Science.gov

Sample records for 13c labeled samples

  1. Synthesis of [13C6]-labelled phenethylamine derivatives for drug quantification in biological samples.

    PubMed

    Karlsen, Morten; Liu, HuiLing; Berg, Thomas; Johansen, Jon Eigill; Hoff, Bård Helge

    2014-05-15

    The availability of high-quality (13)C-labelled internal standards will improve accurate quantification of narcotics and drugs in biological samples. Thus, the synthesis of 10 [(13)C6]-labelled phenethylamine derivatives, namely amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxy-N-ethylamphetamine, 4-methoxyamphetamine, 4-methoxymethamphetamine, 3,5-dimethoxyphenethylamine 4-bromo-2,5-dimethoxyphenethylamine and 2,5-dimethoxy-4-iodophenethylamine, have been undertaken. [(13)C6]-Phenol proved to be an excellent starting material for making (13)C-labelled narcotic substances in the phenethylamine class, and a developed Stille-type coupling enabled an efficient synthesis of the 3,4-methylenedioxy and 4-methoxy derivatives. The pros and cons of alternative routes and transformations are also discussed. The [(13)C6]-labelled compounds are intended for use as internal standards in forensic analysis, health sciences and metabolomics studies by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. PMID:24634286

  2. Does the time of the sampling matter in 13C pulse labeling and chasing experiments? A case study on beech seedlings

    NASA Astrophysics Data System (ADS)

    Gavrichkova, Olga; Thoms, Ronny; Muhr, Jan; Karlowsky, Stefan; Keitel, Claudia; Kayler, Zachary; Calfapietra, Carlo; Gessler, Arthur; Brugnoli, Enrico; Gleixner, Gerd

    2016-04-01

    13C pulse labeling and chasing is a valuable and very popular tool for determination of the fate and turnover rates of C in plant-soil systems. Continuous isoflux measurements became an accessible reality allowing to cover completely the diurnal variation in label assimilation and respiration fluxes. Label turnover in multiple pools, especially of those located belowground, is more often assessed instead by isolated day-time samplings. By increasing the sampling frequency of belowground compartments we aimed to catch the short-term diurnal variations in label allocation and to link these processes with label dynamics in the aboveground biomass. For these purposes we labeled 3-m height soil-grown European beech seedlings with 13C enriched CO2 and traced the flow of 13C within belowground plant-soil continuum. Continuous soil isoflux measurements were accompanied by a 3-h-frequency sampling of root and soil material during the first 48 h, followed by a daily sampling in the successive 5 days. The amount of label found in microbial biomass depended partially on the amount of roots in the sample. Microbial biomass C (MBC) and microbial respiration showed very strong correlation, suggesting the possibility to use one as a proxy of the other. MBC enrichment showed a clear diurnal pattern with night-time and early morning peaks. These peaks were similar in shape and shifted by one sampling when compared to root sugars enrichment. Soil respiration showed instead a single bell-shape peak in 13C, likely due to a sequence of peaks of root and microbial origin. 13C flow into soil microbial functional groups was assessed less frequently through phospholipid fatty acid analyses (PLFA). The microorganisms were separated into two distinct groups by the time of the appearance of the label in the single PLFAs. The first group was characterized by a fast appearance of the label and higher enrichment and was composed of Gram negative bacteria and saprotrophic fungi likely living in

  3. Determination of nonylphenol ethoxylates and octylphenol ethoxylates in environmental samples using 13C-labeled surrogate compounds.

    PubMed

    Yoshida, Yasuko; Ito, Azusa; Murakami, Masashi; Murakami, Takayuki; Fujimoto, Hideharu; Takeda, Kikuo; Suzuki, Shigeru; Hori, Masahiro

    2007-10-01

    Alkylphenol polyethoxylates (APEOs) have been widely used as nonionic surfactants in a variety of industrial and commercial products. Typical compounds are nonylphenol polyethoxylates (NPEOs) and octylphenol polyethoxylates (OPEOs), which serve as precursors to nonylphenol (NP) and octylphenol (OP), respectively. NP and 4-t-OP are known to have endocrine disrupting effects on fish (medaka, Oryzias latipes), so it is important to know the concentrations of APEOs in the environment. Because the analytical characteristics of these compounds depend on the length of the ethoxy chain, it is necessary to use appropriate compounds as internal standards or surrogates. We synthesized two 13C-labeled surrogate compounds and used these compounds as internal standards to determine NPEOs and OPEOs by high-performance liquid chromatography (LC)-mass spectrometry. Method detection limits were 0.015 microg/L for NP (2)EO to 0.037 microg/L for NP(12)EO, and 0.011 microg/L for OP(3,6)EO to 0.024 microg/L for OP (4)EO. NPEO concentrations in water from a sewage treatment plant were less than 0.05-0.52 microg/L for final effluent and 1.2-15 microg/L for influent. OPEO concentrations were less than 0.05-0.15 microg/L for the final effluent and less than 0.05-1.1 microg/L for influent. PMID:17972761

  4. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C.

    PubMed

    Wang, Jingzhu; Yang, Rui; Yang, Wenning; Liu, Xin; Xing, Yanyi; Xu, Youxuan

    2014-12-10

    Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ(13)C value). However, (13)C labeled standards can be used to control the δ(13)C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the (13)C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ(13)C values between Andro and ANAD (Δδ(13)CAndro-ANAD, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different (13)C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ(13)CAndro-ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ(13)CAndro-ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-(13)C labeled standards. PMID:25441891

  5. Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd

    2015-03-01

    Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.

  6. Strategy for Enhancement of (13)C-Photo-CIDNP NMR Spectra by Exploiting Fractional (13)C-Labeling of Tryptophan.

    PubMed

    Eisenreich, Wolfgang; Joshi, Monika; Illarionov, Boris; Kacprzak, Sylwia; Lukaschek, Michail; Kothe, Gerd; Budisa, Nediljko; Fischer, Markus; Bacher, Adelbert; Weber, Stefan

    2015-10-29

    The photo-CIDNP effect has proven to be useful to strongly enhance NMR signals of photochemically active proteins simply by irradiation with light. The evolving characteristic patterns of enhanced absorptive and emissive NMR lines can be exploited to elucidate the photochemistry and photophysics of light-driven protein reactions. In particular, by the assignment of (13)C NMR resonances, redox-active amino acids may be identified and thereby electron-transfer pathways unraveled, in favorable cases, even with (13)C at natural abundance. If signal enhancement is weak, uniform (13)C isotope labeling is traditionally applied to increase the signal strength of protein (13)C NMR. However, this typically leads to cross relaxation, which transfers light-induced nuclear-spin polarization to adjacent (13)C nuclei, thereby preventing an unambiguous analysis of the photo-CIDNP effect. In this contribution, two isotope labeling strategies are presented; one leads to specific but ubiquitous (13)C labeling in tryptophan, and the other is based on fractional isotope labeling affording sets of isotopologs with low probability of next-neighbor isotope accumulation within individual tryptophan molecules. Consequently, cross relaxation is largely avoided while the signal enhancement by (13)C enrichment is preserved. This results in significantly simplified polarization patterns that are easier to analyze with respect to the generation of light-generated nuclear-spin polarization. PMID:26244593

  7. Interlobe communication in 13C-methionine-labeled human transferrin.

    PubMed

    Beatty, E J; Cox, M C; Frenkiel, T A; Tam, B M; Mason, A B; MacGillivray, R T; Sadler, P J; Woodworth, R C

    1996-06-18

    [1H, 13C] NMR investigations of metal-induced conformational changes in the blood serum protein transferrin (80 kDa) are reported. These are thought to play an important role in the recognition of this protein by its cellular receptors. [1H, 13C] NMR resonance assignments are presented for all nine methionine 13CH3 groups of recombinant deglycosylated human transferrin on the basis of studies of recombinant N-lobe (40 kDa, five Met residues), NOESY-relayed [1H, 13C] HMQC spectra, and structural considerations. The first specific assignments for C-lobe resonances of transferrin are presented. Using methionine 13CH3 resonances as probes, it is shown that, with oxalate as the synergistic anion, Ga3+ binds preferentially to the C-lobe and subsequently to the N-lobe. The NMR shifts of Met464, which is in the Trp460-centered hydrophobic patch of helix 5 in the C-lobe in contact with the anion and metal binding site, show that Ga3+ binding causes movement of side chains within this helix, as is also the case in the N-lobe. The C-lobe residue Met382, which contacts the N-lobe hinge region, is perturbed when Ga3+ binds to the N-lobe, indicative of interlobe communication, a feature which may control the recognition of fully-metallated transferrin by its receptor. These results demonstrate that selective 13C labeling is a powerful method for probing the structure and dynamics of high-molecular-mass proteins. PMID:8672464

  8. The fate of (13)C-labelled and non-labelled inulin predisposed to large bowel fermentation in rats.

    PubMed

    Butts, Christine A; Paturi, Gunaranjan; Tavendale, Michael H; Hedderley, Duncan; Stoklosinski, Halina M; Herath, Thanuja D; Rosendale, Douglas; Roy, Nicole C; Monro, John A; Ansell, Juliet

    2016-04-20

    The fate of stable-isotope (13)C labelled and non-labelled inulin catabolism by the gut microbiota was assessed in a healthy rat model. Sprague-Dawley male rats were randomly assigned to diets containing either cellulose or inulin, and were fed these diets for 3 days. On day (d) 4, rats allocated to the inulin diet received (13)C-labelled inulin. The rats were then fed the respective non-labelled diets (cellulose or inulin) until sampling (d4, d5, d6, d7, d10 and d11). Post feeding of (13)C-labelled substrate, breath analysis showed that (13)C-inulin cleared from the host within a period of 36 hours. Faecal (13)C demonstrated the clearance of inulin from gut with a (13)C excess reaching maximum at 24 hours (d5) and then declining gradually. There were greater variations in caecal organic acid concentrations from d4 to d6, with higher concentrations of acetic, butyric and propionic acids observed in the rats fed inulin compared to those fed cellulose. Inulin influenced caecal microbial glycosidase activity, increased colon crypt depth, and decreased the faecal output and polysaccharide content compared to the cellulose diet. In summary, the presence of inulin in the diet positively influenced large bowel microbial fermentation. PMID:26778667

  9. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    NASA Astrophysics Data System (ADS)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  10. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    PubMed

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  11. Economical synthesis of 13C-labeled opiates, cocaine derivatives and selected urinary metabolites by derivatization of the natural products.

    PubMed

    Karlsen, Morten; Liu, Huiling; Johansen, Jon Eigill; Hoff, Bård Helge

    2015-01-01

    The illegal use of opiates and cocaine is a challenge world-wide, but some derivatives are also valuable pharmaceuticals. Reference samples of the active ingredients and their metabolites are needed both for controlling administration in the clinic and to detect drugs of abuse. Especially, (13)C-labeled compounds are useful for identification and quantification purposes by mass spectroscopic techniques, potentially increasing accuracy by minimizing ion alteration/suppression effects. Thus, the synthesis of [acetyl-(13)C4]heroin, [acetyl-(13)C4-methyl-(13)C]heroin, [acetyl-(13)C2-methyl-(13)C]6-acetylmorphine, [N-methyl-(13)C-O-metyl-(13)C]codeine and phenyl-(13)C6-labeled derivatives of cocaine, benzoylecgonine, norcocaine and cocaethylene was undertaken to provide such reference materials. The synthetic work has focused on identifying (13)C atom-efficient routes towards these derivatives. Therefore, the (13)C-labeled opiates and cocaine derivatives were made from the corresponding natural products. PMID:25816077

  12. A method to trace root-respired CO2 using a 13C label

    NASA Astrophysics Data System (ADS)

    Cooperdock, S.; Breecker, D.; Litvak, M. E.

    2014-12-01

    In order to partition total soil respiration into root respiration and decomposition under ambient conditions in desert soils, the following method was developed using 13C-labeled CO2 in a modern juniper savannah in central New Mexico. The labeled CO2 was mixed with ambient air and pumped into a small (2.5 m diameter and 1.4 m tall) juniper tree canopy . 10 L of the 13CO2 was sufficient to generate a stream of air at 20 L/min for 1 hour with a CO2 concentration of 540 ppm and a δ13C value of approximately 35,000‰. Plastic tarpaulins were used as a wind block. The 13CO2 -labeled air was applied to the canopy during peak photosynthesis between 10 and 11 am on June 30 2014 during which canopy air CO2 was elevated by approximately 10 ppm over ambient and had δ13C values ranging from 50 to 1000 ‰. Over the next three days, gas and tissue samples were collected in order to trace the 13C label through the juniper tree. Leaf and root samples collected from the labeled tree and from several control trees were loaded into exetainer vials, flushed with CO2-free air and incubated in the dark for 5 hours in order to measure the carbon isotope composition of respired CO2. Samples of soil pore space gas were collected from wells under the labeled tree and a control tree and were transported to the laboratory in He-flushed exetainer vials. The δ13C values of CO2 in the soil gas samples and in the headspace of incubation vials were measured using an isotope ratio mass spectrometer. The δ13C values of foliar respiration were significantly higher than those of the control (by 3.6‰, p < 0.01) one and two days after labeling and δ13C values of root-respired CO2 were significantly higher (by 0.7‰, p = 0.01) than those of the control three days after labeling. In addition, δ13C values of soil respired CO2, determined from measurements of soil pore space CO2 at 50 cm three days after labeling, were significantly higher (by 0.7‰, p < 0.03)) for the labeled tree than control

  13. Oxidation of 13C-labeled methane in surface crusts of pig- and cattle slurry.

    PubMed

    Ambus, Per; Petersen, Søren O

    2005-06-01

    Storage tanks for slurry from animal production constitute important point sources for emission of CH4 into the atmosphere. Recent investigations have demonstrated that surface crust formed on top of animal slurry provides a habitat for CH4 oxidation activity, a finding which may open for new opportunities to reduce greenhouse gas emissions during storage of animal wastes. In this work, 13C-labeled CH4 was used as a tracer to examine the absolute rates of CH4 oxidation and production in intact crust materials, collected from six different pig- and cattle slurry tanks in late autumn. Methane concentrations were generally reduced in the presence of surface crust samples, with the exception of a LECA-based (light expanded clay aggregates) crust from a pig slurry tank. In four samples, CH4 consumption was induced following a 2-4 days lag phase, whereas one cattle slurry crust consumed CH4 immediately and showed a 92% decline in CH4 concentration within the first week. Consumption of 13C-labeled CH4 was paralleled by the production of 13C-labeled CO2, thus providing direct evidence that microbial oxidation of CH4 to CO2 was taking place. Between 23% and 36% of the CH4-13C consumed in the active samples was accounted for in the gas phase CO2 indicating incomplete conversion of CH4 to CO2; however, comparable amounts of 13C was immobilized in the crust samples. Overall, the results showed that significant CH4 oxidation to CO2 in slurry crust samples occurs immediately or is inducible upon exposure to CH4. PMID:16191764

  14. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  15. Synthesis and applications of selectively {sup 13}C-labeled RNA

    SciTech Connect

    SantaLucia, J. Jr.; Shen, L.X.; Lewis, H.; Cai, Z.; Tinoci, I. Jr.

    1994-12-01

    Spectral overlap is a substantial problem in NMR studies of RNA molecules >30 nucleotides. To overcome this difficulty, we synthesized selectively {sup 13}C-labeled RNAs and adapted several isotope-edited two- and three-dimensional NMR experiments originally developed for protein studies. We optimized protocols for synthesis of multi-gram quantities of CTP, UTp, ATP, and GTP using a combination of synthetic organic and enzymatic methods. Uracil is prepared in 40 to 50% yield from {sup 13}C-cyanide in two steps. Using acetyl- tribenzoyl-ribose and standard chemistry uracil is then attached to the sugar (90% yield). The tribenzoyl-uridine intermediate is converted into uridine or cytidine quantitatively, depending on the deblocking protocol. Labeled purines are synthesized using simple pyrimidine precursors and reacting with {sup 13}C-formic acid (80% yield). Purine nucleosides are then synthesized using uridine phosphorylase and purine nucleoside phosphorylase. The nucleosides were converted to NMPs by treatment with POC1{sub 3} in triethylphosphate. We converted NMPs to NTPs by standard enzymatic methods. Selectively labeled RNAs were synthesized by run-off transcription using {sup 13}C-labeled NTPs. Several different strategies help solve over-lap problems in larger RNAs. Isotope-edited two-dimensional NMR experiments such as {omega}1-1/2 X-filtered NOESY simplify NMR spectra by dividing the normal NOESY spectrum into two subspectra-one involving NOEs from protons bound to {sup 12}C and one from protons bound to {sup 13}C. For example, we labeled A and U residues of a 34-nucleotide pseudoknot, and the {sup 12}C subspectrum of the 1/2 X-filtered NOESY contained NOEs only from G and C residues (along with adenine 2H); the {sup 13}C subspectrum contained NOEs only from A and U residues. Each subspectrum has less overlap than the NOESY of an unlabeled sample; the editing strategy allows each resonance to be identified by residue type (A, C, G, or U).

  16. Microbial metabolism in soil at low temperatures: Mechanisms unraveled by position-specific 13C labeling

    NASA Astrophysics Data System (ADS)

    Bore, Ezekiel

    2016-04-01

    Microbial transformation of organic substances in soil is the most important process of the C cycle. Most of the current studies base their information about transformation of organic substances on incubation studies under laboratory conditions and thus, we have a profound knowledge on SOM transformations at ambient temperatures. However, metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5, -5 -20 oC. Soils were sampled after 1, 3 and 10 days and additionally after 30 days for samples at -20 °C. The 13C from individual molecule position was quantifed in respired CO2, bulk soil, extractable organic C and extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of microbial communities classified by 13C phospholipid fatty acid (PLFA) analysis. 13CO2 released showed a dominance of the flux from C-1 position at 5 °C. Consequently, at 5 °C, pentose phosphate pathway activity is a dominant metabolic pathway of glucose metabolization. In contrast to -5 °C and -20 oC, metabolic behaviors completely switched towards a preferential respiration of the glucose C-4 position. With decreasing temperature, microorganism strongly shifted towards metabolization of glucose via glycolysis which indicates a switch to cellular maintenance. High recoveries of 13C in extractable microbial biomass at -5 °C indicates optimal growth condition for the microorganisms. PLFA analysis showed high incorporation of 13C into Gram negative bacteria at 5 °C but decreased with temperature. Gram positive bacteria out-competed Gram negatives with decreasing temperature. This study revealed a remarkable microbial activity at temperatures below 0 °C, differing significantly from that at ambient

  17. Biosynthetic production of universally (13)C-labelled polyunsaturated fatty acids as reference materials for natural health product research.

    PubMed

    Le, Phuong Mai; Fraser, Catherine; Gardner, Graeme; Liang, Wei-Wan; Kralovec, Jaroslav A; Cunnane, Stephen C; Windust, Anthony J

    2007-09-01

    Long-chain polyunsaturated fatty acids (LCPUFA) including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have become important natural health products with numerous proven benefits related to brain function and cardiovascular health. Not only are omega-3 fatty acids available in a plethora of dietary supplements, but they are also increasingly being incorporated as triglycerides into conventional foods, including bread, milk, yoghurt and confectionaries. Recently, transgenic oil seed crops and livestock have been developed that enhance omega-3 fatty acid content. This diverse array of matrices presents a difficult analytical challenge and is compounded further by samples generated through clinical research. Stable isotope (13)C-labelled LCPUFA standards offer many advantages as research tools because they may be distinguished from their naturally abundant counterparts by mass spectrometry and directly incorporated as internal standards into analytical procedures. Further, (13)C-labelled LCPUFAs are safe to use as metabolic tracers to study uptake and metabolism in humans. Currently, (13)C-labelled LCPUFAs are expensive, available in limited supply and not in triglyceride form. To resolve these issues, marine heterotrophic microorganisms are being isolated and screened for LCPUFA production with a view to the efficient biosynthetic production of U-(13)C-labelled fatty acids using U-(13)C glucose as a carbon source. Of 37 isolates obtained, most were thraustochytrids, and either DHA or omega-6 docosapentaenoic acid (22:5n-6) were produced as the major LCPUFA. The marine protist Hyalochlorella marina was identified as a novel source of EPA and omega-3 docosapentaenoic acid (22:5n-3). As proof of principle, gram-level production of (13)C-labelled DHA has been achieved with high chemical purity ( >99%) and high (13)C incorporation levels (>90%), as confirmed by NMR and MS analyses. Finally, U-(13)C-DHA was enzymatically re-esterified to

  18. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  19. 13c Measurements On Air of Small Ice Samples

    NASA Astrophysics Data System (ADS)

    Eyer, M.; Leuenberger, M.

    We have developed a new method for 13C analysis for very small air amounts of less than 0.5 cc STP, corresponding to less than 10 gram of ice. It is based on the needle-crasher technique, which we routinely use for CO2 concentration measurements by infrared laser absorption. The extracted air is slowly expanded into a large volume through a water trap held at ­100°C. This sampled air is then carried by a high helium flux through a modified Precon system of Thermo-Finnigan to separate CO2 from the air and to inject the pure CO2 gas in a low helium stream via an open split device to a Delta Plus XL mass spectrometer. The overall precision based on replicates of standard air is significantly better than 0.1 for a single analysis and is further improved by a triplicate measurement of the same sample through a specially designed gas splitter. We have used this new method for investigations on polar ice cores. The 13C measurements are important for climate reconstructions, e.g. to reconstruct the evolution and its variability in the terrestrial and oceanic carbon sinks and to identify natural variations in the marine carbon cycle. During the industrialization atmospheric 13C decreased by about -2, mainly due to the anthropogenic release of biogenic CO2 by fossil fuel burning. Reconstructions of carbon and oxygen cycles of Joos at al. [1999] using a double deconvolution method show that between 1930 and 1950 the net terrestrial release is changing to a net terrestrial uptake of CO2. A highly resolved 13C dataset of this time window would replenish the documentation of this behaviour. Further, it would be interesting to compare such data with O2/N2 measurements, known as an other partitioning tool for carbon sources and sinks. At the EGS 2002 we will present a highly resolved 13C record from Antarctic ice covering this time period.

  20. Predicting outcomes of steady-state 13C isotope tracing experiments using Monte Carlo sampling

    PubMed Central

    2012-01-01

    Background Carbon-13 (13C) analysis is a commonly used method for estimating reaction rates in biochemical networks. The choice of carbon labeling pattern is an important consideration when designing these experiments. We present a novel Monte Carlo algorithm for finding the optimal substrate input label for a particular experimental objective (flux or flux ratio). Unlike previous work, this method does not require assumption of the flux distribution beforehand. Results Using a large E. coli isotopomer model, different commercially available substrate labeling patterns were tested computationally for their ability to determine reaction fluxes. The choice of optimal labeled substrate was found to be dependent upon the desired experimental objective. Many commercially available labels are predicted to be outperformed by complex labeling patterns. Based on Monte Carlo Sampling, the dimensionality of experimental data was found to be considerably less than anticipated, suggesting that effectiveness of 13C experiments for determining reaction fluxes across a large-scale metabolic network is less than previously believed. Conclusions While 13C analysis is a useful tool in systems biology, high redundancy in measurements limits the information that can be obtained from each experiment. It is however possible to compute potential limitations before an experiment is run and predict whether, and to what degree, the rate of each reaction can be resolved. PMID:22289253

  1. Comprehensive signal assignment of 13C-labeled lignocellulose using multidimensional solution NMR and 13C chemical shift comparison with solid-state NMR.

    PubMed

    Komatsu, Takanori; Kikuchi, Jun

    2013-09-17

    A multidimensional solution NMR method has been developed using various pulse programs including HCCH-COSY and (13)C-HSQC-NOESY for the structural characterization of commercially available (13)C labeled lignocellulose from potatoes (Solanum tuberosum L.), chicory (Cichorium intybus), and corn (Zea mays). This new method allowed for 119 of the signals in the (13)C-HSQC spectrum of lignocelluloses to be assigned and was successfully used to characterize the structures of lignocellulose samples from three plants in terms of their xylan and xyloglucan structures, which are the major hemicelluloses in angiosperm. Furthermore, this new method provided greater insight into fine structures of lignin by providing a high resolution to the aromatic signals of the β-aryl ether and resinol moieties, as well as the diastereomeric signals of the β-aryl ether. Finally, the (13)C chemical shifts assigned in this study were compared with those from solid-state NMR and indicated the presence of heterogeneous dynamics in the polysaccharides where rigid cellulose and mobile hemicelluloses moieties existed together. PMID:24010724

  2. 13C-labelled microdialysis studies of cerebral metabolism in TBI patients☆

    PubMed Central

    Carpenter, Keri L.H.; Jalloh, Ibrahim; Gallagher, Clare N.; Grice, Peter; Howe, Duncan J.; Mason, Andrew; Timofeev, Ivan; Helmy, Adel; Murphy, Michael P.; Menon, David K.; Kirkpatrick, Peter J.; Carpenter, T. Adrian; Sutherland, Garnette R.; Pickard, John D.; Hutchinson, Peter J.

    2014-01-01

    Human brain chemistry is incompletely understood and better methodologies are needed. Traumatic brain injury (TBI) causes metabolic perturbations, one result of which includes increased brain lactate levels. Attention has largely focussed on glycolysis, whereby glucose is converted to pyruvate and lactate, and is proposed to act as an energy source by feeding into neurons’ tricarboxylic acid (TCA) cycle, generating ATP. Also reportedly upregulated by TBI is the pentose phosphate pathway (PPP) that does not generate ATP but produces various molecules that are putatively neuroprotective, antioxidant and reparative, in addition to lactate among the end products. We have developed a novel combination of 13C-labelled cerebral microdialysis both to deliver 13C-labelled substrates into brains of TBI patients and recover the 13C-labelled metabolites, with high-resolution 13C NMR analysis of the microdialysates. This methodology has enabled us to achieve the first direct demonstration in humans that the brain can utilise lactate via the TCA cycle. We are currently using this methodology to make the first direct comparison of glycolysis and the PPP in human brain. In this article, we consider the application of 13C-labelled cerebral microdialysis for studying brain energy metabolism in patients. We set this methodology within the context of metabolic pathways in the brain, and 13C research modalities addressing them. PMID:24361470

  3. Determination of sup 13 C labeling pattern of citric acid cycle intermediates by gas chromatography-mass spectrometry

    SciTech Connect

    Di Donato, L.; Montgomery, J.A.; Des Rosiers, C.; David, F.; Garneau, M.; Brunengraber, H. )

    1990-02-26

    Investigations of the regulation of the citric acid cycle require determination of labeling patterns of cycle intermediates. These were assayed to date, using infusion of: (i) ({sup 14}C)tracer followed by chemical degradation of intermediates and (ii) ({sup 13}C)tracer followed by NMR analysis of intermediates. The authors developed a strategy to analyze by GC-MS the ({sup 13}C) labeling pattern of {mu}mole samples of citrate (CIT), isocitrate (ICIT), 2-ketoglutarate (2-KG), glutamate (GLU) and glutamine (GLN). These are enzymatically or chemically converted to 2-KG, ICIT, 4-aminobutyrate (GABA) and 2-hydroxyglutarate (2-OHG). GC-MS analyses of TMS or TBDMS derivatives of these compounds yield the enrichment of each carbon. The authors confirmed the identity of each fragment using the spectra of (1-{sup 13}C), (5-{sup 13}C), (2,3,3,4,4-{sup 2}H{sub 5})glutamate and (1-{sup 13}C), (1,4-{sup 13}C)GABA.

  4. A roadmap for interpreting 13C metabolite labeling patterns from cells

    PubMed Central

    Buescher, Joerg M.; Antoniewicz, Maciek R.; Boros, Laszlo G.; Burgess, Shawn C.; Brunengraber, Henri; Clish, Clary B.; DeBerardinis, Ralph J.; Feron, Olivier; Frezza, Christian; Ghesquiere, Bart; Gottlieb, Eyal; Hiller, Karsten; Jones, Russell G.; Kamphorst, Jurre J.; Kibbey, Richard G.; Kimmelman, Alec C.; Locasale, Jason W.; Lunt, Sophia Y.; Maddocks, Oliver D. K.; Malloy, Craig; Metallo, Christian M.; Meuillet, Emmanuelle J.; Munger, Joshua; Nöh, Katharina; Rabinowitz, Joshua D.; Ralser, Markus; Sauer, Uwe; Stephanopoulos, Gregory; St-Pierre, Julie; Tennant, Daniel A.; Wittmann, Christoph; Vander Heiden, Matthew G.; Vazquez, Alexei; Vousden, Karen; Young, Jamey D.; Zamboni, Nicola; Fendt, Sarah-Maria

    2015-01-01

    Measuring intracellular metabolism has increasingly led to important insights in biomedical research. 13C tracer analysis, although less information-rich than quantitative 13C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting 13C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments. PMID:25731751

  5. A Method to Constrain Genome-Scale Models with 13C Labeling Data

    PubMed Central

    García Martín, Héctor; Kumar, Vinay Satish; Weaver, Daniel; Ghosh, Amit; Chubukov, Victor; Mukhopadhyay, Aindrila; Arkin, Adam; Keasling, Jay D.

    2015-01-01

    Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide strong flux constraints that eliminate the need to assume an evolutionary optimization principle such as the growth rate optimization assumption used in Flux Balance Analysis (FBA). This effective constraining is achieved by making the simple but biologically relevant assumption that flux flows from core to peripheral metabolism and does not flow back. The new method is significantly more robust than FBA with respect to errors in genome-scale model reconstruction. Furthermore, it can provide a comprehensive picture of metabolite balancing and predictions for unmeasured extracellular fluxes as constrained by 13C labeling data. A comparison shows that the results of this new method are similar to those found through 13C Metabolic Flux Analysis (13C MFA) for central carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism. The extra validation gained by matching 48 relative labeling measurements is used to identify where and why several existing COnstraint Based Reconstruction and Analysis (COBRA) flux prediction algorithms fail. We demonstrate how to use this knowledge to refine these methods and improve their predictive capabilities. This method provides a reliable base upon which to improve the design of biological systems. PMID:26379153

  6. Simple, efficient protocol for enzymatic synthesis of uniformly 13C, 15N-labeled DNA for heteronuclear NMR studies.

    PubMed Central

    Masse, J E; Bortmann, P; Dieckmann, T; Feigon, J

    1998-01-01

    The use of uniformly 13C,15N-labeled RNA has greatly facilitated structural studies of RNA oligonucleotides by NMR. Application of similar methodologies for the study of DNA has been limited, primarily due to the lack of adequate methods for sample preparation. Methods for both chemical and enzymatic synthesis of DNA oligonucleotides uniformly labeled with 13C and/or 15N have been published, but have not yet been widely used. We have developed a modified procedure for preparing uniformly 13C,15N-labeled DNA based on enzymatic synthesis using Taq DNA polymerase. The highly efficient protocol results in quantitative polymerization of the template and approximately 80% incorporation of the labeled dNTPs. Procedures for avoiding non-templated addition of nucleotides or for their removal are given. The method has been used to synthesize several DNA oligonucleotides, including two complementary 15 base strands, a 32 base DNA oligonucleotide that folds to form an intramolecular triplex and a 12 base oligonucleotide that dimerizes and folds to form a quadruplex. Heteronuclear NMR spectra of the samples illustrate the quality of the labeled DNA obtained by these procedures. PMID:9592146

  7. 13C-NMR study of labeled vinyl groups in paramagnetic myoglobin derivatives.

    PubMed

    Sankar, S S; La Mar, G N; Smith, K M; Fujinari, E M

    1987-04-01

    The 13C-NMR spectra of high-spin met-aquo myoglobin, spin-equilibrium met-azido myoglobin, low-spin met-cyano myoglobin, deoxy myoglobin and carbonmonoxy myoglobin from sperm whale reconstituted with hemin 13C enriched at both vinyl alpha or beta positions have been recorded. In all cases the labeled vinyl 13C signals are clearly resolved and useful spectra could be obtained within approx. 15 minutes. The decoupling of multiplet structure due to attached proton(s) has led to the specific assignment of vinyl 13C alpha signals in all paramagnetic derivatives and the 13C beta signals in met-cyano myoglobin. In all other cases, the collapse of the proton multiplet structure as a function of 1H decoupling frequency has located, but not assigned, the attached 1H resonance positions which are obscured by the intense diamagnetic envelope in the 1H-NMR spectrum. The resulting vinyl 13C hyperfine shifts follow Curie behavior, and the patterns closely resemble those in the appropriate model complexes in the same oxidation/spin/ligation state, except that the protein exhibits more in-plane asymmetry. The hyperfine shift patterns are indicative of dominant pi contact shifts for all ferric complexes. Deoxy myoglobin vinyl 13C and 1H contact shifts provide little evidence for pi bonding. PMID:3828362

  8. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies.

    PubMed

    Nikonowicz, E P; Sirr, A; Legault, P; Jucker, F M; Baer, L M; Pardi, A

    1992-09-11

    A procedure is described for the efficient preparation of isotopically enriched RNAs of defined sequence. Uniformly labelled nucleotide 5'triphosphates (NTPs) were prepared from E.coli grown on 13C and/or 15N isotopically enriched media. These procedures routinely yield 180 mumoles of labelled NTPs per gram of 13C enriched glucose. The labelled NTPs were then used to synthesize RNA oligomers by in vitro transcription. Several 13C and/or 15N labelled RNAs have been synthesized for the sequence r(GGCGCUUGCGUC). Under conditions of high salt or low salt, this RNA forms either a symmetrical duplex with two U.U base pairs or a hairpin containing a CUUG loop respectively. These procedures were used to synthesize uniformly labelled RNAs and a RNA labelled only on the G and C residues. The ability to generate milligram quantities of isotopically labelled RNAs allows application of multi-dimensional heteronuclear magnetic resonance experiments that enormously simplify the resonance assignment and solution structure determination of RNAs. Examples of several such heteronuclear NMR experiments are shown. PMID:1383927

  9. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.

    PubMed

    Au, Jennifer; Choi, Jungik; Jones, Shawn W; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2014-11-01

    In this work, we provide new insights into the metabolism of Clostridium acetobutylicum ATCC 824 obtained using a systematic approach for quantifying fluxes based on parallel labeling experiments and (13)C-metabolic flux analysis ((13)C-MFA). Here, cells were grown in parallel cultures with [1-(13)C]glucose and [U-(13)C]glucose as tracers and (13)C-MFA was used to quantify intracellular metabolic fluxes. Several metabolic network models were compared: an initial model based on current knowledge, and extended network models that included additional reactions that improved the fits of experimental data. While the initial network model did not produce a statistically acceptable fit of (13)C-labeling data, an extended network model with five additional reactions was able to fit all data with 292 redundant measurements. The model was subsequently trimmed to produce a minimal network model of C. acetobutylicum for (13)C-MFA, which could still reproduce all of the experimental data. The flux results provided valuable new insights into the metabolism of C. acetobutylicum. First, we found that TCA cycle was effectively incomplete, as there was no measurable flux between α-ketoglutarate and succinyl-CoA, succinate and fumarate, and malate and oxaloacetate. Second, an active pathway was identified from pyruvate to fumarate via aspartate. Third, we found that isoleucine was produced exclusively through the citramalate synthase pathway in C. acetobutylicum and that CAC3174 was likely responsible for citramalate synthase activity. These model predictions were confirmed in several follow-up tracer experiments. The validated metabolic network model established in this study can be used in future investigations for unbiased (13)C-flux measurements in C. acetobutylicum. PMID:25183671

  10. HCCCH Experiment for Through-Bond Correlation of Thymine Resonances in 13C-Labeled DNA Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Sklenář, Vladimír.; Masse, James E.; Feigon, Juli

    1999-04-01

    Application of heteronuclear magnetic resonance pulse methods to13C,15N-labeled nucleic acids is important for the accurate structure determination of larger RNA and DNA oligonucleotides and protein-nucleic acid complexes. These methods have been applied primarily to RNA, due to the availability of labeled samples. The two major differences between DNA and RNA are at the C2‧ of the ribose and deoxyribose and the additional methyl group on thymine versus uracil. We have enzymatically synthesized a13C,15N-labeled 32 base DNA oligonucleotide that folds to form an intramolecular triplex. We present two- and three-dimensional versions of a new HCCCH-TOCSY experiment that provides intraresidue correlation between the thymine H6 and methyl resonances via the intervening carbons (H6-C6-C5-Cme-Hme).

  11. Metabolic Pathway Confirmation and Discovery Through 13C-labeling of Proteinogenic Amino Acids

    PubMed Central

    You, Le; Page, Lawrence; Feng, Xueyang; Berla, Bert; Pakrasi, Himadri B.; Tang, Yinjie J.

    2012-01-01

    Microbes have complex metabolic pathways that can be investigated using biochemistry and functional genomics methods. One important technique to examine cell central metabolism and discover new enzymes is 13C-assisted metabolism analysis 1. This technique is based on isotopic labeling, whereby microbes are fed with a 13C labeled substrates. By tracing the atom transition paths between metabolites in the biochemical network, we can determine functional pathways and discover new enzymes. As a complementary method to transcriptomics and proteomics, approaches for isotopomer-assisted analysis of metabolic pathways contain three major steps 2. First, we grow cells with 13C labeled substrates. In this step, the composition of the medium and the selection of labeled substrates are two key factors. To avoid measurement noises from non-labeled carbon in nutrient supplements, a minimal medium with a sole carbon source is required. Further, the choice of a labeled substrate is based on how effectively it will elucidate the pathway being analyzed. Because novel enzymes often involve different reaction stereochemistry or intermediate products, in general, singly labeled carbon substrates are more informative for detection of novel pathways than uniformly labeled ones for detection of novel pathways3, 4. Second, we analyze amino acid labeling patterns using GC-MS. Amino acids are abundant in protein and thus can be obtained from biomass hydrolysis. Amino acids can be derivatized by N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (TBDMS) before GC separation. TBDMS derivatized amino acids can be fragmented by MS and result in different arrays of fragments. Based on the mass to charge (m/z) ratio of fragmented and unfragmented amino acids, we can deduce the possible labeled patterns of the central metabolites that are precursors of the amino acids. Third, we trace 13C carbon transitions in the proposed pathways and, based on the isotopomer data, confirm whether these

  12. Use of 13C-Labeled Substrates to Determine Relative Methane Production Rates in Hypersaline Microbial Communities

    NASA Astrophysics Data System (ADS)

    Kelley, C. A.; Bebout, B.; Chanton, J.

    2015-12-01

    Rates and pathways of methane production were determined from photosynthetic soft microbial mats and gypsum-encrusted endoevaporites collected in hypersaline environments from California, Mexico and Chile, as well as an organic-rich mud from a pond in the El Tatio volcanic fields, Chile. Samples (mud, homogenized soft mats and endoevaporites) were incubated anaerobically with deoxygenated site water, and the increase in methane concentration through time in the headspaces of the incubation vials was used to determine methane production rates. To ascertain the substrates used by the methanogens, 13C-labeled methylamines, methanol, dimethylsulfide, acetate or bicarbonate were added to the incubations (one substrate per vial) and the stable isotopic composition of the resulting methane was measured. The vials amended with 13C-labeled methylamines produced the most 13C-enriched methane, generally followed by the 13C-labeled methanol-amended vials. The stable isotope data and the methane production rates were used to determine first order rate constants for each of the substrates at each of the sites. Estimates of individual substrate use revealed that the methylamines produced 55 to 92% of the methane generated, while methanol was responsible for another 8 to 40%.

  13. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  14. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  15. Laboratory-scale production of 13C-labeled lycopene and phytoene by bioengineered Escherichia coli.

    PubMed

    Lu, Chi-Hua; Choi, Jin-Ho; Engelmann Moran, Nancy; Jin, Yong-Su; Erdman, John W

    2011-09-28

    Consumption of tomato products has been associated with decreased risks of chronic diseases such as cardiovascular disease and cancer, and therefore the biological functions of tomato carotenoids such as lycopene, phytoene, and phytofluene are being investigated. To study the absorption, distribution, metabolism, and excretion of these carotenoids, a bioengineered Escherichia coli model was evaluated for laboratory-scale production of stable isotope-labeled carotenoids. Carotenoid biosynthetic genes from Enterobacter agglomerans were introduced into the BL21Star(DE3) strain to yield lycopene. Over 96% of accumulated lycopene was in the all-trans form, and the molecules were highly enriched with 13C by 13C-glucose dosing. In addition, error-prone PCR was used to disrupt phytoene desaturase (crtI) function and create a phytoene-accumulating strain, which was also found to maintain the transcription of phytoene synthase (crtB). Phytoene molecules were also highly enriched with 13C when the 13C-glucose was the only carbon source. The development of this production model will provide carotenoid researchers a source of labeled tracer materials to further investigate the metabolism and biological functions of these carotenoids. PMID:21888370

  16. Anaerobic Methane Oxidation in Soils - revealed using 13C-labelled methane tracers

    NASA Astrophysics Data System (ADS)

    Riekie, G. J.; Baggs, E. M.; Killham, K. S.; Smith, J. U.

    2008-12-01

    In marine sediments, anaerobic methane oxidation is a significant biogeochemical process limiting methane flux from ocean to atmosphere. To date, evidence for anaerobic methane oxidation in terrestrial environments has proved elusive, and its significance is uncertain. In this study, an isotope dilution method specifically designed to detect the process of anaerobic methane oxidation in methanogenic wetland soils is applied. Methane emissions of soils from three contrasting permanently waterlogged sites in Scotland are investigated in strictly anoxic microcosms to which 13C- labelled methane is added, and changes in the concentration and 12C/13C isotope ratios of methane and carbon dioxide are subsequently measured and used to calculate separate the separate components of the methane flux. The method used takes into account the 13C-methane associated with methanogenesis, and the amount of methane dissolved in the soil. The calculations make no prior assumptions about the kinetics of methane production or oxidation. The results indicate that methane oxidation can take place in anoxic soil environments. The clearest evidence for anaerobic methane oxidation is provided by soils from a minerotrophic fen site (pH 6.0) in Bin Forest underlain by ultra-basic and serpentine till. In the fresh soil anoxic microcosms, net consumption methane was observed, and the amount of headspace 13C-CO2 increased at a greater rate than the 12+13C-CO2, further proof of methane oxidation. A net increase in methane was measured in microcosms of soil from Murder Moss, an alkaline site, pH 6.5, with a strong calcareous influence. However, the 13C-CH4 data provided evidence of methane oxidation, both in the disappearance of C- CH4 and appearance of smaller quantities of 13C-CO2. The least alkaline (pH 5.5) microcosms, of Gateside Farm soil - a granitic till - exhibited net methanogenesis and the changes in 13C-CH4 and 13C-CO2 here followed the pattern expected if no methane is consumed

  17. Metabolism of parenterally administered fat emulsions in the rat: studies of fatty acid oxidation with 1-13C- and 8-13C-labelled triolein.

    PubMed

    Bäurle, W; Brösicke, H; Matthews, D E; Pogan, K; Fürst, P

    1998-04-01

    To reassess the hypothesis that fatty acid catabolism occurs to completion via beta-oxidation, male Sprague-Dawley rats receiving continuous total parenteral nutrition (TPN) including 43% energy as fat were infused with [1-(13)C]- or [8-(13)C]triolein. Expired CO2 was collected continuously for 4 h and its 13C:12C ratio determined by isotope-ratio mass spectrometry. Bicarbonate retention was also assessed over 4 h by infusion of NaH14CO3 and measurement of the expired 14CO2. A possible loss of label from [8-(13)C]oleic acid from the citric acid cycle via labelled acetyl-CoA without oxidation to CO2 was assessed by infusing further animals with acetate labelled with 14C either at C atoms 1 or 2 and determination of its conversion to expired 14CO2. At isotopic steady state, 63.2 (SE 1.6)% (n 8) of the infused [1-(14)C]acetate and 46.0 (SE 1.2)% (n 8) of [2-(14)C]acetate was recovered as expired 14CO2. After correction for bicarbonate retention and non-oxidative isotope loss, 37.3 (SE 1.2)% (n 20) of the [1-(13)C]triolein was found to have been oxidized, whereas 32.6 (SE 1.0)% (n 20) of the [8-(13)C]triolein was oxidized (P < or = 0.01). The lower oxidation of the C atom at position 8 of oleic acid than that at position 1 indicates incomplete oxidative breakdown of the fatty acid after entering beta-oxidation. PMID:9624230

  18. Survival of free-living Acholeplasma in aerated pig manure slurry revealed by 13C-labeled bacterial biomass probing

    PubMed Central

    Hanajima, Dai; Aoyagi, Tomo; Hori, Tomoyuki

    2015-01-01

    Many studies have been performed on microbial community succession and/or predominant taxa during the composting process; however, the ecophysiological roles of microorganisms are not well understood because microbial community structures are highly diverse and dynamic. Bacteria are the most important contributors to the organic-waste decomposition process, while decayed bacterial cells can serve as readily digested substrates for other microbial populations. In this study, we investigated the active bacterial species responsible for the assimilation of dead bacterial cells and their components in aerated pig manure slurry by using 13C-labeled bacterial biomass probing. After 3 days of forced aeration, 13C-labeled and unlabeled dead Escherichia coli cell suspensions were added to the slurry. The suspensions contained 13C-labeled and unlabeled bacterial cell components, possibly including the cell wall and membrane, as well as intracellular materials. RNA extracted from each slurry sample 2 h after addition of E. coli suspension was density-resolved by isopycnic centrifugation and analyzed by terminal restriction fragment length polymorphism, followed by cloning and sequencing of bacterial 16S rRNA genes. In the heavy isotopically labeled RNA fraction, the predominant 13C-assimilating population was identified as belonging to the genus Acholeplasma, which was not detected in control heavy RNA. Acholeplasma spp. have limited biosynthetic capabilities and possess a wide variety of transporters, resulting in their metabolic dependence on external carbon and energy sources. The prevalence of Acholeplasma spp. was further confirmed in aerated pig manure slurry from four different pig farms by pyrosequencing of 16S rRNA genes; their relative abundance was ∼4.4%. Free-living Acholeplasma spp. had a competitive advantage for utilizing dead bacterial cells and their components more rapidly relative to other microbial populations, thus allowing the survival and prevalence

  19. Enhancing Phospholipid Fatty Acid Profiling of Soil Bacterial Communities via Substrate- Specific 13C-labelling

    NASA Astrophysics Data System (ADS)

    Evershed, R. P.; Maxfield, P. J.; Bingham, E. M.; Dildar, N.; Brennand, E. L.; Hornibrook, E.

    2008-12-01

    A range of culture-independent methods, has recently emerged to study environmental microorganisms in situ[1]. One such method is phospholipid fatty acid (PLFA) analysis, wherein these ubiquitous membrane lipids provide a powerful tool for the study of unculturable soil microorganisms. PLFA analyses have been used to investigate the impacts of a wide range of environmental factors on the soil microbial community. An acknowledged shortcoming of the PLFAs approach is the lack the chemotaxonoic specificity, which restricts the ability of the method to probe the activities of specific functional groups of the microbial community selectively. However, the selectivity of PLFAs analyses can be enhanced by incubating soils with 13C- labelled substrates followed by gas chromatography-combustion-isotope ratio mass spectrometry to reveal the specific PLFAs incorporating the 13C-label. The application of this approach will be demonstrated through our recent work on methanotrophic bacteria in soils. We applied this approach initially to mineral soils[2] and then extended chemotaxonomic assessments by using a combination of 13C-labelled PLFAs and hopanoids [3]. We have used this approach to explore the properties of high affinity methanotrophs in a range of environments, investigating the relationship between methane oxidation rates and the nature and magnitude of the methanotrophic community for the first time[4,5] More recently we extended the technique using a novel time series 13C-labelling of PLFAs[6] to estimate the rate and progression of 13C- label incorporation and turnover of methanotrophic populations. This modified approach has been used to investigate the impacts of various environmental variables, e.g. soil type, vegetation cover and land use, on the methanotrophic biomass[7.8]. The unique nature of the 13CH4 as a gaseous substate/carbon source means that can be readily introduced into soils via a specific subset of the soil microbial biomass, thereby offering many

  20. Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd

    Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  1. Respiration of 13C-Labeled Substrates Added to Soil in the Field and Subsequent 16S rRNA Gene Analysis of 13C-Labeled Soil DNA

    PubMed Central

    Padmanabhan, P.; Padmanabhan, S.; DeRito, C.; Gray, A.; Gannon, D.; Snape, J. R.; Tsai, C. S.; Park, W.; Jeon, C.; Madsen, E. L.

    2003-01-01

    Our goal was to develop a field soil biodegradation assay using 13C-labeled compounds and identify the active microorganisms by analyzing 16S rRNA genes in soil-derived 13C-labeled DNA. Our biodegradation approach sought to minimize microbiological artifacts caused by physical and/or nutritional disturbance of soil associated with sampling and laboratory incubation. The new field-based assay involved the release of 13C-labeled compounds (glucose, phenol, caffeine, and naphthalene) to soil plots, installation of open-bottom glass chambers that covered the soil, and analysis of samples of headspace gases for 13CO2 respiration by gas chromatography/mass spectrometry (GC/MS). We verified that the GC/MS procedure was capable of assessing respiration of the four substrates added (50 ppm) to 5 g of soil in sealed laboratory incubations. Next, we determined background levels of 13CO2 emitted from naturally occurring soil organic matter to chambers inserted into our field soil test plots. We found that the conservative tracer, SF6, that was injected into the headspace rapidly diffused out of the soil chamber and thus would be of little value for computing the efficiency of retaining respired 13CO2. Field respiration assays using all four compounds were completed. Background respiration from soil organic matter interfered with the documentation of in situ respiration of the slowly metabolized (caffeine) and sparingly soluble (naphthalene) compounds. Nonetheless, transient peaks of 13CO2 released in excess of background were found in glucose- and phenol-treated soil within 8 h. Cesium-chloride separation of 13C-labeled soil DNA was followed by PCR amplification and sequencing of 16S rRNA genes from microbial populations involved with 13C-substrate metabolism. A total of 29 full sequences revealed that active populations included relatives of Arthrobacter, Pseudomonas, Acinetobacter, Massilia, Flavobacterium, and Pedobacter spp. for glucose; Pseudomonas, Pantoea, Acinetobacter

  2. The Fate of Oral Glucosamine Traced by 13C Labeling in the Dog

    PubMed Central

    Dodge, George R.; Regatte, Ravinder R.; Noyszewski, Elizabeth A.; Hall, Jeffery O.; Sharma, Akella V.; Callaway, D. Allen; Reddy, Ravinder

    2011-01-01

    Objective: It has remained ambiguous as to whether oral dosing of glucosamine (GlcN) would make its way to the joint and affect changes in the cartilage, particularly the integrity of cartilage and chondrocyte function. The objective of this study was to trace the fate of orally dosed GlcN and determine definitively if GlcN was incorporated into cartilage proteoglycans. Design: Two dogs were treated with 13C-GlcN-HCl by oral dosing (500 mg/dog/d for 2 weeks and 250 mg/dog/d for 3 weeks). Cartilage was harvested from the tibial plateau and femoral condyles along with tissue specimens from the liver, spleen, heart, kidney, skin, skeletal muscle, lung, and costal cartilage. Percentages of 13C and 13C-GlcN present in each tissue sample were determined by inductively coupled plasma mass spectroscopy (ICP-MS) and nuclear magnetic resonance spectroscopy, respectively. Results: In the case of dog 1 (2-week treatment), there was an increase of 2.3% of 13C present in the articular cartilage compared to the control and an increase of 1.6% of 13C in dog 2 compared to control. As to be expected, the highest percentage of 13C in the other tissues tested was found in the liver, and the remaining tissues had percentages of 13C less than that of articular cartilage. Conclusion: The results are definitive and for the first time provide conclusive evidence that orally given GlcN can make its way through the digestive tract and be used by chondrocytes in joint cartilage, thereby potentially having an effect on the available GlcN for proteoglycan biosynthesis. PMID:26069586

  3. Uniformly sup 13 C-labeled algal protein used to determine amino acid essentiality in vivo

    SciTech Connect

    Berthold, H.K.; Hachey, D.L.; Reeds, P.J.; Klein, P.D. ); Thomas, O.P. ); Hoeksema, S. )

    1991-09-15

    The edible alga Spirulina platensis was uniformly labeled with {sup 13}C by growth in an atmosphere of pure {sup 13}CO{sub 2}. The labeled biomass was then incorporated into the diet of a laying hen for 27 days. The isotopic enrichment of individual amino acids in egg white and yolk proteins, as well as in various tissues of the hen at the end of the feeding period, was analyzed by negative chemical ionization gas chromatography/mass spectrometry. The amino acids of successive eggs showed one of two exclusive enrichment patterns: complete preservation of the intact carbon skeleton or extensive degradation and resynthesis. The same observation was made in tissue proteins. These patterns were cleanly divided according to known nutritional amino acid essentiality/nonessentiality but revealed differences in labeling among the nonessential amino acids: most notable was that proline accretion was derived entirely from the diet. Feeding uniformly {sup 13}C-labeled algal protein and recovering and analyzing de novo-synthesized protein provides a useful method to examine amino acid metabolism and determine conditional amino acid essentially in vivo.

  4. Uniformly 13C-labeled algal protein used to determine amino acid essentiality in vivo.

    PubMed Central

    Berthold, H K; Hachey, D L; Reeds, P J; Thomas, O P; Hoeksema, S; Klein, P D

    1991-01-01

    The edible alga Spirulina platensis was uniformly labeled with 13C by growth in an atmosphere of pure 13CO2. The labeled biomass was then incorporated into the diet of a laying hen for 27 days. The isotopic enrichment of individual amino acids in egg white and yolk proteins, as well as in various tissues of the hen at the end of the feeding period, was analyzed by negative chemical ionization gas chromatography/mass spectrometry. The amino acids of successive eggs showed one of two exclusive enrichment patterns: complete preservation of the intact carbon skeleton or extensive degradation and resynthesis. The same observation was made in tissue proteins. These patterns were cleanly divided according to known nutritional amino acid essentiality/nonessentiality but revealed differences in labeling among the nonessential amino acids: most notable was that proline accretion was derived entirely from the diet. Feeding uniformly 13C-labeled algal protein and recovering and analyzing de novo-synthesized protein provides a useful method to examine amino acid metabolism and determine conditional amino acid essentially in vivo. Images PMID:11607211

  5. Metabolic Flux Elucidation for Large-Scale Models Using 13C Labeled Isotopes

    PubMed Central

    Suthers, Patrick F.; Burgard, Anthony P.; Dasika, Madhukar S.; Nowroozi, Farnaz; Van Dien, Stephen; Keasling, Jay D.; Maranas, Costas D.

    2007-01-01

    A key consideration in metabolic engineering is the determination of fluxes of the metabolites within the cell. This determination provides an unambiguous description of metabolism before and/or after engineering interventions. Here, we present a computational framework that combines a constraint-based modeling framework with isotopic label tracing on a large-scale. When cells are fed a growth substrate with certain carbon positions labeled with 13C, the distribution of this label in the intracellular metabolites can be calculated based on the known biochemistry of the participating pathways. Most labeling studies focus on skeletal representations of central metabolism and ignore many flux routes that could contribute to the observed isotopic labeling patterns. In contrast, our approach investigates the importance of carrying out isotopic labeling studies using a more comprehensive reaction network consisting of 350 fluxes and 184 metabolites in Escherichia coli including global metabolite balances on cofactors such as ATP, NADH, and NADPH. The proposed procedure is demonstrated on an E. coli strain engineered to produce amorphadiene, a precursor to the anti-malarial drug artemisinin. The cells were grown in continuous culture on glucose containing 20% [U-13C]glucose; the measurements are made using GC-MS performed on 13 amino acids extracted from the cells. We identify flux distributions for which the calculated labeling patterns agree well with the measurements alluding to the accuracy of the network reconstruction. Furthermore, we explore the robustness of the flux calculations to variability in the experimental MS measurements, as well as highlight the key experimental measurements necessary for flux determination. Finally, we discuss the effect of reducing the model, as well as shed light onto the customization of the developed computational framework to other systems. PMID:17632026

  6. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    PubMed Central

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  7. Computational Platform for Flux Analysis Using 13C-Label Tracing- Phase I SBIR Final Report

    SciTech Connect

    Van Dien, Stephen J.

    2005-04-12

    Isotopic label tracing is a powerful experimental technique that can be combined with metabolic models to quantify metabolic fluxes in an organism under a particular set of growth conditions. In this work we constructed a genome-scale metabolic model of Methylobacterium extorquens, a facultative methylotroph with potential application in the production of useful chemicals from methanol. A series of labeling experiments were performed using 13C-methanol, and the resulting distribution of labeled carbon in the proteinogenic amino acids was determined by mass spectrometry. Algorithms were developed to analyze this data in context of the metabolic model, yielding flux distributions for wild-type and several engineered strains of M. extorquens. These fluxes were compared to those predicted by model simulation alone, and also integrated with microarray data to give an improved understanding of the metabolic physiology of this organism.

  8. Effects of sampling method on foliar δ (13)C of Leymus chinensis at different scales.

    PubMed

    Liu, Yanjie; Li, Yan; Zhang, Lirong; Xu, Xingliang; Niu, Haishan

    2015-03-01

    Stable carbon isotope composition (δ (13)C) usually shows a negative relationship with precipitation at a large scale. We hypothesized that sampling method affects foliar δ (13)C and its response pattern to precipitation. We selected 11 sites along a precipitation gradient in Inner Mongolia and collected leaves of Leymus chinensis with five or six replications repeatedly in each site from 2009 to 2011. Additionally, we collected leaves of L. chinensis separately from two types of grassland (grazed and fenced) in 2011. Foliar δ (13)C values of all samples were measured. We compared the patterns that foliar δ (13)C to precipitation among different years or different sample sizes, the differences of foliar δ (13)C between grazed and fenced grassland. Whether actual annual precipitation (AAP) or mean annual precipitation (MAP), it was strongly correlated with foliar δ (13)C every year. Significant difference was found between the slopes of foliar δ (13)C to AAP and MAP every year, among the slopes of foliar δ (13)C to AAP from 2009 to 2011. The more samples used at each site the lower and convergent P-values of the linear regression test between foliar δ (13)C and precipitation. Furthermore, there was significant lower foliar δ (13)C value in presence of grazed type than fenced type grassland. These findings provide evidence that there is significant effect of sampling method to foliar δ (13)C and its response pattern to precipitation of L. chinensis. Our results have valuable implications in methodology for future field sampling studies. PMID:25798224

  9. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    SciTech Connect

    LeMaster, D.M.

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  10. In-Situ 13C-Labeling of Microbial Phospholipid Fatty Acids: Tracing Substrate Assimilation in a Petroleum-Contaminated Aquifer

    NASA Astrophysics Data System (ADS)

    Pombo, S. A.; Schroth, M. H.; Pelz, O.; Zeyer, J.

    2001-12-01

    Stable isotope analysis of phospholipid-derived fatty acids (PLFA) is a novel tool to trace assimilation of organic carbon in microbial communities. The 13C-labeling of biomarker fatty acids allows the identification of specific microbial populations involved in the metabolism of particular substrates, supplemented in 13C-labeled form. The goal of this study was to investigate the feasibility of 13C-labeling of PLFA and produced dissolved inorganic carbon (DIC) in a petroleum hydrocarbon (PHC)-contaminated aquifer during an in-situ experiment. To this end, we performed a single-well "push-pull" test in a monitoring well located in the denitrifying zone of a PHC-contaminated aquifer in Studen, Switzerland. During the experiment, we injected 500 L of site groundwater that was amended with 13C-labeled acetate (50% [2-13C]) and nitrate as reactants, and bromide as conservative tracer. Following the injection, we extracted a total of 1000 L of test solution/groundwater mixture after 4, 23 and 46 h from the same location. Concentrations of anions were measured in samples collected during the extraction. From these data, we computed first order rate coefficients for consumption of acetate (0.70 +/- 0.05 1/d) and nitrate (0.63 +/- 0.08 1/d). In addition, we extracted and identified PLFA, and measured \\delta13C values of PLFA and DIC. After only 4 h of incubation, we detected 13C-enrichment of certain PLFA in suspended biomass of extracted groundwater. After 46 h, we measured enrichments of up to 5000 per mil in certain PLFA (e.g. 16:1ω 7c), and up to 1500 per mil in the produced DIC. Our results demonstrate the feasibility of in-situ 13C-labeling of PLFA and DIC using push-pull tests to determine microbial activities in-situ in a natural ecosystem.

  11. Carbon transfer, partitioning and residence time in the plant-soil system: a comparison of two 13C-CO2 labelling techniques

    NASA Astrophysics Data System (ADS)

    Studer, Mirjam S.; Siegwolf, Rolf T. W.; Schmidt, Michael W. I.; Abiven, Samuel

    2014-05-01

    13C-CO2 labelling is a powerful tool to study the carbon (C) dynamics in plant-soil systems, whereby various approaches have been applied, differing in the duration of label exposure, the applied label strength and the sampling intervals. We made a direct comparison of the two main 13C-CO2 labelling techniques - pulse and continuous labelling - and evaluated if different approaches yield the same results regarding the C transfer time, C partitioning and the C residence time in different plant-soil compartments. We conducted a pulse labelling (exposure to 99 atom% 13C-CO2 for three hours, traced for eight days) and a continuous labelling (exposure to 10 atom% 13C-CO2, traced for 14 days) on identical plant-soil systems (Populus deltoides x nigra, Cambisol soil) and under controlled environmental conditions. The plant-soil systems were destructively harvested at five sampling dates, and the soil CO2 efflux was sampled throughout the experiments. The 13C distribution into leaves, petioles, stems, cuttings, roots, soil, microbial biomass and soil respiration was analysed and wee applied exponential (pulse labelling) and logistic (continuous labelling) functions to model the C dynamics. Our results confirm that pulse labelling is best suited to assess the minimum C transfer time, while continuous labelling can be applied to assess the C transfer through a compartment, including short-term storage pools. Both experiments yielded the same C partitioning patterns at the specific sampling days, however, the time of sampling was crucial. For example the results of belowground C partitioning were consistent only after eight days of labelling. The C mean residence times estimated by the rate constant of the exponential and logistic function were largely different for the two techniques, mostly due to the strong model assumptions (e.g. steady state). Pulse and continuous labelling techniques are both well suited to assess C cycling. With pulse labelling, the dynamics of fresh

  12. Carbon Metabolism of Soil microorganisms at Low Temperatures: Position-Specific 13C Labeled Glucose Reveals the Story

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.

    2015-12-01

    Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity

  13. Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    NASA Astrophysics Data System (ADS)

    Alexandre, A.; Balesdent, J.; Cazevieille, P.; Chevassus-Rosset, C.; Signoret, P.; Mazur, J.-C.; Harutyunyan, A.; Doelsch, E.; Basile-Doelsch, I.; Miche, H.; Santos, G. M.

    2015-12-01

    In the rhizosphere, the uptake of low molecular weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relatively to total uptake is important, organic C uptake is supposed to be low relatively to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and in which extent organic C absorbed by grass roots, under the form of either intact amino acids (AAs) or microbial metabolites, can feed the organic C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled AAs to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C-excess and 15N-excess) in the roots, stems and leaves, and phytoliths, as well as the 13C-excess in AAs extracted from roots and stems and leaves, were quantified relatively to a control experiment in which no labelled AAs were added. The net uptake of 13C derived from the labeled AAs supplied to the nutritive solution (AA-13C) by Festuca arundinacea represented 4.5 % of the total AA-13C supply. AA-13C fixed in the plant represented only 0.13 % of total C. However, the experimental conditions may have underestimated the extent of the process under natural and field conditions. Previous studies showed that 15N and 13C can be absorbed by the roots in several organic and inorganic forms. In the present experiment, the fact that phenylalanine and methionine, that were supplied in high amount to the nutritive solution, were more 13C-enriched than other AAs in the roots and stems and leaves strongly suggested that part of AA-13C was absorbed and translocated in its original AA form. The concentration of AA-13C represented only 0.15 % of the

  14. INCLUSION OF 13C12-LABELLED MONO-, DI-, AND TRI-CHLORINATED DIBENZO-P-DIOXIN AND DIBENZOFURAN STANDARDS IN U.S. EPA METHODS 0023A/8290

    EPA Science Inventory

    13C12-labeled mono-, di-, and tri-chlorinated dibenzo-p-dioxin (CDD) and -chlorinated dibenzofuran (CDF) standards have been tested for their applicability to standard EPA sampling and analytical Methods 0023A/8290. These methods target for analysis only the tetra- through octa-C...

  15. Study of the metabolism of /sup 13/C labeled substrates by /sup 13/C NMR spectroscopy of intact cells, tissues, and organs

    SciTech Connect

    Matwiyoff, N.A.; London, R.E.; Hutson, J.Y.

    1982-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy, in conjunction with carbon-13 labeling, has become an important analytical technique for the study of biological systems and biologically important molecules. The growing list of its well established applications to isolated molecules in solution includes the investigation of: metabolic pathways; the microenvironments of ligands bound to proteins; the architecture and dynamics of macromolecules; the structures of coenzymes and other natural products; and the mechanisms of reactions. Recently interest has been reawakened in the use of the technique for the study of metabolic pathways and structural components in intact organelles, cells, and tissues. The promise and problems in the use of /sup 13/C labeling in such investigations can be illustrated by the results on suspensions of the yeast, Candida utilis.

  16. Monitoring CO[subscript 2] Fixation Using GC-MS Detection of a [superscript 13]C-Label

    ERIC Educational Resources Information Center

    Hammond, Daniel G.; Bridgham, April; Reichert, Kara; Magers, Martin

    2010-01-01

    Much of our understanding of metabolic pathways has resulted from the use of chemical and isotopic labels. In this experiment, a heavy isotope of carbon, [superscript 13]C, is used to label the product of the well-known RuBisCO enzymatic reaction. This is a key reaction in photosynthesis that converts inorganic carbon to organic carbon; a process…

  17. Structure and Metabolic-Flow Analysis of Molecular Complexity in a (13) C-Labeled Tree by 2D and 3D NMR.

    PubMed

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Kikuchi, Jun

    2016-05-10

    Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from (13) C-enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing (13) C-labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the (13) C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the (13) C/(12) C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant. PMID:27060701

  18. High resolution (13)C MRI with hyperpolarized urea: in vivo T(2) mapping and (15)N labeling effects.

    PubMed

    Reed, Galen D; von Morze, Cornelius; Bok, Robert; Koelsch, Bertram L; Van Criekinge, Mark; Smith, Kenneth J; Hong Shang; Larson, Peder E Z; Kurhanewicz, John; Vigneron, Daniel B

    2014-02-01

    (13)C steady state free precession (SSFP) magnetic resonance imaging and effective spin-spin relaxation time (T2) mapping were performed using hyperpolarized [(13)C] urea and [(13) C,(15)N2] urea injected intravenously in rats. (15)N labeling gave large T2 increases both in solution and in vivo due to the elimination of a strong scalar relaxation pathway. The T2 increase was pronounced in the kidney, with [(13) C,(15) N2] urea giving T2 values of 6.3±1.3 s in the cortex and medulla, and 11±2 s in the renal pelvis. The measured T2 in the aorta was 1.3±0.3 s. [(13)C] urea showed shortened T2 values in the kidney of 0.23±0.03 s compared to 0.28±0.03 s measured in the aorta. The enhanced T2 of [(13)C,(15)N2] urea was utilized to generate large signal enhancement by SSFP acquisitions with flip angles approaching the fully refocused regime. Projection images at 0.94 mm in-plane resolution were acquired with both urea isotopes, with [(13)C,(15) N2] urea giving a greater than four-fold increase in signal-to-noise ratio over [(13)C] urea. PMID:24235273

  19. Using Position-Specific 13C and 14C Labeling and 13C-PLFA Analysis to Assess Microbial Transformations of Free Versus Sorbed Alanine

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Herschbach, J.; Bore, E. K.; Kuzyakov, Y.; Dippold, M. A.

    2015-12-01

    Sorption of charged or partially charged low molecular weight organic substances (LMWOS) to soil mineral surfaces delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil sciences, to compare the transformation mechanisms of sorbed and non-sorbed alanine in soil. Alanine as an amino acid links C- and N-cycles in soil and therefore is a model substance for the pool of LMWOS. To assess transformations of sorbed alanine, we added position-specific and uniformly 13C and 14C labeled alanine tracer to soil that had previously been sterilized by γ-radiation. The labeled soil was added to non-sterilized soil from the same site and incubated. Soil labeled with the same tracers without previous sorption was prepared and incubated as well. We captured the respired CO2 and determined its 14C-activity at increasing time intervals. The incorporation of 14C into microbial biomass was determined by chloroform fumigation extraction (CFE), and utilization of individual C positions by distinct microbial groups was evaluated by 13C-phospholipid fatty acid analysis (PLFA). A dual peak in the respired CO2 revealed two sorption mechanisms. To compare the fate of individual C atoms independent of their concentration and pool size in soil, we applied the divergence index (DI). The DI reveals the convergent or divergent behavior of C from individual molecule positions during microbial utilization. Alanine C-1 position was mainly oxidized to CO2, while its C-2 and C-3 were preferentially incorporated in microbial biomass and PLFA. This indicates that sorption by the COOH group does not protect this group from preferential oxidation. Microbial metabolism was determinative for the preferential oxidation of individual molecule positions. The use of position-specific labeling revealed mechanisms and kinetics of microbial utilization of sorbed and non

  20. Combining combing and secondary ion mass spectrometry to study DNA on chips using (13)C and (15)N labeling.

    PubMed

    Cabin-Flaman, Armelle; Monnier, Anne-Francoise; Coffinier, Yannick; Audinot, Jean-Nicolas; Gibouin, David; Wirtz, Tom; Boukherroub, Rabah; Migeon, Henri-Noël; Bensimon, Aaron; Jannière, Laurent; Ripoll, Camille; Norris, Victor

    2016-01-01

    Dynamic secondary ion mass spectrometry ( D-SIMS) imaging of combed DNA - the combing, imaging by SIMS or CIS method - has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to (13)C-labeling via the detection and quantification of the (13)C (14)N (-) recombinant ion and the use of the (13)C: (12)C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS. PMID:27429742

  1. Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling

    PubMed Central

    Cabin-Flaman, Armelle; Monnier, Anne-Francoise; Coffinier, Yannick; Audinot, Jean-Nicolas; Gibouin, David; Wirtz, Tom; Boukherroub, Rabah; Migeon, Henri-Noël; Bensimon, Aaron; Jannière, Laurent; Ripoll, Camille; Norris, Victor

    2016-01-01

    Dynamic secondary ion mass spectrometry ( D-SIMS) imaging of combed DNA – the combing, imaging by SIMS or CIS method – has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to 13C-labeling via the detection and quantification of the 13C 14N - recombinant ion and the use of the 13C: 12C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS. PMID:27429742

  2. Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    NASA Astrophysics Data System (ADS)

    Alexandre, Anne; Balesdent, Jérôme; Cazevieille, Patrick; Chevassus-Rosset, Claire; Signoret, Patrick; Mazur, Jean-Charles; Harutyunyan, Araks; Doelsch, Emmanuel; Basile-Doelsch, Isabelle; Miche, Hélène; Santos, Guaciara M.

    2016-03-01

    In the rhizosphere, the uptake of low-molecular-weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relative to total uptake is important, organic C uptake is supposed to be low relative to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and to what extent organically derived C absorbed by grass roots can feed the C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled amino acids (AAs) to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C excess and 15N excess) in the roots, stems and leaves as well as phytoliths were measured relative to a control experiment in which no labeled AAs were added. Additionally, the 13C excess was measured at the molecular level, in AAs extracted from roots and stems and leaves. The net uptake of labeled AA-derived 13C reached 4.5 % of the total AA 13C supply. The amount of AA-derived 13C fixed in the plant was minor but not nil (0.28 and 0.10 % of total C in roots and stems/leaves, respectively). Phenylalanine and methionine that were supplied in high amounts to the nutritive solution were more 13C-enriched than other AAs in the plant. This strongly suggested that part of AA-derived 13C was absorbed and translocated into the plant in its original AA form. In phytoliths, AA-derived 13C was detected. Its concentration was on the same order of magnitude as in bulk stems and leaves (0.15 % of the phytolith C). This finding strengthens the body of evidences showing that part of organic compounds occluded in phytoliths can be fed by C entering the plant through the roots. Although this experiment was done in

  3. Follow the Carbon: Laboratory Studies of 13C-Labeled Early Earth Haze Analogs

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Day, D. A.; Mojzsis, S. J.; Jimenez, J. L.; Tolbert, M. A.

    2013-12-01

    While the Sun was still young and faint before the rise of molecular oxygen 2.4 Ga, early Earth might have been kept warm by an atmosphere containing the greenhouse gases methane and carbon dioxide in abundances greater than what is found on Earth today. It has been suggested that an atmosphere containing approximately 1000 ppmv methane and carbon dioxide could provided the needed greenhouse warming for liquid water to exist at the surface. Laboratory and modeling studies suggest that an atmosphere containing methane and carbon dioxide could lead to the formation of significant amounts of organic haze due to photochemical reactions initiated by Lyman-α (121.6 nm) excitation. Chemical mechanisms proposed to explain the chemistry rely on methane as the source of carbon in these hazes and treat carbon dioxide as a source of oxygen only. In the present work, we use isotopically labelled precursor gases to examine the source of carbon in photochemical haze formed in a CH4/CO2/N2 atmosphere. We generate haze analogs in the laboratory by far-UV irradiation of analog atmospheres containing permutations of 1,000 ppmv unlabeled and 13C-labeled methane and carbon. Products in the particle phase were analyzed by both unit mass resolution and high-resolution (m/Δm=5,000) aerosol mass spectrometry. Results indicate that carbon from carbon dioxide accounts for 20% (×5%) of the total carbon contained in the hazes. These results have implications for the geochemical interpretations of inclusions found in Archaean rocks on Earth, and for the astrobiological potential of other planetary atmospheres.

  4. First airborne samples of a volcanic plume for δ13C of CO2 determinations

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias P.; Lopez, Taryn M.

    2016-04-01

    Volcanic degassing is one of the main natural sources of CO2 to the atmosphere. Carbon isotopes of volcanic gases enable the determination of CO2 sources including mantle, organic or carbonate sediments, and atmosphere. Until recently, this work required sample collection from vents followed by laboratory analyses. Isotope ratio infrared analyzers now enable rapid analyses of plume δ13C-CO2, in situ and in real time. Here we report the first analyses of δ13C-CO2 from airborne samples. These data combined with plume samples from the vent area enable extrapolation to the volcanic source δ13C. We performed our experiment at the previously unsampled and remote Kanaga Volcano in the Western Aleutians. We find a δ13C source composition of -4.4‰, suggesting that CO2 from Kanaga is primarily sourced from the upper mantle with minimal contributions from subducted components. Our method is widely applicable to volcanoes where remote location or activity level precludes sampling using traditional methods.

  5. 13C measurements on organic aerosol - a comparison of sources with ambient samples

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Meusinger, Carl; Oyama, Beatriz; Holzinger, Rupert; Röckmann, Thomas

    2014-05-01

    The stable carbon isotopes 12C and 13C can be used to get information about sources and processing of organic aerosol (OA). We developed and tested a method to measure δ13C values of OA collected on filter samples in different volatility classes. These filter samples are introduced into an oven, where organic compounds are thermally desorbed in He at different temperatures. The compounds released at each temperature step are oxidized to CO2 using a platinum catalyst at 550 °C. The CO2 is then passed on to an isotope ratio mass spectrometer (IRMS) to measure d13C ratios. With a similar setup the chemical composition at each temperature step can be determined using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). System evaluation with controlled test compounds showed that organic compounds usually start evaporating from the filter when their melting point is reached. Isotopic fractionation occurs only if one temperature step is within a few degrees of the melting point of the substance, so that the substance only partially evaporates. However, this effect should be limited in an ambient sample containing thousands of individual chemical compounds. δ13C values of aerosol filter samples do not depend on the sample amount used, i.e. the system shows good linearity. The reproducibility depends somewhat on the sample amount and is usually < ± 0.3 ‰ for oven temperatures up to 200 °C and < ± 0.5 ‰ for oven temperatures greater than 200 °C. We analysed aerosol samples collected in a tunnel in Brazil (vehicular emissions), laboratory generated secondary organic aerosol (SOA) from alpha-pinene ozonolysis, and ambient filter samples from a regional site in the Netherlands, an urban site in Belgium, and Sao Paulo Brazil. First results show that δ13C ratios of SOA and vehicular emissions do not change strongly with oven temperature, i.e. the more refractory organic compounds have similar isotopic composition as the more volatile compounds

  6. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    PubMed Central

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  7. Exocrine pancreatic insufficiency: accuracy and clinical value of the uniformly labelled 13C-Hiolein breath test.

    PubMed Central

    Lembcke, B; Braden, B; Caspary, W F

    1996-01-01

    BACKGROUND AND AIMS: The 13C-Hiolein breath test (98% [U-13C] labelled long chain triglyceride mixture (highly labelled triolein) was evaluated as a non-invasive, non-radioactive test for exocrine pancreatic insufficiency. Accuracy and clinical validity were examined with reference to both the secretin pancreozymin test and faecal fat analysis. METHODS: A secretin pancreozymin test and faecal fat analysis were performed in 46 patients, 30 with exocrine pancreatic insufficiency and 16 with normal pancreatic function. In all of these patients and in seven healthy volunteers (controls), a 13C-Hiolein breath test was performed using 2 mg/kg [U-13C] labelled Hiolein with a standard risk snack (1.5 g/kg; 25% fat). 13CO2/12CO2 enrichment in the exhaled breath was measured by isotope ratio mass spectrometry. RESULTS: In patients with pancreatic steatorrhoea the 13CO2 response was below the 95% confidence interval of 13CO2 exhalation in the controls. These responses were also diminished (p < 0.001) compared with patients with impaired lipase output but normal fat excretion and with disease as well as healthy controls. There was a linear correlation between stimulated lipase output and the ratio of lipase output/13CO2 response (r = 0.95). Among the 40 patients in whom direct pancreatic function testing was clinically indicated, the sensitivity of the 13C-Hiolein test for detecting steatorrhoea was 91.7%, with a specificity of 85.7%. CONCLUSIONS: In patients with pancreatic disease the 13C-Hiolein breath test reflects impaired lipase output and indicates decompensated lipolysis. The 13C-Hiolein breath test is a convenient alternative to faecal fat analysis. PMID:9026480

  8. Trimethylation Enhancement Using (13)C-Diazomethane ((13)C-TrEnDi): Increased Sensitivity and Selectivity of Phosphatidylethanolamine, Phosphatidylcholine, and Phosphatidylserine Lipids Derived from Complex Biological Samples.

    PubMed

    Canez, Carlos R; Shields, Samuel W J; Bugno, Magdalena; Wasslen, Karl V; Weinert, Hillary P; Willmore, William G; Manthorpe, Jeffrey M; Smith, Jeffrey C

    2016-07-19

    Significant sensitivity enhancements in the tandem mass spectrometry-based analysis of complex mixtures of several phospholipid classes has been achieved via (13)C-TrEnDi. (13)C-TrEnDi-modified phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylcholine (PC) lipids extracted from HeLa cells demonstrated greater sensitivity via precursor ion scans (PISs) than their unmodified counterparts. Sphingomyelin (SM) species exhibited neither an increased nor decreased sensitivity following modification. The use of isotopically labeled diazomethane enabled the distinction of modified PE and modified PC species that would yield isobaric species with unlabeled diazomethane. (13)C-TrEnDi created a PE-exclusive PIS of m/z 202.1, two PS-exclusive PISs of m/z 148.1 and m/z 261.1, and a PIS of m/z 199.1 for PC species (observed at odd m/z values) and SM species (observed at even m/z values). The standardized average area increase after TrEnDi modification was 10.72-fold for PE species, 2.36-fold for PC, and 1.05-fold for SM species. The sensitivity increase of PS species was not quantifiable, as there were no unmodified PS species identified prior to derivatization. (13)C-TrEnDi allowed for the identification of 4 PE and 7 PS species as well as the identification and quantitation of an additional 4 PE and 4 PS species that were below the limit of detection (LoD) prior to modification. (13)C-TrEnDi also pushed 24 PE and 6 PC lipids over the limit of quantitation (LoQ) that prior to modification were above the LoD only. PMID:27275841

  9. Microbial transformations of free versus sorbed alanine analyzed by position-specific 13C and 14C labeling and 13C-PLFA analysis

    NASA Astrophysics Data System (ADS)

    Apostel, Carolin; Dippold, Michaela; Bore, Ezekiel; Kuzyakov, Yakov

    2015-04-01

    Sorption of charged or partially charged low molecular weight organic substances (LMWOS) to soil mineral surfaces delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil sciences, to compare the transformation mechanisms of sorbed and non-sorbed alanine in soil. Alanine as an amino acid links C- and N-cycles in soil and therefore is a model representative for the pool of LMWOS. To assess transformations of sorbed alanine, we combined position-specifically and uniformly 13C and 14C labeled alanine tracer solution with a loamy haplic luvisol that had previously been sterilized by γ-radiation. After shaking the mixtures, the supernatant was removed, as was all non-sorbed alanine by repeated shaking with millipore water. The labeled soil was added to non-sterilized soil from the same site. To compare the effect of sorption, soil labeled with the same position-specifically labeled tracers without previous sorption was prepared and incubated as well. We captured the respired CO2 and determined its 14C-activity at increasing time steps. The incorporation of 14C into microbial biomass was determined by CFE, and utilization of individual C positions by distinct microbial groups was evaluated by 13C-PLFA analysis. A dual peak in the respired CO2 revealed the influence of two sorption mechanisms. Microbial uptake and transformation of the sorbed alanine was 3 times slower compared to non-sorbed alanine. To compare the fate of individual C atoms independent of their concentration and pool size in soil, we introduced the divergence index (DI). The DI reveals the convergent or divergent behaviour of C from individual molecule positions during microbial utilization. The DI revealed, that alanines C-1 position was mainly oxidized to CO2, while its C-2 and C-3 were preferentially incorporated in microbial biomass and PLFAs. This indicates

  10. General last-step labeling of biomolecule-based substrates by [12C], [13C], and [11C] carbon monoxide.

    PubMed

    Cornilleau, Thomas; Audrain, Hélène; Guillemet, Aude; Hermange, Philippe; Fouquet, Eric

    2015-01-16

    Alkaloid-, steroid-, biotin-, carbohydrate-, nucleoside-, and peptide-based bioconjugates are easily labeled with CO by a last-step palladium-catalyzed carbonylation. The choice of the [(12)C], [(13)C], or [(11)C] isotope opens the way to a new class of potential tracers or ligands easily available for various applications. PMID:25562588

  11. [COMPARATIVE EVALUATION OF THE EFFECTIVENESS OF THE USE OF 13C-LABELED MIXED TRIGLYCERIDE AND 13C-STARCH BREATH TESTS IN PATIENTS WITH CHRONIC PANCREATITIS AFTER CHOLECYSTECTOMY].

    PubMed

    Sirchak, Ye S

    2015-01-01

    The results of a comprehensive study of 96 patients after cholecystectomy are provided. The higher sensitivity and informativeness of the 13C-labeled mixed triglyceride breath .test compared with 13C-starch breath test for determining functional pancreatic insufficiency in patients after cholecystectomy in early stages of its formation was set. PMID:27491156

  12. Assessing microbial utilization of free versus sorbed Alanine by using position-specific 13C labeling and 13C-PLFA analysis

    NASA Astrophysics Data System (ADS)

    Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela

    2016-04-01

    Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the

  13. NMR studies of bent DNA using {sup 13}C-enriched samples

    SciTech Connect

    Zimmer, D.P.; Crothers, D.M.

    1994-12-01

    Bending of the DNA double helix can be brought about by introducing runs of adenines (A-tracts) in phase with the helical repeat of the DNA. The requirements for bending of DNA by A-tracts are that the length of the A-tract be greater than 3 base pairs and that the A-tracts must be in phase with the helical repeat (every 10 or 11 bp). Other factors, such as the number of adenines in the run, flanking sequences, and whether the A-tracts are phased with respect to the 5{prime}A or the 3{prime}A, have effects upon the degree of bending as assayed by electrophoretic mobility on native polyacrylamide gels. There are a number of models for bending A-tract DNA. The junction-bending model postulates that the structure of A-tracts is similar to the fiber diffraction structure of poly A, in which there is a significant degree of base pair tilt with respect to the helix axis. In this model, bending occurs at the junction between the A-tract and the B-form helix to allow favorable stacking interactions to occur. The bend of the helix could arise as a result of some other perturbation of B-form DNA by A-tracts, such as propeller twist; bending also could be due to a combination of factors. Our goal is to find the structural features of A-tracts responsible for bending of the helix by performing NMR on oligonucleotides containing A-tracts to obtain higher resolution structural data. One of the problems encountered in NMR structure determination of nucleic acids and other macromolecules is the assignment of resonances to nuclei. This procedure can be greatly facilitated through the use of {sup 13}C-enriched nucleic acid samples. We are developing a technique for the enzymatic synthesis of labeled DNA for NMR. The technique we are developing is similar to RNA labeling techniques already in use. The technique involves growth of methylotrophic bacteria on {sup 13}CH{sub 3}OH.

  14. Comprehensive discovery of 13C labeled metabolites in the bacterium Methylobacterium extorquens AM1 using gas chromatography-mass spectrometry.

    PubMed

    Yang, Song; Hoggard, Jamin C; Lidstrom, Mary E; Synovec, Robert E

    2013-11-22

    Herein, we report the identification of isotopically labeled metabolite peaks (or the lack of labeling) between sets of GC-MS data from Methylobacterium extorquens AM1. M. extorquens AM1 is one of the best-characterized model organisms for the study of C1 metabolism in methylotrophic bacteria, a diverse group of microbes that can use reduced one-carbon (C1) sources, such as methanol and methane as a sole source for both energy generation and carbon assimilation. Application of a match value (MV) based metric was used to rank the metabolite peaks in the data from those exhibiting the most mass spectral indications of labeling, to those not exhibiting any indications of labeling. The MV-based ranking corresponded well with analyst interpretation of the mass spectra. The MV-based method was initially demonstrated and validated using a mixture of 21 standards with data sets generated for mixtures at natural abundance, a mixture with 6 of the compounds labeled, and a 1:1 mixture of the natural abundance and labeled mixtures. Experimental data from TMS-derivatized extracts from the bacterium M. extorquens AM1 grown with natural abundance or (13)C-labeled methanol as the carbon source were analyzed. Of 131 peaks considered for the analysis of M. extorquens AM1, the 40 peaks ranked highest for indications of (13)C labeling were all found to be labeled, while those peaks ranked lower progressed from peaks for which labeling was uncertain, to a larger number of peaks that were clearly not labeled. The list of peaks determined to be labeled forms a library of compounds that are known to be labeled following the methanol metabolic pathway in M. extorquens AM1 that can be further investigated in future work, e.g. fluxomic studies. PMID:24007683

  15. Nic1 Inactivation Enables Stable Isotope Labeling with 13C615N4-Arginine in Schizosaccharomyces pombe*

    PubMed Central

    Carpy, Alejandro; Patel, Avinash; Tay, Ye Dee; Hagan, Iain M.; Macek, Boris

    2015-01-01

    Stable Isotope Labeling by Amino Acids (SILAC) is a commonly used method in quantitative proteomics. Because of compatibility with trypsin digestion, arginine and lysine are the most widely used amino acids for SILAC labeling. We observed that Schizosaccharomyces pombe (fission yeast) cannot be labeled with a specific form of arginine, 13C615N4-arginine (Arg-10), which limits the exploitation of SILAC technology in this model organism. We hypothesized that in the fission yeast the guanidinium group of 13C615N4-arginine is catabolized by arginase and urease activity to 15N1-labeled ammonia that is used as a precursor for general amino acid biosynthesis. We show that disruption of Ni2+-dependent urease activity, through deletion of the sole Ni2+ transporter Nic1, blocks this recycling in ammonium-supplemented EMMG medium to enable 13C615N4-arginine labeling for SILAC strategies in S. pombe. Finally, we employed Arg-10 in a triple-SILAC experiment to perform quantitative comparison of G1 + S, M, and G2 cell cycle phases in S. pombe. PMID:25368411

  16. Evidence of the photosynthetic origin of monoterpenes emitted by quercus ilex L. leaves by {sup 13}C labeling

    SciTech Connect

    Loreto, F.; Ciccioli, P.; Cecinato, A.; Brancaleoni, E. |

    1996-04-01

    The carbon of the four main monoterpenes emitted by Quercus ilex L. leaves was completely labeled with {sup 13}C after a 20-min feeding with 99% {sup 13}CO{sub 2}. This labeling time course is comparable with the labeling time course of isoprene, the terpenoid emitted by other Quercus species and synthesized in leaf chloroplasts. It is also comparable with that of phosphoglyceric acid. Our experiment therefore provides evidence that monoterpenes emitted by Q. ilex are formed photosynthesis intermediates and may share the same synthetic pathway with isoprene. By analyzing the rate and the distribution of labeling in the different fragments, we looked for evidence of differential carbon labeling in the {alpha}-pinene emitted. However, the labeling pattern was quite uniform in the different fragments, suggesting that the carbon skeleton of the emitted monoterpenes comes from a unique carbon source. 16 refs., 3 figs., 1 tab.

  17. Analysis of defect structure in silicon. Characterization of samples from UCP ingot 5848-13C

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Guyer, T.; Stringfellow, G. B.

    1982-01-01

    Statistically significant quantitative structural imperfection measurements were made on samples from ubiquitous crystalline process (UCP) Ingot 5848 - 13 C. Important trends were noticed between the measured data, cell efficiency, and diffusion length. Grain boundary substructure appears to have an important effect on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements give statistically significant information compared to other microanalytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for QTM analysis was perfected.

  18. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of (13)C-labeled Plant Metabolites and Lignocellulose.

    PubMed

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our (13)C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the (13)C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the (13)C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in (13)C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  19. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  20. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique.

    PubMed

    Maathuis, Annet J H; van den Heuvel, Ellen G; Schoterman, Margriet H C; Venema, Koen

    2012-07-01

    Galacto-oligosaccharides (GOS) are considered to be prebiotic, although the contribution of specific members of the microbiota to GOS fermentation and the exact microbial metabolites that are produced upon GOS fermentation are largely unknown. We aimed to determine this using uniformly (13)C-labeled GOS. The normal (control) medium and unlabeled or (13)C-labeled GOS was added to a dynamic, validated, in vitro model of the large-intestine containing an adult-type microbiota. Liquid-chromatography MS was used to measure the incorporation of (13)C label into metabolites. 16S-rRNA stable isotope probing coupled to a phylogenetic micro-array was used to determine label incorporation in microbial biomass. The primary members within the complex microbiota that were directly involved in GOS fermentation were shown to be Bifidobacterium longum, B. bifidum, B. catenulatum, Lactobacillus gasseri, and L. salivarius, in line with the prebiotic effect of GOS, although some other species incorporated (13)C label also. GOS fermentation led to an increase in acetate (+49%) and lactate (+23%) compared with the control. Total organic acid production was 8.50 and 7.52 mmol/g of carbohydrate fed for the GOS and control experiments, respectively. At the same time, the cumulative production of putrefactive metabolites (branched-chain fatty acids and ammonia) was reduced by 55%. Cross-feeding of metabolites from primary GOS fermenters to other members of the microbiota was observed. Our findings support a prebiotic role for GOS and its potential to act as a synbiotic in combination with certain probiotic strains. PMID:22623395

  1. Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique.

    PubMed

    Le Tacon, François; Zeller, Bernd; Plain, Caroline; Hossann, Christian; Bréchet, Claude; Robin, Christophe

    2013-01-01

    Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy) or from soil organic matter (saprotrophy). The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum) production and situated in the west part of the Vosges, France, was labeled with (13)CO2. The transfer of (13)C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little (13)C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated (13)C prior to ascocarp development. Then, the mycorrhizas transferred (13)C to the ascocarps to provide constitutive carbon (1.7 mg of (13)C per day). The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season) came from the host. PMID:23741356

  2. Carbon Transfer from the Host to Tuber melanosporum Mycorrhizas and Ascocarps Followed Using a 13C Pulse-Labeling Technique

    PubMed Central

    Le Tacon, François; Zeller, Bernd; Plain, Caroline; Hossann, Christian; Bréchet, Claude; Robin, Christophe

    2013-01-01

    Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy) or from soil organic matter (saprotrophy). The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum) production and situated in the west part of the Vosges, France, was labeled with 13CO2. The transfer of 13C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little 13C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated 13C prior to ascocarp development. Then, the mycorrhizas transferred 13C to the ascocarps to provide constitutive carbon (1.7 mg of 13C per day). The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season) came from the host. PMID:23741356

  3. Dynamic nuclear polarization-enhanced 1H-13C double resonance NMR in static samples below 20 K

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-08-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H-13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H-13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H-13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr-Purcell experiments and numerical simulations of Carr-Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C-13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils.

  4. Regioselective Syntheses of [13C]4-Labelled Sodium 1-Carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate and Sodium 2-Carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate from [13C]4-Maleic Anhydride

    PubMed Central

    Barsamian, Adam L.; Perkins, Matt J.; Field, Jennifer A.; Blakemore, Paul R.

    2014-01-01

    The entitled monohydrolysis products, also known as α- and β-ethylhexyl sulfosuccinate ('EHSS'), of the surfactant diisooctyl sulfosuccinate ('DOSS') were synthesized in stable isotope labelled form from [13C]4-maleic anhydride. Sodium [13C]4-1-carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate (α-EHSS) was prepared by the method of Larpent by reaction of 2-ethylhexan-1-ol with [13C]4-maleic anhydride followed by regioselective conjugate addition of sodium bisulfite to the resulting monoester (38% overall yield). The regiochemical outcome of bisulfite addition was confirmed by a combination of 13C/13C (INADEQUATE) and 1H/13C (HMBC) NMR spectral correlation experiments. Sodium [13C]4-2-carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate (β-EHSS) was prepared in four steps by reaction of 4-methoxybenzyl alcohol (PMBOH) with [13C]4-maleic anhydride, regioselective sodium bisulfite addition, DCC mediated esterification with 2-ethylhexan-1-ol, and PMB ester deprotection with trifluoroacetic acid (13% overall yield). The regiochemical outcome of the second synthesis was confirmed by a combination of 1JCC scalar coupling constant analysis and 1H/13C (HMBC) NMR spectral correlation. The materials prepared are required as internal standards for the LC-MS/MS trace analysis of the degradation products of DOSS, the anionic surfactant found in Corexit, the oil dispersant used during emergency response efforts connected to the Deepwater Horizon oil spill of April 2010. PMID:24700711

  5. Extreme 13C depletion of CCl2F2 in firn air samples from NEEM, Greenland

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A.; Holzinger, R.; Martinerie, P.; Schneider, R.; Kaiser, J.; Witrant, E.; Etheridge, D.; Rubino, M.; Petrenko, V.; Blunier, T.; Röckmann, T.

    2012-07-01

    A series of 12 high volume air samples collected from the S2 firn core during the North Greenland Eemian Ice Drilling (NEEM) 2009 campaign have been measured for mixing ratio and stable carbon isotope composition of the chlorofluorocarbon CFC-12 (CCl2F2). While the mixing ratio measurements compare favorably to other firn air studies, the isotope results show extreme 13C depletion at the deepest measurable depth (65 m), to values lower than δ13C = -80‰ vs. VPDB (the international stable carbon isotope scale), compared to present day surface tropospheric measurements near -40‰. Firn air modeling was used to interpret these measurements. Reconstructed atmospheric time series indicate even larger depletions (to -120‰) near 1950 AD, with subsequent rapid enrichment of the atmospheric reservoir of the compound to the present day value. Mass-balance calculations show that this change must have been caused by a large change in the isotopic composition of anthropogenic CFC-12 emissions, probably due to technological changes in the CFC production process over the last 80 yr. Propagating the mass-balance calculations into the future demonstrates that as emissions decrease to zero, isotopic fractionation by the stratospheric sinks will lead to continued 13C enrichment in atmospheric CFC-12.

  6. Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling

    PubMed Central

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M. Francesca

    2014-01-01

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components

  7. 13C measurements on organic aerosol - ambient samples versus source studies

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Meusinger, Carl; Oyama, Beatriz; Ramon, Wichert; de Wilde, Peter A.; Holzinger, Rupert; Röckmann, Thomas

    2013-04-01

    The stable carbon isotopes 12C and 13C can be used to get information about sources and processing of organic aerosol (OA). We developed and tested a method to measure δ13C values of OA collected on filter samples in different volatility classes. These filter samples are introduced into an oven, where organic compounds are thermally desorbed in He at different temperatures. The compounds released at each temperature step are oxidized to CO2 using a platinum catalyst at 550 °C. The CO2 is then passed on to an isotope ratio mass spectrometer (IRMS) to measure δ13C ratios. With a similar setup the chemical composition at each temperature step can be determined using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). System evaluation with controlled test compounds showed that organic compounds usually start evaporating from the filter when their melting point is reached. Isotopic fractionation occurs only, if one temperature step is within a few degrees of the melting point of the substance, so that the substance only partially evaporates. However, this effect should be limited in an ambient sample containing thousands of individual chemical compounds. We analysed aerosol samples collected in a tunnel in Brazil (vehicular emissions), laboratory generated secondary organic aerosol (SOA) from alpha-pinene ozonolysis, and ambient filter samples from a regional site in the Netherlands and an urban site in Belgium. First results indicate that SOA is more volatile than organic aerosol from ambient or tunnel filters. The δ13C ratios of SOA and vehicular emissions do not change strongly with oven temperature, i.e. the more refractory organic compounds have similar isotopic composition as the more volatile compounds. This is in contrast to ambient organic aerosol where the more volatile compounds evaporating below 200°C are depleted with respect to the refractory compounds. Possible reasons for this difference (mixture of sources vs the role of

  8. Recoupling of chemical shift anisotropies in solid-state NMR under high-speed magic-angle spinning and in uniformly 13C-labeled systems

    NASA Astrophysics Data System (ADS)

    Chan, Jerry C. C.; Tycko, Robert

    2003-05-01

    We demonstrate the possibility of recoupling chemical shift anisotropy (CSA) interactions in solid-state nuclear magnetic resonance (NMR) under high-speed magic-angle spinning (MAS) while retaining a static CSA powder pattern line shape and simultaneously attenuating homonuclear dipole-dipole interactions. CSA recoupling is accomplished by a rotation-synchronized radio-frequency pulse sequence with symmetry properties that permit static CSA line shapes to be obtained. We suggest a specific recoupling sequence, which we call ROCSA, for which the scaling factors for CSA and homonuclear dipole-dipole interactions are 0.272 and approximately 0.05, respectively. This sequence is suitable for high-speed 13C MAS NMR experiments on uniformly 13C-labeled organic compounds, including biopolymers. We demonstrate the ROCSA sequence experimentally by measuring the 13C CSA patterns of the uniformly labeled, polycrystalline compounds L-alanine and N-acetyl-D,L-valine at MAS frequencies of 11 and 20 kHz. We also present experimental data for amyloid fibrils formed by a 15-residue fragment of the β-amyloid peptide associated with Alzheimer's disease, in which four amino acid residues are uniformly labeled, demonstrating the applicability to biochemical systems of high molecular weight and significant complexity. Analysis of the CSA patterns in the amyloid fibril sample demonstrates the utility of ROCSA measurements as probes of peptide and protein conformation in noncrystalline solids.

  9. Soil microbial communities in a CO2-enriched and 13C-labelled treeline ecosystem with different tree species

    NASA Astrophysics Data System (ADS)

    Hiltbrunner, David; Hagedorn, Frank; Miltner, Anja; Schmidt, Michael W. I.

    2010-05-01

    The aim of this study was to estimate the responses of soil microbial communities at the alpine treeline to elevated CO2 and to gain insight into the C cycling through microbial groups under two tree species by tracking 13C signatures into phospholipid fatty acids (PLFA). In alpine treeline ecosystems, we exposed 30 year-old larch and pine trees growing on undisturbed thick mor-type organic layers to five years of elevated CO2 (+200 μmol CO2 mol-1) being depleted in 13C. Results showed that elevated CO2 increased soil respiration particularly under pine trees. However, we found negligible CO2 effects on the biomass and community structure of soil microorganisms, which might be due to small plant growth responses, and a comparatively small input of new plant-derived C into the thick organic layers with large C stocks. The tracing of 13C-depleted CO2 revealed that only a small portion of the microbial community actively metabolized new C (25%). The 13C label in individual PLFA indicated that mainly fungi were involved in the use of new substrate. Tree species affected soil microbial communities in the organic layer with a significantly higher ratio of fungal to bacterial fatty acids under pine than under larch trees. Under pine, fungal PLFA of the organic layer carried a stronger 13C label which strongly suggests a greater mycorrhizal activity that might also lead to the 60% greater input of new plant-derived C into soil organic matter under pine than under larch. In conclusion, our results show that significant responses of microbial communities in these treeline ecosystems if any would require more drastic and long lasting effects than five years of elevated CO2. Tree species have a major impact on the cycling of new plant C through soil microbial communities.

  10. Dynamic nuclear polarization-enhanced 1H–13C double resonance NMR in static samples below 20 K

    PubMed Central

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H–13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H–13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H–13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr–Purcell experiments and numerical simulations of Carr–Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C–13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils. PMID:22743540

  11. Optimization of 13C dynamic nuclear polarization: isotopic labeling of free radicals

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Kiswandi, Andhika; Lumata, Lloyd

    Dynamic nuclear polarization (DNP) is a physics technique that amplifies the nuclear magnetic resonance (NMR) signals by transferring the high polarization of the electrons to the nuclear spins. Thus, the choice of free radical is crucial in DNP as it can directly affect the NMR signal enhancement levels, typically on the order of several thousand-fold in the liquid-state. In this study, we have investigated the efficiency of four variants of the well-known 4-oxo-TEMPO radical (normal 4-oxo-TEMPO plus its 15N-enriched and/or perdeuterated variants) for use in DNP of an important metabolic tracer [1-13C]acetate. Though the variants have significant differences in electron paramagnetic resonance (EPR) spectra, we have found that changing the composition of the TEMPO radical through deuteration or 15N doping yields no significant difference in 13C DNP efficiency at 3.35 T and 1.2 K. On the other hand, deuteration of the solvent causes a significant increase of 13C polarization that is consistent over all the 4-oxo-TEMPO variants. These findings are consistent with the thermal mixing model of DNP. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  12. Utilization of low molecular weight organics by soil microorganisms: combination of 13C-labelling with PLFA analysis

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Microbial metabolisation is the main transformation pathway of low molecular weight organic substances (LMWOS), but detailed knowledge concerning the fate of LMWOS in soils is strongly limited. Considering that various LMWOS classes enter biochemical cycles at different steps, we hypothesise that the percentage of their LMWOS-Carbon (C) used for microbial biomass (MB) production and consequently medium-term stabilisation in soil is different. We traced the three main groups of LMWOS: amino acids, sugars and carboxylic acids, by uniformly labelled 13C-alanine, -glutamate, -glucose, -ribose, -acetate and -palmitate. Incorporation of 13C from these LMWOS into MB (fumigation-extraction method) and into phospholipid fatty acids (PLFAs) (Bligh-Dyer extraction, purification and GC-C-IRMS measurement) was investigated under field conditions 3 d and 10 d after LMWOS application. The activity of microbial utilization of LMWOS for cell membrane construction was estimated by replacement of PLFA-C with 13C. Decomposition of LMWOS-C comprised 20-65% of the total label, whereas incorporation of 13C into MB amounted to 20-50% of initially applied 13C on day three and was reduced to 5-30% on day 10. Incorporation of 13C-labelled LMWOS into MB followed the trend sugars > carboxylic acids > amino acids. Differences in microbial utilisation between LMWOS were observed mainly at day 10. Thus, instead of initial rapid uptake, further metabolism within microbial cells accounts for the individual fate of C from different LMWOS in soils. Incorporation of 13C from each LMWOS into each PLFA occurred, which reflects the ubiquitous ability of all functional microbial groups for LMWOS utilization. The preferential incorporation of palmitate can be attributed to its role as a direct precursor for many fatty acids (FAs) and PLFA formation. Higher incorporation of alanine and glucose compared to glutamate, ribose and acetate reflect the preferential use of glycolysis-derived substances in the FAs

  13. Non-targeted determination of (13)C-labeling in the Methylobacterium extorquens AM1 metabolome using the two-dimensional mass cluster method and principal component analysis.

    PubMed

    Reaser, Brooke C; Yang, Song; Fitz, Brian D; Parsons, Brendon A; Lidstrom, Mary E; Synovec, Robert E

    2016-02-01

    A novel analytical workflow is presented for the analysis of time-dependent (13)C-labeling of the metabolites in the methylotrophic bacterium Methylobacterium extorquens AM1 using gas chromatography time-of-flight mass spectrometry (GC-TOFMS). Using (13)C-methanol as the substrate in a time course experiment, the method provides an accurate determination of the number of carbons converted to the stable isotope. The method also extracts a quantitative isotopic dilution time course profile for (13)C uptake of each metabolite labeled that could in principle be used to obtain metabolic flux rates. The analytical challenges encountered require novel analytical platforms and chemometric techniques. GC-TOFMS offers advanced separation of mixtures, identification of individual components, and high data density for the application of advanced chemometrics. This workflow combines both novel and traditional chemometric techniques, including the recently reported two-dimensional mass cluster plot method (2D m/z cluster plot method) as well as principal component analysis (PCA). The 2D m/z cluster plot method effectively indexed all metabolites present in the sample and deconvoluted metabolites at ultra-low chromatographic resolution (RS≈0.04). Using the pure mass spectra extracted, two PCA models were created. Firstly, PCA was used on the first and last time points of the time course experiment to determine and quantify the extent of (13)C uptake. Secondly, PCA modeled the full time course in order to quantitatively extract the time course profile for each metabolite. The 2D m/z cluster plot method found 152 analytes (metabolites and reagent peaks), with 54 pure analytes, and 98 were convoluted, with 65 of the 98 requiring mathematical deconvolution. Of the 152 analytes surveyed, 83 were metabolites determined by the PCA model to have incorporated (13)C while 69 were determined to be either metabolites or reagent peaks that remained unlabeled. PMID:26787164

  14. The effect of biochar amendment on the soil microbial community - PLFA analyses and 13C labeling results

    NASA Astrophysics Data System (ADS)

    Watzinger, A.; Feichtmair, S.; Rempt, F.; Anders, E.; Wimmer, B.; Kitzler, B.; Zechmeister-Boltenstern, S.; Horacek, M.; Zehetner, F.; Kloss, S.; Richoz, S.; Soja, G.

    2012-04-01

    The effects of biochar amendment on plant growth and on the chemical / physical soil characteristics are well explored but only few studies have investigated the impact on soil microorganisms. The response of the soil microbial community to biochar amendment was investigated by phospholipid fatty acid (PLFA) analysis in (i) a large scale pot experiment, (ii) a small scale pot experiment using 13C labeled biochar and (iii) an incubation study using 13C labeled biochar. In the large scale pot experiment, three different agricultural soils from Austria (Planosol, Cambisol, Chernozem) and four different types of biochar were investigated. In total, 25 treatments with 5 replicates each were set up and monitored over a year. The results from the pot experiments showed no significant influence of biochar amendment on the total microbial biomass in the first 100 days after biochar addition. However, discriminant analysis showed a distinction of biochar and control soils as well as a strong effect of the pyrolysis temperature on the microbial composition. The effect of biochar was dependent on the type of soil. In the Planosol, some PLFAs were affected positively, especially when adding biochar with a low pyrolysis temperature, in the first month. In the long term, microbial community composition altered. Growth of fungi and gram negative bacteria was enhanced. In the Chernozem, PLFAs from various microbial groups decreased in the long term. Variability in the incubation study was low. Consequently, many PLFAs were significantly affected by biochar amendment. Again, in the Planosol, gram negative bacteria, actinomycetes and, after 2 weeks, gram positive bacteria increased under biochar amendment whereas in the chernozem total microbial biomass and gram positive bacteria were negatively affected in the long term. The 13C labeling studies confirmed the low degradability of the biochar, i.e. no alteration of the content and the δ13C in the soil organic matter within 100 days

  15. 13C labelled cholesteryl octanoate breath test for assessing pancreatic exocrine insufficiency

    PubMed Central

    Ventrucci, M; Cipolla, A; Ubalducci, G; Roda, A; Roda, E

    1998-01-01

    Background—A non-invasive test for assessment of fat digestion has been developed based on the intraluminal hydrolysis of cholesteryl-[1-13C]octanoate by pancreatic esterase. 
Aims—To determine the diagnostic performance of this breath test in the assessment of exocrine pancreatic function. 
Methods—The test was performed in 20 healthy controls, 22 patients with chronic pancreatic disease (CPD), four with biliopancreatic diversion (BPD), and 32 with non-pancreatic digestive diseases (NPD); results were compared with those of other tubeless tests (faecal chymotrypsin and fluorescein dilaurate test). 
Results—Hourly recoveries of 13CO2 were significantly lower in CPD when compared with healthy controls or NPD. In patients with CPD with mild to moderate insufficiency, the curve of 13CO2 recovery was similar to that of healthy controls, while in those with severe insufficiency it was flat. In three patients with CPD with severe steatorrhoea, a repeat test after pancreatic enzyme supplementation showed a significant rise in 13CO2 recovery. The four BPD patients had low and delayed 13CO2 recovery. Only eight of the 32 patients with NPD had abnormal breath test results. There was a significant correlation between the results of the breath test and those of faecal chymotrypsin, the fluorescein dilaurate test, and faecal fat measurements. For the diagnosis of pancreatic disease using the three hour cumulative 13CO2 recovery test, the sensitivity was 68.2% and specificity 75.0%; values were similar to those of the other two tubeless pancreatic function tests. In seven healthy controls, nine patients with CPD, and nine with NPD a second breath test was performed using Na-[1-13C]octanoate and a pancreatic function index was calculated as the ratio of 13C recovery obtained in the two tests: at three hours this index was abnormal in eight patients with CPD and in three with NPD. 
Conclusion—The cholesteryl-[1-13C]octanoate breath test can be useful for the

  16. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino

  17. Long-term, Trans-Canada Decay of 13C-labelled Crop Residues

    NASA Astrophysics Data System (ADS)

    Ellert, B. H.; Janzen, H. H.; Gregorich, E. G.

    2009-05-01

    The balance between soil C inputs and outputs has important implications for agricultural sustainability and atmospheric composition. While considerable information is available on the short-term (2 to 20 months) decomposition of soil C inputs, the long-term decomposition and persistence remains a major gap in our understanding of carbon and nitrogen cycling in agroecosystems. In many biogeochemical models, assumptions about long-term decomposition are largely unverified. Many of the data available for long-term crop residue decomposition were collected before 1970 when radiocarbon-enriched materials were used. To address these gaps, we implemented a long-term, trans-Canada decay study to measure the decomposition (10 to 20 years) of barley (Hordeum vulgare) residues at ten sites across Canada's agricultural region. The barley residues were uniformly and highly enriched with the stable 13C isotope so that small amounts can be distinguished from background soil carbon. In this presentation we will discuss the rationale for the study, and explain how it was implemented and will be maintained. Because the study was initiated in the fall of 2007, we will present initial results on residue persistence during the early stages of crop residue decomposition. We will also discuss the potential for exploiting the 13C tracer to investigate the structural chemistry of stabilized soil organic matter, and the functional groups of organisms within the detrital community.

  18. Extreme 13C depletion of CCl2F2 in firn air samples from NEEM, Greenland

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A.; Holzinger, R.; Martinerie, P.; Schneider, R.; Kaiser, J.; Witrant, E.; Etheridge, D.; Petrenko, V.; Blunier, T.; Röckmann, T.

    2013-01-01

    A series of 12 high volume air samples collected from the S2 firn core during the North Greenland Eemian Ice Drilling (NEEM) 2009 campaign have been measured for mixing ratio and stable carbon isotope composition of the chlorofluorocarbon CFC-12 (CCl2F2). While the mixing ratio measurements compare favorably to other firn air studies, the isotope results show extreme 13C depletion at the deepest measurable depth (65 m), to values lower than δ13C = -80‰ vs. VPDB (the international stable carbon isotope scale), compared to present day surface tropospheric measurements near -40‰. Firn air modeling was used to interpret these measurements. Reconstructed atmospheric time series indicate even larger depletions (to -120‰) near 1950 AD, with subsequent rapid enrichment of the atmospheric reservoir of the compound to the present day value. Mass-balance calculations show that this change is likely to have been caused by a large change in the isotopic composition of anthropogenic CFC-12 emissions, probably due to technological advances in the CFC production process over the last 80 yr, though direct evidence is lacking.

  19. Characterisation of black carbon-rich samples by 13C solid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Novotny, Etelvino H.; Hayes, Michael H. B.; Deazevedo, Eduardo R.; Bonagamba, Tito J.

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Índio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. 13C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, 1H-13C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the π pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp—variable amplitude CP (VACP)—VACP/MAS pulse sequence, and composite π pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins.

  20. Characterisation of black carbon-rich samples by (13)C solid-state nuclear magnetic resonance.

    PubMed

    Novotny, Etelvino H; Hayes, Michael H B; Deazevedo, Eduardo R; Bonagamba, Tito J

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Indio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. (13)C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, (1)H-(13)C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the pi pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp--variable amplitude CP (VACP)--VACP/MAS pulse sequence, and composite pi pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins. PMID:16688435

  1. Quantification of peptide m/z distributions from 13C-labeled cultures with high-resolution mass spectrometry.

    PubMed

    Allen, Doug K; Goldford, Joshua; Gierse, James K; Mandy, Dominic; Diepenbrock, Christine; Libourel, Igor G L

    2014-02-01

    Isotopic labeling studies of primary metabolism frequently utilize GC/MS to quantify (13)C in protein-hydrolyzed amino acids. During processing some amino acids are degraded, which reduces the size of the measurement set. The advent of high-resolution mass spectrometers provides a tool to assess molecular masses of peptides with great precision and accuracy and computationally infer information about labeling in amino acids. Amino acids that are isotopically labeled during metabolism result in labeled peptides that contain spatial and temporal information that is associated with the biosynthetic origin of the protein. The quantification of isotopic labeling in peptides can therefore provide an assessment of amino acid metabolism that is specific to subcellular, cellular, or temporal conditions. A high-resolution orbital trap was used to quantify isotope labeling in peptides that were obtained from unlabeled and isotopically labeled soybean embryos and Escherichia coli cultures. Standard deviations were determined by estimating the multinomial variance associated with each element of the m/z distribution. Using the estimated variance, quantification of the m/z distribution across multiple scans was achieved by a nonlinear fitting approach. Observed m/z distributions of uniformly labeled E. coli peptides indicated no significant differences between observed and simulated m/z distributions. Alternatively, amino acid m/z distributions obtained from GC/MS were convolved to simulate peptide m/z distributions but resulted in distinct profiles due to the production of protein prior to isotopic labeling. The results indicate that peptide mass isotopologue measurements faithfully represent mass distributions, are suitable for quantification of isotope-labeling-based studies, and provide additional information over existing methods. PMID:24387081

  2. Changes in microbial structure and functional communities at different soil depths during 13C labelled root litter degradation

    NASA Astrophysics Data System (ADS)

    Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia

    2014-05-01

    Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community

  3. Using 13C-labeled benzene and Raman gas spectroscopy to investigate respiration and biodegradation kinetics following soil contamination

    NASA Astrophysics Data System (ADS)

    Jochum, Tobias; Popp, Juergen; Frosch, Torsten

    2016-04-01

    Soil and groundwater contamination with benzene can cause serious environmental damages. However, many soil microorganisms are capable to adapt and known to strongly control the fate of organic contamination. Cavity enhanced Raman gas spectroscopy (CERS) was applied to investigate the short-term response of indigenous soil bacteria to a sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. 13C-labeled benzene was spiked on a silty-loamy soil column (sampled from Hainich National Park, Germany) in order to track and separate the changes in heterotrophic soil respiration - involving 12CO2 and O2 - from the microbial process of benzene degradation, which ultimately forms 13CO2.1 The respiratory quotient (RQ) of 0.98 decreased significantly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with maximum 13CO2 concentration rates (0.63 μ mol m-2 s-1), indicating highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into 13CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore.1 The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration. In summary, this study shows the potential of combining Raman gas spectroscopy and stable isotopes to follow soil microbial biodegradation dynamics while simultaneously monitoring the underlying respiration behavior. Support by the Collaborative Research Center 1076 Aqua Diva is kindly acknowledged. We thank Beate Michalzik for soil analysis and discussion. 1. T. Jochum, B. Michalzik, A. Bachmann, J. Popp and T. Frosch, Analyst, 2015, 140, 3143-3149.

  4. Biosynthesis of pyrroloquinoline quinone. 1. Identification of biosynthetic precursors using /sup 13/C labeling and NMR spectroscopy

    SciTech Connect

    Houck, D.R.; Hanners, J.L.; Unkefer, C.J.

    1988-09-28

    The biosynthesis of pyrroloquinoline quinone (PQQ) in the methylotropic bacterium methylobacterium AM1 has been investigated using /sup 13/C-labelling of the products and NMR spectroscopy. The data indicated that the quinoline portion of PQQ is formed by a novel condensation of N-1, C-2, -3, and -4 of glutamate with a symmetrical six-carbon ring derived from the shikimate pathway. It is postulated that tyrosine is the shikimate-derived percursor, since pyrrole could be formed by the internal cyclization of the amino acid backbone. 18 references, 2 figures, 2 tables.

  5. Belowground carbon allocation in a temperate beech forest: new insight into carbon residence time using whole tree 13C labelling

    NASA Astrophysics Data System (ADS)

    Epron, D.; Ngao, J.; Plain, C.; Longdoz, B.; Granier, A.

    2011-12-01

    Belowground carbon allocation is an important component of forest carbon budget, affecting tree growth (competition between aboveground and belowground carbon sinks), acquisition of belowground resources (nutrients and water) that are often limiting forest ecosystems and soil carbon sequestration. Total belowground carbon flow can be estimated using a mass-balance approach as cumulative soil CO2 efflux minus the carbon input from aboveground litter plus the changes in the C stored in roots, in the forest floor, and in the soil, and further compared to gross annual production. While this approach is useful for understanding the whole ecosystem carbon budget, uncertainties remain about the contribution of the different belowground pools of carbon to ecosystem respiration and carbon sequestration. New insights into transfer rate and residence time of carbon in belowground compartments can be gained from in situ whole-crown 13C labelling experiments. We combined both approaches in a young temperate beech forest in north-eastern France where ecosystem carbon fluxes are recorded since a decade. Carbon allocated belowground represented less than 40% of gross primary production in this young beech forest. Autotrophic respiration assessed by comparing soil CO2 efflux measured on normal and on root exclusion plots, accounted for 60% of the total belowground carbon flow. This indicated a rather short mean residence time of carbon allocated belowground in the soil compartments. The recovery of 13C in soil CO2 efflux after pulse-labelling entire crowns of tree with 13CO2 at several occasions during the growing season was observed a few couple of hours after the labelling. That indicates a rapid transfer of 13C belowground with a maximum occurring within 2 to 4 days after labelling. Label was recovered at the same time in the respiration and in the biomass of both fine roots and soil microbes. Allocation of recently assimilated carbon to soil microbial respiration was greater in

  6. Regioselective syntheses of [13C]4-labelled sodium 1-carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate and sodium 2-carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate from [13C]4-maleic anhydride.

    PubMed

    Barsamian, Adam L; Perkins, Matt J; Field, Jennifer A; Blakemore, Paul R

    2014-05-15

    The entitled monohydrolysis products, also known as α-ethylhexyl and β-ethylhexyl sulfosuccinate (EHSS), of the surfactant diisooctyl sulfosuccinate (DOSS) were synthesized in stable isotope-labelled form from [(13)C]4 -maleic anhydride. Sodium [(13)C]4 -1-carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate (α-EHSS) was prepared by the method of Larpent by reaction of 2-ethylhexan-1-ol with [(13)C]4 -maleic anhydride followed by regioselective conjugate addition of sodium bisulfite to the resulting monoester (38% overall yield). The regiochemical outcome of bisulfite addition was confirmed by a combination of (13)C/(13)C (incredible natural abundance double quantum transfer) and (1)H/(13)C (heteronuclear multiple-bond correlation (HMBC)) NMR spectral correlation experiments. Sodium [(13)C]4 -2-carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate (β-EHSS) was prepared in four steps by reaction of 4-methoxybenzyl alcohol with [(13)C]4 -maleic anhydride, regioselective sodium bisulfite addition, N,N'-dicyclohexylcarbodiimide-mediated esterification with 2-ethylhexan-1-ol, and p-methoxybenzyl ester deprotection with trifluoroacetic acid (13% overall yield). The regiochemical outcome of the second synthesis was confirmed by a combination of (1)JCC scalar coupling constant analysis and (1)H/(13)C (HMBC) NMR spectral correlation. The materials prepared are required as internal standards for the liquid chromatography-mass spectrometry (LC-MS)/MS trace analysis of the degradation products of DOSS, the anionic surfactant found in Corexit, the oil dispersant used during emergency response efforts connected to the Deepwater Horizon oil spill of April 2010. PMID:24700711

  7. An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide - an in vivo labeling system for proteomics and metabolomics research

    PubMed Central

    2011-01-01

    Background Labeling whole Arabidopsis (Arabidopsis thaliana) plants to high enrichment with 13C for proteomics and metabolomics applications would facilitate experimental approaches not possible by conventional methods. Such a system would use the plant's native capacity for carbon fixation to ubiquitously incorporate 13C from 13CO2 gas. Because of the high cost of 13CO2 it is critical that the design conserve the labeled gas. Results A fully enclosed automated plant growth enclosure has been designed and assembled where the system simultaneously monitors humidity, temperature, pressure and 13CO2 concentration with continuous adjustment of humidity, pressure and 13CO2 levels controlled by a computer running LabView software. The enclosure is mounted on a movable cart for mobility among growth environments. Arabidopsis was grown in the enclosure for up to 8 weeks and obtained on average >95 atom% enrichment for small metabolites, such as amino acids and >91 atom% for large metabolites, including proteins and peptides. Conclusion The capability of this labeling system for isotope dilution experiments was demonstrated by evaluation of amino acid turnover using GC-MS as well as protein turnover using LC-MS/MS. Because this 'open source' Arabidopsis 13C-labeling growth environment was built using readily available materials and software, it can be adapted easily to accommodate many different experimental designs. PMID:21310072

  8. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  9. HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in 13C/15N-labeled proteins.

    PubMed

    Sudmeier, J L; Ash, E L; Günther, U L; Luo, X; Bullock, P A; Bachovchin, W W

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from 1H to 13C to 15N and reverse through direct spin couplings 1JCH and 1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain 1H, 13C, and 15N resonances in uniformly 13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay tau 3 were employed for determination of optimal tau 3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the 1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the 13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 12 1H and 13C chemical shifts and 10 of the 12 15N chemical shifts were determined. The 13C dimension proved essential in assignment of the multiply overlapping 1H and 15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mM sample of phenylmethanesulfonyl fluoride (PMSF)-inhibited alpha-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited alpha-lytic protease after 18 h at various temperatures ranging from 5 to 55 degrees C, probably due to efficient relaxation of active-site imidazole 1H and/or 15N nuclei. PMID:8995843

  10. {sup 13}C-enrichment at carbons 8 and 2 of uric acid after {sup 13}C-labeled folate dose in man

    SciTech Connect

    Baggott, Joseph E.; Gorman, Gregory S.; Morgan, Sarah L.; Tamura, Tsunenobu . E-mail: tamurat@uab.edu

    2007-09-21

    To evaluate folate-dependent carbon incorporation into the purine ring, we measured {sup 13}C-enrichment independently at C{sub 2} and C{sub 8} of urinary uric acid (the final catabolite of purines) in a healthy male after an independent oral dose of [6RS]-5-[{sup 13}C]-formyltetrahydrofolate ([6RS]-5-H{sup 13}CO-H{sub 4}folate) or 10-H{sup 13}CO-7,8-dihydrofolate (10-H{sup 13}CO-H{sub 2}folate). The C{sub 2} position was {sup 13}C-enriched more than C{sub 8} after [6RS]-5-H{sup 13}CO-H{sub 4}folate, and C{sub 2} was exclusively enriched after 10-H{sup 13}CO-H{sub 2}folate. The enrichment of C{sub 2} was greater from [6RS]-5-H{sup 13}CO-H{sub 4}folate than 10-H{sup 13}CO-H{sub 2}folate using equimolar bioactive doses. Our data suggest that formyl C of [6RS]-10-H{sup 13}CO-H{sub 4}folate was not equally utilized by glycinamide ribotide transformylase (enriches C{sub 8}) and aminoimidazolecarboxamide ribotide (AICAR) transformylase (enriches C{sub 2}), and the formyl C of 10-H{sup 13}CO-H{sub 2}folate was exclusively used by AICAR transformylase. 10-HCO-H{sub 2}folate may function in vivo as the predominant substrate for AICAR transformylase in humans.

  11. Microbial degradation of 13C-labeled 9-methylphenanthren in marine sediment

    SciTech Connect

    Nanny, M.A.; Bortiatynski, J.M.; Hatcher, P.G.; Selifonov, S.A.

    1996-12-31

    Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) may serve as a natural means of mitigation for contaminated soils and sediments. In order for natural biodegradation to be a feasible remediation strategy, it is important to know the extent of degradation, the identity of degradation products, and their fate. It is also important to identify and characterize the portion of parent pollutant that becomes incorporated into the unextractable, insoluble fraction of soil or sediment. Does this fraction consist of the parent pollutant trapped within soil or sediments pores and in turn may be released slowly over time, or is it covalently bound with insoluble organic matter, or has it been converted into insoluble biomass? These are difficult questions to answer analytically, but they must be understood if microbial degradation is to be used as an effective remediation method. This paper presents results of biodegradation studies of carbon 13 labelled methyl phenanthrene by marine microbes in a contaminated marine sediment.

  12. Capillary Absorption Spectrometer for 13C Isotopic Composition of Pico to Subpico Molar Sample Quantities

    NASA Astrophysics Data System (ADS)

    Moran, J.; Kelly, J.; Sams, R.; Newburn, M.; Kreuzer, H.; Alexander, M.

    2011-12-01

    Quick incorporation of IR spectroscopy based isotope measurements into cutting edge research in biogeochemical cycling attests to the advantages of a spectroscopy versus mass spectrometry method for making some 13C measurements. The simple principles of optical spectroscopy allow field portability and provide a more robust general platform for isotope measurements. We present results with a new capillary absorption spectrometer (CAS) with the capability of reducing the sample size required for high precision isotopic measurements to the picomolar level and potentially the sub-picomolar level. This work was motivated by the minute sample size requirements for laser ablation isotopic studies of carbon cycling in microbial communities but has potential to be a valuable tool in other areas of biological and geological research. The CAS instrument utilizes a capillary waveguide as a sample chamber for interrogating CO2 via near IR laser absorption spectroscopy. The capillary's small volume (~ 0.5 mL) combined with propagation and interaction of the laser mode with the entire sample reduces sample size requirements to a fraction of that accessible with commercially available IR absorption including those with multi-pass or ring-down cavity systems. Using a continuous quantum cascade laser system to probe nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 permits sample measurement at low analyte pressures (as low as 2 Torr) for further sensitivity improvement. A novel method to reduce cw-fringing noise in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level after averaging 1,000 scans in 10 seconds. Detection limits down to the 20 picomoles have been observed, a concentration of approximately 400 ppm at 2 Torr in the waveguide with precision and accuracy at or better than 1 %. Improvements in detection and signal averaging electronics and laser power and mode quality are

  13. Investigations of enzymatic alterations of 2,4-dichlorophenol using {sup 13}C-nuclear magnetic resonance in combination with site-specific {sup 13}C-labeling: Understanding the environmental fate of this pollutant

    SciTech Connect

    Nanny, M.A.; Bortiatynski, J.M.; Tien, M.; Hatcher, P.G.

    1996-11-01

    The biodegradation of {sup 13}C-labeled 2,4-dichlorophenol (DCP labeled at the C-2 and C-6 positions), in the presence and absence of natural organic matter (NOM), by the white-rot fungus Phanerochaete chrysosporium, was examined using {sup 13}C-nuclear magnetic resonance (NMR). Using this method permitted the chemistry occurring at or near the labeled site to be followed. The formation of alkyl ethers and alkene ethers was observed. No aromatic by-products were detected, indicating that aromatic compounds are quickly degraded. Examining the reaction with time shows the exponential removal of 2,4-DCP and the consequential formation of labeled by-products, whose concentration reaches a maximum just before all 2,4-DCP is consumed. After this, the by-products degrade exponentially. The presence of NOM causes 2,4-DCP to be removed from the aqueous phase more quickly than in its absence and also causes the by-products to reach their maximum concentration much earlier. Degradation of the by-products occurs at a much greater rate in the presence of NOM. One hypothesis for this behavior is that the NOM interacts with 2,4-DCP and its by-products, allowing them to be incorporated into the fungal biomass. {sup 13}C-nuclear magnetic resonance spectra of the fungal biomass after NaOH extraction show the presence of alkanes and a small amount of 2,4-DCP.

  14. Incorporation of {sup 13}C-labeled intermediates into developing lignin revealed by analytical pyrolysis and CuO oxidation in combination with IRM-GC-MS

    SciTech Connect

    Eglinton, T.I.; Goni, M.A.; Boon, J.J.

    1995-12-31

    Tissue samples from Ginkgo shoots (Ginkgo biloba L.) and Rice grass (Oryzasitiva sp.) incubated in the presence of {sup 13}C-labeled substrates such as coniferin (postulated to be biosynthetic intermediates in lignin biosynthesis) were studied using thermal and chemical dissociation methods in combination with molecular-level isotopic measurements. The aim of the study was (1) to investigate dissociation mechanisms, and (2) to examine and quantify the proportions of labeled material incorporated within each sample. Isotopic analysis of specific dissociation products revealed the presence of the label in its original positions, and only within lignin-derived (phenolic) products. Moreover, the distribution and isotopic composition of the dissociation products strongly suggest an origin from newly-formed lignin. These results clearly indicate that there is no {open_quotes}scrambling{close_quotes} of carbon atoms as a result of the dissociation process, thereby lending support to this analytical approach. In addition, the data provide confidence in the selective labeling approach for elucidation of the structure and biosynthesis of lignin.

  15. Ner protein of phage Mu: Assignments using {sup 13}C/{sup 15}N-labeled protein

    SciTech Connect

    Strzelecka, T.; Gronenborn, A.M.; Clore, G.M.

    1994-12-01

    The Ner protein is a small (74-amino acid) DNA-binding protein that regulates a switch between the lysogenic and lytic stages of phage Mu. It inhibits expression of the C repressor gene and down-regulates its own expression. Two-dimensional NMR experiments on uniformly {sup 15}N-labeled protein provided most of the backbone and some of the sidechain proton assignments. The secondary structure determination using two-dimensional NOESY experiments showed that Ner consists of five {alpha}-helices. However, because most of the sidechain protons could not be assigned, the full structure was not determined. Using uniformly {sup 13}C/{sup 15}N-labeled Ner and a set of three-dimensional experiments, we were able to assign all of the backbone and 98% of the sidechain protons. In particular, the CBCANH and CBCA(CO)NH experiments were used to sequentially assign the C{alpha} and C{beta} resonances; the HCCH-CTOCSY and HCCH-COSY were used to assign sidechain carbon and proton resonances.

  16. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using (13)C-labeled glucose.

    PubMed

    Christiansen, Torben; Christensen, Bjarke; Nielsen, Jens

    2002-04-01

    Using (13)C-labeled glucose fed to the facultative alkalophilic Bacillus clausii producing the alkaline serine protease Savinase, the intracellular fluxes were quantified in continuous cultivation and in batch cultivation on a minimal medium. The flux through the pentose phosphate pathway was found to increase with increasing specific growth rate but at a much lower level than previously reported for Bacillus subtilis. Two futile cycles in the pyruvate metabolism were included in the metabolic network. A substantial flux in the futile cycle involving malic enzyme was estimated, whereas only a very small or zero flux through PEP carboxykinase was estimated, indicating that the latter enzyme was not active during growth on glucose. The uptake of the amino acids in a semirich medium containing 15 of the 20 amino acids normally present in proteins was estimated using fully labeled glucose in batch cultivations. It was found that leucine, isoleucine, and phenylalanine were taken up from the medium and not synthesized de novo from glucose. In contrast, serine and threonine were completely synthesized from other metabolites and not taken up from the medium. Valine, proline, and lysine were partly taken up from the medium and partly synthesized from glucose. The metabolic network analysis was extended to include analysis of growth on the semirich medium containing amino acids, and the metabolic flux distribution on this medium was estimated and compared with growth on minimal medium. PMID:12009795

  17. Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and (13)C-metabolic flux analysis.

    PubMed

    Ahn, Woo Suk; Crown, Scott B; Antoniewicz, Maciek R

    2016-09-01

    The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. It provides precursors for the biosynthesis of nucleotides and contributes to the production of reducing power in the form of NADPH. It has been hypothesized that mammalian cells may contain a hidden reaction in PPP catalyzed by transketolase-like protein 1 (TKTL1) that is closely related to the classical transketolase enzyme; however, until now there has been no direct experimental evidence for this reaction. In this work, we have applied state-of-the-art techniques in (13)C metabolic flux analysis ((13)C-MFA) based on parallel labeling experiments and integrated flux fitting to estimate the TKTL1 flux in CHO cells. We identified a set of three parallel labeling experiments with [1-(13)C]glucose+[4,5,6-(13)C]glucose, [2-(13)C]glucose+[4,5,6-(13)C]glucose, and [3-(13)C]glucose+[4,5,6-(13)C]glucose and developed a new method to measure (13)C-labeling of fructose 6-phosphate by GC-MS that allows intuitive interpretation of mass isotopomer distributions to determine key fluxes in the model, including glycolysis, oxidative PPP, non-oxidative PPP, and the TKTL1 flux. Using these tracers we detected a significant TKTL1 flux in CHO cells at the stationary phase. The flux results suggest that the main function of oxidative PPP in CHO cells at the stationary phase is to fuel the TKTL1 reaction. Overall, this study demonstrates for the first time that carbon atoms can be lost in the PPP, by means other than the oxidative PPP, and that this loss of carbon atoms is consistent with the hypothesized TKTL1 reaction in mammalian cells. PMID:27174718

  18. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments. PMID:27074782

  19. Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment.

    PubMed

    Wijmenga, S S; Heus, H A; Leeuw, H A; Hoppe, H; van der Graaf, M; Hilbers, C W

    1995-01-01

    A new 1H-13C-31P triple resonance experiment is described which allows unambiguous sequential backbone assignment in 13C-labeled oligonucleotides via through-bond coherence transfer from 31P via 13C to 1H. The approach employs INEPT to transfer coherence from 31P to 13C and homonuclear TOCSY to transfer the 13C coherence through the ribose ring, followed by 13C to 1H J-cross-polarisation. The efficiencies of the various possible transfer pathways are discussed. The most efficient route involves transfer of 31Pi coherence via C4'i and C4'i-1, because of the relatively large JPC4' couplings involved. Via the homonuclear and heteronuclear mixing periods, the C4'i and C4'i-1 coherences are subsequently transferred to, amongst others, H1'i and H1'i-1, respectively, leading to a 2D 1H-31P spectrum which allows a sequential assignment in the 31P-1H1' region of the spectrum, i.e. in the region where the proton resonances overlap least. The experiment is demonstrated on a 13C-labeled RNA hairpin with the sequence 5'(GGGC-CAAA-GCCU)3'. PMID:7533569

  20. Photochemically Induced Dynamic Nuclear Polarization Observed by Solid-State NMR in a Uniformly (13)C-Isotope-Labeled Photosynthetic Reaction Center.

    PubMed

    Paul, Shubhajit; Bode, Bela E; Matysik, Jörg; Alia, A

    2015-10-29

    A sample of solubilized and quinone-depleted reaction centers from the purple bacterium Rhodobacter (R.) sphaeroides wild type has been prepared entirely (13)C and (15)N isotope labeled at all positions of the protein as well as of the cofactors. In this sample, the occurrence of the solid-state photo-CIDNP (photochemically induced dynamic nuclear polarization) effect has been probed by (13)C solid-state magic-angle spinning NMR under illumination. Under continuous illumination, signal intensities are modified by the three-spin mixing (TSM) mechanism. Time-resolved illumination experiments reveal the occurrence of light-induced nuclear polarization on the time scale of hundreds of microseconds, initially dominated by the transient polarization of the singlet branch of the radical-pair mechanism. A first kinetic analysis shows that the lifetime of the polarization from the singlet branch, indicated by the enhanced absorptive intensities of the signals from aliphatic carbons, is significantly extended. Upon arrival of the polarization from the triplet decay branch, emissive polarization caused by the TSM mechanism is observed. Also, this arrival is significantly delayed. The decay of TSM polarization occurs in two steps, assigned to intra- and intermolecular spin diffusion. PMID:26110356

  1. Qualitative Metabolome Analysis of Human Cerebrospinal Fluid by 13C-/12C-Isotope Dansylation Labeling Combined with Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by 13C-dansyl and 12C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner.

  2. Measuring and modeling C flux rates through the central metabolic pathways in microbial communities using position-specific 13C-labeled tracers

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; van Groenigen, K.; Hagerty, S.; Salpas, E.; Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.

    2012-12-01

    The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We use position-specific 13C-labeled metabolic tracers, combined with models of microbial metabolic organization, to analyze the response of microbial community energy production, biosynthesis, and C use efficiency (CUE) in soils, decomposing litter, and aquatic communities. The method consists of adding position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through the various metabolic pathways. A simplified metabolic model consisting of 23 reactions is solved using results of the metabolic tracer experiments and assumptions of microbial precursor demand. This new method enables direct estimation of fundamental aspects of microbial energy production, CUE, and soil organic matter formation in relatively undisturbed microbial communities. We will present results showing the range of metabolic patterns observed in these communities and discuss results from testing metabolic models.

  3. Direct analysis of δ13C and concentration of dissolved organic carbon (DOC) in environmental samples by TOC-IRMS

    NASA Astrophysics Data System (ADS)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2014-05-01

    Dissolved organic carbon (DOC) plays an important role in carbon cycling in terrestrial and aquatic systems. Stable isotope analysis (delta 13C) of DOC could provide valuable insights in its origin, fluxes and environmental fate. Precise and routine analysis of delta 13C and DOC concentration are therefore highly desirable. A promising, new system has been developed for this purpose, linking a high-temperature combustion TOC analyzer trough an interface with a continuous flow isotope ratio mass spectrometer (Elementar group, Hanau, Germany). This TOC-IRMS system enables simultaneous stable isotope (bulk delta 13C) and concentration analysis of DOC, with high oxidation efficiency by high-temperature combustion for complex mixtures as natural DOC. To give delta 13C analysis by TOC-IRMS the necessary impulse for broad-scale application, we present a detailed evaluation of its analytical performance for realistic and challenging conditions inclusive low DOC concentrations and environmental samples. High precision (standard deviation, SD predominantly < 0.15 permil) and accuracy (R2 = 0.9997, i.e. comparison TOC-IRMS and conventional EA-IRMS) were achieved by TOC-IRMS for a broad diversity of DOC solutions. This precision is comparable or even slightly better than that typically reported for EA-IRMS systems, and improves previous techniques for δ13C analysis of DOC. Simultaneously, very good precision was obtained for DOC concentration measurements. Assessment of natural abundance and slightly 13C enriched DOC, a wide range of concentrations (0.2-150 mgC/L) and injection volumes (0.05-3 ml), demonstrated good analytical performance with negligible memory effects, no concentration/volume effects and a wide linearity. Low DOC concentrations (< 2 mgC/L), were correctly analyzed without any pre-concentration. Moreover, TOC-IRMS was successfully applied to analyze DOC from diverse terrestrial, freshwater and marine environments (SD < 0.23 permil). In summary, the TOC

  4. HN-NCA heteronuclear TOCSY-NH experiment for (1)H(N) and (15)N sequential correlations in ((13)C, (15)N) labelled intrinsically disordered proteins.

    PubMed

    Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine; Herbst, Christian; Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai

    2015-10-01

    A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue 'i' with that of residues 'i-1' and 'i+1' in ((13)C, (15)N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of (1) J CαN and (2) J CαN couplings to transfer the (15)N x magnetisation from amino acid residue 'i' to adjacent residues via the application of a band-selective (15)N-(13)C(α) heteronuclear cross-polarisation sequence of ~100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described. PMID:26282620

  5. Lack of 13C-label incorporation suggests low turnover rates of thaumarchaeal intact polar tetraether lipids in sediments from the Iceland Shelf

    NASA Astrophysics Data System (ADS)

    Lengger, S. K.; Lipsewers, Y. A.; de Haas, H.; Sinninghe Damsté, J. S.; Schouten, S.

    2013-08-01

    Thaumarchaeota are amongst the most abundant microorganisms in aquatic environments, however, their metabolism in marine sediments is still debated. Labeling studies in marine sediments have previously been undertaken, but focused on complex organic carbon substrates which Thaumarchaeota have not yet been shown to take up. In this study, we investigated the activity of Thaumarchaeota in sediments by supplying different 13C-labeled substrates which have previously been shown to be incorporated into archaeal cells in water incubations and/or enrichment cultures. We determined the incorporation of 13C-label from bicarbonate, pyruvate, glucose and amino acids into thaumarchaeal intact polar lipid-glycerol dibiphytanyl glycerol tetraethers (IPL-GDGTs) during 4-6 day incubations of marine sediment cores from three different sites on the Iceland Shelf. Thaumarchaeal intact polar lipids were detected at all stations and concentrations remained constant or decreased slightly upon incubation. No 13C incorporation in any IPL-GDGT was observed at stations 2 (clay-rich sediment) and 3 (organic-rich sediment). In bacterial/eukaryotic IPL-derived fatty acids at station 3, contrastingly, a large uptake of 13C label (up to +80‰) was found. 13C was also respired during the experiment as shown by a substantial increase in the 13C content of the dissolved inorganic carbon. In IPL-GDGTs recovered from the sandy sediments at station 1, however, some enrichment in 13C (1-4‰) was detected after incubation with bicarbonate and pyruvate. The low incorporation rates suggest a low activity of Thaumarchaeota in marine sediments and/or a low turnover rate of thaumarchaeal IPL-GDGTs due to their low degradation rates. Cell numbers and activity of sedimentary Thaumarchaeota based on IPL-GDGT measurements may thus have previously been overestimated.

  6. Lack of 13C-label incorporation suggests low turnover rates of thaumarchaeal intact polar tetraether lipids in sediments from the Iceland shelf

    NASA Astrophysics Data System (ADS)

    Lengger, S. K.; Lipsewers, Y. A.; de Haas, H.; Sinninghe Damsté, J. S.; Schouten, S.

    2014-01-01

    Thaumarchaeota are amongst the most abundant microorganisms in aquatic environments, however, their metabolism in marine sediments is still debated. Labeling studies in marine sediments have previously been undertaken, but focused on complex organic carbon substrates which Thaumarchaeota have not yet been shown to take up. In this study, we investigated the activity of Thaumarchaeota in sediments by supplying different 13C-labeled substrates which have previously been shown to be incorporated into archaeal cells in water incubations and/or enrichment cultures. We determined the incorporation of 13C-label from bicarbonate, pyruvate, glucose and amino acids into thaumarchaeal intact polar lipid-glycerol dibiphytanyl glycerol tetraethers (IPL-GDGTs) during 4-6 day incubations of marine sediment cores from three sites on the Iceland shelf. Thaumarchaeal intact polar lipids, in particular crenarchaeol, were detected at all stations and concentrations remained constant or decreased slightly upon incubation. No 13C incorporation in any IPL-GDGT was observed at stations 2 (clay-rich sediment) and 3 (organic-rich sediment). In bacterial/eukaryotic IPL-derived fatty acids at station 3, contrastingly, a large uptake of 13C label (up to + 80‰ ) was found. 13C was also respired during the experiment as shown by a substantial increase in the 13C content of the dissolved inorganic carbon. In IPL-GDGTs recovered from the sandy sediments at station 1, however, some enrichment in δ13C (1-4‰ ) was detected after incubation with bicarbonate and pyruvate. The low incorporation rates suggest a low activity of Thaumarchaeota in marine sediments and/or a low turnover rate of thaumarchaeal IPL-GDGTs due to their low degradation rates. Cell numbers and activity of sedimentary Thaumarchaeota based on IPL-GDGT measurements may thus have previously been overestimated.

  7. Effective Estimation of Dynamic Metabolic Fluxes Using 13C Labeling and Piecewise Affine Approximation: From Theory to Practical Applicability

    PubMed Central

    Schumacher, Robin; Wahl, S. Aljoscha

    2015-01-01

    The design of microbial production processes relies on rational choices for metabolic engineering of the production host and the process conditions. These require a systematic and quantitative understanding of cellular regulation. Therefore, a novel method for dynamic flux identification using quantitative metabolomics and 13C labeling to identify piecewise-affine (PWA) flux functions has been described recently. Obtaining flux estimates nevertheless still required frequent manual reinitalization to obtain a good reproduction of the experimental data and, moreover, did not optimize on all observables simultaneously (metabolites and isotopomer concentrations). In our contribution we focus on measures to achieve faster and robust dynamic flux estimation which leads to a high dimensional parameter estimation problem. Specifically, we address the following challenges within the PWA problem formulation: (1) Fast selection of sufficient domains for the PWA flux functions, (2) Control of over-fitting in the concentration space using shape-prescriptive modeling and (3) robust and efficient implementation of the parameter estimation using the hybrid implicit filtering algorithm. With the improvements we significantly speed up the convergence by efficiently exploiting that the optimization problem is partly linear. This allows application to larger-scale metabolic networks and demonstrates that the proposed approach is not purely theoretical, but also applicable in practice. PMID:26690237

  8. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C, 15N-labeled peptides and proteins

    NASA Astrophysics Data System (ADS)

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly 13C, 15N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22 kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600 MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i - 2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.

  9. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C,15N-labeled peptides and proteins.

    PubMed

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly (13)C,(15)N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i-2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed. PMID:20060344

  10. Bioconversion of (13)C-labeled microalgal phytosterols to cholesterol by the Northern Bay scallop, Argopecten irradians irradians.

    PubMed

    Giner, José-Luis; Zhao, Hui; Dixon, Mark S; Wikfors, Gary H

    2016-02-01

    Bivalve mollusks lack de novo cholesterol biosynthesis capabilities and therefore rely upon dietary sources of sterols for rapid growth. Microalgae that constitute the main source of nutrition for suspension-feeding bivalves contain a diverse array of phytosterols, in most cases lacking cholesterol. Rapid growth of bivalves on microalgal diets with no cholesterol implies that some phytosterols can satisfy the dietary requirement for cholesterol through metabolic conversion to cholesterol, but such metabolic pathways have not been rigorously demonstrated. In the present study, stable isotope-labeled phytosterols were used to supplement a unialgal diet of Rhodomonas sp. and their biological transformation to cholesterol within scallop tissues was determined using (13)C-NMR spectroscopy. Scallops efficiently dealkylated ∆(5) C29 (24-ethyl) sterols to cholesterol, and the only C28 sterol that was dealkylated efficiently possessed the 24(28)-double bond. Non-metabolized dietary phytosterols accumulated in the soft tissues. Observed formation of ∆(5,7) sterols (provitamin D) from ∆(5) sterols may represent initiation of steroid hormone (possibly ecdysone) biosynthesis. These findings provide a key component necessary for formulation of nutritionally complete microalgal diets for hatchery production of seed for molluscan aquaculture. PMID:26577022

  11. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts.

    PubMed

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-07-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor. PMID:26070442

  12. Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle.

    PubMed

    Thakur, Chandar S; Sama, Jacob N; Jackson, Melantha E; Chen, Bin; Dayie, T Kwaku

    2010-12-01

    Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on (13)C-2-glycerol and (13)C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in (13)C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3' and C5' carbon positions. Consequently the C1', C2' and C4' positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with (13)C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a (13)C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4' carbon position, such that the C2' and C3' positions suffer from multiplet splitting but the C5' position remains singlet and the C1' position shows a small amount of residual C1'-C2' coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with (13)C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5' position (~90%) that makes it particularly attractive for NMR applications involving CH(2)-TROSY modules without the need for decoupling the C4' carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed, which indicates

  13. Towards a vibrational analysis of spheroidene. Resonance Raman spectroscopy of 13C-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    PubMed

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Hoff, A F; Farhoosh, R; Frank, H A

    1994-04-28

    We report resonance Raman spectra of the carotenoid spheroidene and its 14'-13C and 15'-13C substituted analogues in petroleum ether and bound to the reaction centre of Rhodobacter sphaeroides R26. The spectra in petroleum ether correspond to planar all-trans spheroidene while those of the reaction centres are consistent with a nonplanar 15,15'-cis spheroidene. The effect of 13C labelling is largest in the carbon-carbon double-bond stretching region. The 15'-13C substitution of the reaction centre bound spheroidene, however, hardly changes the C=C band as compared to that for the natural abundance spheroidene apart from a new weak band at 1508 cm(-1). This observation has been interpreted as a decoupling of the C15=C15' stretch from the other double-bond stretches in combination with a small intrinsic Raman intensity of this local mode for 15,15'-cis spheroidene. PMID:8167135

  14. A 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levels

    NASA Astrophysics Data System (ADS)

    de Kluijver, A.; Soetaert, K.; Czerny, J.; Schulz, K. G.; Boxhammer, T.; Riebesell, U.; Middelburg, J. J.

    2012-07-01

    The effect of CO2 on carbon fluxes in Arctic plankton communities was investigated during the 2010 EPOCA mesocosm study in Ny Ålesund, Svalbard. Nine mesocosms were set up with initial pCO2 levels ranging from 185 to 1420 μatm for 5 weeks. 13C labelled bicarbonate was added at the start of the experiment to follow the transfer of carbon from dissolved inorganic carbon (DIC) into phytoplankton, bacteria, total particulate organic carbon (POC), zooplankton, and settling particles. Polar lipid derived fatty acids (PLFA) were used to trace carbon dynamics of phytoplankton and bacteria and allowed distinction of two groups of phytoplankton: phyto I (autotrophs) and phyto II (mixotrophs). Nutrients were added on day 13. A nutrient-phytoplankton-zooplankton-detritus model amended with 13C dynamics was constructed and fitted to the data to quantify uptake rates and carbon fluxes in the plankton community during the phase prior to nutrient addition (phase 1, days 0-12). During the first 12 days, a phytoplankton bloom developed that was characterized by high growth rates (0.87 days-1) for phyto I and lower growth rates (0.18 days-1) for phyto II. A large part of the carbon fixed by phytoplankton (~31%) was transferred to bacteria, while mesozooplankton grazed only ~6% of the production. After 6 days, the bloom collapsed and part of the organic matter subsequently settled into the sediment traps. The sedimentation losses of detritus in phase 1 were low (0.008 days-1) and overall export was only ~7% of production. Zooplankton grazing and detritus sinking losses prior to nutrient addition were sensitive to CO2: grazing decreased with increasing CO2, while sinking increased. Phytoplankton production increased again after nutrient addition on day 13. Although phyto II showed initially higher growth rates with increasing CO2 (days 14-22), the overall production of POC after nutrient addition (phase 2, days 14-29) decreased with increasing CO2. Significant sedimentation occurred

  15. Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously.

    PubMed

    Blank, Lars M; Desphande, Rahul R; Schmid, Andreas; Hayen, Heiko

    2012-06-01

    Alternative metabolic pathways inside a cell can be deduced using stable isotopically labeled substrates. One prerequisite is accurate measurement of the labeling pattern of targeted metabolites. Experiments are generally limited to the use of single-element isotopes, mainly (13)C. Here, we demonstrate the application of direct infusion nanospray, ultrahigh-resolution Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) for metabolic studies using differently labeled elemental isotopes simultaneously--i.e., (13)C and (15)N--in amino acids of a total protein hydrolysate. The optimized strategy for the analysis of metabolism by a hybrid linear ion trap-FTICR-MS comprises the collection of multiple adjacent selected ion monitoring scans. By limiting both the width of the mass range and the number of ions entering the ICR cell with automated gain control, sensitive measurements of isotopologue distribution were possible without compromising mass accuracy and isotope intensity mapping. The required mass-resolving power of more than 60,000 is only achievable on a routine basis by FTICR and Orbitrap mass spectrometers. Evaluation of the method was carried out by comparison of the experimental data to the natural isotope abundances of selected amino acids and by comparison to GC/MS results obtained from a labeling experiment with (13)C-labeled glucose. The developed method was used to shed light on the complexity of the yeast Saccharomyces cerevisiae carbon-nitrogen co-metabolism by administering both (13)C-labeled glucose and (15)N-labeled alanine. The results indicate that not only glutamate but also alanine acts as an amino donor during alanine and valine synthesis. Metabolic studies using FTICR-MS can exploit new possibilities by the use of multiple-labeled elemental isotopes. PMID:22543713

  16. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  17. Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by 13C labelling.

    PubMed

    Lindén, Pernilla; Keech, Olivier; Stenlund, Hans; Gardeström, Per; Moritz, Thomas

    2016-05-01

    Mitochondrial malate dehydrogenase (mMDH) catalyses the interconversion of malate and oxaloacetate (OAA) in the tricarboxylic acid (TCA) cycle. Its activity is important for redox control of the mitochondrial matrix, through which it may participate in regulation of TCA cycle turnover. In Arabidopsis, there are two isoforms of mMDH. Here, we investigated to which extent the lack of the major isoform, mMDH1 accounting for about 60% of the activity, affected leaf metabolism. In air, rosettes of mmdh1 plants were only slightly smaller than wild type plants although the fresh weight was decreased by about 50%. In low CO2 the difference was much bigger, with mutant plants accumulating only 14% of fresh weight as compared to wild type. To investigate the metabolic background to the differences in growth, we developed a (13)CO2 labelling method, using a custom-built chamber that enabled simultaneous treatment of sets of plants under controlled conditions. The metabolic profiles were analysed by gas- and liquid- chromatography coupled to mass spectrometry to investigate the metabolic adjustments between wild type and mmdh1 The genotypes responded similarly to high CO2 treatment both with respect to metabolite pools and (13)C incorporation during a 2-h treatment. However, under low CO2 several metabolites differed between the two genotypes and, interestingly most of these were closely associated with photorespiration. We found that while the glycine/serine ratio increased, a concomitant altered glutamine/glutamate/α-ketoglutarate relation occurred. Taken together, our results indicate that adequate mMDH activity is essential to shuttle reductants out from the mitochondria to support the photorespiratory flux, and strengthen the idea that photorespiration is tightly intertwined with peripheral metabolic reactions. PMID:26889011

  18. Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by 13C labelling

    PubMed Central

    Lindén, Pernilla; Keech, Olivier; Stenlund, Hans; Gardeström, Per; Moritz, Thomas

    2016-01-01

    Mitochondrial malate dehydrogenase (mMDH) catalyses the interconversion of malate and oxaloacetate (OAA) in the tricarboxylic acid (TCA) cycle. Its activity is important for redox control of the mitochondrial matrix, through which it may participate in regulation of TCA cycle turnover. In Arabidopsis, there are two isoforms of mMDH. Here, we investigated to which extent the lack of the major isoform, mMDH1 accounting for about 60% of the activity, affected leaf metabolism. In air, rosettes of mmdh1 plants were only slightly smaller than wild type plants although the fresh weight was decreased by about 50%. In low CO2 the difference was much bigger, with mutant plants accumulating only 14% of fresh weight as compared to wild type. To investigate the metabolic background to the differences in growth, we developed a 13CO2 labelling method, using a custom-built chamber that enabled simultaneous treatment of sets of plants under controlled conditions. The metabolic profiles were analysed by gas- and liquid- chromatography coupled to mass spectrometry to investigate the metabolic adjustments between wild type and mmdh1. The genotypes responded similarly to high CO2 treatment both with respect to metabolite pools and 13C incorporation during a 2-h treatment. However, under low CO2 several metabolites differed between the two genotypes and, interestingly most of these were closely associated with photorespiration. We found that while the glycine/serine ratio increased, a concomitant altered glutamine/glutamate/α-ketoglutarate relation occurred. Taken together, our results indicate that adequate mMDH activity is essential to shuttle reductants out from the mitochondria to support the photorespiratory flux, and strengthen the idea that photorespiration is tightly intertwined with peripheral metabolic reactions. PMID:26889011

  19. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis.

    PubMed

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian; Ulrich, Anne S

    2015-06-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly (13)C/(15)N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive (13)C/(15)N-labeled amino acids. The most cost-effective production of (13)C/(15)N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% (13)C-glycerol and 0.5% (15)N-ammonium sulfate, supplemented with only 0.025% of (13)C/(15)N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  20. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  1. Direct Monitoring of γ-Glutamyl Transpeptidase Activity In Vivo Using a Hyperpolarized (13) C-Labeled Molecular Probe.

    PubMed

    Nishihara, Tatsuya; Yoshihara, Hikari A I; Nonaka, Hiroshi; Takakusagi, Yoichi; Hyodo, Fuminori; Ichikawa, Kazuhiro; Can, Emine; Bastiaansen, Jessica A M; Takado, Yuhei; Comment, Arnaud; Sando, Shinsuke

    2016-08-26

    The γ-glutamyl transpeptidase (GGT) enzyme plays a central role in glutathione homeostasis. Direct detection of GGT activity could provide critical information for the diagnosis of several pathologies. We propose a new molecular probe, γ-Glu-[1-(13) C]Gly, for monitoring GGT activity in vivo by hyperpolarized (HP) (13) C magnetic resonance (MR). The properties of γ-Glu-[1-(13) C]Gly are suitable for in vivo HP (13) C metabolic analysis since the chemical shift between γ-Glu-[1-(13) C]Gly and its metabolic product, [1-(13) C]Gly, is large (4.3 ppm) and the T1 of both compounds is relatively long (30 s and 45 s, respectively, in H2 O at 9.4 T). We also demonstrate that γ-Glu-[1-(13) C]Gly is highly sensitive to in vivo modulation of GGT activity induced by the inhibitor acivicin. PMID:27483206

  2. A capillary absorption spectrometer for stable carbon isotope ratio (13C/12C) analysis in very small samples

    NASA Astrophysics Data System (ADS)

    Kelly, J. F.; Sams, R. L.; Blake, T. A.; Newburn, M.; Moran, J.; Alexander, M. L.; Kreuzer, H.

    2012-02-01

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO2 samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 (4.34 μm). This initial CAS system can achieve relative isotopic precision of about 10 ppm 13C, or ˜1‰ (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO2 concentrations ˜400-750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to ˜2 Torr. Overall 13C/12C ratios can be calibrated to ˜2‰ accuracy with diluted CO2 standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1000 scans are co-added in ˜10 s. The CAS is meant to work directly with converted CO2 samples from a laser ablation-catalytic combustion micro-sampler to provide 13C/12C ratios of small biological isolates currently operating with spatial resolutions ˜50 μm.

  3. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N (δ15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  4. Human lactation: oxidation and maternal transfer of dietary (13)C-labelled α-linolenic acid into human milk.

    PubMed

    Demmelmair, Hans; Kuhn, Angelika; Dokoupil, Katharina; Hegele, Verena; Sauerwald, Thorsten; Koletzko, Berthold

    2016-06-01

    The origin of fatty acids in milk has not been elucidated in detail. We investigated the contribution of dietary α-linolenic acid (ALA) to human milk fat, its oxidation and endogenous conversion to long-chain polyunsaturated fatty acids. Ten lactating women were given (13)C-ALA orally, and breath and milk samples were collected for a five-day period, while dietary intakes were assessed. 37.5 ± 2.7 % (M ± SE) of the tracer was recovered in breath-CO2, and 7.3 ± 1.1 % was directly transferred into milk. About 0.25 % of the tracer was found in milk long-chain polyunsaturated fatty acids. Combining intake and milk data, we estimate that about 65 % of milk ALA is directly derived from maternal diet. Thus, the major portion of milk ALA is directly derived from the diet, but dietary ALA does not seem to contribute much as a precursor to milk n-3 long-chain polyunsaturated fatty acids within the studied time period. PMID:26444910

  5. Whey and casein labeled with L-[1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion.

    PubMed

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon; Helmark, Ida C; Lund, Peter; Kristensen, Niels B; Frystyk, Jan; Flyvbjerg, Allan; Schjerling, Peter; van Hall, Gerrit; Kjaer, Michael; Holm, Lars

    2011-01-01

    Muscle protein turnover following resistance exercise and amino acid availability are relatively well described. By contrast, the beneficial effects of different sources of intact proteins in relation to exercise need further investigation. Our objective was to compare muscle anabolic responses to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1-6 h postexercise after whey and casein intake, both of which were higher compared with control (P < 0.05). Phosphorylation of Akt and p70(S6K) was increased after exercise and protein intake (P < 0.05), but no differences were observed between the types of protein except for total 4E-BP1, which was higher after whey intake than after casein intake (P < 0.05). In conclusion, whey and casein intake immediately after resistance exercise results in an overall equal MPS response despite temporal differences in insulin and amino acid concentrations and 4E-BP1. PMID:21045172

  6. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  7. Norlittorine and norhyoscyamine identified as products of littorine and hyoscyamine metabolism by (13)C-labeling in Datura innoxia hairy roots.

    PubMed

    Al Balkhi, Mohamad Houssam; Schiltz, Séverine; Lesur, David; Lanoue, Arnaud; Wadouachi, Anne; Boitel-Conti, Michèle

    2012-02-01

    The presence of two compounds, norlittorine and norhyoscyamine, has been reported in leaves and roots of Datura innoxia; however their metabolic origin in the tropane alkaloid pathway has remained unknown. Precise knowledge of this pathway is a necessary pre-requisite to optimize the production of hyoscyamine and scopolamine in D. innoxia hairy root cultures. The exact structure of norlittorine and norhyoscyamine was confirmed by LC-MS/MS and NMR analyses. Isotopic labeling experiments, using [1-(13)C]-phenylalanine, [1'-(13)C]-littorine and [1'-(13)C]-hyoscyamine, combined with elicitor treatments, using methyl jasmonate, coronalon and 1-aminocyclopropane-1-carboxylic acid, were used to investigate the metabolic origin of the N-demethylated tropane alkaloids. The results suggest that norlittorine and norhyoscyamine are induced under stress conditions by conversion of littorine and hyoscyamine. We propose the N-demethylation of tropane alkaloids as a mechanism to detoxify cells in overproducing conditions. PMID:22083085

  8. Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.

    PubMed

    Hefke, Frederik; Bagaria, Anurag; Reckel, Sina; Ullrich, Sandra Johanna; Dötsch, Volker; Glaubitz, Clemens; Güntert, Peter

    2011-02-01

    We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273-6279 (1982)), types of amino acids are labeled with (13)C or/and (15)N such that cross peaks between (13)CO(i - 1) and (15)NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with (13)C and the second with (15)N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B(2)R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin. PMID:21170670

  9. Identifying sources of methane sampled in the Arctic using δ13C in CH4 and Lagrangian particle dispersion modelling.

    NASA Astrophysics Data System (ADS)

    Cain, Michelle; France, James; Pyle, John; Warwick, Nicola; Fisher, Rebecca; Lowry, Dave; Allen, Grant; O'Shea, Sebastian; Illingworth, Samuel; Jones, Ben; Gallagher, Martin; Welpott, Axel; Muller, Jennifer; Bauguitte, Stephane; George, Charles; Hayman, Garry; Manning, Alistair; Myhre, Catherine Lund; Lanoisellé, Mathias; Nisbet, Euan

    2016-04-01

    An airmass of enhanced methane was sampled during a research flight at ~600 m to ~2000 m altitude between the North coast of Norway and Svalbard on 21 July 2012. The largest source of methane in the summertime Arctic is wetland emissions. Did this enhancement in methane come from wetland emissions? The airmass was identified through continuous methane measurements using a Los Gatos fast greenhouse gas analyser on board the UK's BAe-146 Atmospheric Research Aircraft (ARA) as part of the MAMM (Methane in the Arctic: Measurements and Modelling) campaign. A Lagrangian particle dispersion model (the UK Met Office's NAME model) was run backwards to identify potential methane source regions. This was combined with a methane emission inventory to create "pseudo observations" to compare with the aircraft observations. This modelling was used to constrain the δ13C CH4 wetland source signature (where δ13C CH4 is the ratio of 13C to 12C in methane), resulting in a most likely signature of -73‰ (±4‰7‰). The NAME back trajectories suggest a methane source region of north-western Russian wetlands, and -73‰ is consistent with in situ measurements of wetland methane at similar latitudes in Scandinavia. This analysis has allowed us to study emissions from remote regions for which we do not have in situ observations, giving us an extra tool in the determination of the isotopic source variation of global methane emissions.

  10. Importance of bacterivory and preferential selection toward diatoms in larvae of Crepidula fornicata (L.) assessed by a dual stable isotope (13C, 15N) labeling approach

    NASA Astrophysics Data System (ADS)

    Leroy, Fanny; Riera, Pascal; Jeanthon, Christian; Edmond, Frédérique; Leroux, Cédric; Comtet, Thierry

    2012-05-01

    In Europe, the gastropod Crepidula fornicata is an invasive species characterized by a long reproductive period (from February to November). Thus, its larvae are exposed to variations in available food sources (in terms of quantity and quality). We aimed to investigate if bacteria could contribute to larval food both in presence or absence of phytoplankton, and to compare these results to seasonal variations of bacteria and phytoplankton abundances at a coastal site in the English Channel. First, ingestion of fluorescent beads of 0.5 to 2 μm diameter, showed that larvae were able to ingest particles of typical bacterial size. Then we used a dual stable isotope labeling approach which consisted in labeling a bacterial pelagic community with 15N and a diatom (Chaetoceros gracilis) culture with 13C, and supplying larvae with 15N-labeled bacteria, 13C-labeled diatoms, and both labeled sources. This technique has, to our knowledge, never been applied to invertebrate larvae. After 24 h of experiment, larvae were significantly enriched in all treatments: + 21.5‰ (∆δ13C) when supplied with diatoms, + 1364‰ (∆δ15N) when supplied with bacteria, and + 24‰ (∆δ13C) and + 135‰ (∆δ15N) when supplied with the two mixed sources. These results indicated that bacteria can contribute to the larval nutrition in C. fornicata, even in the presence of phytoplankton. Our results however suggested that larvae of C. fornicata preferentially used diatoms and showed that the supply of free bacteria did not alter the uptake of diatoms. Considering the seasonal variations of bacteria and phytoplankton abundances at the study site, these results suggested that bacteria may constitute a complementary resource for the larvae of C. fornicata when phytoplankton is abundant and may become a substitute resource when phytoplankton is less available. This approach offers promising perspectives to trace food sources and assess nitrogen and carbon fluxes between planktotrophic larvae

  11. Microbial utilization of sugars in soil assessed by position-specific labeling and compound-specific 13C-PLFA-analysis

    NASA Astrophysics Data System (ADS)

    Apostel, Carolin; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov

    2014-05-01

    For the transformation of low molecular weight organic substances (LMWOS) in soil, which is an important process in the turnover of organic matter, microbial utilization is one of the most important processes. Position-specific labeling combined with compound-specific 13C-PLFA-analysis allows a closer look on the mechanisms of LMWOS transformation in soil. We assessed short- (3 and 10 days) and long-term (half year) transformations of monosaccharides by adding position-specifically 13C labeled glucose and ribose to soil in a field experiment conducted on an agriculturally used luvisol located in north-western Bavaria. We quantified the microbial utilization of the different functional groups by 13C-analysis of microbial biomass with the chloroform-fumigation-extraction method (CFE). 13C-PLFA analysis enabled us to distinguish individual microbial groups and compare their C-utilization. Preferential degradation of glucoses C-3 and C-4 respectively C-1 position enabled differentiation between the two main hexose metabolic pathways - glycolysis and the pentose phosphate pathway. Microbial groups revealed different incorporation of specific C positions into their PLFA. The highest incorporation was reached by the prokaryotic gram- negative groups. The application of position-specifically labeled substances, coupled with compound-specific 13C-PLFA analysis opens a new way to investigate the microbial transformations of LMWOS in soil. Observing single C atoms and their utilization by specific microbial groups allow conclusions about the mechanisms and kinetics of microbial utilization and interaction between these groups and therefore will improve our understanding of soil carbon fluxes.

  12. Xyloglucan undergoes interpolymeric transglycosylation during binding to the plant cell wall in vivo: evidence from 13C/3H dual labelling and isopycnic centrifugation in caesium trifluoroacetate.

    PubMed Central

    Thompson, J E; Smith, R C; Fry, S C

    1997-01-01

    Xyloglucan from the walls of Rosa cells that had been cultured on [12C]- or [13C]-glucose formed bands in caesium trifluoroacetate with mean buoyant densities of 1.575 or 1.616 g/ml respectively. Incubation of a mixture of [13C,3H]xyloglucan and [12C,1H]xyloglucan in the presence of xyloglucan endotransglycosylase (XET) activity caused the mean buoyant density of the radioactive material to decrease, indicating that interpolymeric transglycosylation could be detected in vitro. We used two 13C/3H-dual-labelling protocols to look for interpolymeric transglycosylation in vivo. In protocol A, [13C]glucose-grown Rosa cells were transferred into [12C]glucose medium 6 h after a approximately 2 h pulse of l-[1-3H]arabinose (which radiolabels the xylose residues of xyloglucan). The mean buoyant density of the wall-bound [3H]xyloglucan decreased during the following 7 days in culture. This indicates that, during or after the wall-binding of newly synthesized [12C,1H]xyloglucan, it became covalently attached to previously wall-bound [13C, 3H]xyloglucan. In protocol B, [12C]glycerol- or [12C]glucose-grown Rosa cells were transferred into [13C]glucose medium, 20 or 60 min before a approximately 2 h pulse of [3H]arabinose. The buoyant density of the earliest wall-bound [3H]xyloglucan showed that it had a 12C/13C ratio of approximately 1:1. This indicates that, during (or, implausibly, before) wall-binding, the newly synthesized [13C, 3H]xyloglucan became covalently attached to previously synthesized [12C]xyloglucan. During the following 7 days in culture, the mean buoyant density of the [3H]xyloglucan increased, showing that later-synthesized [13C,1H]xyloglucan can be covalently attached to previously wall-bound [12C,13C,3H]xyloglucan. The only known mechanism by which segments of xyloglucans could become covalently attached to each other in the cell wall is by interpolymeric transglycosylation catalysed by XET. We conclude that XET-catalysed interpolymeric transglycosylation

  13. Reductive carbonylation of aryl halides employing a two-chamber reactor: a protocol for the synthesis of aryl aldehydes including 13C- and D-isotope labeling.

    PubMed

    Korsager, Signe; Taaning, Rolf H; Lindhardt, Anders T; Skrydstrup, Troels

    2013-06-21

    A protocol has been developed for conducting the palladium-catalyzed reductive carbonylation of aryl iodides and bromides using 9-methylfluorene-9-carbonyl chloride (COgen) as a source of externally delivered carbon monoxide in a sealed two-chamber system (COware), and potassium formate as the in situ hydride source. The method is tolerant to a wide number of functional groups positioned on the aromatic ring, and it can be exploited for the isotope labeling of the aldehyde group. Hence, reductive carbonylations run with (13)COgen provide a facile access to (13)C-labeled aromatic aldehydes, whereas with DCO2K, the aldehyde is specifically labeled with deuterium. Two examples of double isotopic labeling are also demonstrated. Finally, the method was applied to the specific carbon-13 labeling of the β-amyloid binding compound, florbetaben. PMID:23692554

  14. A Capillary Absorption Spectrometer for Stable Carbon Isotope Ratio (13C/12C) Analysis in Very Small Samples

    SciTech Connect

    Kelly, James F.; Sams, Robert L.; Blake, Thomas A.; Newburn, Matthew K.; Moran, James J.; Alexander, M. L.; Kreuzer, Helen W.

    2012-02-06

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO{sub 2} samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO{sub 2} near 2307 cm{sup -1} (4.34 {mu}m). This initial CAS system can achieve relative isotopic precision of about 10 ppm {sup 13}C, or {approx}1{per_thousand} (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO{sub 2} concentrations {approx}400 to 750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to {approx}2 Torr. Overall {sup 13}C/{sup 12}C ratios can be calibrated to {approx}2{per_thousand} accuracy with diluted CO{sub 2} standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1,000 scans are co-added in {approx}10 sec. The CAS is meant to work directly with converted CO{sub 2} samples from a Laser Ablation-Catalytic-Combustion (LA CC) micro-sampler to provide {sup 13}C/{sup 12}C ratios of small biological isolates with spatial resolutions {approx}50 {mu}m.

  15. Streamlined pentafluorophenylpropyl column liquid chromatography-tandem quadrupole mass spectrometry and global 13C-labeled internal standards improve performance for quantitative metabolomics in bacteria

    PubMed Central

    Yang, Song; Sadilek, Martin; Lidstrom, Mary E.

    2010-01-01

    Streamlined quantitative metabolomics in central metabolism of bacteria would be greatly facilitated by a high-efficiency liquid chromatography (LC) method in conjunction with accurate quantitation. To achieve this goal, a methodology for LC-tandem quadrupole mass spectrometry (LC-MS/MS) involving a pentafluorophenylpropyl (PFPP) column and culture-derived global 13C-labeled internal standards (I.Ss.) has been developed and compared to hydrophilic interaction liquid chromatography (HILIC)-MS/MS and published combined two-dimensional gas chromatography and LC methods. All 50 tested metabolite standards from 5 classes (amino acids, carboxylic acids, nucleotides, acyl-CoAs and sugar phosphates) displayed good chromatographic separation and sensitivity on the PFPP column. In addition, many important critical pairs such as isomers / isobars (e.g. isoleucine / leucine, methylsuccinic acid / ethylmalonic acid and malonyl-CoA / 3-hydroxybutyryl-CoA) and metabolites of similar structure (e.g. malate / fumarate) were resolved better on the PFPP than on the HILIC column. Compared to only one 13C-labeled I.S., the addition of global 13C-labeled I.Ss. improved quantitative linearity and accuracy. PFPP-MS/MS with global 13C-labeled I.Ss. allowed the absolute quantitation of 42 metabolite pool sizes in M. extorquens AM1. A comparison of metabolite level changes published previously for ethylamine (C2) versus succinate (C4) cultures of Methylobacterium extorquens AM1 indicated a good consistency with the data obtained by PFPP-MS/MS, suggesting this single approach has the capability of providing comprehensive metabolite profiling similar to the combination of methods. The more accurate quantification obtained by this method forms a fundamental basis for flux measurements and can be used for metabolism modeling in bacteria in future studies. PMID:20950815

  16. Stabilization of glucose-C in microbial cell membranes (PLFA) and cell walls (amino sugars) evaluated by 13C-labelling in a field experiment

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Kuzyakov, Yakov; Glaser, Bruno

    2015-04-01

    Microorganisms control carbon (C) cycle and strongly contribute to formation of soil organic matter. Strong differences in the turnover of microbial groups and cellular compounds complicate the assessment of their contribution to microbial food webs and C sequestration in soil in situ. The uptake and incorporation of 13C labeled glucose by microbial groups were traced during 50 days after the labeling under field conditions. 13C was analysed: i) in the cytosolic pool by chloroform fumigation extraction, ii) in cell membranes by phospholipid fatty acids (PLFA), iii) in cell walls by amino sugars, and iv) remaining in bulk soil. This allowed tracing C in microbial groups as well as cellular compounds. Mean residence times (MRT) of C in PLFA and the cytosol were 47 and 150 days, respectively. Such long cytosol MRT depends on its heterogeneous composition, which includes high and low molecular weight organics. Amino sugars were mainly originated from microbial residues and thus, observation periods higher than 1 year are required for estimation of their MRT. Relative 13C incorporation (13C portion in total pool C) was the highest for PLFAs (~1.5% at day 3), whereas 13C content of the cytosol and amino sugars was one and two orders of magnitude less, respectively. Relative 13C incorporation into amino sugars of living microorganisms showed only 0.57% on day 3. Therefore, the turnover of cell membrane components is two times faster than that of cell walls, even in living microorganisms. Both PLFAs and amino sugars showed that glucose C was preferentially used by bacteria. 13C incorporation into bacterial cell walls and membranes decreased with time, but increased or remained constant for fungi, reflecting faster turnover of bacteria than fungi. Consequently, bacteria contribute more to the decomposition of low molecular weight organics, whereas fungi consume bacterial products or necromass and contribute more to long-term C stabilisation. Thus, tracing of 13C in cellular

  17. Studies on the biodegradation of fosfomycin: synthesis of 13C-labeled intermediates, feeding experiments with Rhizobium huakuii PMY1, and isolation of labeled amino acids from cell mass by HPLC.

    PubMed

    McGrath, John W; Hammerschmidt, Friedrich; Kählig, Hanspeter; Wuggenig, Frank; Lamprecht, Günther; Quinn, John P

    2011-11-18

    Racemic (1R*,2R*)-1,2-dihydroxy-[1-(13)C(1)]propylphosphonic acid and 1-hydroxy-[1-(13)C(1)]acetone were synthesized and fed to R. huakuii PMY1. Alanine and a mixture of valine and methionine were isolated as their N-acetyl derivatives from the cell hydrolysate by reversed-phase HPLC and analyzed by NMR spectroscopy. It was found that the carbon atoms of the respective carboxyl groups were highly (13)C-labeled (up to 65 %). Hydroxyacetone is therefore considered an obligatory intermediate of the biodegradation of fosfomycin by R. huakuii PMY1. PMID:22012897

  18. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized 13C labeled pyruvate

    PubMed Central

    Xu, He N.; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim

    2016-01-01

    Background Clinically translatable hyperpolarized (HP) 13C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP 13C-pyruvate into the subject, which is converted to 13C labeled lactate by the enzyme. Parameters such as 13C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP 13C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP 13C-NMR data and investigate if they can be potential predictors of lung inflammation. Methods Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP 13C-pyruvate for injecting into the lungs. A 20 mm 1H/13C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the 13C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of 13C labeled pyruvate and lactate. Results The apparent forward rate constant kp=(3.67±3.31)×10−4 s−1, reverse rate constant kl=(4.95±2.90)×10−2 s−1, rate constant ratio kp/kl=(7.53±5.75)×10−3 for the control lungs; kp=(11.71±4.35)×10−4 s−1, kl=(9.89±3.89)×10−2 s−1, and kp/kl=(12.39±4.18)×10−3 for the inflamed lungs at the 7th day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly

  19. Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities.

    PubMed

    Wu, Wei Xiang; Liu, Wei; Lu, Hao Hao; Chen, Ying Xu; Medha, Devare; Janice, Thies

    2009-01-01

    Photosynthetic assimilation of CO2 is a primary source of carbon in soil and root exudates and can influence the community dynamics of rhizosphere organisms. Thus, if carbon partitioning is affected in transgenic crops, rhizosphere microbial communities may also be affected. In this study, the temporal effects of gene transformation on carbon partitioning in rice and rhizosphere microbial communities were investigated under greenhouse conditions using the 13C pulse-chase labeling method and phospholipid fatty acid (PLFA) analysis. The 13C contents in leaves of transgenic (Bt) and nontransgenic (Ck) rice were significantly different at the seedling, booting and heading stages. There were no detectable differences in 13C distribution in rice roots and rhizosphere microorganisms at any point during rice development. Although a significantly lower amount of Gram-positive bacterial PLFAs and a higher amount of Gram-negative bacterial PLFAs were observed in Bt rice rhizosphere as compared with Ck at all plant development stages, there were no significant differences in the amount of individual 13C-PLFA between Bt and Ck rhizospheres at any growing stage. These findings indicate that the insertion of cry1Ab and marker genes into rice had no persistent or adverse effect on the photosynthate distribution in rice or the microbial community composition in its rhizosphere. PMID:19049503

  20. Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines

    NASA Astrophysics Data System (ADS)

    Jehle, Stefan; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan

    2006-12-01

    Amino-acid selective magic-angle spinning (MAS) NMR experiments can aid the assignment of ambiguous cross-peaks in crowded spectra of solid proteins. In particular for larger proteins, data analysis can be hindered by severe resonance overlap. In such cases, filtering techniques may provide a good alternative to site-specific spin-labeling to obtain unambiguous assignments that can serve as starting points in the assignment procedure. In this paper we present a simple pulse sequence that allows selective excitation of arginine and lysine residues. To achieve this, we make use of a combination of specific cross-polarization for selective excitation [M. Baldus, A.T. Petkova, J. Herzfeld, R.G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys. 95 (1998) 1197-1207.] and spin diffusion for transfer along the amino-acid side-chain. The selectivity of the filter is demonstrated with the excitation of lysine and arginine side-chain resonances in a uniformly 13C and 15N labeled protein preparation of the α-spectrin SH3 domain. It is shown that the filter can be applied as a building block in a 13C- 13C lysine-only correlation experiment.

  1. Metabolic pathway for propionate utilization by phosphorus-accumulating organisms in activated sludge: 13C labeling and in vivo nuclear magnetic resonance.

    PubMed

    Lemos, Paulo C; Serafim, Luísa S; Santos, Margarida M; Reis, Maria A M; Santos, Helena

    2003-01-01

    In vivo 13C and 31P nuclear magnetic resonance techniques were used to study propionate metabolism by activated sludge in enhanced biological phosphorus removal systems. The fate of label supplied in [3-13C]propionate was monitored in living cells subjected to anaerobic/aerobic cycles. During the anaerobic phase, propionate was converted to polyhydroxyalkanoates (PHA) with the following monomer composition: hydroxyvalerate, 74.2%; hydroxymethylvalerate, 16.9%; hydroxymethylbutyrate, 8.6%; and hydroxybutyrate, 0.3%. The isotopic enrichment in the different carbon atoms of hydroxyvalerate (HV) produced during the first anaerobic stage was determined: HV5, 59%; HV4, 5.0%; HV3, 1.1%; HV2, 3.5%; and HV1, 2.8%. A large proportion of the supplied label ended up on carbon C-5 of HV, directly derived from the pool of propionyl-coenzyme A (CoA), which is primarily labeled on C-3; useful information on the nature of operating metabolic pathways was provided by the extent of labeling on C-1, C-2, and C-4. The labeling pattern on C-1 and C-2 was explained by the conversion of propionyl-CoA to acetyl-CoA via succinyl-CoA and the left branch of the tricarboxylic acid cycle, which involves scrambling of label between the inner carbons of succinate. This constitutes solid evidence for the operation of succinate dehydrogenase under anaerobic conditions. The labeling in HV4 is explained by backflux from succinate to propionyl-CoA. The involvement of glycogen in the metabolism of propionate was also demonstrated; moreover, it was shown that the acetyl moiety to the synthesis of PHA was derived preferentially from glycogen. According to the proposed metabolic scheme, the decarboxylation of pyruvate is coupled to the production of hydrogen, and the missing reducing equivalents should be derived from a source other than glycogen metabolism. PMID:12514001

  2. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments.

    PubMed

    Warren, J M; Iversen, C M; Garten, C T; Norby, R J; Childs, J; Brice, D; Evans, R M; Gu, L; Thornton, P; Weston, D J

    2012-06-01

    The dynamics of rapid changes in carbon (C) partitioning within forest ecosystems are not well understood, which limits improvement of mechanistic models of C cycling. Our objective was to inform model processes by describing relationships between C partitioning and accessible environmental or physiological measurements, with a special emphasis on short-term C flux through a forest ecosystem. We exposed eight 7-year-old loblolly pine (Pinus taeda L.) trees to air enriched with (13)CO(2) and then implemented adjacent light shade (LS) and heavy shade (HS) treatments in order to manipulate C uptake and flux. The impacts of shading on photosynthesis, plant water potential, sap flow, basal area growth, root growth and soil CO(2) efflux rate (CER) were assessed for each tree over a 3-week period. The progression of the (13)C label was concurrently tracked from the atmosphere through foliage, phloem, roots and surface soil CO(2) efflux. The HS treatment significantly reduced C uptake, sap flow, stem growth and fine root standing crop, and resulted in greater residual soil water content to 1 m depth. Soil CER was strongly correlated with sap flow on the previous day, but not the current day, with no apparent treatment effect on the relationship. Although there were apparent reductions in new C flux belowground, the HS treatment did not noticeably reduce the magnitude of belowground autotrophic and heterotrophic respiration based on surface soil CER, which was overwhelmingly driven by soil temperature and moisture. The (13)C label was immediately detected in foliage on label day (half-life = 0.5 day), progressed through phloem by Day 2 (half-life = 4.7 days), roots by Days 2-4, and subsequently was evident as respiratory release from soil which peaked between Days 3 and 6. The δ(13)C of soil CO(2) efflux was strongly correlated with phloem δ(13)C on the previous day, or 2 days earlier. While the (13)C label was readily tracked through the ecosystem, the fate of root C

  3. Spatial and temporal distribution of 13C labelled plant residues in soil aggregates and Lumbricus terrestris surface casts: A combination of Transmission Electron Microscopy and Nanoscale Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vidal, Alix; Remusat, Laurent; Watteau, Françoise; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Earthworms play a central role in litter decomposition, soil structuration and carbon cycling. They ingest both organic and mineral compounds which are mixed, complexed with mucus and dejected in form of casts at the soil surface and along burrows. Bulk isotopic or biochemical technics have often been used to study the incorporation of litter in soil and casts, but they could not reflect the complex interaction between soil, plant and microorganisms at the microscale. However, the heterogeneous distribution of organic carbon in soil structures induces contrasted microbial activity areas. Nano-scale secondary ion mass spectrometry (NanoSIMS), which is a high spatial resolution method providing elemental and isotopic maps of organic and mineral materials, has recently been applied in soil science (Herrmann et al., 2007; Vogel et al., 2014). The combination of Nano-scale secondary ion mass spectrometry (NanoSIMS) and Transmission Electron Microscopy (TEM) has proven its potential to investigate labelled residues incorporation in earthworm casts (Vidal et al., 2016). In line of this work, we studied the spatial and temporal distribution of plant residues in soil aggregates and earthworm surface casts. This study aimed to (1) identify the decomposition states of labelled plant residues incorporated at different time steps, in casts and soil, (2) identify the microorganisms implied in this decomposition (3) relate the organic matter states of decomposition with their 13C signature. A one year mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass (Lolium multiflorum) litter in a soil in the presence of anecic earthworms (Lumbricus terrestris). Soil and surface cast samples were collected after 8 and 54 weeks, embedded in epoxy resin and cut into ultra-thin sections. Soil was fractionated and all and analyzed with TEM and NanoSIMS, obtaining secondary ion images of 12C, 16O, 12C14N, 13C14N and 28Si. The δ13C maps were obtained using the 13C14

  4. Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: a theoretical and experimental study.

    PubMed

    Infante-Castillo, Ricardo; Pacheco-Londoño, Leonardo; Hernández-Rivera, Samuel P

    2010-07-01

    Unambiguous vibrational band assignments have been made to cyclic nitramine hexahydro-1,3,5-trinitro-s-triazine, commonly known as the alpha-phase of RDX or alpha-RDX, with the use of (13)C and (15)N (on ring) enriched isotopic RDX analogues. Vibrational spectra were collected using Raman and IR spectroscopy in solid state and ab initio normal mode calculations were performed using density functional theory (DFT) and a 6-311G++** basis set. The calculated isotopic frequency shifts, induced by (13)C and (15)N labeling, are in very good accordance with measures ones. The changes in vibrational modes associated with the isotopic substitutions are well modeled by the calculation and previous assignments of the vibrational spectra have been revised, especially where the exact nature of the vibrational modes had been either vague or contradictory. PMID:20381411

  5. Carbon-proton scalar couplings in RNA. 3D heteronuclear and 2D isotope-edited NMR of a [sup 13]C-labeled extra-stable hairpin

    SciTech Connect

    Hines, J.V.; Landry, S.M.; Varani, G.; Tinoco, I. Jr. Lawrence Berkeley Lab., CA )

    1994-06-29

    Long range carbon-proton scalar couplings were measured for an RNA hairpin of 12 nucleotides using 3D and [sup 13]C-edited 2D NMR. The large one-bond carbon-proton scalar couplings ([sup 1]J[sub CH]) and small n-bond couplings ([sup 1]J[sub CH]) produce ECOSY type cross-peaks, thus facilitating the determination of the sign and magnitude of the smaller [sup 2]J[sub CH] or [sup 3]J[sub CH]. The UUCGRNA hairpin (5[prime]-rGGACUUCGGUCC-3[prime]), whose structure has been determined by our laboratory, was uniformly [sup 13]C-labeled at 30% isotopic enrichment. The observed [sup 1]J[sub CH] couplings were then correlated to the known structure. The signs of [sup 2]J[sub C4[prime]H5[prime

  6. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  7. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies.

    PubMed

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively (13)C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved. PMID:25625825

  8. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains in 13C/ 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Ash, Elissa L.; Günther, Ulrich L.; Luo, Xuelian; Bullock, Peter A.; Bachovchin, William W.

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from1H to13C to15N and reverse through direct spin couplings1JCHand1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain1H,13C, and15N resonances in uniformly13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay τ3were employed for determination of optimal τ3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 121H and13C chemical shifts and 10 of the 1215N chemical shifts were determined. The13C dimension proved essential in assignment of the multiply overlapping1H and15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mMsample of phenylmethanesulfonyl fluoride (PMSF)-inhibited α-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited α-lytic protease after 18 h at various temperatures ranging from 5 to 55°C, probably due to efficient relaxation of active-site imidazole1H and/or15N nuclei.

  9. Incorporation of 13C labelled root-shoot residues in soil in the presence of Lumbricus terrestris: An isotopic and molecular approach

    NASA Astrophysics Data System (ADS)

    Vidal, Alix; Alexis, Marie; Nguyen Tu, Thanh Tu; Anquetil, Christelle; Vaury, Véronique; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Litter from plant biomass deposited on soil surface can either be mineralized; releasing CO2 to the atmosphere, or transferred into the soil as organic compounds. Both pathways depend on biotic factors such as litter characteristics and the of soil organism activity. During the last decades, many studies have focused on the origin of organic matter, with a particular attention to the fate of root and shoot litter. It is generally admitted that roots decompose at a slower rate than shoots, resulting in a higher carbon sequestration in soil for compounds originating from roots. Earthworms play a central role in litter decomposition and carbon cycling, ingesting both organic and mineral compounds which are mixed, complexed and dejected in the form of casts at the soil surface or along earthworm burrows. The simultaneous impact of earthworms and root-shoot on soil carbon cycling is still poorly understood. This study aimed at (1) defining the rate of incorporation of root and shoot litter with or without earthworms and (2) characterizing the molecular composition of soil organic matter upon litter decomposition, after one year of experimentation. A mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass root and shoot litter in the soil, in the presence of anecic earthworms (Lumbricus terrestris). Soil samples were collected at 0-20 and 40-60 cm, as well as surface casts, at the beginning and after 1, 2, 4, 8, 24 and 54 weeks of experiment. Organic carbon content and δ13C values were determined for all the samples with Elemental Analysis - Isotope Ratio Mass Spectrometry. Lipid-free soil and cast samples after 54 weeks of incubation were analyzed with Pyrolysis-Gas Chromatography-Mass Spectrometry. Pyrolysis products were grouped into six classes: polysaccharides, lignin derived compounds, phenols, N-compounds, aliphatic compounds and sterols. Each pyrolysis product was quantified thanks to its peak area, relative to the total area of the

  10. Molecular Investigation of the Short-term Sequestration of Natural Abundance 13C -labelled Cow Dung in the Surface Horizons of a Temperate Grassland Soil

    NASA Astrophysics Data System (ADS)

    Dungait, J.; Bol, R.; Evershed, R. P.

    2004-12-01

    An adequate understanding of the carbon (C) sequestration potential of grasslands requires that the quantity and residence times of C inputs be measured. Herbivore dung is largely comprised of plant cell wall material, a significant source of stable C in intensively grazed temperate grassland ecosystems that contributes to the soil carbon budget. Our work uses compound-specific isotope analysis to identify the pattern of input of dung-derived compounds from natural abundance 13C/-labelled cow dung into the surface horizons of a temperate grassland soil over one year. C4 dung (δ 13C \\-12.6 ‰ ) from maize fed cows was applied to a temperate grassland surface (δ 13C \\-29.95 ‰ ) at IGER-North Wyke (Devon, UK), and dung remains and soil cores beneath the treatments collected at ŧ = 7, 14, 28, 56, 112, 224 and 372 days. Bulk dung carbon present in the 0\\-1 cm and 1\\-5 cm surface horizons of a grassland soil over one year was estimated using Δ 13C between C4 dung and C3 dung, after Bol {\\et al.} (2000). The major biochemical components of dung were quantified using proximate forage fibre analyses, after Goering and Van Soest (1970) and identified using `wet' chemical and GC-MS methods. Plant cell wall polysaccharides and lignin were found to account for up to 67 {%} of dung dry matter. Hydrolysed polysaccharides were prepared as alditol acetates for analyses (after Docherty {\\et al.}, 2001), and a novel application of an off-line pyrolysis method applied to measure lignin-derived phenolic compounds (after Poole & van Bergen, 2002). This paper focuses on major events in the incorporation of dung carbon, estimated using natural abundance 13C&-slash;labelling technique. This revealed a major bulk input of dung carbon after a period of significant rainfall with a consequent decline in bulk soil δ 13C values until the end of the experiment (Dungait {\\et al.}, submitted). Findings will be presented revealing contribution of plant cell wall polysaccharides and

  11. Balancing the (carbon) budget: Using linear inverse models to estimate carbon flows and mass-balance 13C:15N labelling experiments in low oxygen sediments.

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Van Oevelen, Dick; Witte, Ursula

    2013-04-01

    Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.

  12. The use of δ13C isotope ratio mass spectrometry for methamphetamine profiling: comparison of ephedrine and pseudoephedrine-based samples to P2P-based samples.

    PubMed

    Toske, Steven G; Morello, David R; Berger, Jennifer M; Vazquez, Etienne R

    2014-01-01

    Differentiating methamphetamine samples produced from ephedrine and pseudoephedrine from phenyl-2-propanone precursors is critical for assigning synthetic route information for methamphetamine profiling. The use of isotope ratio mass spectrometry data is now a key component for tracking precursor information. Recent carbon (δ(13)C) isotope results from the analysis of numerous methamphetamine samples show clear differentiation for ephedrine and pseudoephedrine-produced samples compared to P2P-produced samples. The carbon isotope differences were confirmed from synthetic route precursor studies. PMID:24378294

  13. Titration and exchange studies of liver fatty acid-binding protein with 13C-labeled long-chain fatty acids.

    PubMed

    Wang, Hsin; He, Yan; Kroenke, Christopher D; Kodukula, Sarala; Storch, Judith; Palmer, Arthur G; Stark, Ruth E

    2002-04-30

    Uniformly (13)C-labeled long-chain fatty acids were used to probe ligand binding to rat liver fatty acid-binding protein (LFABP), an atypical member of the fatty acid-binding protein (FABP) family that binds more than one molecule of long-chain fatty acid, accommodates a variety of diverse ligands, and exhibits diffusion-mediated lipid transport to membranes. Two sets of (1)H-(13)C resonances were found in a titration series of NMR spectra for oleate-LFABP complexes, indicating that two molecules of the fatty acid are situated in the protein cavity. However, no distinct resonances were observed for the excess fatty acid in solution, suggesting that at least one ligand undergoes rapid exchange with oleate in the bulk solution. An exchange rate of 54 +/- 6 s(-1) between the two sets of resonances was measured directly using (13)C z,z-exchange spectroscopy. In light of these NMR measurements, possible molecular mechanisms for the ligand-exchange process are evaluated and implications for the anomalous fatty acid transport mechanism of LFABP are discussed. PMID:11969406

  14. Vitamin K absorption and kinetics in human subjects after consumption of 13C-labeled phylloquinone from kale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The absorption and plasma elimination of vitamin K was investigated by uniformly labeling phylloquinone in kale with carbon-13 and feeding the kale to study subjects. Seven healthy volunteers ingested a single 400 g serving of kale with 30 g vegetable oil. The kale provided 156 nmol of phylloquino...

  15. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls

    SciTech Connect

    Dick-Perez, Marilu; Wang, Tuo; Salazar, Andre; Zabotina, Olga A.; Hong, Mei

    2012-07-08

    Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic-angle-spinning (MAS) solid-state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with 13C and their NMR spectra were compared. Recent 13C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D 13C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. 13C spin–lattice relaxation times and 1H rotating-frame spin–lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near-native conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  16. 40 CFR 211.108 - Sample label.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...

  17. 40 CFR 211.108 - Sample label.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...

  18. 40 CFR 211.108 - Sample label.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...

  19. 40 CFR 211.108 - Sample label.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...

  20. 40 CFR 211.108 - Sample label.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...

  1. 13C- and 15N-Labeling Strategies Combined with Mass Spectrometry Comprehensively Quantify Phospholipid Dynamics in C. elegans

    PubMed Central

    Drechsler, Robin; Gafken, Philip R.; Olsen, Carissa Perez

    2015-01-01

    Membranes define cellular and organelle boundaries, a function that is critical to all living systems. Like other biomolecules, membrane lipids are dynamically maintained, but current methods are extremely limited for monitoring lipid dynamics in living animals. We developed novel strategies in C. elegans combining 13C and 15N stable isotopes with mass spectrometry to directly quantify the replenishment rates of the individual fatty acids and intact phospholipids of the membrane. Using multiple measurements of phospholipid dynamics, we found that the phospholipid pools are replaced rapidly and at rates nearly double the turnover measured for neutral lipid populations. In fact, our analysis shows that the majority of membrane lipids are replaced each day. Furthermore, we found that stearoyl-CoA desaturases (SCDs), critical enzymes in polyunsaturated fatty acid production, play an unexpected role in influencing the overall rates of membrane maintenance as SCD depletion affected the turnover of nearly all membrane lipids. Additionally, the compromised membrane maintenance as defined by LC-MS/MS with SCD RNAi resulted in active phospholipid remodeling that we predict is critical to alleviate the impact of reduced membrane maintenance in these animals. Not only have these combined methodologies identified new facets of the impact of SCDs on the membrane, but they also have great potential to reveal many undiscovered regulators of phospholipid metabolism. PMID:26528916

  2. Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: insights into gut symbiont function.

    PubMed

    Tokuda, Gaku; Tsuboi, Yuuri; Kihara, Kumiko; Saitou, Seikou; Moriya, Sigeharu; Lo, Nathan; Kikuchi, Jun

    2014-08-22

    Termites consume an estimated 3-7 billion tonnes of lignocellulose annually, a role in nature which is unique for a single order of invertebrates. Their food is digested with the help of microbial symbionts, a relationship that has been recognized for 200 years and actively researched for at least a century. Although DNA- and RNA-based approaches have greatly refined the details of the process and the identities of the participants, the allocation of roles in space and time remains unclear. To resolve this issue, a pioneer study is reported using metabolomics to chart the in situ catabolism of (13)C-cellulose fed to the dampwood species Hodotermopsis sjostedti. The results confirm that the secretion of endogenous cellulases by the host may be significant to the digestive process and indicate that a major contribution by hindgut bacteria is phosphorolysis of cellodextrins or cellobiose. This study provides evidence that essential amino acid acquisition by termites occurs following the lysis of microbial tissue obtained via proctodaeal trophallaxis. PMID:25009054

  3. Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method.

    PubMed

    Tosun, Murat

    2013-06-01

    Honey can be adulterated in various ways. One of the adulteration methods is the addition of different sugar syrups during or after honey production. Starch-based sugar syrups, high fructose corn syrup (HFCS), glucose syrup (GS) and saccharose syrups (SS), which are produced from beet or canes, can be used for adulterating honey. In this study, adulterated honey samples were prepared with the addition of HFCS, GS and SS (beet sugar) at a ratio of 0%, 10%, 20%, 40% and 50% by weight. (13)C/(12)C analysis was conducted on these adulterated honey samples using an isotope ratio mass spectrometer in combination with an elemental analyser (EA-IRMS). As a result, adulteration using C(4) sugar syrups (HFCS and GS) could be detected to a certain extent while adulteration of honey using C(3) sugar syrups (beet sugar) could not be detected. Adulteration by using SS (beet sugar) still has a serious detection problem, especially in countries in which beet is used in manufacturing sugar. For this reason, practice and analysis methods are needed to meet this deficit and to detect the adulterations precisely in the studies that will be conducted. PMID:23411291

  4. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant tissue isotope labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...

  5. Dipolar-coupling-mediated total correlation spectroscopy in solid-state 13C NMR: Selection of individual 13C- 13C dipolar interactions

    NASA Astrophysics Data System (ADS)

    Spano, Justin; Wi, Sungsool

    2010-06-01

    Herein is described a useful approach in solid-state NMR, for selecting homonuclear 13C- 13C spin pairs in a multiple- 13C homonuclear dipolar coupled spin system. This method builds upon the zero-quantum (ZQ) dipolar recoupling method introduced by Levitt and coworkers (Marin-Montesinos et al., 2006 [30]) by extending the originally introduced one-dimensional (1D) experiment into a two-dimensional (2D) method with selective irradiation scheme, while moving the 13C- 13C mixing scheme from the transverse to the longitudinal mode, together with a dramatic improvement in the proton decoupling efficiency. Selective spin-pair recoupling experiments incorporating Gaussian and cosine-modulated Gaussian pulses for inverting specific spins were performed, demonstrating the ability to detect informative, simplified/individualized, long-range 13C- 13C homonuclear dipolar coupling interactions more accurately by removing less informative, stronger, short-range 13C- 13C interactions from 2D correlation spectra. The capability of this new approach was demonstrated experimentally on uniformly 13C-labeled Glutamine and a tripeptide sample, GAL.

  6. Nuclear magnetic resonance study of interaction of ligands with Streptococcus faecium dihydrofolate reductase labeled with (. gamma. -/sup 13/C)tryptophan

    SciTech Connect

    London, R.E.; Groff, J.P.; Cocco, L.; Blakley, R.L.

    1982-01-01

    Dihydrofolate reductase from Streptococcus faecium has been labeled with (..gamma..-/sup 13/C)tryptophan. We have determined changes occurring in the chemical shifts and line widths of the four resonances of the /sup 13/C NMR spectrum of the labeled enzyme, due to its interaction with various ligands. These include the coenzyme, NPDPH and related nucleotides, folate and its polyglutamate derivatives, and many inhibitors including methotrexate and trimethoprim. In addition, paramagnetic relaxation effects produced by a bound spin-labeled analogue of 2'-phosphoadenosine-5'-diphosphoribose on the tryptophan C/sup ..gamma../ carbons have been measured. Distances calculated from the relaxation data have been compared with corresponding distances in the crystallographic model of the NADPH-methotrexate ternary complex of Lactobacillus casei reductase. The paramagnetic relaxation data indicate that the two downfield resonances (1 and 2) correspond to tryptophans (W/sub A/ and W/sub B/) that are more remote from the catalytic site, and from the crystallographic model these are seen to be Trp-115 and Trp-160. The upfield resonances (3 and 4) that show broadening due to chemical exchange correspond to closer residues (W/sub C/ and W/sub D/), and these are identified with Trp-6 and Trp-22. However, the relaxation data do not permit specific assignments within the nearer and farther pairs. Although resonance 3, which is split due to chemical exchange, was formerly assigned to Trp-6, data obtained for the enzyme in the presence of various ligands are better interpreted if resonance 3 is assigned to Trp-22, which is located on a loop that joins elements of secondary structure and forms one side of the ligand-binding cavity.

  7. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    NASA Astrophysics Data System (ADS)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kaestner, Matthias

    2015-04-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore, ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amount of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a soil bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 50 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  8. Biogenic Volatile Organic Compound and Respiratory CO2 Emissions after 13C-Labeling: Online Tracing of C Translocation Dynamics in Poplar Plants

    PubMed Central

    Ghirardo, Andrea; Gutknecht, Jessica; Zimmer, Ina; Brüggemann, Nicolas; Schnitzler, Jörg-Peter

    2011-01-01

    Background Globally plants are the primary sink of atmospheric CO2, but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important. Methodology We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either 13CO2 to leaves or 13C-glucose to shoots via xylem uptake. The translocation of 13CO2 from the source to other plant parts could be traced by 13C-labeled isoprene and respiratory 13CO2 emission. Principal Finding In intact plants, assimilated 13CO2 was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h−1. 13C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76–78%) from recently fixed CO2, to a minor extent from xylem-transported sugars (7–11%) and from photosynthetic intermediates with slower turnover rates (8–11%). Conclusion We quantified the plants' C loss as respiratory CO2 and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux. PMID:21387007

  9. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    NASA Astrophysics Data System (ADS)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kästner, Matthias

    2014-05-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amounts of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 25 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  10. Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data

    PubMed Central

    Hu, Kan-Nian; Qiang, Wei; Bermejo, Guillermo A.; Schwieters, Charles D.; Tycko, Robert

    2013-01-01

    Recent structural studies of uniformly 15N, 13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical shifts, based on empirical correlations between chemical shifts and backbone torsion angles; (ii) restraints on inter-residue proximities from qualitative measurements of internuclear dipole–dipole couplings, detected as the presence or absence of inter-residue crosspeaks in multidimensional spectra. We show that site-specific dipole–dipole couplings among 15N-labeled backbone amide sites and among 13C-labeled backbone carbonyl sites can be measured quantitatively in uniformly-labeled proteins, using dipolar recoupling techniques that we call 15N-BARE and 13C-BARE (BAckbone REcoupling), and that the resulting data represent a new source of restraints on backbone conformation. 15N-BARE and 13C-BARE data can be incorporated into structural modeling calculations as potential energy surfaces, which are derived from comparisons between experimental 15N and 13C signal decay curves, extracted from crosspeak intensities in series of two-dimensional spectra, with numerical simulations of the 15N-BARE and 13C-BARE measurements. We demonstrate this approach through experiments on microcrystalline, uniformly 15N, 13C-labeled protein GB1. Results for GB1 show that 15N-BARE and 13C-BARE restraints are complementary to restraints from chemical shifts and inter-residue crosspeaks, improving both the precision and the accuracy of calculated structures. PMID:22449573

  11. Carbon sequestration and estimated carbon credit values as measured using 13C labelling and analysis by means of an optical breath test analyser.

    PubMed

    Hood, R C; Khan, M; Haque, A; Khadir, M; Bonetto, J P; Syamsul, R; Mayr, L; Heiling, M

    2004-05-01

    Recent developments in optical systems (isotope-selective non-dispersive infrared spectrometry) for breath testing have provided a robust, low-cost option for undertaking (13)C analysis. Although these systems were initially developed for breath testing for Helicobacter pylori, they have an enormous potential as a soil science research tool. The relatively low cost of the equipment, US$15,000-25,000, is within the research budgets of most institutes or universities. The simplicity of the mechanisms and optical nature mean that the equipment requires relatively low maintenance and minimal training. Thus methods were developed to prepare soil and plant materials for analysis using the breath test analyser. Results that compare conventional mass spectrometric methods with the breath test analyser will be presented. In combination with simple (13)C-plant-labeling techniques it is possible to devise methods for estimating carbon sequestration under different agronomic management practices within a short time frame. This enables assessment of the carbon credit value of a particular agronomic practice, which can in turn be used by policy makers for decision-making purposes. For global understanding of the effect of agricultural practices on the carbon cycle, data are required from a range of cropping systems and agro-ecological zones. The method and the approach described will enable collection of hard data within a reasonable time. PMID:14963630

  12. Use of 13C Labeled Carbon Tetrachloride to Demonstrate the Transformation to Carbon Dioxide under Anaerobic Conditions in a Continuous Flow Column

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M.

    2012-12-01

    The demonstration of transformation of chlorinated aliphatic compounds (CAHs) in the subsurface is a challenge, especially when the products are carbon dioxide (CO2) and chloride ion. The groundwater contaminant carbon tetrachloride (CT) is of particular interest since a broad range of transformation products can be potentially formed under anaerobic conditions. The ability to demonstrate the transformation of CT to CO2 as a non toxic endproduct, is also of great interest. Results will be presented from a continuous flow column study where 13C labeled CT was used to demonstrate its transformation to CO2. The column was packed with a quartz sand and bioaugmented the Evanite Culture (EV) that is capable of transforming tetrachloroethene (PCE) to ethene. The column was continously fed a synthetic groundwater that was amended with PCE (0.10 mM) and either formate (1.5 mM) or lactate (1.1 mM), which ferments to produce hydrogen (H2) as the ultimate electron donor. Earlier CT transformation studies with the column, in the absence of sulfate reduction, and with formate added as a donor found CT (0.015 mM) was over 98% transformed with about 20% converted to chloroform (CF) (0.003 mM) and with a transient detection of chloromethane (CM). Methane and carbon disulfide, as potential products, were not detected. Neither CT nor CF inhibited the reductive dehalogenation of PCE to ethene. A series of transient studies conducted after these initial CT transformation tests, but in the absence of CT, showed formate remained an effective substrate for maintaining sulfate reduction and PCE transformation. Lactate, which was effectively fermented prior to CT addition, was not effectively fermented, with propionate accumulating as a fermentation product. When lactate was added, PCE was mainly transformed to cis-dichloroethene (cis-DCE) and VC, and sulfate reduction did not occur. In order to restore effective lactate fermentation the column was then bioaugmented with an EV culture that

  13. [13C]-Specific labeling of 8-2' linked (-)-cis-blechnic, (-)-trans-blechnic and (-)-brainic acids in the fern Blechnum spicant

    NASA Technical Reports Server (NTRS)

    Davin, Laurence B.; Wang, Chang-Zeng; Helms, Gregory L.; Lewis, Norman G.

    2003-01-01

    In vivo administration experiments using stable (13C) and radio (14C) labeled precursors established that the optically active 8-2' linked lignans, (-)-cis-blechnic, (-)-trans-blechnic and (-)-trans-brainic acids, were directly derived from L-phenylalanine, cinnamate, and p-coumarate but not either from tyrosine or acetate. The radiochemical time course data suggest that the initial coupling product is (-)-cis-blechnic acid, which is then apparently converted into both (-)-trans-blechnic and (-)-trans-brainic acids in vivo. These findings provide additional evidence for vascular plant proteins engendering distinct but specific phenolic radical-radical coupling modes, i.e., for full control over phenylpropanoid coupling in vivo, whether stereoselective or regiospecific.

  14. More than a century of Grain for Green Program is expected to restore soil carbon stock on alpine grassland revealed by field (13)C pulse labeling.

    PubMed

    Li, Qi; Chen, Dongdong; Zhao, Liang; Yang, Xue; Xu, Shixiao; Zhao, Xinquan

    2016-04-15

    Anthropogenic changes in land use/cover have altered the vegetation, soil, and carbon (C) cycling on the Qinghai-Tibetan Plateau (QTP) over the last ~50years. As a result, the Grain for Green Program (GfGP) has been widely implemented over the last 10years to mitigate the impacts of cultivation. To quantify the effects of the GfGP on C partitioning and turnover rates at the ecosystem scale, an in situ (13)C pulse labeling experiment was conducted on natural and GfGP grasslands in an agro-pastoral ecotone in the Lake Qinghai region on the QTP. We found that there were significant differences in the C stocks of all the considered pools in both the natural and GfGP grasslands, with higher CO2 uptake rates in the GfGP grassland than that in the natural grassland. Partitioning of photoassimilate (% of recovered (13)C) in C pools of both grasslands was similar 25days after labeling, except in the roots of the 0-15 and 5-15cm soil layer. Soil organic C (SOC) sequestration rate in the GfGP grassland was 11.59±1.89gCm(-2)yr(-1) significantly greater than that in the natural grassland. The results confirmed that the GfGP is an efficient approach for grassland restoration and C sequestration. However, it will take more than a century (119.19±20.26yr) to restore the SOC stock from the current cropland baseline level to the approximate level of natural grassland. We suggest that additional measures are needed in the selection of suitable plant species for vegetation restoration, and in reasonable grazing management. PMID:26803680

  15. Non-stationary 13C metabolic flux analysis of Chinese hamster ovary cells in batch culture using extracellular labeling highlights metabolic reversibility and compartmentation

    PubMed Central

    2014-01-01

    Background Mapping the intracellular fluxes for established mammalian cell lines becomes increasingly important for scientific and economic reasons. However, this is being hampered by the high complexity of metabolic networks, particularly concerning compartmentation. Results Intracellular fluxes of the CHO-K1 cell line central carbon metabolism were successfully determined for a complex network using non-stationary 13C metabolic flux analysis. Mass isotopomers of extracellular metabolites were determined using [U-13C6] glucose as labeled substrate. Metabolic compartmentation and extracellular transport reversibility proved essential to successfully reproduce the dynamics of the labeling patterns. Alanine and pyruvate reversibility changed dynamically even if their net production fluxes remained constant. Cataplerotic fluxes of cytosolic phosphoenolpyruvate carboxykinase and mitochondrial malic enzyme and pyruvate carboxylase were successfully determined. Glycolytic pyruvate channeling to lactate was modeled by including a separate pyruvate pool. In the exponential growth phase, alanine, glycine and glutamate were excreted, and glutamine, aspartate, asparagine and serine were taken up; however, all these amino acids except asparagine were exchanged reversibly with the media. High fluxes were determined in the pentose phosphate pathway and the TCA cycle. The latter was fueled mainly by glucose but also by amino acid catabolism. Conclusions The CHO-K1 central metabolism in controlled batch culture proves to be robust. It has the main purpose to ensure fast growth on a mixture of substrates and also to mitigate oxidative stress. It achieves this by using compartmentation to control NADPH and NADH availability and by simultaneous synthesis and catabolism of amino acids. PMID:24773761

  16. Confirmation of K-Momentum Dark Exciton Vibronic Sidebands Using 13C-Labeled, Highly Enriched (6,5) Single-Walled Carbon Nanotubes

    SciTech Connect

    Blackburn, J. L.; Holt, J. M.; Irurzun, V. M.; Reasco, D. E.; Rumbles, G.

    2012-03-14

    A detailed knowledge of the manifold of both bright and dark excitons in single-walled carbon nanotubes (SWCNTs) is critical to understanding radiative and nonradiative recombination processes. Exciton-phonon coupling opens up additional absorption and emission channels, some of which may 'brighten' the sidebands of optically forbidden (dark) excitonic transitions in optical spectra. In this report, we compare {sup 12}C and {sup 13}C-labeled SWCNTs that are highly enriched in the (6,5) species to identify both absorptive and emissive vibronic transitions. We find two vibronic sidebands near the bright {sup 1}E{sub 11} singlet exciton, one absorptive sideband {approx}200 meV above, and one emissive sideband {approx}140 meV below, the bright singlet exciton. Both sidebands demonstrate a {approx}50 cm{sup -1} isotope-induced shift, which is commensurate with exciton-phonon coupling involving phonons of A'{sub 1} symmetry (D band, {omega} {approx} 1330 cm{sup -1}). Independent analysis of each sideband indicates that both sidebands arise from the same dark exciton level, which lies at an energy approximately 25 meV above the bright singlet exciton. Our observations support the recent prediction of, and mounting experimental evidence for, the dark K-momentum singlet exciton lying {approx}25 meV (for the (6,5) SWCNT) above the bright {Lambda}-momentum singlet. This study represents the first use of {sup 13}C-labeled SWCNTs highly enriched in a single nanotube species to unequivocally confirm these sidebands as vibronic sidebands of the dark K-momentum singlet exciton.

  17. Application of a nanoEA-IRMS system for δ13C measurement of biomineral-bound organics in samples of diatom opal with nanomolar quantities of C

    NASA Astrophysics Data System (ADS)

    Méndez-Vicente, Ana; María Mejía-Ramírez, Luz; Stoll, Heather

    2013-04-01

    We describe the isotopic measurement of δ13C in very small samples of diatom opal (nanomolar quantities of C) both from fossil sediments and cultures. We use a nano-EA system composed of a combustion elemental analyzer (EA3000 series, Eurovector), with standard 18 mm diameter quartz oxidation-reduction reactors and an ash removal device that aids in removal of uncombusted opal and ensures a long reactor lifetime. This is coupled to a custom designed trapping and cromatography system (Nano-CF, Nu Instruments Ltd.) which cryogenically removes CO2 generated by sample combustion and introduces the gas into a low-flow helium carrier stream to the mass spectrometer (Nu Perspective IRMS instrument, Nu Instruments Ltd.). This technique allows for an important reduction in the minimum sample requirements for analysis compared to a typical EA, however the need to reduce the contribution of the blank to the measured values becomes all the more critical. Blank from the capsules can be minimized through specific protocols including cleaning with solvents and reducing the size of the capsule by cutting it to a smaller size, attaining blanks as low as 13.75±2.15 nmol C. Under these conditions we can accurately measure both standards and diatom reference materials in the range of 100 to 330 nmol C, with a precision of 2σ < 1 ‰. The measured δ13C is independent of sample size in this range for standards or samples with δ13C < -11 ‰, which is the compositional range expected for natural diatom samples. Furthermore, no memory effect is observed in samples with an isotopic δ13C value differing by > 10 ‰ analysed in sequence. Applied to measure biomineral-bound organics in cleaned diatom samples from sediments, the low sample size requirements of this technique allows us to analyse multiple size fractions within one sample, and explore isotopic fractionation patterns between them. We have analysed samples from sediments of both centric and pennate diatoms typically in the

  18. Simultaneous determination of seven β2-agonists in human and bovine urine by isotope dilution liquid chromatography-tandem mass spectrometry using compound-specific minimally (13)C-labelled analogues.

    PubMed

    González-Antuña, Ana; Rodríguez-González, Pablo; Centineo, Giuseppe; García Alonso, J Ignacio

    2014-10-29

    Seven β2-agonist (clenproperol, clenbuterol, salbutamol, bronbuterol, ractopamine, clenpenterol and clencyclohexerol) were determined simultaneously in human and bovine urine by isotope dilution LC-ESI-MS/MS in a triple quadrupole instrument. The method is based on the application of multiple linear regression in combination with compound-specific minimally (13)C-labelled analogues. Additionally, the increase of the bandpass of the first quadrupole during the selected reaction monitoring (SRM) measurement procedure allowed the simultaneous quantification of the seven compounds at sub ngg(-1) levels in a single chromatogram without resorting to a methodological calibration graph. Recovery values at concentration levels between 5.0 and 0.05ngg(-1) ranged from 95 to 110% in fortified bovine urine and from 91 to 108% in human urine, with relative standard deviations lower than 5% except for salbutamol and ractopamine. The proposed methodology was validated by analyzing the certified reference material BCR-503 (lyophilized bovine urine) certified for clenbuterol and salbutamol. The limits of detection (LOD) for a sample volume of 10mL of both human and bovine urine was found to be lower than 0.012ngg(-1) for all compounds, except to salbutamol in bovine urine which was of 0.029ngg(-1). The use of compound-specific isotopically labelled analogues minimally labelled in (13)C minimized the occurrence of isotope effects and corrected for matrix effects during ESI ionization and can be efficiently applied for the quantification of ultra-trace concentrations of β2-agonists in human and bovine urine. PMID:25468499

  19. Folate is absorbed across the human colon: evidence by using enteric-coated caplets containing 13C-labeled [6S]-5-formyltetrahydrofolate1, 2, 3, 4

    PubMed Central

    Lakoff, Alanna; Fazili, Zia; Aufreiter, Susanne; Pfeiffer, Christine M; Connolly, Bairbie; Gregory, Jesse F; Pencharz, Paul B; O’Connor, Deborah L

    2016-01-01

    Background Folate intakes that do not meet or greatly exceed requirements may be associated with negative health outcomes. A better understanding of contributors that influence the input side will help establish dietary guidance that ensures health benefits without associated risks. Colonic microbiota produce large quantities of folate, and [13C5]5-formyltetrahydrofolate infused during colonoscopy is absorbed. However, it is unclear if significant quantities of folate are absorbed in an intact microbiome. Objective We determined whether and how much of a physiologic dose of [13C5]5-formyltetrahydrofolate delivered in a pH-sensitive enteric caplet to an intact colonic microbiome is absorbed. Design Healthy adults ingested a specially designed pH-sensitive acrylic copolymer–coated barium sulfate caplet that contained 855 nmol (400 μg) [13C5]5-formyltetrahydrofolate. After a washout period ≥4 wk, subjects received an intravenous injection of the same compound (214 nmol). Serially collected blood samples before and after each test dose were analyzed by using a microbiological assay and liquid chromatography–tandem mass spectrometry. Results Caplet disintegration in the colon was observed by fluoroscopic imaging for 6 subjects with a mean (±SD) complete disintegration time of 284 ± 155 min. The mean (±SEM) rate of appearance of [13C5]5-methyltetrahydrofolate in plasma was 0.33 ± 0.09 (caplet) and 5.8 ± 1.2 (intravenous) nmol/h. Likely because of the significant time in the colon, the mean apparent absorption across the colon was 46%. Conclusions Folate is absorbed across the colon in humans with an undisturbed microbiome. This finding and previous observations of the size of the colonic depot of folate and its potential for manipulation by diet (eg, dietary fiber, oligosaccharides, and probiotics) suggest that an individual’s dietary folate requirement may differ depending on the consumption of dietary constituents that affect the size and composition of

  20. Spectroscopic labeling of A, S/T in the 1H- 15N HSQC spectrum of uniformly ( 15N- 13C) labeled proteins

    NASA Astrophysics Data System (ADS)

    Chugh, Jeetender; Hosur, Ramakrishna V.

    2008-10-01

    A new triple resonance two-dimensional experiment, termed (HC)NH, has been described to generate specific labels on the peaks of alanines and serines/threonines, separately, in the 1H- 15N HSQC spectrum of a protein. The performance of the pulse sequence has been demonstrated with a 151 residue protein. The method permits the investigation of local environments around those specific residues without actually having to obtain complete resonance assignments for the entire protein. With this one can envisage use of the technique for studying large protein systems from different points of view.

  1. Impacts of proline on the central metabolism of an industrial erythromycin-producing strain Saccharopolyspora erythraea via (13)C labeling experiments.

    PubMed

    Hong, Ming; Huang, Mingzhi; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2016-08-10

    Saccharopolyspora erythraea E3 is an important industrial strain for erythromycin production and knowledge on its metabolism is limited. In the present work, (13)C labeling experiments were conducted to characterize the metabolism of S. erythraea E3. We found that S. erythraea E3 was difficult to grow on minimal medium with glucose as sole carbon source and the addition of proline remarkably improved the cell growth. The activity of EMP pathway was very low and ED pathway was alternatively the main glucose utilization pathway. The addition of proline resulted in remarkable changes in the fluxes of central metabolism. The fluxes in PP pathway, in TCA cycle and in ED pathway were 90% higher, 64% and 31% lower on Glc/Pro than on Glc, respectively. The maintenance energy on Glc/Pro was 58.4% lower than that on Glc. The energy charge was lower on Glc than on Glc/Pro, indicating that the cells on Glc suffered from energy burden. This study elucidates the impacts of proline on the central metabolism of S. erythraea and deepens the understanding of its metabolism. PMID:27215341

  2. Priming effect of (13)C-labelled wheat straw in no-tillage soil under drying and wetting cycles in the Loess Plateau of China.

    PubMed

    Liu, Enke; Wang, Jianbo; Zhang, Yanqing; Angers, Denis A; Yan, Changrong; Oweis, Theib; He, Wenqing; Liu, Qin; Chen, Baoqing

    2015-01-01

    The objectives of this study were to determine the effects of drying and wetting (DW) cycles on soil organic carbon (SOC) mineralisation and on the priming effect (PE) induced by the addition of (13)C-labelled wheat straw to long-term no-tillage (NT) and conventional-tillage (CT) soils. We observed that the SOC mineralisation rate in rewetted soils was greater than that in soils that were kept at constant water content. The proportion of CO2 derived from the straw declined dramatically during the first 10 days. The priming direction was first positive, and then became slightly negative. The PE was higher under DW cycles than under constant water content. There was no significant effect of the tillage system on the SOC mineralisation rate or PE. The data indicate that the DW cycles had a significant effect on the SOC mineralisation rate and on the PE, demonstrating a positive combined effect between wheat straw and moisture fluctuations. Further research is needed to study the role of microbial communities and C pools in affecting the SOC mineralisation response to DW cycles. PMID:26345303

  3. Priming effect of 13C-labelled wheat straw in no-tillage soil under drying and wetting cycles in the Loess Plateau of China

    PubMed Central

    Liu, Enke; Wang, Jianbo; Zhang, Yanqing; Angers, Denis A.; Yan, Changrong; Oweis, Theib; He, Wenqing; Liu, Qin; Chen, Baoqing

    2015-01-01

    The objectives of this study were to determine the effects of drying and wetting (DW) cycles on soil organic carbon (SOC) mineralisation and on the priming effect (PE) induced by the addition of 13C-labelled wheat straw to long-term no-tillage (NT) and conventional-tillage (CT) soils. We observed that the SOC mineralisation rate in rewetted soils was greater than that in soils that were kept at constant water content. The proportion of CO2 derived from the straw declined dramatically during the first 10 days. The priming direction was first positive, and then became slightly negative. The PE was higher under DW cycles than under constant water content. There was no significant effect of the tillage system on the SOC mineralisation rate or PE. The data indicate that the DW cycles had a significant effect on the SOC mineralisation rate and on the PE, demonstrating a positive combined effect between wheat straw and moisture fluctuations. Further research is needed to study the role of microbial communities and C pools in affecting the SOC mineralisation response to DW cycles. PMID:26345303

  4. Atmospheric CO2 and its δ13C measurements from flask sampling at Lin'an regional background station in China

    NASA Astrophysics Data System (ADS)

    Xia, Lingjun; Zhou, Lingxi; Tans, Pieter P.; Liu, Lixin; Zhang, Gen; Wang, Hongyang; Luan, Tian

    2015-09-01

    This study presents CO2 concentrations of air flask samples obtained at a regional background station Lin'an (LAN) in China from January 2009 to December 2013, as well as their stable isotope ratios (δ13C) from January 2011 to December 2013. Background data is selected to represent background characteristics of atmospheric CO2 and δ13C over Yangzte River Delta. The annual mean background CO2 concentrations vary from 395.0 ppm in 2009 to 407.6 ppm in 2013, with a growth rate of 2.8 ± 0.1 ppm yr-1 over the study period, which is higher than the global average level. The annual mean values of δ13C vary from -8.55‰ in 2011 to -8.73‰ in 2013, with a growth rate of -0.029 ± 0.010‰ yr-1. Seasonal cycles of CO2 concentrations and δ13C are observed to be obvious at LAN. The minimum and maximum values of mean seasonal CO2 cycle appear in August and January, respectively, with the peak-to-peak amplitude of 19.4 ppm. The sign of δ13C seasonal cycle is opposite to that of CO2, and the peak-to-peak amplitude is 0.85‰. The isotopic signature of CO2 sources/sinks (δs) is also discussed in this paper. The estimated δs values for heating season (December-February) is -25.4‰ and for vegetative season is -21.3‰ (March-November) suggest the significant impact of fossil fuel combustions during winter heating season and biological activities during vegetative season.

  5. Large-scale synthesis of isotopically labeled 13C2-tenuazonic acid and development of a rapid HPLC-MS/MS method for the analysis of tenuazonic acid in tomato and pepper products.

    PubMed

    Lohrey, Lilia; Marschik, Stefanie; Cramer, Benedikt; Humpf, Hans-Ulrich

    2013-01-01

    Tenuazonic acid is a fungal secondary metabolite that is produced by a number of Alternaria species and is therefore a natural contaminant of food and feed samples. This paper describes a new strategy for the efficient and economical large-scale synthesis of the isotopically labeled internal standard (13)C(2)-tenuazonic acid via a three-step procedure. Furthermore, a new reliable and quick method based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) cleanup is presented for the determination of tenuazonic acid in food and feed samples utilizing high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) by application of the stable isotope dilution analysis. This new method has a limit of detection (LOD) of 0.86 μg/kg and a limit of quantitation (LOQ) of 2.89 μg/kg. In total 26 tomato samples and 4 bell pepper samples from the German market were analyzed. Tenuazonic acid was found in each sample with levels from 3 to 2330 μg/kg. PMID:23230907

  6. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C NMR spectroscopy (SIE-DOSY 13C NMR)

    NASA Astrophysics Data System (ADS)

    Vermillion, Karl; Price, Neil P. J.

    2009-06-01

    The feasibility of obtaining high quality homonuclear or heteronuclear diffusion-ordered 13C NMR data is shown to be greatly improved by using 13C isotopically-enriched samples. Stable isotope-enhanced diffusion ordered (SIE-DOSY) 13C NMR has been applied to 13C-enriched carbohydrates, and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, and a disaccharide and trisaccharide. These 2D spectra were obtained with as little as 8 min of acquisition time. Fully resolved 3D DOSY-HMQC NMR spectra of [U- 13C]xylose, [U- 13C]glucose, and [1- 13C gal]lactose were obtained in 5 h. Sample derivatization with [ carbonyl- 13C]acetate (peracetylation) extends the usefulness of the technique to included non-labeled sugars; the 13C-carbonyl - carbohydrate ring proton 1H- 13C correlations also provide additional structural information, as shown for the 3-D DOSY-HMQC analysis of a mixture of maltotriose and lactose per-[ carbonyl- 13C]acetates.

  7. Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts.

    PubMed

    Chance, E M; Seeholzer, S H; Kobayashi, K; Williamson, J R

    1983-11-25

    Rat hearts have been perfused in vitro with 5 mM glucose and either 5 mM acetate or 1 mM pyruvate to achieve steady state conditions, followed by replacement of the acetate with 90% enriched [2-13C]acetate or pyruvate with 90% enriched [3-13C]pyruvate. The hearts were frozen different times after addition of 13C-substrate and neutralized perchloric acid extracts from three pooled hearts per time point were used to obtain high resolution proton-decoupled 13C NMR spectra at 90.55 MHz. The 13C fractional enrichment of individual carbons of different metabolites was calculated from the area of the resolved resonances after correction for nuclear Overhauser enhancement and saturation effects. A mathematical flux model of the citric acid cycle and ancillary transamination reactions was constructed with the FACSIMILE program, and used to solve unknown flux parameters with constant pool sizes by nonlinear least squares analysis of the approximately 200 simultaneous differential equations required to describe the reactions. With [2-13C] acetate as substrate, resonances and line splittings due to 13C-13C spin coupling of the C-2, C-3, and C-4 carbons of glutamate were well resolved. The half-times to reach maximum 13C enrichment were 2.6 min for glutamate C-4 and 8 min for glutamate C-2 and C-3. From these data, a well determined citric acid cycle flux of 8.3 mumol/g dry weight X min was calculated for an observed oxygen consumption of 31 mumol/g dry weight X min. With [3-13C]pyruvate as substrate, resonances of aspartate C-2 and C-3 and of alanine C-3 were well resolved in addition to those of glutamate C-2, C-3, and C-4. Nonlinear least squares fitting of these data to the model gave nonrandomly distributed residuals for the 13C fractional enrichments of glutamate C-4, suggesting an incomplete model, but a well determined cycle flux of 11.9 mumol/g dry weight X min for an oxygen uptake of 35 mumol/g dry weight X min. Our studies demonstrate the practicality of 13C NMR

  8. {sup 13}C-METHYL FORMATE: OBSERVATIONS OF A SAMPLE OF HIGH-MASS STAR-FORMING REGIONS INCLUDING ORION-KL AND SPECTROSCOPIC CHARACTERIZATION

    SciTech Connect

    Favre, Cécile; Bergin, Edwin A.; Crockett, Nathan R.; Neill, Justin L.; Carvajal, Miguel; Field, David; Jørgensen, Jes K.; Bisschop, Suzanne E.; Brouillet, Nathalie; Despois, Didier; Baudry, Alain; Kleiner, Isabelle; Margulès, Laurent; Huet, Thérèse R.; Demaison, Jean E-mail: miguel.carvajal@dfa.uhu.es

    2015-01-01

    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic center for methyl formate, HCOOCH{sub 3}, and its isotopologues H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the {sup 13}C-methyl formate isotopologue HCOO{sup 13}CH{sub 3} toward the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2, and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the {sup 13}C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the {sup 12}C/{sup 13}C isotope ratio in methyl formate toward the Orion-KL Compact Ridge and Hot Core-SW components (68.4 ± 10.1 and 71.4 ± 7.8, respectively) are, for both the {sup 13}C-methyl formate isotopologues, commensurate with the average {sup 12}C/{sup 13}C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the {sup 12}C/{sup 13}C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3} species. New spectroscopic data for both isotopomers H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}, presented in this study, have made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.

  9. Measuring glycerol turnover, gluconeogenesis from glycerol, and total gluconeogenesis with [2-13C] glycerol: role of the infusion-sampling mode.

    PubMed

    Peroni, O; Large, V; Odeon, M; Beylot, M

    1996-07-01

    Mass isotopomer distribution analysis (MIDA) of glucose during infusion of [2-13C]glycerol is a new method for measuring total gluconeogenesis (GNG). Since this method relies on calculation of the isotopic enrichment (IE) of hepatic triose phosphates (TP), the results should be independent of the sites of tracer infusion and blood sampling. Postabsorptive and starved rats were infused with [2-13C]glycerol and sampled either in the arterial-venous (A-V) or venous-arterial (V-A) modes. Blood was also sampled from the portal vein. In both postabsorptive and starved rats, glycerol turnover rate (Rt) and the percent contribution of glycerol to total glucose production were higher in the A-V mode than in the V-A mode (P < .05). Glycerol IE in portal venous blood was intermediate between IE values observed in peripheral arterial and venous blood. Its use for calculating the contribution of glycerol to glucose production reconciled the results obtained with the two infusion-sampling modes in both postabsorptive and starved rats; this contribution was increased by starvation (P < .01). In postabsorptive rats, total GNG calculated from MIDA of glucose accounted for approximately 50% of glucose production whatever the infusion-sampling mode (A-V, 48.8% +/- 4.7%; V-A, 52.2% +/- 3.9%). This contribution increased to 90% in starved rats, again, with no difference between A-V (95.2% +/- 1.8%) and V-A (89.2% +/- 1.3%) modes. In conclusion, during infusion of [2-13C]glycerol, total GNG measured from MIDA of glucose is independent of the infusion-sampling mode, contrary to calculations of Rt and GNG from glycerol. Measurement of glycerol IE in portal venous blood reconciles the results obtained with the two modes with respect to the contribution of glycerol to GNG. PMID:8692028

  10. Multi-isotope labelling of organic matter by diffusion of 2H/18O-H2O vapour and 13C-CO2 into the leaves and its distribution within the plant

    NASA Astrophysics Data System (ADS)

    Studer, M. S.; Siegwolf, R. T. W.; Leuenberger, M.; Abiven, S.

    2015-03-01

    Isotope labelling is a powerful tool to study elemental cycling within terrestrial ecosystems. Here we describe a new multi-isotope technique to label organic matter (OM). We exposed poplars (Populus deltoides × nigra) for 14 days to an atmosphere enriched in 13CO2 and depleted in 2H218O. After 1 week, the water-soluble leaf OM (δ13C = 1346 ± 162‰) and the leaf water were strongly labelled (δ18O = -63 ± 8, δ2H = -156 ± 15‰). The leaf water isotopic composition was between the atmospheric and stem water, indicating a considerable back-diffusion of vapour into the leaves (58-69%) in the opposite direction to the net transpiration flow. The atomic ratios of the labels recovered (18O/13C, 2H/13C) were 2-4 times higher in leaves than in the stems and roots. This could be an indication of the synthesis of more condensed compounds in roots and stems (e.g. lignin vs. cellulose) or might be the result of O and H exchange and fractionation processes during phloem transport and biosynthesis. We demonstrate that the three major OM elements (C, O, H) can be labelled and traced simultaneously within the plant. This approach could be of interdisciplinary interest in the fields of plant physiology, palaeoclimatic reconstruction or soil science.

  11. The Semiquinone at the Qi Site of the bc1 Complex Explored Using HYSCORE Spectroscopy and Specific Isotopic Labeling of Ubiquinone in Rhodobacter sphaeroides via 13C Methionine and Construction of a Methionine Auxotroph

    PubMed Central

    2015-01-01

    Specific isotopic labeling at the residue or substituent level extends the scope of different spectroscopic approaches to the atomistic level. Here we describe 13C isotopic labeling of the methyl and methoxy ring substituents of ubiquinone, achieved through construction of a methionine auxotroph in Rhodobacter sphaeroides strain BC17 supplemented with l-methionine with the side chain methyl group 13C-labeled. Two-dimensional electron spin echo envelope modulation (HYSCORE) was applied to study the 13C methyl and methoxy hyperfine couplings in the semiquinone generated in situ at the Qi site of the bc1 complex in its membrane environment. The data were used to characterize the distribution of unpaired spin density and the conformations of the methoxy substituents based on density functional theory calculations of 13C hyperfine tensors in the semiquinone of the geometry-optimized X-ray structure of the bc1 complex (Protein Data Bank entry 1PP9) with the highest available resolution. Comparison with other proteins indicates individual orientations of the methoxy groups in each particular case are always different from the methoxy conformations in the anion radical prepared in a frozen alcohol solution. The protocol used in the generation of the methionine auxotroph is more generally applicable and, because it introduces a gene deletion using a suicide plasmid, can be applied repeatedly. PMID:25184535

  12. Production of Hydrolysable Tannin-Like Structures During the Microbial Demethylation of lignin: An Assessment Using13C-Labeled Tetramethylammonium Hydroxide Thermochemolysis.

    NASA Astrophysics Data System (ADS)

    Filley, T.; Blanchette, R.; Nierop, K.; Gamblin, D.

    2003-12-01

    Phenolic compounds in soils are important mediators of microbial activity, metal mobility, soil redox, and soil organic matter building processes. Direct tannin input and the microbial decomposition of lignin in litter and soil are important contributors to this pool of phenols. The ability to accurately assess the relative differences in lignin decay (which are initiated by demethylation and side chain oxidation) among synapyl, coniferyl, and p-coumaryl components of detrital lignin requires the ability to determine microbial demethylation within the complex soil residues. Differentiating between hydrolysable tannins and contributions from advanced lignin decay can be problematic for many of the most common molecular techniques such as alkaline CuO oxidation, pyrolysis GC, and tetramethylammonium hydroxide thermochemolysis because of either the masking effects of derivatizing agents, oxidative damage to ortho-phenols or low volatility of lignin monomers. In this study we investigate lignin demethylation and polyhydroxyl-aromatic production in BC and C horizons of sandy forest soils dominated by oak, the A horizon from a red spruce forest, and controlled microbial inoculation studies of woody tissue using in-line 13C-labeled tetramethylammonium hydroxide thermochemolysis. Both white-rot and brown-rot decay resulted in syringyl demethylation, with the latter exhibiting more aggressive demethylation chemistry, while coniferyl monomer demethylation was essentially restricted to brown-rot decay. In a typical brown-rot sequence demethylation of syringyl components occurs more rapidly than coniferyl units within the same tissue and lower molecular weight fragments are likewise more demethylated than lignin monomers containing the full glycerol side chain. Demethylation of both methoxyl groups in the syringyl monomer is evident in soil horizons as well as laboratory inoculations. The latter may suggest demethylation after lignin depolymerization. Low molecular weight

  13. Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo.

    PubMed

    Hasenour, Clinton M; Wall, Martha L; Ridley, D Emerson; Hughey, Curtis C; James, Freyja D; Wasserman, David H; Young, Jamey D

    2015-07-15

    Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [(13)C3]propionate, [(2)H2]water, and [6,6-(2)H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations. PMID:25991647

  14. SIMS ion microscopy imaging of boronophenylalanine (BPA) and 13C15N-labeled phenylalanine in human glioblastoma cells: Relevance of subcellular scale observations to BPA-mediated boron neutron capture therapy of cancer

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash; Lorey, Daniel R., II

    2007-02-01

    p-Boronophenylalanine (BPA) is a clinically approved boron neutron capture therapy (BNCT) agent currently being used in clinical trials of glioblastoma multiforme, melanoma and liver metastases. Secondary ion mass spectrometry (SIMS) observations from the Cornell SIMS Laboratory provided support for using a 6 h infusion of BPA, instead of a 2 h infusion, for achieving higher levels of boron in brain tumor cells. These observations were clinically implemented in Phase II experimental trials of glioblastoma multiforme in Sweden. However, the mechanisms for higher BPA accumulation with longer infusions have remained unknown. In this work, by using 13C15N-labeled phenylalanine and T98G human glioblastoma cells, comparisons between the 10B-delivery of BPA and the accumulation of labeled phenylalanine after 2 and 6 h treatments were made with a Cameca IMS-3f SIMS ion microscope at 500 nm spatial resolution in fast frozen, freeze-fractured, freeze-dried cells. Due to the presence of the Na-K-ATPase in the plasma membrane of most mammalian cells, the cells maintain an approximately 10/1 ratio of K/Na in the intracellular milieu. Therefore, the quantitative imaging of these highly diffusible species in the identical cell in which the boron or labeled amino acid was imaged provides a rule-of-thumb criterion for validation of SIMS observations and the reliability of the cryogenic sampling. The labeled phenylalanine was detected at mass 28, as the 28(13C15N)- molecular ion. Correlative analysis with optical and confocal laser scanning microscopy revealed that fractured freeze-dried glioblastoma cells contained well-preserved ultrastructural details with three discernible subcellular regions: a nucleus or multiple nuclei, a mitochondria-rich perinuclear cytoplasmic region and the remaining cytoplasm. SIMS analysis revealed that the overall cellular signals of both 10B from BPA and 28CN- from labeled phenylalanine increased approximately 1.6-fold between the 2 and 6 h exposures

  15. Transformation of 17β-estradiol in humic acid solution by ε-MnO2 nanorods as probed by high-resolution mass spectrometry combined with (13)C labeling.

    PubMed

    Sun, Kai; Liang, Shangtao; Kang, Fuxing; Gao, Yanzheng; Huang, Qingguo

    2016-07-01

    Steroidal estrogens (SEs), widespread in aquatic systems, have a potential to disrupt the endocrine system of wildlife species and humans. In our experiments, the performance of ε-MnO2 nanorods in transforming 17β-estradiol (E2) was investigated, and the effect of humic acid (HA) on the reaction behaviors was systematically characterized. Reconfiguration of humic molecules was also investigated by high-performance size exclusion chromatography (HPSEC). Results indicated that ε-MnO2 nanomaterials ensured efficient removal of E2 from the aqueous solution. The presence of HA hindered the transformation of E2, while enhanced the cross-coupling between E2 and humic molecules. In particular, we used a mixture of un-labeled E2 and (13)C3-labeled E2 at a 1: 1 set ratio (w/w) to probe the reaction products via high-resolution mass spectrometry (HRMS). The combination of HRMS and (13)C3-labeling revealed the intermediate products including estrone (E1), and hydroxylated, quinone-like, and ring-opened species, as well as E2 dimer and trimer. More importantly, possible cross-coupling products between E2 and HA were also identified. A reaction mechanism including two-electron oxidation and single-electron oxidation was proposed. The applied analytical approach using HRMS along with (13)C3-labeling for reaction-product identification is crucial to understanding the role of HA in the transformation of SEs. PMID:27086077

  16. UV-laser-based microscopic dissection of tree rings - a novel sampling tool for δ(13) C and δ(18) O studies.

    PubMed

    Schollaen, Karina; Heinrich, Ingo; Helle, Gerhard

    2014-02-01

    UV-laser-based microscopic systems were utilized to dissect and sample organic tissue for stable isotope measurements from thin wood cross-sections. We tested UV-laser-based microscopic tissue dissection in practice for high-resolution isotopic analyses (δ(13) C/δ(18) O) on thin cross-sections from different tree species. The method allows serial isolation of tissue of any shape and from millimetre down to micrometre scales. On-screen pre-defined areas of interest were automatically dissected and collected for mass spectrometric analysis. Three examples of high-resolution isotopic analyses revealed that: in comparison to δ(13) C of xylem cells, woody ray parenchyma of deciduous trees have the same year-to-year variability, but reveal offsets that are opposite in sign depending on whether wholewood or cellulose is considered; high-resolution tree-ring δ(18) O profiles of Indonesian teak reflect monsoonal rainfall patterns and are sensitive to rainfall extremes caused by ENSO; and seasonal moisture signals in intra-tree-ring δ(18) O of white pine are weighted by nonlinear intra-annual growth dynamics. The applications demonstrate that the use of UV-laser-based microscopic dissection allows for sampling plant tissue at ultrahigh resolution and unprecedented precision. This new technique facilitates sampling for stable isotope analysis of anatomical plant traits like combined tree eco-physiological, wood anatomical and dendroclimatological studies. PMID:24219751

  17. 13C NMR Metabolomics: INADEQUATE Network Analysis

    PubMed Central

    Clendinen, Chaevien S.; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S.

    2015-01-01

    The many advantages of 13C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, 13C NMR offers a straightforward measurement of these compounds. Two-dimensional 13C-13C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semi-automated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE datasets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures. PMID:25932900

  18. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Register citations affecting appendix L, see the List of CFR Sections Affected, which appears in the... Part 305—Sample Labels ER29AU07.122 PROTOTYPE LABEL 1 ER29AU07.123 PROTOTYPE LABEL 2 ER29AU07.124 PROTOTYPE LABEL 3 ER29AU07.125 PROTOTYPE LABEL 4 ER29AU07.126 SAMPLE LABEL 1 ER29AU07.127 SAMPLE LABEL...

  19. Synthesis and application of (13)C-labeled 2-acetyl-4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)imidazole (THI), an immunosuppressant observed in caramel food colorings.

    PubMed

    Elsinghorst, Paul W; Raters, Marion; Dingel, Anna; Fischer, Jochen; Matissek, Reinhard

    2013-08-01

    2-Acetyl-4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)imidazole (THI) is a minor toxic contaminant observed in caramel food colorings and was shown to exert immunosuppressant activity when fed to rodents. Because of this toxicity, maximum levels of THI in caramel food colorings have been defined by international and European authorities. Several reports of THI analysis using external standardization have been published for liquid foods such as beers and soft drinks. However, no suitable internal standard has yet been described allowing THI analysis in more complex samples. In this paper we describe the preparation of a labeled [(13)C6]THI analogue and its application for the successful validation of the first stable isotope dilution assay (SIDA) of THI in caramel food colorings. A brief survey of THI levels in commercially available caramel class III (E 150c) and IV (E 150d) food colorings is also included, corroborating that THI occurs only in caramel class III food colorings. PMID:23866086

  20. 19 CFR 12.22 - Labels; samples.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Labels; samples. 12.22 Section 12.22 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Viruses, Serums, Toxins, Antitoxins, and Analogous Products for...

  1. 19 CFR 12.22 - Labels; samples.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Labels; samples. 12.22 Section 12.22 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Viruses, Serums, Toxins, Antitoxins, and Analogous Products for...

  2. 19 CFR 12.22 - Labels; samples.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Labels; samples. 12.22 Section 12.22 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Viruses, Serums, Toxins, Antitoxins, and Analogous Products for...

  3. Photobioreactor design for isotopic non-stationary 13C-metabolic flux analysis (INST 13C-MFA) under photoautotrophic conditions.

    PubMed

    Martzolff, Arnaud; Cahoreau, Edern; Cogne, Guillaume; Peyriga, Lindsay; Portais, Jean-Charles; Dechandol, Emmanuel; Le Grand, Fabienne; Massou, Stéphane; Gonçalves, Olivier; Pruvost, Jérémy; Legrand, Jack

    2012-12-01

    Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non-stationary (13) C-metabolic flux analysis (INST (13) C-MFA). To evaluate (13) C-metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high-quality isotopomer data against time. It involved (i) a short-time (13) C labeling injection device based on mixing control in a torus-shaped photobioreactor with plug-flow hydrodynamics allowing a sudden step-change in the (13) C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. (13) C-substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady-state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light-limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m(-2) s(-1). (13)C label incorporation was measured for 21 intracellular metabolites using IC-MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3-phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s. PMID:22688667

  4. Measuring (13)C/(15)N chemical shift anisotropy in [(13)C,(15)N] uniformly enriched proteins using CSA amplification.

    PubMed

    Hung, Ivan; Ge, Yuwei; Liu, Xiaoli; Liu, Mali; Li, Conggang; Gan, Zhehong

    2015-11-01

    Extended chemical shift anisotropy amplification (xCSA) is applied for measuring (13)C/(15)N chemical shift anisotropy (CSA) of uniformly labeled proteins under magic-angle spinning (MAS). The amplification sequence consists of a sequence of π-pulses that repetitively interrupt MAS averaging of the CSA interaction. The timing of the pulses is designed to generate amplified spinning sideband manifolds which can be fitted to extract CSA parameters. The (13)C/(13)C homonuclear dipolar interactions are not affected by the π-pulses due to the bilinear nature of the spin operators and are averaged by MAS in the xCSA experiment. These features make the constant evolution-time experiment suitable for measuring CSA of uniformly labeled samples. The incorporation of xCSA with multi-dimensional (13)C/(15)N correlation is demonstrated with a GB1 protein sample as a model system for measuring (13)C/(15)N CSA of all backbone (15)NH, (13)CA and (13)CO sites. PMID:26404770

  5. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  6. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  7. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  8. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-06-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ, ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1-40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1-40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16-21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1-40 fibrils in 4 h or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples.

  9. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids.

    PubMed

    Jordà, Joel; de Jesus, Sérgio S; Peltier, Solenne; Ferrer, Pau; Albiol, Joan

    2014-01-25

    The yeast Pichia pastoris has emerged as one of the most promising yeast cell factories for the production of heterologous proteins. The readily available genetic tools and the ease of high-cell density cultivations using methanol or glycerol/methanol mixtures are among the key factors for this development. Previous studies have shown that the use of mixed feeds of glycerol and methanol seem to alleviate the metabolic burden derived from protein production, allowing for higher specific and volumetric process productivities. However, initial studies of glycerol/methanol co-metabolism in P. pastoris by classical metabolic flux analyses using (13)C-derived Metabolic Flux Ratio (METAFoR) constraints were hampered by the reduced labelling information obtained when using C3:C1 substrate mixtures in relation to the conventional C6 substrate, that is, glucose. In this study, carbon flux distributions through the central metabolic pathways in glycerol/methanol co-assimilation conditions have been further characterised using biosynthetically directed fractional (13)C labelling. In particular, metabolic flux distributions were obtained under 3 different glycerol/methanol ratios and growth rates by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids using the software tool (13)CFlux2. Specifically, cells were grown aerobically in chemostat cultures fed with 80:20, 60:40 and 40:60 (w:w) glycerol/methanol mixtures at two dilutions rates (0.05 hour(-1) and 0.16 hour(-1)), allowing to obtain additional data (biomass composition and extracellular fluxes) to complement pre-existing datasets. The performed (13)C-MFA reveals a significant redistribution of carbon fluxes in the central carbon metabolism as a result of the shift in the dilution rate, while the ratio of carbon sources has a lower impact on carbon flux distribution in cells growing at the same dilution rate. At low growth rate, the percentage of methanol directly dissimilated to CO2 ranges

  10. In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid "cycle" in illuminated leaves.

    PubMed

    Tcherkez, Guillaume; Mahé, Aline; Gauthier, Paul; Mauve, Caroline; Gout, Elizabeth; Bligny, Richard; Cornic, Gabriel; Hodges, Michael

    2009-10-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, (13)C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA "cycle" does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. PMID:19675152

  11. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Labeling of samples. 301.33 Section 301.33 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are...

  12. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Labeling of samples. 301.33 Section 301.33 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are...

  13. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Sevelsted, Tine F.; Skibsted, Jørgen

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  14. Improvement of the inverse-gated-decoupling sequence for a faster quantitative analysis of various samples by 13C NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Baguet, Evelyne

    2006-05-01

    The inverse-gated-decoupling sequence enables quantitative 1H decoupled 13C spectra to be obtained. We modified this sequence so as to obtain the same result in less time for molecules containing carbons with various relaxation properties. For that, we determined the optimal 13C longitudinal-magnetization initial value for a faster relaxation while 1H decoupler is stopped. This value can be calculated precisely via the nuclear Overhauser effects, the longitudinal relaxation times, together with the determination of the relaxation rate constants of carbons while 1H are out of equilibrium. A supplementary delay of 1H decoupling and/or a series of selective pulses applied at the beginning of the recovery delay allow an acceleration of 13C longitudinal relaxation. We applied this method to the molecule of vanillin. The simultaneous quantification of all carbons was carried out with a recovery delay divided by two compared to the usual sequence.

  15. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  16. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Editorial Note: For Federal Register citations affecting appendix L, see the List of CFR Sections Affected... amendment published at 75 FR 49819, Aug. 16, 2010. ER29AU07.122 PROTOTYPE LABEL 1 ER29AU07.123 PROTOTYPE LABEL 2 ER29AU07.124 PROTOTYPE LABEL 3 ER29AU07.125 PROTOTYPE LABEL 4 ER29AU07.126 SAMPLE LABEL...

  17. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... For Federal Register citations affecting appendix L, see the List of CFR Sections Affected, which... Part 305—Sample Labels ER29AU07.122 PROTOTYPE LABEL 1 ER29AU07.123 PROTOTYPE LABEL 2 ER29AU07.124 PROTOTYPE LABEL 3 ER29AU07.125 PROTOTYPE LABEL 4 ER21DE11.065 ER21DE11.066 ER21DE11.067...

  18. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and... Part 305—Sample Labels ER29AU07.122 PROTOTYPE LABEL 1 ER29AU07.123 PROTOTYPE LABEL 2 ER29AU07.124 PROTOTYPE LABEL 3 ER29AU07.125 PROTOTYPE LABEL 4 ER21DE11.065 ER21DE11.066 ER21DE11.067...

  19. 1H-13C HSQC NMR spectroscopy for estimating procyanidin/prodelphinidin and cis/trans flavan-3-ol ratios of condensed tannin samples: correlation with thiolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies with a diverse array of 22 condensed tannin (CT) fractions from 9 plant species demonstrated that procyanidin/prodelphinidin (PC/PD) and cis/trans flavan-3-ol ratios can be appraised by 1H-13C HSQC NMR. The method was developed from fractions containing 44 to ~100% CT, PC/PD ratios ranging f...

  20. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  1. ¹³C labelled internal standards--a solution to minimize ion suppression effects in liquid chromatography-tandem mass spectrometry analyses of drugs in biological samples?

    PubMed

    Berg, Thomas; Strand, Dag Helge

    2011-12-30

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is frequently used to identify and quantify drugs in human biological samples due to the high selectivity and sensitivity of this technique. However, ion suppression effects caused by co-eluting compounds: drugs, metabolites, matrix components, impurities and degradation products, are a major concern. Stable isotope labelled internal standards (SIL ISs), usually deuterium ((2)H) labelled, are often used to compensate for these effects. In many LC separations the retention times of (2)H labelled ISs and their analogues will differ. Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) is increasingly being used for bio-analysis. With the better chromatographic resolution provided with sub 2 μm particles, larger separation between analytes and their (2)H labelled analogues can be expected, which might reduce the benefits of the SIL IS. There is a greater difference in physico-chemical properties between hydrogen isotopes than between isotopes of other elements. (13)C, (15)N and (18)O labelled ISs are more similar to their analytes than (2)H labelled ISs and thereby expected to behave more similarly in chromatographic separations. In this study we have investigated the use of (13)C and (2)H labelled ISs for the determination of amphetamine and methamphetamine by UPLC-MS/MS. The (13)C labelled ISs were co eluting with their analytes under different chromatographic conditions while the (2)H labelled ISs and their analytes were slightly separated. An improved ability to compensate for ion suppression effects were observed when the (13)C labelled ISs were used. Furthermore, an UPLC-MS/MS method for determination of amphetamine and methamphetamine in urine using (13)C labelled ISs has been developed and validated. Unfortunately, there are few (13)C labelled ISs commercial available today. If more (13)C labelled ISs become commercial available they may well be the coming solution to minimize

  2. An overview of methods using 13C for improved compound identification in metabolomics and natural products

    PubMed Central

    Clendinen, Chaevien S.; Stupp, Gregory S.; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S.

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize 13C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) 13C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two 13C-based approaches. For samples at natural abundance, we have developed a workflow to obtain 13C–13C and 13C–1H statistical correlations using 1D 13C and 1H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct 13C–13C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which 13C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest. PMID:26379677

  3. 27 CFR 20.253 - Labels for samples.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Labels for samples. 20.253 Section 20.253 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Denatured Spirits § 20.253 Labels for samples. When a sample of specially denatured spirits is...

  4. 27 CFR 20.253 - Labels for samples.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Labels for samples. 20.253 Section 20.253 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Denatured Spirits § 20.253 Labels for samples. When a sample of specially denatured spirits is...

  5. 27 CFR 20.253 - Labels for samples.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Labels for samples. 20.253 Section 20.253 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Denatured Spirits § 20.253 Labels for samples. When a sample of specially denatured spirits is...

  6. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples,...

  7. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples,...

  8. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples,...

  9. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  10. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  11. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... affecting appendix L, see the List of CFR Sections Affected, which appears in the Finding Aids section of... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Sample Labels L Appendix L to Part 305... RULEâ) Pt. 305, App. L Appendix L to Part 305—Sample Labels Link to a correction published at 78...

  12. A new set-up for simultaneous high-precision measurements of CO2, δ13C-CO2 and δ18O-CO2 on small ice core samples

    NASA Astrophysics Data System (ADS)

    Jenk, Theo Manuel; Rubino, Mauro; Etheridge, David; Ciobanu, Viorela Gabriela; Blunier, Thomas

    2016-08-01

    Palaeoatmospheric records of carbon dioxide and its stable carbon isotope composition (δ13C) obtained from polar ice cores provide important constraints on the natural variability of the carbon cycle. However, the measurements are both analytically challenging and time-consuming; thus only data exist from a limited number of sampling sites and time periods. Additional analytical resources with high analytical precision and throughput are thus desirable to extend the existing datasets. Moreover, consistent measurements derived by independent laboratories and a variety of analytical systems help to further increase confidence in the global CO2 palaeo-reconstructions. Here, we describe our new set-up for simultaneous measurements of atmospheric CO2 mixing ratios and atmospheric δ13C and δ18O-CO2 in air extracted from ice core samples. The centrepiece of the system is a newly designed needle cracker for the mechanical release of air entrapped in ice core samples of 8-13 g operated at -45 °C. The small sample size allows for high resolution and replicate sampling schemes. In our method, CO2 is cryogenically and chromatographically separated from the bulk air and its isotopic composition subsequently determined by continuous flow isotope ratio mass spectrometry (IRMS). In combination with thermal conductivity measurement of the bulk air, the CO2 mixing ratio is calculated. The analytical precision determined from standard air sample measurements over ice is ±1.9 ppm for CO2 and ±0.09 ‰ for δ13C. In a laboratory intercomparison study with CSIRO (Aspendale, Australia), good agreement between CO2 and δ13C results is found for Law Dome ice core samples. Replicate analysis of these samples resulted in a pooled standard deviation of 2.0 ppm for CO2 and 0.11 ‰ for δ13C. These numbers are good, though they are rather conservative estimates of the overall analytical precision achieved for single ice sample measurements. Facilitated by the small sample requirement

  13. Strength and limits using 13C phospholipid fatty acid analysis in soil ecology

    NASA Astrophysics Data System (ADS)

    Watzinger, Andrea

    2016-04-01

    This presentation on microbial phospholipid biomarkers, their isotope analysis and their ability to reveal soil functions summarizes experiences gained by the author for more than 10 years. The amount and composition of phospholipid fatty acids (PLFAs) measured in environmental samples strongly depend on the methodology. To achieve comparable results the extraction, separation and methylation method must be kept constant. PLFAs patterns are sensitive to microbial community shifts even though the taxonomic resolution of PLFAs is low. The possibility to easily link lipid biomarkers with stable isotope techniques is identified as a major advantage when addressing soil functions. Measurement of PLFA isotopic ratios is sensitive and enables detecting isotopic fractionation. The difference between the carbon isotopic ratio of single PLFAs and their substrate (δ13C) can vary between -6 and +11‰. This difference derives from the fractionation during biosynthesis and from substrate inhomogeneity. Consequently, natural abundance studies are restricted to quantifying substrate uptake of the total microbial biomass. In contrast, artificial labelling enables quantifying carbon uptake into single PLFAs, but labelling success depends on homogeneous and undisturbed label application. Current developments in microbial ecology (e.g. 13C and 15N proteomics) and isotope techniques (online monitoring of CO2 isotope ratios) will likely improve soil functional interpretations in the future. 13C PLFA analysis will continue to contribute because it is affordable, sensitive and allows frequent sampling combined with the use of small amounts of 13C label.

  14. Non-stationary (13)C-metabolic flux ratio analysis.

    PubMed

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. PMID:23860906

  15. Uniform {sup 15}N- and {sup 15}N/{sup 13}C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    SciTech Connect

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W.

    1994-12-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly {sup 15}N-and {sup 15}N/{sup 13}C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the {phi} angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor.

  16. Conformational Analysis, Thermal Rearrangement, and EI-MS Fragmentation Mechanism of (1(10)E,4E,6S,7R)-Germacradien-6-ol by (13)C-Labeling Experiments.

    PubMed

    Rabe, Patrick; Barra, Lena; Rinkel, Jan; Riclea, Ramona; Citron, Christian A; Klapschinski, Tim A; Janusko, Aron; Dickschat, Jeroen S

    2015-11-01

    An uncharacterized terpene cyclase from Streptomyces pratensis was identified as (+)-(1(10)E,4E,6S,7R)-germacradien-6-ol synthase. The enzyme product exists as two interconvertible conformers, resulting in complex NMR spectra. For the complete assignment of NMR data, all fifteen ((13)C1)FPP isotopomers (FPP=farnesyl diphosphate) and ((13)C15)FPP were synthesized and enzymatically converted. The products were analyzed using various NMR techniques, including (13)C, (13)C COSY experiments. The ((13)C)FPP isotopomers were also used to investigate the thermal rearrangement and EI fragmentation of the enzyme product. PMID:26361082

  17. Solid-state {sup 19}F and {sup 13}C NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: Low-field and high-resolution studies

    SciTech Connect

    Giraudet, J.; Dubois, M.; Guerin, K.; Pinheiro, J.P.; Hamwi, A.; Stone, W.E.E.; Pirotte, P.; Masin, F. . E-mail: fmasin@ulb.ac.be

    2005-04-15

    Room temperature graphite fluorides consisting of raw material and samples post-treated in pure fluorine atmosphere in the temperature range 100-500 deg. C have been studied by solid-state NMR. Several NMR approaches have been used, both high and low-field {sup 19}F, {sup 19}F MAS and {sup 13}C MAS with {sup 19}F to {sup 13}C cross polarization. The modifications, in the graphitic lattice, of the catalytic iodine fluorides products have been examined. A transformation of the C-F bond character from semi-ionic to covalent has been found to occur at a post-treatment temperature close to 400 deg. C. It is shown that covalency increases with temperature.

  18. Continental and local climatic influences on hydrology of eucalypt-Nothofagus ecosystems revealed by δ2H, δ13C, and δ18O of ecosystem samples

    NASA Astrophysics Data System (ADS)

    Pfautsch, Sebastian; Gessler, Arthur; Rennenberg, Heinz; Weston, Christopher J.; Adams, Mark A.

    2010-03-01

    Marrying knowledge of variation in large-scale climatic parameters such as rainfall and evaporation to physiological ecology has long been argued as a powerful approach to advancing understanding of hydrology of catchments. Widely used hydrological models for assessing water yield depend on key plant attributes such as whether or not plant water use is coupled to atmospheric and/or soil water status. We analyzed δ2H and δ18O signatures of long-term rainwater collections from coastal sites near Melbourne, Australia, and in northwest Tasmania and compared them with their counterparts in rainwater, stream water, soil water, and twig water data collected over a 2 year period from south facing Eucalyptus-Nothofagus forests in the Cement Creek catchment of Mt. Donna Buang, about 70 km east of the city of Melbourne. Within the catchment, progressive evaporative enrichment among rain, soil, and twig water accounted for observed δ2H and δ18O signatures. We observed a major shift in both δ2H and δ18O signatures of rain and stream water between 2001/2002 and 2003. The shift was likely due to changes in atmospheric conditions and especially relative contributions to rainwater from oceanic and continental sources. Our plant isotope data argue strongly that radiation, not water, is a primary limitation for Nothofagus on Mt. Donna Buang. The δ18O and δ13C signatures of foliage varied with season and with topography. For the wettest and driest years in the 1978-2000 record, strong and consistent altitudinal gradients in δ13C of tree rings had a slope of between 4‰ and 5‰ km-1 of altitude. Our data highlight the importance of background (e.g., rainfall and atmospheric CO2) isotope data to interpretation of plant isotope data. Taken together with the literature, our isotope data lead us to conclude that (1) in periods of close to average rainfall, the observed meteoric water line at Mt. Donna Buang and at other stations in southeast Australia departs strongly in slope

  19. Stationary versus non-stationary (13)C-MFA: a comparison using a consistent dataset.

    PubMed

    Noack, Stephan; Nöh, Katharina; Moch, Matthias; Oldiges, Marco; Wiechert, Wolfgang

    2011-07-10

    Besides the well-established (13)C-metabolic flux analysis ((13)C-MFA) which characterizes a cell's fluxome in a metabolic and isotopic stationary state a current area of research is isotopically non-stationary MFA. Non-stationary (13)C-MFA uses short-time isotopic transient data instead of long-time isotopic equilibrium data and thus is capable to resolve fluxes within much shorter labeling experiments. However, a comparison of both methods with data from one single experiment has not been made so far. In order to create a consistent database for directly comparing both methods a (13)C-labeling experiment in a fed-batch cultivation with a Corynebacterium glutamicum lysine producer was carried out. During the experiment the substrate glucose was switched from unlabeled to a specifically labeled glucose mixture which was immediately traced by fast sampling and metabolite quenching. The time course of labeling enrichments in intracellular metabolites until isotopic stationarity was monitored by LC-MS/MS. The resulting dataset was evaluated using the classical as well as the isotopic non-stationary MFA approach. The results show that not only the obtained relative data, i.e. intracellular flux distributions, but also the more informative quantitative fluxome data significantly depend on the combination of the measurements and the underlying modeling approach used for data integration. Taking further criteria on the experimental and computational part into consideration, the current limitations of both methods are demonstrated and possible pitfalls are concluded. PMID:20638432

  20. An automated setup to measure paleoatmospheric δ13C-CH4, δ15N-N2O and δ18O-N2O in one ice core sample

    NASA Astrophysics Data System (ADS)

    Sperlich, P.; Buizert, C.; Jenk, T. M.; Sapart, C. J.; Prokopiou, M.; Röckmann, T.; Blunier, T.

    2013-02-01

    Air bubbles in ice core samples represent the only opportunity to study the isotopic variability of paleoatmospheric CH4 and N2O. The highest possible precision in isotope measurements is required to maximize the resolving power for CH4 and N2O sink and source reconstructions. We present a new setup to measure δ13C-CH4, δ15N-N2O and δ18O-N2O isotope ratios in one ice core sample, with a precision of 0.09‰, 0.6‰ and 0.7‰, respectively, as determined on 0.6-1.6 nmol CH4 and 0.25-0.6 nmol N2O. The isotope ratios are referenced to the VPDB scale (δ13C-CH4), the N2-air scale (δ15N-N2O) and the VSMOW scale (δ18O-N2O). Ice core samples of 200-500 g are melted while the air is constantly extracted to minimize gas dissolution. A helium carrier gas flow transports the sample through the analytical system. A gold catalyst is used to oxidize CO to CO2 in the air sample without affecting the CH4 and N2O sample. CH4 and N2O are then separated from N2, O2, Ar and CO2 before they get pre-concentrated and separated by gas chromatography. While the separated N2O sample is immediately analysed in the mass spectrometer, a combustion unit is required for δ13C-CH4 analysis, which is equipped with a constant oxygen supply as well as a post-combustion trap and a post-combustion GC-column (GC-C-GC-IRMS). The post combustion trap and the second GC column in the GC-C-GC-IRMS combination increase the time for δ13C-CH4 analysis which is used to measure δ15N-N2O and δ18O-N2O first and then δ13C-CH4. The analytical time is adjusted to ensure stable conditions in the ion-source before each sample gas enters the IRMS, thereby improving the precision achieved for measurements of CH4 and N2O on the same IRMS. After the extraction of the air from the ice core sample, the analysis of CH4 and N2O takes 42 min. The setup is calibrated by analyzing multiple isotope reference gases that were injected over bubble-free-ice samples. We show a comparison of ice core sample measurements for

  1. An automated GC-C-GC-IRMS setup to measure palaeoatmospheric δ13C-CH4, δ15N-N2O and δ18O-N2O in one ice core sample

    NASA Astrophysics Data System (ADS)

    Sperlich, P.; Buizert, C.; Jenk, T. M.; Sapart, C. J.; Prokopiou, M.; Röckmann, T.; Blunier, T.

    2013-08-01

    Air bubbles in ice core samples represent the only opportunity to study the mixing ratio and isotopic variability of palaeoatmospheric CH4 and N2O. The highest possible precision in isotope measurements is required to maximize the resolving power for CH4 and N2O sink and source reconstructions. We present a new setup to measure δ13C-CH4, δ15N-N2O and δ18O-N2O isotope ratios in one ice core sample and with one single IRMS instrument, with a precision of 0.09, 0.6 and 0.7‰, respectively, as determined on 0.6-1.6 nmol CH4 and 0.25-0.6 nmol N2O. The isotope ratios are referenced to the VPDB scale (δ13C-CH4), the N2-air scale (δ15N-N2O) and the VSMOW scale (δ18O-N2O). Ice core samples of 200-500 g are melted while the air is constantly extracted to minimize gas dissolution. A helium carrier gas flow transports the sample through the analytical system. We introduce a new gold catalyst to oxidize CO to CO2 in the air sample. CH4 and N2O are then separated from N2, O2, Ar and CO2 before they get pre-concentrated and separated by gas chromatography. A combustion unit is required for δ13C-CH4 analysis, which is equipped with a constant oxygen supply as well as a post-combustion trap and a post-combustion GC column (GC-C-GC-IRMS). The post-combustion trap and the second GC column in the GC-C-GC-IRMS combination prevent Kr and N2O interferences during the isotopic analysis of CH4-derived CO2. These steps increase the time for δ13C-CH4 measurements, which is used to measure δ15N-N2O and δ18O-N2O first and then δ13C-CH4. The analytical time is adjusted to ensure stable conditions in the ion source before each sample gas enters the IRMS, thereby improving the precision achieved for measurements of CH4 and N2O on the same IRMS. The precision of our measurements is comparable to or better than that of recently published systems. Our setup is calibrated by analysing multiple reference gases that were injected over bubble-free ice samples. We show that our measurements

  2. Measurements of 13C multiple-quantum coherences in amyloid fibrils under magic-angle spinning.

    PubMed

    Chou, Fang-Chieh; Tsai, Tim W T; Cheng, Hsin-Mei; Chan, Jerry C C

    2012-06-21

    The excitation and detection of high-order multiple quantum coherences among (13)C nuclear spins are demonstrated in the samples of [1-(13)C]-L-alanine and (13)C labeled amyloid fibrils at a spinning frequency of 20 kHz. The technique is based on the double-quantum average Hamiltonian prepared by the DRAMA-XY4 pulse sequence. Empirically, we find that multiple supercycles are required to suppress the higher-order effects for real applications. Measurements for the fibril samples formed by the polypeptides of PrP(113-127) provide the first solid-state NMR evidence for the stacking of multiple β-sheet layers at the structural core of amyloid fibrils. PMID:22632418

  3. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  4. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  5. Galactose oxidation using (13)C in healthy and galactosemic children.

    PubMed

    Resende-Campanholi, D R; Porta, G; Ferrioli, E; Pfrimer, K; Ciampo, L A Del; Junior, J S Camelo

    2015-03-01

    Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-(13)C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate (13)CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-(13)C-galactose to all children. The molar ratios of (13)CO2 and (12)CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of (13)C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies. PMID:25608239

  6. Synthesis and applications of {sup 13}C glycerol

    SciTech Connect

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  7. Biosynthesis of the antibiotic maduramicin. Origin of the carbon and oxygen atoms as well as the 13C NMR assignments.

    PubMed

    Tsou, H; Rajan, S; Fiala, R; Mowery, P C; Bullock, M W; Borders, D B; James, J C; Martin, J H; Morton, G O

    1984-12-01

    The biosynthesis of maduramicin alpha and beta in a culture of Actinomadura yumaensis has been studied using 13C, 14C and 18O labeled precursors. The alpha component of this recently discovered polyether antibiotic, containing forty-seven carbon atoms in a seven-ring system, is derived from eight acetate, seven propionate and four methionine molecules. The beta component which is missing one methoxy group incorporates three methionine methyl groups. The carbohydrate moiety was enriched by methionine, but not significantly by acetate or propionate. Studies of the incorporation of 13C labeled precursors permit the 13C NMR assignment of maduramicin. The origin of oxygen atoms of maduramicin has been examined by feeding [1-13C, 18O2]acetate and [1-13C, 18O2]propionate separately in the fermentation culture and the resulting doubly labeled maduramicin samples were analyzed by the isotopic shifts in the 13C NMR spectra. These results are consistent with the initial formation of a triene, which is converted to maduramicin by cyclization of the triepoxide. PMID:6526733

  8. Analysis of 13C and 18O isotope data of CO2 in CARIBIC aircraft samples as tracers of upper troposphere/lower stratosphere mixing and the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Assonov, S. S.; Brenninkmeijer, C. A. M.; Schuck, T. J.; Taylor, P.

    2010-09-01

    The project CARIBIC (http://caribic-atmospheric.com) aims to study atmospheric chemistry and transport by regularly measuring many compounds in the free troposphere and the upper troposphere/lowermost stratosphere (UT/LMS) by using passenger aircraft. Here we present CO2 concentrations and isotope results, and analyze the data together with supporting trace gas data. 509 CARIBIC-2 samples (highest precision and accuracy δ13C(CO2) and δ18O(CO2) data) from June 2007 until March 2009, together with CARIBIC-1 samples (flights between November 1999 and April 2002, 350 samples in total, 270 for NH, mostly δ13C(CO2) data) give a fairly extensive, unique data set for the NH free troposphere and the UT/LMS region. Total uncertainty of the data is the same as reported for the global monitoring program by NOAA-ESRL. To compare data from different years a de-trending is applied. In the UT/LMS region δ13C(CO2), δ18O(CO2) and CO2 are found to correlate well with stratospheric tracers, in particular N2O; δ18O(CO2) appears to be a useful, hitherto unused, tracer of atmospheric transport in the UT/LMS region and also inter-hemispheric mixing. By filtering out the LMS data (based on N2O distributions), the isotope variations for the free and upper troposphere are obtained. These variations have only small latitudinal gradients, if any, and are in good agreement with the data of selected NOAA stations in NH tropics. Correlations between δ13C(CO2) and CO2 are observed both within single flight(s) covering long distances and during certain seasons. The overall variability in de-trended δ13C(CO2) and CO2 for CARIBIC-1 and CARIBIC-2 are similar and are generally in agreement, which underscores agreement between high and low resolution sampling. Based on all correlations, we infer that the CO2 distribution in the NH troposphere along CARIBIC flight routes is chiefly regulated by uplift and pole-wards transport of

  9. State-of-the-Art Direct 13C and Indirect 1H-[13C] NMR Spectroscopy In Vivo

    PubMed Central

    de Graaf, Robin A.; Rothman, Douglas L.; Behar, Kevin L.

    2013-01-01

    Carbon-13 NMR spectroscopy in combination with 13C-labeled substrate infusion is a powerful technique to measure a large number of metabolic fluxes non-invasively in vivo. It has been used to quantify glycogen synthesis rates, establish quantitative relationships between energy metabolism and neurotransmission and evaluate the importance of different substrates. All measurements can, in principle, be performed through direct 13C NMR detection or via indirect 1H-[13C] NMR detection of the protons attached to 13C nuclei. The choice for detection scheme and pulse sequence depends on the magnetic field strength, whereas substrate selection depends on the metabolic pathways that are studied. 13C NMR spectroscopy remains a challenging technique that requires several non-standard hardware modifications, infusion of 13C-labeled substrates and sophisticated processing and metabolic modeling. Here the various aspects of direct 13C and indirect 1H-[13C] NMR are reviewed with the aim of providing a practical guide. PMID:21919099

  10. Analysis of accurate 13C and 18O isotope measurements of CO2 in CARIBIC aircraft air samples from the tropical troposphere, and the upper troposphere/lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Assonov, S. S.; Brenninkmeijer, C. A. M.; Schuck, T. J.; Taylor, P.

    2010-03-01

    The project CARIBIC (http://caribic-atmospheric.com) aims to study atmospheric chemistry and transport by regularly measuring many compounds in the free troposphere (FT) and the upper troposphere/lowermost stratosphere (UT/LMS) by using passenger aircraft. Here CO2 concentrations and highly accurate isotope results are presented in detail together with supporting trace gas data. 509 CARIBIC-2 samples (highest precision and accuracy δ13C(CO2) and δ18O(CO2) data) from June 2007 until March 2009, together with CARIBIC-1 samples (flights between November 1999 and April 2002, 350 samples in total, 270 for NH, mostly δ13C(CO2) data) give a fairly extensive, unique data set for the NH free troposphere and the UT/LMS region. To compare data from different years a de-trending is applied. In the UT/LMS region δ13C(CO2), δ18O(CO2) and CO2 are found to correlate well with stratospheric tracers, in particular N2O. These correlations are in good agreement with current understanding of stratospheric circulation. δ18O(CO2) appears to be a useful, hitherto unused, tracer of atmospheric transport in the UT/LMS region. By filtering out the LMS data (based on N2O distribution), the isotope variations for the free and upper troposphere are obtained. These show however little latitudinal gradient, if any, and are in good agreement with the data of selected NOAA stations in NH tropics. Correlations between δ13C(CO2) and CO2 are observed both within single flight(s) covering long distances and for certain seasons. The overall variability in de-trended δ13C(CO2) and CO2 for CARIBIC-1 and CARIBIC-2 are similar and basically agree with each other, which also underscores the high quality of measurement. Based on all correlations, we discuss that CO2 distribution in the NH FT and UT (at CARIBIC flight routes) is regulated by uplift and pole-wards transport of tropical air up to approximately 50° N. The main reasons for

  11. A new system for the simultaneous measurement of δ13C and δ15N by IRMS and radiocarbon by AMS on gaseous samples: Design features and performances of the gas handling interface

    NASA Astrophysics Data System (ADS)

    Braione, Eugenia; Maruccio, Lucio; Quarta, Gianluca; D'Elia, Marisa; Calcagnile, Lucio

    2015-10-01

    We present the general design features and preliminary performances of a new system for the simultaneous AMS-14C and IRMS δ13C and δ15N measurements on samples with masses in the μg range. The system consists of an elemental analyzer (EA), a gas splitting unit (GSU), a IRMS system, a gas handling interface (GHI) and a sputtering ion source capable of accepting gaseous samples. A detailed description of the system and of the control software supporting unattended operation are presented together with the first performance tests carried out by analyzing samples with masses ranging from 8 μgC to 2.4 mgC. The performances of the system were tested in term of stability of the ion beam extracted from the ion source, precision and accuracy of the results by comparing the measured isotopic ratios with those expected for reference materials.

  12. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  13. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  14. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  15. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  16. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  17. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  18. (13) C-TmDOTA as versatile thermometer compound for solid-state NMR of hydrated lipid bilayer membranes.

    PubMed

    Umegawa, Yuichi; Tanaka, Yuya; Nobuaki, Matsumori; Murata, Michio

    2016-03-01

    Recent advances in solid-state nuclear magnetic resonance (NMR) techniques, such as magic angle spinning and high-power decoupling, have dramatically increased the sensitivity and resolution of NMR. However, these NMR techniques generate extra heat, causing a temperature difference between the sample in the rotor and the variable temperature gas. This extra heating is a particularly crucial problem for hydrated lipid membrane samples. Thus, to develop an NMR thermometer that is suitable for hydrated lipid samples, thulium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (TmDOTA) was synthesized and labeled with (13) C (i.e., (13) C-TmDOTA) to increase the NMR sensitivity. The complex was mixed with a hydrated lipid membrane, and the system was subjected to solid-state NMR and differential scanning calorimetric analyses. The physical properties of the lipid bilayer and the quality of the NMR spectra of the membrane were negligibly affected by the presence of (13) C-TmDOTA, and the (13) C chemical shift of the complex exhibited a large-temperature dependence. The results demonstrated that (13) C-TmDOTA could be successfully used as a thermometer to accurately monitor temperature changes induced by (1) H decoupling pulses and/or by magic angle spinning and the temperature distribution of the sample inside the rotor. Thus, (13) C-TmDOTA was shown to be a versatile thermometer for hydrated lipid assemblies. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26460094

  19. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    USGS Publications Warehouse

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  20. Calculation of total meal d13C from individual food d13C.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in the isotopic signature of carbon in biological samples can be used to distinguish dietary patterns and monitor shifts in metabolism. But for these variations to have meaning, the isotopic signature of the diet must be known. We sought to determine if knowledge of the 13C isotopic abund...

  1. 13C MR imaging of methionine-rich gliomas at 4.7T: a pilot study.

    PubMed

    Sasao, Akira; Hirai, Toshinori; Iriguchi, Norio; Nakamura, Hideo; Kudo, Mareina; Sasao, Ako; Yamashita, Yasuyuki

    2011-01-01

    We explored the feasibility of using carbon-13 ((13)C) magnetic resonance imaging ((13)C-MRI) to depict (13)C-labeled methionine-enriched gliomas at 4.7 tesla. We transplanted 2 types of glioma cells separately to 2 subcutaneous tissue sites on the backs of mice weighing 15 to 20 g. After confirming tumor growth, we used (13)C-MRI and (1)H-MRI to scan 4 mice that had been administered (13)C-labeled methionine and 2 control mice. (13)C-MRI of all 4 transplanted mice administered with (13)C-labeled methionine revealed 2 areas of hyperintensity that corresponded to the tumor sites on (1)H-MR images, but no such areas were visualized in transplanted controls. Our data suggest that (13)C-MRI can show the accumulation of (13)C-labeled tracer by gliomas. PMID:21720117

  2. Understanding 13C(CO2) and 18O(CO2 ) data obtained on CARIBIC aircraft air samples from the tropical troposphere, and the upper troposphere/ lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Assonov, Sergey S.; Brenninkmeijer, Carl A. M.; Schuck, Tanja J.; Zahn, Andreas; Taylor, Philip

    2010-05-01

    The project CARIBIC (http://caribic-atmospheric.com) aims to study atmospheric chemistry and transport by regularly measuring many compounds in the free troposphere (FT) and the upper troposphere/lowermost stratosphere (UT/LMS) by using passenger aircraft. CO2 isotope ratios were measured by CARIBIC-1 (November-1999 to April-2002, mostly d13C(CO2)) and CARIBIC-2 (June-2007 to March-2009, highest precision d13C(CO2) and d18O(CO2) data). (The latter effort has been possible due to the contribution of JRC-IRMM, Geel, Belgium.) This gives a new, unique and fairly extensive data set for the NH free troposphere and the UT/LMS region. In particular, CARIBIC-2 utilizing high-quality and high-resolution sampling gave a detailed distribution of d18O(CO2), with signals not affected by sampling and canister effects. For the first time we can demonstrate how the variability in air mass origin (recognized by using chemical tracers) is recorded by CO2 isotope signals on the inter-continental scale. There are two main mechanisms responsible: (i) UT/LMS mixing and (ii) seasonality of tropospheric CO2 as well as variable degree of mixing background air and air masses affected by CO2 sources/sinks. In the UT/LMS region both d13C(CO2), d18O(CO2) and CO2 are found to correlate well with stratospheric tracers, in particular N2O. The data for the free and upper troposphere show however little latitudinal gradient and are in good agreement with the data of selected NOAA stations in NH tropics. We discuss that CO2 distribution in the NH FT and UT (at CARIBIC flight routes) is regulated by uplift and pole-wards transport of tropical air. Next, d18O(CO2) is thought to be a new, previously not recognized tracer in the UT/LMS region as well as tracer of gross CO2 fluxes, where CO2 exchanges its oxygen with natural water pools.

  3. Modification of Carrier Gas Stream to Improve 13C/12C Isotopic Accuracy in Cavity Ring-Down Spectroscopy-Based Measurements of Low-Concentration Dissolved Carbon Samples

    NASA Astrophysics Data System (ADS)

    Conaway, C. H.; Morkner, P.; Thomas, B.; Saad, N.

    2013-12-01

    Determining isotopic composition of dissolved organic and inorganic carbon in natural waters is of critical importance to a broad set of scientific objectives. The routine analysis of these sample types can be expensive and in the past has been limited predominantly to laboratories capable of high-precision isotope ratio mass spectrometric analysis. More recently, cavity ring-down spectroscopy (CRDS) has provided an alternative instrumental means for characterizing these samples. One challenge with these types of is that the CRDS can show a non-linear response in d13C at low carbon concentrations (<0.5 mM). Here we present a new approach using a modification of a total organic carbon-cavity ring-down spectroscopy (TOC-CRDS) continuous flow system by adding a background stream of carbon dioxide of known isotopic composition to the CRDS analytical train. The isotopic carbon values generated by the CRDS are then corrected using a two-component isotopic mixing model. This modification is useful in reducing bias towards lighter carbon isotopic values when measuring samples with low carbon concentration, such as natural waters with either dissolved organic or inorganic carbon concentrations of less than 0.5 mM, and does not introduce substantial bias for higher concentration samples.

  4. Hepatic gluconeogenesis influences (13)C enrichment in lactate in human brain tumors during metabolism of [1,2-(13)C]acetate.

    PubMed

    Pichumani, Kumar; Mashimo, Tomoyuki; Vemireddy, Vamsidhara; Kovacs, Zoltan; Ratnakar, James; Mickey, Bruce; Malloy, Craig R; DeBerardinis, Ralph J; Bachoo, Robert M; Maher, Elizabeth A

    2016-07-01

    (13)C-enriched compounds are readily metabolized in human malignancies. Fragments of the tumor, acquired by biopsy or surgical resection, may be acid-extracted and (13)C NMR spectroscopy of metabolites such as glutamate, glutamine, 2-hydroxyglutarate, lactate and others provide a rich source of information about tumor metabolism in situ. Recently we observed (13)C-(13)C spin-spin coupling in (13)C NMR spectra of lactate in brain tumors removed from patients who were infused with [1,2-(13)C]acetate prior to the surgery. We found, in four patients, that infusion of (13)C-enriched acetate was associated with synthesis of (13)C-enriched glucose, detectable in plasma. (13)C labeled glucose derived from [1,2-(13)C]acetate metabolism in the liver and the brain pyruvate recycling in the tumor together lead to the production of the (13)C labeled lactate pool in the brain tumor. Their combined contribution to acetate metabolism in the brain tumors was less than 4.0%, significantly lower than the direct oxidation of acetate in the citric acid cycle in tumors. PMID:27020407

  5. Liquid chromatography combined with mass spectrometry for 13C isotopic analysis in life science research.

    PubMed

    Godin, Jean-Philippe; Fay, Laurent-Bernard; Hopfgartner, Gérard

    2007-01-01

    Among the different disciplines covered by mass spectrometry, measurement of (13)C/(12)C isotopic ratio crosses a large section of disciplines from a tool revealing the origin of compounds to more recent approaches such as metabolomics and proteomics. Isotope ratio mass spectrometry (IRMS) and molecular mass spectrometry (MS) are the two most mature techniques for (13)C isotopic analysis of compounds, respectively, for high and low-isotopic precision. For the sample introduction, the coupling of gas chromatography (GC) to either IRMS or MS is state of the art technique for targeted isotopic analysis of volatile analytes. However, liquid chromatography (LC) also needs to be considered as a tool for the sample introduction into IRMS or MS for (13)C isotopic analyses of non-volatile analytes at natural abundance as well as for (13)C-labeled compounds. This review presents the past and the current processes used to perform (13)C isotopic analysis in combination with LC. It gives particular attention to the combination of LC with IRMS which started in the 1990's with the moving wire transport, then subsequently moved to the chemical reaction interface (CRI) and was made commercially available in 2004 with the wet chemical oxidation interface (LC-IRMS). The LC-IRMS method development is also discussed in this review, including the possible approaches for increasing selectivity and efficiency, for example, using a 100% aqueous mobile phase for the LC separation. In addition, applications for measuring (13)C isotopic enrichments using atmospheric pressure LC-MS instruments with a quadrupole, a time-of-flight, and an ion trap analyzer are also discussed as well as a LC-ICPMS using a prototype instrument with two quadrupoles. PMID:17853432

  6. Simultaneous determination of stable isotopic compositions of nitrous oxide (δ15N and δ18O of N2O) and methane (δ13C of CH4) in nanomolar quantities from a single water sample

    NASA Astrophysics Data System (ADS)

    Hirota, A.; Tsunogai, U.; Komatsu, D. D.; Nakagawa, F.

    2010-12-01

    The stable isotopic compositions of nitrous oxide (δ15N of N2O and δ18O of N2O, respectively) and methane (δ13C of CH4) have provided us with some interesting geochemical insights. We have developed a rapid, sensitive, and automated analytical system to simultaneously determine the concentrations and stable isotopic compositions of nanomolar quantities of N2O and CH4 in the environmental water, by combining continuous-flow isotope-ratio mass spectrometry and a He-sparging system to extract and purify the dissolved gases. Our system, which is composed of a sparging bottle, a chemical trap, four cold traps and a capillary gas chromatograph that use ultra-pure helium as the carrier gas, achieves complete extraction of N2O and CH4 in a water sample and separation among N2O, CH4, and the other component gases. The flow path subsequent to gas chromatograph was periodically changed to pass the gases through the combustion furnace to convert CH4 and the other hydrocarbons into CO2, or to bypass the combustion furnace for the direct introduction of eluted N2O into the mass spectrometer, for determining the stable isotopic compositions through monitoring m/z = 44, 45, and 46, on the bases of CO2+ and N2O+, respectively. The analytical system can be operated automatically with sequential software programmed on a personal computer. The analytical precisions (the standard deviation of a single measurement) were better than 0.2‰ for δ15N of N2O and 0.3‰ for δ18O of N2O, in the case of more than 6.7 nmol N2O injection and better than 1.4‰ for δ15N of N2O and 2.6‰ for δ18O of N2O, in the case of more than 0.2 nmol N2O injection, respectively. Simultaneously, the analytical precisions were better than 0.07‰ for δ13C of CH4, in the case of more than 5.5 nmol CH4 infection and better than 2.1‰ for δ13C of CH4, when more than 0.024 nmol CH4 injection. In this manner, we can simultaneously determine stable isotopic compositions of a 120 mL water sample having

  7. Fecal /sup 13/C analysis for the detection and quantitation of intestinal malabsorption

    SciTech Connect

    Schoeller, D.A.; Klein, P.D.; MacLean, W.C. Jr.; Watkins, J.B.; Van Santen, E.

    1981-03-01

    The use of /sup 14/CO/sub 2/ breath tests and fecal analyses for the detection and quantitation of intestinal malabsorption has been extensively documented in adult subjects. The use of stable isotopes has extended the range of breath test applications to include pediatric and obstetric subjects. Here we report a fecal /sup 13/C analysis that can be used in conjunction with /sup 13/CO/sub 2/ breath tests. Twenty-four-hour fecal samples were collected before and after the administration of a labeled substrate. The samples were homogenized and combusted to CO/sub 2/, and the /sup 13/C abundance was determined by high-precision, differential isotope ratio mass spectrometry. The isotopic variation between successive 24 hr fecal samples was 0.6 per thousand (0.0006 atom percent). This variation limited the sensitivity of the fecal analysis to 13 ..mu..mol of /sup 13/C label per mole of fecal carbon. Simultaneous cholyglycine /sup 13/CO/sub 2/ breath tests and fecal assays were performed in five children. One child with bacterial overgrowth had an abnormal breath test and a normal fecal test. Of three children with ileal dysfunction, only one had an abnormal breath test, whereas the fecal test was abnormal in all three. Both the breath test and fecal test were abnormal for a child who had undergone an ileal resection. Both tests were normal for a child with ulcerative colitis.

  8. Notes on the origin of copromacrinite based on nitrogen functionalities and δ13C and δ15N determined on samples from the Peach Orchard coal bed, southern Magoffin County, Kentucky

    USGS Publications Warehouse

    Valentim, Bruno; Algarra, Manuel; Guedes, Alexandra; Ruppert, Leslie F.; Hower, James C.

    2016-01-01

    The study of Peach Orchard coal samples using reflected-light microscopy, isotopic composition, and nitrogen-forms analyses revealed that the macrinite-rich sample contains macrinite with coprolitic features (e.g. oxidation rind, mix of undigested palynomorphs, frequent and randomly located funginite, agglutination pulp of semifusinite reflectance, internal lack of bedding fabric, and suggestion of structures resulting from intestines and stomach walls), more pyrrolic-N (~ 16%), and lower δ13C (~ 2‰ VPDB) and δ15N (~ 4‰ Air) values than the vitrinite and semifusinite + fusinite rich samples. These findings suggest that the maceral macrinite has multiple origins based on petrography and measurable chemical differences between the macrinite, vitrinite, and semifusinite + fusinite fractions within the coal. Assuming that copromacrinite observed is an excretion then the anomalies observed may result from the symbiotic relations between the macrofauna (e.g. cockroaches) and microbiota during the digestive processes, and the nitrogen balance mechanisms inside macrofauna body.

  9. Existing and emerging technologies for measuring stable isotope labelled retinol in biological samples: isotope dilution analysis of body retinol stores.

    PubMed

    Preston, Tom

    2014-01-01

    This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction. PMID:25537104

  10. GC-MS determination of ratios of stable-isotope labelled to natural urea using [13C15N2]urea for studying urea kinetics in serum and as a means to validate routine methods for the quantitative assay of urea in dialysate.

    PubMed

    Wolthers, B G; Tepper, T; Withag, A; Nagel, G T; de Haan, T H; van Leeuwen, J J; Stegeman, C A; Huisman, R M

    1994-02-01

    A GC-MS determination of urea in serum or spent dialysate is described, using 13C15N2-labelled urea and assaying the area ratio of labelled to natural urea by mass fragmentographic monitoring of fragments m/e 153 and 156, after its eventual conversion into the trimethylsilylether-derivative of 2-hydroxypyrimidine. The procedure can be successfully applied in the follow-up of the disappearance of labelled urea in serum after intravenous injection in man, enabling kinetic parameters of urea to be established, e.g. for purposes of studying the effectiveness of dialysis procedures. Furthermore the method can be used for validation of routine methods for measuring urea in other fluids, in particular dialysate. Examples are given of both applications of the GC-MS method described. PMID:8033352

  11. Study of Urban environmental quality through Isotopes δ13C

    NASA Astrophysics Data System (ADS)

    González-Sosa, E.; Mastachi-Loza, C.; Becerril-Piña, R.; Ramos-Salinas, N. M.

    2012-04-01

    Usually, trees with similar pH values on their bark develop epiphytes of similar species, the acidity to be a factor for growth. The aim of the study was evaluate the air quality through isotope δ13C in order to define the levels of environmental quality in the city of Queretaro, Mexico. In this work were collected at least 4 epiphytes positioned in trees of the species Prosopis Laevigata at 25 sites of Queretaro City. The samples were analyzed for trace elements with an inductively coupled plasma atomic emission spectroscopy (ICP). The collecting took place during dry period, in May and early rain June 2011 period, and on four sectors to identify the spatial distribution of pollution, using isotopic analysis of concentration of δ 13C. According with the results there are significant differences among the species in each of the sampled areas. The 5 February Avenue presented greater diversity and richness of δ13C, followed by those who were surveyed in the proximity of the UAQ and finally in the middle-east area. An average value of δ13C-17.92%, followed by those surveyed in the vicinity of the UAQ that correspond to sector I and II with an concentration of δ13C-17.55% and δ13C-17.22%, and finally the samples collected in trees scattered in the East-Sector II and IV with a value of δ13C-17.02% and δ13C-15.62%, respectively. Also were observed differences between the dry and wet period. It is likely that these results of δ 13C in moist period reflect the drag of the isotopes due to rain events that could mark a trend in the dilution of this element, however there is a trend in terms of abundance and composition of finding more impact in those species sampled in dry period, in May and early June 2011.

  12. A scientific workflow framework for (13)C metabolic flux analysis.

    PubMed

    Dalman, Tolga; Wiechert, Wolfgang; Nöh, Katharina

    2016-08-20

    Metabolic flux analysis (MFA) with (13)C labeling data is a high-precision technique to quantify intracellular reaction rates (fluxes). One of the major challenges of (13)C MFA is the interactivity of the computational workflow according to which the fluxes are determined from the input data (metabolic network model, labeling data, and physiological rates). Here, the workflow assembly is inevitably determined by the scientist who has to consider interacting biological, experimental, and computational aspects. Decision-making is context dependent and requires expertise, rendering an automated evaluation process hardly possible. Here, we present a scientific workflow framework (SWF) for creating, executing, and controlling on demand (13)C MFA workflows. (13)C MFA-specific tools and libraries, such as the high-performance simulation toolbox 13CFLUX2, are wrapped as web services and thereby integrated into a service-oriented architecture. Besides workflow steering, the SWF features transparent provenance collection and enables full flexibility for ad hoc scripting solutions. To handle compute-intensive tasks, cloud computing is supported. We demonstrate how the challenges posed by (13)C MFA workflows can be solved with our approach on the basis of two proof-of-concept use cases. PMID:26721184

  13. Distinct fungal and bacterial δ13C signatures can drive the increase in soil δ13C with depth

    NASA Astrophysics Data System (ADS)

    Kohl, Lukas; Laganièrea, Jérôme; Edwards, Kate A.; Billings, Sharon A.; Morrill, Penny L.; Van Biesen, Geert; Ziegler, Susan E.

    2015-04-01

    Soil microbial biomass is a key precursor of soil organic carbon (SOC), and the enrichment in 13C during SOC diagenesis has been purported to be driven by increasing proportions of microbially derived SOC. Yet, little is known about how the δ13C of soil microbial biomass - and by extension the δ13C of microbial inputs to SOC - vary in space, time, or with the composition of the microbial community. Phospholipid fatty acids (PLFA) can be analyzed to measure the variation of the natural abundance δ13C values of both individual groups of microorganisms and the microbial community as a whole. Here, we show how variations of δ13CPLFA within the soil profile provides insight into C fluxes in undisturbed soils and demonstrate that distinct δ13C of fungal and bacterial biomass and their relative abundance can drive the increase of bulk δ13CSOC with depth. We studied the variation in natural abundance δ13C signatures of PLFA in podzolic soil profiles from mesic boreal forests in Atlantic Canada. Samples from the organic horizons (L,F,H) and the mineral (B; top 10 cm) horizons were analyzed for δ13C values of PLFA specific to fungi, G+ bacteria, or G- bacteria as proxies for the δ13C of the biomass of these groups, and for δ13C values of PLFA produced by a wide range of microorganisms (e.g. 16:0) as a proxy for the δ13C value of microbial biomass as a whole. Results were compared to fungi:bacteria ratios (F:B) and bulk δ13CSOC values. The δ13C values of group-specific PLFA were driven by differences among source organisms, with fungal PLFA consistently depleted (2.1 to 6.4‰) relative to and G+ and G- bacterial PLFA in the same sample. All group-specific PLFA, however, exhibited nearly constant δ13C values throughout the soil profile, apparently unaffected by the over 2.8‰ increase in δ13CSOC with depth from the L to B horizons. This indicates that bulk SOC poorly represents the substrates actually consumed by soil microorganisms in situ. Instead, our

  14. Accurate quantitative 13C NMR spectroscopy: repeatability over time of site-specific 13C isotope ratio determination.

    PubMed

    Caytan, Elsa; Botosoa, Eliot P; Silvestre, Virginie; Robins, Richard J; Akoka, Serge; Remaud, Gérald S

    2007-11-01

    The stability over time (repeatability) for the determination of site-specific 13C/12C ratios at natural abundance by quantitative 13C NMR spectroscopy has been tested on three probes: enriched bilabeled [1,2-13C2]ethanol; ethanol at natural abundance; and vanillin at natural abundance. It is shown in all three cases that the standard deviation for a series of measurements taken every 2-3 months over periods between 9 and 13 months is equal to or smaller than the standard deviation calculated from 5-10 replicate measurements made on a single sample. The precision which can be achieved using the present analytical 13C NMR protocol is higher than the prerequisite value of 1-2 per thousand for the determination of site-specific 13C/12C ratios at natural abundance (13C-SNIF-NMR). Hence, this technique permits the discrimination of very small variations in 13C/12C ratios between carbon positions, as found in biogenic natural products. This observed stability over time in 13C NMR spectroscopy indicates that further improvements in precision will depend primarily on improved signal-to-noise ratio. PMID:17900175

  15. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  16. Low-temperature solid-state /sup 13/C NMR studies of the retinal chromophore in rhodopsin

    SciTech Connect

    Smith, S.O.; Palings, I.; Copie, V.; Raleigh, D.P.; Courtin, J.; Pardoen, J.A.; Lugtenburg, J.; Mathies, R.A.; Griffin, R.G.

    1987-03-24

    Magic angle sample spinning (MASS) /sup 13/C NMR spectra have been obtained of bovine rhodopsin regenerated with retinal prosthetic groups isotopically enriched with /sup 13/C at C-5 and C-14. In order to observe the /sup 13/C retinal chromophore resonances, it was necessary to employ low temperatures (-15 ..-->.. -35/sup 0/C) to restrict rotational diffusion of the protein. The isotropic chemical shift and principal values of the chemical shift tensor of the /sup 13/C-5 label indicate that the retinal chromophore is in the twisted 6-s-cis conformation in rhodopsin, in contrast to the planar 6-s-trans confirmation found in bacteriorhodopsin. The /sup 13/C-14 isotropic shift and shift tensor principal values show that the Schiff base C=N bond is anti. Furthermore, the /sup 13/C-14 chemical shift (121.2 ppm) is within the range of values (120-123 ppm) exhibited by protonated (C=N anti) Schiff base model compounds, indicating that the C=N linkage is protonated. The results are discussed with regard to the mechanism of wavelength regulation in rhodopsin.

  17. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  18. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-13C]butyrate and [1-13C]pyruvate

    PubMed Central

    Bastiaansen, Jessica A. M.; Merritt, Matthew E.; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) 13C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-13C]pyruvate and [1-13C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [13C]bicarbonate (−48%), [1-13C]acetylcarnitine (+113%), and [5-13C]glutamate (−63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-13C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-13C]acetoacetate and [1-13C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-13C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (−82%). Combining HP 13C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  19. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate.

    PubMed

    Bastiaansen, Jessica A M; Merritt, Matthew E; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) (13)C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-(13)C]pyruvate and [1-(13)C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [(13)C]bicarbonate (-48%), [1-(13)C]acetylcarnitine (+113%), and [5-(13)C]glutamate (-63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-(13)C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-(13)C]acetoacetate and [1-(13)C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-(13)C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (-82%). Combining HP (13)C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  20. Quantum dot conjugates as labels for bacteria in environmental samples

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Neal, Andrea; Holden, Patricia; Mielke, Randall

    Quantum dots (fluorescent semiconductor nanocrystals, QDs) have optical and physical properties that make them superior to fluorescent dyes for detection of microorganisms in environmental samples, especially in the field or in flight instruments where optical instrumentation is limited. They are extremely bright, providing a significant fluorescent signal even upon excitation with low-power LEDs. Their absorbance is broad, but their emission spectra are narrow, allowing for many colours to be excited with a single light source and the resulting emission to be readily deconvolved without output filters. They are both fluorescent and electron-dense, permitting them to be used for both fluorescence and electron microscopy. They are resistant to electron radiation and the oxidants most likely to be found on Mars. The challenge for their use in a potential wet-chemistry instrument is two-fold: first, to coat them with specific organic ligands for targeting bacteria in a non-Earth-centric fashion. Second, to ensure their stability during transport and determine potential false-positive results that may arise due to environmental conditions. We present some results on labelling of biofilm samples from the Canadian High Arctic, and some future plans for improvement of labelling techniques and targets that will address the goals of near-term Mars missions.

  1. 9 CFR 327.12 - Foreign canned or packaged products bearing trade labels; sampling and inspection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... bearing trade labels; sampling and inspection. 327.12 Section 327.12 Animals and Animal Products FOOD....12 Foreign canned or packaged products bearing trade labels; sampling and inspection. (a) Samples of foreign canned or packaged products bearing on their immediate containers trade labels which have not...

  2. 9 CFR 327.12 - Foreign canned or packaged products bearing trade labels; sampling and inspection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bearing trade labels; sampling and inspection. 327.12 Section 327.12 Animals and Animal Products FOOD....12 Foreign canned or packaged products bearing trade labels; sampling and inspection. (a) Samples of foreign canned or packaged products bearing on their immediate containers trade labels which have not...

  3. Study of molecular interactions with 13C DNP-NMR

    NASA Astrophysics Data System (ADS)

    Lerche, Mathilde H.; Meier, Sebastian; Jensen, Pernille R.; Baumann, Herbert; Petersen, Bent O.; Karlsson, Magnus; Duus, Jens Ø.; Ardenkjær-Larsen, Jan H.

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct 13C NMR ligand binding studies at natural isotopic abundance of 13C gets feasible in this way. Resultant screens are easy to interpret and can be performed at 13C concentrations below μM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  4. 13C NMR spectroscopy applications to brain energy metabolism

    PubMed Central

    Rodrigues, Tiago B.; Valette, Julien; Bouzier-Sore, Anne-Karine

    2013-01-01

    13C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of 13C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the 13C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of 13C NMR data. Finally, new perspectives and applications offered by 13C hyperpolarization are described. PMID:24367329

  5. Synthesis of 2-deoxy-(6-/sup 13/C)glucose

    SciTech Connect

    Walker, T.E.; Unkefer, C.J.; Ehler, D.S.

    1987-05-01

    The authors have prepared 2-deoxy-D-(6-/sup 13/C)glucose which will be used to test the stability of 2-deoxy-D-glucose-6-phosphate in brain tissue. They chose to label 2-deoxy-D-glucose at C-6 because of the large chemical shift difference between C-6 in the free sugar and C-6 in the 6-phosphate analog. Their synthetic scheme is similar to that used for the synthesis of D-(6-/sup 13/C)glucose which involves the removal of C-6 from D-glucose followed by its replacement with /sup 13/C. They first prepare the methyl ..cap alpha..-furanoside using trifluoroacetic acid in methanol. This product is then treated with periodate which cleaves only between C-5 and C-6 to form a hydrated aldehyde which is reacted directly with K/sup 13/CN to form a mixture of nitriles. The enriched nitriles are reduced with hydrogen to a mixture of 6-aldehydo sugars using a 5% Pd on carbon catalyst. These sugars are reduced with NaBH/sub 4/ to a mixture of labeled methyl furanosides. Acid hydrolysis followed by chromatography yields 2-deoxy-D-(6-/sup 13/C)glucose in an overall yield of 10% from K/sup 13/CN.

  6. Field measurements of del13C in ecosystem respiration

    NASA Astrophysics Data System (ADS)

    van Asperen, Hella; Sabbatini, Simone; Nicolini, Giacomo; Warneke, Thorsten; Papale, Dario; Notholt, Justus

    2014-05-01

    Stable carbon isotope del13C-measurements are extensively used to study ecological and biogeochemical processes in ecosystems. Above terrestrial ecosystems, atmospheric del13C can vary largely due to photosynthetic fractionation. Photosynthetic processes prefer the uptake of the lighter isotope 12C (in CO2), thereby enriching the atmosphere in 13C and depleting the ecosystem carbon. At night, when ecosystem respiratory fluxes are dominant, 13C-depleted CO2 is respired and thereby depletes the atmospheric del13C-content. Different ecosystems and different parts of one ecosystem (type of plant, leaves, and roots) fractionate and respire with a different del13C-ratio signature. By determining the del13C-signature of ecosystem respiration in temporal and spatial scale, an analysis can be made of the composition of respiratory sources of the ecosystem. A field study at a dry cropland after harvest (province of Viterbo, Lazio, Italy) was performed in the summer of 2013. A FTIR (Fourier Transform Infrared Spectrometer) was set up to continuously measure CO2-, CH4-, N2O-, CO- and del13C-concentrations. The FTIR was connected to 2 different flux measurements systems: a Flux Gradient system (sampling every half hour at 1.3m and 4.2m) and 2 flux chambers (measured every hour), providing a continuous data set of the biosphere-atmosphere gas fluxes and of the gas concentrations at different heights. Keeling plot intercept values of respiratory CO2, measured by the Flux Gradient system at night, were determined to be between -25‰ and -20‰. Keeling plot intercept values of respiratory CO2, measured by the flux chamber system, varied between -24‰ and -29‰, and showed a clear diurnal pattern, suggesting different (dominant) respiratory processes between day and night.

  7. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  8. Metabolic pathways for ketone body production. /sup 13/C NMR spectroscopy of rat liver in vivo using /sup 13/C-multilabeled fatty acids

    SciTech Connect

    Pahl-Wostl, C.; Seelig, J.

    1986-11-04

    The hormonal regulation of ketogenesis in the liver of living rat has been studied noninvasively with /sup 13/C nuclear magnetic resonance. The spatial selection for the liver was better than 90%, with extrahepatic adipose tissue contribution only a very small amount of signal. The metabolic activities of the liver were investigated by infusion of /sup 13/C-labeled butyrate in the jugular vein of the anesthetized rat. The rate of butyrate infusion was chosen to be close to the maximum oxidative capacity of the rat liver, and the /sup 13/C signal intensities were enhanced by using doubly labeled (1,3-/sup 13/C)butyrate as a substrate. Different /sup 13/C NMR spectra and hence different metabolites were observed depending on the hormonal state of the animal. The /sup 13/C NMR studies demonstrate that even when rate of acetyl-CoA production are high, the disposal of this compound is not identical in fasted and diabetic animals. This supports previous suggestions that the redox state of the mitochondrion represents the most important factor in regulation. For a given metabolic state of the animal, different signal intensities were obtained depending on whether butyrate was labeled at C-1, C-3, or C-1,3. From the ratios of incorporation of /sup 13/C label into the carbons of 3-hydroxybutyrate, it could be estimated that a large fraction of butyrate evaded ..beta..-oxidation to acetyl-CoA but was converted directly to acetoacetyl-CoA. /sup 13/C-labeled glucose could be detected in vivo in the liver of diabetic rats.

  9. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    PubMed Central

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/− 1.2 %, 39.6 +/− 0.5 %, and 48.9 +/− 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  10. /sup 13/C spin diffusion of adamantane

    SciTech Connect

    Bronniman, C.E.; Szeverenyi, N.M.; Maciel, G.E.

    1983-10-15

    Two-dimensional exchange spectroscopy of natural abundance /sup 13/C--/sup 13/C spin diffusion in solid adamantane illustrates the influence that /sup 13/C--/sup 1/H dipole--dipole coupling exerts on /sup 13/C spin diffusion by determining spectral overlap in the /sup 13/C system. 2D /sup 13/C spectra were obtained for several values of mixing time tau/sub m/ and compared with spectra calculated in the limit of nearest-neighbor coupling. Good agreement is obtained for short tau/sub m/, during which the equilibration of neighboring spins dominates. For longer tau/sub m/, slower spin diffusion that is not acounted for by the simple model is seen; after nearest-neighbor spins equilibrate, communication over larger distances produces further mixing. It is possible to modify spin diffusion rates by altering experimental conditions, e.g., magic-angle spinning, low-power /sup 1/H decoupling, or spin locking /sup 13/C in the rotating frame during tau/sub m/.

  11. Performance limitations of label-free sensors in molecular diagnosis using complex samples

    NASA Astrophysics Data System (ADS)

    Varma, Manoj

    2016-03-01

    Label-free biosensors promised a paradigm involving direct detection of biomarkers from complex samples such as serum without requiring multistep sample processing typical of labelled methods such as ELISA or immunofluorescence assays. Label-free sensors have witnessed decades of development with a veritable zoo of techniques available today exploiting a multitude of physical effects. It is appropriate now to critically assess whether label-free technologies have succeeded in delivering their promise with respect to diagnostic applications, particularly, ambitious goals such as early cancer detection using serum biomarkers, which require low limits of detection (LoD). Comparison of nearly 120 limits of detection (LoD) values reported by labelled and label-free sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Data from experiments where labelled and label-free assays were performed simultaneously using the same assay parameters also confirm that the LoD achieved by labelled techniques is 2 to 3 orders of magnitude better than that by label-free techniques. Furthermore, label-free techniques required significant signal amplification, for e.g. using nanoparticle conjugated secondary antibodies, to achieve LoDs comparable to labelled methods substantially deviating from the original "direct detection" paradigm. This finding has important implications on the practical limits of applying label-free detection methods for molecular diagnosis.

  12. OpenMebius: An Open Source Software for Isotopically Nonstationary 13C-Based Metabolic Flux Analysis

    PubMed Central

    Furusawa, Chikara

    2014-01-01

    The in vivo measurement of metabolic flux by 13C-based metabolic flux analysis (13C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a 13C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas 13C-MFA is conventionally performed under isotopically constant conditions, isotopically nonstationary 13C metabolic flux analysis (INST-13C-MFA) has recently been developed for flux analysis of cells with photosynthetic activity and cells at a quasi-steady metabolic state (e.g., primary cells or microorganisms under stationary phase). Here, the development of a novel open source software for INST-13C-MFA on the Windows platform is reported. OpenMebius (Open source software for Metabolic flux analysis) provides the function of autogenerating metabolic models for simulating isotopic labeling enrichment from a user-defined configuration worksheet. Analysis using simulated data demonstrated the applicability of OpenMebius for INST-13C-MFA. Confidence intervals determined by INST-13C-MFA were less than those determined by conventional methods, indicating the potential of INST-13C-MFA for precise metabolic flux analysis. OpenMebius is the open source software for the general application of INST-13C-MFA. PMID:25006579

  13. Transport and imaging of brute-force (13)C hyperpolarization.

    PubMed

    Hirsch, Matthew L; Smith, Bryce A; Mattingly, Mark; Goloshevsky, Artem G; Rosay, Melanie; Kempf, James G

    2015-12-01

    We demonstrate transport of hyperpolarized frozen 1-(13)C pyruvic acid from its site of production to a nearby facility, where a time series of (13)C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained (13)C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., T<∼2K and B∼14T) to pre-polarize protons to a large Boltzmann value (∼0.4% (1)H polarization). After polarizing the neat, frozen sample, ejection quickly (<1s) passed it through a low field (B<100G) to establish the (1)H pre-polarization spin temperature on (13)C via the process known as low-field thermal mixing (yielding ∼0.1% (13)C polarization). By avoiding polarization agents (a.k.a. relaxation agents) that are needed to hyperpolarize by the competing method of dissolution dynamic nuclear polarization (d-DNP), the (13)C relaxation time was sufficient to transport the sample for ∼10min before finally dissolving in warm water and obtaining a (13)C image of the hyperpolarized, dilute, aqueous product (∼0.01% (13)C polarization, a >100-fold gain over thermal signals in the 1T scanner). An annealing step, prior to polarizing the sample, was also key for increasing T1∼30-fold during transport. In that time, HP was maintained using only modest cryogenics and field (T∼60K and B=1.3T), for T1((13)C) near 5min. Much greater time and distance (with much smaller losses) may be covered using more-complete annealing and only slight improvements on transport conditions (e.g., yielding T1∼5h at 30K, 2T), whereas even intercity transfer is possible (T1>20h) at reasonable conditions of 6K and 2T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 10(2)-fold more) by polarizing below 100mK, where nanoparticle

  14. Transport and imaging of brute-force 13C hyperpolarization

    NASA Astrophysics Data System (ADS)

    Hirsch, Matthew L.; Smith, Bryce A.; Mattingly, Mark; Goloshevsky, Artem G.; Rosay, Melanie; Kempf, James G.

    2015-12-01

    We demonstrate transport of hyperpolarized frozen 1-13C pyruvic acid from its site of production to a nearby facility, where a time series of 13C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained 13C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., T < ∼2 K and B ∼ 14 T) to pre-polarize protons to a large Boltzmann value (∼0.4% 1H polarization). After polarizing the neat, frozen sample, ejection quickly (<1 s) passed it through a low field (B < 100 G) to establish the 1H pre-polarization spin temperature on 13C via the process known as low-field thermal mixing (yielding ∼0.1% 13C polarization). By avoiding polarization agents (a.k.a. relaxation agents) that are needed to hyperpolarize by the competing method of dissolution dynamic nuclear polarization (d-DNP), the 13C relaxation time was sufficient to transport the sample for ∼10 min before finally dissolving in warm water and obtaining a 13C image of the hyperpolarized, dilute, aqueous product (∼0.01% 13C polarization, a >100-fold gain over thermal signals in the 1 T scanner). An annealing step, prior to polarizing the sample, was also key for increasing T1 ∼ 30-fold during transport. In that time, HP was maintained using only modest cryogenics and field (T ∼ 60 K and B = 1.3 T), for T1(13C) near 5 min. Much greater time and distance (with much smaller losses) may be covered using more-complete annealing and only slight improvements on transport conditions (e.g., yielding T1 ∼ 5 h at 30 K, 2 T), whereas even intercity transfer is possible (T1 > 20 h) at reasonable conditions of 6 K and 2 T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 102-fold more) by polarizing below 100 mK, where

  15. Dynamic nuclear polarization of carbonyl and methyl 13C spins in acetate using trityl OX063

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Lumata, Lloyd

    2015-03-01

    Hyperpolarization via dissolution dynamic nuclear polarization (DNP) is a physics technique that amplifies the magnetic resonance signals by several thousand-fold for biomedical NMR spectroscopy and imaging (MRI). Herein we have investigated the effect of carbon-13 isotopic location on the DNP of acetate (one of the biomolecules commonly used for hyperpolarization) at 3.35 T and 1.4 K using a narrow ESR linewidth free radical trityl OX063. We have found that the carbonyl 13C spins yielded about twice the polarization produced in methyl 13C spins. Deuteration of the methyl group, beneficial in the liquid-state, did not produce an improvement in the polarization level at cryogenic conditions. Concurrently, the solid-state nuclear relaxation of these samples correlate with the polarization levels achieved. These results suggest that the location of the 13C isotopic labeling in acetate has a direct impact on the solid-state polarization achieved and is mainly governed by the nuclear relaxation leakage factor.

  16. In vivo13C spectroscopy in the rat brain using hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Marjańska, Małgorzata; Iltis, Isabelle; Shestov, Alexander A.; Deelchand, Dinesh K.; Nelson, Christopher; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-10-01

    The low sensitivity of 13C spectroscopy can be enhanced using dynamic nuclear polarization. Detection of hyperpolarized [1- 13C]pyruvate and its metabolic products has been reported in kidney, liver, and muscle. In this work, the feasibility of measuring 13C signals of hyperpolarized 13C metabolic products in the rat brain in vivo following the injection of hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate is investigated. Injection of [2- 13C]pyruvate led to the detection of [2- 13C]lactate, but no other downstream metabolites such as TCA cycle intermediates were detected. Injection of [1- 13C]pyruvate enabled the detection of both [1- 13C]lactate and [ 13C]bicarbonate. A metabolic model was used to fit the hyperpolarized 13C time courses obtained during infusion of [1- 13C]pyruvate and to determine the values of VPDH and VLDH.

  17. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  18. Sample-efficient learning with auxiliary class-label information

    PubMed Central

    Nguyen, Quang; Valizadegan, Hamed; Seybert, Amy; Hauskrecht, Milos

    2011-01-01

    Building classification models from clinical data collected for past patients often requires additional example labeling and annotation by a human expert. Since example labeling may require to review a complete electronic health record the process can be very time consuming and costly. To make the process more cost-efficient, the number of examples an expert needs to label should be reduced. We develop and test a new approach for the classification learning in which, in addition to class labels provided by an expert, the learner is provided with auxiliary information that reflects how strong the expert feels about the class label. We show that this information can be extremely useful for practical classification tasks based on human assessment and can lead to improved learning with a smaller number of examples. We develop a new classification approach based on the support vector machines and the learning to rank methodologies capable of utilizing the auxiliary information during the model learning process. We demonstrate the benefit of the approach on the problem of learning an alert model for Heparin Induced Thrombocytopenia (HIT) by showing an improved classification performance of the models that are trained on a smaller number of labeled examples. PMID:22195160

  19. A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial Communities

    PubMed Central

    Ghosh, Amit; Nilmeier, Jerome; Weaver, Daniel; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Martín, Héctor García

    2014-01-01

    The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species. PMID:25188426

  20. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A. , Unkefer; Clifford J. , Alvarez; Marc A.

    2012-06-12

    The present invention is directed to the labeled compounds, ##STR00001## wherein C* is each either .sup.13C and .sup.12C where at least one C* is .sup.13C, each hydrogen of the methylene group is hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is sulfide, sulfinyl, or sulfone, Z is an aryl group such as 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, or a phenyl group ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently either hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group such as NH.sub.2, NHR and NRR' where R and R' are each independently either a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms. The present invention is also directed to the labeled compounds ##STR00003##

  1. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Sample Fuel Economy Label Calculation... Appendix III to Part 600—Sample Fuel Economy Label Calculation Suppose that a manufacturer called Mizer Motors has a product line composed of eight car lines. Of these eight, four are available with the...

  2. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Label Calculation... Appendix III to Part 600—Sample Fuel Economy Label Calculation Suppose that a manufacturer called Mizer Motors has a product line composed of eight car lines. Of these eight, four are available with the...

  3. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets

    PubMed Central

    Dehghani M., Masoumeh; Duarte, João M. N.; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of 13C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized 13C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of 13C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from 13C-13C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters. The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of 13C isotopomers available from fine structure multiplets in 13C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of 13C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. PMID:26969691

  4. Determination of Oxidative Glucose Metabolism in vivo in the Young Rat Brain using Localized Direct-detected 13C NMR Spectroscopy

    PubMed Central

    Ennis, Kathleen; Deelchand, Dinesh Kumar; Tkac, Ivan; Henry, Pierre-Gilles; Rao, Raghavendra

    2011-01-01

    Determination of oxidative metabolism in the brain using in vivo 13C NMR spectroscopy (13C MRS) typically requires repeated blood sampling throughout the study to measure blood glucose concentration and fractional enrichment (input function). However, drawing blood from small animals, such as young rats, placed deep inside the magnet is technically difficult due to their small total blood volume. In the present study, a custom-built animal holder enabled temporary removal of the animal from the magnet for blood collection, followed by accurate repositioning in the exact presampling position without degradation of B0 shimming. 13C label incorporation into glutamate C4 and C3 positions during a 120 min [1,6-13C2] glucose infusion was determined in 28-day-old rats (n = 4) under α-chloralose sedation using localized, direct-detected in vivo 13C MRS at 9.4T. The tricarboxylic acid cycle activity rate (VTCA) determined using a one-compartment metabolic modeling was 0.67 ± 0.13 µmol/g/min, a value comparable to previous ex vivo studies. This methodology opens the avenue for in vivo measurements of brain metabolic rates using 13C MRS in small animals. PMID:21660589

  5. Analysing Groundwater Using the 13C Isotope

    NASA Astrophysics Data System (ADS)

    Awad, Sadek

    The stable isotope of the carbon atom (13C) give information about the type of the mineralisation of the groundwater existing during the water seepage and about the recharge conditions of the groundwater. The concentration of the CO2(aq.) dissolved during the infiltration of the water through the soil's layers has an effect on the mineralisation of this water. The type of the photosynthesis's cycle (C-3 or C-4 carbon cycle) can have a very important role to determine the conditions (closed or open system) of the mineralisation of groundwater. The isotope 13C of the dissolved CO2 in water give us a certain information about the origin and the area of pollution of water. The proportion of the biogenic carbon and its percentage in the mineralisation of groundwater is determined by using the isotope 13C.

  6. States of 13C with abnormal radii

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Ogloblin, A. A.; Danilov, A. N.; Goncharov, S. A.; Belyaeva, T. L.; Sobolev, Yu. G.; Khlebnikov, S. V.; Burtebaev, N.; Trzaska, W.; Heikkinen, P.; Tyurin, G. P.; Janseitov, D.; Gurov, Yu. B.

    2016-05-01

    Differential cross-sections of the elastic and inelastic 13C + α scattering were measured at E(α) = 90 MeV. The root mean-square radii() of 13C nucleus in the states: 8.86 (1/2-), 3.09 (1/2+) and 9.90 (3/2-) MeV were determined by the Modified diffraction model (MDM). The radii of the first two levels are enhanced compared to that of the ground state of 13C, confirming the suggestion that the 8.86 MeV state is an analogue of the Hoyle state in 12C and the 3.09 MeV state has a neutron halo. Some indications to the abnormally small size of the 9.90 MeV state were obtained.

  7. 13C breath tests in infections and beyond.

    PubMed

    Kurpad, Anura V; Ajami, Alfred; Young, Vernon R

    2002-09-01

    Stable isotope labeled compounds are widely used as diagnostic probes in medicine. These diagnostic stable isotope probes are now being expanded in their scope, to provide precise indications of the presence or absence of etiologically significant change in metabolism due to a specific disease. This concept exploits a labeled tracer probe that is a specifically designed substrate of a "gateway" enzyme in a discrete metabolic pathway, whose turnover can be measured by monitoring unidirectional precursor product mass flow. An example of such a probe is the 13C-urea breath test, where labeled urea is given to patients with H. pylori infection. Another example of this kind of probe is used to study the tripeptide glutathione (glu-cys-gly, GSH), which is the most abundant cellular thiol, and protects cells from the toxic effects of reactive oxygen species. Within the gamma glutamyl cycle, 5-oxoproline (L-pyroglutamic acid) is a metabolite generated during GSH catabolism, and is metabolized to glutamic acid by 5-oxoprolinase. This enzyme can also utilize the substrate L-2-oxothiazolidone-4-carboxylate (OTC), to generate intracellular cysteine, which is beneficial to the cell. Thus, labeled (13C) OTC would, under enzymatic attack yield cysteine and 13CO2, and can thus track the state and capacity of glutathione metabolism. Similarly, stable isotope labeled probes can be used to track the activity of the rate of homocysteine clearance, lymphocyte CD26, and liver CYP (cytochrome P450) enzyme activity. In the future, these applications should be able to titrate, in vivo, the characteristics of various specific enzyme systems in the body and their response to stress or infection as well as to treatment regimes. PMID:12362798

  8. Differentiation of histidine tautomeric states using (15)N selectively filtered (13)C solid-state NMR spectroscopy.

    PubMed

    Miao, Yimin; Cross, Timothy A; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional (15)N selectively filtered (13)C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all (13)C resonances of the individual imidazole rings in a mixture of tautomeric states. When (15)N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the (13)C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of (13)C, (15)N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture. PMID:25026459

  9. Differentiation of Histidine Tautomeric States using 15N Selectively Filtered 13C Solid-State NMR Spectroscopy

    PubMed Central

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-01-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C,15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture. PMID:25026459

  10. Differentiation of histidine tautomeric states using 15N selectively filtered 13C solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C, 15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture.

  11. 13C-egg white breath test: a non-invasive test of pancreatic trypsin activity in the small intestine

    PubMed Central

    Evenepoel, P; Hiele, M; Geypens, B; Geboes, K; Rutgeerts, P; Ghoos, Y

    2000-01-01

    BACKGROUND—The recent availability of egg white protein highly enriched with 13C has allowed breath test technology to be adapted for the study of protein digestion and absorption. Pancreatic trypsin is considered to be the key enzyme in the proteolytic cascade.
AIM—To evaluate trypsin activity in the small intestine of healthy volunteers and patients with pancreatic disease by a recently developed 13C-egg white breath test.
METHODS—A total of 48 healthy volunteers and 30 patients with pancreatic disease were studied after ingestion of a test meal consisting of 22 g 13C-labelled egg protein. Breath samples were taken before and after ingestion of the meal and analysed for 13CO2 concentration. Moreover, pancreatic trypsin output after maximal stimulation was measured in 13 patients and nine healthy volunteers.
RESULTS—The six hour cumulative 13CO2 excretion in breath was significantly lower in patients than controls (mean (SEM): 6.23 (0.82)% v 19.16 (0.58)%, p<0.0001). An excellent correlation was found between the six hour cumulative 13CO2 excretion and trypsin activity after maximal pancreatic stimulation.
CONCLUSION—The non-invasive 13C-egg white breath test is promising as an indirect pancreatic proteolytic function test.


Keywords: breath test; pancreatic disease; trypsin; protein; assimilation PMID:10601055

  12. High-field 13C NMR spectroscopy of tissue in Vivo. A double-resonance surface-coil probe

    NASA Astrophysics Data System (ADS)

    Reo, Nicholas V.; Ewy, Coleen S.; Siegfried, Barry A.; Ackerman, Joseph J. H.

    A double-resonance surface-coil NMR probe is described for performance of high-field (8.5 T) proton decoupled carbon-13 experiments with tissue in vivo. The probe may be accommodated in standard, 89 mm i.d. clear bore, commercial spectrometers and is suitable for studies utilizing small laboratory animals such as mice, hamsters, and rats. A coaxial coil design is employed (10 mm diameter 13C coil, 20 mm diameter 1H coil) which provides ca. 40 dB attenuation between the 13C observe and 1H decouple channels. The inherent efficiency of the surface-coil configuration provides a sensitivity comparable to a commercial probe of the same nominal dimension (10 mm Helmholtz coil) and assures adequate decoupling in conductive samples with ca. 3-5 W power. In the absence of 13C isotopic enrichment, NMR spectra of rat leg, liver, and brain in vivo provide signalto-noise sufficient for 10 min time resolution. Administration of 100 mg of 90% 13C-labeled glucose into a peripheral vein of a ca. 300 g rat resulted in a liver glucose resonance which could be monitored with good signal-to-noise and 3 min time resolution.

  13. Measuring doubly 13C-substituted ethane by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Clog, M.; Ling, C.; Eiler, J. M.

    2012-12-01

    Ethane (C2H6) is present in non-negligible amounts in most natural gas reservoirs and is used to produce ethylene for petrochemical industries. It is one of the by-products of lipid metabolism and is the arguably simplest molecule that can manifest multiple 13C substitutions. There are several plausible controls on the relative abundances of 13C2H6 in natural gases: thermodynamically controlled homogeneous isotope exchange reactions analogous to those behind carbonate clumped isotope thermometry; inheritance from larger biomolecules that under thermal degradation to produce natural gas; mixing of natural gases that differ markedly in bulk isotopic composition; or combinations of these and/or other, less expected fractionations. There is little basis for predicting which of these will dominate in natural samples. Here, we focus on an analytical techniques that will provide the avenue for exploring these phenomena. The method is based on high-resolution gas source isotope ratio mass spectrometry, using the Thermo 253-Ultra (a new prototype mass spectrometer). This instrument achieves the mass resolution (M/Δ M) up to 27,000, permitting separation of the isobaric interferences of potential contaminants and isotopologues of an analtye or its fragments which share a cardinal mass. We present techniques to analyze several isotopologues of molecular and fragment ions of C2H6. The critical isobaric separations for our purposes include: discrimination of 13C2H6 from 13C12CDH5 at mass 32 and separation of the 13CH3 fragment from 12CH4 at mass 16, both requiring at least a mass resolution of 20000 to make an adequate measurement. Other obvious interferences are either cleanly separated (e.g., O2, O) or accounted for by peak-stripping (CH3OH on mass 32 and NH2 on mass 16). We focus on a set of measurements which constrain: the doubly-substituted isotopologue, 13C2H6, and the 13CH3/12CH3 ratio of the methyl fragment, which constrains the bulk δ 13C. Similar methods can be

  14. Preliminary studies of a canine 13C-aminopyrine demethylation blood test.

    PubMed Central

    Moeller, E M; Steiner, J M; Williams, D A; Klein, P D

    2001-01-01

    The objectives of this study were to determine whether a 13C-aminopyrine demethylation blood test is technically feasible in clinically healthy dogs, whether oral administration of 13C-aminopyrine causes a detectable increase in percent dose/min (PCD) of 13C administered as 13C-aminopyrine and recovered in gas extracted from blood, and whether gas extraction efficiency has an impact on PCD. A dose of 2 mg/kg body weight of 13C-aminopyrine dissolved in deionized water was administered orally to 6 clinically healthy dogs. Blood samples were taken from each dog 0, 30, 60, and 120 min after administration of the 13C-aminopyrine. Carbon dioxide was extracted from blood samples by addition of acid and analyzed by fractional mass spectrometry. None of the 6 dogs showed any side effects after 13C-aminopyrine administration. All 6 dogs showed a measurable increase of the PCD in gas samples extracted from blood samples at 30 min, 60 min, and 120 min after 13C-aminopyrine administration. Coefficients of variation between the triplicate samples were statistically significantly higher for the %CO2, a measure of extraction efficiency, than for PCD values (P < 0.0001). The 13C-aminopyrine demethylation blood test described here is technically feasible. Oral administration of 13C-aminopyrine did not lead to gross side effects in the 6 dogs. Clinically healthy dogs show a measurable increase of PCD in gas extracted from blood samples after oral administration of 13C-aminopyrine. Efficiency of CO2 extraction from blood samples does not have an impact on PCD determined from these blood samples. This test may prove useful to evaluate hepatic function in dogs. PMID:11227194

  15. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2009-09-01

    The present invention is directed to labeled compounds, of the formulae ##STR00001## wherein C* is each independently selected from the group consisting of .sup.13C and .sup.12C with the proviso that at least one C* is .sup.13C, each hydrogen of the methylene group can independently be either hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is from the group of sulfide, sulfinyl, and sulfone, Z is an aryl group from the group of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently from the group of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group from the group of NH.sub.2, NHR and NRR' where R and R' are each independently from the group of a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms.

  16. High-precision position-specific isotope analysis of 13C/12C in leucine and methionine analogues.

    PubMed

    Sacks, Gavin L; Brenna, J Thomas

    2003-10-15

    We report an automated method for high-precision position-specific isotope analysis (PSIA) of carbon in amino acid analogues. Carbon isotope ratios are measured for gas-phase pyrolysis fragments from multiple sources of 3-methylthiopropylamine (3MTP) and isoamylamine (IAA), the decarboxylated analogues of methionine and leucine, using a home-built gas chromatography (GC)-pyrolysis-GC preparation system coupled to a combustion-isotope ratio mass spectrometry system. Over a temperature range of 620-900 degrees C, the characteristic pyrolysis products for 3MTP were CH4, C2H6, HCN, and CH3CN and for IAA products were propylene, isobutylene, HCN, and CH3CN. Fragment origin was confirmed by 13C-labeling, and fragments used for isotope analysis were generated from unique moieties with > 95% structural fidelity. Isotope ratios for the fragments were determined with an average precision of SD(delta13C) < 0.3% per thousand, and relative isotope ratios of fragments from different sources were determined with an average precision of SD(delta(delta)13C) < 0.5% per thousand. Delta(delta)13C values of fragments were invariant over a range of pyrolysis temperatures. The delta(delta)13C of complementary fragments in IAA was within 0.8% per thousand of the delta(delta)13C of the parent compounds, indicating that pyrolysis-induced isotopic fractionation is effectively taken into account with this calibration procedure. Using delta(delta)13C values of fragments, delta(delta)13C values were determined for all four carbon positions of 3MTP and for C1, C2, and the propyl moiety of IAA, either directly or indirectly by mass balance. Large variations in position-specific isotope ratios were observed in samples from different commercial sources. Most dramatically, two 3MTP sources differed by 16.30% per thousand at C1, 48.33% per thousand at C2, 0.37% per thousand at C3, and 5.36% per thousand at C(methyl). These PSIA techniques are suitable for studying subtle changes in intramolecular

  17. Relaxation-Compensated Difference Spin Diffusion NMR for Detecting 13C-13C Long-Range Correlations in Proteins and Polysaccharides

    PubMed Central

    Wang, Tuo; Williams, Jonathan K.; Schmidt-Rohr, Klaus; Hong, Mei

    2015-01-01

    The measurement of long-range distances remains a challenge in solid-state NMR structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly 13C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular 13C-13C cross peaks that provide important long-range distance constraints for three-dimensional structures often overlap with short-range cross peaks that only reflect the covalent structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D 1H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for 13C T1 relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ~200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T1 relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T1 relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter-residue and intermolecular correlation peaks, which are

  18. [2,4-13C2]-β-Hydroxybutyrate Metabolism in Human Brain

    PubMed Central

    Pan, Jullie W.; de Graaf, Robin A.; Petersen, Kitt F.; Shulman, Gerald I.; Hetherington, Hoby P.; Rothman, Douglas L.

    2010-01-01

    Summary Infusions of [2,4-13C2]-β-hydroxybutyrate and 1H–13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of β-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the β-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 ± 0.24 mmol/L (four volunteers), the apparent tissue β-hydroxybutyrate concentration reached 0.18 ± 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 ± 1.71%, whereas 13C-4-glutamine was 5.68 ± 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the β-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 ± 0.009 mmol · kg−1 · min−1, and accounts for 6.4 ± 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood–brain barrier control of ketone oxidation in the nonfasted adult human brain. PMID:12142574

  19. [2,4-13 C2 ]-beta-Hydroxybutyrate metabolism in human brain.

    PubMed

    Pan, Jullie W; de Graaf, Robin A; Petersen, Kitt F; Shulman, Gerald I; Hetherington, Hoby P; Rothman, Douglas L

    2002-07-01

    Infusions of [2,4-13C2]-beta-hydroxybutyrate and 1H-13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of beta-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the beta-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 +/- 0.24 mmol/L (four volunteers), the apparent tissue beta-hydroxybutyrate concentration reached 0.18 +/- 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 +/- 1.71%, whereas 13C-4-glutamine was 5.68 +/- 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the beta-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 +/- 0.009 mmol. kg-1. min-1, and accounts for 6.4 +/- 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood-brain barrier control of ketone oxidation in the nonfasted adult human brain. PMID:12142574

  20. 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans

    PubMed Central

    Rothman, Douglas L.; De Feyter, Henk M.; de Graaf, Robin A.; Mason, Graeme F.; Behar, Kevin L.

    2011-01-01

    In the last 25 years 13C MRS has been established as the only non invasive method for measuring glutamate neurotransmission and cell specific neuroenergetics. Although technically and experimentally challenging 13C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, energy cost of brain function, the high neuronal activity in the resting brain state, and how neuroenergetics and neurotransmitter cycling are altered in neurological and psychiatric disease. In this paper the current state of 13C MRS as it is applied to study neuroenergetics and neurotransmitter cycling in humans is reviewed. The focus is predominantly on recent findings in humans regarding metabolic pathways, applications to clinical research, and the technical status of the method. Results from in vivo 13C MRS studies in animals are discussed from the standpoint of validation of MRS measurements of neuroenergetics and neurotransmitter cycling and where they have helped identify key questions to address in human research. Controversies concerning the relation of neuroenergetics and neurotransmitter cycling and factors impacting accurate determination of fluxes through mathematical modeling are addressed. We further touch upon different 13C labeled substrates used to study brain metabolism, before reviewing a number of human brain diseases studied using 13C MRS. Future technological developments are discussed that will help to overcome limitations of 13C MRS with special attention on recent developments in hyperpolarized 13C MRS. PMID:21882281

  1. Insight into the formation of molecular species in laser-induced plasma of isotopically labeled organic samples.

    PubMed

    Glaus, Reto; Riedel, Jens; Gornushkin, Igor

    2015-10-01

    Recently, the detection of molecular species in laser-induced breakdown spectroscopy (LIBS) has gained increasing interest, particularly for isotopic analysis. In LIBS of organic materials, it is predominantly CN and C2 species that are formed, and multiple mechanisms may contribute to their formation. To gain deeper insight into the formation of these species, laser-induced plasma of (13)C and (15)N labeled organic materials was investigated in a temporally and spatially resolved manner. LIBS on fumaric acid with a (13)C labeled double bond allowed the formation mechanism of C2 to be investigated by analyzing relative signal intensities of (12)C2, (12)C(13)C, and (13)C2 molecules. In the early plasma (<5 μs), the majority of C2 originates from association of completely atomized target molecules, whereas in the late plasma, the increased concentration of (13)C2 is due to incomplete dissociation of the carbon double bond. The degree of this fragmentation was found to be up to 80% and to depend on the type of the atmospheric gas. Spatial distributions of C2 revealed distinct differences for plasma generated in nitrogen and argon. A study of the interaction of ablated organics with ambient nitrogen showed that the ambient nitrogen contributed mainly to CN formation. The pronounced anisotropy of the C(15)N to C(14)N ratio across the diameter of the plasma was observed in the early plasma, indicating poor initial mixing of the plasma with the ambient gas. Overall, for accurate isotope analysis of organics, LIBS in argon with relatively short integration times (<10 μs) provides the most robust results. On the other hand, if information about the original molecular structure is of interest, then experiments in nitrogen (or air) with long integration times appear to be the most promising. PMID:26402464

  2. A large metabolic carbon contribution to the δ 13C record in marine aragonitic bivalve shells

    NASA Astrophysics Data System (ADS)

    Gillikin, David P.; Lorrain, Anne; Meng, Li; Dehairs, Frank

    2007-06-01

    It is well known that the incorporation of isotopically light metabolic carbon (C M) significantly affects the stable carbon isotope (δ 13C) signal recorded in biogenic carbonates. This can obscure the record of δ 13C of seawater dissolved inorganic carbon (δ 13C DIC) potentially archived in the shell carbonate. To assess the C M contribution to Mercenaria mercenaria shells collected in North Carolina, USA, we sampled seawater δ 13C DIC, tissue, hemolymph and shell δ 13C. All shells showed an ontogenic decrease in shell δ 13C, with as much as a 4‰ decrease over the lifespan of the clam. There was no apparent ontogenic change in food source indicated by soft tissue δ 13C values, therefore a change in the respired δ 13C value cannot be the cause of this decrease. Hemolymph δ 13C, on the other hand, did exhibit a negative relationship with shell height indicating that respired CO 2 does influence the δ 13C value of internal fluids and that the amount of respired CO 2 is related to the size or age of the bivalve. The percent metabolic C incorporated into the shell (%C M) was significantly higher (up to 37%, with a range from 5% to 37%) than has been found in other bivalve shells, which usually contain less than 10%C M. Interestingly, the hemolymph did contain less than 10%C M, suggesting that complex fractionation might occur between hemolymph and calcifying fluids. Simple shell biometrics explained nearly 60% of the observed variability in %C M, however, this is not robust enough to predict %C M for fossil shells. Thus, the metabolic effect on shell δ 13C cannot easily be accounted for to allow reliable δ 13C DIC reconstructions. However, there does seem to be a common effect of size, as all sites had indistinguishable slopes between the %C M and shell height (+0.19% per mm of shell height).

  3. Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling.

    PubMed

    Deelchand, Dinesh Kumar; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2006-02-01

    Most in vivo 13C NMR spectroscopy studies in the brain have been performed using 1H decoupling during acquisition. Decoupling imposes significant constraints on the experimental setup (particularly for human studies at high magnetic field) in order to stay within safety limits for power deposition. We show here that incorporation of the 13C label from 13C-labeled glucose into brain amino acids can be monitored accurately using localized 13C NMR spectroscopy without the application of 1H decoupling. Using LCModel quantification with prior knowledge of one-bond and multiple-bond J(CH) coupling constants, the uncertainty on metabolites concentrations was only 35% to 91% higher (depending on the carbon resonance of interest) in undecoupled spectra compared to decoupled spectra in the rat brain at 9.4 Tesla. Although less sensitive, 13C NMR without decoupling dramatically reduces experimental constraints on coil setup and pulse sequence design required to keep power deposition within safety guidelines. This opens the prospect of safely measuring 13C NMR spectra in humans at varied brain locations (not only the occipital lobe) and at very high magnetic fields above 4 Tesla. PMID:16345037

  4. Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis

    PubMed Central

    2014-01-01

    This paper discusses the use of 13C-based metabolism analysis for the assessment of intrinsic product yields — the actual carbon contribution from a single carbon substrate to the final product via a specific biosynthesis route — in the following four cases. First, undefined nutrients (such as yeast extract) in fermentation may contribute significantly to product synthesis, which can be quantified through an isotopic dilution method. Second, product and biomass synthesis may be dependent on the co-metabolism of multiple-carbon sources. 13C labeling experiments can track the fate of each carbon substrate in the cell metabolism and identify which substrate plays a main role in product synthesis. Third, 13C labeling can validate and quantify the contribution of the engineered pathway (versus the native pathway) to the product synthesis. Fourth, the loss of catabolic energy due to cell maintenance (energy used for functions other than production of new cell components) and low P/O ratio (Phosphate/Oxygen Ratio) significantly reduces product yields. Therefore, 13C-metabolic flux analysis is needed to assess the influence of suboptimal energy metabolism on microbial productivity, and determine how ATP/NAD(P)H are partitioned among various cellular functions. Since product yield is a major determining factor in the commercialization of a microbial cell factory, we foresee that 13C-isotopic labeling experiments, even without performing extensive flux calculations, can play a valuable role in the development and verification of microbial cell factories. PMID:24642094

  5. In vivo 31P and multilabel 13C NMR measurements for evaluation of plant metabolic pathways.

    PubMed

    Rijhwani, S K; Ho, C H; Shanks, J V

    1999-01-01

    Reliable measurements of intracellular metabolites are useful for effective plant metabolic engineering. This study explored the application of in situ 31P and 13C NMR spectroscopy for long-term measurements of intracellular pH and concentrations of several metabolites in glycolysis, glucan synthesis, and central carbon metabolic pathways in plant tissues. An NMR perfusion reactor system was designed to allow Catharanthus roseus hairy root cultures to grow for 3-6 weeks, during which time NMR spectroscopy was performed. Constant cytoplasmic pH (7.40+/-0.06), observed during the entire experiment, indicated adequate oxygenation. 13C NMR spectroscopy was performed on hairy root cultures grown in solutions containing 1-13C-, 2-13C-, and 3-13C-labeled glucose in separate experiments and the flow of label was monitored. Activities of pentose phosphate pathways, nonphotosynthetic CO2 fixation, and glucan synthesis pathways were evident from the experimental results. Scrambling of label in glucans also indicated recycling of triose phosphate and their subsequent conversion to hexose phosphates. PMID:10935751

  6. Decomposition kinetics and mechanism of n-hexadecane-1,2-{sup 13}C{sub 2} and dodec-1-ene-1,2-{sup 13}C{sub 2} doped in petroleum and n-hexadecane

    SciTech Connect

    Burnham, A.K.; Gregg, H.R.; Ward, L.

    1997-09-01

    Isotopically labeled n-hexadecane doped at the present level in the three crude oils is used to determine the intrinsic decomposition kinetics and mechanism of n-alkanes in petroleum. Adjacent {sup 13}C labels at the end of the hexadecane and dodecene give a mass fragment sufficiently unique that its disappearance and many of its products can be followed by ordinary gas chromatography-mass spectrometry. Additionally structural details of the labeled reaction products are measureable by the NMR INADEQUATE technique, which detects only adjacent {sup 13}C atoms. Samples were heated at temperatures ranging from 310 to 360{degrees}C in capillary glass tubes and Dickson autoclaves. At temperatures around 350{degrees}C, n-alkane decomposition in dissimilar oil matrices forms primarily normal alkanes smaller than the starting alkane at a rate about 60% as fast as the decomposition of the neat alkane. Unlike in neat hexadecane, no significant branched alkanes are formed from the labeled hexadecane in crude oil by alkylation of alkene intermediates. Doping the oils and n-hexadecane with labeled dodecene confirms that alkenes in two of the three oils are rapidly converted primarily to the corresponding alkanes, while reaction of alkenes in hexadecane forms primarily branched alkanes. Reaction of alkenes in the high paraffin oil was intermediate in characteristics. One autoclave experiment included water to assess the importance of water during pyrolysis, with the result that the alkane decomposition rate is affected very little. However, coking of aromatics is inhibited, and there is a significant increase in the production of both H{sub 2} and CO{sub 2} gas with water present, indicating that water is chemically reactive under these conditions. 42 refs., 10 figs., 6 tabs.

  7. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Sample Fuel Economy Label Calculation III Appendix III to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. III Appendix III to Part 600—Sample Fuel Economy...

  8. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Sample Fuel Economy Label Calculation III Appendix III to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. III Appendix III to Part 600—Sample Fuel Economy...

  9. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Sample Fuel Economy Label Calculation III Appendix III to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. III Appendix III to Part 600—Sample Fuel Economy...

  10. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    PubMed

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi

  11. Effects of fasting on serial measurements of hyperpolarized [1-(13) C]pyruvate metabolism in tumors.

    PubMed

    Serrao, Eva M; Rodrigues, Tiago B; Gallagher, Ferdia A; Kettunen, Mikko I; Kennedy, Brett W C; Vowler, Sarah L; Burling, Keith A; Brindle, Kevin M

    2016-08-01

    Imaging of the metabolism of hyperpolarized [1-(13) C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of (13) C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non-fasted animals. The fasted state showed lower intra-individual variability, although the [1-(13) C]lactate/[1-(13) C]pyruvate signal ratio was significantly greater in fasted than in non-fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of (13) C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:27309986

  12. Effects of fasting on serial measurements of hyperpolarized [1‐13C]pyruvate metabolism in tumors

    PubMed Central

    Serrao, Eva M.; Rodrigues, Tiago B.; Gallagher, Ferdia A.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Vowler, Sarah L.; Burling, Keith A.

    2016-01-01

    Imaging of the metabolism of hyperpolarized [1‐13C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of 13C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non‐fasted animals. The fasted state showed lower intra‐individual variability, although the [1‐13C]lactate/[1‐13C]pyruvate signal ratio was significantly greater in fasted than in non‐fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of 13C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:27309986

  13. A Large Metabolic Carbon Ccontribution to the δ13C Record in Marine Aragonitic Bivalve Shells

    NASA Astrophysics Data System (ADS)

    Gillikin, D. P.; Lorrain, A.; Dehairs, F.

    2006-12-01

    The stable carbon isotopic signature archived in bivalve shells was originally thought to record the δ13C of seawater dissolved inorganic carbon (δ13C-DIC). However, more recent studies have shown that the incorporation of isotopically light metabolic carbon (M) significantly affects the δ13C signal recorded in biogenic carbonates. To assess the M contribution to Mercenaria mercenaria shells collected in North Carolina, USA, we sampled seawater δ13C-DIC, tissue, hemolymph and shell δ13C. We found up to a 4‰ decrease through ontogeny in shell δ13C in a 23 year old individual. There was no correlation between shell height or age and tissue δ13C. Thus, the ontogenic decrease observed in the shell δ13C could not be attributed to changes in food sources as the animal ages leading to more negative metabolic CO2, since this would require a negative relationship between tissue δ13C and shell height. Hemolymph δ13C, on the other hand, did exhibit a negative relationship with height, but the δ13C values were more positive than expected, indicating that hemolymph may not be a good proxy of extrapallial fluid δ13C. Nevertheless, the hemolymph data indicate that respired CO2 does influence the δ13C of internal fluids and that the amount of respired CO2 is related to the age of the bivalve. The percent metabolic C incorporated into the shell (%M) was significantly higher (up to 37%) than has been found in other bivalve shells, which usually contain less than 10 %M. Attempts to use shell biometrics to predict %M could not explain more than ~60% of the observed variability. Moreover, there were large differences in the %M between different sites. Thus, the metabolic effect on shell δ13C cannot easily be accounted for to allow reliable δ13C-DIC reconstructions. However, there does seem to be a common effect of size, as all sites had indistinguishable slopes between the %M and shell height (+0.19% per mm of shell height).

  14. Perfusion and diffusion sensitive 13C stimulated-echo MRSI for metabolic imaging of cancer.

    PubMed

    Larson, Peder E Z; Hurd, Ralph E; Kerr, Adam B; Pauly, John M; Bok, Robert A; Kurhanewicz, John; Vigneron, Daniel B

    2013-06-01

    Metabolic imaging with hyperpolarized [1-(13)C]-pyruvate can rapidly probe tissue metabolic profiles in vivo and has been shown to provide cancer imaging biomarkers for tumor detection, progression, and response to therapy. This technique uses a bolus injection followed by imaging within 1-2 minutes. The observed metabolites include vascular components and their generation is also influenced by cellular transport. These factors complicate image interpretation, especially since [1-(13)C]lactate, a metabolic product that is a biomarker of cancer, is also produced by red blood cells. It would be valuable to understand the distribution of metabolites between the vasculature, interstitial space, and intracellular compartments. The purpose of this study was to better understand this compartmentalization by using a perfusion and diffusion-sensitive stimulated-echo acquisition mode (STEAM) MRSI acquisition method tailored to hyperpolarized substrates. Our results in mouse models showed that among metabolites, the injected substrate (13)C-pyruvate had the largest vascular fraction overall while (13)C-alanine had the smallest vascular fraction. We observed a larger vascular fraction of pyruvate and lactate in the kidneys and liver when compared to back muscle and prostate tumor tissue. Our data suggests that (13)C-lactate in prostate tumor tissue voxels was the most abundant labeled metabolite intracellularly. This was shown in STEAM images that highlighted abnormal cancer cell metabolism and suppressed vascular (13)C metabolite signals. PMID:23260391

  15. 9 CFR 327.12 - Foreign canned or packaged products bearing trade labels; sampling and inspection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Foreign canned or packaged products bearing trade labels; sampling and inspection. 327.12 Section 327.12 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION...

  16. 40 CFR 600.211-08 - Sample calculation of fuel economy values for labeling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Sample calculation of fuel economy values for labeling. 600.211-08 Section 600.211-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR...

  17. 76 FR 69585 - Testing and Labeling Pertaining to Product Certification Regarding Representative Samples for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... private labeler. In the Federal Register of May 20, 2010 (75 FR 28336), we published a proposed rule on... being selected (75 FR at 28349 through 28350, 28365). On August 12, 2011, the President signed H.R. 2715...'' (75 FR 28336 (May 20, 2010)) would have treated ``Random Samples'' as a distinct section, rather...

  18. Intrashell δ13C SIMS measurements in the cultured planktic foraminifer Orbulina universa

    NASA Astrophysics Data System (ADS)

    Vetter, L.; Kozdon, R.; Valley, J. W.; Mora, C. I.; Spero, H. J.

    2013-12-01

    In this study, we present experimental data from the planktic foraminifer Orbulina universa cultured in laboratory experiments. We demonstrate that the δ13C of calcite precipitated in 13C-labeled seawater for 24 h can be resolved and accurately measured using Secondary Ion Mass Spectrometry (SIMS). Specimens maintained at 20°C were transferred from ambient seawater (δ13CDIC = +1.3‰) into 13C-enriched seawater with δ13CDIC = +51.5‰ and elevated [Ba] for 24 h. Specimens were then transferred into ambient seawater with elevated [87Sr] for 6-9 h of calcification, followed by a transfer back into unlabeled ambient seawater until gametogenesis. This technique produced O. universa shells with calcite layers of distinct geochemical signatures. We quantify the spatial positions of trace element labels in the shells using laser ablation ICP-MS depth profiling. Using fragments from the same shells, we quantify intrashell δ13Ccalcite using SIMS with a 6 or 8 μm spot (×1.1‰ (2 SD)). Measured δ13Ccalcite values in ambient O. universa shell layers are within 2‰ of predicted δ13Ccalcite values. In 13C-labeled bands of calcite, 6 μm SIMS spot measurements are within 2‰ of predicted δ13Ccalcite values, whereas 8 μm SIMS spots yield values that are intermediate between predicted values for ambient and spiked calcite. The spatial agreement between trace element and carbon isotope data suggest that δ13C, Ba, and Sr tracers are incorporated synchronously into shell calcite, within the resolution of the two analytical techniques. These results demonstrate the ability of SIMS δ13C measurements to resolve 6 μm features in foraminifer shell calcite, and highlight the potential of this technique for addressing questions about foraminifer ecology, biomineralization, and paleoceanography.

  19. Neuroprotective effects of caffeine in MPTP model of Parkinson's disease: A (13)C NMR study.

    PubMed

    Bagga, Puneet; Chugani, Anup N; Patel, Anant B

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of nigrostriatal dopaminergic neurons with an accompanying neuroinflammation leading to loss of dopamine in the basal ganglia. Caffeine, a well-known A2A receptor antagonist is reported to slow down the neuroinflammation caused by activated microglia and reduce the extracellular glutamate in the brain. In this study, we have evaluated the neuroprotective effect of caffeine in the MPTP model of PD by monitoring the region specific cerebral energy metabolism. Adult C57BL6 mice were treated with caffeine (30 mg/kg, i.p.) 30 min prior to MPTP (25 mg/kg, i.p.) administration for 8 days. The paw grip strength of mice was assessed in order to evaluate the motor function after various treatments. For metabolic studies, mice were infused with [1,6-(13)C2]glucose, and (13)C labeling of amino acids was monitored using ex vivo(1)H-[(13)C]-NMR spectroscopy. The paw grip strength was found to be reduced following the MPTP treatment. The caffeine pretreatment showed significant protection against the reduction of paw grip strength in MPTP treated mice. The levels of GABA and myo-inositol were found to be elevated in the striatum of MPTP treated mice. The (13)C labeling of GluC4, GABAC2 and GlnC4 from [1,6-(13)C2]glucose was decreased in the cerebral cortex, striatum, olfactory bulb, thalamus and cerebellum suggesting impaired glutamatergic and GABAergic neuronal activity and neurotransmission of the MPTP treated mice. Most interestingly, the pretreatment of caffeine maintained the (13)C labeling of amino acids to the control values in cortical, olfactory bulb and cerebellum regions while it partially retained in striatal and thalamic regions in MPTP treated mice. The pretreatment of caffeine provides a partial neuro-protection against severe striatal degeneration in the MPTP model of PD. PMID:26626997

  20. IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments.

    PubMed

    Millard, Pierre; Sokol, Serguei; Letisse, Fabien; Portais, Jean-Charles

    2014-01-01

    The growing demand for (13) C-metabolic flux analysis ((13) C-MFA) in the field of metabolic engineering and systems biology is driving the need to rationalize expensive and time-consuming (13) C-labeling experiments. Experimental design is a key step in improving both the number of fluxes that can be calculated from a set of isotopic data and the precision of flux values. We present IsoDesign, a software that enables these parameters to be maximized by optimizing the isotopic composition of the label input. It can be applied to (13) C-MFA investigations using a broad panel of analytical tools (MS, MS/MS, (1) H NMR, (13) C NMR, etc.) individually or in combination. It includes a visualization module to intuitively select the optimal label input depending on the biological question to be addressed. Applications of IsoDesign are described, with an example of the entire (13) C-MFA workflow from the experimental design to the flux map including important practical considerations. IsoDesign makes the experimental design of (13) C-MFA experiments more accessible to a wider biological community. IsoDesign is distributed under an open source license at http://metasys.insa-toulouse.fr/software/isodes/ PMID:23893473

  1. Topological Constraints on Chain-Folding Structure of Semicrystalline Polymer as Studied by 13C-13C Double Quantum NMR

    NASA Astrophysics Data System (ADS)

    Hong, Youlee; Miyoshi, Toshikazu

    Chain-folding process is a prominent feature of long polymer chains during crystallization. Over the last half century, much effort has been paid to reveal the chain trajectory. Even though various chain-folding models as well as theories of crystallization at molecule levels have been proposed, they could be not reconciled due to the limited experimental evidences. Recent development of double quantum NMR with selective isotope labeling identified the chain-trajectory of 13C labeled isotactic poly(1-butene). The systematic experiments covered a wide range of parameters, i.e. kinetics, concentration, and molecular weight (Mw) . It was demonstrated that i) adjacent re-entry site was invariant as a function of crystallization temperature (Tc) , concentration, andMw, ii) long-range order of adjacent re-entry sequence is independence of kinetics at a given concentration while it decreased with increasing the polymer concentration at a given Tc due to the increased interruption between the chains, and iii) high Mw chains led to the multilayer folded structures in single crystals, but the melt state induced the identical short adjacent sequences of long and short polymer over a wide range of Tc due to the entanglements. The behaviors indicated that the topological restriction plays significant roles in the chain-folding process rather than the kinetics. The proposed framework to control the chain-folding structure presents a new perspective into the chain organization by either the intra- or inter-chain interaction. National Science Foundation Grants DMR-1105829 and 1408855.

  2. (13)C-Breath testing in animals: theory, applications, and future directions.

    PubMed

    McCue, Marshall D; Welch, Kenneth C

    2016-04-01

    The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology-especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (13)C-breath testing in basic and clinical human studies as well as comparative studies of fuel use, energetics, and carbon turnover in multiple vertebrate and invertebrate groups. Lastly, we call for increased and rigorous use of (13)C-breath testing to explore a variety of new research areas and potentially answer long standing questions related to thermobiology, locomotion, and nutrition. PMID:26660654

  3. Sample Optimization and Identification of Signal Patterns of Amino Acid Side Chains in 2D RFDR Spectra of the α-Spectrin SH3 Domain

    NASA Astrophysics Data System (ADS)

    Pauli, Jutta; van Rossum, Barth; Förster, Hans; de Groot, Huub J. M.; Oschkinat, Hartmut

    2000-04-01

    Future structural investigations of proteins by solid-state CPMAS NMR will rely on uniformly labeled protein samples showing spectra with an excellent resolution. NMR samples of the solid α-spectrin SH3 domain were generated in four different ways, and their 13C CPMAS spectra were compared. The spectrum of a [u-13C, 15N]-labeled sample generated by precipitation shows very narrow 13C signals and resolved scalar carbon-carbon couplings. Linewidths of 16-19 Hz were found for the three alanine Cβ signals of a selectively labeled [70% 3-13C]alanine-enriched SH3 sample. The signal pattern of the isoleucine, of all prolines, valines, alanines, and serines, and of three of the four threonines were identified in 2D 13C-13C RFDR spectra of the [u-13C,15N]-labeled SH3 sample. A comparison of the 13C chemical shifts of the found signal patterns with the 13C assignment obtained in solution shows an intriguing match.

  4. Application of 13C NMR spectroscopy to paratope mapping for larger antigen-Fab complexes.

    PubMed

    Kim, H; Kato, K; Yamato, S; Igarashi, T; Matsunaga, C; Ohtsuka, H; Higuchi, A; Nomura, N; Noguchi, H; Arata, Y

    1994-06-13

    For the purpose of engineering the antibody combining site, mapping residues that are involved in antigen binding provide us with valuable information. By use of 13C NMR spectroscopy with selectively 13C-labeled Fv fragments, we have established a general strategy to identify the residues that are perturbed upon binding of small antigen (hapten) molecules [(1990) Biochemistry 30, 6604-6610]. In the present paper, we demonstrate that this strategy can be extended to molecular structural analyses of the complexes of an Fab fragment and a larger antigen molecule such as Pseudomonas aeruginosa exotoxin A with a molecular mass of 67 kDa. PMID:8013642

  5. The cluster and single-particle states in 13C (α,α)13C reactions

    NASA Astrophysics Data System (ADS)

    Mynbayev, N. A.; Nurmukhanbetova, A. K.; Goldberg, V. Z.; Rogachev, G. V.; Golovkov, M. S.; Koloberdin, M.; Ivanov, I.; Nauruzbayev, D. K.; Berdibek, Sh S.; Rakhymzhanov, A. M.; Tribble, R. E.

    2016-06-01

    The excitation functions of elastic scattering of 13C on alpha particle have been measured using the thick-target inverse kinematic method at the heavy ion DC-60 cyclotron. The helium gas was used as a target and also as a degrader to stop the beam. New data (including 180°degree) of the resonances close to the threshold in 17O have been obtained.

  6. Biosynthetic preparation of L-(/sup 13/C)- and (/sup 15/N)glutamate by Brevibacterium flavum

    SciTech Connect

    Walker, T.E.; London, R.E.

    1987-01-01

    The biosynthesis of isotopically labeled L-glutamic acid by the microorganism Brevibacterium flavum was studied with a variety of carbon-13-enriched precursors. The purpose of this study was twofold: (i) to develop techniques for the efficient preparation of labeled L-glutamate with a variety of useful labeling patterns which can be used for other metabolic studies, and (ii) to better understand the metabolic events leading to label scrambling in these strains. B. flavum, which is used commercially for the production of monosodium glutamate, has the capability of utilizing glucose or acetate as a sole carbon source, and important criterion from the standpoint of developing labeling strategies. Unfortunately, singly labeled glucose precursors lead to excessive isotopic dilution which reduces their usefulness. Studies with (3-/sup 13/C)pyruvate indicate that this problem can in principle be overcome by using labeled three-carbon precursors; however, conditions could not be found which would lead to an acceptable yield of isotopically labeled L-glutamate. In contrast, (1-/sup 13/C)- or (2-/sup 13/C)acetate provides relatively inexpensive, readily available precursors for the production of selectively labeled, high enriched L-glutamate. The preparation of L-(/sup 15/N)glutamate from (/sup 15/N)ammonium sulfate was carried out and is a very effective labeling strategy. Analysis of the isotopic distribution in labeled glutamate provides details about the metabolic pathways in these interesting organisms.

  7. Evolution of E. coli on [U-13C]Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology

    PubMed Central

    Sandberg, Troy E.; Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.; Antoniewicz, Maciek R.; Palsson, Bernhard O.

    2016-01-01

    13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia coli were adaptively evolved for ~1000 generations on uniformly labeled 13C-glucose, a commonly used isotope for 13C-MFA. Phenotypic characterization of these evolved strains revealed ~40% increases in growth rate, with no significant difference in fitness when grown on either labeled (13C) or unlabeled (12C) glucose. The evolved strains displayed decreased biomass yields, increased glucose and oxygen uptake, and increased acetate production, mimicking what is observed after adaptive evolution on unlabeled glucose. Furthermore, full genome re-sequencing revealed that the key genetic changes underlying these phenotypic alterations were essentially the same as those acquired during adaptive evolution on unlabeled glucose. Additionally, glucose competition experiments demonstrated that the wild-type exhibits no isotopic preference for unlabeled glucose, and the evolved strains have no preference for labeled glucose. Overall, the results of this study indicate that there are no significant differences between 12C and 13C-glucose as a carbon source for E. coli growth. PMID:26964043

  8. CARBON-13 NUCLEAR MAGNETIC RESONANCE. 13C CHEMICAL SHIFTS AND 13C-199HG COUPLING CONSTANTS FOR SOME ORGANOMERCURY COMPOUNDS

    EPA Science Inventory

    The (13)C shieldings and (13)C-(199)Hg coupling constants of fourteen phenyl- and seven alkyl- and alkenyl-mercury compounds have been obtained. Substituent effects on the (13)C shieldings are similar to those in nonmercurated phenyl compounds, with a similar relationship between...

  9. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups

    NASA Astrophysics Data System (ADS)

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V.; Düwel, Stephan; Durst, Markus; Schulte, Rolf F.; Menzel, Marion I.

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., 79Br-13C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-13C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T1 shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar 14N adjacent to the 13C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the 13C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a 15N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.

  10. The effect of chemical processing on the δ 13C value of plant tissue

    NASA Astrophysics Data System (ADS)

    Van de Water, Peter K.

    2002-04-01

    The effect of standard processing techniques on the δ 13C value of plant tissue was tested using species representing the three photosynthetic pathways, including angiosperms and gymnosperms within the C 3 taxonomic division. The species include Cowania mexicana (C 3 angiosperm), Juniperus osteosperma (C 3 gymnosperm), Opuntia spp. (crassulacean acid metabolism [CAM] angiosperm), and Atriplex canescens (C 4 angiosperm). Each species is represented by 5 plants collected at two different sites, for a total of 10 samples. The samples were processed to whole plant tissue, holocellulose, α-cellulose, and nitrocellulose. An additional process was added with the discovery of residual Ca-oxalate crystals in holocellulose samples. Both C 3 species show δ 13C values becoming 13C enriched with increased processing. The CAM representative shows the opposite trend, with 13C depletion during the progression of treatments. The greatest range of values and most inconsistent trends occur in the C 4 representative. Removal of the Ca-oxalate fraction resulted in different mean weight percentages and δ 13C values among the species. Calculated δ 13C values of the Ca-oxalate crystals show depletion from the tissue values in the two C 3 species and enrichment in the C 4 and CAM representatives. The C. mexicana samples show the greatest change between the tissue and Ca-oxalates (7.3‰) but the least mean weight percentage (11%), whereas A. canescens shows the greatest overall change, with a -2.8‰ isotopic shift and over 48% mean weight percentage. Variability within the samples undergoing each treatment remained relatively unchanged even with increased cellulose purity. This paper provides estimates of isotopic offsets necessary to correct from one treatment to another. Significant differences in δ 13C among different treatments confirm the need to state the tissue fraction analyzed when reporting δ 13C results.

  11. An efficient NMR method for the characterisation of 14N sites through indirect 13C detection

    PubMed Central

    Jarvis, James A.; Haies, Ibraheem M.

    2013-01-01

    Nitrogen is one of the most abundant elements and plays a key role in the chemistry of biological systems. Despite its widespread distribution, the study of the naturally occurring isotope of nitrogen, 14N (99.6%), has been relatively limited as it is a spin-1 nucleus that typically exhibits a large quadrupolar interaction. Accordingly, most studies of nitrogen sites in biomolecules have been performed on samples enriched with 15N, limiting the application of NMR to samples which can be isotopically enriched. This precludes the analysis of naturally occurring samples and results in the loss of the wealth of structural and dynamic information that the quadrupolar interaction can provide. Recently, several experimental approaches have been developed to characterize 14N sites through their interaction with neighboring ‘spy’ nuclei. Here we describe a novel version of these experiments whereby coherence between the 14N site and the spy nucleus is mediated by the application of a moderate rf field to the 14N. The resulting 13C/14N spectra show good sensitivity on natural abundance and labeled materials; whilst the 14N lineshapes permit the quantitative analysis of the quadrupolar interaction. PMID:23589073

  12. 21 CFR 203.38 - Sample lot or control numbers; labeling of sample units.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... units. 203.38 Section 203.38 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... identifying lot or control number that will permit the tracking of the distribution of each drug sample unit... sample distribution containing lot or control numbers that are sufficient to permit the tracking...

  13. 21 CFR 203.38 - Sample lot or control numbers; labeling of sample units.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... units. 203.38 Section 203.38 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... identifying lot or control number that will permit the tracking of the distribution of each drug sample unit... sample distribution containing lot or control numbers that are sufficient to permit the tracking...

  14. 21 CFR 203.38 - Sample lot or control numbers; labeling of sample units.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... units. 203.38 Section 203.38 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... identifying lot or control number that will permit the tracking of the distribution of each drug sample unit... sample distribution containing lot or control numbers that are sufficient to permit the tracking...

  15. 21 CFR 203.38 - Sample lot or control numbers; labeling of sample units.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... units. 203.38 Section 203.38 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... identifying lot or control number that will permit the tracking of the distribution of each drug sample unit... sample distribution containing lot or control numbers that are sufficient to permit the tracking...

  16. 21 CFR 203.38 - Sample lot or control numbers; labeling of sample units.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... units. 203.38 Section 203.38 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... identifying lot or control number that will permit the tracking of the distribution of each drug sample unit... sample distribution containing lot or control numbers that are sufficient to permit the tracking...

  17. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  18. Determination of Polychlorinated Biphenyls in Solid Samples by Isotope Dilution Mass Spectrometry Using ³⁷Cl-Labeled Analogues.

    PubMed

    Somoano-Blanco, Lourdes; Rodriguez-Gonzalez, Pablo; García Fonseca, Sergio; Alonso, J Ignacio Garcia

    2015-08-01

    This work describes the first application of (37)Cl-labeled compounds to isotope dilution mass spectrometry (IDMS). The synthesis of 12 (37)Cl-labeled polychlorinated biphenyls (PCBs) was carried out by the chlorination of biphenyl with isotopically enriched chlorine gas, generated by the direct oxidation of Na(37)Cl with potassium peroxymonosulfate. After an exhaustive purification due to the presence of other congeners, the concentration and the isotopic enrichment of all (37)Cl-labeled PCBs in the mixture was determined. The proposed procedure allows the simultaneous quantification of every isotope diluted PCB congener in a single gas chromatography-tandem mass spectrometry (GC-MS/MS) injection without resorting to a methodological calibration graph. The results obtained here demonstrate that the use of (37)Cl-labeled analogues provides results in agreement with the certified values of three different Certified Reference Materials (marine sediment SRM 1944, fish tissue 1947, and loamy soil CRM 962-50) and analytical figures of merit comparable to those obtained using regular IDMS procedures based on the use of commercially available (13)C-labeled analogues. PMID:26165349

  19. Alteration of interaction between astrocytes and neurons in different stages of diabetes: a nuclear magnetic resonance study using [1-(13)C]glucose and [2-(13)C]acetate.

    PubMed

    Wang, Na; Zhao, Liang-Cai; Zheng, Yong-Quan; Dong, Min-Jian; Su, Yongchao; Chen, Wei-Jian; Hu, Zi-Long; Yang, Yun-Jun; Gao, Hong-Chang

    2015-01-01

    Increasing evidence has shown that the brain is a site of diabetic end-organ damage. This study investigates cerebral metabolism and the interactions between astrocytes and neurons at different stages of diabetes to identify the potential pathogenesis of diabetic encephalopathy. [1-(13)C]glucose or [2-(13)C]acetate is infused into 1- and 15-week diabetic rats, the brain extracts of which are analyzed by using (1)H and (13)C magnetic resonance spectroscopy. The (13)C-labeling pattern and enrichment of cerebral metabolites are also investigated. The increased (13)C incorporation in the glutamine, glutamate, and γ-aminobutyric acid carbons from [2-(13)C]acetate suggests that the astrocytic mitochondrial metabolism is enhanced in 1-week diabetic rats. By contrast, the decreased labeling from [1-(13)C]glucose reflected that the neuronal mitochondrial metabolism is impaired. As diabetes developed to 15 weeks, glutamine and glutamate concentrations significantly decreased. The increased labeling of glutamine C4 but unchanged labeling of glutamate C4 from [2-(13)C]acetate suggests decreased astrocyte supply to the neurons. In addition, the enhanced pyruvate recycling pathway manifested by the increased lactate C2 enrichment in 1-week diabetic rats is weakened in 15-week diabetic rats. Our study demonstrates the overall metabolism disturbances, changes in specific metabolic pathways, and interaction between astrocytes and neurons during the onset and development of diabetes. These results contribute to the mechanistic understanding of diabetes pathogenesis and evolution. PMID:25048983

  20. Enhanced sample multiplexing for nitrotyrosine-modified proteins using combined precursor isotopic labeling and isobaric tagging.

    PubMed

    Robinson, Renã A S; Evans, Adam R

    2012-06-01

    Current strategies for identification and quantification of 3-nitrotyrosine (3NT) post-translationally modified proteins (PTM) generally rely on biotin/avidin enrichment. Quantitative approaches have been demonstrated which employ isotopic labeling or isobaric tagging in order to quantify differences in the relative abundances of 3NT-modified proteins in two or potentially eight samples, respectively. Here, we present a novel strategy which uses combined precursor isotopic labeling and isobaric tagging (cPILOT) to increase the multiplexing capability of quantifying 3NT-modified proteins to 12 or 16 samples using commercially available tandem mass tags (TMT) or isobaric tags for relative and absolute quantification (iTRAQ), respectively. This strategy employs "light" and "heavy" labeled acetyl groups to block both N-termini and lysine residues of tryptic peptides. Next, 3NT is reduced to 3-aminotyrosine (3AT) using sodium dithionite followed by derivatization of light and heavy labeled 3AT-peptides with either TMT or iTRAQ multiplex reagents. We demonstrate the proof-of-principle utility of cPILOT with in vitro nitrated bovine serum albumin (BSA) and mouse splenic proteins using TMT(0), TMT(6), and iTRAQ(8) reagents and discuss limitations of the strategy. PMID:22509719

  1. 1H, 13C and 15N resonance assignments of URNdesign, a computationally redesigned RRM protein

    SciTech Connect

    Dobson, Neil; Dantas, Gautam; Varani, Gabriele

    2005-10-01

    Protein design represents one of the great challenges of computational structural biology. The ability to successfully design new proteins would allow us to generate new reagents and enzymes, while at the same time providing us with an understanding of the principles of protein stability. Here we report 1H, 15N and 13C resonance assignments of a redesigned U1A protein, URNdesign. U1A has been studied extensively by our group and hence was chosen as a design target. For the assignments we sued 2D and 3D heteronuclearNMR experiments with uniformly 13C, 15N-labeled URNdesign. The assignments for the backbone NH, CO,Ca and Cb nuclei are 94%complete. Sidechain 1Hand13C, aromatic andQ/NNH2 resonances are essentially complete with guanidinium and K NH3 residues unassigned. BMRB deposit with accession number 6493

  2. Determination of [{sup 13}C]pyrene sequestration in sediment microcosms using flash pyrolysis--GC--MS and {sup 13}C NMR

    SciTech Connect

    Guthrie, E.A.; Bortiatynski, J.M.; Hardy, K.S.; Kovach, E.M.; Van Heemst, J.D.H.; Hatcher, P.G.; Richman, J.E.

    1999-01-01

    In this study, the use of a {sup 13}C-labeled pollutant probe, [{sup 13}C]pyrene, and the application of flash pyrolysis--GC--MS and CPMAS {sup 13}C NMR provided analytical capabilities to study pyrene interactions with soluble and insoluble compartments of sedimentary organic matter (S{sub D}OM) during whole sediments incubations in aerated microcosms. Surface sediments were collected from a site of previous hydrocarbon contamination in New Orleans, LA. Over a period of 60 days, humic acid and humin fractions of S{sub D}OM accumulated increasing amounts of pyrene that were resistant to exhaustive extraction with organic solvents. The sequestered pyrene was evident in CPMAS {sup 13}C NMR spectra of humin fractions. The amount of sequestered pyrene in humic materials was quantified by flash pyrolysis--GC--MS, a technique that destroys the three-dimensional structure of macromolecular S{sub D}OM. Noncovalent binding of pyrene to humic materials in S{sub D}OM was greater in sediments incubated with biological activity than biocide-treated sediments. The combined analytical approaches demonstrate that the sequestered pyrene, or bound residue, is noncovalently associated with S{sub D}OM and has not undergone structural alteration. Implications of these data are discussed in reference to S{sub D}OM diagenesis and long-term availability of bound pollutant residues in sediments.

  3. Radioassay of dual-labeled samples with a Cherenkov counting technique

    NASA Astrophysics Data System (ADS)

    Fujii, Haruo; Takiue, Makoto

    1998-03-01

    A new Cherenkov counting technique which allows radioactivities of a dual-labeled sample to be determined simultaneously by using a wavelength shifter has been proposed, and tested for the pairs 32P-36Cl and 86Rb-36Cl. The minimum requirements for this method are a single channel liquid scintillation counter, a wavelength shifter and a reference sample for determining the Cherenkov counting efficiency. The simple procedure for sample preparation and measurement makes the technique very useful for routine radioassay with the help of a desk-top computer.

  4. Radioassay of dual-labeled samples with a Cherenkov counting technique

    NASA Astrophysics Data System (ADS)

    Fujii, Haruo; Takiue, Makoto

    1988-03-01

    A new Cherenkov counting technique which allows radioactivities of a dual-labeled sample to be determined simultaneously by using a wavelength shifter has been proposed, and tested for the pairs 32P 36Cl and 86Rb 36Cl. The minimum requirements for this method are a single channel liquid scintillation counter, a wavelength shifter and a reference sample for determining the Cherenkov counting efficiency. The simple procedure for sample preparation and measurement makes the technique very useful for routine radioassay with the help of a desk-top computer.

  5. Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling.

    PubMed

    Wilson, Kate E; Marouga, Rita; Prime, John E; Pashby, D Paul; Orange, Paul R; Crosier, Steven; Keith, Alexander B; Lathe, Richard; Mullins, John; Estibeiro, Peter; Bergling, Helene; Hawkins, Edward; Morris, Christopher M

    2005-10-01

    Comparative proteomic methods are rapidly being applied to many different biological systems including complex tissues. One pitfall of these methods is that in some cases, such as oncology and neuroscience, tissue complexity requires isolation of specific cell types and sample is limited. Laser microdissection (LMD) is commonly used for obtaining such samples for proteomic studies. We have combined LMD with sensitive thiol-reactive saturation dye labelling of protein samples and 2-D DIGE to identify protein changes in a test system, the isolated CA1 pyramidal neurone layer of a transgenic (Tg) rat carrying a human amyloid precursor protein transgene. Saturation dye labelling proved to be extremely sensitive with a spot map of over 5,000 proteins being readily produced from 5 mug total protein, with over 100 proteins being significantly altered at p < 0.0005. Of the proteins identified, all showed coherent changes associated with transgene expression. It was, however, difficult to identify significantly different proteins using PMF and MALDI-TOF on gels containing less than 500 mug total protein. The use of saturation dye labelling of limiting samples will therefore require the use of highly sensitive MS techniques to identify the significantly altered proteins isolated using methods such as LMD. PMID:16145713

  6. Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-10-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40-200 nmol).

  7. Development of a 13C-Optimized 1.5-mm High Temperature Superconducting NMR Probe

    PubMed Central

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-01-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H channel lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40 to 200 nmol). PMID:23969086

  8. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  9. (13)C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H.

    PubMed

    Ostermann, Steffen; Richhardt, Janine; Bringer, Stephanie; Bott, Michael; Wiechert, Wolfgang; Oldiges, Marco

    2015-01-01

    Gluconobacter oxydans 621H is used as an industrial production organism due to its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. With glucose as the carbon source, up to 90% of the initial concentration is oxidized periplasmatically to gluconate and ketogluconates. Growth on glucose is biphasic and intracellular sugar catabolism proceeds via the Entner-Doudoroff pathway (EDP) and the pentose phosphate pathway (PPP). Here we studied the in vivo contributions of the two pathways to glucose catabolism on a microtiter scale. In our approach we applied specifically (13)C labeled glucose, whereby a labeling pattern in alanine was generated intracellularly. This method revealed a dynamic growth phase-dependent pathway activity with increased activity of EDP in the first and PPP in the second growth phase, respectively. Evidence for a growth phase-independent decarboxylation-carboxylation cycle around the pyruvate node was obtained from (13)C fragmentation patterns of alanine. For the first time, down-scaled microtiter plate cultivation together with (13)C-labeled substrate was applied for G. oxydans to elucidate pathway operation, exhibiting reasonable labeling costs and allowing for sufficient replicate experiments. PMID:26404385

  10. 13C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H

    PubMed Central

    Ostermann, Steffen; Richhardt, Janine; Bringer, Stephanie; Bott, Michael; Wiechert, Wolfgang; Oldiges, Marco

    2015-01-01

    Gluconobacter oxydans 621H is used as an industrial production organism due to its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. With glucose as the carbon source, up to 90% of the initial concentration is oxidized periplasmatically to gluconate and ketogluconates. Growth on glucose is biphasic and intracellular sugar catabolism proceeds via the Entner–Doudoroff pathway (EDP) and the pentose phosphate pathway (PPP). Here we studied the in vivo contributions of the two pathways to glucose catabolism on a microtiter scale. In our approach we applied specifically 13C labeled glucose, whereby a labeling pattern in alanine was generated intracellularly. This method revealed a dynamic growth phase-dependent pathway activity with increased activity of EDP in the first and PPP in the second growth phase, respectively. Evidence for a growth phase-independent decarboxylation-carboxylation cycle around the pyruvate node was obtained from 13C fragmentation patterns of alanine. For the first time, down-scaled microtiter plate cultivation together with 13C-labeled substrate was applied for G. oxydans to elucidate pathway operation, exhibiting reasonable labeling costs and allowing for sufficient replicate experiments. PMID:26404385

  11. Toward using delta13C of ecosystem respiration to monitor canopy physiology in complex terrain.

    PubMed

    Pypker, T G; Hauck, M; Sulzman, E W; Unsworth, M H; Mix, A C; Kayler, Z; Conklin, D; Kennedy, A M; Barnard, H R; Phillips, C; Bond, B J

    2008-12-01

    In 2005 and 2006, air samples were collected at the base of a Douglas-fir watershed to monitor seasonal changes in the delta13CO2 of ecosystem respiration (delta13C(ER)). The goals of this study were to determine whether variations in delta13C(ER) correlated with environmental variables and could be used to predict expected variations in canopy-average stomatal conductance (Gs). Changes in delta13C(ER) correlated weakly with changes in vapor pressure deficit (VPD) measured 0 and 3-7 days earlier and significantly with soil matric potential (psi(m)) (P value <0.02) measured on the same day. Midday G (s) was estimated using sapflow measurements (heat-dissipation method) at four plots located at different elevations within the watershed. Values of midday Gs from 0 and 3-7 days earlier were correlated with delta13C(ER), with the 5-day lag being significant (P value <0.05). To examine direct relationships between delta13C(ER) and recent Gs, we used models relating isotope discrimination to stomatal conductance and photosynthetic capacity at the leaf level to estimate values of stomatal conductance ("Gs-I") that would be expected if respired CO2 were derived entirely from recent photosynthate. We compared these values with estimates of Gs using direct measurement of transpiration at multiple locations in the watershed. Considering that the approach based on isotopes considers only the effect of photosynthetic discrimination on delta13C(ER), the magnitude and range in the two values were surprisingly similar. We conclude that: (1) delta13C(ER) is sensitive to variations in weather, and (2) delta13C(ER) potentially could be used to directly monitor average, basin-wide variations in Gs in complex terrain if further research improves understanding of how delta13C(ER) is influenced by post-assimilation fractionation processes. PMID:18839214

  12. 40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 Through 2012 Model Year Vehicles

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Sample Fuel Economy Labels for 2008 Through 2012 Model Year Vehicles IV Appendix IV to Part 600 Protection of Environment ENVIRONMENTAL... VEHICLES Pt. 600, App. IV Appendix IV to Part 600—Sample Fuel Economy Labels for 2008 Through 2012...

  13. 40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 and Later Model Year Vehicles

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Sample Fuel Economy Labels for 2008 and Later Model Year Vehicles IV Appendix IV to Part 600 Protection of Environment ENVIRONMENTAL... VEHICLES Pt. 600, App. IV Appendix IV to Part 600—Sample Fuel Economy Labels for 2008 and Later Model...

  14. Comparison of different mass spectrometry techniques in the measurement of L-[ring-(13)C6]phenylalanine incorporation into mixed muscle proteins.

    PubMed

    Zabielski, Piotr; Ford, G Charles; Persson, X Mai; Jaleel, Abdul; Dewey, Jerry D; Nair, K Sreekumaran

    2013-02-01

    Precise measurement of low enrichment of stable isotope labeled amino-acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 h intravenous infusion of L-[ring-(13)C(6)]phenylalanine and a bolus dose of L-[ring-(13)C(6)]phenylalanine in a mouse were utilized. Liquid chromatography tandem mass spectrometry (LC/MS/MS), gas chromatography (GC) MS/MS and GC/MS were compared to the GC-combustion-isotope ratio MS (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring-(13)C(6)]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 molar percent excess. As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R(2)= 0.9962 and R(2) = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra-assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter-assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. The muscle sample sizes required to obtain these results were 8 µg, 0.8 µg, 3 µg and 3 µg for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L-[ring-(13)C(6)]phenylalanine tracer enrichment in low abundance and in small quantity samples. PMID:23378099

  15. Analysis of dissolved organic carbon concentration and 13C isotopic signature by TOC-IRMS - assessment of analytical performance

    NASA Astrophysics Data System (ADS)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2013-04-01

    Stable carbon isotopes provide a powerful tool to assess carbon pools and their dynamics. Dissolved organic carbon (DOC) has been recognized to play an important role in ecosystem functioning and carbon cycling and has therefore gained increased research interest. However, direct measurement of 13C isotopic signature of carbon in the dissolved phase is technically challenging particularly using high temperature combustion. Until recently, mainly custom-made systems existed which were modified for coupling of TOC instruments with IRMS for simultaneous assessment of C content and isotopic signature. The variety of coupled systems showed differences in their analytical performances. For analysis of DOC high temperature combustion is recognized as best performing method, owing to its high efficiency of conversion to CO2 also for highly refractory components (e.g. humic, fulvic acids) present in DOC and soil extracts. Therefore, we tested high temperature combustion TOC coupled to IRMS (developed by Elementar Group) for bulk measurements of DOC concentration and 13C signature. The instruments are coupled via an Interface to exchange the carrier gas from O2 to He and to concentrate the derived CO2 for the isotope measurement. Analytical performance of the system was assessed for a variety of organic compounds characterized by different stability and complexity, including humic acid and DOM. We tested injection volumes between 0.2-3 ml, thereby enabling measurement of broad concentration ranges. With an injection volume of 0.5 ml (n=3, preceded by 1 discarded injection), DOC and 13C signatures for concentrations between 5-150 mg C/L were analyzed with high precision (standard deviation (SD) predominantly <0.1‰), good accuracy and linearity (overall SD <0.9‰). For the same settings, slightly higher variation in precision was observed among the lower concentration range and depending upon specific system conditions. Differences in 13C signatures of about 50‰ among

  16. Fluxomers: a new approach for 13C metabolic flux analysis

    PubMed Central

    2011-01-01

    Background The ability to perform quantitative studies using isotope tracers and metabolic flux analysis (MFA) is critical for detecting pathway bottlenecks and elucidating network regulation in biological systems, especially those that have been engineered to alter their native metabolic capacities. Mathematically, MFA models are traditionally formulated using separate state variables for reaction fluxes and isotopomer abundances. Analysis of isotope labeling experiments using this set of variables results in a non-convex optimization problem that suffers from both implementation complexity and convergence problems. Results This article addresses the mathematical and computational formulation of 13C MFA models using a new set of variables referred to as fluxomers. These composite variables combine both fluxes and isotopomer abundances, which results in a simply-posed formulation and an improved error model that is insensitive to isotopomer measurement normalization. A powerful fluxomer iterative algorithm (FIA) is developed and applied to solve the MFA optimization problem. For moderate-sized networks, the algorithm is shown to outperform the commonly used 13CFLUX cumomer-based algorithm and the more recently introduced OpenFLUX software that relies upon an elementary metabolite unit (EMU) network decomposition, both in terms of convergence time and output variability. Conclusions Substantial improvements in convergence time and statistical quality of results can be achieved by applying fluxomer variables and the FIA algorithm to compute best-fit solutions to MFA models. We expect that the fluxomer formulation will provide a more suitable basis for future algorithms that analyze very large scale networks and design optimal isotope labeling experiments. PMID:21846358

  17. (13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin.

    PubMed Central

    Damberg, Peter; Jarvet, Jüri; Allard, Peter; Mets, Ulo; Rigler, Rudolf; Gräslund, Astrid

    2002-01-01

    Tyrosine ring dynamics of the gastrointestinal hormone motilin was studied using two independent physical methods: fluorescence polarization anisotropy decay and NMR relaxation. Motilin, a 22-residue peptide, was selectively (13)C labeled in the ring epsilon-carbons of the single tyrosine residue. To eliminate effects of differences in peptide concentration, the same motilin sample was used in both experiments. NMR relaxation rates of the tyrosine ring C(epsilon)-H(epsilon) vectors, measured at four magnetic field strengths (9.4, 11.7, 14.1, and 18.8 Tesla) were used to map the spectral density function. When the data were analyzed using dynamic models with the same number of components, the dynamic parameters from NMR and fluorescence are in excellent agreement. However, the estimated rotational correlation times depend on the choice of dynamic model. The correlation times estimated from the two-component model-free approach and the three-component models were significantly different (1.7 ns and 2.2 ns, respectively). Various earlier studies of protein dynamics by NMR and fluorescence were compared. The rotational correlation times estimated by NMR for samples with high protein concentration were on average 18% longer for folded monomeric proteins than the corresponding times estimated by fluorescence polarization anisotropy decay, after correction for differences in viscosity due to temperature and D(2)O/H(2)O ratio. PMID:12414713

  18. Histidine side-chain dynamics and protonation monitored by 13C CPMG NMR relaxation dispersion.

    PubMed

    Hass, Mathias A S; Yilmaz, Ali; Christensen, Hans E M; Led, Jens J

    2009-08-01

    The use of 13C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically 13C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for 13C(epsilon1) nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from 15N backbone relaxation measurements. Compared to measurements of backbone nuclei, 13C(epsilon1) dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the 13C(epsilon1) dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed. PMID:19533375

  19. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  20. Recent advances in mapping environmental microbial metabolisms through 13C isotopic fingerprints.

    PubMed

    Tang, Joseph Kuo-Hsiang; You, Le; Blankenship, Robert E; Tang, Yinjie J

    2012-11-01

    After feeding microbes with a defined (13)C substrate, unique isotopic patterns (isotopic fingerprints) can be formed in their metabolic products. Such labelling information not only can provide novel insights into functional pathways but also can determine absolute carbon fluxes through the metabolic network via metabolic modelling approaches. This technique has been used for finding pathways that may have been mis-annotated in the past, elucidating new enzyme functions, and investigating cell metabolisms in microbial communities. In this review paper, we summarize the applications of (13)C approaches to analyse novel cell metabolisms for the past 3 years. The isotopic fingerprints (defined as unique isotopomers useful for pathway identifications) have revealed the operations of the Entner-Doudoroff pathway, the reverse tricarboxylic acid cycle, new enzymes for biosynthesis of central metabolites, diverse respiration routes in phototrophic metabolism, co-metabolism of carbon nutrients and novel CO(2) fixation pathways. This review also discusses new isotopic methods to map carbon fluxes in global metabolisms, as well as potential factors influencing the metabolic flux quantification (e.g. metabolite channelling, the isotopic purity of (13)C substrates and the isotopic effect). Although (13)C labelling is not applicable to all biological systems (e.g. microbial communities), recent studies have shown that this method has a significant value in functional characterization of poorly understood micro-organisms, including species relevant for biotechnology and human health. PMID:22896564

  1. Recent advances in mapping environmental microbial metabolisms through 13C isotopic fingerprints

    PubMed Central

    Tang, Joseph Kuo-Hsiang; You, Le; Blankenship, Robert E.; Tang, Yinjie J.

    2012-01-01

    After feeding microbes with a defined 13C substrate, unique isotopic patterns (isotopic fingerprints) can be formed in their metabolic products. Such labelling information not only can provide novel insights into functional pathways but also can determine absolute carbon fluxes through the metabolic network via metabolic modelling approaches. This technique has been used for finding pathways that may have been mis-annotated in the past, elucidating new enzyme functions, and investigating cell metabolisms in microbial communities. In this review paper, we summarize the applications of 13C approaches to analyse novel cell metabolisms for the past 3 years. The isotopic fingerprints (defined as unique isotopomers useful for pathway identifications) have revealed the operations of the Entner–Doudoroff pathway, the reverse tricarboxylic acid cycle, new enzymes for biosynthesis of central metabolites, diverse respiration routes in phototrophic metabolism, co-metabolism of carbon nutrients and novel CO2 fixation pathways. This review also discusses new isotopic methods to map carbon fluxes in global metabolisms, as well as potential factors influencing the metabolic flux quantification (e.g. metabolite channelling, the isotopic purity of 13C substrates and the isotopic effect). Although 13C labelling is not applicable to all biological systems (e.g. microbial communities), recent studies have shown that this method has a significant value in functional characterization of poorly understood micro-organisms, including species relevant for biotechnology and human health. PMID:22896564

  2. Sensitivity and specificity of an abbreviated 13C-mixed triglyceride breath test for measurement of pancreatic exocrine function

    PubMed Central

    Meier, Viola; Wolfram, Kristina U; Rosien, Ulrich; Layer, Peter

    2014-01-01

    Background A modified 13C-mixed triglyceride breath test (13C -MTGT) detects moderate pancreatic exocrine insufficiency noninvasively and reliably, but it requires prolonged breath sampling (6 hours (hr)). Objective We aimed to investigate whether 13C -MTGT can be abbreviated, to optimize clinical usability. Methods We analyzed the 13C-MTGT of 200 consecutive patients, retrospectively. Cumulative 1–5 hr 13C-exhalation values were compared with the standard parameter (6-hr cumulative 13C-exhalation). We determined the sensitivity and specificity of shortened breath sampling periods, by comparison with the normal values from 10 healthy volunteers, whom also underwent a secretin test to quantitate pancreatic secretion. Moreover, we evaluated the influence of gastric emptying (GE), using a 13C-octanoic acid breath test in a subset (N = 117). Results The 1–5 hr cumulative 13C-exhalation tests correlated highly and significantly with the standard parameter (p < 0.0001). Sensitivity for detection of impaired lipolysis was high (≥77%), but the specificity was low (≥38%) for the early measurements. Both parameters were high after 4 hrs (88% and 94%, respectively) and 5 hrs (98% and 91%, respectively). Multivariate linear correlation analysis confirmed that GE strongly influenced early postprandial 13C-exhalation during the 13C-MTGT. Conclusion Shortening of the 13C -MTGT from 6 to 4 hrs of duration was associated with similar diagnostic accuracy, yet increased clinical usability. The influence of GE on early postprandial results of the 13C-MTGT precluded further abbreviation of the test. PMID:25083286

  3. Sample Preparation Approaches for iTRAQ Labeling and Quantitative Proteomic Analyses in Systems Biology.

    PubMed

    Spanos, Christos; Moore, J Bernadette

    2016-01-01

    Among a variety of global quantification strategies utilized in mass spectrometry (MS)-based proteomics, isobaric tags for relative and absolute quantitation (iTRAQ) are an attractive option for examining the relative amounts of proteins in different samples. The inherent complexity of mammalian proteomes and the diversity of protein physicochemical properties mean that complete proteome coverage is still unlikely from a single analytical method. Numerous options exist for reducing protein sample complexity and resolving digested peptides prior to MS analysis. Indeed, the reliability and efficiency of protein identification and quantitation from an iTRAQ workflow strongly depend on sample preparation upstream of MS. Here we describe our methods for: (1) total protein extraction from immortalized cells; (2) subcellular fractionation of murine tissue; (3) protein sample desalting, digestion, and iTRAQ labeling; (4) peptide separation by strong cation-exchange high-performance liquid chromatography; and (5) peptide separation by isoelectric focusing. PMID:26700038

  4. In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate.

    PubMed

    Kohler, S J; Yen, Y; Wolber, J; Chen, A P; Albers, M J; Bok, R; Zhang, V; Tropp, J; Nelson, S; Vigneron, D B; Kurhanewicz, J; Hurd, R E

    2007-07-01

    We present for the first time dynamic spectra and spectroscopic images acquired in normal rats at 3T following the injection of (13)C-1-pyruvate that was hyperpolarized by the dynamic nuclear polarization (DNP) method. Spectroscopic sampling was optimized for signal-to-noise ratio (SNR) and for spectral resolution of (13)C-1-pyruvate and its metabolic products (13)C-1-alanine, (13)C-1-lactate, and (13)C-bicarbonate. Dynamic spectra in rats were collected with a temporal resolution of 3 s from a 90-mm axial slab using a dual (1)H-(13)C quadrature birdcage coil to observe the combined effects of metabolism, flow, and T(1) relaxation. In separate experiments, spectroscopic imaging data were obtained during a 17-s acquisition of a 20-mm axial slice centered on the rat kidney region to provide information on the spatial distribution of the metabolites. Conversion of pyruvate to lactate, alanine, and bicarbonate occurred within a minute of injection. Alanine was observed primarily in skeletal muscle and liver, while pyruvate, lactate, and bicarbonate concentrations were relatively high in the vasculature and kidneys. In contrast to earlier work at 1.5 T, bicarbonate was routinely observed in skeletal muscle as well as the kidney and vasculature. PMID:17659629

  5. Multi-year estimates of plant and ecosystem 13C discrimination at AmeriFlux sites

    NASA Astrophysics Data System (ADS)

    Dang, X.; Lai, C.; Hollinger, D. Y.; Bush, S.; Randerson, J. T.; Law, B. E.; Schauer, A. J.; Ehleringer, J.

    2011-12-01

    We estimated plant and ecosystem 13C discrimination continuously at 8 AmeriFlux sites (Howland Forest, Harvard Forest, Wind River Forest, Rannells Prairie, Freeman Ranch, Chestnut Ridge, Metolius, and Marys River fir) over 8 years (2002-2009). We used an observation-based approach from weekly measurements of eddy covariance CO2 fluxes and their 13C/12C ratios to estimate photosynthetic 13C discrimination (△A) and respiration (δ13CR) on seasonal and interannual time scales. The coordinated, systematic flask sampling across the AmeriFlux subnetwork were used for cross-site synthesis of monthly flux estimates [Dang et al. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over 4 flux towers in the U.S.A., Journal of Geophysical Research-Biogeosciences, in press]. Here, we evaluated environmental factors that also influenced temporal variability in △A and δ13CR from daily to interannual time scales, comparing atmospheric 13C/12C measurements, leaf and needle organic matter, and tree ring cellulose. Across these major biomes that dominate the continent, we show differential ecophysiological responses to environmental stresses, among which water availability appeared to be a dominant factor. Our decadal measurement period provided robust estimates of atmospheric 13C discrimination by terrestrial ecosystems, but also suggest regions where enhanced monitoring efforts are required (e.g., 13C/12C emission from fire and urban metabolism; increased temporal resolution of 13C measurements in stress-sensitive ecosystems) to make atmospheric 13C/12C measurements an effective constraint for continental-scale assessments of the terrestrial carbon cycle.

  6. The use of isotope ratios (13C/12C) for vegetable oils authentication

    NASA Astrophysics Data System (ADS)

    Cristea, G.; Magdas, D. A.; Mirel, V.

    2012-02-01

    Stable isotopes are now increasingly used for the control of the geographical origin or authenticity of food products. The falsification may be more or less sophisticated and its sophistication as well as its costs increases with the improvement of analytical methods. In this study 22 vegetable oils (olive, sunflower, palm, maize) commercialized on Romanian market were investigated by mean of δ13C in bulk oil and the obtained results were compared with those reported in literature in order to check the labeling of these natural products. The obtained results were in the range of the mean values found in the literature for these types of oils, thus providing their accurate labeling.

  7. Site-Selective Synthesis of (15)N- and (13)C-Enriched Flavin Mononucleotide Coenzyme Isotopologues.

    PubMed

    Neti, Syam Sundar; Poulter, C Dale

    2016-06-17

    Flavin mononucleotide (FMN) is a coenzyme for numerous proteins involved in key cellular and physiological processes. Isotopically labeled flavin is a powerful tool for studying the structure and mechanism of flavoenzyme-catalyzed reactions by a variety of techniques, including NMR, IR, Raman, and mass spectrometry. In this report, we describe the preparation of labeled FMN isotopologues enriched with (15)N and (13)C isotopes at various sites in the pyrazine and pyrimidine rings of the isoalloxazine core of the cofactor from readily available precursors by a five-step chemo-enzymatic synthesis. PMID:27176708

  8. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  9. Simultaneous DNP enhancements of (1)H and (13)C nuclei: theory and experiments.

    PubMed

    Shimon, Daphna; Hovav, Yonatan; Kaminker, Ilia; Feintuch, Akiva; Goldfarb, Daniella; Vega, Shimon

    2015-05-01

    DNP on heteronuclear spin systems often results in interesting phenomena such as the polarization enhancement of one nucleus during MW irradiation at the "forbidden" transition frequencies of another nucleus or the polarization transfer between the nuclei without MW irradiation. In this work we discuss the spin dynamics in a four-spin model system of the form {ea-eb-((1)H,(13)C)}, with the Larmor frequencies ωa, ωb, ωH and ωC, by performing Liouville space simulations. This spin system exhibits the common (1)H solid effect (SE), (13)C cross effect (CE) and in addition high order CE-DNP enhancements. Here we show, in particular, the "proton shifted (13)C-CE" mechanism that results in (13)C polarization when the model system, at one of its (13)C-CE conditions, is excited by a MW field at the zero quantum or double quantum electron-proton transitions ωMW = ωa ± ωH and ωMW = ωb ± ωH. Furthermore, we introduce the "heteronuclear" CE mechanism that becomes efficient when the system is at one of its combined CE conditions |ωa - ωb| = |ωH ± ωC|. At these conditions, simulations of the four-spin system show polarization transfer processes between the nuclei, during and without MW irradiation, resembling the polarization exchange effects often discussed in the literature. To link the "microscopic" four-spin simulations to the experimental results we use DNP lineshape simulations based on "macroscopic" rate equations describing the electron and nuclear polarization dynamics in large spin systems. This approach is applied based on electron-electron double resonance (ELDOR) measurements that show strong (1)H-SE features outside the EPR frequency range. Simulated ELDOR spectra combined with the indirect (13)C-CE (iCE) mechanism, result in additional "proton shifted (13)C-CE" features that are similar to the experimental ones. These features are also observed experimentally in (13)C-DNP spectra of a sample containing 15 mM of trityl in a glass forming solution of

  10. (13)C/(12)C isotope ratios of organic acids, glucose and fructose determined by HPLC-co-IRMS for lemon juices authenticity.

    PubMed

    Guyon, Francois; Auberger, Pauline; Gaillard, Laetita; Loublanches, Caroline; Viateau, Maryse; Sabathié, Nathalie; Salagoïty, Marie-Hélène; Médina, Bernard

    2014-03-01

    High performance liquid chromatography linked to isotope ratio mass spectrometry via an interface allowing the chemical oxidation of organic matter (HPLC-co-IRMS) was used to simultaneously determine carbon 13 isotope ratio (δ(13)C) of organic acids, glucose and fructose in lime and lemon juices. Because of the significant difference between organic acids and sugars concentrations, the experimental protocol was optimised by applying a "current jump" to the IRMS device. The filament current is increased of 300μA during elution in order to enhance IRMS sensitivity. Then, analysis were performed on 35 lemon and lime fruits from various geographical origins and squeezed in the laboratory. An overall average δ(13)C values of -25.40±1.62‰, -23.83±1.82‰ and -25.67±1.72‰ is found for organic acids mixture mainly made up of citric acid, glucose and fructose, respectively. These authentic samples allowed the definition of a confidence domain to which have been confronted 30 commercial juices (24 "pure juices" and 6 coming from concentrate). Among these 30 samples, 10 present δ(13)C values outside the defined range revealing an added "C4" type organic acids or sugars, addition not specified on the label that is not in agreement with EU regulation. PMID:24176310

  11. Decomposition kinetics and mechanism of n-hexadecane-1,2- 13C 2 and dodec-1-ene-1,2-13C2 doped in petroleum and n-hexadecane

    NASA Astrophysics Data System (ADS)

    Burnham, Alan K.; Gregg, Hugh R.; Ward, Raymond L.; Knauss, Kevin G.; Copenhaver, Sally A.; Reynolds, John G.; Sanborn, Russell

    1997-09-01

    Isotopically labeled n-hexadecane doped at the percent level in three crude oils is used to determine the intrinsic decomposition kinetics and mechanism of n-alkanes in petroleum. Adjacent 13C labels at the end of the hexadecane and dodecene give a mass fragment sufficiently unique that its disappearance and many of its products can be followed by ordinary gas chromatography-mass spectrometry. Additional structural details of the labeled reaction products are measurable by the NMR INADEQUATE technique, which detects only adjacent 13C atoms. Samples were heated at temperatures ranging from 310 to 360°C in capillary glass tubes and Dickson autoclaves. At temperatures around 350°C, n-alkane decomposition in dissimilar oil matrices forms primarily normal alkanes smaller than the starting alkane at a rate about 60% as fast as the decomposition of the neat alkane. Unlike in neat hexadecane, no significant branched alkanes are formed from the labeled hexadecane in crude oil by alkylation of alkene intermediates. Doping the oils and n-hexadecane with labeled dodecene confirms that alkenes in two of the three oils are rapidly converted primarily to the corresponding alkanes, while reaction of alkenes in hexadecane forms primarily branched alkanes. Reaction of alkenes in the high paraffin oil was intermediate in characteristics. One autoclave experiment included water to assess the importance of water during pyrolysis, with the result that the alkane decomposition rate is affected very little. However, coking of aromatics is inhibited, and there is a significant increase in the production of both H 2 and CO 2 gas with water present, indicating that water is chemically reactive under these conditions. At temperatures around 310°C, the decomposition rate of neat hexadecane is roughly equal to that in a high paraffin oil and substantially slower than in North Sea and high sulfur oil, suggesting that the effect of the oil matrix has switched from suppression of propagation

  12. Partial 13C isotopic enrichment of nucleoside monophosphates: useful reporters for NMR structural studies

    PubMed Central

    Kishore, Anita I.; Mayer, Michael R.; Prestegard, James H.

    2005-01-01

    Analysis of the 13C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3′ in ribose) and one highly enriched site (C1′ in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most 13C–13C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution. PMID:16254075

  13. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2

  14. (1)H-(13)C-(29)Si triple resonance and REDOR solid-state NMR-A tool to study interactions between biosilica and organic molecules in diatom cell walls.

    PubMed

    Wisser, Dorothea; Brückner, Stephan I; Wisser, Florian M; Althoff-Ospelt, Gerhard; Getzschmann, Jürgen; Kaskel, Stefan; Brunner, Eike

    2015-01-01

    Triple resonance solid-state NMR experiments using the spin combination (1)H-(13)C-(29)Si are still rarely found in the literature. This is due to the low natural abundance of the two heteronuclei. Such experiments are, however, increasingly important to study hybrid materials such as biosilica and others. A suitable model substance, ideally labeled with both (13)C and (29)Si, is thus very useful to optimize the experiments before applying them to studies of more complex samples such as biosilica. Tetraphenoxysilane could be synthesized in an easy, two-step synthesis including double isotope labelling. Using tetraphenoxysilane, we established a (1)H-(13)C-(29)Si double CP-based HETCOR experiment and applied it to diatom biosilica from the diatom species Thalassiosira pseudonana. Furthermore, we carried out (1)H-(13)C{(29)Si} CP-REDOR experiments in order to estimate the distance between the organic matrix and the biosilica. Our experiments on diatom biosilica strongly indicate a close contact between polyamine-containing parts of the organic matrix and the silica. This corroborates the assumption that the organic matrix is essential for the control of the cell wall formation. PMID:25638422

  15. Development of LC-13C NMR

    NASA Technical Reports Server (NTRS)

    Dorn, H. C.; Wang, J. S.; Glass, T. E.

    1986-01-01

    This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

  16. Analysis of mutational lesions of acetate metabolism in Neurospora crassa by 13C nuclear magnetic resonance.

    PubMed Central

    Thomas, G H; Baxter, R L

    1987-01-01

    The adaptation of Neurospora crassa mycelium to growth on acetate as the sole carbon source was examined by using 13C nuclear magnetic resonance. Extracts were examined by nuclear magnetic resonance at various times after transfer of the mycelium from medium containing sucrose to medium containing [2-13C]acetate as the sole carbon source. The label was initially seen to enter the alanine, glutamate, and glutamine pools, and after 6 h 13C-enriched trehalose was evident, indicating that gluconeogenesis was occurring. Analysis of the isotopomer ratios in the alanine and glutamate-glutamine pools indicated that substantial glyoxylate cycle activity became evident between 2 and 4 h after transfer. Immediately after transfer of the mycelium to acetate medium, the alanine pool increased to about four times its previous level, only a small fraction of which was enriched with 13C. The quantity of 13C-enriched alanine remained almost constant between 2 and 7.5 h after the transfer, whereas the overall alanine pool decreased to its original level. The selective catabolism of the unenriched alanine leads us to suggest that the alanine pool is partitioned into two compartments during adaptation. Two acetate-nonutilizing mutants were also studied by this technique. An acu-3 strain, deficient for isocitrate lyase (EC 4.1.3.1) activity, showed metabolic changes consistent with this lesion. An acp strain, previously thought to be deficient in an inducible acetate permease, took up [2-13C]acetate but showed no evidence of glyoxylate cycle activity despite synthesizing the necessary enzymes; the lesion was therefore reinterpreted. PMID:2947898

  17. Migration and deposition of 13C in the full-tungsten ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Hakola, A.; Likonen, J.; Aho-Mantila, L.; Groth, M.; Koivuranta, S.; Krieger, K.; Kurki-Suonio, T.; Makkonen, T.; Mayer, M.; Müller, H. W.; Neu, R.; Rohde, V.; ASDEX Upgrade Team

    2010-06-01

    The migration of carbon in low-density, low-confinement plasmas of ASDEX Upgrade was studied by injecting 13C into the main chamber of the torus at the end of the 2007 experimental campaign. A selection of standard tungsten-coated lower-divertor and main-chamber tiles as well as a complete set of lower-divertor tiles with an uncoated poloidal marker stripe were removed from one poloidal cross section and analysed using secondary ion mass spectrometry. The poloidal deposition profiles of 13C on both the tungsten-coated tiles and on the uncoated graphite areas of the marker tiles were measured and compared. For the W-coated lower-divertor tiles, 13C was deposited mainly on the high-field side tiles, while barely detectable amounts of 13C were observed on low-field side samples. In contrast, on the uncoated marker stripes the deposition was equally pronounced in the high-field and low-field side divertor. The marker-tile results are in agreement with those obtained from graphite tiles after the 2003 and 2005 13C experiments in ASDEX Upgrade. In the case of W-coated tiles, the 13C measurements were complemented by determining the total amount of deposited carbon (12C) on the tiles, which also shows strong deposition at the inner parts of the lower divertor. The estimated deposition of 13C on W at the divertor areas was less than 1.5% of the injected amount of 13C atoms. The 13C analyses of the main-chamber tiles and small silicon samples mounted in remote areas revealed significant deposition in the upper divertor, in upper parts of the heat shield, in the limiter region close to the injection valve, and below the roof baffle. Approximately 8% of the injected 13C is estimated to have accumulated in these regions. Possible reasons for the different deposition patterns on W and on graphite in different regions of the torus are discussed.

  18. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  19. Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR.

    PubMed

    Dhayalan, Balamurugan; Fitzpatrick, Ann; Mandal, Kalyaneswar; Whittaker, Jonathan; Weiss, Michael A; Tokmakoff, Andrei; Kent, Stephen B H

    2016-03-01

    Isotope-edited two-dimensional Fourier transform infrared spectroscopy (2 D FTIR) can potentially provide a unique probe of protein structure and dynamics. However, general methods for the site-specific incorporation of stable (13) C=(18) O labels into the polypeptide backbone of the protein molecule have not yet been established. Here we describe, as a prototype for the incorporation of specific arrays of isotope labels, the total chemical synthesis-via a key ester insulin intermediate-of 97 % enriched [(1-(13) C=(18) O)Phe(B24) ] human insulin: stable-isotope labeled at a single backbone amide carbonyl. The amino acid sequence as well as the positions of the disulfide bonds and the correctly folded structure were unambiguously confirmed by the X-ray crystal structure of the synthetic protein molecule. In vitro assays of the isotope labeled [(1-(13) C=(18) O)Phe(B24) ] human insulin showed that it had full insulin receptor binding activity. Linear and 2 D IR spectra revealed a distinct red-shifted amide I carbonyl band peak at 1595 cm(-1) resulting from the (1-(13) C=(18) O)Phe(B24) backbone label. This work illustrates the utility of chemical synthesis to enable the application of advanced physical methods for the elucidation of the molecular basis of protein function. PMID:26715336

  20. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  1. Measuring DNA synthesis rates with [1-13C]glycine.

    PubMed

    Chen, P; Abramson, F P

    1998-05-01

    We have devised and evaluated a stable-isotopic method for measuring DNA synthesis rates. The probe is [1-13C]-glycine that is incorporated into purines via de novo biosynthesis. The human hepatoma cell line HEP G2 was grown in medium containing [1-13C]glycine, the cells were harvested at various times, and the DNA was extracted. Following hydrolysis to the nucleosides, a reversed-phase HPLC separation was used to provide separate peaks for deoxythymidine (dT), deoxyadenosine (dA), and deoxyguanosine (dG). The HPLC effluent was continuously fed into a chemical reaction interface and an isotope ratio mass spectrometer (HPLC/CRI/IRMS). The isotope ratio of the CO2 produced in the CRI was used to monitor for enrichment. The cells were grown continuously for 5 days in labeled medium and also in a 1-day pulse labeling experiment where the washout of label was observed for the subsequent 9 days. As predicted from the role of glycine in de novo purine biosynthesis, the isotope ratio of the pyrimidine dT did not change. However, for the two purines, dA and dG, the characteristic log growth behavior of the cells was observed in their 13C/12C ratios and good agreement in the doubling time was obtained for each type of experiment. Parallel experiments that measured the HEP G2 doubling time in culture using tritiated thymidine incorporation and direct cell counts were carried out compare to our new method with established ones. We believe that the use of [1-13C]-glycine and the HPLC/CRI/IRMS is a highly sensitive and selective approach that forms the basis of a method that can measure DNA synthesis rates using a nonradioactive, nontoxic tracer. PMID:9599574

  2. Sensitivity-enhanced IPAP experiments for measuring one-bond 13C '- 13C α and 13C α- 1H α residual dipolar couplings in proteins

    NASA Astrophysics Data System (ADS)

    Ding, Keyang; Gronenborn, Angela M.

    2004-04-01

    Sensitivity-enhanced 2D IPAP experiments using the accordion principle for measuring one-bond 13C '- 13C α and 1H α- 13C α dipolar couplings in proteins are presented. The resolution of the resulting spectra is identical to that of the decoupled HSQC spectra and the sensitivity of the corresponding 1D acquisitions are only slightly lower than those obtained with 3D HNCO and 3D HN(COCA)HA pulse sequences due to an additional delay 2 Δ. For cases of limited resolution in the 2D 15N- 1H N HSQC spectrum the current pulse sequences can easily be modified into 3D versions by introducing a poorly digitized third dimension, if so desired. The experiments described here are a valuable addition to the suites available for determination of residual dipolar couplings in biological systems.

  3. Biosynthesis of Camptothecin. In Silico and in Vivo Tracer Study from [1-13C]Glucose1

    PubMed Central

    Yamazaki, Yasuyo; Kitajima, Mariko; Arita, Masanori; Takayama, Hiromitsu; Sudo, Hiroshi; Yamazaki, Mami; Aimi, Norio; Saito, Kazuki

    2004-01-01

    Camptothecin derivatives are clinically used antitumor alkaloids that belong to monoterpenoid indole alkaloids. In this study, we investigated the biosynthetic pathway of camptothecin from [1-13C]glucose (Glc) by in silico and in vivo studies. The in silico study measured the incorporation of Glc into alkaloids using the Atomic Reconstruction of Metabolism software and predicted the labeling patterns of successive metabolites from [1-13C]Glc. The in vivo study followed incorporation of [1-13C]Glc into camptothecin with hairy roots of Ophiorrhiza pumila by 13C nuclear magnetic resonance spectroscopy. The 13C-labeling pattern of camptothecin isolated from the hairy roots clearly showed that the monoterpene-secologanin moiety was synthesized via the 2C-methyl-d-erythritol 4-phosphate pathway, not via the mevalonate pathway. This conclusion was supported by differential inhibition of camptothecin accumulation by the pathway-specific inhibitors (fosmidomycin and lovastatin). The quinoline moiety from tryptophan was also labeled as predicted by the Atomic Reconstruction of Metabolism program via the shikimate pathway. These results indicate that camptothecin is formed by the combination of the 2C-methyl-d-erythritol 4-phosphate pathway and the shikimate pathway. This study provides the innovative example for how a computer-aided comprehensive metabolic analysis will refine the experimental design to obtain more precise biological information. PMID:14657405

  4. 13C Nuclear Magnetic Resonance Study of Acetate Incorporation into Malate During Ca2+-Uptake by Isolated Leaf Tissues 1

    PubMed Central

    Borchert, Rolf; Everett, Grover W.

    1987-01-01

    13C Nuclear magnetic resonance spectroscopy of leaflets of Gleditsia triacanthos and Albizia julibrisin was used to determine the fate of acetate taken up during the absorption of calcium from 13C-labeled Ca-acetate solution. Small amounts of acetate accumulated temporarily in the leaf tissues, but the bulk of acetate was incorporated into malate. The initial rate of malate synthesis was very low, but increased rapidly during acetate treatment and reached its maximum after 8 hours; the enzymes involved in malate synthesis thus appear to be substrate induced. Use of acetate-2-13C yielded malate labeled in C-3, indicating that vacuolar malate accumulating during Ca-uptake might be synthesized via malate synthase from acetate and glyoxalate. However, a source of glyoxalate condensing with acetate during malate synthesis could not be identified. Glycolate produced in photorespiration is an unlikely source, because glycolate-2-13C was absorbed and metabolized by the leaf tissues into products of the glycolate pathway, but was not a major precursor in malate synthesis. Malate synthesis via the glyoxalate cycle is also unlikely, because no evidence for the recycling of a 13C-labeled 4-carbon organic acid was found. Malate synthesis in the leaflets of Gleditsia and Albizia thus appears to involve the inducible condensation of acetate with a 2-carbon compound of unidentified nature and origin. PMID:16665548

  5. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced. PMID:11529420

  6. PASADENA hyperpolarization of 13C biomolecules: equipment design and installation

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Robertson, Larry W.; Bhattacharya, Pratip

    2009-01-01

    Object The PASADENA method has achieved hyperpolarization of 16–20% (exceeding 40,000-fold signal enhancement at 4.7 T), in liquid samples of biological molecules relevant to in vivo MRI and MRS. However, there exists no commercial apparatus to perform this experiment conveniently and reproducibly on the routine basis necessary for translation of PASADENA to questions of biomedical importance. The present paper describes equipment designed for rapid production of six to eight liquid samples per hour with high reproducibility of hyperpolarization. Materials and methods Drawing on an earlier, but unpublished, prototype, we provide diagrams of a delivery circuit, a laminar-flow reaction chamber within a low field NMR contained in a compact, movable housing. Assembly instructions are provided from which a computer driven, semiautomated PASADENA polarizer can be constructed. Results Together with an available parahydrogen generator, the polarizer, which can be operated by a single investigator, completes one cycle of hyperpolarization each 52 s. Evidence of efficacy is presented. In contrast to competing, commercially available devices for dynamic nuclear polarization which characteristically require 90 min per cycle, PASADENA provides a low-cost alternative for high throughput. Conclusions This equipment is suited to investigators who have an established small animal NMR and wish to explore the potential of heteronuclear (13C and 15N) MRI, MRS, which harnesses the enormous sensitivity gain offered by hyperpolarization. PMID:19067008

  7. Quality assurance of PASADENA hyperpolarization for 13C biomolecules

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Tran, Thao T.; Bhattacharya, Pratip

    2009-01-01

    Object Define MR quality assurance procedures for maximal PASADENA hyperpolarization of a biological 13C molecular imaging reagent. Materials and methods An automated PASADENA polarizer and a parahydrogen generator were installed. 13C enriched hydroxyethyl acrylate, 1-13C, 2,3,3-d3 (HEA), was converted to hyperpolarized hydroxyethyl propionate, 1-13C, 2,3,3-d3 (HEP) and fumaric acid, 1-13C, 2,3-d2 (FUM) to hyperpolarized succinic acid, 1-13C, 2,3-d2 (SUC), by reaction with parahydrogen and norbornadiene rhodium catalyst. Incremental optimization of successive steps in PASADENA was implemented. MR spectra and in vivo images of hyperpolarized 13C imaging agents were acquired at 1.5 and 4.7 T. Results Application of quality assurance (QA) criteria resulted in incremental optimization of the individual steps in PASADENA implementation. Optimal hyperpolarization of HEP of P = 20% was achieved by calibration of the NMR unit of the polarizer (B0 field strength ± 0.002 mT). Mean hyperpolarization of SUC, P = [15.3 ± 1.9]% (N = 16) in D2O, and P = [12.8 ± 3.1]% (N = 12) in H2O, was achieved every 5–8 min (range 13–20%). An in vivo 13C succinate image of a rat was produced. Conclusion PASADENA spin hyperpolarization of SUC to 15.3% in average was demonstrated (37,400 fold signal enhancement at 4.7 T). The biological fate of 13C succinate, a normally occurring cellular intermediate, might be monitored with enhanced sensitivity. PMID:19067009

  8. Continuous field measurements of delta(13)C-CO(2) and trace gases by FTIR spectroscopy.

    PubMed

    Mohn, Joachim; Zeeman, Matthias J; Werner, Roland A; Eugster, Werner; Emmenegger, Lukas

    2008-09-01

    Continuous analysis of the (13)C/(12)C ratio of atmospheric CO(2) (delta(13)C-CO(2)) is a powerful tool to quantify CO(2) flux strengths of the two major ecosystem processes assimilation and respiration. Traditional laboratory techniques such as isotope ratio mass spectrometry (IRMS) in combination with flask sampling are subject to technical limitations that do not allow to fully characterising variations of atmospheric delta(13)C-CO(2) at all relevant timescales. In our study, we demonstrate the strength of Fourier transform infrared (FTIR) spectroscopy in combination with a PLS-based calibration strategy for online analysis of delta(13)C-CO(2) in ambient air. The ability of the instrument to measure delta(13)C-CO(2) was tested on a grassland field-site and compared with standard laboratory-based IRMS measurements made on field-collected flask samples. Both methods were in excellent agreement, with an average difference of 0.4 per thousand (n=81). Simultaneously, other important trace gases such as CO, N(2)O and CH(4) were analysed by FTIR spectroscopy. PMID:18763182

  9. Global-mean marine δ13C and its uncertainty in a glacial state estimate

    NASA Astrophysics Data System (ADS)

    Gebbie, Geoffrey; Peterson, Carlye D.; Lisiecki, Lorraine E.; Spero, Howard J.

    2015-10-01

    A paleo-data compilation with 492 δ13C and δ18O observations provides the opportunity to better sample the Last Glacial Maximum (LGM) and infer its global properties, such as the mean δ13C of dissolved inorganic carbon. Here, the paleo-compilation is used to reconstruct a steady-state water-mass distribution for the LGM, that in turn is used to map the data onto a 3D global grid. A global-mean marine δ13C value and a self-consistent uncertainty estimate are derived using the framework of state estimation (i.e., combining a numerical model and observations). The LGM global-mean δ13C is estimated to be 0.14‰ ± 0.20‰ at the two standard error level, giving a glacial-to-modern change of 0.32‰ ± 0.20‰. The magnitude of the error bar is attributed to the uncertain glacial ocean circulation and the lack of observational constraints in the Pacific, Indian, and Southern Oceans. To halve the error bar, roughly four times more observations are needed, although strategic sampling may reduce this number. If dynamical constraints can be used to better characterize the LGM circulation, the error bar can also be reduced to 0.05 to 0.1‰, emphasizing that knowledge of the circulation is vital to accurately map δ13C in three dimensions.

  10. 13C metabolic flux analysis at a genome-scale.

    PubMed

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non

  11. /sup 1/H and /sup 13/C spin-lattice relaxation in gaseous benzene

    SciTech Connect

    Folkendt, M.M.; Weiss-Lopez, B.E.; True, N.S.

    1988-08-25

    The nuclear spin-lattice relaxation time, T/sub 1/, measured for benzene protons at densities between 0.81 and 54.4 mol/m/sup 3/ (15 and 980 Torr) at 381 K exhibits a characteristic nonlinear density dependence. Analysis of the density-dependent T/sub 1/ data yields a spin-rotation coupling constant, C/sub eff/, of /vert bar/182.6 (0.4)/vert bar/ Hz and an angular momentum reorientation cross section, sigma, of 131 (1) /Angstrom//sup 2/. The /sup 13/C spin-lattice relaxation time of singly labeled /sup 13/C benzene is a linear function of density over the density range 1.07-75.12 mol/m/sup 3/ (20-1330 Torr). /sup 13/C T/sub 1/ values are shorter than /sup 1/H T/sub 1/ values by a factor of ca. 100 at comparable densities. The nuclear Overhauser enhancement factor, /eta/, is 0.0 /plus minus/ 0.02 at densities between 11 and 85.3 mol/m/sup 3/ (200 and 1500 Torr), demonstrating that dipole-dipole relaxation is relatively inefficient in this region. The spin-rotation coupling constant, C/sub eff/, for /sup 13/C nuclei in benzene is estimated to be /vert bar/1602 (68)/vert bar/ Hz.

  12. Dynamic 13C NMR analysis of oxidative metabolism in the in vivo canine myocardium.

    PubMed

    Robitaille, P M; Rath, D P; Abduljalil, A M; O'Donnell, J M; Jiang, Z; Zhang, H; Hamlin, R L

    1993-12-15

    Oxidative metabolism in the in vivo canine myocardium was studied noninvasively using 13C-enriched acetate and non-steady state 13C NMR techniques. Under low workload conditions, the myocardium oxidized the infused [2-13C]acetate and incorporated the labeled carbon into the glutamate pool as expected. This conclusion stems from the rapid enrichment of the C-2, C-3, and C-4 carbons of glutamic acid both under in vivo conditions and in extracts. Surprisingly, [2-13C]acetate uptake was not observed at high workloads as reflected by an absence of glutamate pool enrichment at these rate pressure products. Rather, the myocardium selected its substrate from an endogenous pool. Since free acetate can directly cross the inner mitochondrial membrane and be converted to acetyl-CoA through acetyl-CoA synthetase, these results support workload-dependent regulation of substrate access to the mitochondrial CoASH pool. As such, we advance the hypothesis that the selection of substrate for condensation with CoASH and subsequent oxidation in the tricarboxylic acid cycle is regulated kinetically through the Km values of the appropriate condensation enzymes and through the absolute levels of free CoASH in the mitochondria. PMID:8253751

  13. Multi-Spectroscopic Analysis of Seed Quality and 13C-Stable-Iotopologue Monitoring in Initial Growth Metabolism of Jatropha curcas L.

    PubMed Central

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    In the present study, we applied nuclear magnetic resonance (NMR), as well as near-infrared (NIR) spectroscopy, to Jatropha curcas to fulfill two objectives: (1) to qualitatively examine the seeds stored at different conditions, and (2) to monitor the metabolism of J. curcas during its initial growth stage under stable-isotope-labeling condition (until 15 days after seeding). NIR spectra could non-invasively distinguish differences in storage conditions. NMR metabolic analysis of water-soluble metabolites identified sucrose and raffinose family oligosaccharides as positive markers and gluconic acid as a negative marker of seed germination. Isotopic labeling patteren of metabolites in germinated seedlings cultured in agar-plate containg 13C-glucose and 15N-nitrate was analyzed by zero-quantum-filtered-total correlation spectroscopy (ZQF-TOCSY) and 13C-detected 1H-13C heteronuclear correlation spectroscopy (HETCOR). 13C-detected HETOCR with 13C-optimized cryogenic probe provided high-resolution 13C-NMR spectra of each metabolite in molecular crowd. The 13C-13C/12C bondmer estimated from 1H-13C HETCOR spectra indicated that glutamine and arginine were the major organic compounds for nitrogen and carbon transfer from roots to leaves. PMID:25401292

  14. Characterization of cerebral glutamine uptake from blood in the mouse brain: implications for metabolic modeling of 13C NMR data

    PubMed Central

    Bagga, Puneet; Behar, Kevin L; Mason, Graeme F; De Feyter, Henk M; Rothman, Douglas L; Patel, Anant B

    2014-01-01

    13C Nuclear Magnetic Resonance (NMR) studies of rodent and human brain using [1-13C]/[1,6-13C2]glucose as labeled substrate have consistently found a lower enrichment (∼25% to 30%) of glutamine-C4 compared with glutamate-C4 at isotopic steady state. The source of this isotope dilution has not been established experimentally but may potentially arise either from blood/brain exchange of glutamine or from metabolism of unlabeled substrates in astrocytes, where glutamine synthesis occurs. In this study, the contribution of the former was evaluated ex vivo using 1H-[13C]-NMR spectroscopy together with intravenous infusion of [U-13C5]glutamine for 3, 15, 30, and 60 minutes in mice. 13C labeling of brain glutamine was found to be saturated at plasma glutamine levels >1.0 mmol/L. Fitting a blood–astrocyte–neuron metabolic model to the 13C enrichment time courses of glutamate and glutamine yielded the value of glutamine influx, VGln(in), 0.036±0.002 μmol/g per minute for plasma glutamine of 1.8 mmol/L. For physiologic plasma glutamine level (∼0.6 mmol/L), VGln(in) would be ∼0.010 μmol/g per minute, which corresponds to ∼6% of the glutamine synthesis rate and rises to ∼11% for saturating blood glutamine concentrations. Thus, glutamine influx from blood contributes at most ∼20% to the dilution of astroglial glutamine-C4 consistently seen in metabolic studies using [1-13C]glucose. PMID:25074745

  15. Comparison of the solution and crystal structures of staphylococcal nuclease with /sup 13/C and /sup 15/N chemical shifts used as structural fingerprints

    SciTech Connect

    Cole, H.B.R.; Sparks, S.W.; Torchia, D.A.

    1988-09-01

    The authors report high-resolution /sup 13/C and /sup 15/N NMR spectra of crystalline staphylococcal nuclease (Nase) complexed to thymidine 3',5'-diphosphate and Ca/sup 2+/. High sensitivity and resolution are obtained by applying solid-state NMR techniques-high power proton decoupling and cross-polarization magic angle sample spinning (CPMASS)-to protein samples that have been efficiently synthesized and labeled by an overproducing strain of Escherichia coli. A comparison of CPMASS and solution spectra of Nase labeled with either (methyl-/sup 13/C)methionine or (/sup 15/)valine shows that the chemical shifts in the crystalline and solution states are virtually identical. This result is strong evidence that the protein conformations in the solution and crystalline states are nearly the same. Because of the close correspondence of the crystal and solution chemical shifts, sequential assignments obtained in solution apply to the crystal spectra. It should therefore be possible to study the molecular structure and dynamics of many sequentially assigned atomic sites in Nase crystals. Similar experiments are applicable to the growing number of proteins that can be obtained from efficient expression systems.

  16. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  17. 13C-phenylalanine breath test detects altered phenylalanine kinetics in schizophrenia patients.

    PubMed

    Teraishi, T; Ozeki, Y; Hori, H; Sasayama, D; Chiba, S; Yamamoto, N; Tanaka, H; Iijima, Y; Matsuo, J; Kawamoto, Y; Kinoshita, Y; Hattori, K; Ota, M; Kajiwara, M; Terada, S; Higuchi, T; Kunugi, H

    2012-01-01

    Phenylalanine is an essential amino acid required for the synthesis of catecholamines including dopamine. Altered levels of phenylalanine and its metabolites in blood and cerebrospinal fluid have been reported in schizophrenia patients. This study attempted to examine for the first time whether phenylalanine kinetics is altered in schizophrenia using L-[1-(13)C]phenylalanine breath test ((13)C-PBT). The subjects were 20 chronically medicated schizophrenia patients (DSM-IV) and the same number of age- and sex-matched controls. (13)C-phenylalanine (99 atom% (13)C; 100 mg) was administered orally and the breath (13)CO(2) /(12)CO(2) ratio was monitored for 120 min. The possible effect of antipsychotic medication (risperidone (RPD) or haloperidol (HPD) treatment for 21 days) on (13)C-PBT was examined in rats. Body weight (BW), age and diagnostic status were significant predictors of the area under the curve of the time course of Δ(13)CO(2) (‰) and the cumulative recovery rate (CRR) at 120 min. A repeated measures analysis of covariance controlled for age and BW revealed that the patterns of CRR change over time differed between the patients and controls and that Δ(13)CO(2) was lower in the patients than in the controls at all sampling time points during the 120 min test, with an overall significant difference between the two groups. Chronic administration of RPD or HPD had no significant effect on (13)C-PBT indices in rats. Our results suggest that (13)C-PBT is a novel laboratory test that can detect altered phenylalanine kinetics in chronic schizophrenia patients. Animal experiments suggest that the observed changes are unlikely to be attributable to antipsychotic medication. PMID:22832963

  18. Changes in dynamics of SRE-RNA on binding to the VTS1p-SAM domain studied by 13C NMR relaxation.

    PubMed

    Oberstrass, Florian C; Allain, Frédéric H-T; Ravindranathan, Sapna

    2008-09-10

    RNA recognition by proteins is often accompanied by significant changes in RNA dynamics in addition to conformational changes. However, there are very few studies which characterize the changes in molecular motions in RNA on protein binding. We present a quantitative (13)C NMR relaxation study of the changes in RNA dynamics in the pico-nanosecond time scale and micro-millisecond time scale resulting from interaction of the stem-loop SRE-RNA with the VTS1p-SAM domain. (13)C relaxation rates of the protonated carbons of the nucleotide base and anomeric carbons have been analyzed by employing the model-free formalism, for a fully (13)C/(15)N-labeled sample of the SRE-RNA in the free and protein-bound forms. In the free RNA, the nature of molecular motions are found to be distinctly different in the stem and the loop region. On binding to the protein, the nature of motions becomes more homogeneous throughout the RNA, with many residues showing increased flexibility at the aromatic carbon sites, while the anomeric carbon sites become more rigid. Surprisingly, we also observe indications of a slow collective motion of the RNA in the binding pocket of the protein. The observation of increased motions on binding is interesting in the context of growing evidence that binding does not always lead to motional restrictions and the resulting entropy gain could favor the free energy of association. PMID:18698768

  19. Proton-Enhanced 13C Nuclear Magnetic Resonance of Lipids and Biomembranes

    PubMed Central

    Urbina, Julio; Waugh, J. S.

    1974-01-01

    A recently developed nuclear double resonance technique which permits sensitive detection, together with high resolution, of rare spins in solids or other dipolar-coupled nuclear systems [Pines, Gibby, and Waugh (1973) J. Chem. Phys. 59, 569] has been applied to the study of natural abundance 13C-nuclear magnetic resonance in lipid mesophases and of selectively labeled carbon sites in bacterial membranes. Detailed microscopic information on the molecular organization and phase transitions of the lipid phases and their interaction with ions and other molecules can be obtained from the study of the chemical shift anisotropies and dynamical aspects of the 13C NMR spectra of unsonicated lipid dispersions (liposomes). Experiments are reported which demonstrated the feasibility of quantitatively observing the 13C-nuclear magnetic resonance of specifically labeled sites in unperturbed Escherichia coli membrane vesicles for the study of the physical state of the lipids with the aim of relating it to the known lipid-dependent functional properties of the membranes. PMID:4531036

  20. Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine

    PubMed Central

    Najac, Chloé; Chaumeil, Myriam M.; Kohanbash, Gary; Guglielmetti, Caroline; Gordon, Jeremy W.; Okada, Hideho; Ronen, Sabrina M.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized 13C probe, [6-13C]-arginine, to image arginase activity. We show that [6-13C]-arginine can be hyperpolarized, and hyperpolarized [13C]-urea production from [6-13C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [13C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-13C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages. PMID:27507680

  1. Easy Extraction Method To Evaluate δ13C Vanillin by Liquid Chromatography-Isotopic Ratio Mass Spectrometry in Chocolate Bars and Chocolate Snack Foods.

    PubMed

    Bononi, Monica; Quaglia, Giancarlo; Tateo, Fernando

    2015-05-20

    An easy extraction method that permits the use of a liquid chromatography-isotopic ratio mass spectrometry (LC-IRMS) system to evaluate δ(13)C of vanillin in chocolate products and industrial flavorings is presented. The method applies the determination of stable isotopes of carbon to discriminate between natural vanillin from vanilla beans and vanillin from other sources (mixtures from beans, synthesis, or biotechnology). A series of 13 chocolate bars and chocolate snack foods available on the Italian market and 8 vanilla flavorings derived from industrial quality control processes were analyzed. Only 30% of products considered in this work that declared "vanilla" on the label showed data that permitted the declaration "vanilla" according to European Union (EU) Regulation 1334/2008. All samples not citing "vanilla" or "natural flavoring" on the label gave the correct declaration. The extraction method is presented with data useful for statistical evaluation. PMID:25965784