Science.gov

Sample records for 131i-whole body scan

  1. Incidental Gallbladder Cancer Visualized From Posttreatment 131I Whole-Body Scan.

    PubMed

    Anongpornjossakul, Yoch; Utamakul, Chirawat; Chamroonrat, Wichana; Kositwattanarerk, Arpakorn; Thamnirat, Kanungnij; Sritara, Chanika

    2016-03-01

    A 72-year-old woman with papillary thyroid cancer post-total thyroidectomy was referred for post-I treatment whole-body scan. Images revealed focal uptake within the gallbladder. Cholecystectomy was subsequently performed, and the pathology report showed well-differentiated adenocarcinoma. Given a history of papillary thyroid cancer, the iodine uptake was reasonably explained as metastasis; however, gallbladder metastasis was extremely infrequent. Literature described the incidental radioiodine retention in the gallbladder as false-positive findings, which can be normal variants or benign hepatobiliary conditions. Primary gallbladder malignancy could be counted for another possibility despite controversial mechanism of uptake. PMID:26447377

  2. Prognostic value of the /sup 131/I whole-body scan in postsurgical therapy for differentiated thyroid cancer

    SciTech Connect

    Pupi, A.; Castagnoli, A.; Morotti, A.; La Cava, G.; Meldolesi, U.

    1983-08-01

    Seventy-two patients affected by differentiated thyroid cancer underwent whole-body scan seven days after the postsurgical thyroablative treatment with /sup 131/I. In 40 patients this scanning did not reveal any area of /sup 131/I uptake outside the residual thyroid parenchyma. During the follow-up period, no signs of functioning tumors were detected in these patients and therefore, there was no need for further therapeutic treatment with radioiodine. From this results it is legitimate to conclude that whole-body scan control can be significantly postponed without diagnostic inaccuracy for those patients whose postthyroablative scans do not reveal diffuse tumor localizations.

  3. Clinical significance of discordant findings between pre-therapy (123)I and post-therapy (131)I whole body scan in patients with thyroid cancer.

    PubMed

    Bravo, Paco E; Goudarzi, Behnaz; Rana, Uzma; Filho, Paulo Togni; Castillo, Raymond; Rababy, Christopher; Ewertz, Marjorie; Ziessman, Harvey A; Cooper, David S; Ladenson, Paul W; Wahl, Richard L

    2013-01-01

    Radioactive therapy with (131)I (RAI) is commonly used during the management of patients with differentiated thyroid cancer (DTC). The aim of this study was to determine the clinical significance of discordant findings between pre-RAI whole body scan (WBS) with (123)I and post-RAI WBS in the management of DTC. We retrospectively evaluated 342 individuals between 2002 and 2008 who had a diagnosis of DTC and underwent RAI. All had WBS one day before RAI and WBS one week after RAI. Patients were divided into 3 groups: 1) RAI-naive subjects without known distant metastatic disease (M1); 2) patients with history of prior RAI and persistent disease (except M1); and 3) patients with known M1. In Group 1 (n=311), 7% of patients (n=22) had discordant scans, but in only 4 of these cases did this represent true disease (3 unsuspected lung and 1 mediastinal node metastasis). In the remaining 18 patients, discordant findings corresponded to physiologic or other benign causes. In group 2 (n=23), 7 subjects (30%) had discordant findings and all of the discrepant sites consisted of loco-regional nodal disease in the neck/upper mediastinum (n=6) and M1 in lung (n=1). In group 3 (n=8), 5 patients (62%) showed discordant uptake in lung and bone which corresponded to the locations of known M1. A total of 12 patients with iodine-avid M1 were identified on post-RAI WBS (3.5% of entire cohort). Pre-RAI WBS was only concordant in 3 of these cases (25%). In conclusion, the significance of pre and post-RAI WBS is highly influenced by the clinical setting. Unsuspected distant metastatic disease is infrequent in RAI-naive patients without known M1, where most discordant findings are usually due to benign explanations, and represent false positive findings in this group. In contrast, in patients with history of previous RAI or known M1, discordant results likely correspond to true disease. In our study, pre-RAI scans showed a low yield to detect iodine-avid distant metastatic disease when

  4. Utility of 99mTc-Hynic-TOC in 131I Whole-Body Scan Negative Thyroid Cancer Patients with Elevated Serum Thyroglobulin Levels

    PubMed Central

    Shinto, Ajit S.; Kamaleshwaran, K. K.; Mallia, Madhav; Korde, Aruna; Samuel, Grace; Banerjee, Sharmila; Velayutham, Pavanasam; Damodharan, Suresh; Sairam, Madhu

    2015-01-01

    Several studies have reported on the expression of somatostatin receptors (SSTRs) in patients with differentiated thyroid cancer (DTC). The aim of this study was to evaluate the imaging abilities of a recently developed Technetium-99m labeled somatostatin analog, 99mTc-Hynic-TOC, in terms of precise localization of the disease. The study population consisted of 28 patients (16 men, 12 women; age range: 39-72 years) with histologically confirmed DTC, who presented with recurrent or persistent disease as indicated by elevated serum thyroglobulin (Tg) levels after initial treatment (serum Tg > 10 ng/ml off T4 suppression for 4-6 weeks). All patients were negative on the Iodine-131 posttherapy whole-body scans. Fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) was performed in all patients. SSTR scintigraphy was true positive in 23 cases (82.1%), true negative in two cases (7.1%) and false negative in three cases (10.7%) which resulted in a sensitivity of 88.46%, specificity of 100% and an accuracy of 89.2%. Sensitivity of 99mTc-Hynic-TOC scan was higher (93.7%) for patients with advanced stages, that is stages III and IV. 18F-FDG showed a sensitivity of 93.7%, a specificity of 50% and an accuracy of 89.3%. 18F-FDG PET was found to be more sensitive, with lower specificity due to false positive results in 2 patients. Analysis on a lesion basis demonstrated substantial agreement between the two imaging techniques with a Cohen's kappa of 0.66. Scintigraphy with 99mTc-Hynic-TOC might be a promising tool for treatment planning; it is easy to perform and showed sufficient accuracy for localization diagnostics in thyroid cancer patients with recurrent or metastatic disease. PMID:26097420

  5. Unusual False Positive Radioiodine Uptake on 131I Whole Body Scintigraphy in Three Unrelated Organs with Different Pathologies in Patients of Differentiated Thyroid Carcinoma: A Case Series

    PubMed Central

    Ranade, Rohit; Pawar, Shwetal; Mahajan, Abhishek; Basu, Sandip

    2016-01-01

    Three cases with unusual false positive radioiodine uptake in three different organs and pathologies (infective old fibrotic lesion in the lung, simple liver cyst, and benign breast lesion) on iodine-131 (131I) whole body scintigraphy. Clinicoradiological correlation was undertaken in all three cases and the pathologies were ascertained. In all the three cases, single-photon emission computerized tomography-computed tomography (SPECT-CT) and ancillary imaging modalities were employed and were helpful in arriving at the final diagnosis. PMID:27134566

  6. Whole body bone scan. Case report

    SciTech Connect

    Nagle, C.E.; Morayati, S.J.; Carichner, S.; Winkes, B.; Cassisi, R.; McGraw, R.; Schane, E.

    1988-03-01

    The authors present the case example of a patient whose bone scan did not reveal an ulnar abnormality because the ulnae were not included on the whole body scan image. This interesting case demonstrates the importance of positioning the patient for the whole body scan to include the entire skeleton or obtaining additional spot views of the appendicular or axial skeleton not included on whole body images.

  7. Position determination systems. [using orbital antenna scan of celestial bodies

    NASA Technical Reports Server (NTRS)

    Shores, P. W. (Inventor)

    1976-01-01

    A system for an orbital antenna, operated at a synchronous altitude, to scan an area of a celestial body is disclosed. The antenna means comprises modules which are operated by a steering signal in a repetitive function for providing a scanning beam over the area. The scanning covers the entire area in a pattern and the azimuth of the scanning beam is transmitted to a control station on the celestial body simultaneous with signals from an activated ground beacon on the celestial body. The azimuth of the control station relative to the antenna is known and the location of the ground beacon is readily determined from the azimuth determinations.

  8. 3D body scanning technology for fashion and apparel industry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2007-01-01

    This paper presents an overview of 3D body scanning technologies with applications to the fashion and apparel industry. Complete systems for the digitization of the human body exist since more than fifteen years. One of the main users of this technology with application in the textile field was the military industry. In fact, body scanning technology is being successfully employed since many years in military bases for a fast selection of the correct size of uniforms for the entire staff. Complete solutions were especially developed for this field of application. Many different research projects were issued for the exploitation of the same technology in the commercial field. Experiments were performed and start-up projects are to time running in different parts of the world by installing full body scanning systems in various locations such as shopping malls, boutiques or dedicated scanning centers. Everything is actually ready to be exploited and all the required hardware, software and solutions are available: full body scanning systems, software for the automatic and reliable extraction of body measurements, e-kiosk and web solutions for the presentation of garments, high-end and low-end virtual-try-on systems. However, complete solutions in this area have still not yet found the expected commercial success. Today, with the on-going large cost reduction given by the appearance of new competitors, methods for digitization of the human body becomes more interesting for the fashion and apparel industry. Therefore, a large expansion of these technologies is expected in the near future. To date, different methods are used commercially for the measurement of the human body. These can be divided into three major distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their

  9. Brief guided imagery and body scanning interventions reduce food cravings.

    PubMed

    Hamilton, Jonathan; Fawson, Sophie; May, Jon; Andrade, Jackie; Kavanagh, David J

    2013-12-01

    Elaborated Intrusion (EI) Theory proposes that cravings occur when involuntary thoughts about food are elaborated; a key part of elaboration is affectively-charged imagery. Craving can be weakened by working memory tasks that block imagery. EI Theory predicts that cravings should also be reduced by preventing involuntary thoughts being elaborated in the first place. Research has found that imagery techniques such as body scanning and guided imagery can reduce the occurrence of food thoughts. This study tested the prediction that these techniques also reduce craving. We asked participants to abstain from food overnight, and then to carry out 10 min of body scanning, guided imagery, or a control mind wandering task. They rated their craving at 10 points during the task on a single item measure, and before and after the task using the Craving Experience Questionnaire. While craving rose during the task for the mind wandering group, neither the guided imagery nor body scanning group showed an increase. These effects were not detected by the CEQ, suggesting that they are only present during the competing task. As they require no devices or materials and are unobtrusive, brief guided imagery strategies might form useful components of weight loss programmes that attempt to address cravings. PMID:23962401

  10. Whole-body 3D scanner and scan data report

    NASA Astrophysics Data System (ADS)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  11. Hologic QDR 2000 whole-body scans: a comparison of three combinations of scan modes and analysis software

    NASA Technical Reports Server (NTRS)

    Spector, E.; LeBlanc, A.; Shackelford, L.

    1995-01-01

    This study reports on the short-term in vivo precision and absolute measurements of three combinations of whole-body scan modes and analysis software using a Hologic QDR 2000 dual-energy X-ray densitometer. A group of 21 normal, healthy volunteers (11 male and 10 female) were scanned six times, receiving one pencil-beam and one array whole-body scan on three occasions approximately 1 week apart. The following combinations of scan modes and analysis software were used: pencil-beam scans analyzed with Hologic's standard whole-body software (PB scans); the same pencil-beam analyzed with Hologic's newer "enhanced" software (EPB scans); and array scans analyzed with the enhanced software (EA scans). Precision values (% coefficient of variation, %CV) were calculated for whole-body and regional bone mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, %fat and total mass. In general, there was no significant difference among the three scan types with respect to short-term precision of BMD and only slight differences in the precision of BMC. Precision of BMC and BMD for all three scan types was excellent: < 1% CV for whole-body values, with most regional values in the 1%-2% range. Pencil-beam scans demonstrated significantly better soft tissue precision than did array scans. Precision errors for whole-body lean mass were: 0.9% (PB), 1.1% (EPB) and 1.9% (EA). Precision errors for whole-body fat mass were: 1.7% (PB), 2.4% (EPB) and 5.6% (EA). EPB precision errors were slightly higher than PB precision errors for lean, fat and %fat measurements of all regions except the head, although these differences were significant only for the fat and % fat of the arms and legs. In addition EPB precision values exhibited greater individual variability than PB precision values. Finally, absolute values of bone and soft tissue were compared among the three combinations of scan and analysis modes. BMC, BMD, fat mass, %fat and lean mass were significantly different between

  12. Sequential serum thyroglobulin determinations, /sup 131/I scans, and /sup 131/I uptakes after triiodothyronine withdrawal in patients with thyroid cancer

    SciTech Connect

    Schneider, A.B.; Line, B.R.; Goldman, J.M.; Robbins, J.

    1981-12-01

    To develop guidelines for the timing and interpretation of thyroglobulin (TG) measurements in patients with well differentiated thyroid cancer, we performed /sup 131/I whole body scans and uptakes with simultaneous serum TG and TSH determinations in 49 patients with this disease. In 15 patients, TG measurements were obtained initially while the patient was receiving T/sub 3/ therapy and then were repeated serially within a period of up to 35 days after T/sub 3/ withdrawal. In 9 patients with functioning thyroid tissue, the changes in TG paralleled the changes in TSH levels. Before stopping T/sub 3/, TG measurements were a poor indicator of function, since 14 of 15 patients had suppressed TG levels (<10 ng/ml). After 2 weeks off T/sub 3/, TG increased in all 5 patients with scan evidence of metastases, in 2 of 4 subjects with residual thyroid bed uptake, and in 2 of 6 patients with no uptake. In 23 patients, both the scan and serum TG measurements were performed 2 and 4 weeks after stopping T/sub 3/. At 4 weeks, compared to 2 weeks, TG levels were nearly the same in 17 (a change of <5 ng/ml and <50%), decreased in 1, and increased in 5 subjects. In 44 patients whose measurements were free of interference from anti-TG, 106 scans and serum TG determinations were performed after stopping thyroid hormone replacement. Scan evidence of metastases was always (22 scans) associated with high serum TG levels (>10 ng/ml), but high serum TG levels did not distinguish metastases from residual thyroid tissue. The serum TG level was greater than 10 ng/ml in 5 of 28 instances (18%) of negative scans, while scans were positive in 14 of 32 instances (44%) where TG levels were less than 2 ng/ml.

  13. Human body surface area: measurement and prediction using three dimensional body scans.

    PubMed

    Tikuisis, P; Meunier, P; Jubenville, C E

    2001-08-01

    The development of three dimensional laser scanning technology and sophisticated graphics editing software have allowed an alternative and potentially more accurate determination of body surface area (BSA). Raw whole-body scans of 641 adults (395 men and 246 women) were obtained from the anthropometric data base of the Civilian American and European Surface Anthropometry Resource project. Following surface restoration of the scans (i.e. patching and smoothing), BSA was calculated. A representative subset of the entire sample population involving 12 men and 12 women (G24) was selected for detailed measurements of hand surface area (SAhand) and ratios of surface area to volume (SA/VOL) of various body segments. Regression equations involving wrist circumference and arm length were used to predict SAhand of the remaining population. The overall [mean (SD)] of BSA were 2.03 (0.19) and 1.73 (0.19) m2 for men and women, respectively. Various prediction equations were tested and although most predicted the measured BSA reasonably closely, residual analysis revealed an overprediction with increasing body size in most cases. Separate non-linear regressions for each sex yielded the following best-fit equations (with root mean square errors of about 1.3%): BSA (cm2) = 128.1 x m0.44 x h0.60 for men and BSA = 147.4 x m0.47 x h0.55 for women, where m, body mass, is in kilograms and h, height, is in centimetres. The SA/VOL ratios of the various body segments were higher for the women compared to the men of G24, significantly for the head plus neck (by 7%), torso (19%), upper arms (15%), forearms (20%), hands (18%), and feet (11%). The SA/VOL for both sexes ranged from approximately 12.m-1 for the pelvic region to 104-123.m-1 for the hands, and shape differences were a factor for the torso and lower leg. PMID:11560080

  14. Apparatus for scanning the surface of a cylindrical body

    NASA Technical Reports Server (NTRS)

    Nakich, R. B.; Woodbury, R. C. (Inventor)

    1974-01-01

    A laser scanning system for providing a two-dimensional display of a cylindrical surface, such as to display striae of a fired bullet is described. The cylinder is scanned along its axis by vibrating one mirror in the laser beam path, and is scanned in a direction normal to its axis by vibrating a second mirror in a direction normal to the first or by rotating the bullet. Scan control signals are adjusted in phase to produce a synchronized display of a video signal obtained from detection of scattered light from the surface thus scanned by a laser beam.

  15. NOTE: An anatomically shaped lower body model for CT scanning of cadaver femurs

    NASA Astrophysics Data System (ADS)

    Tanck, Esther; Deenen, J. C. W.; Huisman, Henk Jan; Kooloos, Jan G.; Huizenga, Henk; Verdonschot, Nico

    2010-01-01

    Bone specific, CT-based finite element (FE) analyses have great potential to accurately predict the fracture risk of deteriorated bones. However, it has been shown that differences exist between FE-models of femora scanned in a water basin or scanned in situ within the human body, as caused by differences in measured bone mineral densities (BMD). In this study we hypothesized that these differences can be reduced by re-creating the patient CT-conditions by using an anatomically shaped physical model of the lower body. BMD distributions were obtained from four different femora that were scanned under three conditions: (1) in situ within the cadaver body, (2) in a water basin and (3) in the body model. The BMD of the three scanning protocols were compared at two locations: proximally, in the trabecular bone of the femoral head, and in the cortical bone of the femoral shaft. Proximally, no significant differences in BMD were found between the in situ scans and the scans in the body model, whereas the densities from the water basin scans were on average 10.8% lower than in situ. In the femoral shaft the differences between the three scanning protocols were insignificant. In conclusion, the body model better approached the in situ situation than a water basin. Future studies can use this body model to mimic patient situations and to develop protocols to improve the performance of the FE-models in actual patients.

  16. Three-dimensional body scanning system for apparel mass-customization

    NASA Astrophysics Data System (ADS)

    Xu, Bugao; Huang, Yaxiong; Yu, Weiping; Chen, Tong

    2002-07-01

    Mass customization is a new manufacturing trend in which mass-market products (e.g., apparel) are quickly modified one at a time based on customers' needs. It is an effective competing strategy for maximizing customers' satisfaction and minimizing inventory costs. An automatic body measurement system is essential for apparel mass customization. This paper introduces the development of a body scanning system, body size extraction methods, and body modeling algorithms. The scanning system utilizes the multiline triangulation technique to rapidly acquire surface data on a body, and provides accurate body measurements, many of which are not available with conventional methods. Cubic B-spline curves are used to connect and smooth body curves. From the scanned data, a body form can be constructed using linear Coons surfaces. The body form can be used as a digital model of the body for 3-D garment design and for virtual try-on of a designed garment. This scanning system and its application software enable apparel manufacturers to provide custom design services to consumers seeking personal-fit garments.

  17. Machine learning for the automatic localisation of foetal body parts in cine-MRI scans

    NASA Astrophysics Data System (ADS)

    Bowles, Christopher; Nowlan, Niamh C.; Hayat, Tayyib T. A.; Malamateniou, Christina; Rutherford, Mary; Hajnal, Joseph V.; Rueckert, Daniel; Kainz, Bernhard

    2015-03-01

    Being able to automate the location of individual foetal body parts has the potential to dramatically reduce the work required to analyse time resolved foetal Magnetic Resonance Imaging (cine-MRI) scans, for example, for use in the automatic evaluation of the foetal development. Currently, manual preprocessing of every scan is required to locate body parts before analysis can be performed, leading to a significant time overhead. With the volume of scans becoming available set to increase as cine-MRI scans become more prevalent in clinical practice, this stage of manual preprocessing is a bottleneck, limiting the data available for further analysis. Any tools which can automate this process will therefore save many hours of research time and increase the rate of new discoveries in what is a key area in understanding early human development. Here we present a series of techniques which can be applied to foetal cine-MRI scans in order to first locate and then differentiate between individual body parts. A novel approach to maternal movement suppression and segmentation using Fourier transforms is put forward as a preprocessing step, allowing for easy extraction of short movements of individual foetal body parts via the clustering of optical flow vector fields. These body part movements are compared to a labelled database and probabilistically classified before being spatially and temporally combined to give a final estimate for the location of each body part.

  18. Compensation of body shake errors in terahertz beam scanning single frequency holography for standoff personnel screening

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Chao; Sun, Zhao-Yang; Zhao, Yu; Wu, Shi-You; Fang, Guang-You

    2016-08-01

    In the terahertz (THz) band, the inherent shake of the human body may strongly impair the image quality of a beam scanning single frequency holography system for personnel screening. To realize accurate shake compensation in imaging processing, it is quite necessary to develop a high-precision measure system. However, in many cases, different parts of a human body may shake to different extents, resulting in greatly increasing the difficulty in conducting a reasonable measurement of body shake errors for image reconstruction. In this paper, a body shake error compensation algorithm based on the raw data is proposed. To analyze the effect of the body shake on the raw data, a model of echoed signal is rebuilt with considering both the beam scanning mode and the body shake. According to the rebuilt signal model, we derive the body shake error estimated method to compensate for the phase error. Simulation on the reconstruction of point targets with shake errors and proof-of-principle experiments on the human body in the 0.2-THz band are both performed to confirm the effectiveness of the body shake compensation algorithm proposed. Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1123).

  19. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  20. Longitudinal DXA Studies: Minimum scanning interval for pediatric assessment of body fat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased prevalence of obesity in the United States, has led to the increased use of dual-energy X-ray absorptiometry (DXA) for assessment of body fat mass (TBF) in pediatric populations. We examined DXA precision, in order to determine suitable scanning intervals for the measurement of change...

  1. Use of ultrasound scanning and body condition score to evaluate composition traits in mature beef cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The experiment was designed to validate the use of ultrasound to evaluate body composition in mature beef cows. Both precision and accuracy of measurement were assessed. Cull cows (n = 87) selected for highly variable fatness were used. Two experienced ultrasound technicians scanned and assigned ...

  2. Post-laryngectomy localization of I-131 at tracheostomy site on a total body scan

    SciTech Connect

    Kirk, G.A.; Schulz, E.E.

    1984-07-01

    A post-thyroidectomy, post-I-131-therapy patient had a laryngectomy and neck dissection for recurrent papillary thyroid carcinoma. A subsequent I-131 total body scan revealed persistent anterior neck activity, which disappeared upon removal of the tracheostomy tube and dressings.

  3. Body shape and size in 6-year old children: assessment by three-dimensional photonic scanning

    PubMed Central

    Santos, L P; Ong, K K; Day, F; Wells, J C K; Matijasevich, A; Santos, I S; Victora, C G; Barros, A J D

    2016-01-01

    Background: Body shape and size are typically described using measures such as body mass index (BMI) and waist circumference, which predict disease risks in adults. However, this approach may underestimate the true variability in childhood body shape and size. Objective: To use a comprehensive three-dimensional photonic scan approach to describe variation in childhood body shape and size. Subjects/Methods: At age 6 years, 3350 children from the population-based 2004 Pelotas birth cohort study were assessed by three-dimensional photonic scanner, traditional anthropometry and dual X-ray absorptiometry. Principal component analysis (PCA) was performed on height and 24 photonic scan variables (circumferences, lengths/widths, volumes and surface areas). Results: PCA identified four independent components of children's body shape and size, which we termed: Corpulence, Central:peripheral ratio, Height and arm lengths, and Shoulder diameter. Corpulence showed strong correlations with traditional anthropometric and body composition measures (r>0.90 with weight, BMI, waist circumference and fat mass; r>0.70 with height, lean mass and bone mass); in contrast, the other three components showed weak or moderate correlations with those measures (all r<0.45). There was no sex difference in Corpulence, but boys had higher Central:peripheral ratio, Height and arm lengths and Shoulder diameter values than girls. Furthermore, children with low birth weight had lower Corpulence and Height and arm lengths but higher Central:peripheral ratio and Shoulder diameter than other children. Children from high socio-economic position (SEP) families had higher Corpulence and Height and arm lengths than other children. Finally, white children had higher Corpulence and Central:peripheral ratio than mixed or black children. Conclusions: Comprehensive assessment by three-dimensional photonic scanning identified components of childhood body shape and size not captured by traditional anthropometry or

  4. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning.

    PubMed

    Lu, Yehu; Song, Guowen; Li, Jun

    2014-11-01

    The garment fit played an important role in protective performance, comfort and mobility. The purpose of this study is to quantify the air gap to quantitatively characterize a three-dimensional (3-D) garment fit using a 3-D body scanning technique. A method for processing of scanned data was developed to investigate the air gap size and distribution between the clothing and human body. The mesh model formed from nude and clothed body was aligned, superimposed and sectioned using Rapidform software. The air gap size and distribution over the body surface were analyzed. The total air volume was also calculated. The effects of fabric properties and garment size on air gap distribution were explored. The results indicated that average air gap of the fit clothing was around 25-30 mm and the overall air gap distribution was similar. The air gap was unevenly distributed over the body and it was strongly associated with the body parts, fabric properties and garment size. The research will help understand the overall clothing fit and its association with protection, thermal and movement comfort, and provide guidelines for clothing engineers to improve thermal performance and reduce physiological burden. PMID:24793820

  5. SCAN+

    Energy Science and Technology Software Center (ESTSC)

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  6. A new total body scanning system for automatic change detection in multiple pigmented skin lesions.

    PubMed

    Korotkov, Konstantin; Quintana, Josep; Puig, Susana; Malvehy, Josep; Garcia, Rafael

    2015-01-01

    The detection of newly appearing and changing pigmented skin lesions (PSLs) is essential for timely diagnosis of cutaneous melanoma. Total body skin examination (TBSE) procedures, currently practiced for this purpose, can be extremely time-consuming for patients with numerous lesions. In addition, these procedures are prone to subjectivity when selecting PSLs for baseline image comparison, increasing the risk of missing a developing cancer. To address this issue, we propose a new photogrammetry-based total body scanning system allowing for skin surface image acquisition using cross-polarized light. Equipped with 21 high-resolution cameras and a turntable, this scanner automatically acquires a set of overlapping images, covering 85%-90% of the patient's skin surface. These images are used for the automated mapping of PSLs and their change estimation between explorations. The maps produced relate images of individual lesions with their locations on the patient's body, solving the body-to-image and image-to-image correspondence problem in TBSEs. Currently, the scanner is limited to patients with sparse body hair and, for a complete skin examination, the scalp, palms, soles and inner arms should be photographed manually. The initial tests of the scanner showed that it can be successfully applied for automated mapping and temporal monitoring of multiple lesions: PSLs relevant for follow-up were repeatedly mapped in several explorations. Moreover, during the baseline image comparison, all lesions with artificially induced changes were correctly identified as "evolved." PMID:25222947

  7. Implemented myeloma management with whole-body low-dose CT scan: a real life experience.

    PubMed

    Mangiacavalli, Silvia; Pezzatti, Sara; Rossini, Fausto; Doni, Elisa; Cocito, Federica; Bolis, Silvia; Corso, Alessandro

    2016-07-01

    A total of 318 consecutive myeloma patients underwent whole-body low-dose CT scan (WBLDCT) at baseline and during follow-up as a radiological assessment of lytic lesions in place of skeletal X-ray survey. After WBLDCT baseline assessment, 60% had bone involvement. The presence of lytic lesions represented the only met CRAB (hyperCalcaemia, Renal insufficiency, Anaemia, Bone lesions) criteria in 29% of patients. Patients presenting with extramedullary masses were 10%. Radiological progression was documented in 9% of the population with available follow-up. Additional pathological incidental findings were detected in 28 patients (14.5%), most located in the chest region (68%). In conclusion, our real-life data shows that WBLDCT scan represents a reliable imaging tool for decision-making process for multiple myeloma management in different disease phases, providing significant additional information on the presence of soft tissues plasmacytomas detection as well as the presence of pathological incidental findings. PMID:26788613

  8. Single-body lensed-fiber scanning probe actuated by magnetic force for optical imaging.

    PubMed

    Min, Eun Jung; Na, Jihoon; Ryu, Seon Young; Lee, Byeong Ha

    2009-06-15

    We propose a fiber-based hand-held scanning probe suitable for the sample arm of an optical imaging system including optical coherence tomography. To achieve compactness, a single-body lensed-fiber and a solenoid actuator were utilized. The focusing lens of the probe was directly formed onto the distal end of a fiber, which eliminated the need for additional optical components and optical alignment. A ferromagnetic iron bead was glued onto the middle of the fiber to enable actuation by magnetic force, which allowed easy fabrication and good practicality. The fiber piece having the built-in fiber lens was forced to oscillate in its resonant frequency. With the implemented probe, optical coherence tomography images of a human fingertip and a pearl were obtained at an imaging speed of 30 frames/s over a scanning range of 4 mm. PMID:19529740

  9. Relating Linear and Volumetric Variables Through Body Scanning to Improve Human Interfaces in Space

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Ferrer, Mike A.; Young, Karen S.; Rajulu, Sudhakar

    2010-01-01

    Designing space suits and vehicles for the diverse human population present unique challenges for the methods of traditional anthropometry. Space suits are bulky and allow the operator to shift position within the suit and inhibit the ability to identify body landmarks. Limited suit sizing options also cause variability in fit and performance between similarly sized individuals. Space vehicles are restrictive in volume in both the fit and the ability to collect data. NASA's Anthropometric and Biomechanics Facility (ABF) has utilized 3D scanning to shift from traditional linear anthropometry to explore and examine volumetric capabilities to provide anthropometric solutions for design. Overall, the key goals are to improve the human-system performance and develop new processes to aid in the design and evaluation of space systems. Four case studies are presented that illustrate the shift from purely linear analyses to an augmented volumetric toolset to predict and analyze the human within the space suit and vehicle. The first case study involves the calculation of maximal head volume to estimate total free volume in the helmet for proper air exchange. Traditional linear measurements resulted in an inaccurate representation of the head shape, yet limited data exists for the determination of a large head volume. Steps were first taken to identify and classify a maximum head volume and the resulting comparisons to the estimate are presented in this paper. This study illustrates the gap between linear components of anthropometry and the need for overall volume metrics in order to provide solutions. A second case study examines the overlay of the space suit scans and components onto scanned individuals to quantify fit and clearance to aid in sizing the suit to the individual. Restrictions in space suit size availability present unique challenges to optimally fit the individual within a limited sizing range while maintaining performance. Quantification of the clearance and

  10. Isolated microvesicles from peripheral blood and body fluids as observed by scanning electron microscope.

    PubMed

    Mrvar-Brecko, Anita; Sustar, Vid; Jansa, Vid; Stukelj, Roman; Jansa, Rado; Mujagić, Emir; Kruljc, Peter; Iglic, Ales; Hägerstrand, Henry; Kralj-Iglic, Veronika

    2010-04-15

    Microvesicles are sub-micron structures shed from the cell membrane in a final step of the budding process. After being released into the microenvironment they are free to move and carry signaling molecules to distant cells, thereby they represent a communication system within the body. Since all cells shed microvesicles, it can be expected that they will be found in different body fluids. The potential diagnostic value of microvesicles has been suggested, however, a standardized protocol for isolation has not yet been agreed upon. It is unclear what is the content of the isolates and whether the isolated microvesicles were present in vivo or-have they been created within the isolation procedure. To present evidence in this direction, in this work we focus on the visualization of the material obtained by the microvesicle isolation procedure. We present scanning electronic microscope images of microvesicles isolated from blood, ascites, pleural fluid, cerebrospinal fluid, postoperative drainage fluid and chyloid fluid acquired from human and animal patients. Vesicular structures sized from 1microm downto 50nm are present in isolates of all considered body fluids, however, the populations differ in size and shape reflecting also the composition of the corresponding sediments. Isolates of microvesicles contain numerous cells which indicates that methods of isolation and determination of the number of microvesicles in the peripheral blood are to be elaborated and improved. PMID:20199878

  11. Fully automated shape model positioning for bone segmentation in whole-body CT scans

    NASA Astrophysics Data System (ADS)

    Fränzle, A.; Sumkauskaite, M.; Hillengass, J.; Bäuerle, T.; Bendl, R.

    2014-03-01

    Analysing osteolytic and osteoblastic bone lesions in systematically affected skeletons, e.g. in multiple myeloma or bone metastasis, is a complex task. Quantification of the degree of bone destruction needs segmentation of all lesions but cannot be managed manually. Automatic bone lesion detection is necessary. Our future objective is comparing modified bones with healthy shape models. For applying model based strategies successfully, identification and position information of single bones is necessary. A solution to these requirements based on bone medullary cavities is presented in this paper. Medullary cavities are useful for shape model positioning since they have similar position and orientation as the bone itself but can be separated more easily. Skeleton segmentation is done by simple thresholding. Inside the skeleton medullary cavities are segmented by a flood filling algorithm. The filled regions are considered as medullary cavity objects. To provide automatic shape model selection, medullary cavity objects are assigned to bone structures with pattern recognition. To get a good starting position for shape models, principal component analysis of medullary cavities is performed. Bone identification was tested on 14 whole-body low-dose CT scans of multiple myeloma patients. Random forest classification assigns medullary cavities of long bones to the corresponding bone (overall accuracy 90%). Centroid and first principal component of medullary cavity are sufficiently similar to those of bone (mean centroid difference 21.7 mm, mean difference angle 1.54° for all long bones of one example patient) and therefore suitable for shape model initialization. This method enables locating long bone structures in whole-body CT scans and provides useful information for a reasonable shape model initialization.

  12. Automated prostate segmentation in whole-body MRI scans for epidemiological studies

    NASA Astrophysics Data System (ADS)

    Habes, Mohamad; Schiller, Thilo; Rosenberg, Christian; Burchardt, Martin; Hoffmann, Wolfgang

    2013-09-01

    The whole prostatic volume (PV) is an important indicator for benign prostate hyperplasia. Correlating the PV with other clinical parameters in a population-based prospective cohort study (SHIP-2) requires valid prostate segmentation in a large number of whole-body MRI scans. The axial proton density fast spin echo fat saturated sequence is used for prostate screening in SHIP-2. Our automated segmentation method is based on support vector machines (SVM). We used three-dimensional neighborhood information to build classification vectors from automatically generated features and randomly selected 16 MR examinations for validation. The Hausdorff distance reached a mean value of 5.048 ± 2.413, and a mean value of 5.613 ± 2.897 compared to manual segmentation by observers A and B. The comparison between volume measurement of SVM-based segmentation and manual segmentation of observers A and B depicts a strong correlation resulting in Spearman’s rank correlation coefficients (ρ) of 0.936 and 0.859, respectively. Our automated methodology based on SVM for prostate segmentation can segment the prostate in WBI scans with good segmentation quality and has considerable potential for integration in epidemiological studies.

  13. Automated prostate segmentation in whole-body MRI scans for epidemiological studies.

    PubMed

    Habes, Mohamad; Schiller, Thilo; Rosenberg, Christian; Burchardt, Martin; Hoffmann, Wolfgang

    2013-09-01

    The whole prostatic volume (PV) is an important indicator for benign prostate hyperplasia. Correlating the PV with other clinical parameters in a population-based prospective cohort study (SHIP-2) requires valid prostate segmentation in a large number of whole-body MRI scans. The axial proton density fast spin echo fat saturated sequence is used for prostate screening in SHIP-2. Our automated segmentation method is based on support vector machines (SVM). We used three-dimensional neighborhood information to build classification vectors from automatically generated features and randomly selected 16 MR examinations for validation. The Hausdorff distance reached a mean value of 5.048 ± 2.413, and a mean value of 5.613 ± 2.897 compared to manual segmentation by observers A and B. The comparison between volume measurement of SVM-based segmentation and manual segmentation of observers A and B depicts a strong correlation resulting in Spearman's rank correlation coefficients (ρ) of 0.936 and 0.859, respectively. Our automated methodology based on SVM for prostate segmentation can segment the prostate in WBI scans with good segmentation quality and has considerable potential for integration in epidemiological studies. PMID:23920310

  14. Thyroglobulin measurement vs iodine 131 total-body scan for follow-up of well-differentiated thyroid cancer

    SciTech Connect

    Aiello, D.P.; Manni, A. )

    1990-02-01

    Measurement of the serum thyroglobulin level may be more sensitive than total-body scan using sodium iodide 131 for detecting recurrences from well-differentiated thyroid cancer. We have evaluated the merit of these two methods through a retrospective chart review of patients followed up at the Milton S. Hershey Medical Center, Hershey, Pa. We found that in 17 (45%) of 38 follow-up visits, the presence of interfering antibodies prevented the measurement of serum thyroglobulin levels. Furthermore, such determination was less sensitive than iodine 131 total-body scan in detecting residual thyroid tissue and/or cancer in the neck area. We concluded that iodine 131 total-body scan is the preferable method of follow-up, particularly when the goal of therapy is complete ablation of thyroid tissue.

  15. Body image, shape, and volumetric assessments using 3D whole body laser scanning and 2D digital photography in females with a diagnosed eating disorder: preliminary novel findings.

    PubMed

    Stewart, Arthur D; Klein, Susan; Young, Julie; Simpson, Susan; Lee, Amanda J; Harrild, Kirstin; Crockett, Philip; Benson, Philip J

    2012-05-01

    We piloted three-dimensional (3D) body scanning in eating disorder (ED) patients. Assessments of 22 ED patients (including nine anorexia nervosa (AN) patients, 12 bulimia nervosa (BN) patients, and one patient with eating disorder not otherwise specified) and 22 matched controls are presented. Volunteers underwent visual screening, two-dimensional (2D) digital photography to assess perception and dissatisfaction (via computerized image distortion), and adjunctive 3D full-body scanning. Patients and controls perceived themselves as bigger than their true shape (except in the chest region for controls and anorexia patients). All participants wished to be smaller across all body regions. Patients had poorer veridical perception and greater dissatisfaction than controls. Perception was generally poorer and dissatisfaction greater in bulimia compared with anorexia patients. 3D-volume:2D-area relationships showed that anorexia cases had least tissue on the torso and most on the arms and legs relative to frontal area. The engagement of patients with the scanning process suggests a validation study is viable. This would enable mental constructs of body image to be aligned with segmental volume of body areas, overcoming limitations, and errors associated with 2D instruments restricted to frontal (coronal) shapes. These novel data could inform the design of clinical trials in adjunctive treatments for eating disorders. PMID:22506746

  16. Is there a role of whole-body bone scan in patients with esophageal squamous cell carcinoma

    PubMed Central

    2012-01-01

    Background Correct detection of bone metastases in patients with esophageal squamous cell carcinoma is pivotal for prognosis and selection of an appropriate treatment regimen. Whole-body bone scan for staging is not routinely recommended in patients with esophageal squamous cell carcinoma. The aim of this study was to investigate the role of bone scan in detecting bone metastases in patients with esophageal squamous cell carcinoma. Methods We retrospectively evaluated the radiographic and scintigraphic images of 360 esophageal squamous cell carcinoma patients between 1999 and 2008. Of these 360 patients, 288 patients received bone scan during pretreatment staging, and sensitivity, specificity, positive predictive value, and negative predictive value of bone scan were determined. Of these 360 patients, surgery was performed in 161 patients including 119 patients with preoperative bone scan and 42 patients without preoperative bone scan. Among these 161 patients receiving surgery, 133 patients had stages II + III disease, including 99 patients with preoperative bone scan and 34 patients without preoperative bone scan. Bone recurrence-free survival and overall survival were compared in all 161 patients and 133 stages II + III patients, respectively. Results The diagnostic performance for bone metastasis was as follows: sensitivity, 80%; specificity, 90.1%; positive predictive value, 43.5%; and negative predictive value, 97.9%. In all 161 patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.009, univariately). In multivariate comparison, absence of preoperative bone scan (P = 0.012, odds ratio: 5.053) represented the independent adverse prognosticator for bone recurrence-free survival. In 133 stages II + III patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0

  17. WBC scan

    MedlinePlus

    ... in the body. It is a type of nuclear scan . How the Test is Performed Blood will ... radiation. Due to the slight radiation exposure, most nuclear scans (including WBC scan) are not recommended for ...

  18. Nuclear Scans

    MedlinePlus

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  19. VIRO 3D: fast three-dimensional full-body scanning for humans and other living objects

    NASA Astrophysics Data System (ADS)

    Stein, Norbert; Minge, Bernhard

    1998-03-01

    The development of a family of partial and whole body scanners provides a complete technology for fully three-dimensional and contact-free scans on human bodies or other living objects within seconds. This paper gives insight into the design and the functional principles of the whole body scanner VIRO 3D operating on the basis of the laser split-beam method. The arrangement of up to 24 camera/laser combinations, thus dividing the area into different camera fields and an all- around sensor configuration travelling in vertical direction allow the complete 360-degree-scan of an object within 6 - 20 seconds. Due to a special calibration process the different sensors are matched and the measured data are combined. Up to 10 million 3D measuring points with a resolution of approximately 1 mm are processed in all coordinate axes to generate a 3D model. By means of high-performance processors in combination with real-time image processing chips the image data from almost any number of sensors can be recorded and evaluated synchronously in video real-time. VIRO 3D scanning systems have already been successfully implemented in various applications and will open up new perspectives in different other fields, ranging from industry, orthopaedic medicine, plastic surgery to art and photography.

  20. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans

    SciTech Connect

    Shiraishi, Junji; Li Qiang; Appelbaum, Daniel; Pu Yonglin; Doi, Kunio

    2007-01-15

    Bone scintigraphy is the most frequent examination among various diagnostic nuclear medicine procedures. It is a well-established imaging modality for the diagnosis of osseous metastasis and for monitoring osseous tumor response to chemotherapy and radiation therapy. Although the sensitivity of bone scan examinations for detection of bone abnormalities has been considered to be relatively high, it is time consuming to identify multiple lesions such as bone metastases of prostate and breast cancers. In addition, it is very difficult to detect subtle interval changes between two successive abnormal bone scans, because of variations in patient conditions, the accumulation of radioisotopes during each examination, and the image quality of gamma cameras. Therefore, we developed a new computer-aided diagnostic (CAD) scheme for the detection of interval changes in successive whole-body bone scans by use of a temporal subtraction image which was obtained with a nonlinear image-warping technique. We carried out 58 pairs of successive bone scans in which each scan included both posterior and anterior views. We determined 107 'gold-standard' interval changes among the 58 pairs based on the consensus of three radiologists. Our computerized scheme consisted of seven steps, i.e., initial image density normalization on each image, image matching for the paired images, temporal subtraction by use of the nonlinear image-warping technique, initial detection of interval changes by use of temporal-subtraction images, image feature extraction of candidates of interval changes, rule-based tests by use of 16 image features for removing some false positives, and display of the computer output for identified interval changes. One hundred seven gold standard interval changes included 71 hot lesions (uptake was increased compared with the previous scan, or there was new uptake in the current scan) and 36 cold lesions (uptake was decreased or disappeared) for anterior and posterior views. The

  1. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans.

    PubMed

    Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Pu, Yonglin; Doi, Kunio

    2007-01-01

    Bone scintigraphy is the most frequent examination among various diagnostic nuclear medicine procedures. It is a well-established imaging modality for the diagnosis of osseous metastasis and for monitoring osseous tumor response to chemotherapy and radiation therapy. Although the sensitivity of bone scan examinations for detection of bone abnormalities has been considered to be relatively high, it is time consuming to identify multiple lesions such as bone metastases of prostate and breast cancers. In addition, it is very difficult to detect subtle interval changes between two successive abnormal bone scans, because of variations in patient conditions, the accumulation of radioisotopes during each examination, and the image quality of gamma cameras. Therefore, we developed a new computer-aided diagnostic (CAD) scheme for the detection of interval changes in successive whole-body bone scans by use of a temporal subtraction image which was obtained with a nonlinear image-warping technique. We carried out 58 pairs of successive bone scans in which each scan included both posterior and anterior views. We determined 107 "gold-standard" interval changes among the 58 pairs based on the consensus of three radiologists. Our computerized scheme consisted of seven steps, i.e., initial image density normalization on each image, image matching for the paired images, temporal subtraction by use of the nonlinear image-warping technique, initial detection of interval changes by use of temporal-subtraction images, image feature extraction of candidates of interval changes, rule-based tests by use of 16 image features for removing some false positives, and display of the computer output for identified interval changes. One hundred seven gold standard interval changes included 71 hot lesions (uptake was increased compared with the previous scan, or there was new uptake in the current scan) and 36 cold lesions (uptake was decreased or disappeared) for anterior and posterior views. The

  2. Body mass estimations for Plateosaurus engelhardti using laser scanning and 3D reconstruction methods

    NASA Astrophysics Data System (ADS)

    Gunga, Hanns-Christian; Suthau, Tim; Bellmann, Anke; Friedrich, Andreas; Schwanebeck, Thomas; Stoinski, Stefan; Trippel, Tobias; Kirsch, Karl; Hellwich, Olaf

    2007-08-01

    Both body mass and surface area are factors determining the essence of any living organism. This should also hold true for an extinct organism such as a dinosaur. The present report discusses the use of a new 3D laser scanner method to establish body masses and surface areas of an Asian elephant (Zoological Museum of Copenhagen, Denmark) and of Plateosaurus engelhardti, a prosauropod from the Upper Triassic, exhibited at the Paleontological Museum in Tübingen (Germany). This method was used to study the effect that slight changes in body shape had on body mass for P. engelhardti. It was established that body volumes varied between 0.79 m3 (slim version) and 1.14 m3 (robust version), resulting in a presumable body mass of 630 and 912 kg, respectively. The total body surface areas ranged between 8.8 and 10.2 m2, of which, in both reconstructions of P. engelhardti, ˜33% account for the thorax area alone. The main difference between the two models is in the tail and hind limb reconstruction. The tail of the slim version has a surface area of 1.98 m2, whereas that of the robust version has a surface area of 2.73 m2. The body volumes calculated for the slim version were as follows: head 0.006 m3, neck 0.016 m3, fore limbs 0.020 m3, hind limbs 0.08 m3, thoracic cavity 0.533 m3, and tail 0.136 m3. For the robust model, the following volumes were established: 0.01 m3 head, neck 0.026 m3, fore limbs 0.025 m3, hind limbs 0.18 m3, thoracic cavity 0.616 m3, and finally, tail 0.28 m3. Based on these body volumes, scaling equations were used to assess the size that the organs of this extinct dinosaur have.

  3. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  4. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  5. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    NASA Astrophysics Data System (ADS)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  6. Spatial characterization of the electric field considering an optical three-dimensional scanned human body model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong

    2015-01-01

    Statistical channel models have been widely studied for body-centric wireless communications (BCWCs). Besides the channel models, the study of location specificity of the electric field is also highly important in understanding the communication phenomenon in this area; however, only few related studies have been done so far. In this paper, by applying the finite difference time domain (FDTD) method, the position specificity of the electric field is analyzed. Some energy absorption regularities were found, which are significant in designing receiving terminals for BCWCs.

  7. Whole body diffusion for metastatic disease assessment in neuroendocrine carcinomas: comparison with OctreoScan® in two cases.

    PubMed

    Cossetti, Rachel Jorge D; Bezerra, Regis Otaviano França; Gumz, Brenda; Telles, Adriana; Costa, Frederico P

    2012-01-01

    Neuroendocrine tumor (NET) patients must be adequately staged in order to improve a multidisciplinary approach and optimal management for metastatic disease. Currently available imaging studies include somatostatin receptor scintigraphy, like OctreoScan®, computed tomography (CT), scans and magnetic resonance imaging (MRI), which analyze vascular concentration and intravenous contrast enhancement for anatomic tumor localization. However, these techniques require high degree of expertise for interpretation and are limited by their availability, cost, reproducibility, and follow-up imaging comparisons. NETs significantly reduce water diffusion as compared to normal tissue. Diffusion-weighted imaging (DWI) in MRI has an advantageous contrast difference: the tumor is represented with high signal over a black normal surrounding background. The whole-body diffusion (WBD) technique has been suggested to be a useful test for detecting metastasis from various anatomic sites. In this article we report the use of DWI in MRI and WBD in two cases of metastatic pulmonary NET staging in comparison with OctreoScan® in order to illustrate the potential advantage of DWI and WBD in staging NETs. PMID:22591909

  8. Whole body diffusion for metastatic disease assessment in neuroendocrine carcinomas: comparison with OctreoScan® in two cases

    PubMed Central

    2012-01-01

    Neuroendocrine tumor (NET) patients must be adequately staged in order to improve a multidisciplinary approach and optimal management for metastatic disease. Currently available imaging studies include somatostatin receptor scintigraphy, like OctreoScan®, computed tomography (CT), scans and magnetic resonance imaging (MRI), which analyze vascular concentration and intravenous contrast enhancement for anatomic tumor localization. However, these techniques require high degree of expertise for interpretation and are limited by their availability, cost, reproducibility, and follow-up imaging comparisons. NETs significantly reduce water diffusion as compared to normal tissue. Diffusion-weighted imaging (DWI) in MRI has an advantageous contrast difference: the tumor is represented with high signal over a black normal surrounding background. The whole-body diffusion (WBD) technique has been suggested to be a useful test for detecting metastasis from various anatomic sites. In this article we report the use of DWI in MRI and WBD in two cases of metastatic pulmonary NET staging in comparison with OctreoScan® in order to illustrate the potential advantage of DWI and WBD in staging NETs. PMID:22591909

  9. A decision support scheme for vertebral geometry on body CT scans

    NASA Astrophysics Data System (ADS)

    Hayashi, Tatsuro; Chen, Huayue; Miyamoto, Kei; Zhou, Xiangrong; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2011-03-01

    For gaining a better understanding of bone quality, a great deal of attention has been paid to vertebral geometry in anatomy. The aim of this study was to design a decision support scheme for vertebral geometries. The proposed scheme consists of four parts: (1) automated extraction of bone, (2) generation of median plane image of spine, (3) detection of vertebrae, (4) quantification of vertebral body width, depth, cross-sectional area (CSA), and trabecular bone mineral density (BMD). The proposed scheme was applied to 10 CT cases and compared with manual tracking performed by an anatomy expert. Mean differences in the width, depth, CSA, and trabecular BMD were 3.1 mm, 1.4 mm, 88.7 mm2, and 7.3 mg/cm3, respectively. We found moderate or high correlations in vertebral geometry between our scheme and manual tracking (r > 0.72). In contrast, measurements obtained by using our scheme were slightly smaller than those acquired from manual tracking. However, the outputs of the proposed scheme in most CT cases were regarded to be appropriate on the basis of the subjective assessment of an anatomy expert. Therefore, if the appropriate outputs from the proposed scheme are selected in advance by an anatomy expert, the results can potentially be used for an analysis of vertebral body geometries.

  10. Estimation of radiation dose to patients from 18FDG whole body PET/CT investigations using dynamic PET scan protocol

    PubMed Central

    Kaushik, Aruna; Jaimini, Abhinav; Tripathi, Madhavi; D’Souza, Maria; Sharma, Rajnish; Mondal, Anupam; Mishra, Anil K.; Dwarakanath, Bilikere S.

    2015-01-01

    Background & objectives: There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography) whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Methods: Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI) phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. Results: The estimated residence time in males was 0.196 h (brain), 0.09 h (liver), 0.007 h (spleen), 0.0006 h (adrenals), 0.013 h (kidneys) and 0.005 h (stomach) whereas it was 0.189 h (brain), 0.11 h (liver), 0.01 h (spleen), 0.0007 h (adrenals), 0.02 h (kidneys) and 0.004 h (stomach) in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. Interpretation & conclusions: The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and

  11. Uncertainty budget for a whole body counter in the scan geometry and computer simulation of the calibration phantoms.

    PubMed

    Schlagbauer, M; Hrnecek, E; Rollet, S; Fischer, H; Brandl, A; Kindl, P

    2007-01-01

    At the Austrian Research Centers Seibersdorf (ARCS), a whole body counter (WBC) in the scan geometry is used to perform routine measurements for the determination of radioactive intake of workers. The calibration of the WBC is made using bottle phantoms with a homogeneous activity distribution. The same calibration procedures have been simulated using Monte Carlo N-Particle (MCNP) code and FLUKA and the results of the full energy peak efficiencies for eight energies and five phantoms have been compared with the experimental results. The deviation between experiment and simulation results is within 10%. Furthermore, uncertainty budget evaluations have been performed to find out which parameters make substantial contributions to these differences. Therefore, statistical errors of the Monte Carlo simulation, uncertainties in the cross section tables and differences due to geometrical considerations have been taken into account. Comparisons between these results and the one with inhomogeneous distribution, for which the activity is concentrated only in certain parts of the body (such as head, lung, arms and legs), have been performed. The maximum deviation of 43% from the homogeneous case has been found when the activity is concentrated on the arms. PMID:17656442

  12. Anthropometric Measures, Body Mass Index and Pancreatic Cancer: a Pooled Analysis from the Pancreatic Cancer Cohort Consortium (PanScan)

    PubMed Central

    Arslan, Alan A.; Helzlsouer, Kathy J.; Kooperberg, Charles; Shu, Xiao-Ou; Steplowski, Emily; Bueno-de-Mesquita, H. Bas; Fuchs, Charles S.; Gross, Myron D.; Jacobs, Eric J.; LaCroix, Andrea Z.; Petersen, Gloria M.; Stolzenberg-Solomon, Rachael Z.; Zheng, Wei; Albanes, Demetrius; Amundadottir, Laufey; Bamlet, William R.; Barricarte, Aurelio; Bingham, Sheila A.; Boeing, Heiner; Boutron-Ruault, Marie-Christine; Buring, Julie E.; Chanock, Stephen J.; Clipp, Sandra; Gaziano, J. Michael; Giovannucci, Edward L.; Hankinson, Susan E.; Hartge, Patricia; Hoover, Robert N.; Hunter, David J.; Hutchinson, Amy; Jacobs, Kevin B.; Kraft, Peter; Lynch, Shannon M.; Manjer, Jonas; Manson, JoAnn E.; McTiernan, Anne; McWilliams, Robert R.; Mendelsohn, Julie B.; Michaud, Dominique S.; Palli, Domenico; Rohan, Thomas E.; Slimani, Nadia; Thomas, Gilles; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Virtamo, Jarmo; Wolpin, Brian M.; Yu, Kai; Zeleniuch-Jacquotte, Anne; Patel, Alpa V.

    2010-01-01

    Background Pooled data were analyzed from the NCI Pancreatic Cancer Cohort Consortium (PanScan) to study the association between pre-diagnostic anthropometric measures and risk of pancreatic cancer. Methods PanScan applied a nested case-control study design and included 2,170 cases and 2,209 controls. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using unconditional logistic regression for cohort-specific quartiles of body mass index (BMI), weight, height, waist circumference, and waist-to-hip ratio (WHR), as well as conventional BMI categories: underweight (<18.5 kg/m2), normal (18.5-24.9 kg/m2), overweight (25.0-29.9 kg/m2), obese (30.0-34.9 kg/m2), and severely obese (≥35.0 kg/m2). Models were adjusted for potential confounders. Results Among all subjects, a positive association between increasing BMI and risk of pancreatic cancer was observed (adjusted OR for the highest vs. lowest BMI quartile = 1.33, 95% CI = 1.12-1.58, Ptrend < 0.001). Among men, the adjusted OR for pancreatic cancer for the highest vs. lowest quartile of BMI was 1.33 (95% CI = 1.04-1.69, Ptrend <0.03). Among women, the adjusted OR for pancreatic cancer for the highest quartile of BMI was 1.34 (95% CI = 1.05-1.70, Ptrend = 0.01). Increased WHR was associated with increased risk of pancreatic cancer among women (adjusted OR for the highest vs. lowest quartile = 1.87, 95% CI = 1.31-2.69, Ptrend = 0.003) but less so in men. Conclusion The findings provide strong support for a positive association between BMI and pancreatic cancer risk. In addition, centralized fat distribution may increase pancreatic cancer risk, especially in women. PMID:20458087

  13. Nuclear Scans

    MedlinePlus

    ... functions inside your body. They use a special camera that detects radioactivity. Before the test, you receive ... you lie still on a table while the camera makes images. Most scans take 20 to 45 ...

  14. MRI Scans

    MedlinePlus

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ...

  15. Assessment of a Microsoft Kinect-based 3D scanning system for taking body segment girth measurements: a comparison to ISAK and ISO standards.

    PubMed

    Clarkson, Sean; Wheat, Jon; Heller, Ben; Choppin, Simon

    2016-06-01

    Use of anthropometric data to infer sporting performance is increasing in popularity, particularly within elite sport programmes. Measurement typically follows standards set by the International Society for the Advancement of Kinanthropometry (ISAK). However, such techniques are time consuming, which reduces their practicality. Schranz et al. recently suggested 3D body scanners could replace current measurement techniques; however, current systems are costly. Recent interest in natural user interaction has led to a range of low-cost depth cameras capable of producing 3D body scans, from which anthropometrics can be calculated. A scanning system comprising 4 depth cameras was used to scan 4 cylinders, representative of the body segments. Girth measurements were calculated from the 3D scans and compared to gold standard measurements. Requirements of a Level 1 ISAK practitioner were met in all 4 cylinders, and ISO standards for scan-derived girth measurements were met in the 2 larger cylinders only. A fixed measurement bias was identified that could be corrected with a simple offset factor. Further work is required to determine comparable performance across a wider range of measurements performed upon living participants. Nevertheless, findings of the study suggest such a system offers many advantages over current techniques, having a range of potential applications. PMID:26358314

  16. Extremity Radioactive Iodine Uptake on Post-therapeutic Whole Body Scan in Patients with Differentiated Thyroid Cancer

    PubMed Central

    Wakabayashi, Hiroshi; Taki, Junichi; Inaki, Anri; Toratani, Ayane; Kayano, Daiki; Kinuya, Seigo

    2015-01-01

    Objective(s): We investigated a frequency of lower extremity uptake on the radioactive iodine (RAI) whole body scan (WBS) after RAI treatment in patients with differentiated thyroid cancer, in order to retrospectively examine whether or not the frequency was pathological. Methods: This retrospective study included 170 patients with thyroid cancer, undergoing RAI treatment. Overall, 99(58%) and 71(42%) patients received single and multiple RAI treatments, respectively. Post-therapeutic WBS was acquired after 3 days of RAI administration. For patients with multiple RAI treatments, the WBS of their last RAI treatment was evaluated. Lower extremity uptake on post-therapeutic WBS was classified into 3 categories: bilateral femoral uptake (type A), bilateral femoral and tibia uptake (type B), and uptake in bilateral upper and lower extremities (type C). Then, the patients with RAI uptake in the lower extremities on WBS were analyzed with clinical parameters. Results: Overall, 99 patients (58%) had the extremity uptake on their posttherapeutic RAI WBS. As the results indicated, 42, 53, and 4 patients had type A, type B, and type C uptakes, respectively. Lower extremity uptake was significantly associated with younger age, not only in subjects with multiple RAI treatments but also in all the patients (P<0.05). Accumulation in patients with multiple RAI treatments was more frequent than patients with single RAI treatment (P<0.05). Lower extremity uptake was not associated with counts of the white blood cell count, hemoglobin level, platelet count, estimated glomerular filtration rate, effective half-time of RAI, serum TSH level, and anti-Tg concentration. Conclusion: About half of the patients had lower extremity uptake on the posttherapeutic RAI WBS, especially younger patients and those with multiple courses of RAI treatment. Bilateral lower extremity’s RAI uptake on the posttherapeutic WBS should be considered as physiological RAI distribution in bone marrow.

  17. [Ethical issues raised by direct-to-consumer personal genome analysis and whole body scans: discussion and contextualisation of a report by the Nuffield Council on Bioethics].

    PubMed

    Buyx, Alena M; Strech, Daniel; Schmidt, Harald

    2012-01-01

    The paradigm of personalised medicine has many different facets, further to the application of pharmacogenetics. We examine here (direct-to-consumer) personal genome analysis and whole body scans and summarise findings from the Nuffield Council's on Bioethics recent report "Medical profiling and online medicine: the ethics of 'personalised healthcare' in a consumer age". We describe the current situation in Germany with regard to access to such services, and contextualise the Nuffield Council's report with summaries of position statements by German professional bodies. We conclude with three points that merit examination further to the analyses of the Nuffield Council's report and the German professional bodies. These concern the role of indirect evidence in considering restrictive policies, the question of whether regulations should require commercial providers to contribute to the generation of better evidence, and the option of using data from evaluations in combination with indirect evidence in justifying restrictive policies. PMID:22325105

  18. Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    PubMed Central

    2011-01-01

    Background The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose. Methods One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population. Results Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters. Conclusions A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques. PMID:22004072

  19. College of Radiology, Academy of Medicine of Malaysia position on whole body screening CT scans in healthy asymptomatic individuals (2008)

    PubMed Central

    Ho, ELM; Abdullah, BJJ; Tang, AAL; Nordin, AJ; Nair, AR; Lim, GCC; Samad-Cheung, H; Ng, KH; Ponnusamy, S; Abbas, SF; Bux, SI; Arasaratnam, S; Abdul Aziz, YF; Venugopal, S; Musa, Z; Abdul Manaf, Z

    2008-01-01

    To date, the College of Radiology (CoR) does not see any clear benefit in performing whole body screening computed tomography (CT) examinations in healthy asymptomatic individuals. There are radiation risk issues in CT and principles of screening should be adhered to. There may be a role for targeted cardiac screening CT that derives calcium score, especially for asymptomatic medium-risk individuals and CT colonography when used as part of a strategic programme for colorectal cancer screening in those 50 years and older. However, population based screening CT examinations may become appropriate when evidence emerges regarding a clear benefit for the patient outweighing the associated radiation risks. PMID:21611021

  20. In Thyroidectomized Thyroid Cancer Patients, False-Positive I-131 Whole Body Scans Are Often Caused by Inflammation Rather Than Thyroid Cancer

    PubMed Central

    Garger, Yana Basis; Winfeld, Mathew; Friedman, Kent; Blum, Manfred

    2016-01-01

    Objective. To show that I-131 false-positive results on whole-body scans (WBSs) after thyroidectomy for thyroid cancer may be a result of inflammation unassociated with the cancer. Methods. We performed a retrospective image analysis of our database of thyroid cancer patients who underwent WBS from January 2008 to January 2012 to identify and stratify false positives. Results. A total of 564 patients underwent WBS during the study period; 96 patients were referred for 99 I-131 single-photon emission computed tomography (SPECT/CT) scans to better interpret cryptic findings. Among them, 73 scans were shown to be falsely positive; 40/73 or 54.7% of false-positive findings were a result of inflammation. Of the findings, 17 were in the head, 1 in the neck, 4 in the chest, 3 in the abdomen, and 14 in the pelvis; 1 had a knee abscess. Conclusions. In our series, inflammation caused the majority of false-positive WBSs. I-131 SPECT/CT is powerful in the differentiation of inflammation from thyroid cancer. By excluding metastatic disease, one can properly prognosticate outcome and avoid unnecessary, potentially harmful treatment of patients with thyroid cancer. PMID:26977418

  1. “Hidden” bone metastasis from thyroid carcinoma: A clinical note

    PubMed Central

    Sioka, C.; Skarulis, M.C.; Tulloch-Reid, M.K.; Heiss, J.D.; Reynolds, J.C.

    2014-01-01

    The 131I-iodide (131I) whole-body scan, for thyroid carcinoma is at times difficult to interpret. In a diagnostic whole body 131I scan of a patient with follicular carcinoma, a posterior skull lesion was partially hidden by overlapping facial structures. On lateral head view, the abnormality was clearly evident. SPECT/CT and MRI showed the lesion originated in the occipital bone and had enlarged into the posterior fossa. The mass was surgically removed and the patient received 131I therapy for residual tissue. The study demonstrates a pitfall in the reading of two dimensional radioiodine images which can be overcome by SPECT or lateral imaging. PMID:23845451

  2. Mass determination and estimation of subunit stoichiometry of the bacterial hook-basal body flagellar complex of Salmonella typhimurium by scanning transmission electron microscopy.

    PubMed Central

    Sosinsky, G E; Francis, N R; DeRosier, D J; Wall, J S; Simon, M N; Hainfeld, J

    1992-01-01

    The basal body, a part of the rotary motor of the bacterial flagellum, is a multiprotein assembly that consists of four rings (denoted M, S, P, and L) and an axial rod (denoted R). From analysis of scanning transmission electron microscopy images of hook-basal body preparations isolated from Salmonella typhimurium, we have determined the masses of the basal body and three of its subcomplexes. The mass of the basal body (i.e., the four rings and rod) is 4400 +/- 490 kDa (mean +/- SD; n = 54). The mass of the LPR subcomplex (i.e., L and P rings and the whole rod) is 2600 +/- 380 kDa (n = 55), that of the L and P rings and the distal part of the rod is 2100 +/- 320 kDa (n = 25), and the mass of the L and P ring subcomplex is 1700 +/- 260 kDa (n = 514). These results, together with the masses of the component proteins, indicate that the rings contain approximately 26 subunits each and that the mass of the rod is consistent with a composition of approximately 6 copies each of three of the rod proteins FlgB, FlgC, and FlgF and approximately 26 copies of FlgG as determined by Jones et al. [Jones, C. J., Macnab, R. M., Okino, H. & Aizawa, S.-I. (1990) J. Mol. Biol. 212, 377-387] using quantitative gel electrophoresis. The results of Jones et al., together with ours, account for all proteins in the basal body to within approximately 5% (or 200 kDa). Images PMID:1594581

  3. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    SciTech Connect

    Yang, Ching-Ching; Liu, Shu-Hsin; Mok, Greta S. P.; Wu, Tung-Hsin

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  4. WE-G-BRD-07: Investigation of Distal Lung Atelectasis Following Stereotactic Body Radiation Therapy Using Regional Lung Volume Changes Between Pre- and Post- Treatment CT Scans

    SciTech Connect

    Diot, Q; Kavanagh, B; Miften, M

    2014-06-15

    Purpose: To propose a quantitative method using lung deformations to differentiate between radiation-induced fibrosis and potential airway stenosis with distal atelectasis in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Twenty-four lung patients with large radiation-induced density increases outside the high dose region had their pre- and post-treatment CT scans manually registered. They received SBRT treatments at our institution between 2002 and 2009 in 3 or 5 fractions, to a median total dose of 54Gy (range, 30–60). At least 50 anatomical landmarks inside the lung (airway branches) were paired for the pre- and post-treatment scans to guide the deformable registration of the lung structure, which was then interpolated to the whole lung using splines. Local volume changes between the planning and follow-up scans were calculated using the deformation field Jacobian. Hyperdense regions were classified as atelectatic or fibrotic based on correlations between regional density increases and significant volume contractions compared to the surrounding tissues. Results: Out of 24 patients, only 7 demonstrated a volume contraction that was at least one σ larger than the remaining lung average. Because they did not receive high doses, these shrunk hyperdense regions were likely showing distal atelectasis resulting from radiation-induced airway stenosis rather than conventional fibrosis. On average, the hyperdense regions extended 9.2 cm farther than the GTV contours but not significantly more than 8.6 cm for the other patients (p>0.05), indicating that a large offset between the radiation and hyperdense region centers is not a good surrogate for atelectasis. Conclusion: A method based on the relative comparison of volume changes between different dates was developed to identify potential lung regions experiencing distal atelectasis. Such a tool is essential to study which lung structures need to be avoided to prevent

  5. CT -- Body

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses special x-ray ... Body? What is CT Scanning of the Body? Computed tomography, more commonly known as a CT or CAT ...

  6. Scanning, Scanning, Everywhere.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia; Myers, Brenda

    1997-01-01

    Discusses uses of scanning (process of copying or converting text, images, and objects into information that the computer can recognize and manipulate) in schools and notes possible desktop publishing projects. Describes popular scanners and ways to edit a scanned image. A sidebar gives costs and telephone numbers for nine scanners. (AEF)

  7. CT scan (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  8. CT scan

    MedlinePlus

    CAT scan; Computed axial tomography scan; Computed tomography scan ... Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, et al. eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ...

  9. Scanning micro-sclerometer

    DOEpatents

    Oliver, Warren C.; Blau, Peter J.

    1994-01-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

  10. Scanning micro-sclerometer

    DOEpatents

    Oliver, W.C.; Blau, P.J.

    1994-11-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.

  11. PET scan

    MedlinePlus

    You may feel a sharp sting when the needle with the tracer is placed into your vein. A PET scan causes no pain. The table may be ... The amount of radiation used in a PET scan is about the same amount as used in most CT scans. These scans use ...

  12. Gallium scan

    MedlinePlus

    Liver gallium scan; Bony gallium scan ... You will get a radioactive material called gallium injected into your vein. The gallium travels through the bloodstream and collects in the bones and certain organs. Your health care provider will ...

  13. Bone scan

    MedlinePlus

    ... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...

  14. Thyroid scan

    MedlinePlus

    ... Read More Anaplastic thyroid cancer Cancer Goiter - simple Hyperthyroidism Multiple endocrine neoplasia (MEN) II PET scan Skin ... A.M. Editorial team. Related MedlinePlus Health Topics Hyperthyroidism Hypothyroidism Nuclear Scans Thyroid Cancer Thyroid Diseases Thyroid ...

  15. Bone scan

    MedlinePlus

    A bone scan is an imaging test used to diagnose bone diseases and find out how severe they are. ... A bone scan involves injecting a very small amount of radioactive material (radiotracer) into a vein. The substance travels through ...

  16. Bone scanning.

    PubMed

    Greenfield, L D; Bennett, L R

    1975-03-01

    Scanning is based on the uptake of a nuclide by the crystal lattice of bone and is related to bone blood flow. Cancer cells do not take up the tracer. Normally, the scan visualizes the highly vascular bones. Scans are useful and are indicated in metastatic bone disease, primary bone tumors, hematologic malignancies and some non-neoplastic diseases. The scan is more sensitive than x-ray in the detection of malignant diseases of the skeleton. PMID:1054210

  17. Practice Trends in Patients with Persistent Detectable Thyroglobulin and Negative Diagnostic Radioiodine Whole Body Scans: A Survey of American Thyroid Association Members

    PubMed Central

    Diehl, Nancy; Bernet, Victor

    2014-01-01

    Background: Management of patients with thyroglobulin (Tg)-positive/scan-negative thyroid cancer remains challenging. American Thyroid Association (ATA) guidelines recommend potential use of empiric 131I therapy and various scanning modalities, but no standard for managing such cases exists. Methods: We surveyed ATA members to assess current practice in management of patients with Tg-positive/scan-negative disease. Members participated in a web-based survey of six case scenarios of Tg elevations but iodine scan negativity. Results: A total of 288 ATA members (80% male) participated. Patient age, sex, and basal and stimulated Tg varied between the cases. Respondents were asked their opinion regarding empiric 131I therapy use, including 131I dose, use and duration of low-iodine diet, thyroxine withdrawal or recombinant human thyrotropin (rhTSH), and utilization of additional imaging (neck ultrasound (US) or positron emission tomography/computed tomography (PET/CT)) and reconsideration of 131I therapy. Between 16% and 51% recommended initial use of empiric 131I for the various scenarios. The majority chose a 131I dose between 75 and 150 mCi, and 73% employed a low-iodine diet for two or more weeks. Preference between thyroxine withdrawal versus rhTSH was evenly split. More than 98% obtained a neck US if empiric 131I was not given; 52–89% would proceed to PET/CT if US was negative. Only 44% used rhTSH stimulation in PET scan preparation. 131I use was more common with stimulated Tg significantly >10 ng/mL. 131I therapy was slightly more likely with PET-positive (56%) than PET-negative status (45%). Respondents were split regarding empiric 131I if basal and stimulated Tg increased ≥150% over two years. Providers in North America less commonly utilized 131I treatment than those from other areas. In the face of possible heterophilic antibody interference in the Tg assay, the majority did not recommend 131I therapy. Conclusions: Empiric 131I therapy is still utilized

  18. TH-C-18A-12: Evaluation of the Impact of Body Size and Tube Output Limits in the Optimization of Fast Scanning with High-Pitch Dual Source CT

    SciTech Connect

    Ramirez Giraldo, J; Mileto, A.; Hurwitz, L.; Marin, D.

    2014-06-15

    Purpose: To evaluate the impact of body size and tube power limits in the optimization of fast scanning with high-pitch dual source CT (DSCT). Methods: A previously validated MERCURY phantom, made of polyethylene, with circular cross-section of diameters 16, 23, 30 and 37cm, and connected through tapered sections, was scanned using a second generation DSCT system. The DSCT operates with two independently controlled x-ray tube generators offering up to 200 kW power reserve (100 kW per tube). The entire length of the phantom (42cm) was scanned with two protocols using: A)Standard single-source CT (SSCT) protocol with pitch of 0.8, and B) DSCT protocol with high-pitch values ranging from 1.6 to 3.2 (0.2 steps). All scans used 120 kVp with 150 quality reference mAs using automatic exposure control. Scanner radiation output (CTDIvol) and effective mAs values were extracted retrospectively from DICOM files for each slice. Image noise was recorded. All variables were assessed relative to phantom diameter. Results: With standard-pitch SSCT, the scanner radiation output (and tube-current) were progressively adapted with increasing size, from 6 mGy (120 mAs) up to 15 mGy (270 mAs) from the thinnest (16cm) to the thickest diameter (37 cm), respectively. By comparison, using high-pitch (3.2), the scanner output was bounded at about 8 mGy (140 mAs), independent of phantom diameter. Although relative to standard-pitch, the high-pitch led to lower radiation output for the same scan, the image noise was higher, particularly for larger diameters. To match the radiation output adaptation of standard-pitch, a high-pitch mode of 1.6 was needed, with the advantage of scanning twice as fast. Conclusion: To maximize the benefits of fast scanning with high-pitch DSCT, the body size and tube power limits of the system need to be considered such that a good balance between speed of acquisition and image quality are warranted. JCRG is an employee of Siemens Medical Solutions USA Inc.

  19. Probing many body effects using Fourier Transform Scanning Tunneling Spectroscopy: Can spin-orbit splitting in dispersion be observed in q-space?

    NASA Astrophysics Data System (ADS)

    Farahi, Gelareh; UBC Labortory for Atomic Imaging Research (LAIR)) Team

    Well studied surface systems such as Ag and Cu provide a safe platform to test novel spectroscopy methods that can have extended applications in near future. Our current focus is given to Fourier Transform Scanning Tunneling Spectroscopy (FT-STS) that allows us to study scattering effects (quasiparticle interactions - namely QPI) of CO and Co on Cu(111) surface. Magnetic Co adatoms are expected to generate a spin-orbit split in dispersion in QPI(q) space, the existence of which is confirmed by the k-space angle-resolved photo-emission spectroscopy (ARPES) of Cu(111) surface in the recent years. Hence the previously observed electron-phonon kink and spin-orbit splitting of the dispersion, as well as the scattering properties of CO molecules and Co adatoms, should also be observable in QPI space via FT-STS of Cu(111), and compatible with previous studies on similar systems. We are using a low temperature (4.2 K) commercial Scanning Tunneling Microscope (CREATEC STM) that operates using Nanonis electronic controllers and software which allows us to perform FT-STS as well as topological imaging.

  20. Tree Scanning

    PubMed Central

    Templeton, Alan R.; Maxwell, Taylor; Posada, David; Stengård, Jari H.; Boerwinkle, Eric; Sing, Charles F.

    2005-01-01

    We use evolutionary trees of haplotypes to study phenotypic associations by exhaustively examining all possible biallelic partitions of the tree, a technique we call tree scanning. If the first scan detects significant associations, additional rounds of tree scanning are used to partition the tree into three or more allelic classes. Two worked examples are presented. The first is a reanalysis of associations between haplotypes at the Alcohol Dehydrogenase locus in Drosophila melanogaster that was previously analyzed using a nested clade analysis, a more complicated technique for using haplotype trees to detect phenotypic associations. Tree scanning and the nested clade analysis yield the same inferences when permutation testing is used with both approaches. The second example is an analysis of associations between variation in various lipid traits and genetic variation at the Apolipoprotein E (APOE) gene in three human populations. Tree scanning successfully identified phenotypic associations expected from previous analyses. Tree scanning for the most part detected more associations and provided a better biological interpretative framework than single SNP analyses. We also show how prior information can be incorporated into the tree scan by starting with the traditional three electrophoretic alleles at APOE. Tree scanning detected genetically determined phenotypic heterogeneity within all three electrophoretic allelic classes. Overall, tree scanning is a simple, powerful, and flexible method for using haplotype trees to detect phenotype/genotype associations at candidate loci. PMID:15371364

  1. MRI Scans

    MedlinePlus

    ... doctor if you Are pregnant Have pieces of metal in your body. You might have metal in your body if you have a shrapnel ... injury or if you are a welder. Have metal or electronic devices in your body, such as ...

  2. Usefulness of low iodine diet in managing patients with differentiated thyroid cancer - initial results

    PubMed Central

    Dobrenic, Margareta; Huic, Drazen; Zuvic, Marijan; Grosev, Darko; Petrovic, Ratimir; Samardzic, Tatjana

    2011-01-01

    Background Low iodine diet (LID) is recommended in patients with differentiated thyroid cancer before radioiodine administration. Patients with increased thyroglobulin (Tg) level, but negative 131I whole body scan present diagnostic and therapeutic dilemma. This study was designed to evaluate the benefit of a two-week LID in patients with elevated serum Tg levels and negative 131I whole body scans. Patients and methods. For the impact assessment of two-week LID on radioiodine tissue avidity, radioiodine scans before and after LID were compared. Sixteen patients with serum Tg > 2 μg/L, negative Tg-antibodies, and negative radioiodine scans underwent two-week LID before the 131I administration. Fourteen patients underwent diagnostic scanning and two patients received radioiodine therapy. Iodine concentration in the morning urine specimens were measured in each patient, a day before and 15th day after starting LID. Results Following self-managed LID, patients were able to significantly reduce their iodine body content by 50% (range 28–65%, p<0,001). 13 patients (82%) accomplished mild iodine deficiency (50-99 μg/L) and one patient (6%) achieved targeted moderate iodine deficient state (<50 μg/L). All diagnostic post-LID scans were negative. Both post-therapy 131I scans showed radioiodine accumulation outside of normal 131I distribution (neck region and diffuse hepatic uptake). This study demonstrated that two-week LID is effective way to decrease total body iodine content, although without a visible effect on post-LID diagnostic 131I scans. Conclusions A more stringent dietary protocol and longer iodine restriction period are probably needed to achieve targeted moderate iodine deficiency in patients preparing for 131I administration. This might result in higher radioiodine avidity of thyroid remnant/metastases. PMID:22933955

  3. Laser Scanning In Inspection

    NASA Astrophysics Data System (ADS)

    West, Patricia; Baker, Lionel R.

    1989-03-01

    This paper is a review of the applications of laser scanning in inspection. The reasons for the choice of a laser in flying spot scanning and the optical properties of a laser beam which are of value in a scanning instrument will be given. The many methods of scanning laser beams in both one and two dimensions will be described. The use of one dimensional laser scanners for automatic surface inspection for transmitting and reflective products will be covered in detail, with particular emphasis on light collection techniques. On-line inspection applications which will be mentioned include: photographic film web, metal strip products, paper web, glass sheet, car body paint surfaces and internal cylinder bores. Two dimensional laser scanning is employed in applications where increased resolution, increased depth of focus, and better contrast are required compared with conventional vidicon TV or solid state array cameras. Such examples as special microscope laser scanning systems and a TV compatible system for use in restricted areas of a nuclear reactor will be described. The technical and economic benefits and limitations of laser scanning video systems will be compared with conventional TV and CCD array devices.

  4. Infrared Scanning

    NASA Technical Reports Server (NTRS)

    1987-01-01

    United Scanning Technologies, Inc.'s Infrared thermography is a relatively new noncontact, nondestructive inspection and testing tool which makes temperatures visible to the human eye. Infrared scanning devices produce images that show, by color or black and white shading differences, heat losses through damaged or inadequately insulated walls or roofs. The MISS Aeroscan services are designed to take the guesswork out of industrial roof maintenance and provide companies big savings by identifying the location of moisture damage from roof leaks, effectively targeting maintenance attention.

  5. Body Imaging

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Magnetic Resonance Imaging (MRI) and Computer-aided Tomography (CT) images are often complementary. In most cases, MRI is good for viewing soft tissue but not bone, while CT images are good for bone but not always good for soft tissue discrimination. Physicians and engineers in the Department of Radiology at the University of Michigan Hospitals are developing a technique for combining the best features of MRI and CT scans to increase the accuracy of discriminating one type of body tissue from another. One of their research tools is a computer program called HICAP. The program can be used to distinguish between healthy and diseased tissue in body images.

  6. Monte Carlo simulation of NaI(TL) detector in a shadow-shield scanning bed whole-body monitor for uniform and axial cavity activity distribution in a BOMAB phantom.

    PubMed

    Akar, D K; Patni, H K; Nadar, M Y; Ghare, V P; Rao, D D

    2013-07-01

    This study presents the simulation results for 10.16 cm diameter and 7.62 cm thickness NaI(Tl) detector response, which is housed in a partially shielded scanning bed whole-body monitor (WBM), due to activity distributed in the axial cavities provided in the Indian reference BOMAB phantom. Experimental detection efficiency (DE) for axial cavity activity distribution (ACAD) in this phantom for photon emissions of (133)Ba, (137)Cs and (60)Co is used to validate DEs estimated using Monte Carlo code FLUKA. Simulations are also carried out to estimate DEs due to uniform activity distribution (UAD) as in the standard BOMAB phantom. The results show that the DE is ∼3.8 % higher for UAD when compared with ACAD in the case of (40)K (1460 keV) and this relative difference increases to ∼7.0 % for (133)Ba (∼356 keV) photons. The corresponding correction factors for calibration with Indian phantom are provided. DEs are also simulated for activity distributed as a planar disc at the centre of the axial cavity in each part of the BOMAB phantom (PDAD) and the deviations of these DEs are within 1 % of the ACAD results. Thus, PDAD can also be used for ACAD in scanning geometry. An analytical solution for transmitted mono-energetic photons from a two-dimensional slab is provided for qualitative explanation of difference in DEs due to variation in activity distributions in the phantom. The effect on DEs due to different phantom part dimensions is also studied and lower DEs are observed for larger parts. PMID:23390143

  7. Radioisotope scanning in osseous sarcoidosis

    SciTech Connect

    Rohatgi, P.K.

    1980-01-01

    Technetium-99m (/sup 99m/Tc)-labeled pyrophosphate or diphosphonate compounds and gallium-67 citrate (/sup 67/Ga) are two radionuclide scanning agents that are in widespread use in clinical practice. Technetium-99m pyrophosphate is used extensively for bone scanning to detect metastatic bone disease, benign bone tumors, osteomyelitis, benign hypertrophic osteoarthropathy, and Paget's disease. Only two reports describe abnormal /sup 99m/Tc/ pyrophosphate bone scans in four patients with osseous sarcoidosis. Gallium-67 scans are used primarily to localize neoplastic or inflammatory lesions anywhere in the body. In recent years /sup 67/Ga scans have also been used to detect the presence of both pulmonary and extrapulmonary sarcoidosis, but there are no reports describing abnormal uptake of gallium in patients with osseous sarcoidosis. This report describes experience with radioisotope scanning in two patients with osseous sarcoidosis.

  8. Abnormal radioiodine uptake on post-therapy whole body scan and sodium/iodine symporter expression in a dermoid cyst of the ovary: report of a case and review of the literature.

    PubMed

    Campennì, Alfredo; Giovinazzo, Salvatore; Tuccari, Giovanni; Fogliani, Simone; Ruggeri, Rosaria M; Baldari, Sergio

    2015-08-01

    In patients affected by differentiated thyroid cancer, the whole-body scan (WBS) with 131-radioiodine, especially when performed after a therapeutic activity of 131I, represents a sensitive procedure for detecting thyroid remnant and/or metastatic disease. Nevertheless, a wide spectrum of potentially pitfalls has been reported. Herein we describe a 63-year-old woman affected by follicular thyroid cancer, who was accidentally found to have an abdominal mass at post-dose WBS (pWBS). pWBS showed abnormal radioiodine uptake in the upper mediastinum, consistent with lymph-node metastases, and a slight radioiodine uptake in an abdominal focal area. Computed tomography revealed an inhomogeneous mass in the pelvis, previously unrecognized. The lesion, surgically removed, was found to be a typical dermoid cyst of the ovary, without any evidence of thyroid tissue. By immunohistochemistry, a moderate expression of the sodium-iodine symporter (NIS) was demonstrated in the epithelial cells, suggesting a NIS-dependent uptake of radioiodine by the cyst. PMID:26331324

  9. Heart CT scan

    MedlinePlus

    CAT scan - heart; Computed axial tomography scan - heart; Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agaston score; Coronary calcium scan

  10. Circular Scan Streak Tube Development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1980-01-01

    A streak tube having circular scan was designed, built and tested. Continuous circular scan, easily derived from out of phase sine waves applied to the conventional deflection plates, permits the timing of pulses traveling long baselines. At the tube's output a circular array of 720 elements is scanned to provide 30 to 40 picosecond resolution. Initial difficulties with electron bombarded silicon arrays were circumvented by using microchannel plates within the streak tube to provide the needed electronic amplification and digital sensitivity and coupling the 720 element arrays to the electron beam by means of a phosphor on a fiber optics. Two ceramic body tubes with S-20 photocathodes were tested and delivered.

  11. Phospholipid Topography of Whole-Body Sections of the Anopheles stephensi Mosquito, Characterized by High-Resolution Atmospheric-Pressure Scanning Microprobe Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.

    PubMed

    Khalil, Saleh M; Römpp, Andreas; Pretzel, Jette; Becker, Katja; Spengler, Bernhard

    2015-11-17

    High-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) has been employed to study the molecular anatomical structure of rodent malaria vector Anopheles stephensi mosquitoes. A dedicated sample preparation method was developed which suits both, the special tissue properties of the sample and the requirements of high-resolution MALDI imaging. Embedding in 5% carboxymethylcellulose (CMC) was used to maintain the tissue integrity of the whole mosquitoes, being very soft, fragile, and difficult to handle. Individual lipid compounds, specifically representing certain cell types, tissue areas, or organs, were detected and imaged in 20 μm-thick whole-body tissue sections at a spatial resolution of 12 μm per image pixel. Mass spectrometric data and information quality were based on a mass resolution of 70,000 (at m/z 200) and a mass accuracy of better than 2 ppm in positive-ion mode on an orbital trapping mass spectrometer. A total of 67 imaged lipids were assigned by database search and, in a number of cases, identified via additional MS/MS fragmentation studies directly from tissue. This is the first MSI study at 12 μm spatial resolution of the malaria vector Anopheles. The study provides insights into the molecular anatomy of Anopheles stephensi and the distribution and localization of major classes of glycerophospholipids and sphingolipids. These data can be a basis for future experiments, investigating, e.g., the metabolism of Plasmodium-infected and -uninfected Anopheles mosquitoes. PMID:26491885

  12. Gallbladder radionuclide scan

    MedlinePlus

    ... Gallbladder scan; Biliary scan; Cholescintigraphy: HIDA; Hepatobiliary nuclear imaging scan ... test results. This test is combined with other imaging (such as CT or ultrasound). After the gallbladder ...

  13. Forensic Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  14. Improvement of CAT scanned images

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.

    1980-01-01

    Digital enhancement procedure improves definition of images. Tomogram is generated from large number of X-ray beams. Beams are collimated and small in diameter. Scanning device passes beams sequentially through human subject at many different angles. Battery of transducers opposite subject senses attenuated signals. Signals are transmitted to computer where they are used in construction of image on transverse plane through body.

  15. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial ... or other growth (mass) Cerebral atrophy (loss of brain tissue) ... with the hearing nerve Stroke or transient ischemic attack (TIA)

  16. Abscess scan - radioactive

    MedlinePlus

    Radioactive abscess scan; Abscess scan; Indium Scan; Indium-labelled white blood cell scan ... the white blood cells are tagged with a radioactive substance called indium. The cells are then injected ...

  17. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Mosby; 2013:chap 57. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  18. Sinus CT scan

    MedlinePlus

    CAT scan - sinus; Computed axial tomography scan - sinus; Computed tomography scan - sinus; CT scan - sinus ... 2014:chap 67. Shaw AS, Dixon AK. Multidetector computed tomography. In: Adam A, Dixon AK, eds. Grainger & Allison's ...

  19. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... Saunders; 2012:chap 11. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  20. Pelvic CT scan

    MedlinePlus

    CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... gov/pubmed/18381118 . Shaw AS, Dixon AK. Multidetector computed tomography. In: Grainger RC, Allison D, Adam, Dixon AK, ...

  1. Shoulder CT scan

    MedlinePlus

    CAT scan - shoulder; Computed axial tomography scan - shoulder; Computed tomography scan - shoulder; CT scan - shoulder ... Mosby; 2012:chap 57. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  2. Scan registration using planar features

    NASA Astrophysics Data System (ADS)

    Previtali, M.; Barazzetti, L.; Brumana, R.; Scaioni, M.

    2014-06-01

    Point cloud acquisition by using laser scanners provides an efficient way for 3D as-built modelling of indoor/outdoor urban environments. In the case of large structures, multiple scans may be required to cover the entire scene and registration is needed to merge them together. In general, the identification of corresponding geometric features among a series of scans can be used to compute the 3D rigid-body transformation useful for the registration of each scan into the reference system of the final point cloud. Different automatic or semi-automatic methods have been developed to this purpose. Several solutions based on artificial targets are available, which however may not be suitable in any situations. Methods based on surface matching (like ICP and LS3D) can be applied if the scans to align have a proper geometry and surface texture. In the case of urban and architectural scenes that present the prevalence of a few basic geometric shapes ("Legoland" scenes) the availability of many planar features is exploited here for registration. The presented technique does not require artificial targets to be added to the scanned scene. In addition, unlike other surface-based techniques (like ICP) the planar feature-based registration technique is not limited to work in a pairwise manner but it can handle the simultaneous alignment of multiple scans. Finally, some applications are presented and discussed to show how this technique can achieve accuracy comparable to a consolidated registration method.

  3. Coronary Calcium Scan

    MedlinePlus

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  4. Heart PET scan

    MedlinePlus

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  5. Knee CT scan

    MedlinePlus

    CAT scan - knee; Computed axial tomography scan - knee; Computed tomography scan - knee ... Saunders; 2015:chap 93. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  6. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... stopping.) A computer creates separate images of the spine area, called slices. These images can be stored, ...

  7. Vertically aligned nanostructure scanning probe microscope tips

    SciTech Connect

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  8. SU-E-J-266: Cone Beam Computed Tomography (CBCT) Inter-Scan and Inter-Observer Tumor Volume Variability Assessment in Patients Treated with Stereotactic Body Radiation Therapy (SBRT) for Early Stage Non-Small Cell Lung Cancer (NSCLC)

    SciTech Connect

    Hou, Y; Aileen, C; Kozono, D; Killoran, J; Wagar, M; Lee, S; Hacker, F; Aerts, H; Lewis, J; Mak, R

    2015-06-15

    Purpose: Quantification of volume changes on CBCT during SBRT for NSCLC may provide a useful radiological marker for radiation response and adaptive treatment planning, but the reproducibility of CBCT volume delineation is a concern. This study is to quantify inter-scan/inter-observer variability in tumor volume delineation on CBCT. Methods: Twenty earlystage (stage I and II) NSCLC patients were included in this analysis. All patients were treated with SBRT with a median dose of 54 Gy in 3 to 5 fractions. Two physicians independently manually contoured the primary gross tumor volume on CBCTs taken immediately before SBRT treatment (Pre) and after the same SBRT treatment (Post). Absolute volume differences (AVD) were calculated between the Pre and Post CBCTs for a given treatment to quantify inter-scan variability, and then between the two observers for a given CBCT to quantify inter-observer variability. AVD was also normalized with respect to average volume to obtain relative volume differences (RVD). Bland-Altman approach was used to evaluate variability. All statistics were calculated with SAS version 9.4. Results: The 95% limit of agreement (mean ± 2SD) on AVD and RVD measurements between Pre and Post scans were −0.32cc to 0.32cc and −0.5% to 0.5% versus −1.9 cc to 1.8 cc and −15.9% to 15.3% for the two observers respectively. The 95% limit of agreement of AVD and RVD between the two observers were −3.3 cc to 2.3 cc and −42.4% to 28.2% respectively. The greatest variability in inter-scan RVD was observed with very small tumors (< 5 cc). Conclusion: Inter-scan variability in RVD is greatest with small tumors. Inter-observer variability was larger than inter-scan variability. The 95% limit of agreement for inter-observer and inter-scan variability (∼15–30%) helps define a threshold for clinically meaningful change in tumor volume to assess SBRT response, with larger thresholds needed for very small tumors. Part of the work was funded by a Kaye

  9. Body Hair

    MedlinePlus

    ... girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... removing pubic hair Ways to get rid of hair top Removing body hair can cause skin irritation, ...

  10. Breast PET scan

    MedlinePlus

    ... medlineplus.gov/ency/article/007469.htm Breast PET scan To use the sharing features on this page, ... enable JavaScript. A breast positron emission tomography (PET) scan is an imaging test that uses a radioactive ...

  11. Lung gallium scan

    MedlinePlus

    ... any concerns you have about radiation with the health care provider who recommends the test. ... Usually the health care provider will recommend this scan based on ... the scan. For this reason, this test is not often done anymore.

  12. Heart PET scan

    MedlinePlus

    Heart nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Mann DL, ... A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, ...

  13. RBC nuclear scan

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  14. Bone density scan (image)

    MedlinePlus

    ... bone the higher the risk of fractures. A bone scan, along with a patient's medical history, is a ... and whether any preventative treatment is needed. A bone density scan has the advantage of being painless and exposing ...

  15. Orbit CT scan

    MedlinePlus

    ... results may mean: Bleeding Broken eye socket bone Graves disease Infection Tumor Risks CT scans and other x- ... Livingstone; 2014:chap 66. Read More CT scan Graves disease Tumor Update Date 1/18/2015 Updated by: ...

  16. Optical scanning cryptography

    NASA Astrophysics Data System (ADS)

    Poon, Ting-Chung

    2004-01-01

    We introduce a technique called optical scanning cryptography (OSC). The technique can perform encryption on-the-fly using laser beams and can be implemented using an optical heterodyne scanning. We shall first describe the optical heterodyne scanning system and then provide some computer simulations to clarify and confirm the idea of encryption and decryption.

  17. Multipurpose binocular scanning apparatus

    NASA Technical Reports Server (NTRS)

    Chamberlain, F. R.; Parker, G. L.

    1969-01-01

    Optical gimballing apparatus directs narrow fields of view throughout solid angle approaching 4 pi steradians. Image rotation produced by scanning can be eliminated or altered by gear trains directly linked to the scanning drive assembly. It provides the basis for a binocular scanning capability.

  18. Scanned optical fiber confocal microscope

    NASA Astrophysics Data System (ADS)

    Dickensheets, David L.; Kino, Gordon S.

    1994-04-01

    The size and weight of conventional optical microscopes often makes them inconvenient for use on the human body or for in-situ examination during materials processing. We describe a new fiber-optic scanning confocal optical microscope which could have a total outside diameter as small as 1 mm, and should lend itself to applications in endoscopy or to optical in vivo histology. The first experimental device utilizes a single-mode optical fiber for illumination and detection. The scanning element is a mechanically resonant fused silica cantilever 1.5 cm long and 0.8 mm across, with a micromachined two-phase zone plate objective mounted at one end. The cantilever is electrostatically scanned near resonance in two dimensions, generating a Lissajous pattern which is scan converted to conventional video for real time display or digitization. The objective lens has N.A. equals 0.25 at (lambda) equals 0.6328 micrometers , with a measured spot size of 1.8 micrometers FWHM.

  19. Pulmonary ventilation/perfusion scan

    MedlinePlus

    V/Q scan; Ventilation/perfusion scan; Lung ventilation/perfusion scan ... A pulmonary ventilation/perfusion scan is actually two tests. They may be done separately or together. During the perfusion scan, a health ...

  20. Patient preparation and scanning techniques.

    PubMed

    Taylor, Carolyn M; Blum, Andrew; Abbara, Suhny

    2010-07-01

    Cardiac computed tomographic angiography (CCTA) is a unique diagnostic modality that can provide a comprehensive assessment of cardiac anatomy. Rapid advances in scanner and software technology have resulted in the ability to noninvasively image the coronary arteries. However, careful patient preparation and scanning technique is required to ensure optimal image quality while minimizing radiation dose delivered. Important components of patient preparation include knowledge of the indications and contraindications for CCTA, patient screening, patient premedication, patient positioning, prescan instruction, and electrocardiograph lead placement. Scanning technique should be determined on a patient by patient basis and tailored according to age and radiation risk, body mass index and chest circumference, heart rate and variability, presence of stents, and coronary calcification. PMID:20705165

  1. Rapid frequency scan EPR.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-08-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x, y plane decays to baseline at the end of the scan, which typically is about 5T(2) after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5T(2). However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5T(2), even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B(1), periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation. PMID:21664848

  2. Rapid Frequency Scan EPR

    PubMed Central

    Tseitlin, Mark; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x,y plane decays to baseline at the end of the scan, which typically is about 5 T2 after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5 T2. However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5 T2, even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B1, periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation. PMID:21664848

  3. Line-scanning, stage scanning confocal microscope

    NASA Astrophysics Data System (ADS)

    Carucci, John A.; Stevenson, Mary; Gareau, Daniel

    2016-03-01

    We created a line-scanning, stage scanning confocal microscope as part of a new procedure: video assisted micrographic surgery (VAMS). The need for rapid pathological assessment of the tissue on the surface of skin excisions very large since there are 3.5 million new skin cancers diagnosed annually in the United States. The new design presented here is a confocal microscope without any scanning optics. Instead, a line is focused in space and the sample, which is flattened, is physically translated such that the line scans across its face in a direction perpendicular to the line its self. The line is 6mm long and the stage is capable of scanning 50 mm, hence the field of view is quite large. The theoretical diffraction-limited resolution is 0.7um lateral and 3.7um axial. However, in this preliminary report, we present initial results that are a factor of 5-7 poorer in resolution. The results are encouraging because they demonstrate that the linear array detector measures sufficient signal from fluorescently labeled tissue and also demonstrate the large field of view achievable with VAMS.

  4. Radionucleotide scanning in osteomyelitis

    SciTech Connect

    Sachs, W.; Kanat, I.O.

    1986-07-01

    Radionucleotide bone scanning can be an excellent adjunct to the standard radiograph and clinical findings in the diagnosis of osteomyelitis. Bone scans have the ability to detect osteomyelitis far in advance of the standard radiograph. The sequential use of technetium and gallium has been useful in differentiating cellulitis and osteomyelitis. Serial scanning with technetium and gallium may be used to monitor the response of osteomyelitis to antibiotic therapy.

  5. Environmental Scanning Report.

    ERIC Educational Resources Information Center

    Truckee Meadows Community Coll., Sparks, NV.

    This report describes Truckee Meadows Community College's (Nevada) environmental scanning process and results. The college decided that environmental scanning and forecasting techniques should be used to plan for both short-term and long-term external factors that impact programs, enrollment, and budgets. Strategic goals include: (1) keeping pace…

  6. Getting a CAT Scan

    MedlinePlus

    ... Here's Help White House Lunch Recipes Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) Print A A A Text Size en español Obtención de una tomografía computada (video) CAT stands for "computerized axial tomography." Translated, that means ...

  7. Optical Scanning Applications.

    ERIC Educational Resources Information Center

    Wagner, Hans

    The successful use of optical scanning at the University of the Pacific (UOP) indicates that such techniques can simplify a number of administrative data processing tasks. Optical scanning is regularly used at UOP to assist with data processing in the areas of admissions, registration and grade reporting and also has applications for other tasks…

  8. Body Measurement.

    ERIC Educational Resources Information Center

    Neufeld, K. Allen

    1989-01-01

    Described are activities for measuring the human body. The activities include measurements and calculations, calculating volume and density, problems related to body measurement, and using a nomogram. Several charts, illustrations, and a nomogram are provided. (YP)

  9. Virtual slit scanning microscopy.

    PubMed

    Fiolka, Reto; Stemmer, Andreas; Belyaev, Yury

    2007-12-01

    We present a novel slit scanning confocal microscope with a CCD camera image sensor and a virtual slit aperture for descanning that can be adjusted during post-processing. A very efficient data structure and mathematical criteria for aligning the virtual aperture guarantee the ease of use. We further introduce a method to reduce the anisotropic lateral resolution of slit scanning microscopes. System performance is evaluated against a spinning disk confocal microscope on identical specimens. The virtual slit scanning microscope works as the spinning disk type and outperforms on thick specimens. PMID:17891411

  10. Leg MRI scan

    MedlinePlus

    ... imaging - leg; Magnetic resonance imaging - lower extremity; MRI - ankle; Magnetic resonance imaging - ankle; MRI - femur; MRI - leg ... or bone scan Birth defects of the leg, ankle, or foot Bone pain and fever Broken bone ...

  11. Fiber-Scanned Microdisplays

    NASA Technical Reports Server (NTRS)

    Crossman-Bosworth, Janet; Seibel, Eric

    2010-01-01

    Helmet- and head-mounted display systems, denoted fiber-scanned microdisplays, have been proposed to provide information in an "augmented reality" format (meaning that the information would be optically overlaid on the user's field of view).

  12. Knee MRI scan

    MedlinePlus

    ... magnetic resonance imaging) scan uses energy from strong magnets to create pictures of the knee joint and ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  13. Leg MRI scan

    MedlinePlus

    ... resonance imaging) scan of the leg uses strong magnets to create pictures of the leg. This may ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  14. Cervical MRI scan

    MedlinePlus

    ... magnetic resonance imaging) scan uses energy from strong magnets to create pictures of the part of the ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  15. Arm MRI scan

    MedlinePlus

    ... arm MRI (magnetic resonance imaging) scan uses strong magnets to create pictures of the upper and lower ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  16. Pediatric CT Scans

    Cancer.gov

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  17. Brain PET scan

    MedlinePlus

    ... tests, such as magnetic resonance imaging ( MRI ) and computed tomography ( CT ) scans only reveal the structure of the ... a PET/CT. Alternative Names ... PT, Rijntjes M, Weiller C. Neuroimaging: Functional neuroimaging. In: Daroff RB, Fenichel GM, Jankovic ...

  18. Lumbar MRI scan

    MedlinePlus

    ... resonance imaging (MRI) scan uses energy from strong magnets to create pictures of the lower part of ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  19. The Scanning Optical Microscope.

    ERIC Educational Resources Information Center

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  20. Chest CT Scan

    MedlinePlus

    ... pictures to create a very detailed, three-dimensional (3D) model of organs. Sometimes, a substance called contrast dye is injected into a vein in your arm for the CT scan. This substance highlights areas in your chest, which ...

  1. Slow Scan Telemedicine

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  2. Ultrafast scanning probe microscopy

    SciTech Connect

    Botkin, D.; Weiss, S.; Ogletree, D.F.; Salmeron, M.; Chemla, D.S.

    1994-01-01

    The authors have developed a general technique which combines the temporal resolution of ultrafast laser spectroscopy with the spatial resolution of scanned probe microscopy (SPM). Using this technique with scanning tunneling microscopy (STM), they have obtained simultaneous 2 ps time resolution and 50 {angstrom} spatial resolution. This improves the time resolution currently attainable with STM by nine orders of magnitude. The potential of this powerful technique for studying ultrafast dynamical phenomena on surfaces with atomic resolution is discussed.

  3. Wide scanning spherical antenna

    NASA Technical Reports Server (NTRS)

    Shen, Bing (Inventor); Stutzman, Warren L. (Inventor)

    1995-01-01

    A novel method for calculating the surface shapes for subreflectors in a suboptic assembly of a tri-reflector spherical antenna system is introduced, modeled from a generalization of Galindo-Israel's method of solving partial differential equations to correct for spherical aberration and provide uniform feed to aperture mapping. In a first embodiment, the suboptic assembly moves as a single unit to achieve scan while the main reflector remains stationary. A feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan thereby eliminating the need to oversize the main spherical reflector. In an alternate embodiment, both the main spherical reflector and the suboptic assembly are fixed. A flat mirror is used to create a virtual image of the suboptic assembly. Scan is achieved by rotating the mirror about the spherical center of the main reflector. The feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan.

  4. Key notes to the advancement of optical scanning (Keynote Paper)

    NASA Astrophysics Data System (ADS)

    Beiser, Leo

    2005-08-01

    In forming an historical perspective of the development of optical scanning, we ask a probing question: What was the first major optical scanning innovation? We offer one having unexpected attributes, and seek audience ideas. We then demonstrate the pioneering work in Optical Scanning for information transfer, some created long before we arrived on the scene. Our job has been and is: Make it Faster and Better. The body of the presentation addresses how our technology advanced to this useful state.

  5. Scanning Probe Microscopy and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wiesendanger, Roland

    1994-09-01

    Preface; List of acronyms; Introduction; Part I. Experimental Methods and Theoretical Background of Scanning Probe Microscopy and Spectroscopy: 1. Scanning tunnelling microscopy; 2. Scanning force microscopy; 3. Related scanning probe techniques; Part II. Applications of Scanning Probe Microscopy and Spectroscopy: 4. Condensed matter physics; 5. Chemistry; 6. Organic materials; 7. Metrology and standards; 8. Nanotechnology; References; Index.

  6. Body Piercing

    PubMed Central

    Koenig, Laura M; Carnes, Molly

    1999-01-01

    OBJECTIVE To review the current information on medical complications, psychological implications, and legislative issues related to body piercing, a largely unregulated industry in the United States. METHODS We conducted a MEDLINE search of English language articles from 1966 until May 1998 using the search terms “body piercing” and “ear piercing.” Bibliographies of these references were reviewed for additional citations. We also conducted an Internet search for “body piercing” on the World Wide Web. MAIN RESULTS: In this manuscript, we review the available body piercing literature. We conclude that body piercing is an increasingly common practice in the United States, that this practice carries substantial risk of morbidity, and that most body piercing in the United States is being performed by unlicensed, unregulated individuals. Primary care physicians are seeing growing numbers of patients with body pierces. Practitioners must be able to recognize, treat, and counsel patients on body piercing complications and be alert to associated psychological conditions in patients who undergo body piercing. PMID:10354260

  7. Shipborne hydrographic laser scanning

    NASA Astrophysics Data System (ADS)

    Pfennigbauer, Martin; Rieger, Peter; Schaich, Martin

    2011-11-01

    Applications like hydro-archeology, hydrobiology, or hydraulic engineering sometimes require accurate surveying of submerged areas with point densities usually only achieved with mobile or terrestrial laser scanning. For navigable waterbodies, hydrographic laser scanning from a floating platform represents a viable solution. RIEGL's new hydrographic laser scanner VQ-820-G with its exceptionally high measurement rate of up to 110,000 net measurements per second and its small laser footprint is optimally suited for such applications. We present results from a measurement campaign surveying prehistoric lake dwellings at Lake Constance in Germany. While the aim of typical hydrographic laser scanning applications is to roughly acquire the ground's shape and structure, in this case it was tried to determine the exact position, shape, and attitude of the remainders of the piles. The special requirements with respect to mission planning and data processing are discussed and the performance of the laser scanner is assessed.

  8. Femtosecond scanning tunneling microscope

    SciTech Connect

    Taylor, A.J.; Donati, G.P.; Rodriguez, G.; Gosnell, T.R.; Trugman, S.A.; Some, D.I.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). By combining scanning tunneling microscopy with ultrafast optical techniques we have developed a novel tool to probe phenomena on atomic time and length scales. We have built and characterized an ultrafast scanning tunneling microscope in terms of temporal resolution, sensitivity and dynamic range. Using a novel photoconductive low-temperature-grown GaAs tip, we have achieved a temporal resolution of 1.5 picoseconds and a spatial resolution of 10 nanometers. This scanning tunneling microscope has both cryogenic and ultra-high vacuum capabilities, enabling the study of a wide range of important scientific problems.

  9. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  10. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  11. Body Basics

    MedlinePlus

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System ...

  12. Adaptive Optical Scanning Holography.

    PubMed

    Tsang, P W M; Poon, Ting-Chung; Liu, J-P

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  13. Scanning computed confocal imager

    DOEpatents

    George, John S.

    2000-03-14

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  14. Adaptive Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  15. Full-Body CT Scans - What You Need to Know

    MedlinePlus

    ... FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary ... for assuring the safety and effectiveness of such medical devices, and it prohibits manufacturers of CT systems to ...

  16. Pelvis MRI scan

    MedlinePlus

    ... The table slides into the middle of the MRI machine. Small devices, called coils, may be placed around ... anxious. Or your provider may suggest an open MRI in which the machine is not as close to the body. Before ...

  17. Teratoma - MRI scan (image)

    MedlinePlus

    This MRI scan shows a tumor (teratoma) at the base of the spine (seen on the left lower edge of the screen), located in the sacrum and coccyx (sacrococcygeal) area. Teratomas are present at birth and may contain hair, teeth, and other tissues.

  18. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  19. Gallbladder radionuclide scan

    MedlinePlus

    ... please enable JavaScript. Gallbladder radionuclide scan is a test that uses radioactive material to check gallbladder function. It is also used to look for bile duct blockage or leak. How the Test is Performed The health care provider will inject ...

  20. Skimming & Scanning. Advanced Level.

    ERIC Educational Resources Information Center

    Fry, Edward B.

    Part of a series intended to develop essential specialized reading skills, this text/workbook is designed to provide instruction and practice in skimming and scanning for students reading at the seventh through tenth grade reading levels, considered the advanced level. Part 1 of the book deals with skimming. A lesson defines skimming (the rapid…

  1. Scan This Book!

    ERIC Educational Resources Information Center

    Albanese, Andrew Richard

    2007-01-01

    In this article, the author presents an interview with Brewster Kahle, leader of the Open Content Alliance (OCA). OCA book scan program is an alternative to Google's library project that aims to make books accessible online. In this interview, Kahle discusses his views on the challenges of getting books on the Web, on Google's library…

  2. THE 2016 ENVIRONMENTAL SCAN.

    PubMed

    O'Dell, Gene

    2015-09-01

    Every year, the American Hospital Association compiles the Environmental Scan to provide hospital leaders with insight and information about market forces that are likely to affect the health care field. One common theme this year is the pace of change. PMID:26495611

  3. Environmental Scanning Report, 1992.

    ERIC Educational Resources Information Center

    Yao, Min

    In response to the change in the provincial economy from natural-resource-based industries to service-oriented industries, Vancouver Community College (VCC) in British Columbia (BC) conducted an environmental scan of the social and economic trends in the college's service region that will most likely affect prospective students' educational and…

  4. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  5. Body lice

    MedlinePlus

    ... also get lice from infected clothing, towels, or bedding. Body lice are bigger than other types of ... last if you: Bathe regularly Wash clothes and bedding at least once a week Placing clothes in ...

  6. Body Image

    MedlinePlus

    ... spider veins Body dysmorphic disorder (BDD) Eating disorders Anorexia nervosa Binge eating disorder Bulimia nervosa Over-exercising ... conditions? Visit our Mental health section. Fact sheets Anorexia nervosa Binge eating disorder Bulimia nervosa Cosmetics and ...

  7. Body lice

    MedlinePlus

    ... off the body. Your provider may prescribe a skin cream or a wash that contains permethrin, malathione, or benzyl alcohol. If your case is severe, the provider may prescribe medicine that you take by mouth.

  8. Body Signals.

    ERIC Educational Resources Information Center

    Gurley-Dilger, 'Laine

    1986-01-01

    Describes an activity in which students observe pairs of students engaged in conversation. Observations of "body language" are made, shifts in stance, and duration of stance. Discusses the application of this type of study to other species. (TW)

  9. Bog bodies.

    PubMed

    Lynnerup, Niels

    2015-06-01

    In northern Europe during the Iron Age, many corpses were deposited in bogs. The cold, wet and anaerobic environment leads in many cases to the preservation of soft tissues, so that the bodies, when found and excavated several thousand years later, are remarkably intact. Since the 19th century the bog bodies have been studied using medical and natural scientific methods, and recently many bog bodies have been re-examined using especially modern, medical imaging techniques. Because of the preservation of soft tissue, especially the skin, it has been possible to determine lesions and trauma. Conversely, the preservation of bones is less good, as the mineral component has been leached out by the acidic bog. Together with water-logging of collagenous tissue, this means that if the bog body is simply left to dry out when found, as was the case pre-19th century, the bones may literally warp and shrink, leading to potential pitfalls in paleopathological diagnostics. Bog bodies have in several instances been crucial in determining the last meal, as gut contents may be preserved, and thus augment our knowledge on pre-historic diet by adding to, for example, stable isotope analyses. This article presents an overview of our knowledge about the taphomic processes as well as the methods used in bog body research. PMID:25998635

  10. Lung Ventilation/Perfusion Scan

    MedlinePlus

    ... from the NHLBI on Twitter. What Is a Lung Ventilation/Perfusion Scan? A lung ventilation/perfusion scan, or VQ scan, is a ... that measures air and blood flow in your lungs. A VQ scan most often is used to ...

  11. Scanning thermal plumes

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1975-01-01

    Over a three-year period 800 thermal line scans of power plant plumes were made by an airborne scanner, with ground truth measured concurrently at the plants. Computations using centered finite differences in the thermal scanning imagery show a lower bound in the horizontal temperature gradient in excess of 1.6 C/m. Gradients persist to 3 m below the surface. Vector plots of the velocity of thermal fronts are constructed by tracing the front motion in successive thermal images. A procedure is outlined for the two-point ground calibration of a thermal scanner from an equation describing the scanner signal and the voltage for two known temperatures. The modulation transfer function is then calculated by input of a thermal step function and application of digital time analysis techniques using Fast Fourier Transforms to the voltage output. Field calibration tests are discussed. Data accuracy is limited by the level of ground truth effort chosen.

  12. Fly-scan ptychography

    DOE PAGESBeta

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; Xu, Weihe; Nazaretski, Evgeny; Harder, Ross; Robinson, Ian K.; Chu, Yong S.

    2015-03-13

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.

  13. Fly-scan ptychography

    PubMed Central

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; Xu, Weihe; Nazaretski, Evgeny; Harder, Ross; Robinson, Ian K.; Chu, Yong S.

    2015-01-01

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems. PMID:25766519

  14. Scanning Tomographic Acoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Wade, G.; Meyyappan, A.

    1988-07-01

    The technology for "seeing" with sound has an important and interesting history. Some of nature's creatures have been using sound waves for many millenia to image otherwise unobservable objects. The human species, lacking this natural ability, have overcome this deficiency by developing several different ultrasonic imaging techniques. acoustic microscopy is one such technique, which produces high resolution images of detailed structure of small objects in a non-destructive fashion. Two types of acoustic microscopes have evolved for industrial exploitation. They are the scanning laser acoustic microscope (SLAM) and the scanning acoustic microscope (SAM). In this paper, we review the principles of SLAM and describe how we use elements of SLAM to realize the scanning tomographic acoustic microscope (STAM). We describe the data acquisition process and the image reconstruction procedure. We also describe techniques to obtain projection data from different angles of wave incidence enabling us to reconstruct different planes of a complex specimen tomo-graphically. Our experimental results show that STAM is capable of producing high-quality high-resolution subsurface images.

  15. Scanning tomographic acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Hua

    2002-11-01

    This paper provides an overview of the design and development of the scanning tomographic acoustic microscopy (STAM). This research effort spans over a period of more than 12 years, which successfully elevated the acoustic microscopy from the traditional intensity-mapping mode to the level of holographic and tomographic imaging. The tomographic imaging capability of STAM was developed on the platform of the scanning laser acoustic microscope (SLAM), which operates in a coherent transmission mode with plane-wave illumination and scanning laser wavefield detection. The image formation techniques were based on the backward propagation method implemented in the plane-to-plane format. In this paper, the key elements of the design and development, including the modification of the data-acquisition hardware, implementation of image reconstruction algorithms for multiple-frequency and multiple-angle tomography, and the high-precision phase-correction and image registration techniques for the superposition of coherent sub-images, will be discussed. Results of full-scale experiments will also be included to demonstrate the capability of holographic and tomographic image formation in microscopic scale.

  16. Scanning holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.

    1993-01-01

    We have developed a unique telescope for lidar using a holographic optical element (HOE) as the primary optic. The HOE diffracts 532 nm laser backscatter making a 43 deg angle with a normal to its surface to a focus located 130 cm along the normal. The field of view scans a circle as the HOE rotates about the normal. The detector assembly and baffling remain stationary, compared to conventional scanning lidars in which the entire telescope and detector assembly require steering, or which use a large flat steerable mirror in front of the telescope to do the pointing. The spectral bandpass of our HOE is 50 nm (FWHM). Light within that bandpass is spectrally dispersed at 0.6 nm/mm in the focal plane. An aperture stop reduces the bandpass of light reaching the detector from one direction to 1 nm while simultaneously reducing the field of view to 1 mrad. Wavelengths outside the 50 nm spectral bandpass pass undiffracted through HOE to be absorbed by a black backing. Thus, the HOE combines three functions into one optic: the scanning mirror, the focusing mirror, and a narrowband filter.

  17. Descreening of scanned images

    NASA Astrophysics Data System (ADS)

    Kurilin, Ilya V.; Safonov, Ilia V.; Lee, HoKeun; Kim, Sang Ho

    2010-01-01

    Screen or halftone pattern appears on the majority of images printed on electrophotographic and ink-jet printers as well as offset machines. When such halftoned image is scanned, a noisy effect called a Moiré pattern often appears on the image. There are plenty of methods proposed for descreening of images. Common way is adaptive smoothing of scanned images. However the descreening techniques face the following dilemma: deep screen reduction and restoration of contone images leads to blurring of sharp edges of text and other graphics primitives, on the other hand insufficient smoothing keeps screen in halftoned areas. We propose novel descreening algorithm that is primarily intended for preservation of sharpness and contrast of text edges and for restoration contone images from halftone ones accurately. Proposed technique for descreening of scanned images comprises five steps. The first step is decrease of edge transition slope length via local tone mapping with ordering; it is carried out before adaptive smoothing, and it allows better preservation of edges. Adaptive low-pass filter applies simplified idea of Non-Local Means filter for area classification; similarity is calculated between central block of window and different adjacent block that is selected randomly. If similarity is high then current pixel relates to flat region, otherwise pixel relates to edge region. For prevention of edges blurring, flat regions are smoothed stronger than edge regions. By random selection of blocks we avoid the computational overhead related to excessive directional edge detection. Final three stages include additional decrease of edge transition slope length using local tone mapping, increase of local contrast via modified unsharp mask filter, that uses bilateral filter with special edge-stop function for modest smoothing of edges, and global contrast stretching. These stages are intended to compensate decreasing of sharpness and contrast due to low-pass filtering, it allows

  18. 3D measurement of the human body for apparel mass customization

    NASA Astrophysics Data System (ADS)

    Xu, Bugao; Lin, Sheng; Chen, Tong

    2000-12-01

    An automatic body measurement system is essential for apparel mass customization. This paper introduces the development of a body-scanning system using the multi-line triangulation technique, and methods for body size extraction and body modeling. The scanning system can rapidly acquire the surface data of a body, provide accurate body dimensions, many of which are not measurable with conventional methods, and also construct a body form based on the scanned data as a digital model of the body for 3D garment design and for virtual try-on of a designed garment.

  19. Thyroid Scan and Uptake

    MedlinePlus

    ... like? Special camera or imaging devices used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, , also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  20. Body Imaging

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images. In this photograph, a patient undergoes an open MRI.

  1. Body Imaging

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.

  2. New Window into the Human Body

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Michael Vannier, MD, a former NASA engineer, recognized the similarity between NASA's computerized image processing technology and nuclear magnetic resonance. With technical assistance from Kennedy Space Center, he developed a computer program for Mallinckrodt Institute of Radiology enabling Nuclear Magnetic Resonance (NMR) to scan body tissue for earlier diagnoses. Dr. Vannier feels that "satellite imaging" has opened a new window into the human body.

  3. Scanning radiographic apparatus

    SciTech Connect

    Albert, R.D.

    1980-04-01

    Visual display of dental, medical or other radiographic images is realized with an x-ray tube in which an electron beam is scanned through an x-y raster pattern on a broad anode plate, the scanning being synchronized with the x-y sweep signals of a cathode ray tube display and the intensity signal for the display being derived from a small x-ray detector which receives x-rays that have passed through the subject to be imaged. Positioning and support of the detector are provided for by disposing the detector in a probe which may be attached to the x-ray tube at any of a plurality of different locations and by providing a plurality of such probes of different configuration in order to change focal length, to accommodate to different detector placements relative to the subject, to enhance patient comfort and to enable production of both periapical images and wider angle pantomographic images. High image definition with reduced radiation dosage is provided for by a lead glass collimator situated between the x-ray tube and subject and having a large number of spaced-apart minute radiation transmissive passages convergent on the position of the detector. Releasable mounting means enable changes of collimator in conjunction with changes of the probe to change focal length. A control circuit modifies the x-y sweep signals applied to the x-ray tube and modulates electron beam energy and current in order to correct for image distortions and other undesirable effects which can otherwise be present in a scanning x-ray system.

  4. Body Levers.

    ERIC Educational Resources Information Center

    Chiappetta, Eugene L.

    1987-01-01

    Explains how the muscle and bone arrangement of the human body can be used in teaching the principles of simple machines. Presents an activity that investigates the lever system of the forearm. Includes background information on levers and suggests questions for classroom discussion. (ML)

  5. Scans Solo: A One-Person Environmental Scanning Process.

    ERIC Educational Resources Information Center

    Clagett, Craig A.

    An effective environmental scan will improve the quality of community college planning and decision making by alerting institutional leaders to the challenges and opportunities in the environment. Scanning can be done in three ways: (1) establishing a scanning committee to gather and synthesize information to guide planning; (2) sponsoring a…

  6. A-Scan Echoencephalography

    PubMed Central

    White, D. Naldrett

    1966-01-01

    The technique of A-scan echoencephalography is criticized in so far as it lacks objectivity and reproducibility. In the author's laboratory, the M-echo, being of higher amplitude than other intracranial echoes, is distinguished from other echoes by an averaging technique—a time exposure. Double transmission pulses indicate the theoretical position of echoes from the true mid-line and superimposition of far-side echoes ensures that the transducers are correctly aligned. The very considerable difficulties in identifying the anatomical structures giving rise to other echoes seen within the skull are outlined. They are largely due to variations in the reflected energy, depending upon the shape and orientation and position of the various interfaces with respect to the ultrasonic beam. Despite these difficulties and limitations, A-scan echoencephalography appears to have an important part to play as a simple, safe and quick form of neurological examination, if the technique can be made truly objective. ImagesFig. 1Fig. 9Fig. 10 PMID:5901162

  7. Ultrafast scanning tunneling microscopy

    SciTech Connect

    Botkin, D.A. |

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  8. Free Motion Scanning System

    SciTech Connect

    Sword, Charles K.

    1998-06-18

    The present invention relates to an ultrasonic scanner and method for the imaging of a part surface, the scanner comprising: a probe assembly spaced apart from the surface including at least two tracking signals for emitting electromagnetic radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of said waves to be reflected from the surface, at least one detector for receiving the electromagnetic radiation wherein the detector is positioned to receive said radiation from the tracking signals, an analyzing means for recognizing a three-dimensional location of the tracking signals based on said emitted electromagnetic radiation, a differential conversion means for generating an output signal representative of the waveform of the reflected waves, and a means for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe-over a complex part surface in an arbitrary scanning pattern.

  9. Free motion scanning system

    DOEpatents

    Sword, Charles K.

    2000-01-01

    The present invention relates to an ultrasonic scanner system and method for the imaging of a part system, the scanner comprising: a probe assembly spaced apart from the surface of the part including at least two tracking signals for emitting radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of the waves to be reflected from the part, at least one detector for receiving the radiation wherein the detector is positioned to receive the radiation from the tracking signals, an analyzer for recognizing a three-dimensional location of the tracking signals based on the emitted radiation, a differential converter for generating an output signal representative of the waveform of the reflected waves, and a device such as a computer for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe over a complex part surface in an arbitrary scanning pattern.

  10. The Scanning Process: Getting Started.

    ERIC Educational Resources Information Center

    Renfro, William L.; Morrison, James L.

    1983-01-01

    Scanning the external environment will become more essential to colleges in the coming decade. Developing an environmental scanning system can identify important emerging issues that may constitute either threats or opportunities. The organizational features of a mature scanning process are described. (MLW)

  11. [Body contouring].

    PubMed

    Krüger, N; Lübberding, S; Sattler, G

    2015-10-01

    In our contemporary postmodern society, a modified perception of the human body is accompanied by an increasing demand for body shaping procedures. The treatment needs to be effective but it is just as important that they are safe and can be easily integrated into the daily working and routine schedule. While the options for minimally invasive volume addition are largely limited to injectable implants based on hyaluronic acid or autologous fat, a multitude of options are available for volume reduction. Before deciding on the method of choice, the following needs to be considered: which indications need to be treated, the extent of the reduction in volume and how much pain and possible undesired reactions the patient is prepared to accept. PMID:26349684

  12. Scanning Electrochemical Microscopy

    NASA Astrophysics Data System (ADS)

    Amemiya, Shigeru; Bard, Allen J.; Fan, Fu-Ren F.; Mirkin, Michael V.; Unwin, Patrick R.

    2008-07-01

    This review describes work done in scanning electrochemical microscopy (SECM) since 2000 with an emphasis on new applications and important trends, such as nanometer-sized tips. SECM has been adapted to investigate charge transport across liquid/liquid interfaces and to probe charge transport in thin films and membranes. It has been used in biological systems like single cells to study ion transport in channels, as well as cellular and enzyme activity. It is also a powerful and useful tool for the evaluation of the electrocatalytic activities of different materials for useful reactions, such as oxygen reduction and hydrogen oxidation. SECM has also been used as an electrochemical tool for studies of the local properties and reactivity of a wide variety of materials, including metals, insulators, and semiconductors. Finally, SECM has been combined with several other nonelectrochemical techniques, such as atomic force microscopy, to enhance and complement the information available from SECM alone.

  13. A scanning cavity microscope

    PubMed Central

    Mader, Matthias; Reichel, Jakob; Hänsch, Theodor W.; Hunger, David

    2015-01-01

    Imaging the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a high-finesse scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1,700-fold signal enhancement compared with diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross-section of gold nanoparticles with a sensitivity less than 1 nm2; we show a method to improve the spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for optical studies of nanomaterials, molecules and biological nanosystems. PMID:26105690

  14. Telescopic horizon scanning.

    PubMed

    Koenderink, Jan

    2014-12-20

    The problem of "distortionless" viewing with terrestrial telescopic systems (mainly "binoculars") remains problematic. The so called "globe effect" is only partially counteracted in modern designs. Theories addressing the phenomenon have never reached definitive closure. In this paper, we show that exact distortionless viewing with terrestrial telescopic systems is not possible in general, but that it is in principle possible in-very frequent in battle field and marine applications-the case of horizon scanning. However, this involves cylindrical optical elements. For opto-electronic systems, a full solution is more readily feasible. The solution involves a novel interpretation of the relevant constraints and objectives. For final design decisions, it is not necessary to rely on a corpus of psychophysical (or ergonomic) data, although one has to decide whether the instrument is intended as an extension of the eye or as a "pictorial" device. PMID:25608206

  15. A scanning cavity microscope.

    PubMed

    Mader, Matthias; Reichel, Jakob; Hänsch, Theodor W; Hunger, David

    2015-01-01

    Imaging the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a high-finesse scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1,700-fold signal enhancement compared with diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross-section of gold nanoparticles with a sensitivity less than 1 nm(2); we show a method to improve the spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for optical studies of nanomaterials, molecules and biological nanosystems. PMID:26105690

  16. Quadrature wavelength scanning interferometry.

    PubMed

    Moschetti, Giuseppe; Forbes, Alistair; Leach, Richard K; Jiang, Xiang; O'Connor, Daniel

    2016-07-10

    A novel method to double the measurement range of wavelength scanning interferometery (WSI) is described. In WSI the measured optical path difference (OPD) is affected by a sign ambiguity, that is, from an interference signal it is not possible to distinguish whether the OPD is positive or negative. The sign ambiguity can be resolved by measuring an interference signal in quadrature. A method to obtain a quadrature interference signal for WSI is described, and a theoretical analysis of the advantages is reported. Simulations of the advantages of the technique and of signal errors due to nonideal quadrature are discussed. The analysis and simulation are supported by experimental measurements to show the improved performances. PMID:27409307

  17. Adaptive scanning probe microscopies

    SciTech Connect

    Swartzentruber, B.S.; Bouchard, A.M.; Osbourn, G.C.

    1997-02-01

    This work is comprised of two major sections. In the first section the authors develop multivariate image classification techniques to distinguish and identify surface electronic species directly from multiple-bias scanning tunneling microscope (STM) images. Multiple measurements at each site are used to distinguish and categorize inequivalent electronic or atomic species on the surface via a computerized classification algorithm. Then, comparison with theory or other suitably chosen experimental data enables the identification of each class. They demonstrate the technique by analyzing dual-polarity constant-current topographs of the Ge(111) surface. Just two measurements, negative- and positive-bias topography height, permit pixels to be separated into seven different classes. Labeling four of the classes as adatoms, first-layer atoms, and two inequivalent rest-atom sites, they find excellent agreement with the c(2 x 8) structure. The remaining classes are associated with structural defects and contaminants. This work represents a first step toward developing a general electronic/chemical classification and identification tool for multivariate scanning probe microscopy imagery. In the second section they report measurements of the diffusion of Si dimers on the Si(001) surface at temperatures between room temperature and 128 C using a novel atom-tracking technique that can resolve every diffusion event. The atom tracker employs lateral-positioning feedback to lock the STM probe tip into position above selected atoms with sub-Angstrom precision. Once locked the STM tracks the position of the atoms as they migrate over the crystal surface. By tracking individual atoms directly, the ability of the instrument to measure dynamic events is increased by a factor of {approximately} 1,000 over conventional STM imaging techniques.

  18. Radioisotope bone scanning in a case of sarcoidosis

    SciTech Connect

    Cinti, D.C.; Hawkins, H.B.; Slavin, J.D. Jr.

    1985-03-01

    The application of radioisotope scanning to osseous involvement from systemic sarcoidosis has been infrequently described in the scientific literature. Most commonly, the small bones of the hands and feet are affected if sarcoidosis involves the skeleton. Nonetheless, there are also occasional manifestations of sarcoid in the skull, long bones, and vertebral bodies. This paper describes a case of sarcoid involving the lung parenchyma with multiple lesions in the skull and ribs demonstrated by bone scanning with Tc-99m MDP. Following treatment with steroids, the bone scan showed complete resolution of the rib lesions and almost complete resolution of the lesions in the calvarium.

  19. Personnel screening with terahertz opto-mechanical scanning imaging

    NASA Astrophysics Data System (ADS)

    Guo, Lan-tao; Liu, Xin; Deng, Chao; Zhao, Yuan-meng; Zhang, Cun-lin

    2014-11-01

    We presented a passive THz opto-mechnical scanning imaging method using a single detector and a trihedral scanning mirror. The system improved the imaging speed through employing two flapping mirrors. Also the trihedral scanning mirror and an ellipsoidal mirror were adopted. The parameters were set as follows: the best imaging distance was 2.2m with the image range of 1.6m (W) ×1.6m (H), the imaging time was 2s, and the resolution was 3cm. We imaged human body with different objects concealed under their clothes, such as buckle, ceramic chip, etc.

  20. Scanning Behavior in the Medicinal Leech Hirudo verbana

    PubMed Central

    Harley, Cynthia M.; Wagenaar, Daniel A.

    2014-01-01

    While moving through their environment, medicinal leeches stop periodically and wave their head or body back and forth. This activity has been previously described as two separate behaviors: one called ‘head movement’ and another called ‘body waving’. Here, we report that these behaviors exist on a continuum, and provide a detailed description of what we now call ‘scanning’. Scanning-related behavior has been thought to be involved in orientation; its function has never before been assessed. While previous studies suggested an involvement of scanning in social behavior, or sucker placement, our behavioral studies indicate that scanning is involved in orienting the leech towards prey stimuli. When such stimuli are present, scanning behavior is used to re-orient the leech in the direction of a prey-like stimulus. Scanning, however, occurs whether or not prey is present, but in the presence of prey-like stimuli scanning becomes localized to the stimulus origin. Most likely, this behavior helps the leech to gain a more detailed picture of its prey target. The display of scanning, regardless of the presence or absence of prey stimuli, is suggestive of a behavior that is part of an internally driven motor program, which is not released by the presence of sensory stimuli. The data herein include first steps to understanding the neural mechanisms underlying this important behavior. PMID:24465907

  1. Earth observing scanning polarimeter

    NASA Technical Reports Server (NTRS)

    Travis, Larry

    1993-01-01

    Climate forcing by tropospheric aerosols is receiving increased attention because of the realization that the climate effects may be large, while our knowledge of global aerosol characteristics and temporal changes is very poor. Tropospheric aerosols cause a direct radiative forcing due simply to their scattering and absorption of solar radiation, as well as an indirect effect as cloud condensation nuclei which can modify the shortwave reflectivity of clouds. Sulfate aerosols tend to increase planetary albedo through both the direct and indirect effects; a cooling due to anthropogenic sulfate aerosols has been estimated of order 1 W/sq m, noting that this is similar in magnitude to the present anthropogenic greenhouse gas warming. Other aerosols, including those from biomass burning and wind-blown desert dust are also of potential climatic importance. At present, the only global monitoring of tropospheric aerosols is a NOAA operational product, aerosol optical thickness, obtained using channel-1 (0.58-0.68 mu m) radiances from the AVHRR. With this single channel radiance data, one must use an approach which is based on the inferred excess of reflected radiance owing to scattering by the aerosols over that expected from theoretical calculations. This approach is suited only for situations where the surface has a low albedo that is well known a priori. Thus, the NOAA operational product is restricted to coverage over the ocean at AVHRR scan angles well away from sun glint, and aerosol changes are subject to confusion with changes caused by either optically thin or subpixel clouds. Because optically thin aerosols have only a small effect on the radiance, accurate measurements for optical thickness less than 0.1 (which is a typical background level) are precluded. Moreover, some of the largest and most important aerosol changes are expected over land. The Earth Observing Scanning Polarimeter (EOSP) instrument, based upon design heritage and analysis techniques

  2. Body Shape Preferences: Associations with Rater Body Shape and Sociosexuality

    PubMed Central

    Price, Michael E.; Pound, Nicholas; Dunn, James; Hopkins, Sian; Kang, Jinsheng

    2013-01-01

    There is accumulating evidence of condition-dependent mate choice in many species, that is, individual preferences varying in strength according to the condition of the chooser. In humans, for example, people with more attractive faces/bodies, and who are higher in sociosexuality, exhibit stronger preferences for attractive traits in opposite-sex faces/bodies. However, previous studies have tended to use only relatively simple, isolated measures of rater attractiveness. Here we use 3D body scanning technology to examine associations between strength of rater preferences for attractive traits in opposite-sex bodies, and raters’ body shape, self-perceived attractiveness, and sociosexuality. For 118 raters and 80 stimuli models, we used a 3D scanner to extract body measurements associated with attractiveness (male waist-chest ratio [WCR], female waist-hip ratio [WHR], and volume-height index [VHI] in both sexes) and also measured rater self-perceived attractiveness and sociosexuality. As expected, WHR and VHI were important predictors of female body attractiveness, while WCR and VHI were important predictors of male body attractiveness. Results indicated that male rater sociosexuality scores were positively associated with strength of preference for attractive (low) VHI and attractive (low) WHR in female bodies. Moreover, male rater self-perceived attractiveness was positively associated with strength of preference for low VHI in female bodies. The only evidence of condition-dependent preferences in females was a positive association between attractive VHI in female raters and preferences for attractive (low) WCR in male bodies. No other significant associations were observed in either sex between aspects of rater body shape and strength of preferences for attractive opposite-sex body traits. These results suggest that among male raters, rater self-perceived attractiveness and sociosexuality are important predictors of preference strength for attractive opposite

  3. GPR scan assessment

    NASA Astrophysics Data System (ADS)

    Abbas, Abbas M.; Salah, Hany; Massoud, Usama; Fouad, Mona; Abdel-Hafez, Mahmoud

    2015-06-01

    Mekaad Radwan monument is situated in the neighborhood of Bab Zuweila in the historical Cairo, Egypt. It was constructed at the middle XVII century (1635 AD). The building has a rectangle shape plan (13 × 6 m) with the longitudinal sides approximately WNW-ESE. It comprises three storages namely; the ground floor; the opened floor (RADWAN Bench) and the living floor with a total elevation of 15 m above the street level. The building suffers from severe deterioration phenomena with patterns of damage which have occurred over time. These deterioration and damages could be attributed to foundation problems, subsoil water and also to the earthquake that affected the entire Greater Cairo area in October 1992. Ground Penetrating Radar (GPR) scan was accomplished against the walls of the opened floor (RADWAN Bench) to evaluate the hazard impact on the walls textures and integrity. The results showed an anomalous feature through the southern wall of RADWAN Bench. A mathematical model has been simulated to confirm the obtained anomaly and the model response exhibited a good matching with the outlined anomaly.

  4. Thermocouple homogeneity scanning

    NASA Astrophysics Data System (ADS)

    Webster, E.; White, D. R.

    2015-02-01

    The inhomogeneities within a thermocouple influence the measured temperature and contribute the largest component to uncertainty. Currently there is no accepted best practice for measuring the inhomogeneities or for forecasting their effects on real-world measurements. The aim of this paper is to provide guidance on the design and performance assessment of thermocouple inhomogeneity scanners by characterizing the qualitative performance of the various designs reported in the literature, and developing a quantitative measure of scanner resolution. Numerical simulations incorporating Fourier transforms and convolutions are used to gauge the levels of attenuation and distortion present in single- and double-gradient scanners. Single-gradient scanners are found to be far superior to double-gradient scanners, which are unsuitable for quantitative measurements due to their blindness to inhomogeneities at many spatial frequencies and severe attenuation of signals at other frequencies. It is recommended that the standard deviation of the temperature gradient within the scanner is used as a measure of the scanner resolution and spatial bandwidth. Recommendations for the design of scanners are presented, and include advice on the basic design of scanners, the media employed, operating temperature, scan rates, construction of survey probes, data processing, gradient symmetry, and the spatial resolution required for research and calibration applications.

  5. Scanning probe nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Dinelli, F.; Menozzi, C.; Baschieri, P.; Facci, P.; Pingue, P.

    2010-02-01

    The present paper reports on a novel lithographic approach at the nanoscale level, which is based on scanning probe microscopy (SPM) and nanoimprint lithography (NIL). The experimental set-up consists of an atomic force microscope (AFM) operated via software specifically developed for the purpose. In particular, this software allows one to apply a predefined external load for a given lapse of time while monitoring in real-time the relative distance between the tip and the sample as well as the normal and lateral force during the embossing process. Additionally, we have employed AFM tips sculptured by means of focused ion beam in order to create indenting tools of the desired shape. Anti-sticking layers can also be used to functionalize the tips if one needs to investigate the effects of different treatments on the indentation and de-molding processes. The lithographic capabilities of this set-up are demonstrated on a polystyrene NIL-patterned sample, where imprinted features have been obtained upon using different normal load values for increasing time intervals, and on a thermoplastic polymer film, where the imprint process has been monitored in real-time.

  6. LANL Robotic Vessel Scanning

    SciTech Connect

    Webber, Nels W.

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  7. Precision of the CAESAR scan-extracted measurements.

    PubMed

    Robinette, Kathleen M; Daanen, Hein A M

    2006-05-01

    Three-dimensional (3D) body scanners are increasingly used to derive 1D body dimensions from 3D whole body scans for instance, as input for clothing grading systems to make made-to-measure clothing or for width and depth dimensions of a seated workstation. In this study, the precision of the scanner-derived 1D dimensions from the CAESAR survey, a multinational anthropometric survey, was investigated. Two combinations of scanning teams with 3D whole body scanners were compared, one called the US Team and the other the Dutch Team. Twenty subjects were measured three times by one scanner and one team, and three times by the other combination. The subjects were marked prior to scanning using small dots, and the linear distances between the dots were calculated after processing the scans. The mean absolute difference (MAD) of the repetitions was calculated and this was compared to reported acceptable errors in manual measurements from the US Army's ANSUR survey when similar measurements were available. In addition, the coefficient of variation (CV) was calculated for all measurements. The results indicate that the CAESAR scan-extracted measurements are highly reproducible; for most measures the MAD is less than 5mm. In addition, more than 93% of the MAD values for CAESAR are significantly smaller than the ANSUR survey acceptable errors. Therefore, it is concluded that the type of scan-extracted measures used in CAESAR are as good as or better than comparable manual measurements. Scan-extracted measurements that do not use markers or are not straight-line distances are not represented here and additional studies would be needed to verify their precision. PMID:16202970

  8. Stochastic scanning multiphoton multifocal microscopy.

    PubMed

    Jureller, Justin E; Kim, Hee Y; Scherer, Norbert F

    2006-04-17

    Multiparticle tracking with scanning confocal and multiphoton fluorescence imaging is increasingly important for elucidating biological function, as in the transport of intracellular cargo-carrying vesicles. We demonstrate a simple rapid-sampling stochastic scanning multifocal multiphoton microscopy (SS-MMM) fluorescence imaging technique that enables multiparticle tracking without specialized hardware at rates 1,000 times greater than conventional single point raster scanning. Stochastic scanning of a diffractive optic generated 10x10 hexagonal array of foci with a white noise driven galvanometer yields a scan pattern that is random yet space-filling. SS-MMM creates a more uniformly sampled image with fewer spatio-temporal artifacts than obtained by conventional or multibeam raster scanning. SS-MMM is verified by simulation and experimentally demonstrated by tracking microsphere diffusion in solution. PMID:19516485

  9. Hyperchromatic laser scanning cytometry

    NASA Astrophysics Data System (ADS)

    Tárnok, Attila; Mittag, Anja

    2007-02-01

    In the emerging fields of high-content and high-throughput single cell analysis for Systems Biology and Cytomics multi- and polychromatic analysis of biological specimens has become increasingly important. Combining different technologies and staining methods polychromatic analysis (i.e. using 8 or more fluorescent colors at a time) can be pushed forward to measure anything stainable in a cell, an approach termed hyperchromatic cytometry. For cytometric cell analysis microscope based Slide Based Cytometry (SBC) technologies are ideal as, unlike flow cytometry, they are non-consumptive, i.e. the analyzed sample is fixed on the slide. Based on the feature of relocation identical cells can be subsequently reanalyzed. In this manner data on the single cell level after manipulation steps can be collected. In this overview various components for hyperchromatic cytometry are demonstrated for a SBC instrument, the Laser Scanning Cytometer (Compucyte Corp., Cambridge, MA): 1) polychromatic cytometry, 2) iterative restaining (using the same fluorochrome for restaining and subsequent reanalysis), 3) differential photobleaching (differentiating fluorochromes by their different photostability), 4) photoactivation (activating fluorescent nanoparticles or photocaged dyes), and 5) photodestruction (destruction of FRET dyes). With the intelligent combination of several of these techniques hyperchromatic cytometry allows to quantify and analyze virtually all components of relevance on the identical cell. The combination of high-throughput and high-content SBC analysis with high-resolution confocal imaging allows clear verification of phenotypically distinct subpopulations of cells with structural information. The information gained per specimen is only limited by the number of available antibodies and by sterical hindrance.

  10. GyneScan

    PubMed Central

    Acharya, U. Rajendra; Sree, S. Vinitha; Kulshreshtha, Sanjeev; Molinari, Filippo; Koh, Joel En Wei; Saba, Luca; Suri, Jasjit S.

    2014-01-01

    Ovarian cancer is the fifth highest cause of cancer in women and the leading cause of death from gynecological cancers. Accurate diagnosis of ovarian cancer from acquired images is dependent on the expertise and experience of ultrasonographers or physicians, and is therefore, associated with inter observer variabilities. Computer Aided Diagnostic (CAD) techniques use a number of different data mining techniques to automatically predict the presence or absence of cancer, and therefore, are more reliable and accurate. A review of published literature in the field of CAD based ovarian cancer detection indicates that many studies use ultrasound images as the base for analysis. The key objective of this work is to propose an effective adjunct CAD technique called GyneScan for ovarian tumor detection in ultrasound images. In our proposed data mining framework, we extract several texture features based on first order statistics, Gray Level Co-occurrence Matrix and run length matrix. The significant features selected using t-test are then used to train and test several supervised learning based classifiers such as Probabilistic Neural Networks (PNN), Support Vector Machine (SVM), Decision Tree (DT), k-Nearest Neighbor (KNN), and Naïve Bayes (NB). We evaluated the developed framework using 1300 benign and 1300 malignant images. Using 11 significant features in KNN/PNN classifiers, we were able to achieve 100% classification accuracy, sensitivity, specificity, and positive predictive value in detecting ovarian tumor. Even though more validation using larger databases would better establish the robustness of our technique, the preliminary results are promising. This technique could be used as a reliable adjunct method to existing imaging modalities to provide a more confident second opinion on the presence/absence of ovarian tumor. PMID:24325128

  11. Continuous scanning mode for ptychography

    SciTech Connect

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; Robinson, Ian K.

    2014-01-01

    Here, we outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. Furthermore, the impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  12. Continuous scanning mode for ptychography

    SciTech Connect

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross; Robinson, Ian K.

    2014-10-15

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. The impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  13. Metastatic calcification of the stomach imaged on a bone scan

    SciTech Connect

    Goldstein, R.; Ryo, U.Y.; Pinsky, S.M.

    1984-10-01

    A whole body bone scan obtained on a 21-year-old woman with sickle cell disease and chronic renal failure showed localization of the radionuclide diffusely in the stomach. The localization of the radionuclide represented metastatic calcification of the stomach caused by secondary hyperparathyroidism.

  14. An automatic approach for 3D registration of CT scans

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Saber, Eli; Dianat, Sohail; Vantaram, Sreenath Rao; Abhyankar, Vishwas

    2012-03-01

    CT (Computed tomography) is a widely employed imaging modality in the medical field. Normally, a volume of CT scans is prescribed by a doctor when a specific region of the body (typically neck to groin) is suspected of being abnormal. The doctors are required to make professional diagnoses based upon the obtained datasets. In this paper, we propose an automatic registration algorithm that helps healthcare personnel to automatically align corresponding scans from 'Study' to 'Atlas'. The proposed algorithm is capable of aligning both 'Atlas' and 'Study' into the same resolution through 3D interpolation. After retrieving the scanned slice volume in the 'Study' and the corresponding volume in the original 'Atlas' dataset, a 3D cross correlation method is used to identify and register various body parts.

  15. Scanning Productivity in Interlibrary Loan

    ERIC Educational Resources Information Center

    Pedersen, Wayne A.; Runestad, Anders

    2009-01-01

    The authors report findings of a research study conducted at the Iowa State University Library. Data was gathered on the scanning of library materials by students working in the Interlibrary Loan (ILL) unit. The goals of the study were fourfold: (1) Develop measures of scanning productivity in ILL, (2) Determine if it is more productive to scan…

  16. Nuclear Medicine Scans for Cancer

    MedlinePlus

    ... are the possible complications? For the most part, nuclear scans are safe tests. The doses of radiation are very small, and the radionuclides have a ... else should I know about these tests? The radiation exposure from a nuclear scan comes from the radionuclides used – the scanner ...

  17. Scan converting video tape recorder

    NASA Technical Reports Server (NTRS)

    Holt, N. I. (Inventor)

    1971-01-01

    A video tape recorder is disclosed of sufficient bandwidth to record monochrome television signals or standard NTSC field sequential color at current European and American standards. The system includes scan conversion means for instantaneous playback at scanning standards different from those at which the recording is being made.

  18. Pointing and Scanning Control of Instruments Using Rotating Unbalanced Masses

    NASA Technical Reports Server (NTRS)

    Hung, John Y.

    1996-01-01

    Motions of telescopes, satellites, and other flight bodies have been controlled by various means in the past. For example, gimbal mounted devices can use electric motors to produce pointing and scanning motions. Reaction wheels, control moment gyros, and propellant-charged reaction jets are other technologies that have also been used. Each of these methods has its advantages, but all actuator systems used in a flight environment face the challenges of minimizing weight, reducing energy consumption, and maximizing reliability. Recently, Polites invented and patented the Rotating Unbalanced Mass (RUM) device as a means for generation scanning motion on flight experiments. RUM devices have been successfully used to generate various scanning motions. The basic principle: a RUM rotating at constant annular velocity exerts a cyclic centrifugal force on the instrument or main body, thus producing a periodic scanning motion. A system of RUM devices exerts no reaction forces on the main body, requires very little energy, and is very simple to construct and control. These are significant advantages over electric motors, reaction wheels, and control moment gyroscopes. Although the RUM device very easily produces scanning motion, an auxiliary control system may be required to maintain the proper orientation, or pointing of the main body. It has been suggested that RUM devices can be used to control pointing dynamics, as well as generate the desired periodic scanning motion. The idea is that the RUM velocity will not be constant, but will vary over the period of one RUM rotation. The thought is that the changing angular velocity produces a centrifugal force having time-varying magnitude and direction. The scope of the present research project is to further study the pointing control concept, and to implement a microcontroller program to control an experimental hardware system. This report is subdivided into three themes. The basic dynamic modeling and control principles are

  19. An interchangeable scanning Hall probe/scanning SQUID microscope

    SciTech Connect

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  20. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  1. Automated fudicial labeling on human body data

    NASA Astrophysics Data System (ADS)

    Lewark, Erick A.; Nurre, Joseph H.

    1998-03-01

    The Cyberware WB4 whole body scanner generates a high- resolution data set of the outer surface of the human body. The acquisition of anthropometric data from this data set is important for the development of custom sizing for the apparel industry. Software for locating anthropometric landmarks from a cloud of more than 200,000 three-dimensional data points, captured from a human subject, is presented. The first phase of identification is to locate externally placed fudicials on the human body using luminance information captured at scan time. The fudicials are then autonomously labeled and categorized according to their general position and anthropometric significance in the scan. Once registration of the landmarks is complete, body measurements may be extracted for apparel sizing.

  2. Survey of current practice in clinical transvaginal ultrasound scanning in the UK

    PubMed Central

    Shaw, Adam; Lees, Christoph

    2015-01-01

    During transvaginal ultrasound scanning, the fetus and other sensitive tissues are placed close to the transducer. Heating of these tissues occurs by direct conduction from the transducer and by absorption of ultrasound in the tissue. The extent of any heating will depend on the equipment and settings used, the duration of the scan, imaging modes and other aspects of scanning practice. To ensure that scans are performed with minimum risk, staff should have an appropriate knowledge of safety and follow guidelines issued by professional bodies. An online survey aiming to document current practice in transvaginal ultrasound in the UK was created and distributed to individuals performing this type of scanning. The survey posed questions about the respondents, the departments where scans were performed, the equipment used, knowledge of ultrasound safety, scanning practice and the frequency, duration and mode of transvaginal ultrasound scans for gynaecology, obstetrics and fertility applications. In all, 294 responses were obtained, mostly from sonographers (94%). From the analysis of the responses, it was clear that there was a good understanding of the general meaning of thermal and mechanical index and high awareness of guidelines issued by professional bodies. However, 40% of respondents stated that they rarely or never monitor Thermal or Mechanical indices during scanning. Scanning practice was consistent in terms of the duration of scans, scan protocols followed and use of imaging modes. The results highlight the importance of continued ultrasound safety training and promotion of safety guidelines to users. PMID:27433250

  3. The effectiveness of recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal prior to radioiodine remnant ablation in thyroid cancer: a meta-analysis of randomized controlled trials.

    PubMed

    Pak, Kyoungjune; Cheon, Gi Jeong; Kang, Keon Wook; Kim, Seong-Jang; Kim, In-Joo; Kim, E Edmund; Lee, Dong Soo; Chung, June-Key

    2014-06-01

    We evaluated the efficacy of recombinant human thyroid-stimulating hormone (rhTSH) versus thyroid hormone withdrawal (THW) prior to radioiodine remnant ablation (RRA) in thyroid cancer. A systematic search of MEDLINE, EMBASE, the Cochrane Library, and SCOPUS was performed. Randomized controlled trials that compared ablation success between rhTSH and THW at 6 to 12 months following RRA were included in this study. Six trials with a total of 1,660 patients were included. When ablation success was defined as a thyroglobulin (Tg) cutoff of 1 ng/mL (risk ratio, 0.99; 95% confidence interval, 0.96-1.03) or a Tg cutoff of 1 ng/mL plus imaging modality (RR 0.97; 0.90-1.05), the results of rhTSH and THW were similar. There were no significant differences when ablation success was defined as a Tg cutoff of 2 ng/mL (RR 1.03; 0.95-1.11) or a Tg cutoff of 2 ng/mL plus imaging modality (RR 1.02; 0.95-1.09). When a negative (131)I-whole body scan was used solely as the definition of ablation success, the effects of rhTSH and THW were not significantly different (RR 0.97; 0.93-1.02). Therefore, ablation success rates are comparable when RRA is prepared by either rhTSH or THW. PMID:24932083

  4. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.

    2015-10-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.

  5. SEM (SCANNING ELECTRON MICROSCOPY) EVIDENCE FOR A NEW SPECIES, 'GIARDIA PSITTACI' (JOURNAL VERSION)

    EPA Science Inventory

    Giardia trophozoites were isolated from the small intestine of budgerigars (parakeets) and examined morphologically with light and scanning electron microscopy. The presence of a claw-hammer shape median body suggested classification of these trophozoites as G. duodenalis. Howeve...

  6. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  7. Scans as primitive parallel operations

    SciTech Connect

    Blelloch, G.E. . Dept. of Computer Science)

    1989-11-01

    In most parallel random access machine (PRAM) models, memory references are assumed to take unit time. In practice, and in theory, certain scan operations, also known as prefix computations, can execute in no more time than these parallel memory references. This paper outlines an extensive study of the effect of including, in the PRAM models, such scan operations as unit-time primitives. The study concludes that the primitives improve the asymptotic running time of many algorithms by an O(log n) factor greatly simplify the description of many algorithms, and are significantly easier to implement than memory references. The authors argue that the algorithm designer should feel free to use these operations as if they were as cheap as a memory reference. This paper describes five algorithms that clearly illustrate how the scan primitives can be used in algorithm design. These all run on an EREW PRAM with the addition of two scan primitives.

  8. Establishing an Environmental Scanning Process.

    ERIC Educational Resources Information Center

    Morrison, James L.

    1985-01-01

    A formal environmental scanning system designed to identify emerging issues, events, or trends threatening or bringing opportunity to an institution is discussed that uses a committee to systematically collect and analyze data from a variety of sources. (MSE)

  9. Transverse section radionuclide scanning system

    DOEpatents

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  10. Eddy current scanning at Fermilab

    SciTech Connect

    Boffo, C.; Bauer, P.; Foley, M.; Brinkmann, A.; Ozelis, J.; /Jefferson Lab

    2005-07-01

    In the framework of SRF cavity development, Fermilab is creating the infrastructure needed for the characterization of the material used in the cavity fabrication. An important step in the characterization of ''as received'' niobium sheets is the eddy current scanning. Eddy current scanning is a non-destructive technique first adopted and further developed by DESY with the purpose of checking the cavity material for sub-surface defects and inclusions. Fermilab has received and further upgraded a commercial eddy current scanner previously used for the SNS project. The upgrading process included developing new filtering software. This scanner is now used daily to scan the niobium sheets for the Fermilab third harmonic and transverse deflecting cavities. This paper gives a status report on the scanning results obtained so far, including a discussion of the typology of signals being detected. We also report on the efforts to calibrate this scanner, a work conducted in collaboration with DESY.

  11. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.

  12. Imaging of drug smuggling by body packing.

    PubMed

    Sica, Giacomo; Guida, Franco; Bocchini, Giorgio; Iaselli, Francesco; Iadevito, Isabella; Scaglione, Mariano

    2015-02-01

    Body packing, pushing, and stuffing are hazardous practices with complex medicolegal and social implications. A radiologist plays both a social and a medicolegal role in their assessment, and it should not be limited only to the identification of the packages but must also provide accurate information about their number and their exact location so as to prevent any package remains in the body packer. Radiologists must also be able to recognize the complications associated with these risky practices. Imaging assessment of body packing is performed essentially through plain abdominal X-ray and computed tomography scans. Ultrasound and magnetic resonance imaging, although with some advantages, actually have a limited use. PMID:25639176

  13. Hexamethyldisilazane for scanning electron microscopy of Gastrotricha.

    PubMed

    Hochberg, R; Litvaitis, M K

    2000-01-01

    We evaluated treatment with hexamethyldisilazane (HMDS) as an alternative to critical-point drying (CPD) for preparing microscopic Gastrotricha for scanning electron microscopy (SEM). We prepared large marine (2 mm) and small freshwater (100 microm) gastrotrichs using HMDS as the primary dehydration solvent and compared the results to earlier investigations using CPD. The results of HMDS dehydration are similar to or better than CPD for resolution of two important taxonomic features: cuticular ornamentation and patterns of ciliation. The body wall of both sculpted (Lepidodermella) and smooth (Dolichodasys) gastrotrichs retained excellent morphology as did the delicate sensory and locomotory cilia. The only unfavorable result of HMDS dehydration was an occasional coagulation of gold residue when the solvent had not fully evaporated before sputter-coating. We consider HMDS an effective alternative for preparing of gastrotrichs for SEM because it saves time and expense compared to CPD. PMID:10810982

  14. Application of in vivo laser scanning microscope in dermatology

    NASA Astrophysics Data System (ADS)

    Lademann, Juergen; Richter, H.; Otberg, N.; Lawrenz, F.; Blume-Peytavi, U.; Sterry, W.

    2003-10-01

    The state of the art of in-vivo and in-vitro penetration measurements of topically applied substances is described. Only optical techniques represent online measuring methods based on the absorption or scattering properties of the topically applied substances. Laser scanning microscopy (LSM) has become a promising method for investigations in dermatology and skin physiology, after it was possible to analyze the skin surface on any body side in-vivo. In the present paper the application of a dermatological laser scanning microscope for penetration and distribution measurements of topically applied substances is described. The intercellular and follicular penetration pathways were studied.

  15. Deconvolution of sinusoidal rapid EPR scans.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-02-01

    In rapid scan EPR the magnetic field is scanned through the signal in a time that is short relative to electron spin relaxation times. Previously it was shown that the slow-scan lineshape could be recovered from triangular rapid scans by Fourier deconvolution. In this paper a general Fourier deconvolution method is described and demonstrated to recover the slow-scan lineshape from sinusoidal rapid scans. Since an analytical expression for the Fourier transform of the driving function for a sinusoidal scan was not readily apparent, a numerical method was developed to do the deconvolution. The slow scan EPR lineshapes recovered from rapid triangular and sinusoidal scans are in excellent agreement for lithium phthalocyanine, a trityl radical, and the nitroxyl radical, tempone. The availability of a method to deconvolute sinusoidal rapid scans makes it possible to scan faster than is feasible for triangular scans because of hardware limitations on triangular scans. PMID:21163677

  16. Deconvolution of Sinusoidal Rapid EPR Scans

    PubMed Central

    Tseitlin, Mark; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    In rapid scan EPR the magnetic field is scanned through the signal in a time that is short relative to electron spin relaxation times. Previously it was shown that the slow scan lineshape could be recovered from triangular rapid scans by Fourier deconvolution. In this paper a general Fourier deconvolution method is described and demonstrated to recover the slow scan lineshape from sinusoidal rapid scans. Since an analytical expression for the Fourier transform of the driving function for a sinusoidal scan was not readily apparent, a numerical method was developed to do the deconvolution. The slow scan EPR lineshapes recovered from rapid triangular and sinusoidal scans are in excellent agreement for lithium phthalocyanine, a trityl radical, and the nitroxyl radical, tempone. The availability of a method to deconvolute sinusoidal rapid scans makes it possible to scan faster than is feasible for triangular scans because of hardware limitations on triangular scans. PMID:21163677

  17. Environmental Scanning and the Information Manager.

    ERIC Educational Resources Information Center

    Newsome, James; McInerney, Claire

    1990-01-01

    Discusses nine components of an environmental scanning model: selecting the scanning team; selecting resources to scan; choosing criteria for scanning; scanning the resources; identifying signals of new issues; selecting key events/issues; monitoring and analyzing events/issues; disseminating information; and deciding on appropriate organizational…

  18. Indium-111-Photofrin-II scintillation scan

    SciTech Connect

    Origitano, T.C.; Karesh, S.M.; Reichman, O.H.; Henkin, R.E.; Caron, M.J.

    1989-04-01

    Photodynamic therapy is under intense investigation as an adjuvant treatment for malignant glial tumors of the central nervous system. Photofrin-II (HpD-II) is currently the most actively investigated photosensitizing agent. A crucial issue regarding the safe and efficacious usage of HpD-II-based photodynamic therapy is the individual in vivo kinetics of tumor uptake and retention, compared with normal brain clearance. The optimal time for photoactivation of sensitized tumor must be known to ensure a high target-to-nontarget ratio, resulting in the maximal tumor destruction while preserving normal brain. Our laboratory developed a radionuclide scan based on 111indium (111In)-labeled HpD-II to evaluate HpD-II localization and clearance noninvasively within a canine model of intracerebral gliosarcoma. Synthesis of the 111In-HpD-II complex in greater than 90% yield is achieved by a simple, rapid labeling method. Radiochemical purity and stability were verified by high-performance liquid chromatography. Using the canine model of intracerebral gliosarcoma, we followed the uptake of 111In-HpD-II in tumors with serial scintillation scanning. Localization of the tumor by 111In-HpD-II has been verified by contrast-enhanced computed tomographic scan followed by gross and histological examination of the enhancing brain region. Total body biodistribution of 111In-HpD-II at various times after injection has been evaluated. The ratio of uptake in tumor compared with surrounding brain peaked at 72 hours after injection. The knowledge of regional distribution and concentration of a photosensitizing agent within a tumor mass and surrounding brain allows for the most efficacious timing and localization of a photoactivating source.

  19. Dementia with Lewy bodies

    PubMed Central

    Graff-Radford, Jonathan; Murray, Melissa E.; Lowe, Val J.; Boeve, Bradley F.; Ferman, Tanis J.; Przybelski, Scott A.; Lesnick, Timothy G.; Senjem, Matthew L.; Gunter, Jeffrey L.; Smith, Glenn E.; Knopman, David S.; Jack, Clifford R.; Dickson, Dennis W.; Petersen, Ronald C.

    2014-01-01

    Objectives: To investigate clinical, imaging, and pathologic associations of the cingulate island sign (CIS) in dementia with Lewy bodies (DLB). Methods: We retrospectively identified and compared patients with a clinical diagnosis of DLB (n = 39); patients with Alzheimer disease (AD) matched by age, sex, and education (n = 39); and cognitively normal controls (n = 78) who underwent 18F-fluorodeoxyglucose (FDG) and C11 Pittsburgh compound B (PiB)-PET scans. Among these patients, we studied those who came to autopsy and underwent Braak neurofibrillary tangle (NFT) staging (n = 10). Results: Patients with a clinical diagnosis of DLB had a higher ratio of posterior cingulate to precuneus plus cuneus metabolism, cingulate island sign (CIS), on FDG-PET than patients with AD (p < 0.001), a finding independent of β-amyloid load on PiB-PET (p = 0.56). Patients with CIS positivity on visual assessment of FDG-PET fit into the group of high- or intermediate-probability DLB pathology and received clinical diagnosis of DLB, not AD. Higher CIS ratio correlated with lower Braak NFT stage (r = −0.96; p < 0.001). Conclusions: Our study found that CIS on FDG-PET is not associated with fibrillar β-amyloid deposition but indicates lower Braak NFT stage in patients with DLB. Identifying biomarkers that measure relative contributions of underlying pathologies to dementia is critical as neurotherapeutics move toward targeted treatments. PMID:25056580

  20. Scanning Terahertz Heterodyne Imaging Systems

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  1. What Is a Nuclear Heart Scan?

    MedlinePlus

    ... from the NHLBI on Twitter. What Is a Nuclear Heart Scan? A nuclear heart scan is a test that provides important ... use it to create pictures of your heart. Nuclear heart scans are used for three main purposes: ...

  2. Derivation of the scan time requirement for maintaining a consistent PET image quality

    NASA Astrophysics Data System (ADS)

    Kim, Jin Su; Lee, Jae Sung; Kim, Seok-Ki

    2015-05-01

    Objectives: the image quality of PET for larger patients is relatively poor, even though the injection dose is optimized considering the NECR characteristics of the PET scanner. This poor image quality is due to the lower level of maximum NECR that can be achieved in these large patients. The aim of this study was to optimize the PET scan time to obtain a consistent PET image quality regardless of the body size, based on the relationship between the patient specific NECR (pNECR) and body weight. Methods: eighty patients (M/F=53/27, body weight: 059 ± 1 kg) underwent whole-body FDG PET scans using a Philips GEMINI GS PET/CT scanner after an injection of 0.14 mCi/kg FDG. The relationship between the scatter fraction (SF) and body weight was determined by repeated Monte Carlo simulations using a NEMA scatter phantom, the size of which varied according to the relationship between the abdominal circumference and body weight. Using this information, the pNECR was calculated from the prompt and delayed PET sinograms to obtain the prediction equation of NECR vs. body weight. The time scaling factor (FTS) for the scan duration was finally derived to make PET images with equivalent SNR levels. Results: the SF and NECR had the following nonlinear relationships with the body weight: SF=0.15 ṡ body weight0.3 and NECR = 421.36 (body weight)-0.84. The equation derived for FTS was 0.01ṡ body weight + 0.2, which means that, for example, a 120-kg person should be scanned 1.8 times longer than a 70 kg person, or the scan time for a 40-kg person can be reduced by 30%. Conclusion: the equation of the relative time demand derived in this study will be useful for maintaining consistent PET image quality in clinics.

  3. Conically scanned holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary (Inventor)

    1993-01-01

    An optical scanning device utilizing a source of optical energy such as laser light backscattered from the earth's atmosphere or transmitted outward as in a lidar, a rotating holographic optical element having an axis of rotation perpendicular to the plane of its substrate, and having a stationary focus which may or may not be located on its axis of rotation, with the holographic optical element diffracting the source of optical energy at an angle to its rotation axis enabling a conical scanning area and a motor for supporting and rotating the rotating holographic optical element, is described.

  4. Scanning color optical tomography (SCOT).

    PubMed

    Hosseini, Poorya; Sung, Yongjin; Choi, Youngwoon; Lue, Niyom; Yaqoob, Zahid; So, Peter

    2015-07-27

    We have developed an interferometric optical microscope that provides three-dimensional refractive index map of a specimen by scanning the color of three illumination beams. Our design of the interferometer allows for simultaneous measurement of the scattered fields (both amplitude and phase) of such a complex input beam. By obviating the need for mechanical scanning of the illumination beam or detection objective lens; the proposed method can increase the speed of the optical tomography by orders of magnitude. We demonstrate our method using polystyrene beads of known refractive index value and live cells. PMID:26367632

  5. Scanning color optical tomography (SCOT)

    PubMed Central

    Hosseini, Poorya; Sung, Yongjin; Choi, Youngwoon; Lue, Niyom; Yaqoob, Zahid; So, Peter

    2015-01-01

    We have developed an interferometric optical microscope that provides three-dimensional refractive index map of a specimen by scanning the color of three illumination beams. Our design of the interferometer allows for simultaneous measurement of the scattered fields (both amplitude and phase) of such a complex input beam. By obviating the need for mechanical scanning of the illumination beam or detection objective lens; the proposed method can increase the speed of the optical tomography by orders of magnitude. We demonstrate our method using polystyrene beads of known refractive index value and live cells. PMID:26367632

  6. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGESBeta

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  7. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGESBeta

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  8. Body Composition Tests

    MedlinePlus

    ... more bone and muscle will weigh more in water than a person with less bone and muscle. The volume of the body is calculated and body density and body fat percentage are calculated. This technique ...

  9. Lewy Body Disease

    MedlinePlus

    Lewy body disease is one of the most common causes of dementia in the elderly. Dementia is the loss of mental ... to affect normal activities and relationships. Lewy body disease happens when abnormal structures, called Lewy bodies, build ...

  10. Comparative Investigation of Body Composition in Male Dogs Using CT and Body Fat Analysis Software

    PubMed Central

    KOBAYASHI, Toyokazu; KOIE, Hiroshi; KUSUMI, Akiko; KITAGAWA, Masato; KANAYAMA, Kiichi; OTSUJI, Kazuya

    2013-01-01

    ABSTRACT In small animal veterinary practices, body condition score (BCS) is generally used to diagnose obesity. However, BCS does not constitute objective data. In this study, we investigated the value of using human body fat analysis software for male dogs. We also compared changes in body fat after neutering. Changes in body fat at the time of neutering (age 1 year) and 1 year later were compared by performing CT scanning and using human body fat analysis software. We found that body fat increased in all the individuals tested. In terms of the site of fat accumulation, subcutaneous fat was more pronounced than visceral fat with a marked increase on the dorsal side of the abdomen rather than the thorax. PMID:24212506