Science.gov

Sample records for 130nm hybrid pixel

  1. Hybrid Pixel Detectors for gamma/X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  2. From hybrid to CMOS pixels ... a possibility for LHC's pixel future?

    NASA Astrophysics Data System (ADS)

    Wermes, N.

    2015-12-01

    Hybrid pixel detectors have been invented for the LHC to make tracking and vertexing possible at all in LHC's radiation intense environment. The LHC pixel detectors have meanwhile very successfully fulfilled their promises and R&D for the planned HL-LHC upgrade is in full swing, targeting even higher ionising doses and non-ionising fluences. In terms of rate and radiation tolerance hybrid pixels are unrivaled. But they have disadvantages as well, most notably material thickness, production complexity, and cost. Meanwhile also active pixel sensors (DEPFET, MAPS) have become real pixel detectors but they would by far not stand the rates and radiation faced from HL-LHC. New MAPS developments, so-called DMAPS (depleted MAPS) which are full CMOS-pixel structures with charge collection in a depleted region have come in the R&D focus for pixels at high rate/radiation levels. This goal can perhaps be realised exploiting HV technologies, high ohmic substrates and/or SOI based technologies. The paper covers the main ideas and some encouraging results from prototyping R&D, not hiding the difficulties.

  3. The TDCpix readout ASIC: A 75 ps resolution timing front-end for the NA62 Gigatracker hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Kluge, A.; Aglieri Rinella, G.; Bonacini, S.; Jarron, P.; Kaplon, J.; Morel, M.; Noy, M.; Perktold, L.; Poltorak, K.

    2013-12-01

    The TDCpix is a novel pixel readout ASIC for the NA62 Gigatracker detector. NA62 is a new experiment being installed at the CERN Super Proton Synchrotron. Its Gigatracker detector shall provide on-beam tracking and time stamping of individual particles with a time resolution of 150 ps rms. It will consist of three tracking stations, each with one hybrid pixel sensor. The peak flow of particles crossing the detector modules reaches 1.27 MHz/mm2 for a total rate of about 0.75 GHz. Ten TDCpix chips will be bump-bonded to every silicon pixel sensor. Each chip shall perform time stamping of 100 M particle hits per second with a detection efficiency above 99% and a timing accuracy better than 200 ps rms for an overall three-station-setup time resolution of better than 150 ps. The TDCpix chip has been designed in a 130 nm CMOS technology. It will feature 45×40 square pixels of 300×300 μm2 and a complex End of Column peripheral region including an array of TDCs based on DLLs, four high speed serializers, a low-jitter PLL, readout and control circuits. This contribution will describe the complete design of the final TDCpix ASIC. It will discuss design choices, the challenges faced and some of the lessons learned. Furthermore, experimental results from the testing of circuit prototypes will be presented. These demonstrate the achievement of key performance figures such as a time resolution of the processing chain of 75 ps rms with a laser sent to the center of the pixel and the capability of time stamping charged particles with an overall resolution below 200 ps rms.

  4. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    PubMed Central

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-01-01

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275

  5. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    PubMed

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-01-01

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275

  6. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  7. A germanium hybrid pixel detector with 55μm pixel size and 65,000 channels

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Struth, B.; Hirsemann, H.; Sarajlic, M.; Smoljanin, S.; Zuvic, M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M.; Graafsma, H.

    2014-12-01

    Hybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available. A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.

  8. Imaging performance of the hybrid pixel detectors XPAD3-S

    NASA Astrophysics Data System (ADS)

    Brunner, F. Cassol; Clemens, J. C.; Hemmer, C.; Morel, C.

    2009-03-01

    Hybrid pixel detectors, originally developed for tracking particles in high-energy physics experiments, have recently been used in material sciences and macromolecular crystallography. Their capability to count single photons and to apply a threshold on the photon energy suggests that they could be optimal digital x-ray detectors in low energy beams such as for small animal computed tomography (CT). To investigate this issue, we have studied the imaging performance of photon counting hybrid pixel detectors based on the XPAD3-S chip. Two detectors are considered, connected either to a Si or to a CdTe sensor, the latter being of interest for its higher efficiency. Both a standard 'International Electrotechnical Commission' (IEC) mammography beam and a beam used for mouse CT results published in the literature are employed. The detector stability, linearity and noise are investigated as a function of the dose for several imaging exposures (~0.1-400 µGy). The perfect linearity of both detectors is confirmed, but an increase in internal noise for counting statistics higher than ~5000 photons has been found, corresponding to exposures above ~110 µGy and ~50 µGy for the Si and CdTe sensors, respectively. The noise power spectrum (NPS), the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are then measured for two energy threshold configurations (5 keV and 18 keV) and three doses (~3, 30 and 300 µGy), in order to obtain a complete estimation of the detector performances. In general, the CdTe sensor shows a clear superiority with a maximal DQE(0) of ~1, thanks to its high efficiency (~100%). The DQE of the Si sensor is more dependent on the radiation quality, due to the energy dependence of its efficiency its maximum is ~0.4 with respect to the softer radiation. Finally, we compare the XPAD3-S DQE with published curves of other digital devices in a similar radiation condition. The XPAD3-S/CdTe detector appears to be the best with the highest

  9. Development of a low power Delay-Locked Loop in two 130 nm CMOS technologies

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moron, J.; Swientek, K.

    2016-02-01

    The design and measurement results of two low power DLL prototypes for applications in particle physics readout systems are presented. The DLLs were fabricated in two different 130 nm CMOS technologies, called process A and process B, giving the opportunity to compare these two CMOS processes. Both circuits generate 64 uniform clock phases and operate at similar frequency range, from 20 MHz up to 60 MHz (10 MHz - 90 MHz in process B). The period jitter of both DLLs is in the range 2.5 ps - 12.1 ps (RMS) and depends on the selected output phase. The complete DLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption of around 0.7 mW at typical 40 MHz input. The DLL prototype, designed in process A, occupies 680 μm × 210 μm, while the same circuit designed in process B occupies 430 μm × 190 μm.

  10. Characterization of optical proximity matching for 130-nm node gate line width

    NASA Astrophysics Data System (ADS)

    Zheng, Sandra; Zhang, Gary; Wang, ChangAn; Detweiler, Shangting F.

    2003-06-01

    As IC density shrinks based on Moore"s law, optical lithography continually is scaled to print ever-smaller features by using resolution enhancement techniques such as phase shift mask, optical proximity correction (OPC), off-axis illumination and sub-resolution assistant features. OPC has been playing a key role to maximize the overlapping process window through pitch in the sub-wavelength optical lithography. As an important cost control measure, one general OPC model is applied to the full exposure field across multiple scanners. To implement this technique, optical proximity matching of line width across the field and across multiple tools turns out to be very crucial particularly at gate pattern. In addition, it is very important to obtain reliable critical dimension (CD) data sets with low noise level and high accuracy from the metrology tool. Otherwise, extracting the real scanner fingerprint in term of CD can not be achieved with precision in the order of 1nm~2nm. Scatterometry CD measurements have demonstrated excellent results to overcome this problem. The methodology of Scatterometry is emerging as one of the best metrology tool candidates in terms of gate line width control for technology nodes beyond 130nm. This paper investigates the sources of error that consume the CD budget of optical proximity matching for line through pitch (LTP). The study focuses on the 130nm technology node and uses experimental data and Prolith resist vector model based simulations. Scatterometer CD measurements of LTP are used for the first time and effectively correlated to lens aberrations and effective partial coherence (EPC) measurements which were extracted by Litel In-situ Interferometer (ISI) and Source Metrology Instrument (SMI). Implications of optical proximity matching are also discussed for future technology nodes. From the results, the paper also demonstrates the efficacy of scatterometer line through pitch measurements for OPC characterization.

  11. Detector apparatus having a hybrid pixel-waveform readout system

    SciTech Connect

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  12. 130-nm reticle inspection using multibeam UV-wavelength database inspection

    NASA Astrophysics Data System (ADS)

    Aquino, Christopher M.; Schlaffer, Robert

    2002-07-01

    The TeraStar family of reticle inspection systems were introduced in 2000 with die-to-die and STARlightT capability. These tools set the standard for high-resolution reticle inspection for the 130 nm design rule and below. The latest addition to the TeraStar family is the TeraStar SLF77, which extends the tool platform to include die-to-database inspection capability. Sensitivity for Chrome on Glass is 100 nm with much greater tolerance for inspecting aggressive OPC features such as serifs and assist lines. Many advanced reticles that are not inspectable on previous generation inspection tools are all inspectable on the TeraStar SLF77. Data prep times and file structure have been significantly improved with the average prep time being less than 10 percent of the 365UV-HR and average output file size less than 25 percent of the GigaPrep. The TeraStar SLF77 incorporates all the features of the TeraStar family such as triple-beam optics and TeraPro HP High Productivity Modes with the ability to run STARlight inspections concurrently with either die-to-die or die-to-database pattern inspections. Advanced registration algorithms accommodate subtle plate and machine errors to provide high sensitivity with low false detections. Advanced image overlay inspects small lines and OPC features and is very independent of defect shape and location. The TeraStar SLF77 has removed the barriers that existed with previous generation database inspection tools and made advanced reticle die-to-database inspection cost effective. Last October, KLA-Tencor introduced the TeraStar SLF77 and the three beta sites have recently completed beta evaluation. Here we present the first results from the use of the TeraStar in a production environment triple beam die-to-database inspection system. We have also shipped more than ten systems to customers worldwide. This paper describes the implementation of productivity improvements at the beta sites, performance on 130nm node customer product reticles

  13. Recent Developments of HEP Pixel Detector Readout Chips

    NASA Astrophysics Data System (ADS)

    Caminada, Lea

    This article reviews the development of readout integrated circuits for hybrid pixel particle physics detectors. The 250-nm feature size chips in the presently operating ATLAS and CMS experiments are compared with the current state of the art in 130-nm feature size represented by the FE-I4 chip that will be used to add a new beam pipe layer for the ATLAS experiment in 2013 and the upgrade options of the CMS pixel readout chip. This includes a discussion of the array and pixel size, analog performance, readout architecture, power consumption, power distribution options and radiation hardness. Finally, recent work in 65-nm feature size as a means to continue the evolution of readout chip technology towards smaller feature size, higher rate, and lower power is presented.

  14. A history of hybrid pixel detectors, from high energy physics to medical imaging

    NASA Astrophysics Data System (ADS)

    Delpierre, P.

    2014-05-01

    The aim of this paper is to describe the development of hybrid pixel detectors from the origin to the application on medical imaging. We are going to recall the need for fast 2D detectors in the high energy physics experiments and to follow the different pixel electronic circuits created to satisfy this demand. The adaptation of these circuits for X-rays will be presented as well as their industrialization. Today, a number of applications are open for these cameras, particularly for biomedical imaging applications. Some developments for clinical CT will also be shown.

  15. Cryogenic Lifetime Studies of 130 nm and 65 nm CMOS Technologies for High-Energy Physics Experiments

    SciTech Connect

    Hoff, James R.; Deptuch, G. W.; Wu, Guoying; Gui, Ping

    2015-06-04

    The Long Baseline Neutrino Facility intends to use unprecedented volumes of liquid argon to fill a time projection chamber in an underground facility. Research is under way to place the electronics inside the cryostat. For reasons of efficiency and economics, the lifetimes of these circuits must be well in excess of 20 years. The principle mechanism for lifetime degradation of MOSFET devices and circuits operating at cryogenic temperatures is hot carrier degradation. Choosing a process technology that is, as much as possible, immune to such degradation and developing design techniques to avoid exposure to such damage are the goals. This, then, requires careful investigation and a basic understanding of the mechanisms that underlie hot carrier degradation and the secondary effects they cause in circuits. In this work, commercially available 130 nm and 65 nm nMOS transistors operating at cryogenic temperatures are investigated. Our results show that both technologies achieve the lifetimes required by the experiment. Minimal design changes are necessary in the case of the 130 nm process and no changes whatsoever are necessary for the 65 nm process.

  16. A novel pixel design with hybrid type isolation scheme for low dark current in CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Choi, Sung Ho; Kim, Yi Tae; Oh, Min Seok; Park, Young Hwan; Cho, Jeong Jin; Jang, Young Heub; Han, Hyung Jun; Choi, Jong Won; Park, Ho Woo; Jung, Sang Il; Oh, Hoon Sang; Ahn, Jung Chak; Goto, Hiroshige; Choi, Chi Young; Roh, Yonghan

    2013-02-01

    New isolation scheme for CMOS image sensor pixel is proposed and its improved dark current performance is reported. It is well known that shallow trench isolation (STI) is one of major sources of dark current in imager pixel due to the existence of interfacial defects at STI/Si interface. On the account STI-free structure over the whole pixel area was previously reported for reducing dark current. As the size of pixel pitch is shrunk, however, it becomes increasingly difficult to isolate in-pixel transistors electrically without STI. In this work, we implemented hybrid type isolation scheme of removing STI around photodiode to suppress the dark current and remaining STI near transistors to guarantee the electrical isolation of transistors in pixel. It was successfully achieved that the dark current was significantly reduced by removing the STI around the photodiode together with normal operation of in-pixel transistors.

  17. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    SciTech Connect

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, E.; Moreno Barbosa, F.

    2014-11-07

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  18. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    NASA Astrophysics Data System (ADS)

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, F.; Moreno Barbosa, E.

    2014-11-01

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  19. X-ray imaging using a 320 x 240 hybrid GaAs pixel detector

    SciTech Connect

    Irsigler, R.; Andersson, J.; Alverbro, J.

    1999-06-01

    The authors present room temperature measurements on 200 {micro}m thick GaAs pixel detectors, which were hybridized to silicon readout circuits. The whole detector array contains 320 x 240 square shaped pixel with a pitch of 38 {micro}m and is based on semi-insulating liquid-encapsulated Czochralski (LEC) GaAs material. After fabricating and dicing, the detector chips were indium bump flip chip bonded to CMOS readout circuits based on charge integration and finally evaluated. This readout chip was originally designed for the readout of flip chip bonded infrared detectors, but appears to be suitable for X-ray applications as well. A bias voltage between 50 V and 100 V was sufficient to operate the detector at room temperature. The detector array did respond to x-ray radiation by an increase in current due to production of electron hole pairs by the ionization processes. Images of various objects and slit patterns were acquired by using a standard X-ray source for dental imaging. The new X-ray hybrid detector was analyzed with respect to its imaging properties. Due to the high absorption coefficient for X-rays in GaAs and the small pixel size, the sensor shows a high modulation transfer function up to the Nyquist frequency.

  20. Radiation-enhanced gate-induced-drain-leakage current in the 130 nm partially-depleted SOI pMOSFET

    NASA Astrophysics Data System (ADS)

    Peng, Chao; Hu, Zhiyuan; Ning, Bingxu; Dai, Lihua; Bi, Dawei; Zhang, Zhengxuan

    2015-04-01

    The total ionizing dose (TID) effect of the pMOSFET from 130 nm partially-depleted silicon-on-insulator (PDSOI) is investigated. The data obtained from 60Co γ-ray irradiation experiments indicate that input/output (I/O) device is more susceptible to TID effect than the core device. An anomalous off-state leakage increase is observed for I/O pMOSFET when drain is biased at a high voltage after irradiation. It is proved that this radiation-induced leakage relates to the enhanced gate-induce-drain-leakage (GIDL). Both the radiation-induced interface traps at the gate-oxide/body interface and the oxide trapped charges in the buried oxide (BOX) are responsible for the growth of the leakage current. These conclusions are also verified by the TCAD simulations. The isothermal annealing can recover the leakage current to the pre-irradiation level.

  1. Dual-color polymer light-emitting pixels processed by hybrid inkjet printing

    NASA Astrophysics Data System (ADS)

    Chang, Shun-Chi; Bharathan, Jayesh; Helgeson, Roger; Wudl, Fred; Yang, Yang; Ramey, Michael B.; Reynolds, John R.

    1998-12-01

    We present a successful demonstration of controllable patterning of dual-color polymer light-emitting pixels using a hybrid inkjet printing technique. In this demonstration, the polymer buffer layer is a wide bandgap, blue emitting semiconducting polymer (PPP-NRt3+), prepared by the spin-casting technique. The inkjet printed layer is a red-orange semiconductor polymer, (MPS-PPV) which was printed onto the buffer layer.When a proper solvent was selected, MPS-PPV diffused into the buffer layer and efficient energy transfer took place from the PPP-NEt3+ to the MPS-PPV generating a red-orange photoluminescence and electroluminescence from the inkjet printed sites. Based on this principle, blue and orange-red dual-color polymer light-emitting pixels were fabricated on the same substrate. The use of this concept represents an entirely new technology for fabricating polymer multicolor displays with high-resolution, lateral patterning capability.

  2. Comparison of CCD, CMOS and Hybrid Pixel x-ray detectors: detection principle and data quality

    NASA Astrophysics Data System (ADS)

    Allé, P.; Wenger, E.; Dahaoui, S.; Schaniel, D.; Lecomte, C.

    2016-06-01

    We compare, from a crystallographic point of view, the data quality obtained using laboratory x-ray diffractometers equipped with a Molybdenum micro-source using different detector types: CCD, CMOS and XPAD hybrid pixel. First we give an overview of the working principle of these different detector types with a focus on their principal differences and their impact on the data quality. Then, using the example of an organic crystal, a comparison between the detector systems concerning the raw data statistics, the refinement agreement factors, the deformation electron density maps, and the residual density after multipolar refinement is presented. It is found that the data quality obtained with the XPAD detector is the best, even though the detection efficiency at the Mo energy (17.5 keV) is only 37% due to the Si-sensor layer thickness of 300 μm. Finally, we discuss the latest x-ray detector developments with an emphasis on the sensor material, where replacing Si by another material such as GaAs would yield detection efficiencies close to 100%, up to energies of 40 keV for hybrid pixel detectors.

  3. Modeling and Analysis of Hybrid Pixel Detector Deficiencies for Scientific Applications

    SciTech Connect

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-28

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  4. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy

  5. Modeling and analysis of hybrid pixel detector deficiencies for scientific applications

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  6. Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging

    NASA Astrophysics Data System (ADS)

    Ballabriga, R.; Alozy, J.; Campbell, M.; Frojdh, E.; Heijne, E. H. M.; Koenig, T.; Llopart, X.; Marchal, J.; Pennicard, D.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.; Zuber, M.

    2016-01-01

    Semiconductor detector readout chips with pulse processing electronics have made possible spectroscopic X-ray imaging, bringing an improvement in the overall image quality and, in the case of medical imaging, a reduction in the X-ray dose delivered to the patient. In this contribution we review the state of the art in semiconductor-detector readout ASICs for spectroscopic X-ray imaging with emphasis on hybrid pixel detector technology. We discuss how some of the key challenges of the technology (such as dealing with high fluxes, maintaining spectral fidelity, power consumption density) are addressed by the various ASICs. In order to understand the fundamental limits of the technology, the physics of the interaction of radiation with the semiconductor detector and the process of signal induction in the input electrodes of the readout circuit are described. Simulations of the process of signal induction are presented that reveal the importance of making use of the small pixel effect to minimize the impact of the slow motion of holes and hole trapping in the induced signal in high-Z sensor materials. This can contribute to preserve fidelity in the measured spectrum with relatively short values of the shaper peaking time. Simulations also show, on the other hand, the distortion in the energy spectrum due to charge sharing and fluorescence photons when the pixel pitch is decreased. However, using recent measurements from the Medipix3 ASIC, we demonstrate that the spectroscopic information contained in the incoming photon beam can be recovered by the implementation in hardware of an algorithm whereby the signal from a single photon is reconstructed and allocated to the pixel with the largest deposition.

  7. Lifetime studies of 130nm nMOS transistors intended for long-duration, cryogenic high-energy physics experiments.

    SciTech Connect

    Hoff, J.R.; Arora, R.; Cressler, J.D.; Deptuch, G.W.; Gui, P.; Lourenco, N.E.; Wu, G.; Yarema, R.J.; /Fermilab

    2011-12-01

    Future neutrino physics experiments intend to use unprecedented volumes of liquid argon to fill a time projection chamber in an underground facility. To increase performance, integrated readout electronics should work inside the cryostat. Due to the scale and cost associated with evacuating and filling the cryostat, the electronics will be unserviceable for the duration of the experiment. Therefore, the lifetimes of these circuits must be well in excess of 20 years. The principle mechanism for lifetime degradation of MOSFET devices and circuits operating at cryogenic temperatures is via hot carrier degradation. Choosing a process technology that is, as much as possible, immune to such degradation and developing design techniques to avoid exposure to such damage are the goals. This requires careful investigation and a basic understanding of the mechanisms that underlie hot carrier degradation and the secondary effects they cause in circuits. In this work, commercially available 130nm nMOS transistors operating at cryogenic temperatures are investigated. The results show that the difference in lifetime for room temperature operation and cryogenic operation for this process are not great and the lifetimes at both 300K and at 77K can be projected to more than 20 years at the nominal voltage (1.5V) for this technology.

  8. Investigating the degradation mechanisms caused by the TID effects in 130 nm PDSOI I/O NMOS

    NASA Astrophysics Data System (ADS)

    Peng, Chao; Hu, Zhiyuan; Zhang, Zhengxuan; Huang, Huixiang; Ning, Bingxu; Bi, Dawei

    2014-06-01

    This paper evaluates the radiation responses of 3.3 V I/O NMOSFETs from 130 nm partially-depleted silicon-on-insulator (PDSOI) technology. The data obtained from 60Co ionizing radiation experiments indicate that charge trapped in the shallow trench isolation, particularly at the bottom region of the trench oxide, should be the dominant contributor to the off-state drain-to-source leakage current under ON bias. The body doping profile and device dimension are two key factors affecting the performance degradation of the PDSOI transistors after radiation. Significant front gate threshold voltage shift is observed in the T-shape gate device, which is well known as the Radiation Induced Narrow Channel Effect (RINCE). The charge trapped in the buried oxide can induce large threshold voltage shift in the front gate transistor through coupling effect in the low body doping device. The coupling effect is evaluated through three-dimensional simulation. A degradation of the carrier mobility which relates to shallow trench isolation (STI) oxide trapped charge in the narrow channel device is also discussed.

  9. Bit Distribution and Reliability of High Density 1.5 V Ferroelectric Random Access Memory Embedded with 130 nm, 5 lm Copper Complementary Metal Oxide Semiconductor Logic

    NASA Astrophysics Data System (ADS)

    Udayakumar, K. R.; Boku, K.; Remack, K. A.; Rodriguez, J.; Summerfelt, S. R.; Celii, F. G.; Aggarwal, S.; Martin, J. S.; Hall, L.; Matz, L.; Rathsack, B.; McAdams, H.; Moise, T. S.

    2006-04-01

    High density embedded ferroelectric random access memory (FRAM), operable at 1.5 V, has been fabricated within a 130 nm, 5 lm Cu/fluorosilicate glass (FSG) logic process. To evaluate FRAM extendability to future process nodes, we have measured the bit distribution and reliability properties of arrays with varying individual capacitor areas ranging from 0.40 μm2 (130 nm node) to 0.15 μm2 (˜65 nm node). Wide signal margins, stable retention (≫10 years at 85 °C), and high endurance read/write cycling (≫1012 cycles) have been demonstrated, suggesting that reliable, high density FRAM can be realized.

  10. Advanced numerical modeling and hybridization techniques for third-generation infrared detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan

    Infrared (IR) detectors are well established as a vital sensor technology for military, defense and commercial applications. Due to the expense and effort required to fabricate pixel arrays, it is imperative to develop numerical simulation models to perform predictive device simulations which assess device characteristics and design considerations. Towards this end, we have developed a robust three-dimensional (3D) numerical simulation model for IR detector pixel arrays. We used the finite-difference time-domain technique to compute the optical characteristics including the reflectance and the carrier generation rate in the device. Subsequently, we employ the finite element method to solve the drift-diffusion equations to compute the electrical characteristics including the I(V) characteristics, quantum efficiency, crosstalk and modulation transfer function. We use our 3D numerical model to study a new class of detector based on the nBn-architecture. This detector is a unipolar unity-gain barrier device consisting of a narrow-gap absorber layer, a wide-gap barrier layer, and a narrow-gap collector layer. We use our model to study the underlying physics of these devices and to explain the anomalously long lateral collection lengths for photocarriers measured experimentally. Next, we investigate the crosstalk in HgCdTe photovoltaic pixel arrays employing a photon-trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. The PT region drastically reduces the crosstalk; making the use of the PT structures not only useful to obtain broadband operation, but also desirable for reducing crosstalk, especially in small pitch detector arrays. Then, the power and flexibility of the nBn architecture is coupled with a PT structure to engineer spectrally filtering detectors. Last, we developed a technique to reduce the cost of large-format, high performance HgCdTe detectors by nondestructively screen-testing detector arrays prior

  11. Influence of electromagnetic interference on the analog part of hybrid Pixel detectors

    NASA Astrophysics Data System (ADS)

    Holik, M.; Kraus, V.; Granja, C.; Jakubek, J.; Georgiev, V.; Hromadka, M.; Skala, J.; Kubik, Z.

    2011-12-01

    The analog signal from the sensor of hybrid semiconductor pixel detectors is prone to electro-magnetic interference. The study and diagnosis of induced and common electro-magnetic coupling between the analog part and digital part of these devices is required. The influence of electro-magnetic interference was tested on the setup with a pixel detector Timepix or Medipix and a FITPix read-out interface. Measurements were carried out of external as well as internal interference. We evaluated the influence of both sources of electro-magnetic interference to the noise recorded by pixels. We measured the local spatial intensity distribution and frequency spectrum of the electro-magnetic field originating inside the readout chip during its own operation. In context of this test we exposed the detector chip to a locally generated artificial electro-magnetic field evaluating its sensitivity to induced interference. Consequently, the whole setup of the detector and read-out interface was exposed to a distant source of electro-magnetic radiation, during which we tested efficiency of the electro-magnetic shielding of various arrangements. Further, tests measured the coupling over power supply lines. In particular, the noise generated by the operation of the detector itself was determined. In addition, the detector sensitivity to deliberately induced noise was evaluated. By means of these tests weak points of the setup sensitive to the intrusion of electro-magnetic interference are revealed. When locations of susceptible places are identified proper methods can be applied to increase immunity of the detector setup against the electro-magnetic interference. Experiences gained are planned to be used in development of the EMI shielded version of the FITPIX interface shielded to electro-magnetic interference.

  12. XNAP: a hybrid pixel detector with nanosecond resolution for time resolved synchrotron radiation studies

    NASA Astrophysics Data System (ADS)

    Fajardo, P.; Baron, A. Q. R.; Dautet, H.; Davies, M.; Fischer, P.; Göttlicher, P.; Graafsma, H.; Hervé, C.; Rüffer, R.; Thil, C.

    2013-03-01

    The XNAP collaboration is constructing a hybrid pixel X-ray detector based on a monolithic silicon avalanche photodiode (APD) sensor array aiming at applications in synchrotron radiation facilities. The 2D detector is capable of identifying which individual electron bunch produces each detected X-ray photon, even when the storage ring operates in multibunch filling modes. This instrument is intended to be used in X-ray Photon Correlation Spectroscopy and Nuclear Resonance experiments and serve as a demonstrator for various kind of time resolved diffraction and scattering applications as well as a very high count rate device. The detector is a 1 kilopixel device with 280 μm pitch that implements both counting mode up to MHz frame rates and event-by-event readout with sub-nanosecond time resolution. The paper describes the detector design and some results obtained with small 4×4 pixel prototypes that have been built and measured to make and validate the most critical choices for the final detector.

  13. Dual-color polymer light-emitting pixels processed by hybrid inkjet printing

    NASA Astrophysics Data System (ADS)

    Chang, Shun-Chi; Bharathan, Jayesh; Yang, Yang; Helgeson, Roger; Wudl, Fred; Ramey, Michael B.; Reynolds, John R.

    1998-11-01

    A hybrid inkjet printing (HIJP) technology, which combines a pin-hole free polymer buffer layer and an inkjet printed polymer layer, allows the patterning of high quality polymer light-emitting devices. In this letter, we present a successful demonstration of controllable patterning of dual-color polymer light-emitting pixels using this HIJP technique. In this demonstration, the polymer buffer layer is a wide band gap, blue emitting semiconducting polymer prepared by the spin-casting technique. The inkjet printed layer is a red-orange semiconducting polymer which was printed onto the buffer layer. When a proper solvent was selected, the printed polymer diffused into the buffer layer and efficient energy transfer took place generating a red-orange photoluminescence and electroluminescence from the inkjet printed sites. Based on this principle, blue and orange-red dual-color polymer light-emitting pixels were fabricated on the same substrate. The use of this concept represents an entirely new technology for fabricating polymer multicolor displays with high-resolution, lateral patterning capability.

  14. Few-Layer MoS2-Organic Thin-Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate.

    PubMed

    Lee, Hee Sung; Shin, Jae Min; Jeon, Pyo Jin; Lee, Junyeong; Kim, Jin Sung; Hwang, Hyun Chul; Park, Eunyoung; Yoon, Woojin; Ju, Sang-Yong; Im, Seongil

    2015-05-13

    Few-layer MoS2-organic thin-film hybrid complementary inverters demonstrate a great deal of device performance with a decent voltage gain of ≈12, a few hundred pW power consumption, and 480 Hz switching speed. As fabricated on glass, this hybrid CMOS inverter operates as a light-detecting pixel as well, using a thin MoS2 channel. PMID:25641643

  15. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    ERIC Educational Resources Information Center

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  16. Per pixel uncertainty modelling and its spatial representation on land cover maps obtained by hybrid classification.

    NASA Astrophysics Data System (ADS)

    Pons, Xavier; Sevillano, Eva; Moré, Gerard; Serra, Pere; Cornford, Dan; Ninyerola, Miquel

    2013-04-01

    The usage of remote sensing imagery combined with statistical classifiers to obtain categorical cartography is now common practice. As in many other areas of geographic information quality assessment, knowing the accuracy of these maps is crucial, and the spatialization of quality information is becoming ever more important for a large range of applications. Whereas some classifiers (e.g., maximum likelihood, linear discriminant analysis, naive Bayes, etc) permit the estimation and spatial representation of the uncertainty through a pixel level probabilistic estimator (and, from that, to compute a global accuracy estimator for the whole map), for other methods such a direct estimator does not exist. Regardless of the classification method applied, ground truth data is almost always available (to train the classifier and/or to compute the global accuracy and, usually, a confusion matrix). Our research is devoted to the development of a protocol to spatialize the error on a general framework based on the classifier parameters, and some ground truth reference data. In the methodological experiment presented here we provide an insight into uncertainty modelling for a hybrid classifier that combines unsupervised and supervised stages (implemented in the MiraMon GIS). In this work we describe what we believe is the first attempt to characterise pixel level uncertainty in a two stage classification process. We describe the model setup, show the preliminary results and identify future work that will be undertaken. The study area is a Landsat full frame located at the North-eastern region of the Iberian Peninsula. The six non-thermal bands + NDVI of a multi-temporal set of six geometrically and radiometrically corrected Landsat-5 images (between 2005 and 2007) were submitted to a hybrid classification process, together with some ancillary data (climate, slopes, etc). Training areas were extracted from the Land Cover Map of Catalonia (MCSC), a 0.5 m resolution map created by

  17. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system

    PubMed Central

    Cai, Liang; Meng, Ling-Jian

    2013-01-01

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X–Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy deposition information, precise timing and depth-of-interaction information for gamma ray interactions. Several attractive features with this HPWF detector system will be discussed in this paper. To demonstrate the performance, we constructed several prototype HPWF detectors with pixelated CZT and CdTe detectors of 2–5 mm thicknesses, connected to a prototype readout system consisting of energy-resolved photon-counting ASIC for readout anode pixels and an Agilent high-speed digitizer for digitizing the cathode signals. The performances of these detectors based on HPWF are discussed in this paper. PMID:24371365

  18. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system.

    PubMed

    Cai, Liang; Meng, Ling-Jian

    2013-02-01

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X-Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy deposition information, precise timing and depth-of-interaction information for gamma ray interactions. Several attractive features with this HPWF detector system will be discussed in this paper. To demonstrate the performance, we constructed several prototype HPWF detectors with pixelated CZT and CdTe detectors of 2-5 mm thicknesses, connected to a prototype readout system consisting of energy-resolved photon-counting ASIC for readout anode pixels and an Agilent high-speed digitizer for digitizing the cathode signals. The performances of these detectors based on HPWF are discussed in this paper. PMID:24371365

  19. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system

    NASA Astrophysics Data System (ADS)

    Cai, Liang; Meng, Ling-Jian

    2013-02-01

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X-Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy deposition information, precise timing and depth-of-interaction information for gamma ray interactions. Several attractive features with this HPWF detector system will be discussed in this paper. To demonstrate the performance, we constructed several prototype HPWF detectors with pixelated CZT and CdTe detectors of 2-5 mm thicknesses, connected to a prototype readout system consisting of energy-resolved photon-counting ASIC for readout anode pixels and an Agilent high-speed digitizer for digitizing the cathode signals. The performances of these detectors based on HPWF are discussed in this paper.

  20. VeloPix: the pixel ASIC for the LHCb upgrade

    NASA Astrophysics Data System (ADS)

    Poikela, T.; De Gaspari, M.; Plosila, J.; Westerlund, T.; Ballabriga, R.; Buytaert, J.; Campbell, M.; Llopart, X.; Wyllie, K.; Gromov, V.; van Beuzekom, M.; Zivkovic, V.

    2015-01-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 along with the other subsystems of LHCb in order to enable full readout at 40 MHz, with the data fed directly to the software triggering algorithms. The upgraded VELO is a lightweight hybrid pixel detector operating in vacuum in close proximity to the LHC beams. The readout will be provided by a dedicated front-end ASIC, dubbed VeloPix, matched to the LHCb readout requirements and the 55 × 55 μm VELO pixel dimensions. The chip is closely related to the Timepix3, from the Medipix family of ASICs. The principal challenge that the chip has to meet is a hit rate of up to 900 Mhits/s, resulting in a required output bandwidth of more than 16 Gbit/s. The occupancy across the chip is also very non-uniform, and the radiation levels reach an integrated 400 Mrad over the lifetime of the detector.VeloPix is a binary pixel readout chip with a data driven readout, designed in 130 nm CMOS technology. The pixels are combined into groups of 2 × 4 super pixels, enabling a shared logic and a reduction of bandwidth due to combined address and time stamp information. The pixel hits are combined with other simultaneous hits in the same super pixel, time stamped, and immediately driven off-chip. The analog front-end must be sufficiently fast to accurately time stamp the data, with a small enough dead time to minimize data loss in the most occupied regions of the chip. The data is driven off chip with a custom designed high speed serialiser. The current status of the ASIC design, the chip architecture and the simulations will be described.

  1. On the possibility to use semiconductive hybrid pixel detectors for study of radiation belt of the Earth.

    NASA Astrophysics Data System (ADS)

    Guskov, A.; Shelkov, G.; Smolyanskiy, P.; Zhemchugov, A.

    2016-02-01

    The scientific apparatus GAMMA-400 designed for study of electromagnetic and hadron components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the GAMMA-400 apparatus. Due to high granularity of the sensor (pixel size is 55 mum) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.

  2. Preliminary simulation study of a coincidence Avalanche Pixel Sensor

    NASA Astrophysics Data System (ADS)

    Vignetti, M. M.; Calmon, F.; Cellier, R.; Pittet, P.; Quiquerez, L.; Savoy-Navarro, A.

    2015-06-01

    In this paper a preliminary study of coincidence Avalanche Pixel Sensors (APiX) for High Energy Physics (HEP) applications is presented. In this preliminary work, some PEB prevention techniques found in literature have been studied by TCAD simulations adopting 2D Cylindrical geometrical models and 130nm CMOS process technological data.

  3. Beam test results of pixel triggerless prototypes for the PbarANDA MVD

    NASA Astrophysics Data System (ADS)

    Calvo, Daniela; De Remigis, Paolo; Filippi, Alessandra; Mazza, Giovanni; Rivetti, Angelo; Wheadon, Richard; De Mori, Francesca; Marcello, Simonetta; Zotti, Laura; Bianco, Simone; Zaunick, Hans-Georg; Brinkmann, Kai-Thomas; Quagli, Tommaso; Schnell, Robert

    2013-12-01

    Hybrid pixel and double sided silicon microstrip devices will equip the Micro Vertex Detector of the PbarANDA experiment. The most challenging request of the experiment is the continuous readout at the rate of 2×107 interactions/s. The detector is in an advanced R&D phase and pixel assemblies, composed of thinned epitaxial sensor read out by the custom chip prototype ToPix, developed in the 130 nm CMOS technology, were produced. The triggerless ASIC implements readout channels that are able to detect signals and transmit the information with a precise timestamp. It performs the energy loss measurement using the Time over Threshold technique, in the input range to about 50 fC. A dedicated testing bench allows the control and the readout of each single chip assembly. Two experimental setups were assembled for testing these first single chip prototypes with pions at CERN, T9, in August 2012. The first one is based on a pixel assembly positioned in the middle of a telescope composed of double sided silicon strips sensors. A 50 MHz clock signal synchronizes these two systems, the triggerless pixels and the strip detectors triggered by scintillation detectors. The second experimental setup is a tracking station housing four pixel assemblies. First results will be reported.

  4. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    SciTech Connect

    Jungmann-Smith, J. H. Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.; Cartier, S.; Medjoubi, K.

    2015-12-15

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  5. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 104 photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm2 pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm2. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  6. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Jaggi, A; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10(4) photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm(2) pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm(2). Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines. PMID:26724009

  7. Hardware solutions for the 65k pixel X-ray camera module of 75 μm pixel size

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Maj, P.; Grybos, P.; Koziol, A.

    2016-02-01

    We present three hardware solutions designed for a detector module built with a 2 cm × 2 cm hybrid pixel detector built from a single 320 or 450 μ m thick silicon sensor designed and fabricated by Hamamatsu and two UFXC32k readout integrated circuits (128 × 256 pixels with 75μ m pitch, designed in CMOS 130 nm at AGH-UST). The chips work in a single photon counting mode and provide ultra-fast X-ray imaging. The presented hardware modules are designed according to requirements of various tests and applications: ṡDevice A: a fast and flexible system for tests with various radiation sources. ṡDevice B: a standalone, all-in-one imaging device providing three standard interfaces (USB 2.0, Ethernet, Camera Link) and up to 640 MB/s bandwidth. ṡDevice C: a prototype large-area imaging system. The paper shows the readout system structure for each case with highlighted circuit board designs with details on power distribution and cooling on both FR4 and LTCC (low temperature co-fired ceramic) based circuits.

  8. Observation of Peierls transition in nanowires (diameter approximately 130 nm) of the charge transfer molecule TTF-TCNQ synthesized by electric-field-directed growth.

    PubMed

    Sai, T Phanindra; Raychaudhuri, A K

    2010-01-29

    We report the growth of nanowires of the charge transfer complex tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) with diameters as low as 130 nm and show that such nanowires can show Peierls transitions at low temperatures. The wires of sub-micron length were grown between two prefabricated electrodes (with sub-micron gap) by vapor phase growth from a single source by applying an electric field between the electrodes during the growth process. The nanowires so grown show a charge transfer ratio approximately 0.57, which is close to that seen in bulk crystals. Below the transition the transport is strongly nonlinear and can be interpreted as originating from de-pinning of CDW that forms at the Peierls transition. PMID:20009165

  9. Observation of Peierls transition in nanowires (diameter~130 nm) of the charge transfer molecule TTF-TCNQ synthesized by electric-field-directed growth

    NASA Astrophysics Data System (ADS)

    Phanindra Sai, T.; Raychaudhuri, A. K.

    2010-01-01

    We report the growth of nanowires of the charge transfer complex tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) with diameters as low as 130 nm and show that such nanowires can show Peierls transitions at low temperatures. The wires of sub-micron length were grown between two prefabricated electrodes (with sub-micron gap) by vapor phase growth from a single source by applying an electric field between the electrodes during the growth process. The nanowires so grown show a charge transfer ratio ~0.57, which is close to that seen in bulk crystals. Below the transition the transport is strongly nonlinear and can be interpreted as originating from de-pinning of CDW that forms at the Peierls transition.

  10. Development of high data readout rate pixel module and detector hybridization at Fermilab

    SciTech Connect

    Sergio Zimmermann et al.

    2001-03-20

    This paper describes the baseline design and a variation of the pixel module to handle the data rate required for the BTeV experiment at Fermilab. The present prototype has shown good electrical performance characteristics. Indium bump bonding is proven to be capable of successful fabrication at 50 micron pitch on real detectors. For solder bumps at 50 micron pitch, much better results have been obtained with the fluxless PADS processed detectors. The results are adequate for our needs and our tests have validated it as a viable technology.

  11. K-edge imaging with the XPAD3 hybrid pixel detector, direct comparison of CdTe and Si sensors

    NASA Astrophysics Data System (ADS)

    Cassol, F.; Portal, L.; Graber-Bolis, J.; Perez-Ponce, H.; Dupont, M.; Kronland, C.; Boursier, Y.; Blanc, N.; Bompard, F.; Boudet, N.; Buton, C.; Clémens, J. C.; Dawiec, A.; Debarbieux, F.; Delpierre, P.; Hustache, S.; Vigeolas, E.; Morel, C.

    2015-07-01

    We investigate the improvement from the use of high-Z CdTe sensors for pre-clinical K-edge imaging with the hybrid pixel detectors XPAD3. We compare XPAD3 chips bump bonded to Si or CdTe sensors in identical experimental conditions. Image performance for narrow energy bin acquisitions and contrast-to-noise ratios of K-edge images are presented and compared. CdTe sensors achieve signal-to-noise ratios at least three times higher than Si sensors within narrow energy bins, thanks to their much higher detection efficiency. Nevertheless Si sensors provide better contrast-to-noise ratios in K-edge imaging when working at equivalent counting statistics, due to their better estimation of the attenuation coefficient of the contrast agent. Results are compared to simulated data in the case of the XPAD3/Si detector. Good agreement is observed when including charge sharing between pixels, which have a strong impact on contrast-to-noise ratios in K-edge images.

  12. K-edge imaging with the XPAD3 hybrid pixel detector, direct comparison of CdTe and Si sensors.

    PubMed

    Cassol, F; Portal, L; Graber-Bolis, J; Perez-Ponce, H; Dupont, M; Kronland, C; Boursier, Y; Blanc, N; Bompard, F; Boudet, N; Buton, C; Clémens, J C; Dawiec, A; Debarbieux, F; Delpierre, P; Hustache, S; Vigeolas, E; Morel, C

    2015-07-21

    We investigate the improvement from the use of high-Z CdTe sensors for pre-clinical K-edge imaging with the hybrid pixel detectors XPAD3. We compare XPAD3 chips bump bonded to Si or CdTe sensors in identical experimental conditions. Image performance for narrow energy bin acquisitions and contrast-to-noise ratios of K-edge images are presented and compared. CdTe sensors achieve signal-to-noise ratios at least three times higher than Si sensors within narrow energy bins, thanks to their much higher detection efficiency. Nevertheless Si sensors provide better contrast-to-noise ratios in K-edge imaging when working at equivalent counting statistics, due to their better estimation of the attenuation coefficient of the contrast agent. Results are compared to simulated data in the case of the XPAD3/Si detector. Good agreement is observed when including charge sharing between pixels, which have a strong impact on contrast-to-noise ratios in K-edge images. PMID:26133567

  13. A Hybrid Micro-Pixel Based Deep Ultraviolet Light-Emitting Diode Lamp

    NASA Astrophysics Data System (ADS)

    Hwang, Seongmo; Islam, Monirul; Zhang, Bin; Lachab, Mohamed; Dion, Joe; Heidari, Ahmad; Nazir, Haseeb; Adivarahan, Vinod; Khan, Asif

    2011-01-01

    We report on the room temperature electrical and optical characterization of a multichip light-emitting diode (LED) lamp with peak emission at 281 nm. Four pairs of micro-pixel LED arrays were connected in series to fabricate the lamp, which delivered a pulsed output power of 235 mW at 1.18 A (duty cycle ˜0.5%), and attained a high external quantum efficiency of 4.63%. Under dc operation, the maximum power achieved by this lamp was ˜20 mW at a drive current of 220 mA. The peak output power improved 1.62-fold after a thermoelectric cooler was added to the device packaging assembly.

  14. Investigation of hybrid pixel detector arrays by synchrotron-radiation imaging

    NASA Astrophysics Data System (ADS)

    Helfen, L.; Myagotin, A.; Pernot, P.; DiMichiel, M.; Mikulík, P.; Berthold, A.; Baumbach, T.

    2006-07-01

    Synchrotron-radiation imaging was applied to the non-destructive testing of detector devices during their development cycle. Transmission imaging known as computed laminography was used to examine the microstructure of the interconnections in order to investigate the perfection of technological steps necessary for hybrid detector production. A characterisation of the solder bump microstructure can reveal production flaws such as missing or misaligned bumps, voids in bumps or bridges and thus give valuable information about the bonding process.

  15. Cross/bar polymer electro-optic routing switch with broadband flatting spectral response over 130 nm: Principle, design and analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Chuan-Tao; Zheng, Li-Hua; Luo, Qian-Qian; Liang, Lei; Ma, Chun-Sheng; Zhang, Da-Ming

    2013-05-01

    A novel non-resonance 2×2 polymer electro-optic (EO) switch with flatting spectral response is proposed by employing two-section reversed active Mach-Zehnder interferometers (MZIs), a passive middle directional coupler (M-DC) and two passive phase generating couplers (PGCs). Two crosstalk compensations are performed by optimizing the PGCs to broaden the spectrum under bar-state and optimizing the two active MZIs to broaden the spectrum under cross-state. The bar-state and cross-state voltages are 0 and ±4 V, respectively, with the two optimized MZI EO region lengths of 4068 and 5941 μm. Sufficiently considering wavelength dispersion of material and waveguide, a wide spectrum over 130 nm (1473-1603 nm) is achieved for dropping the crosstalk below -30 dB, and within this range, an insertion loss of 1.8-12.3 dB is observed. Under the same crosstalk level, this spectrum is over 2 times of that of the traditional 2×2 MZI switch (60 nm) based on the same materials. This broadband 2×2 switch is more attractive than our previously reported broadband 1×1 switch due to cross/bar routing operations other than simple ON/OFF functions.

  16. Visible and ultraviolet /800-130 nm/ extinction of vapor-condensed silicate, carbon, and silicon carbide smokes and the interstellar extinction curve

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The extinction curves from 800 to 130 nm (1.25-7.7/micron) of amorphous silicate smokes nominally of olivine and pyroxene composition, carbon smokes, and crystalline SiC smokes are presented. The SiC smoke occurred in the low-temperature (beta) cubic structural form. The SiC smoke showed an absorption edge which occurred at significantly longer wavelengths than the calculated extinction profile of the hexagonal SiC form previously used to calculate the interstellar extinction profile. Neither SiC nor amorphous silicates show an extinction band similar to the observed 6.6/micron astronomical extinction band. The infrared absorption peaks for the silicate and SiC samples near 10 microns and 11-13 microns, respectively, were also measured. The ultraviolet to infrared extinction ratio for the amorphous silicate samples is similar to the observed astronomical extinction ratio. The measured extinction ratios for SiC smokes are significantly below the interstellar extinction ratio. The extinction peak of the carbon smokes occurred at 4.0 and 4.25/micron, for samples of mean radii 13 and 6 nm, respectively. The extinction profile is distinctly different from that predicted for graphite grains of the same size, and is similar to that predicted for glassy carbon grains.

  17. A 1 V 186-μW 50-MS/s 10-bit subrange SAR ADC in 130-nm CMOS process

    NASA Astrophysics Data System (ADS)

    Mingyuan, Yu; Ting, Li; Jiaqi, Yang; Shuangshuang, Zhang; Fujiang, Lin; Lin, He

    2016-07-01

    This paper presents a 10-bit 50-MS/s subrange successive-approximation register (SAR) analog-to-digital converter (ADC) composed of a 4-bit SAR coarse ADC and a 6-bit SAR fine ADC. In the coarse ADC, multi-comparator SAR architecture is used to reduce the digital logic propagation delay, and a traditional asynchronous SAR ADC with monotonic switching method is used as the fine ADC. With that combination, power dissipation also can be much reduced. Meanwhile, a modified SAR control logic is adopted in the fine ADC to speed up the conversion and other techniques, such as splitting capacitors array, are borrowed to reduce the power consumption. Fabricated with 1P8M 130-nm CMOS technology, the proposed SAR ADC achieves 51.6-dB signal to noise and distortion ratio (SNDR) and consumes 186 μW at 50 MS/s with a 1-V supply, resulting in a figure of merit (FOM) of 12 fJ/conversion-step. The core area is only 0.045 mm2. Project supported by the National Natural Science Foundation of China (Nos. 61204033, 61331015), the Fundamental Research Funds for the Central Universities (No. WK2100230015), and the Funds of Science and Technology on Analog Integrated Circuit Laboratory (No. 9140C090111150C09041).

  18. Pixel frontend electronics in a radiation hard technology for hybrid and monolithic applications

    SciTech Connect

    Pengg, F. |; Campbell, M.; Heijne, E.H.M.; Snoeys, W.

    1996-06-01

    Pixel detector readout cells have been designed in the radiation hard DMILL technology and their characteristics evaluated before and after irradiation to 14Mrad. The test chip consists of two blocks of six readout cells each. Two different charge amplifiers are implemented, one of them using a capacitive feedback loop, the other the fast signal charge transfer to a high impedance integrating node. The measured equivalent noise charge is 110e{sup {minus}}r.m.s. before and 150e{sup {minus}}r.m.s. after irradiation. With a discriminator threshold set to 5000e{sup {minus}}, which reduces for the same bias setting to 400e{sup {minus}} after irradiation, the threshold variation is 300e{sup {minus}}r.m.s. and 250e{sup {minus}}r.m.s. respectively. The time walk is 40ns before and after irradiation. The use of this SOI technology for monolithic integration of electronics and detector in one substrate is under investigation.

  19. Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT

    PubMed Central

    Sulaiman, Puteri Suhaiza; Wirza, Rahmita; Dimon, Mohd Zamrin; Khalid, Fatimah; Moosavi Tayebi, Rohollah

    2015-01-01

    Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics. PMID:26089965

  20. Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT.

    PubMed

    Mazaheri, Samaneh; Sulaiman, Puteri Suhaiza; Wirza, Rahmita; Dimon, Mohd Zamrin; Khalid, Fatimah; Moosavi Tayebi, Rohollah

    2015-01-01

    Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics. PMID:26089965

  1. A 10 MS/s 8-bit charge-redistribution ADC for hybrid pixel applications in 65 m CMOS

    NASA Astrophysics Data System (ADS)

    Kishishita, Tetsuichi; Hemperek, Tomasz; Krüger, Hans; Koch, Manuel; Germic, Leonard; Wermes, Norbert

    2013-12-01

    The design and measurement results of an 8-bit SAR ADC, based on a charge-redistribution DAC, are presented. This ADC is characterized by superior power efficiency and small area, realized by employing a lateral metal-metal capacitor array and a dynamic two-stage comparator. To avoid the need for a high-speed clock and its associated power consumption, an asynchronous logic was implemented in a logic control cell. A test chip has been developed in a 65 nm CMOS technology, including eight ADC channels with different layout flavors of the capacitor array, a transimpedance amplifier as a signal input structure, a serializer, and a custom-made LVDS driver for data transmission. The integral (INL) and differential (DNL) nonlinearities are measured below 0.5 LSB and 0.8 LSB, respectively, for the best channel operating at a sampling frequency of 10 MS/s. The area occupies 40 μm×70 μm for one ADC channel. The power consumption is estimated as 4 μW at 1 MS/s and 38 μW at 10 MS/s with a supply rail of 1.2 V. These excellent performance features and the natural radiation hardness of the design, due to the thin gate oxide thickness of transistors, are very interesting for front-end electronics ICs of future hybrid-pixel detector systems.

  2. Investigating the inverse square law with the Timepix hybrid silicon pixel detector: a CERN@school demonstration experiment

    NASA Astrophysics Data System (ADS)

    Whyntie, T.; Parker, B.

    2013-05-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN@school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an 241Am radioactive source at a number of different distances. Datasets for each distance were collected, processed and analysed using the Pixelman software suite and CERN’s ROOT analysis software. The inverse square law approximation describes the data well, and so by following the experiment students can make the connection between the relevant elements of the physics curriculum and cutting-edge physics research. Additionally, an analytic model of the detector geometry is used to provide a comparable description of the data without the need for approximations. Such an exercise is typical of the kind of extension activity that can pave the way to students and teachers going beyond the physics curriculum and performing their own research with CERN@school.

  3. Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications

    PubMed Central

    Sobott, B. A.; Broennimann, Ch.; Schmitt, B.; Trueb, P.; Schneebeli, M.; Lee, V.; Peake, D. J.; Elbracht-Leong, S.; Schubert, A.; Kirby, N.; Boland, M. J.; Chantler, C. T.; Barnea, Z.; Rassool, R. P.

    2013-01-01

    The performance of a single-photon-counting hybrid pixel detector has been investigated at the Australian Synchrotron. Results are compared with the body of accepted analytical models previously validated with other detectors. Detector functionals are valuable for empirical calibration. It is shown that the matching of the detector dead-time with the temporal synchrotron source structure leads to substantial improvements in count rate and linearity of response. Standard implementations are linear up to ∼0.36 MHz pixel−1; the optimized linearity in this configuration has an extended range up to ∼0.71 MHz pixel−1; these are further correctable with a transfer function to ∼1.77 MHz pixel−1. This new approach has wide application both in high-accuracy fundamental experiments and in standard crystallographic X-ray fluorescence and other X-ray measurements. The explicit use of data variance (rather than N 1/2 noise) and direct measures of goodness-of-fit (χr 2) are introduced, raising issues not encountered in previous literature for any detector, and suggesting that these inadequacies of models may apply to most detector types. Specifically, parametrization of models with non-physical values can lead to remarkable agreement for a range of count-rate, pulse-frequency and temporal structure. However, especially when the dead-time is near resonant with the temporal structure, limitations of these classical models become apparent. Further, a lack of agreement at extreme count rates was evident. PMID:23412493

  4. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 Timepix chips

    NASA Astrophysics Data System (ADS)

    Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.

    2016-01-01

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.

  5. Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking.

    PubMed

    Zaitsev, Vladimir Y; Matveyev, Alexander L; Matveev, Lev A; Gelikonov, Grigory V; Gubarkova, Ekaterina V; Gladkova, Natalia D; Vitkin, Alex

    2016-05-01

    A novel hybrid method which combines sub-wavelength-scale phase measurements and pixel-scale displacement tracking for robust strain mapping in compressional optical coherence elastography is proposed. Unlike majority of OCE methods it does not rely on initial reconstruction of displacements and does not suffer from the phase-wrapping problem for super-wavelength displacements. Its robustness is enabled by direct fitting of local phase gradients obviating the necessity of phase unwrapping and error-prone numerical differentiation. Furthermore, axial displacements significantly exceeding not only the optical wavelength, but pixel scales (i.e., multiple wavelengths) can be efficiently tracked and compensated. This feature strongly reduces errors in phase-gradient estimation and ensures high robustness with respect to both additive and decorrelation noises. Illustration of exceptionally high tolerance of the proposed method to noises: contrast of only 25% in the stiffness of the layers is clearly seen in the strain map even for equal intensities of the OCT signal and additive noise (SNR = 0 dB). PMID:27159850

  6. PIXEL PUSHER

    NASA Technical Reports Server (NTRS)

    Stanfill, D. F.

    1994-01-01

    Pixel Pusher is a Macintosh application used for viewing and performing minor enhancements on imagery. It will read image files in JPL's two primary image formats- VICAR and PDS - as well as the Macintosh PICT format. VICAR (NPO-18076) handles an array of image processing capabilities which may be used for a variety of applications including biomedical image processing, cartography, earth resources, and geological exploration. Pixel Pusher can also import VICAR format color lookup tables for viewing images in pseudocolor (256 colors). This program currently supports only eight bit images but will work on monitors with any number of colors. Arbitrarily large image files may be viewed in a normal Macintosh window. Color and contrast enhancement can be performed with a graphical "stretch" editor (as in contrast stretch). In addition, VICAR images may be saved as Macintosh PICT files for exporting into other Macintosh programs, and individual pixels can be queried to determine their locations and actual data values. Pixel Pusher is written in Symantec's Think C and was developed for use on a Macintosh SE30, LC, or II series computer running System Software 6.0.3 or later and 32 bit QuickDraw. Pixel Pusher will only run on a Macintosh which supports color (whether a color monitor is being used or not). The standard distribution medium for this program is a set of three 3.5 inch Macintosh format diskettes. The program price includes documentation. Pixel Pusher was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Think C is a trademark of Symantec Corporation. Macintosh is a registered trademark of Apple Computer, Inc.

  7. PIXEL 2010 - A Résumé

    NASA Astrophysics Data System (ADS)

    Wermes, N.

    2011-09-01

    The Pixel 2010 conference focused on semiconductor pixel detectors for particle tracking/vertexing as well as for imaging, in particular for synchrotron light sources and XFELs. The big LHC hybrid pixel detectors have impressively started showing their capabilities. X-ray imaging detectors, also using the hybrid pixel technology, have greatly advanced the experimental possibilities for diffraction experiments. Monolithic or semi-monolithic devices like CMOS active pixels and DEPFET pixels have now reached a state such that complete vertex detectors for RHIC and superKEKB are being built with these technologies. Finally, new advances towards fully monolithic active pixel detectors, featuring full CMOS electronics merged with efficient signal charge collection, exploiting standard CMOS technologies, SOI and/or 3D integration, show the path for the future. This résumé attempts to extract the main statements of the results and developments presented at this conference.

  8. A low-noise 15-μm pixel-pitch 640×512 hybrid InGaAs image sensor for night vision

    NASA Astrophysics Data System (ADS)

    Guellec, Fabrice; Dubois, Sébastien; de Borniol, Eric; Castelein, Pierre; Martin, Sébastien; Guiguet, Romain; Tchagaspanian, Micha"l.; Rouvié, Anne; Bois, Philippe

    2012-03-01

    Hybrid InGaAs focal plane arrays are very interesting for night vision because they can benefit from the nightglow emission in the Short Wave Infrared band. Through a collaboration between III-V Lab and CEA-Léti, a 640x512 InGaAs image sensor with 15μm pixel pitch has been developed. The good crystalline quality of the InGaAs detectors opens the door to low dark current (around 20nA/cm2 at room temperature and -0.1V bias) as required for low light level imaging. In addition, the InP substrate can be removed to extend the detection range towards the visible spectrum. A custom readout IC (ROIC) has been designed in a standard CMOS 0.18μm technology. The pixel circuit is based on a capacitive transimpedance amplifier (CTIA) with two selectable charge-to-voltage conversion gains. Relying on a thorough noise analysis, this input stage has been optimized to deliver low-noise performance in high-gain mode with a reasonable concession on dynamic range. The exposure time can be maximized up to the frame period thanks to a rolling shutter approach. The frame rate can be up to 120fps or 60fps if the Correlated Double Sampling (CDS) capability of the circuit is enabled. The first results show that the CDS is effective at removing the very low frequency noise present on the reference voltage in our test setup. In this way, the measured total dark noise is around 90 electrons in high-gain mode for 8.3ms exposure time. It is mainly dominated by the dark shot noise for a detector temperature settling around 30°C when not cooled. The readout noise measured with shorter exposure time is around 30 electrons for a dynamic range of 71dB in high-gain mode and 108 electrons for 79dB in low-gain mode.

  9. The FE-I4 Pixel Readout Chip and the IBL Module

    SciTech Connect

    Barbero, Marlon; Arutinov, David; Backhaus, Malte; Fang, Xiao-Chao; Gonella, Laura; Hemperek, Tomasz; Karagounis, Michael; Hans, Kruger; Kruth, Andre; Wermes, Norbert; Breugnon, Patrick; Fougeron, Denis; Gensolen, Fabrice; Menouni, Mohsine; Rozanov, Alexander; Beccherle, Roberto; Darbo, Giovanni; Caminada, Lea; Dube, Sourabh; Fleury, Julien; Gnani, Dario; /LBL, Berkeley /NIKHEF, Amsterdam /Gottingen U. /SLAC

    2012-05-01

    FE-I4 is the new ATLAS pixel readout chip for the upgraded ATLAS pixel detector. Designed in a CMOS 130 nm feature size process, the IC is able to withstand higher radiation levels compared to the present generation of ATLAS pixel Front-End FE-I3, and can also cope with higher hit rate. It is thus suitable for intermediate radii pixel detector layers in the High Luminosity LHC environment, but also for the inserted layer at 3.3 cm known as the 'Insertable B-Layer' project (IBL), at a shorter timescale. In this paper, an introduction to the FE-I4 will be given, focusing on test results from the first full size FE-I4A prototype which has been available since fall 2010. The IBL project will be introduced, with particular emphasis on the FE-I4-based module concept.

  10. The CMS pixel system

    NASA Astrophysics Data System (ADS)

    Bortoletto, Daniela; CMS Collaboration

    2007-09-01

    The CMS hybrid pixel detector is located at the core of the CMS tracker and will contribute significantly to track and vertex reconstruction. The detector is subdivided into a three-layer barrel, and two end-cap disks on either side of the interaction region. The system operating in the 25-ns beam crossing time of the LHC must be radiation hard, low mass, and robust. The construction of the barrel modules and the forward disks has started after extensive R&D. The status of the project is reported.

  11. [Hadamard transform spectrometer mixed pixels' unmixing method].

    PubMed

    Yan, Peng; Hu, Bing-Liang; Liu, Xue-Bin; Sun, Wei; Li, Li-Bo; Feng, Yu-Tao; Liu, Yong-Zheng

    2011-10-01

    Hadamard transform imaging spectrometer is a multi-channel digital transform spectrometer detection technology, this paper based on digital micromirror array device (DMD) of the Hadamard transform spectrometer working principle and instrument structure, obtained by the imaging sensor mixed pixel were analyzed, theory derived the solution of pixel aliasing hybrid method, simulation results show that the method is simple and effective to improve the accuracy of mixed pixel spectrum more than 10% recovery. PMID:22250574

  12. ATLAS pixel IBL modules construction experience and developments for future upgrade

    NASA Astrophysics Data System (ADS)

    Gaudiello, A.

    2015-10-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, are used. Sensors are connected with the new generation 130 nm IBM CMOS FE-I4 read-out chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  13. Pixel Perfect

    SciTech Connect

    Perrine, Kenneth A.; Hopkins, Derek F.; Lamarche, Brian L.; Sowa, Marianne B.

    2005-09-01

    cubic warp. During image acquisitions, the cubic warp is evaluated by way of forward differencing. Unwanted pixelation artifacts are minimized by bilinear sampling. The resulting system is state-of-the-art for biological imaging. Precisely registered images enable the reliable use of FRET techniques. In addition, real-time image processing performance allows computed images to be fed back and displayed to scientists immediately, and the pipelined nature of the FPGA allows additional image processing algorithms to be incorporated into the system without slowing throughput.

  14. Characterization of the ePix100 prototype: a front-end ASIC for second-generation LCLS integrating hybrid pixel detectors

    NASA Astrophysics Data System (ADS)

    Caragiulo, P.; Dragone, A.; Markovic, B.; Herbst, R.; Nishimura, K.; Reese, B.; Herrmann, S.; Hart, P.; Blaj, G.; Segal, J.; Tomada, A.; Hasi, J.; Carini, G.; Kenney, C.; Haller, G.

    2014-09-01

    ePix100 is the first variant of a novel class of integrating pixel ASICs architectures optimized for the processing of signals in second generation LINAC Coherent Light Source (LCLS) X-Ray cameras. ePix100 is optimized for ultra-low noise application requiring high spatial resolution. ePix ASICs are based on a common platform composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog to digital converters per column. The ePix100 variant has 50μmx50μm pixels arranged in a 352x384 matrix, a resolution of 50e- r.m.s. and a signal range of 35fC (100 photons at 8keV). In its final version it will be able to sustain a frame rate of 1kHz. A first prototype has been fabricated and characterized and the measurement results are reported here.

  15. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Accorsi, R.; Autiero, M.; Celentano, L.; Chmeissani, M.; Cozzolino, R.; Curion, A. S.; Frallicciardi, P.; Laccetti, P.; Lanza, R. C.; Lauria, A.; Maiorino, M.; Marotta, M.; Mettivier, G.; Montesi, M. C.; Riccio, P.; Roberti, G.; Russo, P.

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256×256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  16. Low area 4-bit 5 MS/s flash-type digitizer for hybrid-pixel detectors - Design study in 180 nm and 40 nm CMOS

    NASA Astrophysics Data System (ADS)

    Otfinowski, Piotr; Grybos, Pawel

    2015-11-01

    We report on the design of a 4-bit flash ADC with dynamic offset correction dedicated to measurement systems based on a pixel architecture. The presented converter was manufactured in two CMOS technologies: widespread and economical 180 nm and modern 40 nm process. The designs are optimized for the lowest area occupancy resulting in chip areas of 160×55 μm2 and 35×25 μm2. The experimental results indicate integral nonlinearity of +0.35/-0.21 LSB and +0.28/-0.25 LSB and power consumption of 52 μW and 17 μW at 5 MS/s for the prototypes in 180 nm and 40 nm technologies respectively.

  17. SOI monolithic pixel detector

    NASA Astrophysics Data System (ADS)

    Miyoshi, T.; Ahmed, M. I.; Arai, Y.; Fujita, Y.; Ikemoto, Y.; Takeda, A.; Tauchi, K.

    2014-05-01

    We are developing monolithic pixel detector using fully-depleted (FD) silicon-on-insulator (SOI) pixel process technology. The SOI substrate is high resistivity silicon with p-n junctions and another layer is a low resistivity silicon for SOI-CMOS circuitry. Tungsten vias are used for the connection between two silicons. Since flip-chip bump bonding process is not used, high sensor gain in a small pixel area can be obtained. In 2010 and 2011, high-resolution integration-type SOI pixel sensors, DIPIX and INTPIX5, have been developed. The characterizations by evaluating pixel-to-pixel crosstalk, quantum efficiency (QE), dark noise, and energy resolution were done. A phase-contrast imaging was demonstrated using the INTPIX5 pixel sensor for an X-ray application. The current issues and future prospect are also discussed.

  18. Detective quantum efficiency for photon-counting hybrid pixel detectors in the tender X-ray domain: application to Medipix3RX.

    PubMed

    Rinkel, Jean; Magalhães, Debora; Wagner, Franz; Meneau, Florian; Cesar Vicentin, Flavio

    2016-01-01

    Synchrotron-radiation-based X-ray imaging techniques using tender X-rays are facing a growing demand, in particular to probe the K absorption edges of low-Z elements. Here, a mathematical model has been developed for estimating the detective quantum efficiency (DQE) at zero spatial frequency in the tender X-ray energy range for photon-counting detectors by taking into account the influence of electronic noise. The experiments were carried out with a Medipix3RX ASIC bump-bonded to a 300 µm silicon sensor at the Soft X-ray Spectroscopy beamline (D04A-SXS) of the Brazilian Synchrotron Light Laboratory (LNLS, Campinas, Brazil). The results show that Medipix3RX can be used to develop new imaging modalities in the tender X-ray range for energies down to 2 keV. The efficiency and optimal DQE depend on the energy and flux of the photons. The optimal DQE values were found in the 7.9-8.6 keV photon energy range. The DQE deterioration for higher energies due to the lower absorption efficiency of the sensor and for lower energies due to the electronic noise has been quantified. The DQE for 3 keV photons and 1 × 10(4) photons pixel(-1) s(-1) is similar to that obtained with 19 keV photons. Based on our model, the use of Medipix3RX could be extended down to 2 keV which is crucial for coming applications in imaging techniques at modern synchrotron sources. PMID:26698065

  19. PixelLearn

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; Wagstaff, Kiri; Bornstein, Benjamin; Tang, Nghia; Roden, Joseph

    2006-01-01

    PixelLearn is an integrated user-interface computer program for classifying pixels in scientific images. Heretofore, training a machine-learning algorithm to classify pixels in images has been tedious and difficult. PixelLearn provides a graphical user interface that makes it faster and more intuitive, leading to more interactive exploration of image data sets. PixelLearn also provides image-enhancement controls to make it easier to see subtle details in images. PixelLearn opens images or sets of images in a variety of common scientific file formats and enables the user to interact with several supervised or unsupervised machine-learning pixel-classifying algorithms while the user continues to browse through the images. The machinelearning algorithms in PixelLearn use advanced clustering and classification methods that enable accuracy much higher than is achievable by most other software previously available for this purpose. PixelLearn is written in portable C++ and runs natively on computers running Linux, Windows, or Mac OS X.

  20. Moving from pixels to parcels: Modeling agricultural scenarios in the northern Great Plains using a hybrid raster- and vector-based approach

    NASA Astrophysics Data System (ADS)

    Sohl, T.; Wika, S.; Dornbierer, J.; Sayler, K. L.; Quenzer, R.

    2015-12-01

    Policy and economic driving forces have resulted in a higher demand for biofuel feedstocks in recent years, resulting in substantial increases in cultivated cropland in the northern Great Plains. A cellulosic-based biofuel industry could potentially further impact the region, with grassland and marginal agricultural land converted to perennial grasses or other feedstocks. Scenarios of projected land-use change are needed to enable regional stakeholders to plan for the potential consequences of expanded agricultural activity. Land-use models used to produce spatially explicit scenarios are typically raster-based and are poor at representing ownership units on which land-use change is based. This work describes a hybrid raster/vector-based modeling approach for modeling scenarios of agricultural change in the northern Great Plains. Regional scenarios of agricultural change from 2012 to 2050 were constructed, based partly on the U.S. Department of Energy's Billion Ton Update. Land-use data built from the 2012 Cropland Data Layer and the 2011 National Land Cover Database was used to establish initial conditions. Field boundaries from the U.S. Department of Agriculture's Common Land Unit dataset were used to establish ownership units. A modified version of the U.S. Geological Survey's Forecasting Scenarios of land-use (FORE-SCE) model was used to ingest vector-based field boundaries to facilitate the modeling of a farmer's choice of land use for a given year, while patch-based raster methodologies were used to represent expansion of urban/developed lands and other land use conversions. All modeled data were merged to a common raster dataset representing annual land use from 2012 to 2050. The hybrid modeling approach enabled the use of traditional, raster-based methods while integrating vector-based data to represent agricultural fields and other ownership-based units upon which land-use decisions are typically made.

  1. High density pixel array

    NASA Technical Reports Server (NTRS)

    Wiener-Avnear, Eliezer (Inventor); McFall, James Earl (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  2. Pixel-One

    NASA Astrophysics Data System (ADS)

    Pedichini, F.; Di Paola, A.; Testa, V.

    2010-07-01

    The early future of astronomy will be dominated by Extremely Large Telescopes where the focal lengths will be of the order of several hundred meters. This yields focal plane sizes of roughly one square meter to obtain a field of view of about 5 x 5 arcmin. When operated in seeing limited mode this field is correctly sampled with 1x1mm pixels. Such a sampling can be achieved using a peculiar array of tiny CMOS active photodiodes illuminated through microlenses or lightpipes. If the photodiode is small enough and utilizes the actual pixel technology, its dark current can be kept well below the sky background photocurrent, thus avoiding the use of cumbersome cryogenics systems. An active smart electronics will manage each pixel up to the A/D conversion and data transfer. This modular block is the Pixel-One. A 30x30 mm tile filled with 1000 Pixel-Ones could be the basic unit to mosaic very large focal planes. By inserting dispersion elements inside the optical path of the lenslet array one could also produce a low dispersed spectrum of each focal plane sub-aperture and, by using an array of few smart photodiodes, also get multi-wavelength information in the optical band for each equivalent focal plane pixel. An application to the E-ELT is proposed.

  3. Development of pixel detectors for SSC vertex tracking

    SciTech Connect

    Kramer, G. . Electro-Optical and Data Systems Group); Atlas, E.L.; Augustine, F.; Barken, O.; Collins, T.; Marking, W.L.; Worley, S.; Yacoub, G.Y. ) Shapiro, S.L. ); Arens, J.F.; Jernigan, J.G. . Space Sciences Lab.); Nygren,

    1991-04-01

    A description of hybrid PIN diode arrays and a readout architecture for their use as a vertex detector in the SSC environment is presented. Test results obtained with arrays having 256 {times} 256 pixels, each 30 {mu}m square, are also presented. The development of a custom readout for the SSC will be discussed, which supports a mechanism for time stamping hit pixels, storing their xy coordinates, and storing the analog information within the pixel. The peripheral logic located on the array, permits the selection of those pixels containing interesting data and their coordinates to be selectively read out. This same logic also resolves ambiguous pixel ghost locations and controls the pixel neighbor read out necessary to achieve high spatial resolution. The thermal design of the vertex tracker and the proposed signal processing architecture will also be discussed. 5 refs., 13 figs., 3 tabs.

  4. Development of a high density pixel multichip module at Fermilab

    SciTech Connect

    Cardoso, G.

    2001-03-08

    At Fermilab, both pixel detector multichip module and sensor hybridization are being developed for the BTeV experiment. The BTeV pixel detector is based on a design relying on a hybrid approach. With this approach, the readout chip and the sensor array are developed separately and the detector is constructed by flip-chip mating the two together. This method offers maximum flexibility in the development process, choice of fabrication technologies, and the choice of sensor material. This paper presents strategies to handle the required data rate and performance results of the first prototype and detector hybridization.

  5. Controlled pixelation of inverse opaline structures towards reflection-mode displays.

    PubMed

    Lee, Su Yeon; Kim, Shin-Hyun; Hwang, Hyerim; Sim, Jae Young; Yang, Seung-Man

    2014-04-16

    Pixelated inverse opals with red, green, and blue colors were prepared by hybridizing convective assembly of colloidal particles and photolithography techniques. The brilliant structural colors, high mechanical stability, and small feature size of the pixels were simultaneously accomplished, thereby providing color reflectors potentially useful for display devices. Moreover, this hybridized method provides a general means to create multi-colored photonic crystals. PMID:24458607

  6. Characterization of Depleted Monolithic Active Pixel detectors implemented with a high-resistive CMOS technology

    NASA Astrophysics Data System (ADS)

    Kishishita, T.; Hemperek, T.; Rymaszewski, P.; Hirono, T.; Krüger, H.; Wermes, N.

    2016-07-01

    We present the recent development of DMAPS (Depleted Monolithic Active Pixel Sensor), implemented with a Toshiba 130 nm CMOS process. Unlike in the case of standard MAPS technologies which are based on an epi-layer, this process provides a high-resistive substrate that enables larger signal and faster charge collection by drift in a 50 - 300 μm thick depleted layer. Since this process also enables the use of deep n-wells to isolate the collection electrodes from the thin active device layer, NMOS and PMOS transistors are available for the readout electronics in each pixel cell. In order to characterize the technology, we implemented a simple three transistor readout with a variety of pixel pitches and input FET sizes. This layout variety gives us a clue on sensor characteristics for future optimization, such as the input detector capacitance or leakage current. In the initial measurement, the radiation spectra were obtained from 55Fe with an energy resolution of 770 eV (FWHM) and 90Sr with the MVP of 4165 e-.

  7. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.

    PubMed

    Resetar, Tomislav; De Munck, Koen; Haspeslagh, Luc; Rosmeulen, Maarten; Süss, Andreas; Puers, Robert; Van Hoof, Chris

    2016-01-01

    This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under -32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e - rms, full well capacity of 8000 e - , and the conversion gain of 75 µV / e - are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination. PMID:27537882

  8. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, S.; Cole, D. M.; Hancock, B. R.; Smith, R. M.

    2008-01-01

    Electronic coupling effects such as Inter-Pixel Capacitance (IPC) affect the quantitative interpretation of image data from CMOS, hybrid visible and infrared imagers alike. Existing methods of characterizing IPC do not provide a map of the spatial variation of IPC over all pixels. We demonstrate a deterministic method that provides a direct quantitative map of the crosstalk across an imager. The approach requires only the ability to reset single pixels to an arbitrary voltage, different from the rest of the imager. No illumination source is required. Mapping IPC independently for each pixel is also made practical by the greater S/N ratio achievable for an electrical stimulus than for an optical stimulus, which is subject to both Poisson statistics and diffusion effects of photo-generated charge. The data we present illustrates a more complex picture of IPC in Teledyne HgCdTe and HyViSi focal plane arrays than is presently understood, including the presence of a newly discovered, long range IPC in the HyViSi FPA that extends tens of pixels in distance, likely stemming from extended field effects in the fully depleted substrate. The sensitivity of the measurement approach has been shown to be good enough to distinguish spatial structure in IPC of the order of 0.1%.

  9. Selecting Pixels for Kepler Downlink

    NASA Technical Reports Server (NTRS)

    Bryson, Stephen T.; Jenkins, Jon M.; Klaus, Todd C.; Cote, Miles T.; Quintana, Elisa V.; Hall, Jennifer R.; Ibrahim, Khadeejah; Chandrasekaran, Hema; Caldwell, Douglas A.; Van Cleve, Jeffrey E.; Haas, Michael R.

    2010-01-01

    The Kepler mission monitors > 100,000 stellar targets using 42 2200 1024 pixel CCDs. Bandwidth constraints prevent the downlink of all 96 million pixels per 30-minute cadence, so the Kepler spacecraft downlinks a specified collection of pixels for each target. These pixels are selected by considering the object brightness, background and the signal-to-noise of each pixel, and are optimized to maximize the signal-to-noise ratio of the target. This paper describes pixel selection, creation of spacecraft apertures that efficiently capture selected pixels, and aperture assignment to a target. Diagnostic apertures, short-cadence targets and custom specified shapes are discussed.

  10. Method for hyperspectral imagery exploitation and pixel spectral unmixing

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2003-01-01

    An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.

  11. Single photon counting pixel detectors for synchrotron radiation experiments

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Kawase, M.; Kobas, M.; Kraft, P.; Sato, M.; Schmitt, B.; Suzuki, M.; Tanida, H.; Uruga, T.

    2010-11-01

    At the Paul Scherrer Institute PSI an X-ray single photon counting pixel detector (PILATUS) based on the hybrid-pixel detector technology was developed in collaboration with SPring-8. The detection element is a 320 or 450 μm thick silicon sensor forming pixelated pn-diodes with a pitch of 172 μm×172 μm. An array of 2×8 custom CMOS readout chips are indium bump-bonded to the sensor, which leads to 33.5 mm×83.8 mm detective area. Each pixel contains a charge-sensitive amplifier, a single level discriminator and a 20 bit counter. This design realizes a high dynamic range, short readout time of less than 3 ms, a high framing rate of over 200 images per second and an excellent point-spread function. The maximum counting rate achieves more than 2×10 6 X-rays/s/pixel.

  12. Spectrally tunable pixel sensors

    NASA Astrophysics Data System (ADS)

    Langfelder, G.; Buffa, C.; Longoni, A. F.; Zaraga, F.

    2013-01-01

    They are here reported the developments and experimental results of fully operating matrices of spectrally tunable pixels based on the Transverse Field Detector (TFD). Unlike several digital imaging sensors based on color filter arrays or layered junctions, the TFD has the peculiar feature of having electrically tunable spectral sensitivities. In this way the sensor color space is not fixed a priori but can be real-time adjusted, e.g. for a better adaptation to the scene content or for multispectral capture. These advantages come at the cost of an increased complexity both for the photosensitive elements and for the readout electronics. The challenges in the realization of a matrix of TFD pixels are analyzed in this work. First experimental results on an 8x8 (x 3 colors) and on a 64x64 (x 3 colors) matrix will be presented and analyzed in terms of colorimetric and noise performance, and compared to simulation predictions.

  13. Digital-pixel focal plane array development

    NASA Astrophysics Data System (ADS)

    Brown, Matthew G.; Baker, Justin; Colonero, Curtis; Costa, Joe; Gardner, Tom; Kelly, Mike; Schultz, Ken; Tyrrell, Brian; Wey, Jim

    2010-01-01

    Since 2006, MIT Lincoln Laboratory has been developing Digital-pixel Focal Plane Array (DFPA) readout integrated circuits (ROICs). To date, four 256 × 256 30 μm pitch DFPA designs with in-pixel analog to digital conversion have been fabricated using IBM 90 nm CMOS processes. The DFPA ROICs are compatible with a wide range of detector materials and cutoff wavelengths; HgCdTe, QWIP, and InGaAs photo-detectors with cutoff wavelengths ranging from 1.6 to 14.5 μm have been hybridized to the same digital-pixel readout. The digital-pixel readout architecture offers high dynamic range, A/C or D/C coupled integration, and on-chip image processing with low power orthogonal transfer operations. The newest ROIC designs support two-color operation with a single Indium bump connection. Development and characterization of the two-color DFPA designs is presented along with applications for this new digital readout technology.

  14. The ALICE Pixel Detector

    NASA Astrophysics Data System (ADS)

    Mercado-Perez, Jorge

    2002-07-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well.

  15. Imaging properties of pixellated scintillators with deep pixels

    PubMed Central

    Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.

    2015-01-01

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10×10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm × 1mm × 20 mm pixels) made by Proteus, Inc. with similar 10×10 arrays of LSO:Ce and BGO (1mm × 1mm × 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10×10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors. PMID:26236070

  16. Imaging properties of pixellated scintillators with deep pixels

    NASA Astrophysics Data System (ADS)

    Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.

    2014-09-01

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10x10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm x 1mm x 20 mm pixels) made by Proteus, Inc. with similar 10x10 arrays of LSO:Ce and BGO (1mm x 1mm x 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10x10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors.

  17. Design of ADC in 25 μm pixels pitch dedicated for IRFPA image processing at LETI

    NASA Astrophysics Data System (ADS)

    Tchagaspanian, M.; Villard, P.; Dupont, B.; Chammings, G.; Martin, J. L.; Pistre, C.; Lattard, D.; Chantre, C.; Arnaud, A.; Yon, J. J.; Simoens, F.; Tissot, J. L.

    2007-04-01

    LETI has been involved in IRFPA development since 1978, the design department (LETI/DCIS) has focused its work on new ROIC architecture since many years. The trend is to integrate advanced functions into the CMOS design in the aim of making cost efficient sensors. The purpose of this paper is to present the latest developments of an Analog to Digital Converter embedded in a 25μm pixel. The design is driven by several goals. It targets both long integration time and snapshot exposure, 100% of image frame time being available for integration. All pixels are integrating the IR signal at the same time. The IR signal is converted into digital by using a charge packet counter. High density 130nm CMOS allows to use many digital functions such as counting, memory and addressing. This new structure has been applied to 25μm pitch bolometer sensors with a dedicated 320 x 240 IRCMOS circuit. Due to smart image processing in the CMOS, the bolometer architecture requirements may become very simple and low cost. The room temperature sensitivity and the DC offset are solved directly in the pixel. This FPA targets low NETD (<50mK), a variation of 80 Kelvin for the FPA temperature, 14 bits output at 50/60Hz video rate.

  18. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Püllen, Lukas; Boek, Jennifer; Kersten, Susanne; Kind, Peter; Mättig, Peter; Zeitnitz, Christian

    2013-12-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerator's instantaneous luminosity by a factor of 5 and the integrated luminosity by a factor of 10. In the context of this upgrade, the inner detector (including the pixel detector) of the ATLAS experiment will be replaced. This new pixel detector requires a specific control system which complies with strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4×4 DCS chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub-micron technology. We present results from reliability measurements under irradiation from new prototypes of components for the DCS network.

  19. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Boek, J.; Kersten, S.; Kind, P.; Mättig, P.; Püllen, L.; Zeitnitz, C.

    2013-03-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerators luminosity by a factor of 10. In the context of this upgrade, the inner detector of the ATLAS experiment will be replaced entirely including the pixel detector. This new pixel detector requires a specific control system which complies with the strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS Chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4x4 DCS Chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub micron technology. We present results from measurements from new prototypes of components for the DCS network.

  20. Pixelation Effects in Weak Lensing

    NASA Astrophysics Data System (ADS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-11-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, & Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09" for a 0.14" FWHM point-spread function (PSF). The pixel scale could be increased to ~0.16" if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  1. Pixelation Effects in Weak Lensing

    NASA Technical Reports Server (NTRS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-01-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, and Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09' for a 0.14' FWHM point-spread function (PSF). The pixel scale could be increased to 0.16' if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  2. THE KEPLER PIXEL RESPONSE FUNCTION

    SciTech Connect

    Bryson, Stephen T.; Haas, Michael R.; Dotson, Jessie L.; Koch, David G.; Borucki, William J.; Tenenbaum, Peter; Jenkins, Jon M.; Chandrasekaran, Hema; Caldwell, Douglas A.; Klaus, Todd; Gilliland, Ronald L.

    2010-04-20

    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point-spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal-to-noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.

  3. Characterization of the energy resolution and the tracking capabilities of a hybrid pixel detector with CdTe-sensor layer for a possible use in a neutrinoless double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Filipenko, Mykhaylo; Gleixner, Thomas; Anton, Gisela; Durst, Jürgen; Michel, Thilo

    2013-04-01

    Many different experiments are being developed to explore the existence of the neutrinoless double beta decay (0 νββ) since it would imply fundamental consequences for particle physics. In this work we present results on the evaluation of Timepix detectors with cadmium-telluride sensor material to search for 0 νββ in 116Cd. This work was carried out with the COBRA collaboration and the Medipix collaboration. Due to the relatively small pixel dimension of 110×110×1000 μm3 the energy deposited by particles typically extends over several detector pixels leading to a track in the pixel matrix. We investigated the separation power regarding different event-types like α-particles, atmospheric muons, single electrons and electron-positron pairs produced at a single vertex. We achieved excellent classification power for α-particles and muons. In addition, we achieved good separation power between single electron and electron-positron pair production events. These separation abilities indicate a very good background reduction for the 0 νββ search. Further, in order to distinguish between 2 νββ and 0 νββ, the energy resolution is of particular importance. We carried out simulations which demonstrate that an energy resolution of 0.43 % is achievable at the Q-value for 0 νββ of 116Cd at 2.814 MeV. We measured an energy resolution of 1.6 % at a nominal energy of 1589 keV for electron-positron tracks which is about two times worse that predicted by our simulations. This deviation is probably due to the problem of detector calibration at energies above 122 keV which is discussed in this paper as well.

  4. Rework of flip chip bonded radiation pixel detectors

    NASA Astrophysics Data System (ADS)

    Vähänen, S.; Heikkinen, H.; Pohjonen, H.; Salonen, J.; Savolainen-Pulli, S.

    2008-06-01

    In this paper, some practical aspects of reworking flip chip hybridized pixel detectors are discussed. As flip chip technology has been advancing in terms of placement accuracy and reliability, large-area hybrid pixel detectors have been developed. The area requirements are usually fulfilled by placing several readout chips (ROCs) on single sensor chip. However, as the number of ROCs increases, the probability of failure in the hybridization process and the ROC operation also increases. Because high accuracy flip chip bonding takes time, a significant part of the price of a pixel detector comes from the flip chip assembly process itself. As large-area detector substrates are expensive, and many flip chip placements are required, the price of an assembled detector can become very high. In a typical case, there is just one bad ROC (out of several) on a faulty detector to be replaced. Considering the high price of pixel detectors and the fact that reworking faulty ROCs does not take much longer than the original placement, it is worthwhile to investigate the feasibility of a rework process.

  5. From Pixels to Planets

    NASA Technical Reports Server (NTRS)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  6. Challenges of small-pixel infrared detectors: a review

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  7. Challenges of small-pixel infrared detectors: a review.

    PubMed

    Rogalski, A; Martyniuk, P; Kopytko, M

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated. PMID:27007242

  8. Local Pixel Bundles: Bringing the Pixels to the People

    NASA Astrophysics Data System (ADS)

    Anderson, Jay

    2014-12-01

    The automated galaxy-based alignment software package developed for the Frontier Fields program (hst2galign, see Anderson & Ogaz 2014 and http://www.stsci.edu/hst/campaigns/frontier-fields/) produces a direct mapping from the pixels of the flt frame of each science exposure into a common master frame. We can use these mappings to extract the flt-pixels in the vicinity of a source of interest and package them into a convenient "bundle". In addition to the pixels, this data bundle can also contain "meta" information that will allow users to transform positions from the flt pixels to the reference frame and vice-versa. Since the un-resampled pixels in the flt frames are the only true constraints we have on the astronomical scene, the ability to inter-relate these pixels will enable many high-precision studies, such as: point-source-fitting and deconvolution with accurate PSFs, easy exploration of different image-combining algorithms, and accurate faint-source finding and photometry. The data products introduced in this ISR are a very early attempt to provide the flt-level pixel constraints in a package that is accessible to more than the handful of experts in HST astrometry. The hope is that users in the community might begin using them and will provide feedback as to what information they might want to see in the bundles and what general analysis packages they might find useful. For that reason, this document is somewhat informally written, since I know that it will be modified and updated as the products and tools are optimized.

  9. Depleted CMOS pixels for LHC proton-proton experiments

    NASA Astrophysics Data System (ADS)

    Wermes, N.

    2016-07-01

    While so far monolithic pixel detectors have remained in the realm of comparatively low rate and radiation applications outside LHC, new developments exploiting high resistivity substrates with three or four well CMOS process options allow reasonably large depletion depths and full CMOS circuitry in a monolithic structure. This opens up the possibility to target CMOS pixel detectors also for high radiation pp-experiments at the LHC upgrade, either in a hybrid-type fashion or even fully monolithic. Several pixel matrices have been prototyped with high ohmic substrates, high voltage options, and full CMOS electronics. They were characterized in the lab and in test beams. An overview of the necessary development steps and different approaches as well as prototype results are presented in this paper.

  10. A Medium-Format, Mixed-Mode Pixel Array Detector for Kilohertz X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Tate, M. W.; Chamberlain, D.; Green, K. S.; Philipp, H. T.; Purohit, P.; Strohman, C.; Gruner, S. M.

    2013-03-01

    An x-ray pixel array detector (PAD) capable of framing up to 1 kHz is described. This hybrid detector is constructed from a 3-side buttable, 128×128 pixel module based upon the mixed-mode pixel array detector (MMPAD) chip developed jointly by Cornell and Area Detector Systems Corporation (Poway, CA). The chip uses a charge integrating front end for a high instantaneous count rate yet with single photon sensitivity. In-pixel circuitry utilizing a digital overflow counter extends the per frame dynamic range to >4×107 x-rays/pixel. Results are shown from a base configuration of a 2×3 module array (256×384 pixels).

  11. The LAMBDA photon-counting pixel detector

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Lange, S.; Smoljanin, S.; Hirsemann, H.; Graafsma, H.; Epple, M.; Zuvic, M.; Lampert, M.-O.; Fritzsch, T.; Rothermund, M.

    2013-03-01

    The Medipix3 photon-counting detector chip has a number of novel features that are attractive for synchrotron experiments, such as a high frame rate with zero dead time and high spatial resolution. DESY are developing a large-area Medipix3-based detector array (LAMBDA). A single LAMBDA module consists of 2 by 6 Medipix3 chips on a ceramic carrier board, bonded to either a single large silicon sensor or two smaller high-Z sensors. The readout system fits behind the carrier board to allow module tiling, and uses a large on-board RAM and multiple 10 Gigabit Ethernet links to permit high-speed readout. Currently, the first large silicon modules have been constructed and read out at low speed, and the firmware for highspeed readout is being developed. In addition to these silicon sensors, we are developing a germanium hybrid pixel detector in collaboration with Canberra for higher-energy beamlines. Canberra have produced a set of 256-by-256-pixel planar germanium sensors with 55μm pitch, and these are currently being bonded to Medipix3 readout chips by Fraunhofer IZM (Berlin).

  12. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-06-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The "smart" pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients.

  13. Front-end intelligence for triggering and local track measurement in gaseous pixel detectors

    NASA Astrophysics Data System (ADS)

    Gromov, V.; Hessey, N.; Vermeulen, J.

    2012-11-01

    A number of applications in high-energy physics and medicine requires three-dimensional reconstruction of the particle trajectories: for example, high momentum particles in accelerator-based experiments can be identified on the basis of the properties of their tracks, while in proton computed tomography accurate knowledge of the incoming and outgoing beam trajectory is crucial in reconstructing the most probable path of the proton traversing the patient. In this work we investigate the potential of Gaseous Pixel (GridPix) detectors for fast and efficient recognition of tracks and determination of their properties. This includes selection, without external trigger, of tracks with desired angles, for example tracks with small tilt angles corresponding to high momentum particles in a magnetic field. Being able to select these fast and without external input is of interest for the future upgrades of the LHC detectors. In this paper we present a track selection algorithm, and its physical implementation in 130 nm CMOS technology with estimates of power consumption, data rates, latency, and chip area. The Timepix3 chip, currently being designed for a wide range of applications, will also be suitable for readout of GridPix detectors. Both arrival time information (accuracy 1.6 ns) and charge deposit information will be delivered for each hit together with the coordinates of the active pixel. A short overview is presented of its architecture, which allows continuous self-triggered readout of sparsely distributed data with a rate up to 20 × 106 hits cm-2sec-1. The addition of fast track pattern recognition logic to TimePix3 in a successor chip is currently being investigated.

  14. The CMS pixel luminosity telescope

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-07-01

    The Pixel Luminosity Telescope (PLT) is a new complement to the CMS detector for the LHC Run II data taking period. It consists of eight 3-layer telescopes based on silicon pixel detectors that are placed around the beam pipe on each end of CMS viewing the interaction point at small angle. A fast 3-fold coincidence of the pixel planes in each telescope will provide a bunch-by-bunch measurement of the luminosity. Particle tracking allows collision products to be distinguished from beam background, provides a self-alignment of the detectors, and a continuous in-time monitoring of the efficiency of each telescope plane. The PLT is an independent luminometer, essential to enhance the robustness on the measurement of the delivered luminosity and to reduce its systematic uncertainties. This will allow to determine production cross-sections, and hence couplings, with high precision and to set more stringent limits on new particle production.

  15. Microradiography with Semiconductor Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiří; Holý, Tomáš; Platkevič, Michal; Pospíšil, Stanislav; Vavřík, Daniel; Vykydal, Zdeněk

    2007-11-01

    High resolution radiography (with X-rays, neutrons, heavy charged particles, …) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.

  16. Electrical characterization of irradiated prototype silicon pixel sensors for BTeV

    SciTech Connect

    Maria Rita Coluccia et al.

    2002-11-13

    The pixel detector in the BteV experiment at the Tevatron (Fermi Laboratory) is an important detector component for high-resolution tracking and vertex identification. For this task the hybrid pixel detector has to work in a very harsh radiation environment with up to 10{sup 14} minimum ionizing particles/cm{sup 2}/year. Radiation hardness of prototype n{sup +}/n/p{sup +} silicon pixel sensors has been investigated. We present Electrical characterization curves for irradiated prototype n{sup +}/n/p{sup +} sensors, intended for use in the BTeV experiment. We tested pixel sensors from various vendors and with two pixel isolation techniques: p-stop and p-spray. Results are based on irradiation with 200 MeV protons up to 6 x 10{sup 14} protons/cm{sup 2}.

  17. SAR Image Complex Pixel Representations

    SciTech Connect

    Doerry, Armin W.

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  18. Representing SAR complex image pixels

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2016-05-01

    Synthetic Aperture Radar (SAR) images are often complex-valued to facilitate specific exploitation modes. Furthermore, these pixel values are typically represented with either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values, with constituent components comprised of integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  19. CMOS digital pixel sensors: technology and applications

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  20. Low complexity pixel-based halftone detection

    NASA Astrophysics Data System (ADS)

    Ok, Jiheon; Han, Seong Wook; Jarno, Mielikainen; Lee, Chulhee

    2011-10-01

    With the rapid advances of the internet and other multimedia technologies, the digital document market has been growing steadily. Since most digital images use halftone technologies, quality degradation occurs when one tries to scan and reprint them. Therefore, it is necessary to extract the halftone areas to produce high quality printing. In this paper, we propose a low complexity pixel-based halftone detection algorithm. For each pixel, we considered a surrounding block. If the block contained any flat background regions, text, thin lines, or continuous or non-homogeneous regions, the pixel was classified as a non-halftone pixel. After excluding those non-halftone pixels, the remaining pixels were considered to be halftone pixels. Finally, documents were classified as pictures or photo documents by calculating the halftone pixel ratio. The proposed algorithm proved to be memory-efficient and required low computation costs. The proposed algorithm was easily implemented using GPU.

  1. The FPGA Pixel Array Detector

    NASA Astrophysics Data System (ADS)

    Hromalik, Marianne S.; Green, Katherine S.; Philipp, Hugh T.; Tate, Mark W.; Gruner, Sol M.

    2013-02-01

    A proposed design for a reconfigurable x-ray Pixel Array Detector (PAD) is described. It operates by integrating a high-end commercial field programmable gate array (FPGA) into a 3-layer device along with a high-resistivity diode detection layer and a custom, application-specific integrated circuit (ASIC) layer. The ASIC layer contains an energy-discriminating photon-counting front end with photon hits streamed directly to the FPGA via a massively parallel, high-speed data connection. FPGA resources can be allocated to perform user defined tasks on the pixel data streams, including the implementation of a direct time autocorrelation function (ACF) with time resolution down to 100 ns. Using the FPGA at the front end to calculate the ACF reduces the required data transfer rate by several orders of magnitude when compared to a fast framing detector. The FPGA-ASIC high-speed interface, as well as the in-FPGA implementation of a real-time ACF for x-ray photon correlation spectroscopy experiments has been designed and simulated. A 16×16 pixel prototype of the ASIC has been fabricated and is being tested.

  2. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor)

    2013-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  3. Making a trillion pixels dance

    NASA Astrophysics Data System (ADS)

    Singh, Vivek; Hu, Bin; Toh, Kenny; Bollepalli, Srinivas; Wagner, Stephan; Borodovsky, Yan

    2008-03-01

    In June 2007, Intel announced a new pixelated mask technology. This technology was created to address the problem caused by the growing gap between the lithography wavelength and the feature sizes patterned with it. As this gap has increased, the quality of the image has deteriorated. About a decade ago, Optical Proximity Correction (OPC) was introduced to bridge this gap, but as this gap continued to increase, one could not rely on the same basic set of techniques to maintain image quality. The computational lithography group at Intel sought to alleviate this problem by experimenting with additional degrees of freedom within the mask. This paper describes the resulting pixelated mask technology, and some of the computational methods used to create it. The first key element of this technology is a thick mask model. We realized very early in the development that, unlike traditional OPC methods, the pixelated mask would require a very accurate thick mask model. Whereas in the traditional methods, one can use the relatively coarse approximations such as the boundary layer method, use of such techniques resulted not just in incorrect sizing of parts of the pattern, but in whole features missing. We built on top of previously published domain decomposition methods, and incorporated limitations of the mask manufacturing process, to create an accurate thick mask model. Several additional computational techniques were invoked to substantially increase the speed of this method to a point that it was feasible for full chip tapeout. A second key element of the computational scheme was the comprehension of mask manufacturability, including the vital issue of the number of colors in the mask. While it is obvious that use of three or more colors will give the best image, one has to be practical about projecting mask manufacturing capabilities for such a complex mask. To circumvent this serious issue, we eventually settled on a two color mask - comprising plain glass and etched

  4. Pixelated filters for spatial imaging

    NASA Astrophysics Data System (ADS)

    Mathieu, Karine; Lequime, Michel; Lumeau, Julien; Abel-Tiberini, Laetitia; Savin De Larclause, Isabelle; Berthon, Jacques

    2015-10-01

    Small satellites are often used by spatial agencies to meet scientific spatial mission requirements. Their payloads are composed of various instruments collecting an increasing amount of data, as well as respecting the growing constraints relative to volume and mass; So small-sized integrated camera have taken a favored place among these instruments. To ensure scene specific color information sensing, pixelated filters seem to be more attractive than filter wheels. The work presented here, in collaboration with Institut Fresnel, deals with the manufacturing of this kind of component, based on thin film technologies and photolithography processes. CCD detectors with a pixel pitch about 30 μm were considered. In the configuration where the matrix filters are positioned the closest to the detector, the matrix filters are composed of 2x2 macro pixels (e.g. 4 filters). These 4 filters have a bandwidth about 40 nm and are respectively centered at 550, 700, 770 and 840 nm with a specific rejection rate defined on the visible spectral range [500 - 900 nm]. After an intense design step, 4 thin-film structures have been elaborated with a maximum thickness of 5 μm. A run of tests has allowed us to choose the optimal micro-structuration parameters. The 100x100 matrix filters prototypes have been successfully manufactured with lift-off and ion assisted deposition processes. High spatial and spectral characterization, with a dedicated metrology bench, showed that initial specifications and simulations were globally met. These excellent performances knock down the technological barriers for high-end integrated specific multi spectral imaging.

  5. Predicting human gaze beyond pixels.

    PubMed

    Xu, Juan; Jiang, Ming; Wang, Shuo; Kankanhalli, Mohan S; Zhao, Qi

    2014-01-01

    A large body of previous models to predict where people look in natural scenes focused on pixel-level image attributes. To bridge the semantic gap between the predictive power of computational saliency models and human behavior, we propose a new saliency architecture that incorporates information at three layers: pixel-level image attributes, object-level attributes, and semantic-level attributes. Object- and semantic-level information is frequently ignored, or only a few sample object categories are discussed where scaling to a large number of object categories is not feasible nor neurally plausible. To address this problem, this work constructs a principled vocabulary of basic attributes to describe object- and semantic-level information thus not restricting to a limited number of object categories. We build a new dataset of 700 images with eye-tracking data of 15 viewers and annotation data of 5,551 segmented objects with fine contours and 12 semantic attributes (publicly available with the paper). Experimental results demonstrate the importance of the object- and semantic-level information in the prediction of visual attention. PMID:24474825

  6. Position-Sensitive Nuclear Spectroscopy with Pixel Detectors

    SciTech Connect

    Granja, Carlos; Vykydal, Zdenek; Jakubek, Jan; Pospisil, Stanislav

    2007-10-26

    State-of-the-art hybrid semiconductor pixel detectors such as Medipix2 are suitable for energy- and position-sensitive nuclear spectroscopy. In addition to excellent energy- and spatial-resolution, these devices can operate in spectroscopic, single-quantum counting and/or on-line tracking mode. A devoted compact USB-readout interface provides functionality and ease of operation. The compact and versatile Medipix2/USB radiation camera provides visualization, vacuum and room-temperature operation as a real-time portable active nuclear emulsion.

  7. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  8. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  9. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    1995-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  10. Proceedings of PIXEL98 -- International pixel detector workshop

    SciTech Connect

    Anderson, D.F.; Kwan, S.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  11. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  12. Serial Pixel Analog-to-Digital Converter

    SciTech Connect

    Larson, E D

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and “one-hot” counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  13. Design of the low area monotonic trim DAC in 40 nm CMOS technology for pixel readout chips

    NASA Astrophysics Data System (ADS)

    Drozd, A.; Szczygiel, R.; Maj, P.; Satlawa, T.; Grybos, P.

    2014-12-01

    The recent research in hybrid pixel detectors working in single photon counting mode focuses on nanometer or 3D technologies which allow making pixels smaller and implementing more complex solutions in each of the pixels. Usually single pixel in readout electronics for X-ray detection comprises of charge amplifier, shaper and discriminator that allow classification of events occurring at the detector as true or false hits by comparing amplitude of the signal obtained with threshold voltage, which minimizes the influence of noise effects. However, making the pixel size smaller often causes problems with pixel to pixel uniformity and additional effects like charge sharing become more visible. To improve channel-to-channel uniformity or implement an algorithm for charge sharing effect minimization, small area trimming DACs working in each pixel independently are necessary. However, meeting the requirement of small area often results in poor linearity and even non-monotonicity. In this paper we present a novel low-area thermometer coded 6-bit DAC implemented in 40 nm CMOS technology. Monte Carlo simulations were performed on the described design proving that under all conditions designed DAC is inherently monotonic. Presented DAC was implemented in the prototype readout chip with 432 pixels working in single photon counting mode, with two trimming DACs in each pixel. Each DAC occupies the area of 8 μm × 18.5 μm. Measurements and chips' tests were performed to obtain reliable statistical results.

  14. High dynamic range pixel architecture for advanced diagnostic medical x-ray imaging applications

    SciTech Connect

    Izadi, Mohammad Hadi; Karim, Karim S.

    2006-05-15

    The most widely used architecture in large-area amorphous silicon (a-Si) flat panel imagers is a passive pixel sensor (PPS), which consists of a detector and a readout switch. While the PPS has the advantage of being compact and amenable toward high-resolution imaging, small PPS output signals are swamped by external column charge amplifier and data line thermal noise, which reduce the minimum readable sensor input signal. In contrast to PPS circuits, on-pixel amplifiers in a-Si technology reduce readout noise to levels that can meet even the stringent requirements for low noise digital x-ray fluoroscopy (<1000 noise electrons). However, larger voltages at the pixel input cause the output of the amplified pixel to become nonlinear thus reducing the dynamic range. We reported a hybrid amplified pixel architecture based on a combination of PPS and amplified pixel designs that, in addition to low noise performance, also resulted in large-signal linearity and consequently higher dynamic range [K. S. Karim et al., Proc. SPIE 5368, 657 (2004)]. The additional benefit in large-signal linearity, however, came at the cost of an additional pixel transistor. We present an amplified pixel design that achieves the goals of low noise performance and large-signal linearity without the need for an additional pixel transistor. Theoretical calculations and simulation results for noise indicate the applicability of the amplified a-Si pixel architecture for high dynamic range, medical x-ray imaging applications that require switching between low exposure, real-time fluoroscopy and high-exposure radiography.

  15. Dead pixel replacement in LWIR microgrid polarimeters.

    PubMed

    Ratliff, Bradley M; Tyo, J Scott; Boger, James K; Black, Wiley T; Bowers, David L; Fetrow, Matthew P

    2007-06-11

    LWIR imaging arrays are often affected by nonresponsive pixels, or "dead pixels." These dead pixels can severely degrade the quality of imagery and often have to be replaced before subsequent image processing and display of the imagery data. For LWIR arrays that are integrated with arrays of micropolarizers, the problem of dead pixels is amplified. Conventional dead pixel replacement (DPR) strategies cannot be employed since neighboring pixels are of different polarizations. In this paper we present two DPR schemes. The first is a modified nearest-neighbor replacement method. The second is a method based on redundancy in the polarization measurements.We find that the redundancy-based DPR scheme provides an order-of-magnitude better performance for typical LWIR polarimetric data. PMID:19547086

  16. Dead pixel replacement in LWIR microgrid polarimeters

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Tyo, J. Scott; Boger, James K.; Black, Wiley T.; Bowers, David L.; Fetrow, Matthew P.

    2007-06-01

    LWIR imaging arrays are often affected by nonresponsive pixels, or “dead pixels.” These dead pixels can severely degrade the quality of imagery and often have to be replaced before subsequent image processing and display of the imagery data. For LWIR arrays that are integrated with arrays of micropolarizers, the problem of dead pixels is amplified. Conventional dead pixel replacement (DPR) strategies cannot be employed since neighboring pixels are of different polarizations. In this paper we present two DPR schemes. The first is a modified nearest-neighbor replacement method. The second is a method based on redundancy in the polarization measurements.We find that the redundancy-based DPR scheme provides an order-of-magnitude better performance for typical LWIR polarimetric data.

  17. Equivalence of a Bit Pixel Image to a Quantum Pixel Image

    NASA Astrophysics Data System (ADS)

    Ortega, Laurel Carlos; Dong, Shi-Hai; Cruz-Irisson, M.

    2015-11-01

    We propose a new method to transform a pixel image to the corresponding quantum-pixel using a qubit per pixel to represent each pixels classical weight in a quantum image matrix weight. All qubits are linear superposition, changing the coefficients level by level to the entire longitude of the gray scale with respect to the base states of the qubit. Classically, these states are just bytes represented in a binary matrix, having code combinations of 1 or 0 at all pixel locations. This method introduces a qubit-pixel image representation of images captured by classical optoelectronic methods. Supported partially by the project 20150964-SIP-IPN, Mexico

  18. Infrared astronomy - Pixels to spare

    SciTech Connect

    Mccaughrean, M. )

    1991-07-01

    An infrared CCD camera containing an array with 311,040 pixels arranged in 486 rows of 640 each is tested. The array is a chip of platinum silicide (PtSi), sensitive to photons with wavelengths between 1 and 6 microns. Observations of the Hubble Space Telescope, Mars, Pluto and moon are reported. It is noted that the satellite's twin solar-cell arrays, at an apparent separation of about 1 1/4 arc second, are well resolved. Some two dozen video frames were stacked to make each presented image of Mars at 1.6 microns; at this wavelength Mars appears much as it does in visible light. A stack of 11 images at a wavelength of 1.6 microns is used for an image of Jupiter with its Great Red Spot and moons Io and Europa.

  19. Method for fabricating pixelated silicon device cells

    SciTech Connect

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  20. Commissioning of the CMS Forward Pixel Detector

    SciTech Connect

    Kumar, Ashish; /SUNY, Buffalo

    2008-12-01

    The Compact Muon Solenoid (CMS) experiment is scheduled for physics data taking in summer 2009 after the commissioning of high energy proton-proton collisions at Large Hadron Collider (LHC). At the core of the CMS all-silicon tracker is the silicon pixel detector, comprising three barrel layers and two pixel disks in the forward and backward regions, accounting for a total of 66 million channels. The pixel detector will provide high-resolution, 3D tracking points, essential for pattern recognition and precise vertexing, while being embedded in a hostile radiation environment. The end disks of the pixel detector, known as the Forward Pixel detector, has been assembled and tested at Fermilab, USA. It has 18 million pixel cells with dimension 100 x 150 {micro}m{sup 2}. The complete forward pixel detector was shipped to CERN in December 2007, where it underwent extensive system tests for commissioning prior to the installation. The pixel system was put in its final place inside the CMS following the installation and bake out of the LHC beam pipe in July 2008. It has been integrated with other sub-detectors in the readout since September 2008 and participated in the cosmic data taking. This report covers the strategy and results from commissioning of CMS forward pixel detector at CERN.

  1. Implementation of TDI based digital pixel ROIC with 15μm pixel pitch

    NASA Astrophysics Data System (ADS)

    Ceylan, Omer; Shafique, Atia; Burak, A.; Caliskan, Can; Abbasi, Shahbaz; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    A 15um pixel pitch digital pixel for LWIR time delay integration (TDI) applications is implemented which occupies one fourth of pixel area compared to previous digital TDI implementation. TDI is implemented on 8 pixels with oversampling rate of 2. ROIC provides 16 bits output with 8 bits of MSB and 8 bits of LSB. Pixel can store 75 M electrons with a quantization noise of 500 electrons. Digital pixel TDI implementation is advantageous over analog counterparts considering power consumption, chip area and signal-to-noise ratio. Digital pixel TDI ROIC is fabricated with 0.18um CMOS process. In digital pixel TDI implementation photocurrent is integrated on a capacitor in pixel and converted to digital data in pixel. This digital data triggers the summation counters which implements TDI addition. After all pixels in a row contribute, the summed data is divided to the number of TDI pixels(N) to have the actual output which is square root of N improved version of a single pixel output in terms of signal-to-noise-ratio (SNR).

  2. High throughput optoelectronic smart pixel systems using diffractive optics

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hao

    1999-12-01

    Recent developments in digital video, multimedia technology and data networks have greatly increased the demand for high bandwidth communication channels and high throughput data processing. Electronics is particularly suited for switching, amplification and logic functions, while optics is more suitable for interconnections and communications with lower energy and crosstalk. In this research, we present the design, testing, integration and demonstration of several optoelectronic smart pixel devices and system architectures. These systems integrate electronic switching/processing capability with parallel optical interconnections to provide high throughput network communication and pipeline data processing. The Smart Pixel Array Cellular Logic processor (SPARCL) is designed in 0.8 m m CMOS and hybrid integrated with Multiple-Quantum-Well (MQW) devices for pipeline image processing. The Smart Pixel Network Interface (SAPIENT) is designed in 0.6 m m GaAs and monolithically integrated with LEDs to implement a highly parallel optical interconnection network. The Translucent Smart Pixel Array (TRANSPAR) design is implemented in two different versions. The first version, TRANSPAR-MQW, is designed in 0.5 m m CMOS and flip-chip integrated with MQW devices to provide 2-D pipeline processing and translucent networking using the Carrier- Sense-MultipleAccess/Collision-Detection (CSMA/CD) protocol. The other version, TRANSPAR-VM, is designed in 1.2 m m CMOS and discretely integrated with VCSEL-MSM (Vertical-Cavity-Surface- Emitting-Laser and Metal-Semiconductor-Metal detectors) chips and driver/receiver chips on a printed circuit board. The TRANSPAR-VM provides an option of using the token ring network protocol in addition to the embedded functions of TRANSPAR-MQW. These optoelectronic smart pixel systems also require micro-optics devices to provide high resolution, high quality optical interconnections and external source arrays. In this research, we describe an innovative

  3. Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Novak, Frank

    2003-01-01

    The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.

  4. High-MTF hybrid ferroelectric IRFPA

    NASA Astrophysics Data System (ADS)

    Evans, Scott B.; Hayden, Terrence

    1998-07-01

    Low cost, uncooled hybrid infrared focal plane arrays (IRFPA's) are in full-scale production at Raytheon Systems Company (RSC), formerly Texas Instruments Defense Systems and Electronics Group. Detectors consist of reticulated ceramic barium strontium titanate (BST) arrays of 320 X 240 pixels on 48.5 micrometer pitch. The principal performance shortcoming of the hybrid arrays has been low MTF due to thermal crosstalk between pixels. In the past two years, significant improvements have been made to increase MTF making hybrids more competitive in performance with monolithic arrays. The improvements are (1) the reduction of the thickness of the IR absorbing layer electrode that maintains electrical continuity and increases thermal isolation between pixels, (2) reduction of the electrical crosstalk from the ROIC, and (3) development of a process to increase the thermal path-length between pixels called 'elevated optical coat.' This paper describes all three activities and their efficacy. Also discussed is the uncooled IRFPA production capability at RSC.

  5. Soil moisture variability within remote sensing pixels

    NASA Astrophysics Data System (ADS)

    Charpentier, Michael A.; Groffman, Peter M.

    1992-11-01

    The effects of topography and the level of soil moisture on the variability of soil moisture within remote sensing pixels were assessed during the First ISLSCP Field Experiment (FIFE) during 1987 and 1989. Soil moisture data from flat, sloped, and valley-shaped pixels were obtained over a wide range of moisture conditions. Relative elevation data were obtained for each study area to create digital elevation models with which to quantify topographic variability. Within-pixel soil moisture variability was shown to increase with increased topographic heterogeneity. The flat pixel had significantly lower standard deviations and fewer outlier points than the slope and valley pixels. Most pixel means had a positive skewness, indicating that most pixels will have areas of markedly higher than average soil moisture. Soil moisture variability (as indicated by the coefficient of variation) decreased as soil moisture levels increased. However, the absolute value of the standard deviation of soil moisture was independent of wetness. The data suggest that remote sensing will reflect soil moisture conditions less accurately on pixels with increased topographic variability and less precisely when the soil is dry. These differences in the inherent accuracy and precision of remote sensing soil moisture data should be considered when evaluating error sources in analyses of energy balance or biogeochemical processes that utilize soil moisture data produced by remote sensing.

  6. High stroke pixel for a deformable mirror

    DOEpatents

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  7. Demonstration of 1024x1024 pixel dual-band QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.

    2010-04-01

    QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 μm and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 μm. Dual-band QWIP detector arrays were hybridized with direct injection 30 μm pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE▵T of 27 and 40 mK for MWIR and LWIR bands respectively.

  8. Impact of Spacecraft Shielding on Direct Ionization Soft Error Rates for sub-130 nm Technologies

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Michael M.; Sanders, Anthony B.; Ladbury, Raymond L.; Oldham, Timothy R.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kenneth P.

    2010-01-01

    We use ray tracing software to model various levels of spacecraft shielding complexity and energy deposition pulse height analysis to study how it affects the direct ionization soft error rate of microelectronic components in space. The analysis incorporates the galactic cosmic ray background, trapped proton, and solar heavy ion environments as well as the October 1989 and July 2000 solar particle events.

  9. Planar Microfluidic System Based on Electrophoresis for Detection of 130-nm Magnetic Labels for Biosensing

    NASA Astrophysics Data System (ADS)

    Takamura, Tsukasa; Morimoto, Yoshitaka; Sandhu, Adarsh

    2011-04-01

    Superparamagnetic beads (SPBs) used as magnetic labels offer potential for the realization of high sensitivity and low cost biosensors for point of care treatment (POCT). For better biomolecular affinity and higher sensitivity, it is desirable to use sub-200-nm-diameter SPBs comparable in size to actual biomolecules. However, the detection of small concentrations of such SPBs by magnetoresistive devices is extremely challenging due to small magnetic response of SPBs. As a solution to these limitations, we describe a simple detecting procedure where the capture of micro-SPBs by immobilized nano-target SPBs due to self-assembly induced by an external magnetic field, which was monitored under an optical microscope. Here we describe biosensing system based on self-assembly of micro-SPBs by nanoSPBs targets using a system without external pumps, thereby enabling greater miniaturization and portability.

  10. Sub-pixel mapping of water boundaries using pixel swapping algorithm (case study: Tagliamento River, Italy)

    NASA Astrophysics Data System (ADS)

    Niroumand-Jadidi, Milad; Vitti, Alfonso

    2015-10-01

    Taking the advantages of remotely sensed data for mapping and monitoring of water boundaries is of particular importance in many different management and conservation activities. Imagery data are classified using automatic techniques to produce maps entering the water bodies' analysis chain in several and different points. Very commonly, medium or coarse spatial resolution imagery is used in studies of large water bodies. Data of this kind is affected by the presence of mixed pixels leading to very outstanding problems, in particular when dealing with boundary pixels. A considerable amount of uncertainty inescapably occurs when conventional hard classifiers (e.g., maximum likelihood) are applied on mixed pixels. In this study, Linear Spectral Mixture Model (LSMM) is used to estimate the proportion of water in boundary pixels. Firstly by applying an unsupervised clustering, the water body is identified approximately and a buffer area considered ensuring the selection of entire boundary pixels. Then LSMM is applied on this buffer region to estimate the fractional maps. However, resultant output of LSMM does not provide a sub-pixel map corresponding to water abundances. To tackle with this problem, Pixel Swapping (PS) algorithm is used to allocate sub-pixels within mixed pixels in such a way to maximize the spatial proximity of sub-pixels and pixels in the neighborhood. The water area of two segments of Tagliamento River (Italy) are mapped in sub-pixel resolution (10m) using a 30m Landsat image. To evaluate the proficiency of the proposed approach for sub-pixel boundary mapping, the image is also classified using a conventional hard classifier. A high resolution image of the same area is also classified and used as a reference for accuracy assessment. According to the results, sub-pixel map shows in average about 8 percent higher overall accuracy than hard classification and fits very well in the boundaries with the reference map.

  11. Pixel multichip module development at Fermilab

    SciTech Connect

    Turqueti, M A; Cardoso, G; Andresen, J; Appel, J A; Christian, D C; Kwan, S W; Prosser, A; Uplegger, L

    2005-10-01

    At Fermilab, there is an ongoing pixel detector R&D effort for High Energy Physics with the objective of developing high performance vertex detectors suitable for the next generation of HEP experiments. The pixel module presented here is a direct result of work undertaken for the canceled BTeV experiment. It is a very mature piece of hardware, having many characteristics of high performance, low mass and radiation hardness driven by the requirements of the BTeV experiment. The detector presented in this paper consists of three basic devices; the readout integrated circuit (IC) FPIX2A [2][5], the pixel sensor (TESLA p-spray) [6] and the high density interconnect (HDI) flex circuit [1][3] that is capable of supporting eight readout ICs. The characterization of the pixel multichip module prototype as well as the baseline design of the eight chip pixel module and its capabilities are presented. These prototypes were characterized for threshold and noise dispersion. The bump-bonds of the pixel module were examined using an X-ray inspection system. Furthermore, the connectivity of the bump-bonds was tested using a radioactive source ({sup 90}Sr), while the absolute calibration of the modules was achieved using an X-ray source. This paper provides a view of the integration of the three components that together comprise the pixel multichip module.

  12. It's not the pixel count, you fool

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2012-01-01

    The first thing a "marketing guy" asks the digital camera engineer is "how many pixels does it have, for we need as many mega pixels as possible since the other guys are killing us with their "umpteen" mega pixel pocket sized digital cameras. And so it goes until the pixels get smaller and smaller in order to inflate the pixel count in the never-ending pixel-wars. These small pixels just are not very good. The truth of the matter is that the most important feature of digital cameras in the last five years is the automatic motion control to stabilize the image on the sensor along with some very sophisticated image processing. All the rest has been hype and some "cool" design. What is the future for digital imaging and what will drive growth of camera sales (not counting the cell phone cameras which totally dominate the market in terms of camera sales) and more importantly after sales profits? Well sit in on the Dark Side of Color and find out what is being done to increase the after sales profits and don't be surprised if has been done long ago in some basement lab of a photographic company and of course, before its time.

  13. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    PubMed Central

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125

  14. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.

    PubMed

    Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M

    2016-03-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125

  15. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  16. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    PubMed

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams. PMID:26750260

  17. Per-Pixel Lighting Data Analysis

    SciTech Connect

    Inanici, Mehlika

    2005-08-01

    This report presents a framework for per-pixel analysis of the qualitative and quantitative aspects of luminous environments. Recognizing the need for better lighting analysis capabilities and appreciating the new measurement abilities developed within the LBNL Lighting Measurement and Simulation Toolbox, ''Per-pixel Lighting Data Analysis'' project demonstrates several techniques for analyzing luminance distribution patterns, luminance ratios, adaptation luminance and glare assessment. The techniques are the syntheses of the current practices in lighting design and the unique practices that can be done with per-pixel data availability. Demonstrated analysis techniques are applicable to both computer-generated and digitally captured images (physically-based renderings and High Dynamic Range photographs).

  18. Low-noise reset technique of an asynchronous charge-pulse-detecting pixel for single-photon X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Sik; Han, Kwan-Young

    2016-02-01

    This paper presents a low-noise reset technique of an asynchronous charge-pulse-detecting pixel for single-photon X-ray imaging. The proposed slow-slope ramp (S2R) reset scheme provides a reset-noise-discharging loop circuit and effectively eliminates the residual noise charge stored on the sampling capacitor by extending the falling transition time of the reset signal. In addition, the presented S2R reset signal generation circuit accurately and effectively controls the optimum switching voltage and the falling transition time of the reset signal. The prototype detector chip was implemented by using a 130-nm complementary metal-oxide semiconductor (CMOS) process. With the quantitative analysis and the measurement results, we were able to verify that the reset noise was reduced exponentially, corresponding to the falling transition time of the reset signal. Based on the chip measurement results, the reset-noise level could be decreased by more than seven-fold by virtue of the proposed reset technique.

  19. Pixels, Imagers and Related Fabrication Methods

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2014-01-01

    Pixels, imagers and related fabrication methods are described. The described methods result in cross-talk reduction in imagers and related devices by generating depletion regions. The devices can also be used with electronic circuits for imaging applications.

  20. Monolithic Active-Pixel Infrared Sensors

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Cunningham, Thomas J.; Krabach, Timothy N.; Staller, Craig O.

    1995-01-01

    Monolithic arrays of active-pixel junction field-effect (JFET) devices made from InGaAs proposed for use as imaging sensors sensitive to light in visible and short-wavelength infrared parts of electromagnetic spectrum. Each pixel of such array comprises photodetector monolithically integrated with JFET output-amplifier circuit of source-follower type - structure similar to charge-coupled device (CCD). Sizes of instruments reduced because large cooling systems not needed.

  1. Design of the small pixel pitch ROIC

    NASA Astrophysics Data System (ADS)

    Liang, Qinghua; Jiang, Dazhao; Chen, Honglei; Zhai, Yongcheng; Gao, Lei; Ding, Ruijun

    2014-11-01

    Since the technology trend of the third generation IRFPA towards resolution enhancing has steadily progressed,the pixel pitch of IRFPA has been greatly reduced.A 640×512 readout integrated circuit(ROIC) of IRFPA with 15μm pixel pitch is presented in this paper.The 15μm pixel pitch ROIC design will face many challenges.As we all known,the integrating capacitor is a key performance parameter when considering pixel area,charge capacity and dynamic range,so we adopt the effective method of 2 by 2 pixels sharing an integrating capacitor to solve this problem.The input unit cell architecture will contain two paralleled sample and hold parts,which not only allow the FPA to be operated in full frame snapshot mode but also save relatively unit circuit area.Different applications need more matching input unit circuits. Because the dimension of 2×2 pixels is 30μm×30μm, an input stage based on direct injection (DI) which has medium injection ratio and small layout area is proved to be suitable for middle wave (MW) while BDI with three-transistor cascode amplifier for long wave(LW). By adopting the 0.35μm 2P4M mixed signal process, the circuit architecture can make the effective charge capacity of 7.8Me- per pixel with 2.2V output range for MW and 7.3 Me- per pixel with 2.6V output range for LW. According to the simulation results, this circuit works well under 5V power supply and achieves less than 0.1% nonlinearity.

  2. Steganography based on pixel intensity value decomposition

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  3. Small pixel oversampled IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Caulfield, John; Curzan, Jon; Lewis, Jay; Dhar, Nibir

    2015-06-01

    We report on a new high definition high charge capacity 2.1 Mpixel MWIR Infrared Focal Plane Array. This high definition (HD) FPA utilizes a small 5 um pitch pixel size which is below the Nyquist limit imposed by the optical systems Point Spread Function (PSF). These smaller sub diffraction limited pixels allow spatial oversampling of the image. We show that oversampling IRFPAs enables improved fidelity in imaging including resolution improvements, advanced pixel correlation processing to reduce false alarm rates, improved detection ranges, and an improved ability to track closely spaced objects. Small pixel HD arrays are viewed as the key component enabling lower size, power and weight of the IR Sensor System. Small pixels enables a reduction in the size of the systems components from the smaller detector and ROIC array, the reduced optics focal length and overall lens size, resulting in an overall compactness in the sensor package, cooling and associated electronics. The highly sensitive MWIR small pixel HD FPA has the capability to detect dimmer signals at longer ranges than previously demonstrated.

  4. Focal plane array with modular pixel array components for scalability

    SciTech Connect

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  5. Study of silicon pixel sensor for synchrotron radiation detection

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Jie; Jia, Yun-Cong; Hu, Ling-Fei; Liu, Peng; Yin, Hua-Xiang

    2016-03-01

    The silicon pixel sensor (SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection (SRD). In this paper, the design, fabrication, and characterization of SPSs for single beam X-ray photon detection is reported. The designed pixel sensor is a p+-in-n structure with guard-ring structures operated in full-depletion mode and is fabricated on 4-inch, N type, 320 μm thick, high-resistivity silicon wafers by a general Si planar process. To achieve high energy resolution of X-rays and obtain low dark current and high breakdown voltage as well as appropriate depletion voltage of the SPS, a series of technical optimizations of device structure and fabrication process are explored. With optimized device structure and fabrication process, excellent SPS characteristics with dark current of 2 nA/cm2, full depletion voltage < 50 V and breakdown voltage >150 V are achieved. The fabricated SPSs are wire bonded to ASIC circuits and tested for the performance of X-ray response to the 1W2B synchrotron beam line of the Beijing Synchrotron Radiation Facility. The measured S-curves for SRD demonstrate a high discrimination for different energy X-rays. The extracted energy resolution is high (<20% for X-ray photon energy >10 keV) and the linear properties between input photo energy and the equivalent generator amplitude are well established. It confirmed that the fabricated SPSs have a good energy linearity and high count rate with the optimized technologies. The technology is expected to have a promising application in the development of a large scale SRD system for the Beijing Advanced Photon Source. Supported by Prefabrication Research of Beijing Advanced Photon Source (R&D for BAPS) and National Natural Science Foundation of China (11335010)

  6. Multi-pixel high-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Dengler, Robert J. (Inventor); Siegel, Peter H. (Inventor); Chattopadhyay, Goutam (Inventor); Ward, John S. (Inventor); Juan, Nuria Llombart (Inventor); Bryllert, Tomas E. (Inventor); Mehdi, Imran (Inventor); Tarsala, Jan A. (Inventor)

    2012-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz radar using low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform, is disclosed that operates with a multiplexed beam to obtain range information simultaneously on multiple pixels of a target. A source transmit beam may be divided by a hybrid coupler into multiple transmit beams multiplexed together and directed to be reflected off a target and return as a single receive beam which is demultiplexed and processed to reveal range information of separate pixels of the target associated with each transmit beam simultaneously. The multiple transmit beams may be developed with appropriate optics to be temporally and spatially differentiated before being directed to the target. Temporal differentiation corresponds to a different intermediate frequencies separating the range information of the multiple pixels. Collinear transmit beams having differentiated polarizations may also be implemented.

  7. Spatial clustering of pixels of a multispectral image

    DOEpatents

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  8. Depleted Monolithic Active Pixel Sensors (DMAPS) implemented in LF-150 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Kishishita, T.; Hemperek, T.; Krüger, H.; Wermes, N.

    2015-03-01

    We present the recent development of Depleted Monolithic Active Pixel Sensors (DMAPS), implemented with an LFoundry (LF) 150 nm CMOS process. MAPS detectors based on an epi-layer have been matured in recent years and have attractive features in terms of reducing material budget and handling cost compared to conventional hybrid pixel detectors. However, the obtained signal is relatively small (~1000 e-) due to the thin epi-layer, and charge collection time is relatively slow, e.g., in the order of 100 ns, because charges are mainly collected by diffusion. Modern commercial CMOS technology, however, offers advanced process options to overcome such difficulties and enable truly monolithic devices as an alternative to hybrid pixel sensors and charge coupled devices. Unlike in the case of the standard MAPS technologies with epi-layers, the LF process provides a high-resistivity substrate that enables large signal and fast charge collection by drift in a ~50 μm thick depleted layer. Since this process also enables the use of deep n- and p-wells to isolate the collection electrode from the thin active device layer, PMOS and NMOS transistors are available for the readout electronics in each pixel cell. In order to evaluate the sensor and transistor characteristics, several collection electrodes variants and readout architectures have been implemented. In this report, we focus on its design aspect of the LF-DMAPS prototype chip.

  9. Pixels, Blocks of Pixels, and Polygons: Choosing a Spatial Unit for Thematic Accuracy Assessment

    EPA Science Inventory

    Pixels, polygons, and blocks of pixels are all potentially viable spatial assessment units for conducting an accuracy assessment. We develop a statistical population-based framework to examine how the spatial unit chosen affects the outcome of an accuracy assessment. The populati...

  10. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure

    NASA Astrophysics Data System (ADS)

    Tohyama, Shigeru; Sasaki, Tokuhito; Endoh, Tsutomu; Sano, Masahiko; Katoh, Kouji; Kurashina, Seiji; Miyoshi, Masaru; Yamazaki, Takao; Ueno, Munetaka; Katayama, Haruyoshi; Imai, Tadashi

    2011-06-01

    Since authors have successfully demonstrated uncooled infrared (IR) focal plane array (FPA) with 23.5 um pixel pitch, it has been widely utilized for commercial applications such as thermography, security camera and so on. One of the key issues for uncooled IR detector technology is to shrink the pixel size. The smaller the pixel pitch, the more the IR camera products become compact and the less cost. This paper proposes a new pixel structure with a diaphragm and beams which are placed in different level, to realize an uncooled IRFPA with smaller pixel pitch )<=17 μm). The upper level consists of diaphragm with VOx bolometer and IR absorber layers, while the lower level consists of the two beams, which are designed to place on the adjacent pixels. The test devices of this pixel design with 12 um, 15 um and 17 um pitch have been fabricated on the Si ROIC of QVGA (320 × 240) with 23.5 um pitch. Their performances reveal nearly equal to the IRFPA with 23.5 um pitch. For example, noise equivalent temperature difference (NETD) of 12 μm pixel is 63.1 mK with thermal time constant of 14.5 msec. In addition, this new structure is expected to be more effective for the existing IRFPA with 23.5 um pitch in order to improve the IR responsivity.

  11. Development of CMOS Pixel Sensors with digital pixel dedicated to future particle physics experiments

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Wang, T.; Pham, H.; Hu-Guo, C.; Dorokhov, A.; Hu, Y.

    2014-02-01

    Two prototypes of CMOS pixel sensor with in-pixel analog to digital conversion have been developed in a 0.18 μm CIS process. The first design integrates a discriminator into each pixel within an area of 22 × 33 μm2 in order to meet the requirements of the ALICE inner tracking system (ALICE-ITS) upgrade. The second design features 3-bit charge encoding inside a 35 × 35 μm2 pixel which is motivated by the specifications of the outer layers of the ILD vertex detector (ILD-VXD). This work aims to validate the concept of in-pixel digitization which offers higher readout speed, lower power consumption and less dead zone compared with the column-level charge encoding.

  12. Modulation transfer function of a trapezoidal pixel array detector

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Guo, Rongli; Ni, Jinping; Dong, Tao

    2016-01-01

    The modulation transfer function (MTF) is the tool most commonly used for quantifying the performance of an electro-optical imaging system. Recently, trapezoid-shaped pixels were designed and used in a retina-like sensor in place of rectangular-shaped pixels. The MTF of a detector with a trapezoidal pixel array is determined according to its definition. Additionally, the MTFs of detectors with differently shaped pixels, but the same pixel areas, are compared. The results show that the MTF values of the trapezoidal pixel array detector are obviously larger than those of rectangular and triangular pixel array detectors at the same frequencies.

  13. Vivid, full-color aluminum plasmonic pixels

    PubMed Central

    Olson, Jana; Manjavacas, Alejandro; Liu, Lifei; Chang, Wei-Shun; Foerster, Benjamin; King, Nicholas S.; Knight, Mark W.; Nordlander, Peter; Halas, Naomi J.; Link, Stephan

    2014-01-01

    Aluminum is abundant, low in cost, compatible with complementary metal-oxide semiconductor manufacturing methods, and capable of supporting tunable plasmon resonance structures that span the entire visible spectrum. However, the use of Al for color displays has been limited by its intrinsically broad spectral features. Here we show that vivid, highly polarized, and broadly tunable color pixels can be produced from periodic patterns of oriented Al nanorods. Whereas the nanorod longitudinal plasmon resonance is largely responsible for pixel color, far-field diffractive coupling is used to narrow the plasmon linewidth, enabling monochromatic coloration and significantly enhancing the far-field scattering intensity of the individual nanorod elements. The bright coloration can be observed with p-polarized white light excitation, consistent with the use of this approach in display devices. The resulting color pixels are constructed with a simple design, are compatible with scalable fabrication methods, and provide contrast ratios exceeding 100:1. PMID:25225385

  14. Likelihood Analysis for Mega Pixel Maps

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    1999-01-01

    The derivation of cosmological parameters from astrophysical data sets routinely involves operations counts which scale as O(N(exp 3) where N is the number of data points. Currently planned missions, including MAP and Planck, will generate sky maps with N(sub d) = 10(exp 6) or more pixels. Simple "brute force" analysis, applied to such mega-pixel data, would require years of computing even on the fastest computers. We describe an algorithm which allows estimation of the likelihood function in the direct pixel basis. The algorithm uses a conjugate gradient approach to evaluate X2 and a geometric approximation to evaluate the determinant. Monte Carlo simulations provide a correction to the determinant, yielding an unbiased estimate of the likelihood surface in an arbitrary region surrounding the likelihood peak. The algorithm requires O(N(sub d)(exp 3/2) operations and O(Nd) storage for each likelihood evaluation, and allows for significant parallel computation.

  15. Active Pixel Sensors: Are CCD's Dinosaurs?

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  16. Optical links for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Stucci, Stefania

    2016-07-01

    With the expected increase in the instantaneous luminosity of the LHC in the next few years, the off-detector optical read-out system of the outer two layers of the Pixel Detector of the ATLAS experiment will reach its bandwidth limits. The bandwidth will be increased with new optical receivers, which had to be redesigned since commercial solutions could not be used. The new design allows for a wider operational range in terms of data frequency and input optical power to match the on-detector transmitters of the present Pixel Detector. We report on the design and testing of prototypes of these components and the plans for the installation in the Pixel Detector read-out chain in 2015.

  17. SVGA AMOLED with world's highest pixel pitch

    NASA Astrophysics Data System (ADS)

    Prache, Olivier; Wacyk, Ihor

    2006-05-01

    We present the design and early evaluation results of the world's highest pixel pitch full-color 800x3x600- pixel, active matrix organic light emitting diode (AMOLED) color microdisplay for consumer and environmentally demanding applications. The design premises were aimed at improving small area uniformity as well as reducing the pixel size while expanding the functionality found in existing eMagin Corporations' microdisplay products without incurring any power consumption degradation when compared to existing OLED microdisplays produced by eMagin. The initial results of the first silicon prototype presented here demonstrate compliance with all major objectives as well as the validation of a new adaptive gamma correction technique that can operate automatically over temperature.

  18. Power Studies for the CMS Pixel Tracker

    SciTech Connect

    Todri, A.; Turqueti, M.; Rivera, R.; Kwan, S.; /Fermilab

    2009-01-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R&D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  19. K2flix: Kepler pixel data visualizer

    NASA Astrophysics Data System (ADS)

    Barentsen, Geert

    2015-03-01

    K2flix makes it easy to inspect the CCD pixel data obtained by NASA's Kepler space telescope. The two-wheeled extended Kepler mission, K2, is affected by new sources of systematics, including pointing jitter and foreground asteroids, that are easier to spot by eye than by algorithm. The code takes Kepler's Target Pixel Files (TPF) as input and turns them into contrast-stretched animated gifs or MPEG-4 movies. K2flix can be used both as a command-line tool or using its Python API.

  20. Development of a CMOS SOI Pixel Detector

    SciTech Connect

    Arai, Y.; Hazumi, M.; Ikegami, Y.; Kohriki, T.; Tajima, O.; Terada, S.; Tsuboyama, T.; Unno, Y.; Ushiroda, Y.; Ikeda, H.; Hara, K.; Ishino, H.; Kawasaki, T.; Miyake, H.; Martin, E.; Varner, G.; Tajima, H.; Ohno, M.; Fukuda, K.; Komatsubara, H.; Ida, J.; /NONE - OKI ELECTR INDUST TOKYO

    2008-08-19

    We have developed a monolithic radiation pixel detector using silicon on insulator (SOI) with a commercial 0.15 {micro}m fully-depleted-SOI technology and a Czochralski high resistivity silicon substrate in place of a handle wafer. The SOI TEG (Test Element Group) chips with a size of 2.5 x 2.5 mm{sup 2} consisting of 20 x 20 {micro}m{sup 2} pixels have been designed and manufactured. Performance tests with a laser light illumination and a {beta} ray radioactive source indicate successful operation of the detector. We also briefly discuss the back gate effect as well as the simulation study.

  1. Commissioning of the ATLAS pixel detector

    SciTech Connect

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  2. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure

    NASA Astrophysics Data System (ADS)

    Tohyama, Shigeru; Sasaki, Tokuhito; Endoh, Tsutomu; Sano, Masahiko; Kato, Koji; Kurashina, Seiji; Miyoshi, Masaru; Yamazaki, Takao; Ueno, Munetaka; Katayama, Haruyoshi; Imai, Tadashi

    2013-12-01

    An uncooled infrared (IR) focal plane array (FPA) with 23.5 μm pixel pitch has been successfully demonstrated and has found wide commercial applications in the areas of thermography, security cameras, and other applications. One of the key issues for uncooled IRFPA technology is to shrink the pixel pitch because the size of the pixel pitch determines the overall size of the FPA, which, in turn, determines the cost of the IR camera products. This paper proposes an innovative pixel structure with a diaphragm and beams placed in different levels to realize an uncooled IRFPA with smaller pixel pitch (≦17 μm). The upper level consists of a diaphragm with VOx bolometer and IR absorber layers, while the lower level consists of the two beams, which are designed to be placed on the adjacent pixels. The test devices of this pixel design with 12, 15, and 17 μm pitch have been fabricated on the Si read-out integrated circuit (ROIC) of quarter video graphics array (QVGA) (320×240) with 23.5 μm pitch. Their performances are nearly equal to those of the IRFPA with 23.5 μm pitch. For example, a noise equivalent temperature difference of 12 μm pixel is 63.1 mK for F/1 optics with the thermal time constant of 14.5 ms. Then, the proposed structure is shown to be effective for the existing IRFPA with 23.5 μm pitch because of the improvements in IR sensitivity. Furthermore, the advanced pixel structure that has the beams composed of two levels are demonstrated to be realizable.

  3. Pixel telescope test in STAR at RHIC

    NASA Astrophysics Data System (ADS)

    Sun, Xiangming; Szelezniak, Michal; Greiner, Leo; Matis, Howard; Vu, Chinh; Stezelberger, Thorsten; Wieman, Howard

    2007-10-01

    The STAR experiment at RHIC is designing a new inner vertex detector called the Heavy Flavor Tracker (HFT). The HFT's innermost two layers is called the PIXEL detector which uses Monolithic Active Pixel Sensor technology (MAPS). To test the MAPS technology, we just constructed and tested a telescope. The telescope uses a stack of three MIMOSTAR2 chips, Each MIMOSTAR2 sensor, which was designed by IPHC, is an array of 132x128 pixels with a square pixel size of 30 μ. The readout of the telescope makes use of the ALICE DDL/SIU cards, which is compatible with the future STAR data acquisition system called DAQ1000. The telescope was first studied in a 1.2 GeV/c electron beam at LBNL's Advanced Light Source. Afterwards, the telescope was outside the STAR magnet, and then later inside it, 145 cm away from STAR's center. We will describe this first test of MAPS technology in a collider environment, and report on the occupancy, particle flux, and performance of the telescope.

  4. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    SciTech Connect

    Fahim, Farah

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  5. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    SciTech Connect

    Fahim Farah, Fahim Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  6. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  7. Impact of CT detector pixel-to-pixel crosstalk on image quality

    NASA Astrophysics Data System (ADS)

    Engel, Klaus J.; Spies, Lothar; Vogtmeier, Gereon; Luhta, Randy

    2006-03-01

    In Computed Tomography (CT), the image quality sensitively depends on the accuracy of the X-ray projection signal, which is acquired by a two-dimensional array of pixel cells in the detector. If the signal of X-ray photons is spread out to neighboring pixels (crosstalk), a decrease of spatial resolution may result. Moreover, streak and ring artifacts may emerge. Deploying system simulations for state-of-the-art CT detector configurations, we characterize origin and appearance of these artifacts in the reconstructed CT images for different scenarios. A uniform pixel-to-pixel crosstalk results in a loss of spatial resolution only. The Modulation Transfer Function (MTF) is attenuated, without affecting the limiting resolution, which is defined as the first zero of the MTF. Additional streak and ring artifacts appear, if the pixel-to-pixel crosstalk is non-uniform. Parallel to the system simulations we developed an analytical model. The model explains resolution loss and artifact level using the first and second derivative of the X-ray profile acquired by the detector. Simulations and analytical model are in agreement to each other. We discuss the perceptibility of ring and streak artifacts within noisy images if no crosstalk correction is applied.

  8. ACS/WFC Pixel Stability – Bringing the Pixels Back to the Science

    NASA Astrophysics Data System (ADS)

    Borncamp, David; Grogin, Norman A.; Bourque, Matthew; Ogaz, Sara

    2016-06-01

    Electrical current that has been trapped within the lattice structure of a Charged Coupled Device (CCD) can be present through multiple exposures, which will have an adverse effect on its science performance. The traditional way to correct for this extra charge is to take an image with the camera shutter closed periodically throughout the lifetime of the instrument. These images, generally referred to as dark images, allow for the characterization of the extra charge that is trapped within the CCD at the time of observation. This extra current can then be subtracted out of science images to correct for the extra charge that was there at this time. Pixels that have a charge above a certain threshold of current are marked as “hot” and flagged in the data quality array. However, these pixels may not be "bad" in the traditional sense that they cannot be reliably dark-subtracted. If these pixels are shown to be stable over an anneal period, the charge can be properly subtracted and the extra noise from this dark current can be taken into account. We present the results of a pixel history study that analyzes every pixel of ACS/WFC individually and allows pixels that were marked as bad to be brought back into the science image.

  9. Pixel detector Timepix operated in pile-up mode for pulsed imaging with ultra-soft X-rays

    NASA Astrophysics Data System (ADS)

    Krejci, F.; Jakubek, J.; Kroupa, M.; Bruza, P.; Panek, D.

    2012-12-01

    The hybrid semiconductor pixel detector Timepix operated in the Time-over-Threshold mode (ToT) enables direct energy measurement in each pixel. The advantage of noiseless position sensitive detection combined with per pixel spectroscopic capability opens the way to numerous new applications, which were till now, however, restricted to detection of radiation which is basically above the detector energy threshold (typically 3-4 keV). This limitation excludes application of the hybrid pixel technology to highly interesting fields such as plasma diagnostics or X-ray microscopy. In this contribution we demonstrate how the Timepix detector working in ToT mode can be operated as a detector for particles which are in principle below the detector threshold, namely for soft X-ray photons with energy typically 0.5 keV. The approach is based on the detection of a larger number of photons incoming in the pixel signal processing chain in a time significantly shorter than the shaping time of the pixel electronics, i.e. forming signal pile-up. The proposed approach enables a CCD-like integrating operation with the many advantages of the hybrid counting technology (direct conversion, high sensitivity, dark-current free, room temperature operation, fully digital output and possibility to utilize various read-out architectures). Using the proposed approach we performed single-shot X-ray radiography with a laser-induced plasma source in the spectral region of water window. The same technique was used for the characterization of the source itself.

  10. Test-beam results of a silicon pixel detector with Time-over-Threshold read-out having ultra-precise time resolution

    NASA Astrophysics Data System (ADS)

    Aglieri Rinella, G.; Cortina Gil, E.; Fiorini, M.; Kaplon, J.; Kluge, A.; Marchetto, F.; Albarran, M. E. Martin; Morel, M.; Noy, M.; Perktold, L.; Tiuraniem, S.; Velghe, B.

    2015-12-01

    A time-tagging hybrid silicon pixel detector developed for beam tracking in the NA62 experiment has been tested in a dedicated test-beam at CERN with 10 GeV/c hadrons. Measurements include time resolution, detection efficiency and charge sharing between pixels, as well as effects due to bias voltage variations. A time resolution of less than 150 ps has been measured with a 200 μm thick silicon sensor, using an on-pixel amplifier-discriminator and an end-of-column DLL-based time-to-digital converter.

  11. Advanced monolithic pixel sensors using SOI technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Toshinobu; Arai, Yasuo; Asano, Mari; Fujita, Yowichi; Hamasaki, Ryutaro; Hara, Kazuhiko; Honda, Shunsuke; Ikegami, Yoichi; Kurachi, Ikuo; Mitsui, Shingo; Nishimura, Ryutaro; Tauchi, Kazuya; Tobita, Naoshi; Tsuboyama, Toru; Yamada, Miho

    2016-07-01

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  12. Radiation experience with the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Veszpremi, V.

    2015-04-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3 cm and 30 cm in radius and 46.5 cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC . Leakage current, depletion voltage, pixel readout thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  13. Noise in a CMOS digital pixel sensor

    NASA Astrophysics Data System (ADS)

    Chi, Zhang; Suying, Yao; Jiangtao, Xu

    2011-11-01

    Based on the study of noise performance in CMOS digital pixel sensor (DPS), a mathematical model of noise is established with the pulse-width-modulation (PWM) principle. Compared with traditional CMOS image sensors, the integration time is different and A/D conversion is implemented in each PWM DPS pixel. Then, the quantitative calculating formula of system noise is derived. It is found that dark current shot noise is the dominant noise source in low light region while photodiode shot noise becomes significantly important in the bright region. In this model, photodiode shot noise does not vary with luminance, but dark current shot noise does. According to increasing photodiode capacitance and the comparator's reference voltage or optimizing the mismatch in the comparator, the total noise can be reduced. These results serve as a guideline for the design of PWM DPS.

  14. The Silicon Pixel Detector for ALICE Experiment

    SciTech Connect

    Fabris, D.; Bombonati, C.; Dima, R.; Lunardon, M.; Moretto, S.; Pepato, A.; Bohus, L. Sajo; Scarlassara, F.; Segato, G.; Shen, D.; Turrisi, R.; Viesti, G.; Anelli, G.; Boccardi, A.; Burns, M.; Campbell, M.; Ceresa, S.; Conrad, J.; Kluge, A.; Kral, M.

    2007-10-26

    The Inner Tracking System (ITS) of the ALICE experiment is made of position sensitive detectors which have to operate in a region where the track density may be as high as 50 tracks/cm{sup 2}. To handle such densities detectors with high precision and granularity are mandatory. The Silicon Pixel Detector (SPD), the innermost part of the ITS, has been designed to provide tracking information close to primary interaction point. The assembly of the entire SPD has been completed.

  15. Performance measurements of hybrid PIN diode arrays

    SciTech Connect

    Shapiro, S.L. ); Arens, J.F.; Jernigan, J.G. . Space Sciences Lab.); Kramer, G. ); Collins, T.; Worley, S. ); Wilburn, C.D. ); Skubic, P. )

    1990-10-01

    We report the successful development of hybrid PIN diode arrays and a series of room-temperature measurements in a high-energy pion beam at FNAL. A PMOS VLSI 256 {times} 256 readout array having 30 {mu}m square pixels was indium-bump bonded to a mating PIN diode detector array. Preliminary measurements on the resulting hybrid show excellent signal-to-noise at room temperature. 3 refs., 5 figs.

  16. Effect of mixed (boundary) pixels on crop proportion estimation

    NASA Technical Reports Server (NTRS)

    Chhikara, R. S.

    1984-01-01

    In estimating acreage proportions of crop types in a segment using Landsat data, considerable problem is caused by the presence of mixed pixels. Due to lack of understanding of their spectral characteristics, mixed pixels have been treated in the past as pure while clustering and classifying the segment data. This paper examines this approach of treating mixed pixels as pure pixels and the effect of mixed pixels on the bias and variance of a crop type proportion estimate. First, the spectral response of a boundary pixel is modeled and an analytical expression for the bias and variance of a proportion estimate is obtained. This is followed by a numerical illustration of the effect of mixed pixels on bias and variance. It is shown that as the size of the mixed pixel class increases in a segment, the variance increases, however, such increase does not always affect the bias of the proportion estimate.

  17. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  18. Pixelated diffraction signatures for explosive detection

    NASA Astrophysics Data System (ADS)

    O'Flynn, Daniel; Reid, Caroline; Christodoulou, Christiana; Wilson, Matt; Veale, Matthew C.; Seller, Paul; Speller, Robert

    2012-06-01

    Energy dispersive X-ray diffraction (EDXRD) is a technique which can be used to improve the detection and characterisation of explosive materials. This study has performed EDXRD measurements of various explosive compounds using a novel, X-ray sensitive, pixelated, energy resolving detector developed at the Rutherford Appleton Laboratory, UK (RAL). EDXRD measurements are normally performed at a fixed scattering angle, but the 80×80 pixel detector makes it possible to collect both spatially resolved and energy resolved data simultaneously. The detector material used is Cadmium Telluride (CdTe), which can be utilised at room temperature and gives excellent spectral resolution. The setup uses characteristics from both energy dispersive and angular dispersive scattering techniques to optimise specificity and speed. The purpose of the study is to develop X-ray pattern "footprints" of explosive materials based on spatial and energy resolved diffraction data, which can then be used for the identification of such materials hidden inside packages or baggage. The RAL detector is the first energy resolving pixelated detector capable of providing an energy resolution of 1.0-1.5% at energies up to 150 keV. The benefit of using this device in a baggage scanner would be the provision of highly specific signatures to a range of explosive materials. We have measured diffraction profiles of five explosives and other compounds used to make explosive materials. High resolution spectra have been obtained. Results are presented to show the specificity of the technique in finding explosives within baggage.

  19. Soil moisture variability within remote sensing pixels

    SciTech Connect

    Charpentier, M.A.; Groffman, P.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper addresses the question of soil moisture variation within the field of view of a remote sensing pixel. Remote sensing is the only practical way to sense soil moisture over large areas, but it is known that there can be large variations of soil moisture within the field of view of a pixel. The difficulty with this is that many processes, such as gas exchange between surface and atmosphere can vary dramatically with moisture content, and a small wet spot, for example, can have a dramatic impact on such processes, and thereby bias remote sensing data results. Here the authors looked at the impact of surface topography on the level of soil moisture, and the interaction of both on the variability of soil moisture sensed by a push broom microwave radiometer (PBMR). In addition the authors looked at the question of whether variations of soil moisture within pixel size areas could be used to assign errors to PBMR generated soil moisture data.

  20. Status of the CMS pixel project

    SciTech Connect

    Uplegger, Lorenzo; /Fermilab

    2008-01-01

    The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2008. The closest detector to the interaction point is the silicon pixel detector which is the heart of the tracking system. It consists of three barrel layers and two pixel disks on each side of the interaction point for a total of 66 million channels. Its proximity to the interaction point means there will be very large particle fluences and therefore a radiation-tolerant design is necessary. The pixel detector will be crucial to achieve a good vertex resolution and will play a key role in pattern recognition and track reconstruction. The results from test beam runs prove that the expected performances can be achieved. The detector is currently being assembled and will be ready for insertion into CMS in early 2008. During the assembly phase, a thorough electronic test is being done to check the functionality of each channel to guarantee the performance required to achieve the physics goals. This report will present the final detector design, the status of the production as well as results from test beam runs to validate the expected performance.

  1. Performance measurements of hybrid PIN diode arrays

    SciTech Connect

    Jernigan, J.G.; Arens, J.F. . Space Sciences Lab.); Kramer, G. ); Collins, T.; Herring, J. ); Shapiro, S.L. ); Wilburn, C.D. )

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format having 10 {times} 64 pixels, each 120 {mu}m square, and the other format having 256 {times} 256 pixels, each 30 {mu}m square. In both cases, the thickness of the PIN diode layer is 300 {mu}m. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 13 figs.

  2. Digital pixel CMOS focal plane array with on-chip multiply accumulate units for low-latency image processing

    NASA Astrophysics Data System (ADS)

    Little, Jeffrey W.; Tyrrell, Brian M.; D'Onofrio, Richard; Berger, Paul J.; Fernandez-Cull, Christy

    2014-06-01

    A digital pixel CMOS focal plane array has been developed to enable low latency implementations of image processing systems such as centroid trackers, Shack-Hartman wavefront sensors, and Fitts correlation trackers through the use of in-pixel digital signal processing (DSP) and generic parallel pipelined multiply accumulate (MAC) units. Light intensity digitization occurs at the pixel level, enabling in-pixel DSP and noiseless data transfer from the pixel array to the peripheral processing units. The pipelined processing of row and column image data prior to off chip readout reduces the required output bandwidth of the image sensor, thus reducing the latency of computations necessary to implement various image processing systems. Data volume reductions of over 80% lead to sub 10μs latency for completing various tracking and sensor algorithms. This paper details the architecture of the pixel-processing imager (PPI) and presents some initial results from a prototype device fabricated in a standard 65nm CMOS process hybridized to a commercial off-the-shelf short-wave infrared (SWIR) detector array.

  3. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    NASA Astrophysics Data System (ADS)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  4. Readout cross-talk for alpha-particle measurements in a pixelated sensor system

    NASA Astrophysics Data System (ADS)

    Norlin, B.; Reza, S.; Krapohl, D.; Fröjdh, E.; Thungström, G.

    2015-05-01

    Simulations in Medici are performed to quantify crosstalk and charge sharing in a hybrid pixelated silicon detector. Crosstalk and charge sharing degrades the spatial and spectral resolution of single photon processing X-ray imaging systems. For typical medical X-ray imaging applications, the process is dominated by charge sharing between the pixels in the sensor. For heavier particles each impact generates a large amount of charge and the simulation seems to over predict the charge collection efficiency. This indicates that some type of non modelled degradation of the charge transport efficiency exists, like the plasma effect where the plasma might shield the generated charges from the electric field and hence distorts the charge transport process. Based on the simulations it can be reasoned that saturation of the amplifiers in the Timepix system might generate crosstalk that increases the charge spread measured from ion impact on the sensor.

  5. Preliminary test results from a telescope of Hughes pixel arrays at FNAL

    SciTech Connect

    Jernigan, J.G.; Arens, J.; Vezie, D. . Space Sciences Lab.); Shapiro, S.L. ); Collins, T. ); Krider, J. ); Skubic, P. )

    1992-09-01

    In December of 1991 three silicon hybrid pixel detectors each having 2.56 [times] 2.56 pixels 30 [mu]m square, made by the Hughes Aircraft Company, were placed in a high energy muon beam at the Fermi National Accelerator Laboratory. Straight tracks were recorded in these detectors at angles to the normal to the plane of the silicon ranging from 0 to 45[degrees]. In this note, preliminary results are presented on the straight through tracks, i.e., those passing through the telescope at normal incidence. Pulse height data, signal-to-noise data, and preliminary straight line fits to the data resulting in residual distributions are presented. Preliminary calculations show spatial resolution of less than 5 [mu]m in two dimensions.

  6. Preliminary test results from a telescope of Hughes pixel arrays at FNAL

    SciTech Connect

    Jernigan, J.G.; Arens, J.; Vezie, D.; Shapiro, S.L.; Collins, T.; Krider, J.; Skubic, P.

    1992-09-01

    In December of 1991 three silicon hybrid pixel detectors each having 2.56 {times} 2.56 pixels 30 {mu}m square, made by the Hughes Aircraft Company, were placed in a high energy muon beam at the Fermi National Accelerator Laboratory. Straight tracks were recorded in these detectors at angles to the normal to the plane of the silicon ranging from 0 to 45{degrees}. In this note, preliminary results are presented on the straight through tracks, i.e., those passing through the telescope at normal incidence. Pulse height data, signal-to-noise data, and preliminary straight line fits to the data resulting in residual distributions are presented. Preliminary calculations show spatial resolution of less than 5 {mu}m in two dimensions.

  7. The RD53 collaboration's SystemVerilog-UVM simulation framework and its general applicability to design of advanced pixel readout chips

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Conti, E.; Placidi, P.; Christiansen, J.; Hemperek, T.

    2014-10-01

    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger latency buffering section of pixel chips. A fully shared architecture and a distributed one have been described at behavioral level and simulated; the resulting memory occupancy statistics and hit loss rates have subsequently been compared.

  8. Detection and evaluation of mixed pixels in Landsat agricultural scenes

    NASA Technical Reports Server (NTRS)

    Merickel, M. B.; Lundgren, J. C.; Lennington, R. K.

    1982-01-01

    A major problem area encountered in the identification and estimation of agricultural crop proportions in Landsat imagery involves the large proportion of the pixels which are mixed pixels, whose spectral response is influenced by more than one ground cover type. The development of methods for the detection and estimation of crop proportions in mixed pixels is presently reported. The procedure designated CASCADE, based on the estimation of the gradient image for the detection of mixed pixels, considers the consequences of a linear mixing model and is found to provide a method for the allocation of mixed pixels to the surrounding homogeneous region.

  9. Active pixel sensor pixel having a photodetector whose output is coupled to an output transistor gate

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)

    2005-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.

  10. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    NASA Astrophysics Data System (ADS)

    Bates, Richard L.; Buttar, C.; Stewart, A.; Blue, A.; Doonan, K.; Ashby, J.; Casse, G.; Dervan, P.; Forshaw, D.; Tsurin, I.; Brown, S.; Pater, J.

    2013-12-01

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 1016 1 MeV neq cm-2. The area of the pixel detector system will be over 5 m2 and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported.

  11. How many pixels does it take to make a good 4"×6" print? Pixel count wars revisited

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2011-01-01

    In the early 1980's the future of conventional silver-halide photographic systems was of great concern due to the potential introduction of electronic imaging systems then typified by the Sony Mavica analog electronic camera. The focus was on the quality of film-based systems as expressed in the number of equivalent number pixels and bits-per-pixel, and how many pixels would be required to create an equivalent quality image from a digital camera. It was found that 35-mm frames, for ISO 100 color negative film, contained equivalent pixels of 12 microns for a total of 18 million pixels per frame (6 million pixels per layer) with about 6 bits of information per pixel; the introduction of new emulsion technology, tabular AgX grains, increased the value to 8 bit per pixel. Higher ISO speed films had larger equivalent pixels, fewer pixels per frame, but retained the 8 bits per pixel. Further work found that a high quality 3.5" x 5.25" print could be obtained from a three layer system containing 1300 x 1950 pixels per layer or about 7.6 million pixels in all. In short, it became clear that when a digital camera contained about 6 million pixels (in a single layer using a color filter array and appropriate image processing) that digital systems would challenge and replace conventional film-based system for the consumer market. By 2005 this became the reality. Since 2005 there has been a "pixel war" raging amongst digital camera makers. The question arises about just how many pixels are required and are all pixels equal? This paper will provide a practical look at how many pixels are needed for a good print based on the form factor of the sensor (sensor size) and the effective optical modulation transfer function (optical spread function) of the camera lens. Is it better to have 16 million, 5.7-micron pixels or 6 million 7.8-micron pixels? How does intrinsic (no electronic boost) ISO speed and exposure latitude vary with pixel size? A systematic review of these issues will

  12. EDITORIAL: Micro-pixellated LEDs for science and instrumentation

    NASA Astrophysics Data System (ADS)

    Dawson, Martin D.; Neil, Mark A. A.

    2008-05-01

    This Cluster Issue of Journal of Physics D: Applied Physics highlights micro-pixellated gallium nitride light-emitting diodes or `micro-LEDs', an emerging technology offering considerable attractions for a broad range of scientific and instrumentation applications. It showcases the results of a Research Councils UK (RCUK) Basic Technology Research programme (http://bt-onethousand.photonics.ac.uk), running from 2004-2008, which has drawn together a multi-disciplinary and multi-institutional research partnership to develop these devices and explore their potential. Images of LEDs Examples of GaN micro-pixel LEDs in operation. Images supplied courtesy of the Guest Editors. The partnership, of physicists, engineers and chemists drawn from the University of Strathclyde, Heriot-Watt University, the University of Sheffield and Imperial College London, has sought to move beyond the established mass-market uses of gallium nitride LEDs in illumination and lighting. Instead, it focuses on specialised solid-state micro-projection devices the size of a match-head, containing up to several thousand individually-addressable micro-pixel elements emitting light in the ultraviolet or visible regions of the spectrum. Such sources are pattern-programmable under computer control and can project into materials fixed or high-frame rate optical images or spatially-controllable patterns of nanosecond excitation pulses. These materials can be as diverse as biological cells and tissues, biopolymers, photoresists and organic semiconductors, leading to new developments in optical microscopy, bio-sensing and chemical sensing, mask-free lithography and direct writing, and organic electronics. Particular areas of interest are multi-modal microscopy, integrated forms of organic semiconductor lasers, lab-on-a-chip, GaN/Si optoelectronics and hybrid inorganic/organic semiconductor structures. This Cluster Issue contains four invited papers and ten contributed papers. The invited papers serve to set

  13. High-sensitivity active pixel sensor with variable threshold photodetector

    NASA Astrophysics Data System (ADS)

    Jo, Sung-Hyun; Bae, Myunghan; Choi, Byoung-Soo; Lyu, Hong-Kun; Shin, Jang-Kyoo

    2015-05-01

    A novel high-sensitivity active pixel sensor (APS) with a variable threshold photodetector has been presented and for the first time, a simple SPICE model for the variable threshold photodetector is presented. Its SPICE model is in good agreement with measurements and is more simpler than the conventional model. The proposed APS has a gate/body-tied PMOSFET-type photodetector with an overlapping control gate that makes it possible to control the sensitivity of the proposed APS. It is a hybrid device composed of a metal-oxide-semiconductor field-effect transistor (MOSFET), a lateral bipolar junction transistor (BJT) and a vertical BJT. Using sufficient overlapping control gate bias to operate the MOSFET in inversion mode, the variable threshold photodetector allows for increasing the photocurrent gain by 105 at low light intensities when the control gate bias is -3 V. Thus, the proposed APS with a variable threshold photodetector has better low-light-level sensitivity than the conventional APS operating mode, and it has a variable sensitivity which is determined by the control gate bias. The proposed sensor has been fabricated by using 0.35 μm 2-poly 4-metal standard complementary MOS (CMOS) process and its characteristics have been evaluated.

  14. Development of a cadmium telluride pixel detector for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Cook, Walter R.; Mao, Peter H.; Rana, Vikram R.; Ishikawa, Shin-Nosuke; Ushio, Masayoshi; Aono, Hiroyuki; Watanabe, Shin; Sato, Goro; Kokubun, Motohide; Takahashi, Tadayuki

    2009-08-01

    We are developing imaging Cadmium Telluride (CdTe) pixel detectors optimized for astrophysical hard X-ray applications. Our hybrid detector consist of a CdTe crystal 1mm thick and 2cm × 2cm in area with segmented anode contacts directly bonded to a custom low-noise application specific integrated circuit (ASIC). The CdTe sensor, fabricated by ACRORAD (Okinawa, Japan), has Schottky blocking contacts on a 605 micron pitch in a 32 × 32 array, providing low leakage current and enabling readout of the anode side. The detector is bonded using epoxy-gold stud interconnects to a custom low noise, low power ASIC circuit developed by Caltech's Space Radiation Laboratory. We have achieved very good energy resolution over a wide energy range (0.62keV FWHM @ 60keV, 10.8keV FWHM @ 662keV). We observe polarization effects at room temperature, but they are suppressed if we operate the detector at or below 0°C degree. These detectors have potential application for future missions such as the International X-ray Observatory (IXO).

  15. A new 9T global shutter pixel with CDS technique

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Cheng; Zhou, Quan; Wang, Xinyang

    2015-04-01

    Benefiting from motion blur free, Global shutter pixel is very widely used in the design of CMOS image sensors for high speed applications such as motion vision, scientifically inspection, etc. In global shutter sensors, all pixel signal information needs to be stored in the pixel first and then waiting for readout. For higher frame rate, we need very fast operation of the pixel array. There are basically two ways for the in pixel signal storage, one is in charge domain, such as the one shown in [1], this needs complicated process during the pixel fabrication. The other one is in voltage domain, one example is the one in [2], this pixel is based on the 4T PPD technology and normally the driving of the high capacitive transfer gate limits the speed of the array operation. In this paper we report a new 9T global shutter pixel based on 3-T partially pinned photodiode (PPPD) technology. It incorporates three in-pixel storage capacitors allowing for correlated double sampling (CDS) and pipeline operation of the array (pixel exposure during the readout of the array). Only two control pulses are needed for all the pixels at the end of exposure which allows high speed exposure control.

  16. Single-pixel complementary compressive sampling spectrometer

    NASA Astrophysics Data System (ADS)

    Lan, Ruo-Ming; Liu, Xue-Feng; Yao, Xu-Ri; Yu, Wen-Kai; Zhai, Guang-Jie

    2016-05-01

    A new type of compressive spectroscopy technique employing a complementary sampling strategy is reported. In a single sequence of spectral compressive sampling, positive and negative measurements are performed, in which sensing matrices with a complementary relationship are used. The restricted isometry property condition necessary for accurate recovery of compressive sampling theory is satisfied mathematically. Compared with the conventional single-pixel spectroscopy technique, the complementary compressive sampling strategy can achieve spectral recovery of considerably higher quality within a shorter sampling time. We also investigate the influence of the sampling ratio and integration time on the recovery quality.

  17. Active pixel sensor array with electronic shuttering

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor)

    2002-01-01

    An active pixel cell includes electronic shuttering capability. The cell can be shuttered to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.

  18. Small pixel uncooled imaging FPAs and applications

    NASA Astrophysics Data System (ADS)

    Blackwell, Richard; Franks, Glen; Lacroix, Daniel; Hyland, Sandra; Murphy, Robert

    2010-04-01

    BAE Systems continues to make dramatic progress in uncooled microbolometer sensors and applications. This paper will review the latest advancements in microbolometer technology at BAE Systems, including the development status of 17 micrometer pixel pitch detectors and imaging modules which are entering production and will be finding their way into BAE Systems products and applications. Benefits include increased die per wafer and potential benefits to SWAP for many applications. Applications include thermal weapons sights, thermal imaging modules for remote weapon stations, vehicle situational awareness sensors and mast/pole mounted sensors.

  19. A new method to improve multiplication factor in micro-pixel avalanche photodiodes with high pixel density

    NASA Astrophysics Data System (ADS)

    Sadygov, Z.; Ahmadov, F.; Khorev, S.; Sadigov, A.; Suleymanov, S.; Madatov, R.; Mehdiyeva, R.; Zerrouk, F.

    2016-07-01

    Presented is a new model describing development of the avalanche process in time, taking into account the dynamics of electric field within the depleted region of the diode and the effect of parasitic capacitance shunting individual quenching micro-resistors on device parameters. Simulations show that the effective capacitance of a single pixel, which defines the multiplication factor, is the sum of the pixel capacitance and a parasitic capacitance shunting its quenching micro-resistor. Conclusions obtained as a result of modeling open possibilities of improving the pixel gain in micropixel avalanche photodiodes with high pixel density (or low pixel capacitance).

  20. Further applications for mosaic pixel FPA technology

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.

    2011-06-01

    In previous papers to this SPIE forum the development of novel technology for next generation PIR security sensors has been described. This technology combines the mosaic pixel FPA concept with low cost optics and purpose-designed readout electronics to provide a higher performance and affordable alternative to current PIR sensor technology, including an imaging capability. Progressive development has resulted in increased performance and transition from conventional microbolometer fabrication to manufacture on 8 or 12 inch CMOS/MEMS fabrication lines. A number of spin-off applications have been identified. In this paper two specific applications are highlighted: high performance imaging IRFPA design and forest fire detection. The former involves optional design for small pixel high performance imaging. The latter involves cheap expendable sensors which can detect approaching fire fronts and send alarms with positional data via mobile phone or satellite link. We also introduce to this SPIE forum the application of microbolometer IR sensor technology to IoT, the Internet of Things.

  1. Efficient single pixel imaging in Fourier space

    NASA Astrophysics Data System (ADS)

    Bian, Liheng; Suo, Jinli; Hu, Xuemei; Chen, Feng; Dai, Qionghai

    2016-08-01

    Single pixel imaging (SPI) is a novel technique capturing 2D images using a bucket detector with a high signal-to-noise ratio, wide spectrum range and low cost. Conventional SPI projects random illumination patterns to randomly and uniformly sample the entire scene’s information. Determined by Nyquist sampling theory, SPI needs either numerous projections or high computation cost to reconstruct the target scene, especially for high-resolution cases. To address this issue, we propose an efficient single pixel imaging technique (eSPI), which instead projects sinusoidal patterns for importance sampling of the target scene’s spatial spectrum in Fourier space. Specifically, utilizing the centrosymmetric conjugation and sparsity priors of natural images’ spatial spectra, eSPI sequentially projects two \\tfrac{π }{2}-phase-shifted sinusoidal patterns to obtain each Fourier coefficient in the most informative spatial frequency bands. eSPI can reduce requisite patterns by two orders of magnitude compared to conventional SPI, which helps a lot for fast and high-resolution SPI.

  2. Active pixel sensor array with multiresolution readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.

  3. PILATUS: A single photon counting pixel detector for X-ray applications

    NASA Astrophysics Data System (ADS)

    Henrich, B.; Bergamaschi, A.; Broennimann, C.; Dinapoli, R.; Eikenberry, E. F.; Johnson, I.; Kobas, M.; Kraft, P.; Mozzanica, A.; Schmitt, B.

    2009-08-01

    The hybrid pixel technology combines silicon sensors with CMOS-processing chips by a 2D micro bump-bonding interconnection technology developed at Paul Scherrer Institute [C. Broennimann, E.F. Eikenberry, B. Henrich, R. Horisberger, G. Huelsen, E. Pohl, B. Schmitt, C. Schulze-Briese, M. Suzuki, T. Tomizaki, H. Toyokawa, A. Wagner. J. Synchrotron Rad. 13 (2005) 120 [1]; T. Rohe, C. Broennimann, F. Glaus, J. Gobrecht, S. Heising, M. Horisberger, R. Horisberger, H.C. Kaestl, J. Lehmann, S. Streuli, Nucl. Instr. and Meth. Phys. Res. A 565 (2006) 303 [2

  4. Multi-scale feature learning on pixels and super-pixels for seminal vesicles MRI segmentation

    NASA Astrophysics Data System (ADS)

    Gao, Qinquan; Asthana, Akshay; Tong, Tong; Rueckert, Daniel; Edwards, Philip "Eddie"

    2014-03-01

    We propose a learning-based approach to segment the seminal vesicles (SV) via random forest classifiers. The proposed discriminative approach relies on the decision forest using high-dimensional multi-scale context-aware spatial, textual and descriptor-based features at both pixel and super-pixel level. After affine transformation to a template space, the relevant high-dimensional multi-scale features are extracted and random forest classifiers are learned based on the masked region of the seminal vesicles from the most similar atlases. Using these classifiers, an intermediate probabilistic segmentation is obtained for the test images. Then, a graph-cut based refinement is applied to this intermediate probabilistic representation of each voxel to get the final segmentation. We apply this approach to segment the seminal vesicles from 30 MRI T2 training images of the prostate, which presents a particularly challenging segmentation task. The results show that the multi-scale approach and the augmentation of the pixel based features with the super-pixel based features enhances the discriminative power of the learnt classifier which leads to a better quality segmentation in some very difficult cases. The results are compared to the radiologist labeled ground truth using leave-one-out cross-validation. Overall, the Dice metric of 0:7249 and Hausdorff surface distance of 7:0803 mm are achieved for this difficult task.

  5. Analysis of pixel circuits in CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Mei, Zou; Chen, Nan; Yao, Li-bin

    2015-04-01

    CMOS image sensors (CIS) have lower power consumption, lower cost and smaller size than CCD image sensors. However, generally CCDs have higher performance than CIS mainly due to lower noise. The pixel circuit used in CIS is the first part of the signal processing circuit and connected to photodiode directly, so its performance will greatly affect the CIS or even the whole imaging system. To achieve high performance, CMOS image sensors need advanced pixel circuits. There are many pixel circuits used in CIS, such as passive pixel sensor (PPS), 3T and 4T active pixel sensor (APS), capacitive transimpedance amplifier (CTIA), and passive pixel sensor (PPS). At first, the main performance parameters of each pixel structure including the noise, injection efficiency, sensitivity, power consumption, and stability of bias voltage are analyzed. Through the theoretical analysis of those pixel circuits, it is concluded that CTIA pixel circuit has good noise performance, high injection efficiency, stable photodiode bias, and high sensitivity with small integrator capacitor. Furthermore, the APS and CTIA pixel circuits are simulated in a standard 0.18-μm CMOS process and using a n-well/p-sub photodiode by SPICE and the simulation result confirms the theoretical analysis result. It shows the possibility that CMOS image sensors can be extended to a wide range of applications requiring high performance.

  6. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  7. Pixel-level robust digital image correlation.

    PubMed

    Cofaru, Corneliu; Philips, Wilfried; Van Paepegem, Wim

    2013-12-01

    Digital Image Correlation (DIC) is a well-established non-contact optical metrology method. It employs digital image analysis to extract the full-field displacements and strains that occur in objects subjected to external stresses. Despite recent DIC progress, many problematic areas which greatly affect accuracy and that can seldomly be avoided, received very little attention. Problems posed by the presence of sharp displacement discontinuities, reflections, object borders or edges can be linked to the analysed object's properties and deformation. Other problematic areas, such as image noise, localized reflections or shadows are related more to the image acquisition process. This paper proposes a new subset-based pixel-level robust DIC method for in-plane displacement measurement which addresses all of these problems in a straightforward and unified approach, significantly improving DIC measurement accuracy compared to classic approaches. The proposed approach minimizes a robust energy functional which adaptively weighs pixel differences in the motion estimation process. The aim is to limit the negative influence of pixels that present erroneous or inconsistent motions by enforcing local motion consistency. The proposed method is compared to the classic Newton-Raphson DIC method in terms of displacement accuracy in three experiments. The first experiment is numerical and presents three combined problems: sharp displacement discontinuities, missing image information and image noise. The second experiment is a real experiment in which a plastic specimen is developing a lateral crack due to the application of uniaxial stress. The region around the crack presents both reflections that saturate the image intensity levels leading to missing image information, as well as sharp motion discontinuities due to the plastic film rupturing. The third experiment compares the proposed and classic DIC approaches with generic computer vision optical flow methods using images from

  8. How big is an OMI pixel?

    NASA Astrophysics Data System (ADS)

    de Graaf, Martin; Sihler, Holger; Tilstra, Lieuwe G.; Stammes, Piet

    2016-08-01

    The Ozone Monitoring Instrument (OMI) is a push-broom imaging spectrometer, observing solar radiation backscattered by the Earth's atmosphere and surface. The incoming radiation is detected using a static imaging CCD (charge-coupled device) detector array with no moving parts, as opposed to most of the previous satellite spectrometers, which used a moving mirror to scan the Earth in the across-track direction. The field of view (FoV) of detector pixels is the solid angle from which radiation is observed, averaged over the integration time of a measurement. The OMI FoV is not quadrangular, which is common for scanning instruments, but rather super-Gaussian shaped and overlapping with the FoV of neighbouring pixels. This has consequences for pixel-area-dependent applications, like cloud fraction products, and visualisation.The shapes and sizes of OMI FoVs were determined pre-flight by theoretical and experimental tests but never verified after launch. In this paper the OMI FoV is characterised using collocated MODerate resolution Imaging Spectroradiometer (MODIS) reflectance measurements. MODIS measurements have a much higher spatial resolution than OMI measurements and spectrally overlap at 469 nm. The OMI FoV was verified by finding the highest correlation between MODIS and OMI reflectances in cloud-free scenes, assuming a 2-D super-Gaussian function with varying size and shape to represent the OMI FoV. Our results show that the OMPIXCOR product 75FoV corner coordinates are accurate as the full width at half maximum (FWHM) of a super-Gaussian FoV model when this function is assumed. The softness of the function edges, modelled by the super-Gaussian exponents, is different in both directions and is view angle dependent.The optimal overlap function between OMI and MODIS reflectances is scene dependent and highly dependent on time differences between overpasses, especially with clouds in the scene. For partially clouded scenes, the optimal overlap function was

  9. Research of IRFPAs' reliability evaluation by bad pixel

    NASA Astrophysics Data System (ADS)

    Hao, Lichao; Huang, Aibo; Lai, Canxiong; Chen, Xing; Hao, Mingming; Chen, Honglei; Lu, Guoguang; Huang, Yun; En, Yunfei

    2015-10-01

    Reliability is an important index to ensure the application of infrared focal plane arrays (IRFPAs) in complex environment, and it becomes a major bottleneck problem of IRFPAs' development. Because of the characteristics such as type, nature, quantity, location and distribution et al, bad pixel which contains initial bad pixel and used bad pixel has outstanding advantage for failure analysis and reliability evaluation of IRFPAs. In this paper, the structure of IRPFAs has been introduced in detail, and the damage mechanisms of used bad pixel also have been analyzed deeply. At the same time, the feasibility to study IRPFAs' damage stress, failure position, damage mechanism has been discussed all around. The research of bad pixel can be used to optimize the structure and process, meanwhile it also can improve the accuracy of bad pixel identification and replacements.

  10. A Pixel Readout Chip in 40 nm CMOS Process for High Count Rate Imaging Systems with Minimization of Charge Sharing Effects

    SciTech Connect

    Maj, Piotr; Grybos, P.; Szczgiel, R.; Kmon, P.; Drozd, A.; Deptuch, G.

    2013-11-07

    We present a prototype chip in 40 nm CMOS technology for readout of hybrid pixel detector. The prototype chip has a matrix of 18x24 pixels with a pixel pitch of 100 m. It can operate both in single photon counting (SPC) mode and in C8P1 mode. In SPC the measured ENC is 84 e rms (for the peaking time of 48 ns), while the effective offset spread is below 2 mV rms. In the C8P1 mode the chip reconstructs full charge deposited in the detector, even in the case of charge sharing, and it identifies a pixel with the largest charge deposition. The chip architecture and preliminary measurements are reported.

  11. CMB component separation in the pixel domain

    SciTech Connect

    Doroshkevich, A.; Verkhodanov, O.

    2011-02-15

    We show that the popular internal linear combination approach is unstable with respect to division of the observed map pixels to a set of 'homogeneous' subsamples. For various choices of such subsamples we can obtain a restored CMB signal with amplitudes ranging from zero to the amplitude of the observed signal. We propose an approach which allows us to obtain corrected estimates of the CMB power spectrum C{sub l} at l{<=}30 and provides results similar to WMAP for larger l. Using this approach, we eliminate some anomalies of the WMAP results. In particular, our estimate of the quadrupole is consistent with the theoretically expected one. The effect of the 'axis of evil' is suppressed, and the symmetry of the north and south galactic hemispheres increases. These results can change estimates of quadrupole polarization and the redshift of reionization of the Universe. We also propose a new simple approach which can improve the WMAP estimates of the high l power spectrum.

  12. Pixel-level plasmonic microcavity infrared photodetector.

    PubMed

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  13. Pixel-level plasmonic microcavity infrared photodetector

    PubMed Central

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  14. 196 Million Pixels: An Immersive Visualization Experience

    NASA Astrophysics Data System (ADS)

    Reed, P. J.; Vandenberg, A.; Wang, G.

    2011-12-01

    Georgia State University (GSU) has recently implemented one of the world's largest high-resolution, tiled visualization walls specifically designed for researcher accessibility and display of data in an interactive, immersive, exploratory and collaborative experience. The Visualization Wall, comprised of 48 individual high-resolution monitors, is able to analyze, evaluate, and present data using the latest earth science research software packages. Multi-core processing and 24 graphical processing units (GPU's) allow the system to process and view data using research software applications at high resolution (+196 million pixels), while maintaining an interactive experience for the user. A Windows platform solves many application compatibility obstacles but also presents a new host of problems when scaling applications across multiple monitors. Continuous data set visualization, frame rate slowing, and graphic performance have been a challenge with the Visualization Wall. To overcome these obstacles, GSU has implemented several innovative solutions including Google Code projects, hardware accelerated browsers, and open-source software such as SAGE.

  15. The status of the CMS forward pixel detector

    SciTech Connect

    Tan, Ping; /Fermilab

    2006-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system. It provides precise measurements of space points to allow effective pattern recognition in multiple track environments near the LHC interaction point. The end disks of the pixel detector, known as the Forward Pixel detector, are constructed mainly by the US-CMS collaborators. The design techniques, readout electronics, test beam activities, and construction status are reviewed.

  16. Data encoding efficiency in pixel detector readout with charge information

    NASA Astrophysics Data System (ADS)

    Garcia-Sciveres, Maurice; Wang, Xinkang

    2016-04-01

    The average minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the number of bits used by the FE-I4 pixel readout chip of the ATLAS experiment.

  17. Fast Pixel Buffer For Processing With Lookup Tables

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.

    1992-01-01

    Proposed scheme for buffering data on intensities of picture elements (pixels) of image increases rate or processing beyond that attainable when data read, one pixel at time, from main image memory. Scheme applied in design of specialized image-processing circuitry. Intended to optimize performance of processor in which electronic equivalent of address-lookup table used to address those pixels in main image memory required for processing.

  18. Mapping Capacitive Coupling Among Pixels in a Sensor Array

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh; Cole, David M.; Smith, Roger M.

    2010-01-01

    An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.

  19. CMOS monolithic pixel sensors research and development at LBNL

    NASA Astrophysics Data System (ADS)

    Contarato, D.; Bussat, J.-M.; Denes, P.; Greiner, L.; Kim, T.; Stezelberger, T.; Wieman, H.; Battaglia, M.; Hooberman, B.; Tompkins, L.

    2007-12-01

    This paper summarizes the recent progress in the design and characterization of CMOS pixel sensors at LBNL. Results of lab tests, beam tests and radiation hardness tests carried out at LBNL on a test structure with pixels of various sizes are reported. The first results of the characterization of back-thinned CMOS pixel sensors are also reported, and future plans and activities are discussed.

  20. Impact of aperturing and pixel size on XPCS using AGIPD

    NASA Astrophysics Data System (ADS)

    Becker, J.; Graafsma, H.

    2012-02-01

    A case study for the Adaptive Gain Integrating Pixel Detector (AGIPD) at the European XFEL employing the intensity autocorrelation technique was performed using the detector simulation tool HORUS. The study compares the AGIPD (pixel size of (200 μm)2) to a possible apertured version of the detector and to a hypothetical system with 100 μm pixel size and investigates the influence of intensity fluctuations and incoherent noise on the quality of the acquired data.

  1. CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly; Pain, Bedabrata; Staller, Craig; Clark, Christopher; Fossum, Eric

    1996-01-01

    The guidance system in a spacecraft determines spacecraft attitude by matching an observed star field to a star catalog....An APS(active pixel sensor)-based system can reduce mass and power consumption and radiation effects compared to a CCD(charge-coupled device)-based system...This paper reports an APS (active pixel sensor) with locally variable times, achieved through individual pixel reset (IPR).

  2. Dead pixel correction techniques for dual-band infrared imagery

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong T.; Mould, Nick; Regens, James L.

    2015-07-01

    We present two new dead pixel correction algorithms for dual-band infrared imagery. Specifically, we address the problem of repairing unresponsive elements in the sensor array using signal processing techniques to overcome deficiencies in image quality that are present following the nonuniformity correction process. Traditionally, dead pixel correction has been performed almost exclusively using variations of the nearest neighbor technique, where the value of the dead pixel is estimated based on pixel values associated with the neighboring image structure. Our approach differs from existing techniques, for the first time we estimate the values of dead pixels using information from both thermal bands collaboratively. The proposed dual-band statistical lookup (DSL) and dual-band inpainting (DIP) algorithms use intensity and local gradient information to estimate the values of dead pixels based on the values of unaffected pixels in the supplementary infrared band. The DSL algorithm is a regression technique that uses the image intensities from the reference band to estimate the dead pixel values in the band undergoing correction. The DIP algorithm is an energy minimization technique that uses the local image gradient from the reference band and the boundary values from the affected band to estimate the dead pixel values. We evaluate the effectiveness of the proposed algorithms with 50 dual-band videos. Simulation results indicate that the proposed techniques achieve perceptually and quantitatively superior results compared to existing methods.

  3. Hit efficiency study of CMS prototype forward pixel detectors

    SciTech Connect

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  4. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    NASA Astrophysics Data System (ADS)

    Boscardin, Maurizio; Calvo, Daniela; Giacomini, Gabriele; Wheadon, Richard; Ronchin, Sabina; Zorzi, Nicola

    2013-08-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 1016 neq/cm2. Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R&D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50-100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics.

  5. Applications of pixellated GaAs X-ray detectors in a synchrotron radiation beam

    NASA Astrophysics Data System (ADS)

    Watt, J.; Bates, R.; Campbell, M.; Mathieson, K.; Mikulec, B.; O'Shea, V.; Passmore, M.-S.; Schwarz, C.; Smith, K. M.; Whitehill, C.; XIMAGE Project

    2001-03-01

    Hybrid semiconductor pixel detectors are being investigated as imaging devices for radiography and synchrotron radiation beam applications. Based on previous work in the CERN RD19 and the UK IMPACT collaborations, a photon counting GaAs pixel detector (PCD) has been used in an X-ray powder diffraction experiment. The device consists of a 200 μm thick SI-LEC GaAs detector patterned in a 64×64 array of 170 μm pitch square pixels, bump-bonded to readout electronics operating in single photon counting mode. Intensity peaks in the powder diffraction pattern of KNbO 3 have been resolved and compared with results using the standard scintillator, and a PCD predecessor (the Ω3). The PCD shows improved speed, dynamic range, 2-D information and comparable spatial resolution to the standard scintillator based systems. It also overcomes the severe dead time limitations of the Ω3 by using a shutter based acquisition mode. A brief demonstration of the possibilities of the system for dental radiography and image processing are given, showing a marked reduction in patient dose and dead time compared with film.

  6. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Smoljanin, S.; Sheviakov, I.; Xia, Q.; Rothkirch, A.; Yu, Y.; Struth, B.; Hirsemann, H.; Graafsma, H.

    2014-12-01

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ``high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ``continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan.

  7. Characteristics of Monolithically Integrated InGaAs Active Pixel Imager Array

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.

    2000-01-01

    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near infrared signal radiation. Adapting the existing 1.55 micrometer fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band (Visible/IR) applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 x 1 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness (leakage, operating frequency, and temperature) in preparation for the second phase demonstration of integrated, two-dimensional monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.

  8. Radiation tolerance of prototype BTeV pixel detector readout chips

    SciTech Connect

    Gabriele Chiodini et al.

    2002-07-12

    High energy and nuclear physics experiments need tracking devices with increasing spatial precision and readout speed in the face of ever-higher track densities and increased radiation environments. The new generation of hybrid pixel detectors (arrays of silicon diodes bump bonded to arrays of front-end electronic cells) is the state of the art technology able to meet these challenges. We report on irradiation studies performed on BTeV pixel readout chip prototypes exposed to a 200 MeV proton beam at Indiana University Cyclotron Facility. Prototype pixel readout chip preFPIX2 has been developed at Fermilab for collider experiments and implemented in standard 0.25 micron CMOS technology following radiation tolerant design rules. The tests confirmed the radiation tolerance of the chip design to proton total dose up to 87 MRad. In addition, non destructive radiation-induced single event upsets have been observed in on-chip static registers and the single bit upset cross section has been extensively measured.

  9. Prototype AEGIS: A Pixel-Array Readout Circuit for Gamma-Ray Imaging

    PubMed Central

    Barber, H. Bradford; Augustine, F. L.; Furenlid, L.; Ingram, C. M.; Grim, G. P.

    2015-01-01

    Semiconductor detector arrays made of CdTe/CdZnTe are expected to be the main components of future high-performance, clinical nuclear medicine imaging systems. Such systems will require small pixel-pitch and much larger numbers of pixels than are available in current semiconductor-detector cameras. We describe the motivation for developing a new readout integrated circuit, AEGIS, for use in hybrid semiconductor detector arrays, that may help spur the development of future cameras. A basic design for AEGIS is presented together with results of an HSPICE™ simulation of the performance of its unit cell. AEGIS will have a shaper-amplifier unit cell and neighbor pixel readout. Other features include the use of a single input power line with other biases generated on-board, a control register that allows digital control of all thresholds and chip configurations and an output approach that is compatible with list-mode data acquisition. An 8×8 prototype version of AEGIS is currently under development; the full AEGIS will be a 64×64 array with 300 μm pitch. PMID:26345126

  10. Evaluation of a single-pixel one-transistor active pixel sensor for fingerprint imaging

    NASA Astrophysics Data System (ADS)

    Xu, Man; Ou, Hai; Chen, Jun; Wang, Kai

    2015-08-01

    Since it first appeared in iPhone 5S in 2013, fingerprint identification (ID) has rapidly gained popularity among consumers. Current fingerprint-enabled smartphones unanimously consists of a discrete sensor to perform fingerprint ID. This architecture not only incurs higher material and manufacturing cost, but also provides only static identification and limited authentication. Hence as the demand for a thinner, lighter, and more secure handset grows, we propose a novel pixel architecture that is a photosensitive device embedded in a display pixel and detects the reflected light from the finger touch for high resolution, high fidelity and dynamic biometrics. To this purpose, an amorphous silicon (a-Si:H) dual-gate photo TFT working in both fingerprint-imaging mode and display-driving mode will be developed.