through the whole-genome shotgun sequencing projects of 12 Drosophila species to locate the sequence variants within the 7.8–8.2 kb transcribed portions of the rDNA units. Three to 18 variants were identified in >3% of the total rDNA units from 11 species. Species where the rDNA units are present on multiple chromosomes exhibited only minor increases in sequence variation. Variants were 10–20 times more abundant in the noncoding compared with the coding regions of the rDNA unit. Within the coding regions, variants were three to eight times more abundant in the expansion compared with the conserved core regions. The distribution of variants was largely consistent with models of concerted evolution in which there is uniform recombination across the transcribed portion of the unit with the frequency of standing variants dependent upon the selection pressure to preserve that sequence. However, the 28S gene was found to contain fewer variants than the 18S gene despite evolving 2.5-fold faster. We postulate that the fewer variants in the 28S gene is due to localized gene conversion or DNA repair triggered by the activity of retrotransposable elements that are specialized for insertion into the 28S genes of these species. PMID:17989256

  11. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences. PMID:25523504

  12. Species identification of oral viridans streptococci by restriction fragment polymorphism analysis of rRNA genes.

    PubMed Central

    Rudney, J D; Larson, C J

    1993-01-01

    Oral streptococci formerly classified as Streptococcus sanguis have been divided into six genetic groups. Methods to identify those species by genotype are needed. This study compared restriction fragment polymorphisms of rRNA genes (ribotypes) for seven S. gordonii, three S. sanguis, four S. oralis, three S. mitis, one S. crista, and seven S. parasanguis strains classified in previous DNA hybridization studies, as well as one clinical isolate. DNA was digested with HindIII, PvuII, HindIII and PvuII combined, EcoRI, BamHI, AatII, AlwNI, and DraII. DNA fragments were hybridized with a digoxigenin-labeled cDNA probe obtained by reverse transcription of Escherichia coli 16S and 23S rRNA. S. oralis, S. mitis, and S. parasanguis all showed an isolated 2,290-bp band in AatII ribotypes that was absent from S. gordonii, S. sanguis, and S. crista. The last three groups showed species-specific bands with AatII and also with PvuII. S. oralis could be distinguished from S. mitis and S. parasanguis in AlwNI and DraII ribotypes. S. mitis and S. parasanguis could not be distinguished, since they shared multiple bands in PvuII, AlwNI, and EcoRI patterns. The clinical isolate in the panel was very similar to S. sanguis by all enzymes used. Our findings suggest that ribotyping may be useful for genotypic identification of oral viridans streptococci. Initial digests of clinical isolates might be made with AatII, followed by PvuII or AlwNI. Isolates then could be identified by comparing ribotype patterns with those of reference strains. This approach could facilitate clinical studies of these newly defined species. Images PMID:7691875

  13. Case of localized recombination in 23S rRNA genes from divergent bradyrhizobium lineages associated with neotropical legumes.

    PubMed

    Parker, M A

    2001-05-01

    Enzyme electrophoresis and rRNA sequencing were used to analyze relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legumes (Clitoria javitensis, Erythrina costaricensis, Rhynchosia pyramidalis, and Desmodium axillare) growing on Barro Colorado Island (BCI), Panama. Bacteria with identical multilocus allele profiles were commonly found in association with two or more legume genera. Among the 16 multilocus genotypes (electrophoretic types [ETs]) detected, six ETs formed a closely related cluster that included isolates from all four legume taxa. Bacteria from two other BCI legumes (Platypodium and Machaerium) sampled in a previous study were also identical to certain ETs in this group. Isolates from different legume genera that had the same ET had identical nucleotide sequences for both a 5' portion of the 23S rRNA and the nearly full-length 16S rRNA genes. These results suggest that Bradyrhizobium genotypes with low host specificity may be prevalent in this tropical forest. Parsimony analysis of 16S rRNA sequence variation indicated that most isolates were related to Bradyrhizobium japonicum USDA 110, although one ET sampled from C. javitensis had a 16S rRNA gene highly similar to that of Bradyrhizobium elkanii USDA 76. However, this isolate displayed a mosaic structure within the 5' 23S rRNA region: one 84-bp segment was identical to that of BCI isolate Pe1-3 (a close relative of B. japonicum USDA 110, based on 16S rRNA data), while an adjacent 288-bp segment matched that of B. elkanii USDA 76. This mosaic structure is one of the first observations suggesting recombination in nature between Bradyrhizobium isolates related to B. japonicum versus B. elkanii. PMID:11319084

  14. The phylogeny of intestinal porcine spirochetes (Serpulina species) based on sequence analysis of the 16S rRNA gene.

    PubMed Central

    Pettersson, B; Fellström, C; Andersson, A; Uhlén, M; Gunnarsson, A; Johansson, K E

    1996-01-01

    Four type or reference strains and twenty-two field strains of intestinal spirochetes isolated from Swedish pig herds were subjected to phylogenetic analysis based on 16S rRNA sequences. Almost complete (>95%) 16S rRNA sequences were obtained by solid-phase DNA sequencing of in vitro-amplified rRNA genes. The genotypic patterns were compared with a previously proposed biochemical classification scheme, comprising beta-hemolysis, indole production, hippurate hydrolysis, and alpha-galactosidase, alpha-glucosidase, and beta-glucosidase activities. Comparison of the small-subunit rRNA sequences showed that the strains of the genus Serpulina were closely related. Phylogenetic trees were constructed, and three clusters were observed. This was also confirmed by signature nucleotide analysis of the serpulinas. The indole-producing strains, including the strains of S. hyodysenteriae and some weakly beta-hemolytic Serpulina strains, formed one cluster. A second cluster comprised weakly beta-hemolytic strains that showed beta-galactosidase activity but lacked indole production and hippurate-hydrolyzing capacity. The second cluster contained two subclusters with similar phenotypic profiles. A third cluster involved strains that possessed a hippurate-hydrolyzing capacity which was distinct from that of the former two clusters, because of 17 unique nucleotide positions of the 16S rRNA gene. Interestingly, the strains of this third cluster were found likely to have a 16S rRNA structure in the V2 region of the molecule different from that of the serpulinas belonging to the other clusters. As a consequence of these findings, we propose that the intestinal spirochetes of this phenotype (i.e., P43/6/78-like strains) should be regarded as a separate Serpulina species. Furthermore, this cluster was found to be by far the most homogeneous one. In conclusion, the biochemical classification of porcine intestinal spirochetes was comparable to that by phylogenetic analysis based on 16S rRNA

  15. Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes

    PubMed Central

    Liu, Kuan-Liang; Porras-Alfaro, Andrea; Eichorst, Stephanie A.

    2012-01-01

    Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project (http://rdp.cme.msu.edu/classifier/classifier.jsp). PMID:22194300

  16. Phylogenetic Analysis of Bacteroidales 16S rRNA Genes Unveils Sequences Specific to Diverse Swine Fecal Sources

    EPA Science Inventory

    Two of the currently available methods to assess swine fecal pollution (Bac1 and PF163) target Bacteroidales 16S rRNA genes. However, these assays have been shown to exhibit poor host-specificity and low detection limits in environmental waters, in part due to the limited number...

  17. Intragenomic heterogeneity in the 16S rRNA genes of Flavobacterium columnare and relevance to genomovar assignment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic variability in 16S rRNA gene sequences has been demonstrated among isolates of Flavobacterium columnare and a restriction fragment length polymorphism (RFLP) assay is available for genetic typing this important fish pathogen. Interpretation of restriction patterns can be difficult due to th...

  18. Distinct Ectomycorrhizospheres Share Similar Bacterial Communities as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes

    PubMed Central

    Oger, P.; Morin, E.; Frey-Klett, P.

    2012-01-01

    Analysis of the 16S rRNA gene sequences generated from Xerocomus pruinatus and Scleroderma citrinum ectomycorrhizospheres revealed that similar bacterial communities inhabited the two ectomycorrhizospheres in terms of phyla and genera, with an enrichment of the Burkholderia genus. Compared to the bulk soil habitat, ectomycorrhizospheres hosted significantly more Alpha-, Beta-, and Gammaproteobacteria. PMID:22307291

  19. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    EPA Science Inventory

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  20. Ureaplasma urealyticum continuous ambulatory peritoneal dialysis-associated peritonitis diagnosed by 16S rRNA gene PCR.

    PubMed

    Yager, Jessica E; Ford, Emily S; Boas, Zachary P; Haseley, Leah A; Cookson, Brad T; Sengupta, Dhruba J; Fang, Ferric C; Gottlieb, Geoffrey S

    2010-11-01

    In some patients with peritonitis complicating continuous ambulatory peritoneal dialysis (CAPD), a causative organism is never identified. We report a case of Ureaplasma urealyticum CAPD-associated peritonitis diagnosed by 16S rRNA gene PCR. Ureaplasma may be an underrecognized cause of peritonitis because it cannot be recovered using routine culture methods. PMID:20739488

  1. A Neurospora crassa ribosomal protein gene, homologous to yeast CRY1, contains sequences potentially coordinating its transcription with rRNA genes.

    PubMed Central

    Tyler, B M; Harrison, K

    1990-01-01

    We have isolated and sequenced a Neurospora crassa ribosomal protein gene (designated crp-2) strongly homologous to the rp59 gene (CRY1) of yeast and the S14 ribosomal protein gene of mammals. The inferred sequence of the crp-2 protein is more homologous (83%) to the mammalian S14 sequence than to the yeast rp59 sequence (69%). The gene has three intervening sequences (IVSs) two of which are offset 7 bp from the position of IVSs in the mammalian genes. None correspond to the position of the IVS in the yeast gene. Crp-2 was mapped by RFLP analysis to the right arm of linkage group III. The 5' region of the gene contains three copies of a sequence, the Ribo box, previously shown to be required for transcription of both 5S and 40S rRNA genes. We speculate that the Ribo box may coordinate ribosomal protein and rRNA gene transcription. Images PMID:1977135

  2. Intragenomic heterogeneity of the 16S rRNA gene in strain UFO1 caused by a 100-bp insertion in helix 6

    SciTech Connect

    Allison E. Ray; Stephanie A. Connon; Peter P. Sheridan; Jeremy Gilbreath; Malcolm S. Shields; Deborah T. Newby; Yoshiko Fujita; Timothy S. Magnuson

    2010-06-01

    The determination of variation in 16S rRNA gene sequences is perhaps the most common method for assessing microbial community diversity. However, the occurrence of multiple copies of 16S rRNA genes within some organisms can bias estimates of microbial diversity. During phylogenetic characterization of a metal-transforming, fermentative bacterium (strain UFO1) isolated from the Field Research Center (FRC) in Oak Ridge, TN, we detected an apparent 16S rRNA pseudogene. The putative 16S rRNA pseudogene was first detected in clone libraries constructed with 16S rRNA genes amplified from UFO1 genomic DNA. Sequencing revealed two distinct 16S rRNA genes, with one differing from the other by a 100 bp insert near the 5’ end. Ribosomal RNA was extracted from strain UFO1 and analyzed by RT-qPCR with insert and non-insert specific primers; however, only the non-insert 16S rRNA sequence was expressed. Reverse-transcribed rRNA from strain UFO1 was also used to construct a cDNA library. Of 190 clones screened by PCR, none contained the 16S rRNA gene with the 100 bp insert. Examination of GenBank 16S rRNA gene sequences revealed that the same insert sequence was present in other clones, including those from an environmental library constructed from FRC enrichments. These findings demonstrate the existence of widely disparate copies of the 16S rRNA gene in the same species and a putative 16S rRNA pseudogene, which may confound 16S rRNA-based methods for assessments of microbial diversity in environmental samples.

  3. Anaplasma phagocytophilum in Questing Ixodes ricinus Ticks: Comparison of Prevalences and Partial 16S rRNA Gene Variants in Urban, Pasture, and Natural Habitats

    PubMed Central

    Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia

    2013-01-01

    Urban, natural, and pasture areas were investigated for prevalences and 16S rRNA gene variants of Anaplasma phagocytophilum in questing Ixodes ricinus ticks. The prevalences differed significantly between habitat types, and year-to-year variations in prevalence and habitat-dependent occurrence of 16S rRNA gene variants were detected. PMID:23263964

  4. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  5. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  6. Development of a Multiplex PCR Method for Detection of the Genes Encoding 16S rRNA, Coagulase, Methicillin Resistance and Enterotoxins in Staphylococcus aureus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multiplex PCR method was developed for simultaneous detection of the genes encoding methicillin resistance (mecA), staphylococcal enterotoxins A, B and C (sea, seb and sec), coagulase (coa) and 16S rRNA. The primers for amplification of the 16S rRNA gene were specific for Staphylococcus spp., and ...

  7. [Strategy of selecting 16S rRNA hypervariable regions for metagenome-phylogenetic marker genes based analysis].

    PubMed

    Zhang, Jun-yi; Zhu, Bing-chuan; Xu, Chao; Ding, Xiao; Li, Jun-feng; Zhang, Xue-gong; Lu, Zu-hong

    2015-11-01

    The advent of next generation sequencing technology enables parallel analysis of the whole microbial community from multiple samples. Particularly, sequencing 16S rRNA hypervariable tags has become the most efficient and cost-effective method for assessing microbial diversity. Due to its short read length of the 2nd-generation sequencing methods that cannot cover the full 16S rRNA genomic region, specific hypervariable regions or V-regions must be selected to act as the proxy. Over the past decade, selection of V-regions has not been consistent in assessing microbial diversity. Here we evaluated the current strategies of selecting 16S rRNA hypervariable regions for surveying microbial diversity. The environmental condition was considered as one of the important factors for selection of 16S rRNA hypervariable regions. We suggested that a pilot study to test different V-regions is required in bacterial diversity studies based on 16S rRNA genes. PMID:26915214

  8. Ribosomal RNA genes of Trypanosoma brucei. Cloning of a rRNA gene containing a mobile element.

    PubMed Central

    Hasan, G; Turner, M J; Cordingley, J S

    1982-01-01

    An ordered restriction map of the ribosomal RNA genes of Trypanosoma brucei brucei is presented. Bgl II fragments of T.b.brucei genomic DNA were cloned into pAT 153, and the clones containing rDNA identified. Restriction maps were established and the sense strands identified. One clone was shown by heteroduplex mapping to contain a 1.1 kb inserted sequence which was demonstrated to be widely distributed throughout the genomes of members of the subgenus Trypanozoon. However, in two other subgenera of Trypanosoma, Nannomonas and Schizotrypanum, the sequence is far less abundant. Analysis of the genomic DNA from two serodemes of T.b.brucei showed that the sequence was present in the rRNA of only one of them, implying that the sequence is a mobile element and that its appearance in rDNA is a comparitively recent occurrence. Images PMID:6294613

  9. Molecular identification of adulteration in mutton based on mitochondrial 16S rRNA gene.

    PubMed

    Xu, Jia; Zhao, Wei; Zhu, Mengru; Wen, Yuanju; Xie, Tao; He, Xiaoqian; Zhang, Yongfeng; Cao, Suizhong; Niu, Lili; Zhang, Hongping; Zhong, Tao

    2016-01-01

    The aim of this study is to set up a protocol for identification of the adulteration in mutton based on mitochondrial 16S rRNA gene. The multiplex polymerase chain reaction (multi-PCR) assay was carried out to trace the impure DNA in mutton. A universal primer pair yielded an approximate 610 bp fragment in mutton, pork, duck, chicken, horse and cat meats. The amplicons of multi-PCR assay represented the species-specific products, which could be discriminated by the size ranging from 106 bp to 532 bp. Subsequently, the authentication of each fragment was also confirmed by sequencing. Random analyses of adulterants with various meats yielded the identical results to their components, showing the suitability of the multi-PCR assay for tracing of adulterant meats with high-accuracy and precision. This assay was sensitive to detect the species-specific DNA in different proportional mixtures of mutton and duck/pork (9.1%-90.9%). In conclusion, this multi-PCR assay successfully discriminated the double-, triple-, quadruple-, and quintuple-mixtures containing variant counterparts. This method will be particularly useful in the detection of mutton adulteration in processed foods further. PMID:24739005

  10. Phylogenetic Relationship of Phosphate Solubilizing Bacteria according to 16S rRNA Genes

    PubMed Central

    Javadi Nobandegani, Mohammad Bagher; Saud, Halimi Mohd; Yun, Wong Mui

    2015-01-01

    Phosphate solubilizing bacteria (PSB) can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang) oil palm field (University Putra Malaysia). Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer) in an oil palm field. PMID:25632387

  11. Two distinct promoter elements in the human rRNA gene identified by linker scanning mutagenesis.

    PubMed Central

    Haltiner, M M; Smale, S T; Tjian, R

    1986-01-01

    A cell-free RNA polymerase I transcription system was used to evaluate the transcription efficiency of 21 linker scanning mutations that span the human rRNA gene promoter. Our analysis revealed the presence of two major control elements, designated the core and upstream elements, that affect the level of transcription initiation. The core element extends from -45 to +18 relative to the RNA start site, and transcription is severely affected (up to 100-fold) by linker scanning mutations in this region. Linker scanning and deletion mutations in the upstream element, located between nucleotides -156 and -107, cause a three- to fivefold reduction in transcription. Under certain reaction conditions, such as the presence of a high ratio of protein to template or supplementation of the reaction with partially purified protein fractions, sequences upstream of the core element can have an even greater effect (20- to 50-fold) on RNA polymerase I transcription. Primer extension analysis showed that RNA synthesized from all of these mutant templates is initiated at the correct in vivo start site. To examine the functional relationship between the core and the upstream region, mutant promoters were constructed that alter the orientation, distance, or multiplicity of these control elements relative to each other. The upstream control element appears to function in only one orientation, and its position relative to the core is constrained within a fairly narrow region. Moreover, multiple core elements in close proximity to each other have an inhibitory effect on transcription. Images PMID:3785147

  12. Phylogenetic relationship of phosphate solubilizing bacteria according to 16S rRNA genes.

    PubMed

    Javadi Nobandegani, Mohammad Bagher; Saud, Halimi Mohd; Yun, Wong Mui

    2015-01-01

    Phosphate solubilizing bacteria (PSB) can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang) oil palm field (University Putra Malaysia). Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer) in an oil palm field. PMID:25632387

  13. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes.

    PubMed

    Jeon, Yoon-Seong; Lee, Kihyun; Park, Sang-Cheol; Kim, Bong-Soo; Cho, Yong-Joon; Ha, Sung-Min; Chun, Jongsik

    2014-02-01

    EzEditor is a Java-based molecular sequence editor allowing manipulation of both DNA and protein sequence alignments for phylogenetic analysis. It has multiple features optimized to connect initial computer-generated multiple alignment and subsequent phylogenetic analysis by providing manual editing with reference to biological information specific to the genes under consideration. It provides various functionalities for editing rRNA alignments using secondary structure information. In addition, it supports simultaneous editing of both DNA sequences and their translated protein sequences for protein-coding genes. EzEditor is, to our knowledge, the first sequence editing software designed for both rRNA- and protein-coding genes with the visualization of biologically relevant information and should be useful in molecular phylogenetic studies. EzEditor is based on Java, can be run on all major computer operating systems and is freely available from http://sw.ezbiocloud.net/ezeditor/. PMID:24425826

  14. Phylogenetic relationships of Indian caecilians (Amphibia: Gymnophiona) inferred from mitochondrial rRNA gene sequences.

    PubMed

    Wilkinson, Mark; A Sheps, Jonathan; Oommen, Oommen V; Cohen, Bernard L

    2002-06-01

    India has a diverse caecilian fauna, including representatives of three of the six currently recognized families, the Caeciliidae, Ichthyophiidae, the endemic Uraeotyphlidae, but previous molecular phylogenetic studies of caecilians have not included sequences for any Indian caecilians. Partial 12S and 16S mitochondrial gene sequences were obtained for a single representative of each of the caecilian families found in India and aligned against previously reported sequences for 13 caecilian species. The resulting alignment (16 taxa, 1200 sites, of which 288 cannot be aligned unambiguously) was analyzed using parsimony, maximum-likelihood, and distance methods. As judged by bootstrap proportions, decay indices, and leaf stabilities, well-supported relationships of the Indian caecilians are recovered from the alignment. The data (1) corroborate the hypothesis, based on morphology, that the Uraeotyphlidae and Ichthyophiidae are sister taxa, (2) recover a monophyletic Ichthyophiidae, including Indian and South East Asian representatives, and (3) place the Indian caeciliid Gegeneophis ramaswamii as the sister group of the caeciliid caecilians of the Seychelles. Rough estimates of divergence times suggest an origin of the Uraeotyphlidae and Ichthyophiidae while India was isolated from Laurasia and Africa and are most consistent with an Indian origin of these families and subsequent dispersal of ichthyophiids into South East Asia. PMID:12099794

  15. The Identification of Discriminating Patterns from 16S rRNA Gene to Generate Signature for Bacillus Genus.

    PubMed

    More, Ravi P; Purohit, Hemant J

    2016-08-01

    The 16S ribosomal RNA (16S rRNA) gene has been widely used for the taxonomic classification of bacteria. A molecular signature is a set of nucleotide patterns, which constitute a regular expression that is specific to each particular taxon. Our main goal was to identify discriminating nucleotide patterns in 16S rRNA gene and then to generate signatures for taxonomic classification. To demonstrate our approach, we used the phylum Firmicutes as a model using representative taxa Bacilli (class), Bacillales (order), Bacillaceae (family), and Bacillus (genus), according to their dominance at each hierarchical taxonomic level. We applied combined composite vector and multiple sequence alignment approaches to generate gene-specific signatures. Further, we mapped all the patterns into the different hypervariable regions of 16S rRNA gene and confirmed the most appropriate distinguishing region as V3-V4 for targeted taxa. We also examined the evolution in discriminating patterns of signatures across taxonomic levels. We assessed the comparative classification accuracy of signatures with other methods (i.e., RDP Classifier, KNN, and SINA). Results revealed that the signatures for taxa Bacilli, Bacillales, Bacillaceae, and Bacillus could correctly classify isolate sequences with sensitivity of 0.99, 0.97, 0.94, and 0.89, respectively, and specificity close to 0.99. We developed signature-based software DNA Barcode Identification (DNA BarID) for taxonomic classification that is available at website http://www.neeri.res.in/DNA_BarID.htm . This pattern-based study provides a deeper understanding of taxon-specific discriminating patterns in 16S rRNA gene with respect to taxonomic classification. PMID:27104769

  16. Plastid 16S rRNA Gene Diversity among Eukaryotic Picophytoplankton Sorted by Flow Cytometry from the South Pacific Ocean

    PubMed Central

    Shi, Xiao Li; Lepère, Cécile; Scanlan, David J.; Vaulot, Daniel

    2011-01-01

    The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX), which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image. PMID:21552558

  17. Absolute Quantification of Enterococcal 23S rRNA Gene Using Digital PCR.

    PubMed

    Wang, Dan; Yamahara, Kevan M; Cao, Yiping; Boehm, Alexandria B

    2016-04-01

    We evaluated the ability of chip-based digital PCR (dPCR) to quantify enterococci, the fecal indicator recommended by the United States Environmental Protection Agency (USEPA) for water-quality monitoring. dPCR uses Poisson statistics to estimate the number of DNA fragments in a sample with a specific sequence. Underestimation may occur when a gene is redundantly encoded in the genome and multiple copies of that gene are on one DNA fragment. When genomic DNA (gDNA) was extracted using two commercial DNA extraction kits, we confirmed that dPCR could discern individual copies of the redundant 23s rRNA gene in the enterococcal genome. dPCR quantification was accurate when compared to the nominal concentration inferred from fluorometer measurements (linear regression slope = 0.98, intercept = 0.03, R(2) = 0.99, and p value <0.0001). dPCR quantification was also consistent with quantitative PCR (qPCR) measurements as well as cell counts for BioBall reference standard and 24 environmental water samples. qPCR and dPCR quantification of enterococci in the 24 environmental samples were significantly correlated (linear regression slope =1.08, R(2) of 0.96, and p value <0.0001); the group mean of the qPCR measurements was 0.19 log units higher than that of the dPCR measurements. At environmentally relevant concentrations, dPCR quantification was more precise (i.e., had narrower 95% confidence intervals than qPCR quantification). We observed that humic acid caused a similar level of inhibition in both dPCR and qPCR, but calcium inhibited dPCR to a lesser degree than qPCR. Inhibition of dPCR was partially relieved when the number of thermal cycles was increased. Based on these results, we conclude that dPCR is a viable option for enumerating enterococci in ambient water. PMID:26903207

  18. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis

    PubMed Central

    Wong, Adam C-N; Chaston, John M; Douglas, Angela E

    2013-01-01

    The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans. PMID:23719154

  19. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis.

    PubMed

    Wong, Adam C-N; Chaston, John M; Douglas, Angela E

    2013-10-01

    The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans. PMID:23719154

  20. 16S rRNA Gene Survey of Microbial Communities in Winogradsky Columns

    PubMed Central

    Rundell, Ethan A.; Banta, Lois M.; Ward, Doyle V.; Watts, Corey D.; Birren, Bruce; Esteban, David J.

    2014-01-01

    A Winogradsky column is a clear glass or plastic column filled with enriched sediment. Over time, microbial communities in the sediment grow in a stratified ecosystem with an oxic top layer and anoxic sub-surface layers. Winogradsky columns have been used extensively to demonstrate microbial nutrient cycling and metabolic diversity in undergraduate microbiology labs. In this study, we used high-throughput 16s rRNA gene sequencing to investigate the microbial diversity of Winogradsky columns. Specifically, we tested the impact of sediment source, supplemental cellulose source, and depth within the column, on microbial community structure. We found that the Winogradsky columns were highly diverse communities but are dominated by three phyla: Proteobacteria, Bacteroidetes, and Firmicutes. The community is structured by a founding population dependent on the source of sediment used to prepare the columns and is differentiated by depth within the column. Numerous biomarkers were identified distinguishing sample depth, including Cyanobacteria, Alphaproteobacteria, and Betaproteobacteria as biomarkers of the soil-water interface, and Clostridia as a biomarker of the deepest depth. Supplemental cellulose source impacted community structure but less strongly than depth and sediment source. In columns dominated by Firmicutes, the family Peptococcaceae was the most abundant sulfate reducer, while in columns abundant in Proteobacteria, several Deltaproteobacteria families, including Desulfobacteraceae, were found, showing that different taxonomic groups carry out sulfur cycling in different columns. This study brings this historical method for enrichment culture of chemolithotrophs and other soil bacteria into the modern era of microbiology and demonstrates the potential of the Winogradsky column as a model system for investigating the effect of environmental variables on soil microbial communities. PMID:25101630

  1. Molecular phylogenetic analysis among bryophytes and tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene.

    PubMed

    Nishiyama, T; Kato, M

    1999-08-01

    The basal relationship of bryophytes and tracheophytes is problematic in land plant phylogeny. In addition to cladistic analyses of morphological data, molecular phylogenetic analyses of the nuclear small-subunit ribosomal RNA gene and the plastic gene rbcL have been performed, but no confident conclusions have been reached. Using the maximum-likelihood (ML) method, we analyzed 4,563 bp of aligned sequences from plastid protein-coding genes and 1,680 bp from the nuclear 18S rRNA gene. In the ML tree of deduced amino acid sequences of the plastid genes, hornworts were basal among the land plants, while mosses and liverworts each formed a clade and were sister to each other. Total-evidence evaluation of rRNA data and plastid protein-coding genes by TOTALML had an almost identical result. PMID:10474899

  2. [Phylogeny of protostome moulting animals (Ecdysozoa) inferred from 18 and 28S rRNA gene sequences].

    PubMed

    Petrov, N B; Vladychenskaia, N S

    2005-01-01

    Reliability of reconstruction of phylogenetic relationships within a group of protostome moulting animals was evaluated by means of comparison of 18 and 28S rRNA gene sequences sets both taken separately and combined. Reliability of reconstructions was evaluated by values of the bootstrap support of major phylogenetic tree nodes and by degree of congruence of phylogenetic trees inferred by various methods. By both criteria, phylogenetic trees reconstructed from the combined 18 and 28S rRNA gene sequences were better than those inferred from 18 and 28S sequences taken separately. Results obtained are consistent with phylogenetic hypothesis separating protostome animals into two major clades, moulting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, Crustacea + Hexapoda) and unmoulting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, Sipuncula). Clade Cephalorhyncha does not include nematomorphs (Nematomorpha). Conclusion was taken that it is necessary to use combined 18 and 28S data in phylogenetic studies. PMID:16083008

  3. Analysis of rRNA Gene Methylation in Arabidopsis thaliana by CHEF-Conventional 2D Gel Electrophoresis.

    PubMed

    Mohannath, Gireesha; Pikaard, Craig S

    2016-01-01

    Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb-9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes, and sub-chromosomal DNA fragments, etc. Here, we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes. PMID:27576719

  4. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    PubMed

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds. PMID:26189016

  5. Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes.

    PubMed Central

    Krueger, D M; Cavanaugh, C M

    1997-01-01

    The bacterial endosymbionts of two species of the bivalve genus Solemya from the Pacific Ocean, Solemya terraeregina and Solemya pusilla, were characterized. Prokaryotic cells resembling gram-negative bacteria were observed in the gills of both host species by transmission electron microscopy. The ultrastructure of the symbiosis in both host species is remarkably similar to that of all previously described Solemya spp. By using sequence data from 16S rRNA, the identity and evolutionary origins of the S. terraeregina and S. pusilla symbionts were also determined. Direct sequencing of PCR-amplified products from host gill DNA with primers specific for Bacteria 16S rRNA genes gave a single, unambiguous sequence for each of the two symbiont species. In situ hybridization with symbiont-specific oligonucleotide probes confirmed that these gene sequences belong to the bacteria residing in the hosts gills. Phylogenetic analyses of the 16S rRNA gene sequences by both distance and parsimony methods identify the S. terraeregina and S. pusilla symbionts as members of the gamma subdivision of the Proteobacteria. In contrast to symbionts of other bivalve families, which appear to be monophyletic, the S. terraeregina and S. pusilla symbionts share a more recent common ancestry with bacteria associating endosymbiotically with bivalves of the superfamily Lucinacea than with other Solemya symbionts (host species S. velum, S. occidentalis, and S. reidi). Overall, the 16S rRNA gene sequence data suggest that the symbionts of Solemya hosts represent at least two distinct bacterial lineages within the gamma-Proteobacteria. While it is increasingly clear that all extant species of Solemya live in symbiosis with specific bacteria, the associations appear to have multiple evolutionary origins. PMID:8979342

  6. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies

    PubMed Central

    2010-01-01

    Background Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. Results In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s) occurring in 39.6% of the analyzed individuals (both male and female) were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH) was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs) enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. Conclusion Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement. PMID:20051104

  7. Quantifying Microbial Diversity: Morphotypes, 16S rRNA Genes, and Carotenoids of Oxygenic Phototrophs in Microbial Mats

    PubMed Central

    Nübel, Ulrich; Garcia-Pichel, Ferran; Kühl, Michael; Muyzer, Gerard

    1999-01-01

    We quantified the diversity of oxygenic phototrophic microorganisms present in eight hypersaline microbial mats on the basis of three cultivation-independent approaches. Morphological diversity was studied by microscopy. The diversity of carotenoids was examined by extraction from mat samples and high-pressure liquid chromatography analysis. The diversity of 16S rRNA genes from oxygenic phototrophic microorganisms was investigated by extraction of total DNA from mat samples, amplification of 16S rRNA gene segments from cyanobacteria and plastids of eukaryotic algae by phylum-specific PCR, and sequence-dependent separation of amplification products by denaturing-gradient gel electrophoresis. A numerical approach was introduced to correct for crowding the results of chromatographic and electrophoretic analyses. Diversity estimates typically varied up to twofold among mats. The congruence of richness estimates and Shannon-Weaver indices based on numbers and proportional abundances of unique morphotypes, 16S rRNA genes, and carotenoids unveiled the underlying diversity of oxygenic phototrophic microorganisms in the eight mat communities studied. PMID:9925563

  8. Evolution of rRNA gene clusters and telomeric repeats during explosive genome repatterning in TATERILLUS X (Rodentia, Gerbillinae).

    PubMed

    Dobigny, G; Ozouf-Costaz, C; Bonillo, C; Volobouev, V

    2003-01-01

    A survey of 28S and 5S rRNA gene clusters, and telomeric repeats was performed using single and double FISH in the Taterillus genus (Rodentia, Muridae, Gerbillinae). Taterillus was previously demonstrated to have undergone a very recent and extensive chromosomal evolution. Our FISH results demonstrate that rRNA genes can vary in location and number irrespective of the phylogenetic relationships. Telomeric repeats were detected in pericentromeric and interstitial regions of several chromosomes, thus providing nonambiguous evolutionary footprints of Robertsonian and tandem translocation events. These footprints are discussed in reference to the molecular process of these karyotypical changes. Also, examples of colocation of rDNA clusters and telomeric repeats lend support to their possible involvement in nucleolus formation. Finally, the presence of rRNA genes, and the extensive amplification of telomeric repeats at specific loci within a double X-autosome translocated element which were not observed on the homologous Y1 and Y2, served as basis for an epigenomic hypothesis on X-autosome translocation viability in mammals. PMID:15004471

  9. Loop-mediated isothermal amplification assay for 16S rRNA methylase genes in Gram-negative bacteria.

    PubMed

    Nagasawa, Mitsuaki; Kaku, Mitsuo; Kamachi, Kazunari; Shibayama, Keigo; Arakawa, Yoshichika; Yamaguchi, Keizo; Ishii, Yoshikazu

    2014-10-01

    Using the loop-mediated isothermal amplification (LAMP) method, we developed a rapid assay for detection of 16S rRNA methylase genes (rmtA, rmtB, and armA), and investigated 16S rRNA methylase-producing strains among clinical isolates. Primer Explorer V3 software was used to design the LAMP primers. LAMP primers were prepared for each gene, including two outer primers (F3 and B3), two inner primers (FIP and BIP), and two loop primers (LF and LB). Detection was performed with the Loopamp DNA amplification kit. For all three genes (rmtA, rmtB, and armA), 10(2) copies/tube could be detected with a reaction time of 60 min. When nine bacterial species (65 strains saved in National Institute of Infectious Diseases) were tested, which had been confirmed to possess rmtA, rmtB, or armA by PCR and DNA sequencing, the genes were detected correctly in these bacteria with no false negative or false positive results. Among 8447 clinical isolates isolated at 36 medical institutions, the LAMP method was conducted for 191 strains that were resistant to aminoglycosides based on the results of antimicrobial susceptibility tests. Eight strains were found to produce 16S rRNA methylase (0.09%), with rmtB being identified in three strains (0.06%) of 4929 isolates of Enterobacteriaceae, rmtA in three strains (0.10%) of 3284 isolates of Pseudomonas aeruginosa, and armA in two strains (0.85%) of 234 isolates of Acinetobacter spp. At present, the incidence of strains possessing 16S rRNA methylase genes is very low in Japan. However, when Gram-negative bacteria showing high resistance to aminoglycosides are isolated by clinical laboratories, it seems very important to investigate the status of 16S rRNA methylase gene-harboring bacilli and monitor their trends among Japanese clinical settings. PMID:25179393

  10. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria

    SciTech Connect

    Field, K.G.; Gordon, D.; Wright, T.

    1997-01-01

    Small-subunit (SSU) ribosomal DNA (rDNA) gene clusters are phylogenetically related sets of SSU rRNA genes, commonly encountered in genes amplified from natural populations. Genetic variability in gene clusters could result form artifacts (polymerase error or PCR chimera formation), microevolution (variation among rrn copies within strains), or macroevolution (genetic divergence correlated with long-term evolutionary divergence). To better understand gene clusters, this study assessed genetic diversity and distribution of a single environmental SSU rDNA gene cluster, the SAR11 cluster. SAR11 cluster genes, from an uncultured group of the {alpha} subclass of the class Proteobacteria, have been recovered from coastal and midoceanic waters of the North Atlantic and Pacific. We cloned and bidirectionally sequenced 23 new SAR11 cluster 16S rRNA genes, from 80 and 250 m im the Sargasso Sea and from surface coastal waters of the Atlantic and Pacific, and analyzed them with previously published sequences. Two SAR11 genes were obviously PCR chimeras, but the biological (nonchimeric) origins of most subgroups within the cluster were confirmed by independent recovery from separate gene libraries. Using group-specific oligonucleotide probes, we analyzed depth profiles of nucleic acids, targeting both amplified rDNAs and bulk RNAs. Two subgroups within the SAR11 cluster showed different highly depth-specific distributions. We conclude that some of the genetic diversity within the SAR11 gene cluster represents macroevolutionary divergence correlated with niche specialization. Furthermore, we demonstrate the utility for marine microbial ecology of oligonucleotide probes based on gene sequences amplified from natural populations and show that a detailed knowledge of sequence variability may be needed to effectively design these probes. 48 refs., 7 figs., 3 tabs.

  11. Direct PCR amplification of the 16S rRNA gene from single microbial cells isolated from an Antarctic iceberg using laser microdissection microscopy

    NASA Astrophysics Data System (ADS)

    Yanagihara, Katsuhiko; Niki, Hironori; Baba, Tomoya

    2011-09-01

    Here, we describe a technique that allows the genetic linage analysis of 16S rRNA genes in bacteria observed under a microscope. The technique includes the isolation of microbial cells using a laser microdissection microscope, lysis of the cells, and amplification of the 16S rRNA genes in the isolated cells without interference by bacterial DNA contamination from the experimental environment or reagents. Using this technique, we successfully determined 15 16S rRNA gene sequences in cells isolated from an Antarctic iceberg. These sequences showed 94%-100% identity to their closest strains, which included bacteria that occur in aqueous, marine, and soil environments.

  12. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences.

    PubMed

    Hahn, Martin W; Jezberová, Jitka; Koll, Ulrike; Saueressig-Beck, Tanja; Schmidt, Johanna

    2016-07-01

    Transplantation experiments and genome comparisons were used to determine if lineages of planktonic Polynucleobacter almost indistinguishable by their 16S ribosomal RNA (rRNA) sequences differ distinctively in their ecophysiological and genomic traits. The results of three transplantation experiments differing in complexity of biotic interactions revealed complete ecological isolation between some of the lineages. This pattern fits well to the previously detected environmental distribution of lineages along chemical gradients, as well as to differences in gene content putatively providing adaptation to chemically distinct habitats. Patterns of distribution of iron transporter genes across 209 Polynucleobacter strains obtained from freshwater systems and representing a broad pH spectrum further emphasize differences in habitat-specific adaptations. Genome comparisons of six strains sharing ⩾99% 16S rRNA similarities suggested that each strain represents a distinct species. Comparison of sequence diversity among genomes with sequence diversity among 240 cultivated Polynucleobacter strains indicated a large cryptic species complex not resolvable by 16S rRNA sequences. The revealed ecological isolation and cryptic diversity in Polynucleobacter bacteria is crucial in the interpretation of diversity studies on freshwater bacterioplankton based on ribosomal sequences. PMID:26943621

  13. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences

    PubMed Central

    Hahn, Martin W; Jezberová, Jitka; Koll, Ulrike; Saueressig-Beck, Tanja; Schmidt, Johanna

    2016-01-01

    Transplantation experiments and genome comparisons were used to determine if lineages of planktonic Polynucleobacter almost indistinguishable by their 16S ribosomal RNA (rRNA) sequences differ distinctively in their ecophysiological and genomic traits. The results of three transplantation experiments differing in complexity of biotic interactions revealed complete ecological isolation between some of the lineages. This pattern fits well to the previously detected environmental distribution of lineages along chemical gradients, as well as to differences in gene content putatively providing adaptation to chemically distinct habitats. Patterns of distribution of iron transporter genes across 209 Polynucleobacter strains obtained from freshwater systems and representing a broad pH spectrum further emphasize differences in habitat-specific adaptations. Genome comparisons of six strains sharing ⩾99% 16S rRNA similarities suggested that each strain represents a distinct species. Comparison of sequence diversity among genomes with sequence diversity among 240 cultivated Polynucleobacter strains indicated a large cryptic species complex not resolvable by 16S rRNA sequences. The revealed ecological isolation and cryptic diversity in Polynucleobacter bacteria is crucial in the interpretation of diversity studies on freshwater bacterioplankton based on ribosomal sequences. PMID:26943621

  14. [Antimicrobial susceptibilities of clinical Nocardia isolates identified by 16S rRNA gene sequence analysis].

    PubMed

    Uner, Mahmut Celalettin; Hasçelik, Gülşen; Müştak, Hamit Kaan

    2016-01-01

    Nocardia species are ubiquitous in the environment and responsible for various human infections such as pulmonary, cutaneous, central nervous system and disseminated nocardiosis. Since the clinical pictures and antimicrobial susceptibilities of Nocardia species exhibit variability, susceptibility testing is recommended for every Nocardia isolates. The aims of this study was to determine the antimicrobial susceptibilities of Nocardia clinical isolates and to compare the results of broth microdilution and disc diffusion susceptibility tests. A total of 45 clinical Nocardia isolates (isolated from 17 respiratory tract, 8 brain abscess, 7 pus, 3 skin, 3 conjunctiva, 2 blood, 2 tissue, 2 pleural fluid and 1 cerebrospinal fluid samples) were identified by using conventional methods and 16S rRNA gene sequence analysis. Susceptibility testing was performed for amikacin, ciprofloxacin, ceftriaxone, linezolid and trimethoprim-sulfamethoxazole (TMP-SMX) by broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) criteria recommended in 2011 approved standard (M24-A2) and disk diffusion method used as an alternative comparative susceptibility testing method. Among the 45 Nocardia strains, N.cyriacigeorgica (n: 26, 57.8%) was the most common species, followed by N.farcinica (n: 12, 26.7%), N.otitiscaviarum (n: 4, 8.9%), N.asteroides (n: 1, 2.2%), N.neocaledoniensis (n: 1, 2.2%) and N.abscessus (n: 1, 2.2%). Amikacin and linezolid were the only two antimicrobials to which all isolates were susceptible for both broth microdilution and disk diffusion tests. In broth microdilution test, resistance rates to TMP-SMX, ceftriaxone and ciprofloxacin were found as 15.6%, 37.8% and 84.4% respectively, whereas in the disk diffusion test, the highest resistance rate was observed against ciprofloxacin (n: 33, 73.3%), followed by TMP-SMX (n: 22, 48.9%) and ceftriaxone (n: 15, 33.3%). In both of these tests, N.cyriacigeorgica was the species with the

  15. 16S–23S rRNA Gene Intergenic Spacer Region Variability Helps Resolve Closely Related Sphingomonads

    PubMed Central

    Tokajian, Sima; Issa, Nahla; Salloum, Tamara; Ibrahim, Joe; Farah, Maya

    2016-01-01

    Sphingomonads comprise a physiologically versatile group many of which appear to be adapted to oligotrophic environments, but several also had features in their genomes indicative of host associations. In this study, the extent variability of the 16S–23S rDNA intergenic spacer (ITS) sequences of 14 ATCC reference sphingomonad strains and 23 isolates recovered from drinking water was investigated through PCR amplification and sequencing. Sequencing analysis of the 16S–23S rRNA gene ITS region revealed that the ITS sizes for all studied isolates varied between 415 and 849 bp, while their G+C content was 42.2–57.9 mol%. Five distinct ITS types were identified: ITSnone (without tRNA genes), ITSAla(TGC), ITSAla(TGC)+Ile(GAT), ITSIle(GAT)+Ala(TGC), and ITS Ile(GAT)+Pseudo. All of the identified tRNAAla(TGC) molecules consisted of 73 bases, and all of the tRNAIle(GAT) molecules consisted of 74 bases. We also detected striking variability in the size of the ITS region among the various examined isolates. Highest variability was detected within the ITS-2. The importance of this study is that this is the first comparison of the 16S–23S rDNA ITS sequence similarities and tRNA genes from sphingomonads. Collectively the data obtained in this study revealed the heterogeneity and extent of variability within the ITS region compared to the 16S rRNA gene within closely related isolates. Sequence and length polymorphisms within the ITS region along with the ITS types (tRNA-containing or lacking and the type of tRNA) and ITS-2 size and sequence similarities allowed us to overcome the limitation we previously encountered in resolving closely related isolates based on the 16S rRNA gene sequence. PMID:26904019

  16. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in Apicomplexans.

    PubMed

    Rooney, Alejandro P

    2004-09-01

    In many species of the protist phylum Apicomplexa, ribosomal RNA (rRNA) gene copies are structurally and functionally heterogeneous, owing to distinct requirements for rRNA-expression patterns at different developmental stages. The genomic mechanisms underlying the maintenance of this system over long-term evolutionary history are unclear. Therefore, the aim of this study was to investigate what processes underlie the long-term evolution of apicomplexan 18S genes in representative species. The results show that these genes evolve according to a birth-and-death model under strong purifying selection, thereby explaining how divergent 18S genes are generated over time while continuing to maintain their ability to produce fully functional rRNAs. In addition, it was found that Cryptosporidium parvum undergoes a rapid form of birth-and-death evolution that may facilitate host-specific adaptation, including that of type I and II strains found in humans. This represents the first case in which an rRNA gene family has been found to evolve under the birth-and-death model. PMID:15175411

  17. Comparison of Genotypic and Phylogenetic Relationships of Environmental Enterococcus Isolates by BOX-PCR Typing and 16S rRNA Gene Sequencing ▿

    PubMed Central

    Nayak, Bina S.; Badgley, Brian; Harwood, Valerie J.

    2011-01-01

    Environmental Enterococcus spp. were compared by BOX-PCR genotyping and 16S rRNA gene sequencing to clarify the predictive relationship of BOX-PCR fingerprints to species designation. BOX-PCR and 16S rRNA gene relationships agreed for 77% of strains. BOX-PCR provided superior intraspecies discrimination but incorrectly identified some strains to the species level and divided some species into multiple groups. PMID:21622792

  18. Mutations in 23S rRNA gene associated with decreased susceptibility to tiamulin and valnemulin in Mycoplasma gallisepticum.

    PubMed

    Li, Bei-Bei; Shen, Jian-Zhong; Cao, Xing-Yuan; Wang, Yang; Dai, Lei; Huang, Si-Yang; Wu, Cong-Ming

    2010-07-01

    Mycoplasma gallisepticum is a major etiological agent of chronic respiratory disease (CRD) in chickens and sinusitis in turkeys. The pleuromutilin antibiotics tiamulin and valnemulin are currently used in the treatment of M. gallisepticum infection. We studied the in vitro development of pleuromutilin resistance in M. gallisepticum and investigated the molecular mechanisms involved in this process. Pleuromutilin-resistant mutants were selected by serial passages of M. gallisepticum strains PG31 and S6 in broth medium containing subinhibitory concentrations of tiamulin or valnemulin. A portion of the gene encoding 23S rRNA gene (domain V) and the gene encoding ribosome protein L3 were amplified and sequenced. No mutation could be detected in ribosome protein L3. Mutations were found at nucleotide positions 2058, 2059, 2061, 2447 and 2503 of 23S rRNA gene (Escherichia coli numbering). Although a single mutation could cause elevation of tiamulin and valnemulin MICs, combinations of two or three mutations were necessary to produce high-level resistance. All the mutants were cross-resistant to lincomycin, chloramphenicol and florfenicol. Mutants with the A2058G or the A2059G mutation exhibited cross-resistance to macrolide antibiotics erythromycin, tilmicosin and tylosin. PMID:20487023

  19. Phylogeny of Intestinal Ciliates, Including Charonina ventriculi, and Comparison of Microscopy and 18S rRNA Gene Pyrosequencing for Rumen Ciliate Community Structure Analysis

    PubMed Central

    Devente, Savannah R.; Kirk, Michelle R.; Seedorf, Henning; Dehority, Burk A.

    2015-01-01

    The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups. PMID:25616800

  20. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system

    PubMed Central

    Jenior, Matthew L.; Koumpouras, Charles C.; Westcott, Sarah L.; Highlander, Sarah K.

    2016-01-01

    Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina’s MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3–V5, V1–V3, V1–V5, V1–V6, and V1–V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1–V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina’s MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting. PMID:27069806

  1. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system.

    PubMed

    Schloss, Patrick D; Jenior, Matthew L; Koumpouras, Charles C; Westcott, Sarah L; Highlander, Sarah K

    2016-01-01

    Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina's MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina's MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting. PMID:27069806

  2. Microbial Dark Matter: Unusual intervening sequences in 16S rRNA genes of candidate phyla from the deep subsurface

    SciTech Connect

    Jarett, Jessica; Stepanauskas, Ramunas; Kieft, Thomas; Onstott, Tullis; Woyke, Tanja

    2014-03-17

    The Microbial Dark Matter project has sequenced genomes from over 200 single cells from candidate phyla, greatly expanding our knowledge of the ecology, inferred metabolism, and evolution of these widely distributed, yet poorly understood lineages. The second phase of this project aims to sequence an additional 800 single cells from known as well as potentially novel candidate phyla derived from a variety of environments. In order to identify whole genome amplified single cells, screening based on phylogenetic placement of 16S rRNA gene sequences is being conducted. Briefly, derived 16S rRNA gene sequences are aligned to a custom version of the Greengenes reference database and added to a reference tree in ARB using parsimony. In multiple samples from deep subsurface habitats but not from other habitats, a large number of sequences proved difficult to align and therefore to place in the tree. Based on comparisons to reference sequences and structural alignments using SSU-ALIGN, many of these ?difficult? sequences appear to originate from candidate phyla, and contain intervening sequences (IVSs) within the 16S rRNA genes. These IVSs are short (39 - 79 nt) and do not appear to be self-splicing or to contain open reading frames. IVSs were found in the loop regions of stem-loop structures in several different taxonomic groups. Phylogenetic placement of sequences is strongly affected by IVSs; two out of three groups investigated were classified as different phyla after their removal. Based on data from samples screened in this project, IVSs appear to be more common in microbes occurring in deep subsurface habitats, although the reasons for this remain elusive.

  3. Discrimination among thermophilic Campylobacter species by polymerase chain reaction amplification of 23S rRNA gene fragments.

    PubMed Central

    Eyers, M; Chapelle, S; Van Camp, G; Goossens, H; De Wachter, R

    1993-01-01

    By comparing nucleic acid sequences determined for one of the most variable areas of 23S rRNA genes of 23 Campylobacter strains, we were able to identify regions specific for thermophilic Campylobacter strains. Oligonucleotide primers corresponding to these unique regions were synthesized and used in the polymerase chain reaction. One primer pair selectively detected all thermophilic Campylobacter species, while four other primer pairs allowed discrimination among the thermophilic species Campylobacter coli, Campylobacter jejuni subsp. jejuni, Campylobacter lari, and Campylobacter upsaliensis. All primer sets were tested successfully on a large number of clinical isolates. Images PMID:7508460

  4. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff. PMID:23205499

  5. Formation of nucleolar polymorphisms in trisomic chickens and subsequent microevolution of rRNA gene clusters in diploids.

    PubMed

    Delany, M E; Muscarella, D E; Bloom, S E

    1991-01-01

    Variations in nucleolar size are common in animals and man, yet the basis and significance of this variation are not well understood. In this report, we describe the generation de novo of individuals that express nucleolar size variations (polymorphisms) and the underlying basis for this phenotype in a vertebrate animal system (Gallus domesticus). Individuals that express nucleolar size polymorphisms were produced from mating chickens trisomic for the nucleolar organizer (NO) chromosome; 10%-18% of progeny demonstrated nucleolar polymorphisms. These progeny were incorporated into a diploid genetic line in which the polymorphic trait was observed to segregate in Mendelian fashion. An even more dramatic nucleolar size polymorphism (one macro- plus one micronucleolus) evolved in one diploid family over the course of only two generations. These individuals were used to ascertain that the polymorphic-nucleoli phenotype was expressed in tissues derived from the three primary embryonic cell layers in embryos and neonates. Image analysis was conducted on cells of these birds to quantitate the size differences between macro- and micronucleoli (5 mu2 versus 1 mu2, respectively). Finally, these birds were studied with the technique of in situ hybridization, which showed that gene number differences between homologous NO chromosomes (i.e., heterozygosity for rRNA gene copy number), underlies the polymorphic-nucleoli phenotype. Thus, the chicken emerges as an experimental system through which heterozygosity for the rRNA gene copy number can be induced, easily identified, transmitted, and expressed in all somatic tissues.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2061593

  6. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes

    SciTech Connect

    Gihring, Thomas; Green, Stefan; Schadt, Christopher Warren

    2011-01-01

    Technologies for massively parallel sequencing are revolutionizing microbial ecology and are vastly increasing the scale of ribosomal RNA (rRNA) gene studies. Although pyrosequencing has increased the breadth and depth of possible rRNA gene sampling, one drawback is that the number of reads obtained per sample is difficult to control. Pyrosequencing libraries typically vary widely in the number of sequences per sample, even within individual studies, and there is a need to revisit the behaviour of richness estimators and diversity indices with variable gene sequence library sizes. Multiple reports and review papers have demonstrated the bias in non-parametric richness estimators (e.g. Chao1 and ACE) and diversity indices when using clone libraries. However, we found that biased community comparisons are accumulating in the literature. Here we demonstrate the effects of sample size on Chao1, ACE, CatchAll, Shannon, Chao-Shen and Simpson's estimations specifically using pyrosequencing libraries. The need to equalize the number of reads being compared across libraries is reiterated, and investigators are directed towards available tools for making unbiased diversity comparisons.

  7. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria.

    PubMed Central

    Giovannoni, S J; Rappé, M S; Vergin, K L; Adair, N L

    1996-01-01

    Microorganisms play an important role in the biogeochemistry of the ocean surface layer, but spatial and temporal structures in the distributions of specific bacterioplankton species are largely unexplored, with the exceptions of those organisms that can be detected by either autofluorescence or culture methods. The use of rRNA genes as genetic markers provides a tool by which patterns in the growth, distribution, and activity of abundant bacterioplankton species can be studied regardless of the ease with which they can be cultured. Here we report an unusual cluster of related 16S rRNA genes (SAR202, SAR263, SAR279, SAR287, SAR293, SAR307) cloned from seawater collected at 250 m in the Sargasso Sea in August 1991, when the water column was highly stratified and the deep chlorophyll maximum was located at a depth of 120 m. Phylogenetic analysis and an unusual 15-bp deletion confirmed that the genes were related to the Green Non-Sulfur phylum of the domain Bacteria. This is the first evidence that representatives of this phylum occur in the open ocean. Oligonucleotide probes were used to examine the distribution of the SAR202 gene cluster in vertical profiles (0-250 m) from the Atlantic and Pacific Oceans, and in discrete (monthly) time series (O and 200 m) (over 30 consecutive months in the Western Sargasso Sea. The data provide robust statistical support for the conclusion that the SAR202 gene cluster is proportionately most abundant at the lower boundary of the deep chlorophyll maximum (P = 2.33 x 10(-5)). These results suggest that previously unsuspected stratification of microbial populations may be a significant factor in the ecology of the ocean surface layer. Images Fig. 4 PMID:8755588

  8. Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments

    PubMed Central

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020

  9. Reassessment of PCR primers targeting 16S rRNA genes of the organohalide-respiring genus Dehalogenimonas.

    PubMed

    Chen, Jie; Bowman, Kimberly S; Rainey, Fred A; Moe, William M

    2014-09-01

    Representatives from the genus Dehalogenimonas have the metabolic capacity to anaerobically transform a variety of environmentally important polychlorinated aliphatic compounds. In light of the recent isolation of additional strains, description of a new species, and an expanded number of uncultured DNA sequences, PCR primers and protocols intended to uniquely target members of this organohalide-respiring genus were reevaluated. Nine of fourteen primer combinations reported previously as genus-specific failed to amplify 16S rRNA genes of recently isolated Dehalogenimonas strains. Use of alternative combinations or modified genus-specific primers, however, allowed detection of all presently known Dehalogenimonas strains. Use of a modified primer set in qPCR revealed an approximately two-order of magnitude increase in concentration of Dehalogenimonas 16S rRNA gene copies following subsurface injection of electron donors at a Louisiana Superfund site, demonstrating the utility of the newly developed protocol and suggesting that the genus Dehalogenimonas can respond to biostimulation remediation strategies in a manner similar to that previously reported for other dechlorinating genera such as Dehalococcoides. PMID:24989478

  10. 16S rRNA gene phylogenesis of culturable predominant bacteria from diseased Apostichopus japonicus (Holothuroidea, Echinodermata)

    NASA Astrophysics Data System (ADS)

    Ma, Haiyan; Jiang, Guoliang; Wu, Zhiqiang; Wang, Xin

    2009-06-01

    Cultured Apostichopus japonicus in China suffers from a kind of skin ulceration disease that has caused severe economic loss in recent years. The disease, pathogens of which are supposed to be bacteria by most researchers, is highly infectious and can often cause all individuals in the same culture pool to die in a very short time. The 16S rRNA gene phylogenesis of the culturable bacteria from the lesions of diseased individuals was conducted to study the biodiversity of the bacterial communities in the lesions and to identify probable pathogen(s) associated with this kind of disease. S. japonica samples were selected from a hatchery located in the eastern part of Qingdao, China. Bacterial universal primers GM5F and DS907R were used to amplify the 16S rRNA gene of bacteria colonies, and touchdown PCR was performed to amplify the target sequences. The results suggest that γ- proteobacteria (Alteromonadales and Vibrionales) of CFB group, many strains of which have been also determined as pathogens in other marine species, are the predominant bacterial genera of the diseased Apostichopus japonicus individuals.

  11. Identification and phylogeny of Arabian snakes: Comparison of venom chromatographic profiles versus 16S rRNA gene sequences.

    PubMed

    Al Asmari, Abdulrahman; Manthiri, Rajamohammed Abbas; Khan, Haseeb Ahmad

    2014-11-01

    Identification of snake species is important for various reasons including the emergency treatment of snake bite victims. We present a simple method for identification of six snake species using the gel filtration chromatographic profiles of their venoms. The venoms of Echis coloratus, Echis pyramidum, Cerastes gasperettii, Bitis arietans, Naja arabica, and Walterinnesia aegyptia were milked, lyophilized, diluted and centrifuged to separate the mucus from the venom. The clear supernatants were filtered and chromatographed on fast protein liquid chromatography (FPLC). We obtained the 16S rRNA gene sequences of the above species and performed phylogenetic analysis using the neighbor-joining method. The chromatograms of venoms from different snake species showed peculiar patterns based on the number and location of peaks. The dendrograms generated from similarity matrix based on the presence/absence of particular chromatographic peaks clearly differentiated Elapids from Viperids. Molecular cladistics using 16S rRNA gene sequences resulted in jumping clades while separating the members of these two families. These findings suggest that chromatographic profiles of snake venoms may provide a simple and reproducible chemical fingerprinting method for quick identification of snake species. However, the validation of this methodology requires further studies on large number of specimens from within and across species. PMID:25313278

  12. Identification of bacteria associated with underground parts of Crocus sativus by 16S rRNA gene targeted metagenomic approach.

    PubMed

    Ambardar, Sheetal; Sangwan, Naseer; Manjula, A; Rajendhran, J; Gunasekaran, P; Lal, Rup; Vakhlu, Jyoti

    2014-10-01

    Saffron (Crocus sativus L), an autumn-flowering perennial sterile plant, reproduces vegetatively by underground corms. Saffron has biannual corm-root cycle that makes it an interesting candidate to study microbial dynamics in its rhizosphere and cormosphere (area under influence of corm). Culture independent 16S rRNA gene metagenomic study of rhizosphere and cormosphere of Saffron during flowering stage revealed presence of 22 genera but none of the genus was common in all the three samples. Bulk soil bacterial community was represented by 13 genera with Acidobacteria being dominant. In rhizosphere, out of eight different genera identified, Pseudomonas was the most dominant genus. Cormosphere bacteria comprised of six different genera, dominated by the genus Pantoea. This study revealed that the bacterial composition of all the three samples is significantly different (P < 0.05) from each other. This is the first report on the identification of bacteria associated with rhizosphere, cormosphere and bulk soil of Saffron, using cultivation independent 16S rRNA gene targeted metagenomic approach. PMID:24989343

  13. Variability in abundance of the Bacterial and Archaeal 16S rRNA and amoA genes in water columns of northern South China Sea

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yang, C.; Chen, S.; Xie, W.; Wang, P.; Zhang, C. L.

    2014-12-01

    Recent advances in marine microbial ecology have shown that ammonia-oxidizing Archaea (AOA) are more abundant than ammonia-oxidizing bacteria (AOB), although total Bacteria are more abundant than total Archaea in marine environments. This study aimed to examine the spatial distribution and abundance of planktonic archaeal and bacterial 16S rRNA- and amoA genes in the northern South China Sea. Water samples were collected at different depths at six stations (maximum depth ranging from 1800 m to 3200 m)with four stations (B2, B3, B6, B7) located along a transect from the northeastern continental slope to the Bashi Strait and the other two (D3, D5) located southwest of this transect. Quantitative PCR of the 16S rRNA- and amoA genes was used to estimate the abundances of total Archaea, total Bacteria, and AOA and AOB, respectively. At the B series stations, the abundance of bacterial 16S rRNA gene was twofold to 36fold higher than that of the archaeal 16S rRNA gene while fivefold lower to sixfold higher at the two D stations, with both genes showing peak values slightly below sea surface (5-75 m depths) at all stations. The archaeal amoA gene had similar variations with the archaeal 16S rRNA gene, but was 1-4 orders of magnitude lower than the archaeal 16S rRNA gene at all stations. Bacterial amoA gene was below the detection at all stations. Our results also show the difference in depth profiles among these stations, which may be caused by the difference in water movement between these regions. The non-detection of bacterial amoA gene indicates that ammonia-oxidizing Archaea are the dominant group of microorganisms in nitrification of the South China Sea, which is consistent with observations in other oceans.

  14. Decoupled distance-decay patterns between dsrA and 16S rRNA genes among salt marsh sulfate-reducing bacteria.

    PubMed

    Angermeyer, Angus; Crosby, Sarah C; Huber, Julie A

    2016-01-01

    In many habitats, microorganisms exhibit significant distance-decay patterns as determined by analysis of the 16S rRNA gene and various other genetic elements. However, there have been few studies that examine how the similarities of both taxonomic and functional genes co-vary over geographic distance within a group of ecologically related microbes. Here, we determined the biogeographic patterns of the functional dissimilatory sulfite reductase gene (dsrA) and the 16S rRNA gene in sulfate-reducing bacterial communities of US East Coast salt marsh sediments. Distance-decay, ordination and statistical analyses revealed that the distribution of 16S rRNA genes is strongly influenced by geographic distance and environmental factors, whereas the dsrA gene is not. Together, our results indicate that 16S rRNA genes are likely dispersal limited and under environmental selection, whereas dsrA genes appear randomly distributed and not selected for by any expected environmental variables. Selection, drift, dispersal and mutation are all factors that may help explain the decoupled biogeographic patterns for the two genes. These data suggest that both the taxonomic and functional elements of microbial communities should be considered in future studies of microbial biogeography to aid in our understanding of the diversity, distribution and function of microorganisms in the environment. PMID:25727503

  15. Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene.

    PubMed

    Wirz, A; Pucciarelli, S; Miceli, C; Tongiorgi, P; Balsamo, M

    1999-11-01

    Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded. PMID:10603259

  16. Accurate transcription of homologous 5S rRNA and tRNA genes and splicing of tRNA in vitro by soluble extracts of Neurospora.

    PubMed Central

    Tyler, B M; Giles, N H

    1984-01-01

    We have developed soluble extracts from Neurospora crassa capable of accurately and efficiently transcribing homologous 5S rRNA and tRNA genes. The extracts also appear to quantitatively end-process and splice the primary tRNA transcripts. Although the extracts could not transcribe a heterologous (yeast) 5S rRNA gene, they did transcribe a yeast tRNALeu gene and slowly process the transcripts. In addition, we have developed a novel strategy for rapidly sequencing uniformly labelled RNAs using base-specific ribonucleases. We have used this procedure to verify the identity of the in vitro transcripts and processing products. Images PMID:6235482

  17. Coamplification of eukaryotic DNA with 16S rRNA gene-based PCR primers: possible consequences for population fingerprinting of complex microbial communities.

    PubMed

    Huys, Geert; Vanhoutte, Tom; Joossens, Marie; Mahious, Amal S; De Brandt, Evie; Vermeire, Severine; Swings, Jean

    2008-06-01

    The main aim of this study was to evaluate the specificity of three commonly used 16S rRNA gene-based polymerase chain reaction (PCR) primer sets for bacterial community analysis of samples contaminated with eukaryotic DNA. The specificity of primer sets targeting the V3, V3-V5, and V6-V8 hypervariable regions of the 16S rRNA gene was investigated in silico and by community fingerprinting of human and fish intestinal samples. Both in silico and PCR-based analysis revealed cross-reactivity of the V3 and V3-V5 primers with the 18S rRNA gene of human and sturgeon. The consequences of this primer anomaly were illustrated by denaturing gradient gel electrophoresis (DGGE) profiling of microbial communities in human feces and mixed gut of Siberian sturgeon. DGGE profiling indicated that the cross-reactivity of 16S rRNA gene primers with nontarget eukaryotic DNA might lead to an overestimation of bacterial biodiversity. This study has confirmed previous sporadic indications in literature indicating that several commonly applied 16S rRNA gene primer sets lack specificity toward bacteria in the presence of eukaryotic DNA. The phenomenon of cross-reactivity is a potential source of systematic error in all biodiversity studies where no subsequent analysis of individual community amplicons by cloning and sequencing is performed. PMID:18301945

  18. Clinical and Microbiological Aspects of Linezolid Resistance Mediated by the cfr Gene Encoding a 23S rRNA Methyltransferase▿

    PubMed Central

    Arias, Cesar A.; Vallejo, Martha; Reyes, Jinnethe; Panesso, Diana; Moreno, Jaime; Castañeda, Elizabeth; Villegas, Maria V.; Murray, Barbara E.; Quinn, John P.

    2008-01-01

    The cfr (chloramphenicol-florfenicol resistance) gene encodes a 23S rRNA methyltransferase that confers resistance to linezolid. Detection of linezolid resistance was evaluated in the first cfr-carrying human hospital isolate of linezolid and methicillin-resistant Staphylococcus aureus (designated MRSA CM-05) by dilution and diffusion methods (including Etest). The presence of cfr was investigated in isolates of staphylococci colonizing the patient's household contacts and clinical isolates recovered from patients in the same unit where MRSA CM-05 was isolated. Additionally, 68 chloramphenicol-resistant Colombian MRSA isolates recovered from hospitals between 2001 and 2004 were screened for the presence of the cfr gene. In addition to erm(B), the erm(A) gene was also detected in CM-05. The isolate belonged to sequence type 5 and carried staphylococcal chromosomal cassette mec type I. We were unable to detect the cfr gene in any of the human staphylococci screened (either clinical or colonizing isolates). Agar and broth dilution methods detected linezolid resistance in CM-05. However, the Etest and disk diffusion methods failed to detect resistance after 24 h of incubation. Oxazolidinone resistance mediated by the cfr gene is rare, and acquisition by a human isolate appears to be a recent event in Colombia. The detection of cfr-mediated linezolid resistance might be compromised by the use of the disk diffusion or Etest method. PMID:18174304

  19. Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase.

    PubMed

    Arias, Cesar A; Vallejo, Martha; Reyes, Jinnethe; Panesso, Diana; Moreno, Jaime; Castañeda, Elizabeth; Villegas, Maria V; Murray, Barbara E; Quinn, John P

    2008-03-01

    The cfr (chloramphenicol-florfenicol resistance) gene encodes a 23S rRNA methyltransferase that confers resistance to linezolid. Detection of linezolid resistance was evaluated in the first cfr-carrying human hospital isolate of linezolid and methicillin-resistant Staphylococcus aureus (designated MRSA CM-05) by dilution and diffusion methods (including Etest). The presence of cfr was investigated in isolates of staphylococci colonizing the patient's household contacts and clinical isolates recovered from patients in the same unit where MRSA CM-05 was isolated. Additionally, 68 chloramphenicol-resistant Colombian MRSA isolates recovered from hospitals between 2001 and 2004 were screened for the presence of the cfr gene. In addition to erm(B), the erm(A) gene was also detected in CM-05. The isolate belonged to sequence type 5 and carried staphylococcal chromosomal cassette mec type I. We were unable to detect the cfr gene in any of the human staphylococci screened (either clinical or colonizing isolates). Agar and broth dilution methods detected linezolid resistance in CM-05. However, the Etest and disk diffusion methods failed to detect resistance after 24 h of incubation. Oxazolidinone resistance mediated by the cfr gene is rare, and acquisition by a human isolate appears to be a recent event in Colombia. The detection of cfr-mediated linezolid resistance might be compromised by the use of the disk diffusion or Etest method. PMID:18174304

  20. DNA polymorphism in morels: complete sequences of the internal transcribed spacer of genes coding for rRNA in Morchella esculenta (yellow morel) and Morchella conica (black morel).

    PubMed Central

    Wipf, D; Munch, J C; Botton, B; Buscot, F

    1996-01-01

    The internal transcribed spacer (ITS) of the gene coding for rRNA was sequenced in both directions with the gene walking technique in a black morel (Morchella conica) and a yellow morel (M. esculenta) to elucidate the ITS length discrepancy between the two species groups (750-bp ITS in black morels and 1,150-bp ITS in yellow morels. PMID:8795250

  1. Comparison between rpoB and 16S rRNA Gene Sequencing for Molecular Identification of 168 Clinical Isolates of Corynebacterium

    PubMed Central

    Khamis, Atieh; Raoult, Didier; La Scola, Bernard

    2005-01-01

    Higher proportions (91%) of 168 corynebacterial isolates were positively identified by partial rpoB gene determination than by that based on 16S rRNA gene sequences. This method is thus a simple, molecular-analysis-based method for identification of corynebacteria, but it should be used in conjunction with other tests for definitive identification. PMID:15815024

  2. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis. PMID:27084467

  3. Evolution of small putative group I introns in the SSU rRNA gene locus of Phialophora species

    PubMed Central

    2011-01-01

    Background Group I introns (specifically subgroup IC1) are common in the nuclear ribosomal RNA genes of fungi. While most range in length from more than 200 to nearly 1800 nucleotides (nt) in length, several small putative (or degenerate) group I introns have been described that are between 56 and 81 nt. Although small, previously we demonstrated that the PaSSU intron in the rRNA small subunit gene of Phialophora americana isolate Wang 1046 is capable of in vitro splicing using a standard group I intron pathway, thus qualifying it as a functional ribozyme. Findings Here, we describe eight short putative group I introns, ranging in length from 63 to 75 nt, in the rRNA small subunit genes of Phialophora isolates, a fungal genus that ranges from saprobic to pathogenic on plants and animals. All contain putative pairing regions P1, P7, and P10, as well as a pairing region formed between the middle of the intron and part of the 3' exon. The other pairing regions common in the core of standard group I introns are absent. However, parts of the 3' exon may aid in the stabilization of these small introns. Although the eight putative group I introns were from at least three species of Phialophora, phylogenetic analysis indicated that the eight are monophyletic. They are also monophyletic with the small introns of two lichen-forming fungi, Porpidia crustulata and Arthonia lapidicola. Conclusions The small putative group I introns in Phialophora have common features that may represent group I introns at their minima. They appear to have a single origin as indicated by their monophyly in phylogenetic analyses. PMID:21781325

  4. Pyrosequencing of mcrA and Archaeal 16S rRNA Genes Reveals Diversity and Substrate Preferences of Methanogen Communities in Anaerobic Digesters

    PubMed Central

    Wilkins, David; Lu, Xiao-Ying; Shen, Zhiyong; Chen, Jiapeng

    2014-01-01

    Methanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of the mcrA genes suggested that these digesters were dominated by acetoclastic methanogens, particularly Methanosarcinales, while the other digesters were dominated by hydrogenotrophic Methanomicrobiales. The proposed euryarchaeotal order Methanomassiliicoccales and the uncultured WSA2 group were detected with the 16S rRNA gene, and potential mcrA genes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using the mcrA gene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance of mcrA transcripts in digesters treating sludge and wastewater samples, supporting the mcrA gene as a biomarker for methane yield. PMID:25381241

  5. Genetic Diversity and Phylogeny of Rhizobia That Nodulate Acacia spp. in Morocco Assessed by Analysis of rRNA Genes

    PubMed Central

    Khbaya, Bouchaib; Neyra, Marc; Normand, Philippe; Zerhari, Karim; Filali-Maltouf, Abdelkarim

    1998-01-01

    Forty rhizobia nodulating four Acacia species (A. gummifera, A. raddiana, A. cyanophylla, and A. horrida) were isolated from different sites in Morocco. These rhizobia were compared by analyzing both the 16S rRNA gene (rDNA) and the 16S-23S rRNA spacer by PCR with restriction fragment length polymorphism (RFLP) analysis. Analysis of the length of 16S-23S spacer showed a considerable diversity within these microsymbionts, but RFLP analysis of the amplified spacer revealed no additional heterogeneity. Three clusters were identified when 16S rDNA analysis was carried out. Two of these clusters include some isolates which nodulate, nonspecifically, the four Acacia species. These clusters, A and B, fit within the Sinorhizobium lineage and are closely related to S. meliloti and S. fredii, respectively. The third cluster appeared to belong to the Agrobacterium-Rhizobium galegae phylum and is more closely related to the Agrobacterium tumefaciens species. These relations were confirmed by sequencing a representative strain from each cluster. PMID:9835582

  6. Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSU rRNA reduced to the universal core.

    PubMed Central

    Peyretaillade, E; Biderre, C; Peyret, P; Duffieux, F; Méténier, G; Gouy, M; Michot, B; Vivarès, C P

    1998-01-01

    Microsporidia are eukaryotic parasites lacking mitochondria, the ribosomes of which present prokaryote-like features. In order to better understand the structural evolution of rRNA molecules in microsporidia, the 5S and rDNA genes were investigated in Encephalitozoon cuniculi . The genes are not in close proximity. Non-tandemly arranged rDNA units are on every one of the 11 chromosomes. Such a dispersion is also shown in two other Encephalitozoon species. Sequencing of the 5S rRNA coding region reveals a 120 nt long RNA which folds according to the eukaryotic consensus structural shape. In contrast, the LSU rRNA molecule is greatly reduced in length (2487 nt). This dramatic shortening is essentially due to truncation of divergent domains, most of them being removed. Most variable stems of the conserved core are also deleted, reducing the LSU rRNA to only those structural features preserved in all living cells. This suggests that the E.cuniculi LSU rRNA performs only the basic mechanisms of translation. LSU rRNA phylogenetic analysis with the BASEML program favours a relatively recent origin of the fast evolving microsporidian lineage. Therefore, the prokaryote-like ribosomal features, such as the absence of ITS2, may be derived rather than primitive characters. PMID:9671812

  7. Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5' end of 16S rRNA.

    PubMed

    Wachi, M; Umitsuki, G; Shimizu, M; Takada, A; Nagai, K

    1999-06-01

    We found that the Escherichia coli cafA::cat mutant accumulated a precursor of 16S rRNA. This precursor migrated to the same position with 16.3S precursor found in the BUMMER strain that is known to be deficient in the 5' end processing of 16S rRNA. Accumulation of 16. 3S rRNA in the BUMMER mutant was complemented by introduction of a plasmid carrying the cafA gene. The mutant type cafA gene cloned from the BUMMER strain had a 11-bp deletion in its coding region. A small amount of the mature 16S rRNA was still formed in the cafA::cat mutant. This residual activity was found to be due to RNase E encoded by the rne/ams gene by rifampicin-chase experiments of the cafA::cat ams1 double mutant. These results indicated that the cafA gene encodes a novel RNase responsible for processing of the 5' end of 16S rRNA. PMID:10362534

  8. Technical considerations in the use of 18s rRNA in gene expression studies

    EPA Science Inventory

    Gene expression analysis is now commonly used in ecotoxicological studies to indicate exposure of an organism to xenobiotics. For example, the vitellogenin gene is used to diagnose exposure of fish to environmental estrogens. Reverse transcription polymerase chain reaction (RT-PC...

  9. [Cloning and sequencing of 16S rRNA gene of Phytoplasma CWB1 strain associated with cactus witches' broom].

    PubMed

    Cai, H; Li, F; Kong, B; Chen, H

    2001-12-01

    A 1.5 kb DNA fragment was amplified in DNA samples extracted from Opuntia salmiana porm showed witches'-broom symptom. The result indicates the existence of phytoplasma associated with this disease and this phytoplasma was designated as CWB1. The amplified fragment was ligated to pGEM-T easy vector and then transformed into JM109 strain of E. coli. Cloned DNA fragments were verified by PCR, restriction endonuclease (EcoRI) digestion and sequence analysis. The result revealed that the 16S rRNA gene of CWB1 consists of 1489 bp and shared 99.7% homology with Faba bean phyllody which belongs to phytoplasma 16S rII-C subgroup. So we can classify this strain into phytoplasma 16S rII-C subgroup. PMID:12552825

  10. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha).

    PubMed

    Manylov, Oleg G; Vladychenskaya, Natalia S; Milyutina, Irina A; Kedrova, Olga S; Korokhov, Nikolai P; Dvoryanchikov, Gennady A; Aleshin, Vladimir V; Petrov, Nikolai B

    2004-03-01

    Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data. PMID:15012964

  11. Molecular Diversity of Eukaryotes in Municipal Wastewater Treatment Processes as Revealed by 18S rRNA Gene Analysis

    PubMed Central

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4–8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  12. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis.

    PubMed

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4-8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  13. Next-Generation Sequencing of the Bacterial 16S rRNA Gene for Forensic Soil Comparison: A Feasibility Study.

    PubMed

    Jesmok, Ellen M; Hopkins, James M; Foran, David R

    2016-05-01

    Soil has the potential to be valuable forensic evidence linking a person or item to a crime scene; however, there is no established soil individualization technique. In this study, the utility of soil bacterial profiling via next-generation sequencing of the 16S rRNA gene was examined for associating soils with their place of origin. Soil samples were collected from ten diverse and nine similar habitats over time, and within three habitats at various horizontal and vertical distances. Bacterial profiles were analyzed using four methods: abundance charts and nonmetric multidimensional scaling provided simplification and visualization of the massive datasets, potentially aiding in expert testimony, while analysis of similarities and k-nearest neighbor offered objective statistical comparisons. The vast majority of soil bacterial profiles (95.4%) were classified to their location of origin, highlighting the potential of bacterial profiling via next-generation sequencing for the forensic analysis of soil samples. PMID:27122396

  14. Comparative sequence analyses of the genes coding for 16S rRNA of Lactobacillus casei-related taxa.

    PubMed

    Mori, K; Yamazaki, K; Ishiyama, T; Katsumata, M; Kobayashi, K; Kawai, Y; Inoue, N; Shinano, H

    1997-01-01

    The primary structures of the 16S rRNA genes of the type strains of Lactobacillus casei and related taxa were determined by PCR DNA-sequencing methods. The sequences of Lactobacillus casei, Lactobacillus zeae, Lactobacillus paracasei, and Lactobacillus rhamnosus were different. The Knuc values ranged from 0.0040 to 0.0126. On the basis of the Knuc values and the levels of DNA-DNA relatedness among the strains of these species, the L. casei-related taxa should be classified in the following three species: L. zeae, which includes the type strains of L. zeae and L. casei; a species that includes the strains of L. paracasei and L. casei ATCC 334; and L. rhamnosus. PMID:8995801

  15. Avian malaria in captive psittacine birds: detection by microscopy and 18S rRNA gene amplification.

    PubMed

    Belo, N O; Passos, L F; Júnior, L M C; Goulart, C E; Sherlock, T M; Braga, E M

    2009-03-01

    A cross-sectional survey was conducted to estimate the occurrence of malaria infection among captive psittacine birds (n=127) from three zoological gardens in Brazil. Malaria infection was evaluated by the association of direct examination of blood smears with amplification of the 18SSU rRNA gene of the Plasmodium genus, demonstrating an overall occurrence of 36%. Most infected bird species were Amazona aestiva (28/73), Ara ararauna (6/10), and Amazona amazonica (3/10). The low parasitemias observed among the infected birds suggest a chronic infection. The sequence analyses of 10 isolates indicate a potential occurrence of four distinct Plasmodium lineages. These findings provide new data on malarial infection in captive psittacine birds, and emphasize the need for better control of importation and exportation of these birds. PMID:18937986

  16. Identification of Atypical Rhodococcus-Like Clinical Isolates as Dietzia spp. by 16S rRNA Gene Sequencing▿

    PubMed Central

    Pilares, Lilian; Agüero, Jesús; Vázquez-Boland, José A.; Martínez-Martínez, Luis; Navas, Jesús

    2010-01-01

    Rhodococcus equi and Dietzia spp. are closely related actinomycetes that show similar phenotypic properties. In humans, R. equi is an opportunistic pathogen associated with severe immunodeficiency. Dietzia spp. are environmental bacteria that have been isolated recently from clinical material and are presumptively associated with human infections. During the last 5 years, 15 bacterial isolates from human clinical samples collected at the Hospital Marqués de Valdecilla, Santander, Spain, were identified as R. equi by the API Coryne test. 16S rRNA gene sequencing confirmed seven isolates to be true R. equi strains, whereas the other eight were identified as members of the genus Dietzia, including Dietzia maris (four isolates), Dietzia natronolimnaea (two isolates), and Dietzia timorensis and Dietzia sp. (one isolate each). The eight Dietzia isolates were highly sensitive to 12 antimicrobial compounds. PMID:20220156

  17. 16S rRNA gene sequencing is a non-culture method of defining the specific bacterial etiology of ventilator-associated pneumonia

    PubMed Central

    Xia, Li-Ping; Bian, Long-Yan; Xu, Min; Liu, Ying; Tang, Ai-Ling; Ye, Wen-Qin

    2015-01-01

    Ventilator-associated pneumonia (VAP) is an acquired respiratory tract infection following tracheal intubation. The most common hospital-acquired infection among patients with acute respiratory failure, VAP is associated with a mortality rate of 20-30%. The standard bacterial culture method for identifying the etiology of VAP is not specific, timely, or accurate in identifying the bacterial pathogens. This study used 16S rRNA gene metagenomic sequencing to identify and quantify the pathogenic bacteria in lower respiratory tract and oropharyngeal samples of 55 VAP patients. Sequencing of the 16S rRNA gene has served as a valuable tool in bacterial identification, particularly when other biochemical, molecular, or phenotypic identification techniques fail. In this study, 16S rRNA gene sequencing was performed in parallel with the standard bacterial culture method to identify and quantify bacteria present in the collected patient samples. Sequence analysis showed the colonization of multidrug-resistant strains in VAP secretions. Further, this method identified Prevotella, Proteus, Aquabacter, and Sphingomonas bacterial genera that were not detected by the standard bacterial culture method. Seven categories of bacteria, Streptococcus, Neisseria, Corynebacterium, Acinetobacter, Staphylococcus, Pseudomonas and Klebsiella, were detectable by both 16S rRNA gene sequencing and standard bacterial culture methods. Further, 16S rRNA gene sequencing had a significantly higher sensitivity in detecting Streptococcus and Pseudomonas when compared to standard bacterial culture. Together, these data present 16S rRNA gene sequencing as a novel VAP diagnosis tool that will further enable pathogen-specific treatment of VAP. PMID:26770469

  18. Serial Analysis of rRNA Genes and the Unexpected Dominance of Rare Members of Microbial Communities▿

    PubMed Central

    Ashby, Matthew N.; Rine, Jasper; Mongodin, Emmanuel F.; Nelson, Karen E.; Dimster-Denk, Dago

    2007-01-01

    The accurate description of a microbial community is an important first step in understanding the roles of its components in ecosystem function. A method for surveying microbial communities termed serial analysis of rRNA genes (SARD) is described here. Through a series of molecular cloning steps, short DNA sequence tags are recovered from the fifth variable (V5) region of the prokaryotic 16S rRNA genes from microbial communities. These tags are ligated to form concatemers comprised of 20 to 40 tags which are cloned and identified by DNA sequencing. Four agricultural soil samples were profiled with SARD to assess the method's utility. A total of 37,008 SARD tags comprising 3,127 unique sequences were identified. A comparison of duplicate profiles from one soil genomic DNA preparation revealed that the method was highly reproducible. The large numbers of singleton tags, together with nonparametric richness estimates, indicated that a significant amount of sequence tag diversity remained undetected with this level of sampling. The abundance classes of the observed tags were scale-free and conformed to a power law distribution. Numerically, the majority of the total tags observed belonged to abundance classes that were each present at less than 1% of the community. Over 99% of the unique tags individually made up less than 1% of the community. Therefore, from either a numerical or diversity standpoint, taxa with low abundance comprised a significant proportion of the microbial communities examined and could potentially make a large contribution to ecosystem function. SARD may provide a means to explore the ecological roles of these rare members of microbial communities in qualitative and quantitative terms. PMID:17526780

  19. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens

    DOE PAGESBeta

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.; Heimesaat, Markus M.

    2015-02-06

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n =more » 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.« less

  20. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report.

    PubMed

    Lee, Sin Hang

    2016-01-01

    Lyme disease (LD), the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA) gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain. PMID:27186082

  1. Bacterial rRNA Genes Associated with Soil Suppressiveness against the Plant-Parasitic Nematode Heterodera schachtii

    PubMed Central

    Yin, Bei; Valinsky, Lea; Gao, Xuebiao; Becker, J. Ole; Borneman, James

    2003-01-01

    The goal of this study was to identify bacteria involved in soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Since H. schachtii cysts isolated from the suppressive soil can transfer this beneficial property to nonsuppressive soils, analysis of the cyst-associated microorganisms should lead to the identification of the causal organisms. Our experimental approach was to identify bacterial rRNA genes (rDNA) associated with H. schachtii cysts obtained from soil mixtures with various levels of suppressiveness. We hypothesized that we would be able to identify bacteria involved in the suppressiveness by correlating population shifts with differing levels of suppressiveness. Soil treatments containing different amounts of suppressive and fumigation-induced nonsuppressive soils exhibited various levels of suppressiveness after two nematode generations. The 10%-suppressive-soil treatment contained numbers of eggs per gram of soil similar to those of the 100%-suppressive-soil treatment, indicating that the suppressive factor(s) had been transferred. Bacterial rDNA associated with H. schachtii cysts were identified using a culture-independent method termed oligonucleotide fingerprinting of rRNA genes. Bacteria from five major taxonomic groups (Actinobacteria, Cytophaga-Flexibacter-Bacteroides, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria) were identified. Three bacterial rDNA groups contained clones that were more prevalent in the highly suppressive soil treatments than in the less suppressive treatments, indicating a potential involvement in the H. schachtii suppressiveness. When these three groups were examined with specific PCR analyses performed on H. schachtii cysts that developed in soils treated with three biocidal compounds, only one bacterial rDNA group with moderate to high sequence identity to rDNA from several Rhizobium species and uncultured α-proteobacterial clones was consistently associated with the highly

  2. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report

    PubMed Central

    Lee, Sin Hang

    2016-01-01

    Lyme disease (LD), the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA) gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain. PMID:27186082

  3. Distribution of 5-methylcytosine residues in 5S rRNA genes in Arabidopsis thaliana and Secale cereale.

    PubMed

    Fulnecek, J; Matyásek, R; Kovarík, A

    2002-12-01

    Bisulfite genomic sequencing was used to localise 5-methylcytosine residues (mC) in 5S rRNA genes of Arabidopsis thaliana and Secale cereale. The maps of mC distribution were compared with the previously published map of the corresponding region in Nicotiana tabacum. In all three species, the level of methylation of 5S rRNA genes was generally higher than the average for the entire genome. The ratio of 5S rDNA methylation to average overall methylation was 44%/30-33% for N. tabacum, 27%/4-6% for A. thaliana and 24%/20-22% for S. cereale. With the exception of one clone from S. cereale, no methylation-free 5S rDNA was detected. The level of methylation at different sequence motifs in 5S rDNA was calculated for N. tabacum/A. thaliana/ S. cereale, and this analysis yielded the following values (expressed as a percentage of total C): mCG 90%/78%/85%, mCWG 89%/41%/53%, mCmCG 72%/32%/16%, mCCG 4%/2%/0%, mCHH 15%/6%/1%, where W=A or T, and H=A or C or T. Non-symmetrical methylation was almost negligible in the large genome of S. cereale but relatively frequent in N. tabacum and A. thaliana, suggesting that the strict correlation between genome size and cytosine methylation might be violated for this type of methylation. Among non-symmetrical motifs the mCWA triplets were significantly over-represented in Arabidopsis, while in tobacco this preference was not as pronounced. The differences in methylation levels in different sequence contexts might be of phylogenetic significance, but further species in related and different taxa need to be studied before firm conclusions can be drawn. PMID:12471448

  4. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens

    SciTech Connect

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.; Heimesaat, Markus M.

    2015-02-06

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.

  5. B chromosomes showing active ribosomal RNA genes contribute insignificant amounts of rRNA in the grasshopper Eyprepocnemis plorans.

    PubMed

    Ruiz-Estévez, Mercedes; Badisco, Liesbeth; Broeck, Jozef Vanden; Perfectti, Francisco; López-León, María Dolores; Cabrero, Josefa; Camacho, Juan Pedro M

    2014-12-01

    The genetic inertness of supernumerary (B) chromosomes has recently been called into question after finding several cases of gene activity on them. The grasshopper Eyprepocnemis plorans harbors B chromosomes containing large amounts of ribosomal DNA (rDNA) units, some of which are eventually active, but the amount of rRNA transcripts contributed by B chromosomes, compared to those of the standard (A) chromosomes, is unknown. Here, we address this question by means of quantitative PCR (qPCR) for two different ITS2 amplicons, one coming from rDNA units located in both A and B chromosomes (ITS2(A+B)) and the other being specific to B chromosomes (ITS2(B)). We analyzed six body parts in nine males showing rDNA expression in their B chromosomes in the testis. Amplification of the ITS2(B) amplicon was successful in RNA extracted from all six body parts analyzed, but showed relative quantification (RQ) values four orders of magnitude lower than those obtained for the ITS(A+B) amplicon. RQ values differed significantly between body parts for the two amplicons, with testis, accessory gland and wing muscle showing threefold higher values than head, gastric cecum and hind leg. We conclude that the level of B-specific rDNA expression is extremely low even in individuals where B chromosome rDNA is not completely silenced. Bearing in mind that B chromosomes carry the largest rDNA cluster in the E. plorans genome, we also infer that the relative contribution of B chromosome rRNA genes to ribosome biogenesis is insignificant, at least in the body parts analyzed. PMID:24997085

  6. Evidence for the presence of 5S rRNA in mammalian mitochondria.

    PubMed

    Magalhães, P J; Andreu, A L; Schon, E A

    1998-09-01

    Mammalian mitochondrial ribosomes contain two prokaryotic-like rRNAs, 12S and 16S, both encoded by mitochondrial DNA. As opposed to cytosolic ribosomes, however, these ribosomes are not thought to contain 5S rRNA. For this reason, it has been unclear whether 5S rRNA, which can be detected in mitochondrial preparations, is an authentic organellar species imported from the cytosol or is merely a copurifying cytosol-derived contaminant. We now show that 5S rRNA is tightly associated with highly purified mitochondrial fractions of human and rat cells and that 5S rRNA transcripts derived from a synthetic gene transfected transiently into human cells are both expressed in vivo and present in highly purified mitochondria and mitoplasts. We conclude that 5S rRNA is imported into mammalian mitochondria, but its function there still remains to be clarified. PMID:9725900

  7. Composition of fecal microbiota of laboratory mice derived from Japanese commercial breeders using 16S rRNA gene clone libraries.

    PubMed

    Nozu, Ryoko; Ueno, Masami; Hayashimoto, Nobuhito

    2016-07-01

    The fecal microbiota of six mice derived from three Japanese commercial breeders was analyzed by using 16S rRNA gene clone libraries to construct a database for analyzing the gut microbiota of laboratory mice. The 566 clones were obtained from the clone libraries generated from the fecal DNA samples derived from BALB/c, C57BL/6N, DBA/2 and ICR mice. Among these 566 clones, there were 446 unique 16S rRNA gene sequences. When grouped at the 98% similarity level, the 446 unique sequences consisted of 103 Clostridiales, 43 Bacteroidales, 5 Lactobacillus and 3 Erysipelotricaceae, as well as sequences from 11 other phyla. PMID:26902692

  8. Composition of fecal microbiota of laboratory mice derived from Japanese commercial breeders using 16S rRNA gene clone libraries

    PubMed Central

    NOZU, Ryoko; UENO, Masami; HAYASHIMOTO, Nobuhito

    2016-01-01

    The fecal microbiota of six mice derived from three Japanese commercial breeders was analyzed by using 16S rRNA gene clone libraries to construct a database for analyzing the gut microbiota of laboratory mice. The 566 clones were obtained from the clone libraries generated from the fecal DNA samples derived from BALB/c, C57BL/6N, DBA/2 and ICR mice. Among these 566 clones, there were 446 unique 16S rRNA gene sequences. When grouped at the 98% similarity level, the 446 unique sequences consisted of 103 Clostridiales, 43 Bacteroidales, 5 Lactobacillus and 3 Erysipelotricaceae, as well as sequences from 11 other phyla. PMID:26902692

  9. Molecular analysis of the rRNA genes of Babesia spp and Ehrlichia canis detected in dogs from RibeirÃo Preto, Brazil

    PubMed Central

    Oliveira, L.P.; Cardozo, G.P.; Santos, E.V.; Mansur, M.A.B.; Donini, I.A.N.; Zissou, V.G.; Roberto, P.G.; Marins, M.

    2009-01-01

    The partial DNA sequences of the 18S rRNA gene of Babesia canis and the 16S rRNA gene of Ehrlichia canis detected in dogs from Ribeirão Preto, Brazil, were compared to sequences from other strains deposited in GenBank. The E. canis strain circulating in Ribeirão Preto is identical to other strains previously detected in the region, whereas the subspecies Babesia canis vogeli is the main Babesia strain circulating in dogs from Ribeirão Preto. PMID:24031351

  10. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns*

    PubMed Central

    Atherly, Todd; Ziemer, Cherie J

    2014-01-01

    One-hundred-and-three isolates of Bacteroides ovatus,B. thetaiotaomicron, and B. xylanisolvens were recovered from cow, goat, human, and pig fecal enrichments with cellulose or xylan/pectin. Isolates were compared using 16S rRNA gene sequencing, repetitive sequence-based polymerase chain reaction (rep-PCR), and phenotypic microarrays. Analysis of 16S rRNA gene sequences revealed high sequence identity in these Bacteroides; with distinct phylogenetic groupings by bacterial species but not host origin. Phenotypic microarray analysis demonstrated these Bacteroides shared the ability to utilize many of the same carbon substrates, without differences due to species or host origin, indicative of their broad carbohydrate fermentation abilities. Limited nitrogen substrates were utilized; in addition to ammonia, guanine, and xanthine, purine derivatives were utilized by most isolates followed by a few amino sugars. Only rep-PCR analysis demonstrated host-specific patterns, indicating that genomic changes due to coevolution with host did not occur by mutation in the 16S rRNA gene or by a gain or loss of carbohydrate utilization genes within these Bacteroides. This is the first report to indicate that host-associated genomic differences are outside of 16S rRNA gene and carbohydrate utilization genes and suggest conservation of specific bacterial species with the same functionality across mammalian hosts for this Bacteroidetes clade. PMID:24532571

  11. Detection of WWE2-related Lentisphaerae by 16S rRNA gene sequencing and fluorescence in situ hybridization in landfill leachate.

    PubMed

    Limam, Rim Driss; Bouchez, Théodore; Chouari, Rakia; Li, Tianlun; Barkallah, Insaf; Landoulsi, Ahmed; Sghir, Abdelghani

    2010-10-01

    We collected samples of anaerobic landfill leachate from municipal solid waste landfill (Vert-le-Grand, France) and constructed 16S rRNA clone libraries using primers targeting Planctomycetes and relatives (Pla46F and 1390R). Analyses of 16S rRNA gene sequences resulted in the abundant representation of WWE2-related Lentisphaerae, members of the phylum Lentisphaerae, in the clone library (98% of the retrieved sequences). Although the sequences that are phylogenetically affiliated with the cultured isolate Victivallis vadensis were identified (WWE2 subgroup II), the majority of the sequences were affiliated with an uncultured Lentisphaerae lineage (WWE2 subgroup I). We designed oligonucleotides probes targeting the specific 16S rRNA gene regions of those 2 subgroups. Fluorescence in situ hybridization confirmed the abundance of the uncultivated WWE2 subgroup I in our leachate samples. PMID:20962908

  12. Redescriptions of three trachelocercid ciliates (Protista, Ciliophora, Karyorelictea), with notes on their phylogeny based on small subunit rRNA gene sequences.

    PubMed

    Yan, Ying; Xu, Yuan; Yi, Zhenzhen; Warren, Alan

    2013-09-01

    Three trachelocercid ciliates, Kovalevaia sulcata (Kovaleva, 1966) Foissner, 1997, Trachelocerca sagitta (Müller, 1786) Ehrenberg, 1840 and Trachelocerca ditis (Wright, 1982) Foissner, 1996, isolated from two coastal habitats at Qingdao, China, were investigated using live observation and silver impregnation methods. Data on their infraciliature and morphology are supplied. The small subunit rRNA (SSU rRNA) genes of K. sulcata and Trachelocerca sagitta were sequenced for the first time. Phylogenetic analyses based on SSU rRNA gene sequence data indicate that both organisms, and the previously sequenced Trachelocerca ditis, are located within the trachelocercid assemblage and that K. sulcata is sister to an unidentified taxon forming a clade that is basal to the core trachelocercids. PMID:23847285

  13. Prevalence of 16S rRNA methylase, modifying enzyme, and extended-spectrum beta-lactamase genes among Acinetobacter baumannii isolates.

    PubMed

    Liu, Zhenru; Ling, Baodong; Zhou, Liming

    2015-08-01

    Multidrug-resistant Acinetobacter baumannii has become a worldwide problem, and methylation of 16S rRNA has recently emerged as a new mechanism of resistance to aminoglycosides, which is mediated by a newly recognized group of 16S rRNA methylases. 16S rRNA methylase confers a high-level resistance to all 4,6-substituted deoxystreptamine aminoglycosides that are currently used in clinical practice. Some of the A. baumannii isolates have been found to coproduce extended-spectrum beta-lactamases (ESBLs), contributing to their multidrug resistance. The aim of this study was to detect the determinants of the 16S rRNA methylase genes armA, rmtA, rmtB, rmtC, rmtD, rmtE, and npmA, the modifying enzyme genes aac(6')-Ib, ant(3″)-Ia, aph(3')-I, and the extended-spectrum beta-lactamase genes bla(TEM), bla(SHV), and bla(CTX-M-3) among A. baumannii isolates in northeastern Sichuan, China. Minimum inhibitory concentrations (MICs) of 21 different antimicrobial agents against the A. baumannii isolates were determined. The clinical isolates showed a high level of resistance (MIC≧256 μg/ml) to aminoglycosides, which ranged from 50·1 to 83·8%. The resistances to meropenem and imipenem, two of the beta-lactam antibiotics and the most active antibiotics against A. baumannii, were 9·1 and 8·2%, respectively. Among 60 amikacin-resistant isolates, only the 16S rRNA methylase gene armA was found to be prevalent (66·7%), but the other 16S rRNA methylase genes rmtA, rmtB, rmtC, rmtD, rmtE, and npmA were not detected. The prevalences of the modifying enzyme genes aac (6')-Ib, ant (3″)-Ia, and aph (3')-I were 51·7, 81·7, and 58·3%, respectively, which are different from a previous study in which the occurrences of these genes were 3, 64, and 72%, respectively. Among the 40 isolates that were armA-positive, the prevalences of bla(TEM), bla(SHV), and bla(CTX-M-3) genes were detected for the first time in China, and their occurrences were 45, 65, and 52·5%, respectively. In all, A

  14. Nearly Complete 28S rRNA Gene Sequences Confirm New Hypotheses of Sponge Evolution

    PubMed Central

    Thacker, Robert W.; Hill, April L.; Hill, Malcolm S.; Redmond, Niamh E.; Collins, Allen G.; Morrow, Christine C.; Spicer, Lori; Carmack, Cheryl A.; Zappe, Megan E.; Pohlmann, Deborah; Hall, Chelsea; Diaz, Maria C.; Bangalore, Purushotham V.

    2013-01-01

    The highly collaborative research sponsored by the NSF-funded Assembling the Porifera Tree of Life (PorToL) project is providing insights into some of the most difficult questions in metazoan systematics. Our understanding of phylogenetic relationships within the phylum Porifera has changed considerably with increased taxon sampling and data from additional molecular markers. PorToL researchers have falsified earlier phylogenetic hypotheses, discovered novel phylogenetic alliances, found phylogenetic homes for enigmatic taxa, and provided a more precise understanding of the evolution of skeletal features, secondary metabolites, body organization, and symbioses. Some of these exciting new discoveries are shared in the papers that form this issue of Integrative and Comparative Biology. Our analyses of over 300 nearly complete 28S ribosomal subunit gene sequences provide specific case studies that illustrate how our dataset confirms new hypotheses of sponge evolution. We recovered monophyletic clades for all 4 classes of sponges, as well as the 4 major clades of Demospongiae (Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha), but our phylogeny differs in several aspects from traditional classifications. In most major clades of sponges, families within orders appear to be paraphyletic. Although additional sampling of genes and taxa are needed to establish whether this pattern results from a lack of phylogenetic resolution or from a paraphyletic classification system, many of our results are congruent with those obtained from 18S ribosomal subunit gene sequences and complete mitochondrial genomes. These data provide further support for a revision of the traditional classification of sponges. PMID:23748742

  15. Nearly complete 28S rRNA gene sequences confirm new hypotheses of sponge evolution.

    PubMed

    Thacker, Robert W; Hill, April L; Hill, Malcolm S; Redmond, Niamh E; Collins, Allen G; Morrow, Christine C; Spicer, Lori; Carmack, Cheryl A; Zappe, Megan E; Pohlmann, Deborah; Hall, Chelsea; Diaz, Maria C; Bangalore, Purushotham V

    2013-09-01

    The highly collaborative research sponsored by the NSF-funded Assembling the Porifera Tree of Life (PorToL) project is providing insights into some of the most difficult questions in metazoan systematics. Our understanding of phylogenetic relationships within the phylum Porifera has changed considerably with increased taxon sampling and data from additional molecular markers. PorToL researchers have falsified earlier phylogenetic hypotheses, discovered novel phylogenetic alliances, found phylogenetic homes for enigmatic taxa, and provided a more precise understanding of the evolution of skeletal features, secondary metabolites, body organization, and symbioses. Some of these exciting new discoveries are shared in the papers that form this issue of Integrative and Comparative Biology. Our analyses of over 300 nearly complete 28S ribosomal subunit gene sequences provide specific case studies that illustrate how our dataset confirms new hypotheses of sponge evolution. We recovered monophyletic clades for all 4 classes of sponges, as well as the 4 major clades of Demospongiae (Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha), but our phylogeny differs in several aspects from traditional classifications. In most major clades of sponges, families within orders appear to be paraphyletic. Although additional sampling of genes and taxa are needed to establish whether this pattern results from a lack of phylogenetic resolution or from a paraphyletic classification system, many of our results are congruent with those obtained from 18S ribosomal subunit gene sequences and complete mitochondrial genomes. These data provide further support for a revision of the traditional classification of sponges. PMID:23748742

  16. Genetic variation and identification of cultivated Fallopia multiflora and its wild relatives by using chloroplast matK and 18S rRNA gene sequences.

    PubMed

    Yan, Ping; Pang, Qi-Hua; Jiao, Xu-Wen; Zhao, Xuan; Shen, Yan-Jing; Zhao, Shu-Jin

    2008-10-01

    FALLOPIA MULTIFLORA (Thunb.) Harald . has been widely and discriminatingly used in China for the study and treatment of anemia, swirl, deobstruent, pyrosis, insomnia, amnesia, atheroma and also for regulating immune functions. However, there is still confusion about the herbal drug's botanical origins and the phylogenetic relationship between the cultivars and the wild relatives. In order to develop an efficient method for identification, a molecular analysis was performed based on 18 S rRNA gene and partial MATK gene sequences. The 18 S rRNA gene sequences of F. MULTIFLORA were 1809 bp in length and were highly conserved, indicating that the cultivars and the wild F. MULTIFLORA have the same botanical origin. Based on our 18 S rRNA gene sequences analysis, F. MULTIFLORA could be easily distinguished at the DNA level from adulterants and some herbs with similar components. The MATK gene partial sequences were found to span 1271 bp. The phylogenetic relation of F. MULTIFLORA based on the MATK gene showed that all samples in this paper were divided into four clades. The sequences of the partial MATK gene had many permutations, which were related to the geographical distributions of the samples. MATK gene sequences provided valuable information for the identification of F. MULTIFLORA. New taxonomic information could be obtained to authenticate the botanical origin of the F. MULTIFLORA, the species and the medicines made of it. PMID:18759218

  17. [Molecular phylogeny of gastrotricha based on 18S rRNA genes comparison: rejection of hypothesis of relatedness with nematodes].

    PubMed

    Petrov, N B; Pegova, A N; Manylov, O G; Vladychenskaia, N S; Miuge, N S; Aleshin, V V

    2007-01-01

    Gastrotrichs are meiobenthic free-living aquatic worms whose phylogenetic and intra-group relationships remain unclear despite some attempts to resolve them on the base of morphology or molecules. In this study we analysed complete sequences of the 18S rRNA gene of 15 taxa (8 new and 7 published) to test numerous hypotheses on gastrotrich phylogeny and to verify whether controversial interrelationships from previous molecular data could be due to the short region available for analysis and the poor taxa sampling. Data were analysed using both maximum likelihood and Bayesian inference. Results obtained suggest that gastrotrichs, together with Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea and Lophotrochozoa, comprise a clade Spiralia. Statistical tests reject phylogenetic hypotheses regarding Gastrotricha as close relatives of Nematoda and other Ecdysozoa or placing them at the base of bilaterian tree close to acoels and nemertodermatides. Within Gastrotricha, Chaetonotida and Macrodasyida comprise two well supported clades. Our analysis confirmed the monophyly of the Chaetonotidae and Xenotrichulidae within Chaetonida as well as Turbanellidae and Thaumastodermatidae within Macrodasyida. Mesodasys is a sister group of the Turbanellidae, and Lepidodasyidae appears to be a polyphyletic group as Cephalodasys forms a separate lineage at the base of macrodasyids, whereas Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To infer a more reliable Gastrotricha phylogeny many species and additional genes should be involved in future analyses. PMID:17685227

  18. Establishment of a continuous culture system for Entamoeba muris and analysis of the small subunit rRNA gene.

    PubMed

    Kobayashi, S; Suzuki, J; Takeuchi, T

    2009-06-01

    We established a culture system for Entamoeba muris (MG-EM-01 strain isolated from a Mongolian gerbil) using a modified Balamuth's egg yolk infusion medium supplemented with 4% adult bovine serum and Bacteroides fragilis cocultured with Escherichia coli. Further, encystation was observed in the culture medium. The morphological characteristics of E. muris are similar to those of Entamoeba coli (E. coli); moreover, the malic isoenzyme electrophoretic band, which shows species-specific electrophoretic mobility, of E. muris had almost the same mobility as that observed with the malic isoenzyme electrophorectic band of E. coli (UZG-EC-01 strain isolated from a gorilla). We determined the small subunit rRNA (SSU-rRNA) gene sequence of the MG-EM-01 strain, and this sequence was observed to show 82.7% homology with that of the UZG-EC-01 strain. Further, the resultant phylogenetic tree for molecular taxonomy based on the SSU-rRNA genes of the 21 strains of the intestinal parasitic amoeba species indicated that the MG-EM-01 strain was most closely related to E. coli. PMID:19585892

  19. In vivo translation of a region within the rrnB 16S rRNA gene of Escherichia coli.

    PubMed Central

    Berg, K L; Squires, C L; Squires, C

    1987-01-01

    In this study we show that a segment of the Escherichia coli rrnB 16S gene can be translated in vivo. Other laboratories have previously reported that there are internal transcription and translation signals and open reading frames within the E. coli rrnB rRNA operon. Their studies revealed a translation start signal followed by a 252-base-pair open reading frame (ORF16) within the 16S gene and detected a promoter (p16) in the same general region by using in vitro RNA polymerase binding and transcription initiation assays. By using plasmid gene fusions of ORF16 to lacZ we showed that an ORF16'-'beta-galactosidase fusion protein was made in vivo. Transcripts encoding the fusion protein were expressed either from the rrnB p1p2 control region or from a hybrid trp-lac promoter (tacP), but the amount of expression was considerably less than for a lacZ control plasmid. We used fusions to the cat gene to show that p16 is one-half as active as lacP. Deletions were used to show that p16 is located within ORF16 and thus cannot promote a transcript encoding the ORF16 peptide. A comparison of sequences from different organisms shows that ORF16 and p16 lie in a highly conserved region of the procaryotic 16S RNA structure. The first 20 amino acids of ORF16 are conserved in most eubacterial and plant organellar sequences, and promoter activity has been detected in this region of the Caulobacter crescentus sequence by other workers. Images PMID:2435709

  20. Genus- and Species-Specific PCR-Based Detection of Dairy Propionibacteria in Environmental Samples by Using Primers Targeted to the Genes Encoding 16S rRNA

    PubMed Central

    Rossi, Franca; Torriani, Sandra; Dellaglio, Franco

    1999-01-01

    PCR assays with primers targeted to the genes encoding 16S rRNA were developed for detection of dairy propionibacteria. Propionibacterium thoenii specific oligonucleotide PT3 was selected after partial resequencing. Tests allowed the detection of less than 10 cells per reaction from milk and cheese and 102 cells per reaction from forage and soil. PMID:10473444

  1. Comparison of Gull Feces-specific Assays Targeting the 16S rRNA Gene of Catellicoccus Marimammalium and Streptococcus spp.

    EPA Science Inventory

    Two novel gull-specific qPCR assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR-green-based assay targeting Streptococcus spp. (i.e., gull3) and a TaqMan qPCR assay targeting Catellicoccus marimammalium (i.e., gull4). The main objectives ...

  2. Sensitivity and Specificity of a Rapid rRNA Gene Probe Assay for Simultaneous Identification of Staphylococcus aureus and Detection of mecA

    PubMed Central

    Kaplan, Shannon; Marlowe, Elizabeth M.; Hogan, James J.; Doymaz, Mehmet; Bruckner, David A.; Simor, Andrew E.

    2005-01-01

    rRNA gene sequences were used for identification and target adequacy controls in a DNA probe assay to identify isolates as Staphylococcus and, more specifically, as S. aureus within 1 hour. mecA status was simultaneously determined using a specific DNA probe. The target adequacy control guarded against false-negative mecA results. PMID:16000472

  3. Avoidance and Potential Remedy Solutions of Chimeras in Reconstructing the Phylogeny of Aphids Using the 16S rRNA Gene of Buchnera: A Case in Lachninae (Hemiptera)

    PubMed Central

    Chen, Rui; Wang, Zhe; Chen, Jing; Qiao, Ge-Xia

    2015-01-01

    It is known that PCR amplification of highly homologous genes from complex DNA mixtures can generate a significant proportion of chimeric sequences. The 16S rRNA gene is not only widely used in estimating the species diversity of endosymbionts in aphids but also used to explore the co-diversification of aphids and their endosymbionts. Thus, chimeric sequences may lead to the discovery of non-existent endosymbiont species and mislead Buchnera-based phylogenetic analysis that lead to false conclusions. In this study, a high probability (6.49%) of chimeric sequence occurrence was found in the amplified 16S rRNA gene sequences of endosymbionts from aphid species in the subfamily Lachninae. These chimeras are hybrid products of multiple parent sequences from the dominant species of endosymbionts in each corresponding host. It is difficult to identify the chimeric sequences of a new or unidentified species due to the high variability of their main parent, Buchnera aphidicola, and because the chimeric sequences can confuse the phylogenetic analysis of 16S rRNA gene sequences. These chimeras present a challenge to Buchnera-based phylogenetic research in aphids. Thus, our study strongly suggests that using appropriate methods to detect chimeric 16S rRNA sequences may avoid some false conclusions in endosymbiont-based aphid research. PMID:26307984

  4. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  5. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  6. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  7. Avoidance and Potential Remedy Solutions of Chimeras in Reconstructing the Phylogeny of Aphids Using the 16S rRNA Gene of Buchnera: A Case in Lachninae (Hemiptera).

    PubMed

    Chen, Rui; Wang, Zhe; Chen, Jing; Qiao, Ge-Xia

    2015-01-01

    It is known that PCR amplification of highly homologous genes from complex DNA mixtures can generate a significant proportion of chimeric sequences. The 16S rRNA gene is not only widely used in estimating the species diversity of endosymbionts in aphids but also used to explore the co-diversification of aphids and their endosymbionts. Thus, chimeric sequences may lead to the discovery of non-existent endosymbiont species and mislead Buchnera-based phylogenetic analysis that lead to false conclusions. In this study, a high probability (6.49%) of chimeric sequence occurrence was found in the amplified 16S rRNA gene sequences of endosymbionts from aphid species in the subfamily Lachninae. These chimeras are hybrid products of multiple parent sequences from the dominant species of endosymbionts in each corresponding host. It is difficult to identify the chimeric sequences of a new or unidentified species due to the high variability of their main parent, Buchnera aphidicola, and because the chimeric sequences can confuse the phylogenetic analysis of 16S rRNA gene sequences. These chimeras present a challenge to Buchnera-based phylogenetic research in aphids. Thus, our study strongly suggests that using appropriate methods to detect chimeric 16S rRNA sequences may avoid some false conclusions in endosymbiont-based aphid research. PMID:26307984

  8. Constitutive and Inducible Expression of the rRNA Methylase Gene erm(B) in Campylobacter

    PubMed Central

    Deng, Fengru; Shen, Jianzhong; Zhang, Maojun; Wu, Congming

    2015-01-01

    Macrolides are the antimicrobials of choice for treating human campylobacteriosis. The recent emergence of erm(B) in Campylobacter bacteria threatens the utility of this class of antibiotics. Here we report the constitutive and inducible expression of erm(B) in Campylobacter isolates derived from diarrheal patients and food-producing animals. Constitutive expression of erm(B) was associated with insertion and deletion in the regulatory region of the gene, providing the first documentation of the differential expression of erm(B) in Campylobacter bacteria. PMID:26259800

  9. Differentiation of bacterial 16S rRNA genes and intergenic regions and Mycobacterium tuberculosis katG genes by structure-specific endonuclease cleavage.

    PubMed Central

    Brow, M A; Oldenburg, M C; Lyamichev, V; Heisler, L M; Lyamicheva, N; Hall, J G; Eagan, N J; Olive, D M; Smith, L M; Fors, L; Dahlberg, J E

    1996-01-01

    We describe here a new approach for analyzing nucleic acid sequences using a structure-specific endonuclease, Cleavase I. We have applied this technique to the detection and localization of mutations associated with isoniazid resistance in Mycobacterium tuberculosis and for differentiating bacterial genera, species and strains. The technique described here is based on the observation that single strands of DNAs can assume defined conformations, which can be detected and cleaved by structure-specific endonucleases such as Cleavase I. The patterns of fragments produced are characteristic of the sequences responsible for the structure, so that each DNA has its own structural fingerprint. Amplicons, containing either a single 5'-fluorescein or 5'-tetramethyl rhodamine label were generated from a 620-bp segment of the katG gene of isoniazid-resistant and -sensitive M. tuberculosis, the 5' 350 bp of the 16S rRNA genes of Escherichia coli O157:H7, Salmonella typhimurium, Salmonella enteritidis, Salmonella arizonae, Shigella sonnei, Shigella dysenteriae, Campylobacter jejuni, staphylococcus, hominis, Staphylococcus warneri, and Staphylococcus aureus and an approximately 550-bp DNA segment comprising the intergenic region between the 16S and 23S rRNA genes of Salmonella typhimurium, Salmonella enteritidis, Salmonella arizonae, Shigella sonnei, and Shigella dysenteriae serotypes 1, 2, and 8. Changes in the structural fingerprints of DNA fragments derived from the katG genes of isoniazid-resistant M. tuberculosis isolates were clearly identified and could be mapped to the site of the actual mutation relative to the labeled end. Bland patterns which clearly differentiated bacteria to the level of genus and, in some cases, species were generated from the 16S genes. Cleavase I analysis of the intergenic regions of Salmonella and Shigella species differentiated genus, species, and serotypes. Structural fingerprinting by digestion with Cleavase I is a rapid, simple, and sensitive

  10. Comparison of potential diatom 'barcode' genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta.

    PubMed

    Guo, Liliang; Sui, Zhenghong; Zhang, Shu; Ren, Yuanyuan; Liu, Yuan

    2015-04-01

    Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome c-oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL)] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (p-distance of 1.569, 85.84% parsimony-informative sites) and COI (6.084, 82.14%), followed by the 18S rRNA gene (0.139, 57.69%), rbcL (0.120, 42.01%) and UPA (0.050, 14.97%), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and rbcL performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of Cyclotella, Skeletonema and Stephanodiscus gathered in separate clades, and were paraphyletic with those of Thalassiosira. Finally, UPA was too conserved to serve as a diatom barcode. PMID:25604341

  11. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys

    SciTech Connect

    Walters , William; Hyde, Embriette R.; Berg-Lyons, Donna; Ackermann, Gail; Humphrey, Greg; Parada , Alma; Gilbert, Jack A.; Jansson, Janet K.; Caporaso, Greg; Fuhrman, Jed A.; Apprill, Amy; Knight, Rob

    2015-12-22

    Designing primers for PCR-based taxonomic surveys that amplify a broad range of phylotypes in varied community samples is a difficult challenge, and the comparability of datasets amplified with varied primers requires attention. Here we examine the performance of modified 16S rRNA gene and ITS primers for archaea/bacteria and fungi, respectively, with non-aquatic samples. We moved primer barcodes to the 5’-end, allowing for a range of different 3’ primer pairings, such as the 515f/926r primer pair, which amplifies variable regions 4-5 of the 16S rRNA gene. We additionally demonstrate that modifications to the 515f/806r (variable region 4) 16S primer pair, which improves detection of Thaumarchaeota and SAR11 in marine samples, do not degrade performance on taxa already amplified effectively by the original primer set. Alterations to the fungal ITS primers did result in differential but overall improved performance compared to the original primers. In both cases, the improved primers should be widely adopted for amplicon studies.

  12. Identification of polybacterial communities in patients with postoperative, posttraumatic, and endogenous endophthalmitis through 16S rRNA gene libraries.

    PubMed

    Jayasudha, Rajagopalaboopathi; Narendran, Venkatapathy; Manikandan, Palanisamy; Prabagaran, Solai Ramatchandirane

    2014-05-01

    Endophthalmitis is a potential vision-threatening complication following surgical procedures (postoperative endophthalmitis [POE]), trauma (posttraumatic endophthalmitis [PTE]), and bacteremic seeding of the eye from a distant infection site (endogenous endophthalmitis [EE]). Several studies have revealed the polybacterial characteristics of endophthalmitis, which make the administration of antibiotics to treat the disease challenging. However, until now, the polybacterial communities of POE, PTE, and EE have not been precisely studied. Hence, the present study was designed to identify the bacterial community of endophthalmitis through 16S rRNA gene libraries. Of the 40 intraocular samples tested, 30 libraries were constructed with bacterial nested-PCR-positive samples. The obtained recombinant clones were screened through amplified rRNA gene restriction analysis (ARDRA) to identify unique clones. The multiple types of ARDRA patterns (P=0.345) and diverse bacterial sequences (P=0.277) within the libraries revealed the polybacterial nature of infection in POE, PTE, and EE. Moreover, to the best of our knowledge, this is the first report on polybacterial infection in EE. Gram-positive bacteria, including Bacillus spp. (n=19), Streptococcus spp. (n=18), Staphylococcus spp. (n=6), Exiguobacterium spp. (n=3), Gemella spp. (n=2), Enterococcus spp. (n=2), a Lysinibacillus sp. (n=1), a Clostridium sp. (n=1), and a Nocardia sp. (n=1), and Gram-negative bacteria, including Serratia spp. (n=18), Pseudomonas spp. (n=10), Enterobacter spp. (n=8), Acinetobacter spp. (n=3), Pantoea spp. (n=3), a Haemophilus sp. (n=1), and a Massilia sp. (n=1), were identified. Interestingly, among them, 10 bacterial species were not previously reported to be associated with endophthalmitis or other ocular infections. Besides, the presence of 4 unidentifiable clones suggests the possibility of novel organisms that might cause eye infections. Therefore, it is recommended that, in addition to the

  13. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus).

    PubMed

    Stenger, Brianna L S; Clark, Mark E; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W; Dyer, Neil W; Schultz, Jessie L; McEvoy, John M

    2015-06-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  14. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)1

    PubMed Central

    Stenger, Brianna L.S.; Clark, Mark E.; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W.; Dyer, Neil W.; Schultz, Jessie L.; McEvoy, John M.

    2015-01-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89–95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73–5.04 μm) × 3.94 μm (3.50–4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  15. Identification of Polybacterial Communities in Patients with Postoperative, Posttraumatic, and Endogenous Endophthalmitis through 16S rRNA Gene Libraries

    PubMed Central

    Jayasudha, Rajagopalaboopathi; Narendran, Venkatapathy; Manikandan, Palanisamy

    2014-01-01

    Endophthalmitis is a potential vision-threatening complication following surgical procedures (postoperative endophthalmitis [POE]), trauma (posttraumatic endophthalmitis [PTE]), and bacteremic seeding of the eye from a distant infection site (endogenous endophthalmitis [EE]). Several studies have revealed the polybacterial characteristics of endophthalmitis, which make the administration of antibiotics to treat the disease challenging. However, until now, the polybacterial communities of POE, PTE, and EE have not been precisely studied. Hence, the present study was designed to identify the bacterial community of endophthalmitis through 16S rRNA gene libraries. Of the 40 intraocular samples tested, 30 libraries were constructed with bacterial nested-PCR-positive samples. The obtained recombinant clones were screened through amplified rRNA gene restriction analysis (ARDRA) to identify unique clones. The multiple types of ARDRA patterns (P = 0.345) and diverse bacterial sequences (P = 0.277) within the libraries revealed the polybacterial nature of infection in POE, PTE, and EE. Moreover, to the best of our knowledge, this is the first report on polybacterial infection in EE. Gram-positive bacteria, including Bacillus spp. (n = 19), Streptococcus spp. (n = 18), Staphylococcus spp. (n = 6), Exiguobacterium spp. (n = 3), Gemella spp. (n = 2), Enterococcus spp. (n = 2), a Lysinibacillus sp. (n = 1), a Clostridium sp. (n = 1), and a Nocardia sp. (n = 1), and Gram-negative bacteria, including Serratia spp. (n = 18), Pseudomonas spp. (n = 10), Enterobacter spp. (n = 8), Acinetobacter spp. (n = 3), Pantoea spp. (n = 3), a Haemophilus sp. (n = 1), and a Massilia sp. (n = 1), were identified. Interestingly, among them, 10 bacterial species were not previously reported to be associated with endophthalmitis or other ocular infections. Besides, the presence of 4 unidentifiable clones suggests the possibility of novel organisms that might cause eye infections. Therefore, it is

  16. Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes.

    PubMed Central

    Escalante, A A; Ayala, F J

    1995-01-01

    We have explored the evolutionary history of the Apicomplexa and two related protistan phyla, Dinozoa and Ciliophora, by comparing the nucleotide sequences of small subunit ribosomal RNA genes. We conclude that the Plasmodium lineage, to which the malarial parasites belong, diverged from other apicomplexan lineages (piroplasmids and coccidians) several hundred million years ago, perhaps even before the Cambrian. The Plasmodium radiation, which gave rise to several species parasitic to humans, occurred approximately 129 million years ago; Plasmodium parasitism of humans has independently arisen several times. The origin of apicomplexans (Plasmodium), dinoflagellates, and ciliates may be > 1 billion years old, perhaps older than the three multicellular kingdoms of animals, plants, and fungi. Digenetic parasitism independently evolved several times in the Apicomplexa. PMID:7597031

  17. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.

    PubMed

    Zhang, Jun; Zhao, Shengguo; Zhang, Yangdong; Sun, Peng; Bu, Dengpan; Wang, Jiaqi

    2015-12-01

    Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage. PMID:26319789

  18. First report on the bacterial diversity in the distal gut of dholes (Cuon alpinus) by using 16S rRNA gene sequences analysis.

    PubMed

    Chen, Lei; Zhang, Honghai; Liu, Guangshuai; Sha, Weilai

    2016-05-01

    The aim of this study was to investigate the bacterial community in the distal gut of dholes (Cuon alpinus) based on the analysis of bacterial 16S rRNA gene sequences. Fecal samples were collected from five healthy unrelated dholes captured from Qilian Mountain in Gansu province of China. The diversity of the fecal bacteria community was investigated by constructing a polymerase chain reaction (PCR)-amplified 16S rRNA gene clone library. Bacterial 16S rRNA gene was amplified by using universal bacterial primers 27F and 1492R. A total of 275 chimera-free near full length 16S rRNA gene sequences were collected, and 78 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified according to the 97 % sequence similarity. Forty-two OTUs (53.8 %) showed less than 98 % sequence similarity to 16S rRNA gene sequences reported previously. Phylogenetic analysis demonstrated that dhole bacterial community comprised five different phyla, with the majority of sequences being classified within the phylum Bacteroidetes (64.7 %), followed by Firmicutes (29.8 %), Fusobacteria (4.7 %),Proteobacteria (0.4 %), and Actinobacteria (0.4 %). The only order Bacteroidales in phylum Bacteroidetes was the most abundant bacterial group in the intestinal bacterial community of dholes. Firmicutes and Bacteroidetes were the two most diverse bacterial phyla with 46.2 and 44.9 % of OTUs contained, respectively. Bacteroidales and Clostridiales were the two most diverse bacterial orders that contained 44.9 and 39.7 % of OTUs, respectively. PMID:26423781

  19. Automated Identification of Medically Important Bacteria by 16S rRNA Gene Sequencing Using a Novel Comprehensive Database, 16SpathDB▿

    PubMed Central

    Woo, Patrick C. Y.; Teng, Jade L. L.; Yeung, Juilian M. Y.; Tse, Herman; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2011-01-01

    Despite the increasing use of 16S rRNA gene sequencing, interpretation of 16S rRNA gene sequence results is one of the most difficult problems faced by clinical microbiologists and technicians. To overcome the problems we encountered in the existing databases during 16S rRNA gene sequence interpretation, we built a comprehensive database, 16SpathDB (http://147.8.74.24/16SpathDB) based on the 16S rRNA gene sequences of all medically important bacteria listed in the Manual of Clinical Microbiology and evaluated its use for automated identification of these bacteria. Among 91 nonduplicated bacterial isolates collected in our clinical microbiology laboratory, 71 (78%) were reported by 16SpathDB as a single bacterial species having >98.0% nucleotide identity with the query sequence, 19 (20.9%) were reported as more than one bacterial species having >98.0% nucleotide identity with the query sequence, and 1 (1.1%) was reported as no match. For the 71 bacterial isolates reported as a single bacterial species, all results were identical to their true identities as determined by a polyphasic approach. For the 19 bacterial isolates reported as more than one bacterial species, all results contained their true identities as determined by a polyphasic approach and all of them had their true identities as the “best match in 16SpathDB.” For the isolate (Gordonibacter pamelaeae) reported as no match, the bacterium has never been reported to be associated with human disease and was not included in the Manual of Clinical Microbiology. 16SpathDB is an automated, user-friendly, efficient, accurate, and regularly updated database for 16S rRNA gene sequence interpretation in clinical microbiology laboratories. PMID:21389154

  20. Pseudomonas sp. strain CA5 (a selenite-reducing bacterium) 16S rRNA gene complete sequence. National Institute of Health, National Center for Biotechnology Information, GenBank sequence. Accession FJ422810.1.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used 1321 base pair 16S rRNA gene sequence methods to confirm the phylogenetic position of a soil isolate as a bacterium belonging to the genus Pesudomonas sp. Morphological, biochemical characteristics, and fatty acid profiles are consistent with the 16S rRNA gene sequence identification...

  1. Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus clausii spp.

    PubMed

    Kageyama, Yasushi; Takaki, Yoshihiro; Shimamura, Shigeru; Nishi, Shinro; Nogi, Yuichi; Uchimura, Kohsuke; Kobayashi, Tohru; Hitomi, Jun; Ozaki, Katsuya; Kawai, Shuji; Ito, Susumu; Horikoshi, Koki

    2007-07-01

    Alkaliphilic Bacillus sp. strain KSM-K16, which produces high-alkaline M-protease, was characterized phenotypically, biochemically and genetically. This strain was identified as Bacillus clausii based on the results of taxonomic studies, including sequencing of the 16S rRNA gene and DNA-DNA hybridization. Seven rRNA operons in the genome were identified by pulsed-field gel electrophoresis. Sequencing of cloned 16S rRNA genes revealed two distinct types of variable region V1. Moreover, some cloned 16S rRNA genes in some of the reference strains of B. clausii had a V1 region of yet another type. The B. clausii strains could clearly be divided into at least two subgroups based on the frequencies of the types of cloned V1 sequence. Bacillus sp. strain KSM-K16 was found to be in a different phylogenetic position from other high-alkaline protease-producing strains of B. clausii. PMID:17429572

  2. 16S rRNA gene mutations associated with decreased susceptibility to tetracycline in Mycoplasma bovis.

    PubMed

    Amram, E; Mikula, I; Schnee, C; Ayling, R D; Nicholas, R A J; Rosales, R S; Harrus, S; Lysnyansky, I

    2015-02-01

    Mycoplasma bovis isolates with decreased susceptibilities to tetracyclines are increasingly reported worldwide. The acquired molecular mechanisms associated with this phenomenon were investigated in 70 clinical isolates of M. bovis. Sequence analysis of the two 16S rRNA-encoding genes (rrs3 and rrs4 alleles) containing the primary binding pocket for tetracycline (Tet-1 site) was performed on isolates with tetracycline hydrochloride MICs of 0.125 to 16 μg/ml. Mutations at positions A965T, A967T/C (Escherichia coli numbering) of helix 31, U1199C of helix 34, and G1058A/C were identified. Decreased susceptibilities to tetracycline (MICs, ≥2 μg/ml) were associated with mutations present at two (A965 and A967) or three positions (A965, A967, and G1058) of the two rrs alleles. No tet(M), tet(O), or tet(L) determinants were found in the genome of any of the 70 M. bovis isolates. The data presented correlate (P<0.0001) the mutations identified in the Tet-1 site of clinical isolates of M. bovis with decreased susceptibility to tetracycline. PMID:25403668

  3. 16S rRNA Gene Mutations Associated with Decreased Susceptibility to Tetracycline in Mycoplasma bovis

    PubMed Central

    Amram, E.; Mikula, I.; Schnee, C.; Ayling, R. D.; Nicholas, R. A. J.; Rosales, R. S.; Harrus, S.

    2014-01-01

    Mycoplasma bovis isolates with decreased susceptibilities to tetracyclines are increasingly reported worldwide. The acquired molecular mechanisms associated with this phenomenon were investigated in 70 clinical isolates of M. bovis. Sequence analysis of the two 16S rRNA-encoding genes (rrs3 and rrs4 alleles) containing the primary binding pocket for tetracycline (Tet-1 site) was performed on isolates with tetracycline hydrochloride MICs of 0.125 to 16 μg/ml. Mutations at positions A965T, A967T/C (Escherichia coli numbering) of helix 31, U1199C of helix 34, and G1058A/C were identified. Decreased susceptibilities to tetracycline (MICs, ≥2 μg/ml) were associated with mutations present at two (A965 and A967) or three positions (A965, A967, and G1058) of the two rrs alleles. No tet(M), tet(O), or tet(L) determinants were found in the genome of any of the 70 M. bovis isolates. The data presented correlate (P < 0.0001) the mutations identified in the Tet-1 site of clinical isolates of M. bovis with decreased susceptibility to tetracycline. PMID:25403668

  4. Characterization of Mycobacterium leprae Genotypes in China--Identification of a New Polymorphism C251T in the 16S rRNA Gene.

    PubMed

    Yuan, Youhua; Wen, Yan; You, Yuangang; Xing, Yan; Li, Huanying; Weng, Xiaoman; Wu, Nan; Liu, Shuang; Zhang, Shanshan; Zhang, Wenhong; Zhang, Ying

    2015-01-01

    Leprosy continues to be prevalent in some mountainous regions of China, and genotypes of leprosy strains endemic to the country are not known. Mycobacterium lepromatosis is a new species that was discovered in Mexico in 2008, and it remains unclear whether this species exists in China. Here, we conducted PCR- restriction fragment length polymorphism (RFLP) analysis to classify genotypes of 85 DNA samples collected from patients from 18 different provinces. All 171 DNA samples from skin biopsies of leprosy patients were tested for the presence of Mycobacterium leprae and Mycobacterium lepromatosis by amplifying the 16S rRNA gene using nested PCR, followed by DNA sequencing. The new species M. lepromatosis was not found among the 171 specimens from leprosy patients in 22 provinces in China. However, we found three SNP genotypes among 85 leprosy patients. A mutation at C251T in the 16S rRNA gene was found in 76% of the strains. We also found that the strains that showed the 16S rRNA C251T mutation belonged to SNP type 3, whereas strains without the point mutation belonged to SNP type 1. The SNP type 3 leprosy strains were observed in patients from both the inner and coastal regions of China, but the SNP type 1 strains were focused only in the coastal region. This indicated that the SNP type 3 leprosy strains were more prevalent than the SNP type 1 strains in China. In addition, the 16S rRNA gene sequence mutation at C251T also indicated a difference in the geographical distribution of the strains. To our knowledge, this is the first report of a new polymorphism in 16S rRNA gene in M. leprae in China. Our findings shed light on the prevalent genotypes and provide insight about leprosy transmission that are important for leprosy control in China. PMID:26196543

  5. Characterization of Mycobacterium leprae Genotypes in China—Identification of a New Polymorphism C251T in the 16S rRNA Gene

    PubMed Central

    You, Yuangang; Xing, Yan; Li, Huanying; Weng, Xiaoman; Wu, Nan; Liu, Shuang; Zhang, Shanshan; Zhang, Wenhong; Zhang, Ying

    2015-01-01

    Leprosy continues to be prevalent in some mountainous regions of China, and genotypes of leprosy strains endemic to the country are not known. Mycobacterium lepromatosis is a new species that was discovered in Mexico in 2008, and it remains unclear whether this species exists in China. Here, we conducted PCR- restriction fragment length polymorphism (RFLP) analysis to classify genotypes of 85 DNA samples collected from patients from 18 different provinces. All 171 DNA samples from skin biopsies of leprosy patients were tested for the presence of Mycobacterium leprae and Mycobacterium lepromatosis by amplifying the 16S rRNA gene using nested PCR, followed by DNA sequencing. The new species M. lepromatosis was not found among the 171 specimens from leprosy patients in 22 provinces in China. However, we found three SNP genotypes among 85 leprosy patients. A mutation at C251T in the 16S rRNA gene was found in 76% of the strains. We also found that the strains that showed the 16S rRNA C251T mutation belonged to SNP type 3, whereas strains without the point mutation belonged to SNP type 1. The SNP type 3 leprosy strains were observed in patients from both the inner and coastal regions of China, but the SNP type 1 strains were focused only in the coastal region. This indicated that the SNP type 3 leprosy strains were more prevalent than the SNP type 1 strains in China. In addition, the 16S rRNA gene sequence mutation at C251T also indicated a difference in the geographical distribution of the strains. To our knowledge, this is the first report of a new polymorphism in 16S rRNA gene in M. leprae in China. Our findings shed light on the prevalent genotypes and provide insight about leprosy transmission that are important for leprosy control in China. PMID:26196543

  6. Extremely Acidophilic Protists from Acid Mine Drainage Host Rickettsiales-Lineage Endosymbionts That Have Intervening Sequences in Their 16S rRNA Genes

    PubMed Central

    Baker, Brett J.; Hugenholtz, Philip; Dawson, Scott C.; Banfield, Jillian F.

    2003-01-01

    During a molecular phylogenetic survey of extremely acidic (pH < 1), metal-rich acid mine drainage habitats in the Richmond Mine at Iron Mountain, Calif., we detected 16S rRNA gene sequences of a novel bacterial group belonging to the order Rickettsiales in the Alphaproteobacteria. The closest known relatives of this group (92% 16S rRNA gene sequence identity) are endosymbionts of the protist Acanthamoeba. Oligonucleotide 16S rRNA probes were designed and used to observe members of this group within acidophilic protists. To improve visualization of eukaryotic populations in the acid mine drainage samples, broad-specificity probes for eukaryotes were redesigned and combined to highlight this component of the acid mine drainage community. Approximately 4% of protists in the acid mine drainage samples contained endosymbionts. Measurements of internal pH of the protists showed that their cytosol is close to neutral, indicating that the endosymbionts may be neutrophilic. The endosymbionts had a conserved 273-nucleotide intervening sequence (IVS) in variable region V1 of their 16S rRNA genes. The IVS does not match any sequence in current databases, but the predicted secondary structure forms well-defined stem loops. IVSs are uncommon in rRNA genes and appear to be confined to bacteria living in close association with eukaryotes. Based on the phylogenetic novelty of the endosymbiont sequences and initial culture-independent characterization, we propose the name “Candidatus Captivus acidiprotistae.” To our knowledge, this is the first report of an endosymbiotic relationship in an extremely acidic habitat. PMID:12957940

  7. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes

    PubMed Central

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-01-01

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future. PMID:26404329

  8. Bacterial communities in two Antarctic ice cores analyzed by 16S rRNA gene sequencing analysis

    NASA Astrophysics Data System (ADS)

    Segawa, Takahiro; Ushida, Kazunari; Narita, Hideki; Kanda, Hiroshi; Kohshima, Shiro

    2010-08-01

    Antarctic ice cores could preserve ancient airborne microorganisms. We examined bacteria in two Antarctic ice core samples, an interglacial age sample from Mizuho Base and a glacial age sample from the Yamato Mountains, by 16S rRNA gene sequencing analysis. Bacterial density, the number of bacterial OTUs and Simpson’s diversity index was larger in the Mizuho sample than in the Yamato sample. The 16S rDNA clone library from the Mizuho sample was dominated by the phylum Firmicutes, while the large part of that from the Yamato sample was composed of the Gamma proteobacteria group. Major sources of these identified bacteria estimated from their database records also differed between the samples: in the Mizuho sample bacterial species recorded from animals were higher than that of the Yamato sample, while in the Yamato sample bacteria from aquatic and snow-ice environments were higher than that of the Mizuho sample. The results suggest that these bacteria were past airborne bacteria that would vary in density, diversity and species composition depending on global environmental change. Our results imply that bacteria in Antarctic ice cores could be used as new environmental markers for past environmental studies.

  9. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    PubMed

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data. PMID:24245591

  10. Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing

    PubMed Central

    Pajarillo, Edward Alain B.; Chae, Jong Pyo; Balolong, Marilen P.; Kim, Hyeun Bum; Seo, Kang-Seok; Kang, Dae-Kyung

    2015-01-01

    This study characterized the fecal bacterial community structure and inter-individual variation in 30-week-old Duroc pigs, which are known for their excellent meat quality. Pyrosequencing of the V1–V3 hypervariable regions of the 16S rRNA genes generated 108,254 valid reads and 508 operational taxonomic units at a 95% identity cut-off (genus level). Bacterial diversity and species richness as measured by the Shannon diversity index were significantly greater than those reported previously using denaturation gradient gel electrophoresis; thus, this study provides substantial information related to both known bacteria and the untapped portion of unclassified bacteria in the population. The bacterial composition of Duroc pig fecal samples was investigated at the phylum, class, family, and genus levels. Firmicutes and Bacteroidetes predominated at the phylum level, while Clostridia and Bacteroidia were most abundant at the class level. This study also detected prominent inter-individual variation starting at the family level. Among the core microbiome, which was observed at the genus level, Prevotella was consistently dominant, as well as a bacterial phylotype related to Oscillibacter valericigenes, a valerate producer. This study found high bacterial diversity and compositional variation among individuals of the same breed line, as well as high abundance of unclassified bacterial phylotypes that may have important functions in the growth performance of Duroc pigs. PMID:25656184