Science.gov

Sample records for 14-15 micron two-color

  1. 8-9 and 14-15 Micron Two-Color 640x486 GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Singh, A.; Liu, J. K.; Rafol, S. B.; Luong, E. M.; Mumolo, J. M.; Tran, N. Q.; Vincent, J. D.; Shott, C. A.

    2000-01-01

    An optimized long-wavelength two-color Quantum Well Infrared Photodetector (QWIP) device structure has been designed. This device structure was grown on a three inch semi-insulating GaAs substrate by molecular beam epitaxy (MBE). This wafer was processed into several 640x486 format monolithically integrated 8-9 and 14-15 micron two color (or dual wavelength) QWIP focal plane arrays (FPAs). These FPAs were then hybridized to 640x486 silicon CMOS readout multiplexers. A thinned (i.e., substrate removed) FPA hybrid was integrated into a liquid helium cooled dewar to perform electrical and optical characterization and to demonstrate simultaneous two-color imagery. The 8-9 micron detectors in the FPA have shown background limited performance (BLIP) at 70 K operating temperature, at 300 K background with f/2 cold stop. The 14-15 micron detectors of the FPA have reached BLIP at 40 K operating temperature at the same background conditions. In this presentation we discuss the performance of this long-wavelength dualband QWIP FPA in quantum efficiency, detectivity, noise equivalent temperature difference (NEAT), uniformity, and operability.

  2. 8-9 and 14-15 meu Two-Color 640x486 GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Guanapala, S.; Bandara, S.; Singh, A.; Liu, J.; Rafol, S.; Luong, E.; Mumolo, J.; Tran, N.; Vincent, J.; Shott, C.; Long, J.; LeVan, P.

    1999-01-01

    An optimized long-wavelength two-color Quantum Well Infrared Phototdetector (QWIP) device structure has been designed. This device structure was grown on a three-inch semi-insulating GaAs substrate by molecular beam epitaxy (MBE).

  3. Two-color infrared detector

    DOEpatents

    Klem, John F; Kim, Jin K

    2014-05-13

    A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.

  4. Standard format two-color CMOS ROIC for SLS detectors

    NASA Astrophysics Data System (ADS)

    Simolon, Brian; Aziz, Naseem; Hansen, Randy; Kurth, Eric; Lam, Simon; Petronio, Susan; Woolaway, James

    2011-05-01

    The ISC0903 is a 320 × 256, standard format, two-color CMOS readout integrated circuit (ROIC) designed for strained-layer superlattice (SLS) detectors. The detector interface is supported through one input pad in each 30 micron pixel. One bit in the serial control word programs the chip to automatically adjust all biases and timing to allow for the integration of either electrons or holes. This feature allows users to easily operate this ROIC with a wide variety of p-on-n or n-on-p detectors. The ROIC has been specifically designed to allow for both polarities of detectors to be placed back-to-back and to connect to the ROIC through the one input pad to obtain a two-color image. The two-color image is achieved by switching the ROIC mode between the two colors on a per-frame basis. This paper will describe the interface, design, and features of the ISC0903 ROIC.

  5. Two-color QCD at high density

    NASA Astrophysics Data System (ADS)

    Boz, Tamer; Giudice, Pietro; Hands, Simon; Skullerud, Jon-Ivar; Williams, Anthony G.

    2016-01-01

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor'kov propagator. We express the Gor'kov propagator in terms of form factors and present recent lattice simulation results.

  6. Two-Color Laser Speckle Shift Strain Measurement System

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Krasowski, Michael J.; Oberle, Lawrence G.; Greer, Lawrence C., III; Spina, Daniel; Barranger, John

    1996-01-01

    A two color laser speckle shift strain measurement system based on the technique of Yamaguchi was designed. The dual wavelength light output from an Argon Ion laser was coupled into two separate single-mode optical fibers (patchcords). The output of the patchcords is incident on the test specimen (here a structural fiber). Strain on the fiber, in one direction, is produced using an Instron 4502. Shifting interference patterns or speckle patterns will be detected at real-time rates using 2 CCD cameras with image processing performed by a hardware correlator. Strain detected in fibers with diameters from 21 microns to 143 microns is expected to be resolved to 15 mu epsilon. This system was designed to be compact and robust and does not require surface preparation of the structural fibers.

  7. Two-color quantum well infrared photodetector focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bundas, Jason; Patnaude, Kelly; Dennis, Richard; Burrows, Douglas; Cook, Robert; Reisinger, Axel; Sundaram, Mani; Benson, Robert; Woolaway, James; Schlesselmann, John; Petronio, Susan

    2006-05-01

    QmagiQ LLC, has recently completed building and testing high operability two-color Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs). The 320 x 256 format dual-band FPAs feature 40-micron pixels of spatially registered QWIP detectors based on III-V materials. The vertically stacked detectors in this specific midwave/longwave (MW/LW) design are tuned to absorb in the respective 4-5 and 8-9 micron spectral ranges. The ISC0006 Readout Integrated Circuit (ROIC) developed by FLIR Systems Inc. and used in these FPAs features direct injection (DI) input circuitry for high charge storage with each unit cell containing dual integration capacitors, allowing simultaneous scene sampling and readout for the two distinct wavelength bands. Initial FPAs feature pixel operabilities better than 99%. Focal plane array test results and sample images will be presented.

  8. Two color far infrared laser interferometer

    SciTech Connect

    Kawahata, K.; Akiyama, T.; Pavlichenko, R.; Tanaka, K.; Tokuzawa, T.; Ito, Y.; Okajima, S.; Nakayama, K.; Wood, K.

    2006-10-15

    Two color interferometer using a short wavelength far infrared laser has been developed for high performance plasmas on large helical device and for future fusion devices such as ITER. High power laser lines simultaneously oscillating at 57.2 and 47.6 {mu}m were achieved in a CO{sub 2}-laser-pumped CH{sub 3}OD laser. By introducing Ge:Ga photoconductive detectors operating at liquid He temperature, we have successfully detected two color beat signals (0.55 and 1.2 MHz) with excellent signal-to-noise ratio ({approx}40 dB). These beat signals were fed into phase comparators for phase measurement after passing through intermediate frequency bandpass filters. Two color far infraned laser interferometer work was successful in the demonstration of mechanical vibration compensation.

  9. Wakefield generation via two color laser pulses

    SciTech Connect

    Jha, Pallavi; Saroch, Akanksha; Kumar Verma, Nirmal

    2013-05-15

    The analytical study for the evolution of longitudinal as well as transverse electric wakefields, generated via passage of two color laser pulses through uniform plasma, has been presented in the mildly relativistic regime. The frequency difference between the two laser pulses is assumed to be equal to the plasma frequency, in the present analysis. The relative angle between the directions of polarization of the two laser pulses is varied and the wakefield amplitudes are compared. Further, the amplitude of the excited wakes by two color pulses are compared with those generated by a single laser pulse.

  10. Demonstration of KHILS two-color IR projection capability

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence E.; Coker, Jason S.; Garbo, Dennis L.; Olson, Eric M.; Murrer, Robert Lee, Jr.; Bergin, Thomas P.; Goldsmith, George C., II; Crow, Dennis R.; Guertin, Andrew W.; Dougherty, Michael; Marler, Thomas M.; Timms, Virgil G.

    1998-07-01

    For more than a decade, there has been considerable discussion about using different IR bands for the detection of low contrast military targets. Theory predicts that a target can have little to no contrast against the background in one IR band while having a discernible signature in another IR band. A significant amount of effort has been invested towards establishing hardware that is capable of simultaneously imaging in two IR bands to take advantage of this phenomenon. Focal plane arrays (FPA) are starting to materialize with this simultaneous two-color imaging capability. The Kinetic Kill Vehicle Hardware-in-the-loop Simulator (KHILS) team of the Air Force Research Laboratory and the Guided Weapons Evaluation Facility (GWEF), both at Eglin AFB, FL, have spent the last 10 years developing the ability to project dynamic IR scenes to imaging IR seekers. Through the Wideband Infrared Scene Projector (WISP) program, the capability to project two simultaneous IR scenes to a dual color seeker has been established at KHILS. WISP utilizes resistor arrays to produce the IR energy. Resistor arrays are not ideal blackbodies. The projection of two IR colors with resistor arrays, therefore, requires two optically coupled arrays. This paper documents the first demonstration of two-color simultaneous projection at KHILS. Agema cameras were used for the measurements. The Agema's HgCdTe detector has responsivity from 4 to 14 microns. A blackbody and two IR filters (MWIR equals 4.2 t 7.4 microns, LWIR equals 7.7 to 13 microns) were used to calibrate the Agema in two bands. Each filter was placed in front of the blackbody one at a time, and the temperature of the blackbody was stepped up in incremental amounts. The output counts from the Agema were recorded at each temperature. This calibration process established the radiance to Agema output count curves for the two bands. The WISP optical system utilizes a dichroic beam combiner to optically couple the two resistor arrays. The

  11. Phase control of two-color filamentation

    NASA Astrophysics Data System (ADS)

    Doussot, J.; Béjot, P.; Karras, G.; Billard, F.; Faucher, O.

    2015-09-01

    An original way to control the nonlinear propagation of an intense pulse is presented. The co-propagation of a weak (≃ 1%) third-harmonic pulse with an intense laser pulse experiencing filamentation allows control of the nonlinear propagation of the latter. Because of quantum interference during the two-color ionisation process, the latter can be significantly enhanced or suppressed by a simple tuning of the relative phase between the two fields. As a first application, we demonstrate the production and control of an axially modulated plasma channel. Finally, an analytical formula describing the two-color ionisation rate as a function of the relative phase and intensity of the two fields is presented and tested in a propagation code. The numerical results successfully reproduce the experimental ones.

  12. Millimeter accuracy satellites for two color ranging

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1993-01-01

    The principal technical challenge in designing a millimeter accuracy satellite to support two color observations at high altitudes is to provide high optical cross-section simultaneously with minimal pulse spreading. In order to address this issue, we provide, a brief review of some fundamental properties of optical retroreflectors when used in spacecraft target arrays, develop a simple model for a spherical geodetic satellite, and use the model to determine some basic design criteria for a new generation of geodetic satellites capable of supporting millimeter accuracy two color laser ranging. We find that increasing the satellite diameter provides: a larger surface area for additional cube mounting thereby leading to higher cross-sections; and makes the satellite surface a better match for the incoming planar phasefront of the laser beam. Restricting the retroreflector field of view (e.g. by recessing it in its holder) limits the target response to the fraction of the satellite surface which best matches the optical phasefront thereby controlling the amount of pulse spreading. In surveying the arrays carried by existing satellites, we find that European STARLETTE and ERS-1 satellites appear to be the best candidates for supporting near term two color experiments in space.

  13. Optimum wavelengths for two color ranging

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1993-01-01

    The range uncertainties associated with the refractive atmosphere can be mitigated by the technique of two color, or dual wavelength, ranging. The precision of the differential time of flight (DTOF) measurement depends on the atmospheric dispersion between the two wavelengths, the received pulsewidths and photoelectron counts, and on the amount of temporal averaging. In general, the transmitted wavelengths are not independently chosen but instead are generated via nonlinear optics techniques (harmonic crystals, Raman scattering, etc.) which also determine their relative pulsewidths. The mean received photoelectrons at each wavelength are calculated via the familiar radar link equation which contains several wavelength dependent parameters. By collecting the various wavelength dependent terms, one can define a wavelength figure of merit for a two color laser ranging system. In this paper, we apply the wavelength figure of merit to the case of an extremely clear atmosphere and draw several conclusions regarding the relative merits of fundamental-second harmonic, fundamental-third harmonic, second-third harmonic, and Raman two color systems. We find that, in spite of the larger dispersion between wavelengths, fundamental-third harmonic systems have the lowest figure of merit due to a combination of poor detector performance at the fundamental and poor atmospheric transmission at the third harmonic. The fundamental-second harmonic systems (approximately 700 nm and 350 nm) have the highest figure of merit, but second-third harmonic systems, using fundamental transmitters near 1000 nm, are a close second. Raman-shifted transmitters appear to offer no advantage over harmonic systems because of the relatively small wavelength separation that can be achieved in light gases such as hydrogen and the lack of good ultrashort pulse transmitters with an optimum fundamental wavelength near 400 nm.

  14. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1993-01-01

    Holographic interferometry is a primary candidate for the measurement of temperature and concentration in various crystal growth experiments destined for space. The method measures refractive index changes in the experiment test cell. A refractive index change can be caused by concentration changes, temperature changes, or a combination of temperature and concentration changes. If the refractive index changes are caused by temperature and concentration changes occurring simultaneously in the experiment test cell, the contributions by the two effects cannot be separated by conventional measurement methods. By using two wavelengths, two independent interferograms can be produced from the reconstruction of the hologram. The two interferograms will be different due to dispersion properties of fluid materials. These differences provide the additional information that allows the separation of simultaneously occurring temperature and concentration gradients. There is no other technique available that can provide this type of information. The primary objectives of this effort are to experimentally verify the mathematical theory of two color holographic interferometry and to determine the practical value of this technique for space application. To achieve these objectives, the accuracy and sensitivity of the technique must be determined for geometry's and materials that are relevant to the Materials Processing in the Space program of NASA. This will be achieved through the use of a specially designed two-color holographic interferometry breadboard optical system. In addition to experiments to achieve the primary goals, the breadboard will also provide inputs to the design of an optimum space flight system.

  15. Two-color resonant filamentation in gases

    NASA Astrophysics Data System (ADS)

    Doussot, J.; Béjot, P.; Faucher, O.

    2016-07-01

    In this paper, it is shown that two-photon resonance involving a fundamental field and one of its odd harmonic strongly influences the filamentation process, i.e., the nonlinear propagation of an ultrashort and ultraintense laser field. This particular situation happens, for instance, when a 400 nm fundamental field propagates together with its third harmonic in krypton. Using three-dimensional ab initio calculations, the optical response of krypton is evaluated and the underlying nonlinear refractive indices are extracted. It is found that the resonance also exacerbates higher-order nonlinear processes. Injecting the retrieved higher-order Kerr indices in a nonlinear propagation solver, it is found that the resonance leads to an enhanced defocusing cross-phase modulation that strongly participates to the filament stabilization. This work sheds a light on the mechanism of filamentation, in particular, in the ultraviolet range, where two-color two-photon resonances are expected to occur in many atomic gases.

  16. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Weber, David C.

    1995-01-01

    Holographic interferometry is a primary candidate for determining temperature and concentration in crystal growth experiments designed for space. The method measures refractive index changes within the fluid of an experimental test cell resulting from temperature and/or concentration changes. When the refractive index changes are caused by simultaneous temperature and concentration changes, the contributions of the two effects cannot be separated by single wavelength interferometry. By using two wavelengths, however, two independent interferograms can provide the additional independent equation required to determine the two unknowns. There is no other technique available that provides this type of information. The primary objectives of this effort were to experimentally verify the mathematical theory of two color holographic interferometry (TCHI) and to determine the practical value of this technique for space application. In the foregoing study, the theory of TCHI has been tested experimentally over a range of interest for materials processing in space where measurements of temperature and concentration in a solution are required. New techniques were developed and applied to stretch the limits beyond what could be done with existing procedures. The study resulted in the production of one of the most advanced, enhanced sensitivity holographic interferometers in existence. The interferometric measurements made at MSFC represent what is believed to be the most accurate holographic interferometric measurements made in a fluid to date. The tests have provided an understanding of the limitations of the technique in practical use.

  17. Storage ring two-color free-electron laser

    NASA Astrophysics Data System (ADS)

    Yan, J.; Hao, H.; Li, J. Y.; Mikhailov, S. F.; Popov, V. G.; Vinokurov, N. A.; Huang, S.; Wu, J.; Günster, S.; Wu, Y. K.

    2016-07-01

    We report a systematic experimental study of a storage ring two-color free-electron laser (FEL) operating simultaneously in the infrared (IR) and ultraviolet (UV) wavelength regions. The two-color FEL lasing has been realized using a pair of dual-band high-reflectivity FEL mirrors with two different undulator configurations. We have demonstrated independent wavelength tuning in a wide range for each lasing color, as well as harmonically locked wavelength tuning when the UV lasing occurs at the second harmonic of the IR lasing. Precise power control of two-color lasing with good power stability has also been achieved. In addition, the impact of the degradation of FEL mirrors on the two-color FEL operation is reported. Furthermore, we have investigated the temporal structures of the two-color FEL beams, showing simultaneous two-color micropulses with their intensity modulations displayed as FEL macropulses.

  18. Development of a two-color FQI

    SciTech Connect

    Butcher, T.; Wei, G.

    1996-07-01

    The Flame Quality Indicator (FQI) concept was developed at Brookhaven National Laboratory as a simple device which could be used to monitor oil burner flames and indicate when a problem was starting to occur. Fault situations which could be identified by the FQI include: fouled nozzle, increased or decreased excess air, blocked air inlet or flue, and use of low quality oil. The basic concept of the FQI is quite simple. A conventional cadmium sulfide photocell is used to measure the amount of light emitted from an oil burner flame when the appliance is fully warmed-up. The measured amount of light is compared to a set point, established during burner tune-up. If the two intensities differ by more than a set range, a {open_quotes}service required{close_quotes} signal is produced. The amount of light which is emitted from an oil burner flame depends upon the amount of {open_quotes}soot{close_quotes} or carbon in the flame, the size and shape of the flame, and the flame temperature. The quality of flame is practically judged by the amount of soot which it is producing and for this reason it is necessary to eliminate effects of other parameters. Temperature is expected to be the most important of these. The FQI eliminates effects due to the chamber environment by establishing a set point for each specific appliance. The transient temperature effects are accounted for by examining the flame brightness only at a single time during the firing cycle. BNL is currently involved with the development of a two-color approach to the monitoring of flame quality. The basic concept involved is the measurement of both flame temperature and total amount of light emitted to allow a more direct estimate to be made of the amount of soot being produced and so the flame quality. The objective is to develop a more sensitive measurement which may be more universally applicable. This paper provides a summary of our approach and results to date in this project.

  19. Two-color double exposure photographic recording technique.

    PubMed

    Stricker, J

    1989-05-15

    A two-color double exposure technique is proposed for recording two close states of an object on the same photographic film. The idea is to use a two-color laser for illumination, one color for each state of the object, and a single photographic plate. After being developed, the image of each state may be observed separately. The technique is demonstrated for the deferred moire deflectometry where two closely displaced fringe patterns have to be recorded and resolved. PMID:20548749

  20. Two-color double exposure photographic recording technique

    NASA Technical Reports Server (NTRS)

    Stricker, Josef

    1989-01-01

    A two-color double exposure technique is proposed for recording two close states of an object on the same photographic film. The idea is to use a two-color laser for illumination, one color for each state of the object, and a single photographic plate. After being developed, the image of each state may be observed separately. The technique is demonstrated for the deferred moire deflectometry where two closely displaced fringe patterns have to be recorded and resolved.

  1. 15 CFR 14.15 - Metric system of measurement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.15 Metric system of measurement. The Metric Conversion... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Metric system of measurement. 14.15... system is the preferred measurement system for U.S. trade and commerce. The Act requires each...

  2. 15 CFR 14.15 - Metric system of measurement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.15 Metric system of measurement. The Metric Conversion... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Metric system of measurement. 14.15... system is the preferred measurement system for U.S. trade and commerce. The Act requires each...

  3. 15 CFR 14.15 - Metric system of measurement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.15 Metric system of measurement. The Metric Conversion... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Metric system of measurement. 14.15... system is the preferred measurement system for U.S. trade and commerce. The Act requires each...

  4. 15 CFR 14.15 - Metric system of measurement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Metric system of measurement. 14.15 Section 14.15 Commerce and Foreign Trade Office of the Secretary of Commerce UNIFORM ADMINISTRATIVE... system is the preferred measurement system for U.S. trade and commerce. The Act requires each...

  5. 15 CFR 14.15 - Metric system of measurement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Metric system of measurement. 14.15... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.15 Metric system of measurement. The Metric Conversion... system is the preferred measurement system for U.S. trade and commerce. The Act requires each...

  6. Rational choices for the wavelengths of a two color interferometer

    SciTech Connect

    Jobes, F.C.

    1995-07-01

    If in a two color interferometer for plasma density measurements, the two wavelengths are chosen to have a ratio that is a rational number, and if the signals from each of the wavelengths are multiplied in frequency by the appropriate integer of the rational number and then heterodyned together, the resultant signal will have all effects of component motion nulled out. A phase measurement of this signal will have only plasma density information in it. With CO{sub 2} lasers, it is possible to find suitable wavelength pairs which are close enough to rational numbers to produce an improvement of about 100 in density resolution, compared to standard two color interferometers.

  7. Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy

    SciTech Connect

    Camillone, N.; Dolocan, A.; Acharya, D.P.; Zahl, P.; Sutter, P.

    2011-05-26

    We report on two-color two-photon photoexcitation of a metal surface driven by ultrafast laser pulses and detected with a scanning tunneling microscope (STM) tip as a proximate anode. Results are presented for two cases: (i) where the tip is retracted from the surface far enough to prohibit tunneling, and (ii) where the tip is within tunneling range of the surface. A delay-modulation technique is implemented to isolate the two-color photoemission from concurrent one-color two-photon photoemission and provide subpicosecond time-resolved detection. When applied with the tip in tunneling range, this approach effectively isolates the two-photon photoexcited current signal from the conventional tunneling current and enables subpicosecond time-resolved detection of the photoexcited surface electrons. The advantage of the two-color approach is highlighted by comparison with the one-color case where optical interference causes thermal modulation of the STM tip length, resulting in tunneling current modulations that are orders of magnitude larger than the current due to photoexcitation of surface electrons. By completely eliminating this interference, and thereby avoiding thermal modulation of the STM tip length, the two-color approach represents an important step toward the ultimate goal of simultaneous subnanometer and subpicosecond measurements of surface electron dynamics by ultrafast-laser-excited STM.

  8. Large format two-color CMOS ROIC for SLS detectors

    NASA Astrophysics Data System (ADS)

    Simolon, Brian; Aziz, Naseem; Barskey, Steve; Hansen, Randy; Kurth, Eric; Long, John; Petronio, Susan

    2013-07-01

    The ISC0905 is a 640 × 512, large format, two-color CMOS readout integrated circuit (ROIC) designed for strained-layer superlattice (SLS) detectors. The detector interface is supported through one input pad in each 30 μm pixel. One bit in the serial control word programs the chip to automatically adjust all biases and timing to allow for the integration of either electrons or holes. This feature allows users to easily operate this ROIC with a wide variety of p-on-n or n-on-p detectors. The ROIC has been specifically designed to allow for both polarities of detectors to be placed back-to-back and to connect to the ROIC through a single input pad to obtain a two-color image. The two-color image is achieved by switching the ROIC mode between the two colors on a per frame basis. This paper will describe the interface, design and features of the ISC0905 ROIC as well as a summary of the characterization test results.

  9. Vertex Exponents of Two-Colored Extremal Ministrong Digraphs

    NASA Astrophysics Data System (ADS)

    Suwilo, Saib

    2011-06-01

    The exponent of a vertex v in a two-colored digraph D(2) is the smallest positive integer h+k such that for each vertex x in D(2) there is a walk of length h+k consisting of h red arcs and k blue arcs. Let D(2) be a primitive two-colored extremalministrong digraphon n vertices. If D(2) has one blue arc, the exponent of the vertices of D(2) lieson the interval [n2-5n+8,n2-3n+1]. If D(2) has two blue arcs, the exponent of the vertices in D(2) lies on the interval [n2-4n+4,n2-n].

  10. Design study for a two-color beta measurement system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Design analysis of the beam splitter combined two color beta system is presented. Conventional and dichroic beam splitters are discussed. Design analysis of the beta system employing two beams with focusing at separate points is presented. Alterations and basic parameters of the two beam system are discussed. Alterations in the focus of the initial laser and the returning beams are also discussed. Heterodyne efficiencies for the on axis and off axis reflected radiation are included.

  11. Two-color QCD with chiral chemical potential

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E.-M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.; Schreiber, A.

    2016-01-01

    The phase diagram of two-color QCD with a chiral chemical potential is studied on the lattice. The focus is on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulations are carried out with dynamical staggered fermions without rooting. The dependence of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented.

  12. 16 CFR 14.15 - In regard to comparative advertising.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false In regard to comparative advertising. 14.15... comparative advertising. (a) Introduction. The Commission's staff has conducted an investigation of industry trade associations and the advertising media regarding their comparative advertising policies. In...

  13. 50 CFR 14.15 - Personal baggage and household effects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Personal baggage and household effects. 14... Designated Ports § 14.15 Personal baggage and household effects. (a) Any person may import into or export... household effects of persons moving their residence to or from the United States may be imported or...

  14. Orbital analysis of two-color laser ranging

    NASA Astrophysics Data System (ADS)

    Schillak, S. R.

    2013-12-01

    The poster presents the results of analysis of Zimmerwald SLR data for two colors 423nm and 846 nm. Two-color laser ranging were performed by Zimmerwald SLR station from August 2002 to January 2008. The results in each color were treated as two independent stations 7810 Blue and 7810 Infrared. The station positions were determined by NASA Goddard's orbital program GEODYN-II from results of LAGEOS-1 and LAGEOS-2 satellites. The NEU positions stability were equal to 3.5 mm (N), 3.2 mm (E), 16.5 mm (U) for blue and 3.2 mm (N), 2.9 mm (E), 14.6 (U) for infrared. In the period of study were 47 common monthly points for both colors. The difference between N, E, U components in blue and infrared for common points were equal to 0.8×2.0 mm, 0.4×1.9 mm and -4.8×8.7 mm respectively. The differences between Range Biases for both colors independently for LAGEOS-1 and LAGEOS-2 were equal to -5.7×8.6 mm and for -5.0×9.5 mm respectively. The same for both satellites annual wave with amplitude 10 mm was detected. This effect can to be explain by differences in atmospheric correction for each color. This same analysis for station Concepcion (7405) couldn't to be performed due to only 8 common points. In future very important should be laser ranging in two-colors 532 nm and 1064 nm for confirmation presented here results, especially that a new sensitive APD detectors for 1064 nm are now available. The atmospheric correction is critical for SLR accuracy upgrading.

  15. 14,15-Epoxyeicosa-5,8,11-trienoic Acid (14,15-EET) Surrogates: Carboxylate Modifications

    PubMed Central

    2015-01-01

    The cytochrome P450 eicosanoid 14,15-epoxyeicosa-5,8,11-trienoic acid (14,15-EET) is a powerful endogenous autacoid that has been ascribed an impressive array of physiologic functions including regulation of blood pressure. Because 14,15-EET is chemically and metabolically labile, structurally related surrogates containing epoxide bioisosteres were introduced and have become useful in vitro pharmacologic tools but are not suitable for in vivo applications. A new generation of EET mimics incorporating modifications to the carboxylate were prepared and evaluated for vasorelaxation and inhibition of soluble epoxide hydrolase (sEH). Tetrazole 19 (ED50 0.18 μM) and oxadiazole-5-thione 25 (ED50 0.36 μM) were 12- and 6-fold more potent, respectively, than 14,15-EET as vasorelaxants; on the other hand, their ability to block sEH differed substantially, i.e., 11 vs >500 nM. These data will expedite the development of potent and specific in vivo drug candidates. PMID:25119815

  16. Spinor Slow Light and Two-Color Qubits

    NASA Astrophysics Data System (ADS)

    Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.

    2015-05-01

    We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw

  17. Two-color holography concept (T-CHI)

    NASA Technical Reports Server (NTRS)

    Vikram, C. S.; Caulfield, H. J.; Workman, G. L.; Trolinger, J. D.; Wood, C. P.; Clark, R. L.; Kathman, A. D.; Ruggiero, R. M.

    1990-01-01

    The Material Processing in the Space Program of NASA-MSFC was active in developing numerous optical techniques for the characterization of fluids in the vicinity of various materials during crystallization and/or solidification. Two-color holographic interferometry demonstrates that temperature and concentration separation in transparent (T-CHI) model systems is possible. The experiments were performed for particular (succinonitrile) systems. Several solutions are possible in Microgravity Sciences and Applications (MSA) experiments on future Shuttle missions. The theory of the T-CHI concept is evaluated. Although particular cases are used for explanations, the concepts developed will be universal. A breadboard system design is also presented for ultimate fabrication and testing of theoretical findings. New developments in holography involving optical fibers and diode lasers are also incorporated.

  18. Two-color ghost imaging with enhanced angular resolving power

    SciTech Connect

    Karmakar, Sanjit; Shih, Yanhua

    2010-03-15

    This article reports an experimental demonstration on nondegenerate, two-color, biphoton ghost imaging which reproduced a ghost image with enhanced angular resolving power by means of a greater field of view compared with that of classical imaging. With the same imaging magnification, the enhanced angular resolving power and field of view compared with those of classical imaging are 1.25:1 and 1.16:1, respectively. The enhancement of angular resolving power depends on the ratio between the idler and the signal photon frequencies, and the enhancement of the field of view depends mainly on the same ratio and also on the distances of the object plane and the imaging lens from the two-photon source. This article also reports the possibility of reproducing a ghost image with the enhancement of the angular resolving power by means of a greater imaging amplification compared with that of classical imaging.

  19. Multidimensional data reconstruction for two color fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dilipkumar, Shilpa; Mondal, Partha Pratim

    2012-12-01

    We propose an iterative data reconstruction technique specifically designed for multi-dimensional multi-color fluorescence imaging. Markov random field is employed (for modeling the multi-color image field) in conjunction with the classical maximum likelihood method. It is noted that, ill-posed nature of the inverse problem associated with multi-color fluorescence imaging forces iterative data reconstruction. Reconstruction of three-dimensional (3D) two-color images (obtained from nanobeads and cultured cell samples) show significant reduction in the background noise (improved signal-to-noise ratio) with an impressive overall improvement in the spatial resolution (≈250 nm) of the imaging system. Proposed data reconstruction technique may find immediate application in 3D in vivo and in vitro multi-color fluorescence imaging of biological specimens.

  20. Two-color beam generation based on wakefield excitation

    NASA Astrophysics Data System (ADS)

    Bettoni, S.; Prat, E.; Reiche, S.

    2016-05-01

    Several beam manipulation methods have been studied and experimentally tested to generate two-color photon beams in free electron laser facilities to accommodate the user requests. We propose to use the interaction of the beam with an oscillating longitudinal wakefield source to obtain a suitable electron beam structure. The bunch generates two subpulses with different energies and delayed in time passing through a magnetic chicane after its longitudinal phase space has been modulated by the wakefield source. According to this approach the power of the emitted radiation is not degraded compared to the monochromatic beam, and the setup in the machine is quite simple because the bunch is manipulated only in the high energy section, where it is more rigid. We present the design applied to SwissFEL. We identified the parameters and the corresponding range of tunability of the time and energy separation among the two subbunches.

  1. Two-color vibrationally mediated photodissociation of nitric acid

    SciTech Connect

    Sinha, A.; Vander Wal, R.L.; Butler, L.J.; Crim, F.F.

    1987-08-27

    Two-color vibrationally mediated photodissociation, in which one photon excites an overtone vibration and a second photon of a different wavelength dissociates the highly vibrationally excited molecule prepared by the first photon, is a means of investigating the role of vibrational excitation in photodissociation and of obtaining vibrational overtone excitation spectra. Application of this scheme to nitric acid (HONO/sub 2/) involves exciting the third OH stretching overtone vibration (4v/sub OH/), photodissociating the vibrationally excited molecule with 355-nm light, and detecting the OH fragment using laser-induced fluorescence. These measurements show that most of the OH products are vibrationally unexcited and that about a quarter of the available energy goes into relative translation. The vibrational overtone excitation spectrum has congested P-, Q-, and R-branch rotational structure that forms a 50-cm/sup -1/-wide band.

  2. Two-color detection with charge sensitive infrared phototransistors

    SciTech Connect

    Kim, Sunmi Kajihara, Yusuke; Komiyama, Susumu; Ueda, Takeji; Satoh, Takashi

    2015-11-02

    Highly sensitive two-color detection is demonstrated at wavelengths of 9 μm and 14.5 μm by using a charge sensitive infrared phototransistor fabricated in a triple GaAs/AlGaAs quantum well (QW) crystal. Two differently thick QWs (7 nm- and 9 nm-thicknesses) serve as photosensitive floating gates for the respective wavelengths via intersubband excitation: The excitation in the QWs is sensed by a third QW, which works as a conducting source-drain channel in the photosensitive transistor. The two spectral bands of detection are shown to be controlled by front-gate biasing, providing a hint for implementing voltage tunable ultra-highly sensitive detectors.

  3. Silicon photodiode as the two-color detector

    NASA Astrophysics Data System (ADS)

    Ponomarev, D. B.; Zakharenko, V. A.

    2015-11-01

    This paper describes a silicon photodiode as the two-color photodetector. The work of one photodiode in two spectral ranges is achieved due to the changes of the spectral sensitivity of the photodiodes in the transition from photodiode mode for photovoltaic in the short circuit mode. On the basis of silicon photodiode FD-256 the layout of the spectral ratio pyrometer was assembled and the results of theoretical calculations was confirmed experimentally. The calculated dependences of the coefficient of error of the spectral ratio pyrometer from temperature reverse voltage 10 and 100 V was presented. The calculated dependence of the instrumental error and the assessment of methodological errors of the proposed photodetector spectral ratio was done. According to the results of the presented research was set the task of development photodiode detectors which change the spectral sensitivity depending on the applied voltage.

  4. Single bump, two-color quantum dot camera

    NASA Astrophysics Data System (ADS)

    Varley, E.; Lenz, M.; Lee, S. J.; Brown, J. S.; Ramirez, D. A.; Stintz, A.; Krishna, S.; Reisinger, Axel; Sundaram, Mani

    2007-08-01

    The authors report a two-color, colocated quantum dot based imaging system used to take multicolor images using a single focal plane array (FPA). The dots-in-a-well (DWELL) detectors consist of an active region composed of InAs quantum dots embedded in In.15Ga.85As quantum wells. DWELL samples were grown using molecular beam epitaxy and fabricated into 320×256 focal plane arrays with indium bumps. The FPA was then hybridized to an Indigo ISC9705 readout circuit and tested. Calibrated blackbody measurements at a device temperature of 77K yield midwave infrared and long wave infrared noise equivalent difference in temperature of ˜55 and 70mK.

  5. A relative-intensity two-color phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1991-01-01

    The NASA LaRC has developed a relative-intensity two-color phosphor thermography system. This system has become a standard technique for acquiring aerothermodynamic data in LaRC Hypersonic Facilities Complex (HFC). The relative intensity theory and its application to the LaRC phosphor thermography system is discussed along with the investment casting technique which is critical to the utilization of the phosphor method for aerothermodynamic studies. Various approaches to obtaining quantitative heat transfer data using thermographic phosphors are addressed and comparisons between thin-film data and thermographic phosphor data on an orbiter-like configuration are presented. In general, data from these two techniques are in good agreement. A discussion is given on the application of phosphors to integration heat transfer data reduction techniques (the thin film method) and preliminary heat transfer data obtained on a calibration sphere using thin-film equations are presented. Finally, plans for a new phosphor system which uses target recognition software are discussed.

  6. Noise in two-color electronic distance meter measurements revisited

    USGS Publications Warehouse

    Langbein, J.

    2004-01-01

    Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.

  7. Global Pc 5 event of November 14--15, 1979

    SciTech Connect

    Higbie, P.R.; Baker, D.N.; Zwickl, R.D.; Belian, R.D.; Asbridge, J.R.; Fennell, J.F.; Wilken, B.; Arthur, C.W.

    1982-04-01

    Large-amplitude Pc 5 waves with 7--8 min quasi-periodic variations were observed almost continuously for the 48 hours of November 14--15, 1979, by several spacecraft in or near geostationary orbit on the dayside portions of their orbits. The waves were observed as large modulations in both the electron and ion fluxes over a wide range of energies (approx.1 to 500 keV) by the spacecraft 1976--059, 1977-007, 1979-053, P78-2, and GEOS 2 and as magnetic field peak-to-peak modulations of 15--25 ..gamma.. by the P78-2 and GOES 2 and 3 magnetometers. The remarkably long persistence of these waves contrasts substantially with observations of typical flux modulation events which usually last less than 1 hour and which typically show little modulation of the > or =150 keV proton fluxes. Data taken concurrently by the ISEE spacecraft in the solar wind and outer magnetosphere indicate that the solar wind also had unusually properties. ISEE 3 measurements indicate that the solar wind velocity (approx.350 km/s) and density (approx.2 cm/sup -3/) were simultaneously very low for this period. The alpha-to-proton ratio for the solar wind plasma attained an extremely low value (<1%) early in the event. These solar wind properties imply such a much reduced dynamic pressure on the magnetosphere during this period. Consequently, the ISEE 1 and 2 spacecraft passed through the magnetopause at the uncommonly large radial distance of 18 R/sub E/ at approx.0830 local time where the typical magnetopause geocentric distance is 12 R/sub E/. The exceptional solar wind and outer magnetospheric conditions may have determined the unusual properties of the ULF event observed near geostationary orbit. Some candidate mechanisms for producing these oscillations are presented, but no definitive explanation for this event can be given at present.

  8. Widely Tunable Two-Color Free-Electron Laser on a Storage Ring.

    PubMed

    Wu, Y K; Yan, J; Hao, H; Li, J Y; Mikhailov, S F; Popov, V G; Vinokurov, N A; Huang, S; Wu, J

    2015-10-30

    With a wide wavelength tuning range, free-electron lasers (FELs) are well suited for producing simultaneous lasing at multiple wavelengths. We present the first experimental results of a novel two-color storage ring FEL. With three undulators and a pair of dual-band mirrors, the two-color FEL can lase simultaneously in infrared (IR) around 720 nm and in ultraviolet (UV) around 360 nm. We have demonstrated independent wavelength tuning in a wide range (60 nm in IR and 24 nm in UV). We have also realized two-color harmonic operation with the UV lasing tuned to the second harmonic of the IR lasing. Furthermore, we have demonstrated good power stability with two-color lasing, and good control of the power sharing between the two colors. PMID:26565470

  9. Widely Tunable Two-Color Free-Electron Laser on a Storage Ring

    NASA Astrophysics Data System (ADS)

    Wu, Y. K.; Yan, J.; Hao, H.; Li, J. Y.; Mikhailov, S. F.; Popov, V. G.; Vinokurov, N. A.; Huang, S.; Wu, J.

    2015-10-01

    With a wide wavelength tuning range, free-electron lasers (FELs) are well suited for producing simultaneous lasing at multiple wavelengths. We present the first experimental results of a novel two-color storage ring FEL. With three undulators and a pair of dual-band mirrors, the two-color FEL can lase simultaneously in infrared (IR) around 720 nm and in ultraviolet (UV) around 360 nm. We have demonstrated independent wavelength tuning in a wide range (60 nm in IR and 24 nm in UV). We have also realized two-color harmonic operation with the UV lasing tuned to the second harmonic of the IR lasing. Furthermore, we have demonstrated good power stability with two-color lasing, and good control of the power sharing between the two colors.

  10. Development of two color laser diagnostics for the ITER poloidal polarimeter

    SciTech Connect

    Kawahata, K.; Akiyama, T.; Tanaka, K.; Nakayama, K.; Okajima, S.

    2010-10-15

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 {mu}m by using a twin optically pumped CH{sub 3}OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  11. 21 CFR 14.15 - Committees working under a contract with FDA.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Committees working under a contract with FDA. 14.15 Section 14.15 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PUBLIC HEARING BEFORE A PUBLIC ADVISORY COMMITTEE General Provisions § 14.15 Committees working under a contract with FDA. (a) FDA may...

  12. 21 CFR 14.15 - Committees working under a contract with FDA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Committees working under a contract with FDA. 14.15 Section 14.15 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PUBLIC HEARING BEFORE A PUBLIC ADVISORY COMMITTEE General Provisions § 14.15 Committees working under a contract with FDA. (a) FDA may...

  13. Propagation characteristics of two-color laser pulses in homogeneous plasma

    SciTech Connect

    Hemlata,; Saroch, Akanksha; Jha, Pallavi

    2015-11-15

    An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared with those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.

  14. Propagation characteristics of two-color laser pulses in homogeneous plasma

    NASA Astrophysics Data System (ADS)

    Hemlata, Saroch, Akanksha; Jha, Pallavi

    2015-11-01

    An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared with those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.

  15. Baryonic matter onset in two-color QCD with heavy quarks

    NASA Astrophysics Data System (ADS)

    Scior, Philipp; von Smekal, Lorenz

    2015-11-01

    We study the cold and dense regime in the phase diagram of two-color QCD with heavy quarks within a three-dimensional effective theory for Polyakov loops. This theory is derived from two-color QCD in a combined strong-coupling and hopping expansion. In particular, we study the onset of diquark density as the finite-density transition of the bosonic baryons in the two-color world. In contrast to previous studies of heavy dense QCD, our zero-temperature extrapolations are consistent with a continuous transition without binding energy. They thus provide evidence that the effective theory for heavy quarks is capable of describing the characteristic differences between diquark condensation in two-color QCD and the liquid-gas transition of nuclear matter in QCD.

  16. Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals

    NASA Astrophysics Data System (ADS)

    Liu, Youwen; Kitamura, Kenji; Takekawa, Shunji; Nakamura, Masaru; Furukawa, Yasunori; Hatano, Hideki

    2004-06-01

    The two-color photorefractive properties in undoped as-grown near-stoichiometric lithium tantalate crystals were investigated, where a near-infrared laser and a cw ultraviolet beam were used for writing and gating, respectively. The key parameters in characterizing two-color photorefractive effect, light-induced absorption change, two-color sensitivity, refractive index change, readout characteristics, and dark decay were measured by changing intensities of gating and writing beams, wavelengths of gating and writing beams for the crystals with different near-stoichiometric crystal compositions, and proton concentrations. The results showed that there exists an optimal crystal composition of around 49.65% for both sensitivity and refractive index change together with moderate lifetime of small polarons. The achieved refractive index change was on the order of 10-4, and the obtained maximum sensitivity was 0.18 cm/J. The extrapolated lifetime of holograms at room temperature in the crystals without observable OH- absorption was longer than 50 yr. The measurements of UV-induced absorption change at room temperature and low temperature of 77.3 K suggested that the unintentional impurity of Fe and intrinsic defects were responsible for two-color photorefractive effect. The excellent two-color photorefractive properties of undoped as-grown near-stoichiometric lithium tantalate crystals were discussed based on this mechanism and the physical properties of lithium tantalate.

  17. Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation

    NASA Astrophysics Data System (ADS)

    Lan, Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi

    2010-11-01

    We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulse duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.

  18. Isolated attosecond pulse generation with the chirped two-color laser field

    NASA Astrophysics Data System (ADS)

    Tai, Huiqin; Li, Fang; Wang, Zhe

    2016-07-01

    We propose a scheme to generate isolated attosecond pulse using a linearly chirped two-color laser field, which includes a fundamental laser field and a weak infrared control laser field in the multicycle regime. The fundamental laser field consists of one linearly up-chirped and one linearly down-chirped pulses. The control pulse is chirped free. We compare the attosecond pulse generated in the chirped two-color field and the chirp-free field. It is found that an IAP can be generated even without carrier envelop phase stabilization in the chirped two-color laser field with a duration of 40 fs. We also discuss the influence of the relative intensity, relative phase, time delay, and chirping parameters on the generation of IAPs.

  19. Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation

    SciTech Connect

    Lan Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi

    2010-11-15

    We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulse duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.

  20. Seeded free electron laser operating with two colors: Comments on experimental results

    NASA Astrophysics Data System (ADS)

    Carpanese, M.; Ciocci, F.; Dattoli, G.; Petralia, A.; Petrillo, V.; Torre, A.

    2016-05-01

    Free electron lasers operating with two colors are promising devices for applications. The relevant modelization has provided a good understanding of the underlying physics. In this paper we present an analysis of the experimental results obtained at SPARC_LAB concerning seeded two-colors free electron laser (FEL) operation. The use of an ad hoc developed semi-analytical model based on the small-signal FEL integral equation reproduces most of the observed phenomenology. The paper discusses the reliability of the proposed method, the range of validity and its possible improvement.

  1. Energy exchange between modes in a multimode two-color quantum dot laser with optical feedback.

    PubMed

    Virte, Martin; Pawlus, Robert; Sciamanna, Marc; Panajotov, Krassimir; Breuer, Stefan

    2016-07-15

    We investigate experimentally and theoretically the multimode dynamics of a two-color quantum dot laser subject to time-delayed optical feedback. We unveil energy exchanges between the longitudinal modes of the excited state triggered by variations of the feedback phase, and observe that the modal competition between longitudinal modes appears independently within the ground state and excited state emission. These features are accurately reproduced with a quantum dot laser model extended to take into account multiple modes for both ground and excited states. Finally, we discuss the significant impact of such behavior on feedback-based control of two-color quantum dot lasers. PMID:27420496

  2. Two-color-laser-driven direct electron acceleration in infinite vacuum.

    PubMed

    Wong, Liang Jie; Kärtner, Franz X

    2011-03-15

    We propose a direct electron acceleration scheme that uses a two-color pulsed radially polarized laser beam. The two-color scheme achieves electron acceleration exceeding 90% of the theoretical energy gain limit, over twice of what is possible with a one-color pulsed beam of equal total energy and pulse duration. The scheme succeeds by exploiting the Gouy phase shift to cause an acceleration-favoring interference of fields only as the electron enters its effectively final accelerating cycle. Optimization conditions and power scaling characteristics are discussed. PMID:21403741

  3. Origin of Two-Color Iridescence in Rock Dove’s Feather

    NASA Astrophysics Data System (ADS)

    Yoshioka, Shinya; Nakamura, Eri; Kinoshita, Shuichi

    2007-01-01

    Iridescence is observed in various kinds of animals that utilize optical interference phenomenon of microstructures to produce their brilliant colors. It appears according to the interference condition that relates the wavelength of the reflected light with the angle of view or incidence. However, the iridescence of the neck feather of rock dove looks very peculiar; the color change is limited only in two colors, green and purple, and the change occurs very suddenly by only slightly shifting the viewing angle. We show that this two-color iridescence originates from the surprisingly simple physical mechanism—thin-layer interference. The peculiarity lies in the fact that the higher-order interference condition is satisfied. This causes the sophisticated correspondence in the spectral line shape between the reflectance and the visual color sensitivities of human eye, and results in the two-color nature of the iridescence. It is also suggested that the rock dove’s vision perceives this two-color iridescence as a tool for visual signaling among rock doves.

  4. Assessing probe-specific dye and slide biases in two-color microarray data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A primary reason for using two-color microarrays is that the use of two samples labeled with different dyes on the same slide and that bind to probes on the same spot is supposed to adjust for many factors that introduce noise and errors into the analysis. Most users assume that any differences bet...

  5. Effects of a static electric field on two-color photoassociation between different atoms

    SciTech Connect

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-15

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime.

  6. Aggregation-induced emission molecules in layered matrices for two-color luminescence films.

    PubMed

    Guan, Weijiang; Lu, Jun; Zhou, Wenjuan; Lu, Chao

    2014-10-14

    We fabricated two-color luminescence ultrathin films (UTFs) composed of the layered double hydroxide host-aggregation-induced emission guests by LBL assembly. The fabricated UTFs were simple, tunable, controllable and highly luminescent. Moreover, reversible thermochromic luminescence further exhibited their potential in practical applications. PMID:25154856

  7. Two-color short-pulse laser altimeter measurements of ocean surface backscatter.

    PubMed

    Abshire, J B; McGarry, J F

    1987-04-01

    The timing and correlation properties of pulsed laser backscatter from the ocean surface have been measured with a two-color short-pulse laser altimeter. The Nd: YAG laser transmitted 70-and 35-ps wide pulses simultaneously at 532 and 355 nm at nadir, and the time-resolved returns were recorded by a receiver with 800-ps response time. The time-resolved backscatter measured at both 330- and 1291-m altitudes showed little pulse broadening due to the submeter laser spot size. The differential delay of the 355- and 532-nm backscattered waveforms were measured with a rms error of ~75 ps. The change in aircraft altitudes also permitted the change in atmospheric pressure to be estimated by using the two-color technique. PMID:20454319

  8. Dynamically induced two-color nonreciprocity in a tripod system of a moving atomic lattice

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Zhang, Yan; Yan, Xiao-Bo; Sheng, Ying; Cui, Cui-Li; Wu, Jin-Hui

    2015-11-01

    We study the two-color nonreciprocal effects of transmission and reflection in cold atoms driven into the tripod configuration and confined in a moving optical lattice. Our numerical results show that a very high contrast of the forward-backward transmission up to around 92% (reflection up to around 85%) is observable near the sharp edges of two tunable photonic band gaps at lattice speeds of several meters per second. Such two-color optical nonreciprocity is attained in fact by breaking the time-reversal symmetry with asymmetric Doppler shifts and can be dynamically manipulated by varying the driving and coupling field detunings, the probe pulse length, the atomic lattice velocity, etc.

  9. Simulation of Intense Isolated Attosecond Pulse Generation with a Two-color Laser Field

    NASA Astrophysics Data System (ADS)

    Eilanlou, Abdolreza Amani; Ishikawa, Kenichi L.; Nabekawa, Yasuo; Takahashi, Hiroyuki; Midorikawa, Katsumi

    A numerical analysis by solving the time-dependent Schrödinger equation on a neon atom within the single-active electron approximation shows that a two-color laser field synthesized from a sub-12-fs fundamental field and a detuned second harmonic field with a wavelength shorter than 380nm is suitable for generating an intense isolated attosecond pulse (IAP). We have also investigated the effects of carrier-envelope phase variation on the obtained IAP and have compared the results to those obtained from a 5-fs fundamental field alone with the same peak field amplitude to show that a more intense IAP can be generated by the two-color laser field which is useful for nonlinear experiments in the extreme ultraviolet spectral range.

  10. Two-color mid-infrared thermometer with a hollow glass optical fiber

    SciTech Connect

    Small, W. IV; Celliers, P.M.; Da Silva, L.B.; Matthews, D.L.; Soltz, B.A.

    1998-10-01

    We have developed a low-temperature optical-fiber-based two-color infrared thermometer. A single 700-{mu}m-bore hollow glass optical fiber collects and transmits radiation that is then modulated and split into two paths by a reflective optical chopper. Two different thermoelectrically cooled mid-infrared HgCdZnTe photoconductors monitor the chopped signals that are recovered with lock-in amplification. With the two previously obtained blackbody calibration equations, a computer algorithm calculates the true temperature and emissivity of a target in real time, taking into account reflection of the ambient radiation field from the target surface. The small numerical aperture of the hollow glass fiber and the fast response of the detectors, together with the two-color principle, permit high spatial and temporal resolution while allowing the user to dynamically alter the fiber-to-target distance. {copyright} 1998 Optical Society of America

  11. Design of 128×128 two-color IRFPA readout circuit

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Wang, Jinchun; Ma, Dejun

    2015-10-01

    Based on the P-N-N-P type two-color infrared focal plane array( FPA) detector structure and its equivalent circuit, the principles and realization ways of a kind of 128×128 two-color infrared focal plane readout integrated circuit( ROIC) with successively integrating and simultaneously reading out have been proposed. The cell circuit using the direct injection (DI) structure as the input stage will acquire the larger integrating capacitors. This structure meets the demand that there are two independent signal channels for both the middle and short wavelength infrareds in a cell circuit. The simulation results show that the circuit meets the predetermined design requirements, the integrating time is adjustable, the readout rate is faster than or equal to 5 MHz, the linearity of the output voltages of MW and SW reach above 99%, the power dissipation is about 68 mW.

  12. Refractive properties of TGS aqueous solution for two-color interferometry

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.; Witherow, William K.; Trolinger, James D.

    1991-01-01

    Using Cauchy's equation and previously available data, the refractive index versus wavelength relationship for triglycine sulphate aqueous solution has been determined. The variation of the index as a function of the temperature and of the concentration is then obtained using the Murphy-Alpert and the Lorentz-Lorenz relationships respectively. These refractive properties should be useful in relevant crystal growth experiments using two-color holographic and other interferometric diagnostic techniques.

  13. Two-color multiphoton ionization of diazabicyclooctane in a supersonic free jet

    NASA Astrophysics Data System (ADS)

    Fujii, Masaaki; Ebata, Takayuki; Mikami, Naohiko; Ito, Mitsuo

    1983-11-01

    Two-color multiphoton ionization (MPI) spectroscopy has been applied for diazabicyclooctane (DABCO) in a supersonic free jet. The MPI spectra due to transitions from the various vibronic levels of the S 1 (3s Rydberg) state which were excited by the first laser revealed the high Rydberg states above the adiabatic ionization potential. The ionization process and the vibrational potential of the ion are discussed.

  14. Critical needs of fringe-order accuracies in two-color holographic interferometry

    NASA Technical Reports Server (NTRS)

    Vikram, C. S.; Witherow, W. K.

    1992-01-01

    Requirements for the fringe order accuracy in two-color holographic interferometry are discussed with reference to crystal growth. A simple test cell (rectangular parallelepiped) containing a fluid is considered. The temperature and concentration variations are related to the fringe orders from the two interference patterns, and the uncertainties in the fringe orders are related to errors in the temperature and concentration determination. The formulation developed here is applied to the particular case of an aqueous solution of triglycerine sulfate as an example.

  15. Development of a new two color far infrared laser interferometer for future fusion devices

    SciTech Connect

    Kawahata, K.; Tanaka, K.; Tokuzawa, T.; Akiyama, T.; Ito, Y.; Okajima, S.; Nakayama, K.; Wylde, R.J.

    2004-10-01

    A new two color far infrared (FIR) laser interferometer under development for future fusion devices will be presented. The laser wavelength is optimized from the consideration of the beam refraction effect due to plasma density gradient and signal-to-noise ratio for an expected phase shift due to plasmas. Laser lines of 57.2 and 47.6 {mu}m are found to be suitable for the applications to high performance plasmas of Large Helical Device and future fusion devices such as the International Thermonuclear Experimental Reactor. The output power of 57.2 {mu}m CH{sub 3}OD laser is estimated to be {approx}1.6 W, which is the highest laser power in the FIR wavelength regime. The optical configuration of a new interferometer system using two colors will be proposed. In the system, one detector simultaneously detects the beat signals of the 57.2 and 47.6 {mu}m laser lines, and each interference signal can be separated electronically (1 MHz for 57.2 {mu}m and 0.84 MHz expected for 47.6 {mu}m). Mechanical vibration can be compensated by using the two color interferometer. The present status of the development of the system is also presented.

  16. Two-color high-harmonic generation in plasmas: efficiency dependence on the generating particle properties.

    PubMed

    Emelina, Anna S; Emelin, Mikhail Yu; Ganeev, Rashid A; Suzuki, Masayuki; Kuroda, Hiroto; Strelkov, Vasily V

    2016-06-27

    The high-order harmonic generation (HHG) in silver, gold, and zinc plasma plumes irradiated by orthogonally polarized two-color field is studied theoretically and experimentally. We find an increase of the HHG efficiency in comparison with the single-color case, which essentially depends on the plasma species and harmonic order. An increase of more than an order of magnitude is observed for silver plasma, whereas for gold and zinc it is lower; these results are reproduced in our calculations that include both propagation and microscopic response studies. We show that the widely used theoretical approach assuming the 1s ground state of the generating particle fails to reproduce the experimental results; the agreement is achieved in our theory using the actual quantum numbers of the outer electron of the generating particles. Moreover, our theoretical studies highlight the redistribution of the electronic density in the continuum wave packet as an important aspect of the HHG enhancement in the two-color orthogonally polarized fields with comparable intensities: in the single-color field the electronic trajectories with almost zero return energy are the most populated ones; in the two-color case the total field maximum can be shifted in time so that the trajectories with high return energies (in particular, the cut-off trajectory) become the most populated ones. PMID:27410560

  17. Two-color mixing for classifying agricultural products for safety and quality

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Chan, Diane E.

    2006-02-01

    We show that the chromaticness of the visual signal that results from the two-color mixing achieved through an optically enhanced binocular device is directly related to the band ratio of light intensity at the two selected wavebands. A technique that implements the band-ratio criterion in a visual device by using two-color mixing is presented here. The device will allow inspectors to identify targets visually in accordance with a two-wavelength band ratio. It is a method of inspection by human vision assisted by an optical device, which offers greater flexibility and better cost savings than a multispectral machine vision system that implements the band-ratio criterion. With proper selection of the two narrow wavebands, discrimination by chromaticness that is directly related to the band ratio can work well. An example application of this technique for the inspection of carcasses chickens of afficted with various diseases is given. An optimal pair of wavelengths of 454 and 578 nm was selected to optimize differences in saturation and hue in CIE LUV color space among different types of target. Another example application, for the detection of chilling injury in cucumbers, is given, here the selected wavelength pair was 504 and 652 nm. The novel two-color mixing technique for visual inspection can be included in visual devices for various applications, ranging from target detection to food safety inspection.

  18. Two-Color STED Microscopy of Living Synapses Using A Single Laser-Beam Pair

    PubMed Central

    Tønnesen, Jan; Nadrigny, Fabien; Willig, Katrin I.; Wedlich-Söldner, Roland; Nägerl, U. Valentin

    2011-01-01

    The advent of superresolution microscopy has opened up new research opportunities into dynamic processes at the nanoscale inside living biological specimens. This is particularly true for synapses, which are very small, highly dynamic, and embedded in brain tissue. Stimulated emission depletion (STED) microscopy, a recently developed laser-scanning technique, has been shown to be well suited for imaging living synapses in brain slices using yellow fluorescent protein as a single label. However, it would be highly desirable to be able to image presynaptic boutons and postsynaptic spines, which together form synapses, using two different fluorophores. As STED microscopy uses separate laser beams for fluorescence excitation and quenching, incorporation of multicolor imaging for STED is more difficult than for conventional light microscopy. Although two-color schemes exist for STED microscopy, these approaches have several drawbacks due to their complexity, cost, and incompatibility with common labeling strategies and fluorophores. Therefore, we set out to develop a straightforward method for two-color STED microscopy that permits the use of popular green-yellow fluorescent labels such as green fluorescent protein, yellow fluorescent protein, Alexa Fluor 488, and calcein green. Our new (to our knowledge) method is based on a single-excitation/STED laser-beam pair to simultaneously excite and quench pairs of these fluorophores, whose signals can be separated by spectral detection and linear unmixing. We illustrate the potential of this approach by two-color superresolution time-lapse imaging of axonal boutons and dendritic spines in living organotypic brain slices. PMID:22098754

  19. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    SciTech Connect

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  20. The t(14,15) in Mouse Strain CBA/CaH-T(14;15)6Ca/J Causes a Break in the ADAMTS12 Gene

    PubMed Central

    Acar-Perk, Bengi; Bräutigam, Karen; Grunewald, Regina; Schmutzler, Andreas; Schem, Christian; Arnold, Norbert K; Jonat, Walter; Weimer, Jörg

    2010-01-01

    The mouse strain CBA/CaH-T(14;15)6Ca/J carries a homozygous balanced reciprocal translocation between mouse chromosomes 14 and 15, but the break points of this translocation have not previously been examined in detail. Using fluorescent in situ hybridization, we assigned the break point in 14qE3 to a 200-kb region devoid of any known gene. We similarly defined the break point in 15qA1 to a 27-kb region containing involving ADAMTS12. The chromosomal break likely is between exons 2 and 3 of ADAMTS12. This gene encodes a disintegrin and metalloproteinase with thrombospondin motifs, and this product plays crucial roles in both vascularization and cancer progression and has been implicated in the development of arthritis. The CBA/CaH-T(14;15)6Ca/J mouse strain likely is a suitable model for further examination of the influences of defective ADAMTS12 in various pathologic processes. PMID:20412686

  1. Proceedings: National Conference on Bilingual Education (Austin, Texas, April 14-15, 1972).

    ERIC Educational Resources Information Center

    Dissemination and Assessment Center for Bilingual Education, Austin, TX.

    Goals of the National Conference on Bilingual Education, held on April 14-15, 1972 in Austin, Texas, were to emphasize bilingual education interaction at the national level using outstanding consultants from throughout the United States and to exchange ideas among educators in existing programs. The conference was also organized to give bilingual…

  2. Magnetic Field Mental Representations of 14-15 Years Old Students

    ERIC Educational Resources Information Center

    Ravanis, Konstantinos; Pantidos, Panagiotis; Vitoratos, Evangelos

    2009-01-01

    Children's mental representations about physical concepts and phenomena play a vital role in the learning process. This is confirmed by the data derived from relevant researches which demonstrate that the students formulate incompatible ideas compared with the scientific ones. In this research we investigate the representations of 14-15 years…

  3. Wavelength scaling of efficient high-order harmonic generation by two-color infrared laser fields

    SciTech Connect

    Lan Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi

    2010-06-15

    We theoretically investigate and demonstrate a better wavelength scaling of harmonic yield in a two-color infrared field. By mixing a Ti:sapphire assistant field with the infrared driving field, we show that high harmonic generation is enhanced and the harmonic yield scales as {lambda}{sup -3}-{lambda}{sup -4} in the plateau region, which falls more slowly as the increase of the driving laser wavelength {lambda} compared with {lambda}{sup -5}-{lambda}{sup -6} in a one-color infrared field.

  4. Fragmentation dynamics of noble gas dimers in two-color intense laser fields

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, M.; Wu, J.; Doerner, R.; Thumm, U.

    2013-05-01

    We studied the dissociation dynamics of noble gas dimer ions in two-color infrared intense laser fields by analyzing their fragment-kinetic-energy-release spectra as a function of the pump-probe delay. Our calculations predict a striking ``delay gap'' in the kinetic-energy-spectra for all noble gas dimers that was so far only measured for the Ar2 dimer. We identify this phenomenon as a frustrated dissociation mechanism. This mechanism requests different pump- and probe-pulse wavelengths and involves the pump pulse to both, singly ionize the neutral dimers and dipole-couple adiabatic states in the dimer ion. Supported by the US NSF and DOE.

  5. Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength.

    PubMed

    Zhou, Xuan; Wenger, Jérémie; Viscomi, Francesco N; Le Cunff, Loïc; Béal, Jérémie; Kochtcheev, Serguei; Yang, Xuyong; Wiederrecht, Gary P; Colas des Francs, Gérard; Bisht, Anu Singh; Jradi, Safi; Caputo, Roberto; Demir, Hilmi Volkan; Schaller, Richard D; Plain, Jérôme; Vial, Alexandre; Sun, Xiao Wei; Bachelot, Renaud

    2015-11-11

    We demonstrate two-color nanoemitters that enable the selection of the dominant emitting wavelength by varying the polarization of excitation light. The nanoemitters were fabricated via surface plasmon-triggered two-photon polymerization. By using two polymerizable solutions with different quantum dots, emitters of different colors can be positioned selectively in different orientations in the close vicinity of the metal nanoparticles. The dominant emission wavelength of the metal/polymer anisotropic hybrid nanoemitter thus can be selected by altering the incident polarization. PMID:26437118

  6. Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins.

    PubMed

    Lavoie-Cardinal, Flavie; Jensen, Nickels A; Westphal, Volker; Stiel, Andre C; Chmyrov, Andriy; Bierwagen, Jakob; Testa, Ilaria; Jakobs, Stefan; Hell, Stefan W

    2014-03-17

    Up to now, all demonstrations of reversible saturable optical fluorescence transitions (RESOLFT) superresolution microscopy of living cells have relied on the use of reversibly switchable fluorescent proteins (RSFP) emitting in the green spectral range. Here we show RESOLFT imaging with rsCherryRev1.4, a new red-emitting RSFP enabling a spatial resolution up to four times higher than the diffraction barrier. By co-expressing green and red RSFPs in living cells we demonstrate two-color RESOLFT imaging both for single ("donut") beam scanning and for parallelized versions of RESOLFT nanoscopy where an array of >23,000 "donut-like" minima are scanned simultaneously. PMID:24449030

  7. Two Color FEL Driven by a Comb-like Electron Beam Distribution

    NASA Astrophysics Data System (ADS)

    Chiadroni, E.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Cianchi, A.; Ciocci, F.; Dattoli, G.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Giannessi, L.; Mostacci, A.; Musumeci, P.; Palumbo, L.; Petralia, A.; Petrillo, V.; Pompili, R.; Ronsivalle, C.; Rossi, A. R.; Vaccarezza, C.; Villa, F.

    We discuss a new method for the production of trains of FEL radiation pulses based on the FEL emission driven by a comb-like electron beam. In addition, we present recent experimental results on the two color FEL emission as generated at the SPARC_LAB facility: a train of two short (<200 fs) electron bunches, almost overlapped in time, with a comb-like energy distribution, has been injected in the undulator, giving rise to FEL pulses at two characteristic frequencies with multi-peaked time structure. This scheme shows also the versatility of the SPARC photo-injector to generate and manipulate such energy and time distributions.

  8. Dynamics of Strong-Field Double Ionization in Two-Color Counterrotating Fields

    NASA Astrophysics Data System (ADS)

    Chaloupka, Jan L.; Hickstein, Daniel D.

    2016-04-01

    The double ionization of helium in bichromatic, circularly polarized intense laser fields is analyzed with a classical ensemble approach. It is found that counterrotating fields produce significant nonsequential double-ion yield and drive novel ionization dynamics. It is shown that distinct pathways to ionization can be modified by altering the relative intensities of the two colors, allowing for unique control of strong-field processes. Electrons are observed to return to the ion at different angles from the angle of ionization, opening new possibilities for probing electronic and molecular structure on the ultrafast time scale.

  9. Simulation study of wakefield generation by two color laser pulses propagating in homogeneous plasma

    SciTech Connect

    Kumar Mishra, Rohit; Saroch, Akanksha; Jha, Pallavi

    2013-09-15

    This paper deals with a two-dimensional simulation of electric wakefields generated by two color laser pulses propagating in homogeneous plasma, using VORPAL simulation code. The laser pulses are assumed to have a frequency difference equal to the plasma frequency. Simulation studies are performed for two similarly as well as oppositely polarized laser pulses and the respective amplitudes of the generated longitudinal wakefields for the two cases are compared. Enhancement of wake amplitude for the latter case is reported. This simulation study validates the analytical results presented by Jha et al.[Phys. Plasmas 20, 053102 (2013)].

  10. Dynamics of Strong-Field Double Ionization in Two-Color Counterrotating Fields.

    PubMed

    Chaloupka, Jan L; Hickstein, Daniel D

    2016-04-01

    The double ionization of helium in bichromatic, circularly polarized intense laser fields is analyzed with a classical ensemble approach. It is found that counterrotating fields produce significant nonsequential double-ion yield and drive novel ionization dynamics. It is shown that distinct pathways to ionization can be modified by altering the relative intensities of the two colors, allowing for unique control of strong-field processes. Electrons are observed to return to the ion at different angles from the angle of ionization, opening new possibilities for probing electronic and molecular structure on the ultrafast time scale. PMID:27104705

  11. Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure.

    PubMed

    Zeng, Xianglong; Ashihara, Satoshi; Wang, Zijie; Wang, Tingyun; Chen, Yuping; Cha, Myoungsik

    2009-09-14

    We conducted a numerical study on the excitation of a two-colored temporal soliton in a segmented quasi-phase-matching (QPM) structure. The device has three parts: a periodic QPM grating for second-harmonic generation, a single domain for phase shift, and a periodic QPM grating for soliton evolution. The second harmonic pulse generated in the first grating works as a seed in the cascaded up-and-down conversions in the second grating. The numerical results showed that the second harmonic seeding enables the excitation of soliton pulses with an improved spatio-temporal intensity profile in a broad bandwidth of the wave-vector mismatch. PMID:19770904

  12. Asymmetric photoelectron momentum distribution driven by two-color XUV fields

    NASA Astrophysics Data System (ADS)

    Wu, Wan-Yang; He, Feng

    2016-02-01

    The photoionization of He+ in two-color XUV fields is studied by numerically solving the time-dependent Schrödinger equation. He+ may be ionized by directly absorbing one high-energetic photon or by absorbing two photons sequentially by mediating an excited state. The interference of these two pathways results in either enhancement or suppression of photoionization, depending on the propagating direction of the photoelectron and the relative phase of two pulses. The two-pathway interference also induces the split of photoelectron momenta. This study shows that the participation of intermediate states may substantially change photoionization processes.

  13. Control of the polarization of attosecond pulses using a two-color field

    NASA Astrophysics Data System (ADS)

    Ruiz, Camilo; Hoffmann, David J.; Torres, Ricardo; Chipperfield, Luke E.; Marangos, Jonathan P.

    2009-11-01

    Control over the polarization of an attosecond pulse train (APT) is demonstrated theoretically using orthogonally polarized two-color fields. The carrier envelope phase of the two pulses is used as a control parameter to generate both an APT with linear polarization in two nearly perpendicular planes or a train of elliptically polarized pulses of alternating helicity. By using few-cycle driving laser fields an isolated attosecond pulse with elliptical polarization is shown to be generated after selecting the cut-off region of the harmonic spectrum. The control mechanism is explained in terms of classical trajectories.

  14. Enhanced attosecond bursts of relativistic high-order harmonics driven by two-color fields.

    PubMed

    Edwards, Matthew R; Platonenko, Victor T; Mikhailova, Julia M

    2014-12-15

    We study the generation of attosecond x-ray and ultraviolet pulses from relativistically driven overdense plasma targets with two-color incident light. Particle-in-cell simulations show that significant improvement in pulse intensity and isolation is achievable with appropriate laser and plasma parameters. Conversion of 5% of incident laser energy to its second harmonic can enhance the intensity of generated attosecond pulses by an order of magnitude. This approach allows the generation of higher attosecond pulse intensities with existing experimental laser technology and offers a powerful tool for the analysis of the dynamics of relativistic laser-plasma interaction. PMID:25503006

  15. Two-color planar laser-induced fluorescence thermometry in aqueous solutions

    SciTech Connect

    Robinson, G. Andrew; Lucht, Robert P.; Laurendeau, Normand M

    2008-05-20

    We demonstrate a two-color planar laser-induced fluorescence technique for obtaining two-dimensional temperature images in water. For this method, a pulsed Nd:YAG laser at 532 nm excites a solution of temperature-sensitive rhodamine 560 and temperature-insensitive sulforhodamine 640. The resulting emissions are optically separated through filters and detected via a charged-couple device (CCD) camera system. A ratio of the two images yields temperature images independent of incident irradiance. An uncertainty in temperature of {+-}1.4 deg. C is established at the 95% confidence interval.

  16. Terahertz emission from a two-color plasma filament in a slot waveguide

    SciTech Connect

    Dietze, D.; Unterrainer, K.; Darmo, J.

    2012-02-27

    Terahertz emission in forward direction from a long two-color filament placed in the center of a slot waveguide is reported. The waveguide improves the collection and imaging of the generated THz radiation. By tuning the plate separation and position of the waveguide along the filament axis, the emitted mode can be matched to the collection optics. We achieved an increase of the detected electric field by 40% and of the THz pulse energy by four times compared to the case without waveguide.

  17. Two-color QCD with non-zero chiral chemical potential

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E. M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.

    2015-06-01

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  18. Generation of an isolated few-attosecond pulse in optimized inhomogeneous two-color fields

    NASA Astrophysics Data System (ADS)

    Chou, Yi; Li, Peng-Cheng; Ho, Tak-San; Chu, Shih-I.

    2015-08-01

    We present a numerical study for optimization of ultrabroad supercontinuum spectrum by controlling the waveforms of laser fields, with the ultimate goal to generate isolated ultrashort attosecond pulses. Specifically, we extend a derivative-free nonconvex optimization algorithm for maximization of the supercontinnum power spectrum near the high-order harmonic generation (HHG) cutoff. It is found that optimally shaped inhomogeneous two-color mid-infrared laser fields can greatly enhance and extend the high-order harmonic generation plateau. Wavelet time-frequency analysis and classical simulations show that the superposition of resulting hydrogen HHG supercontinuum effectively gives rise to a robust isolated 5-as pulse.

  19. Fiber optic two-color vibration compensated interferometer for plasma density measurements

    SciTech Connect

    Van Zeeland, M. A.; Boivin, R. L.; Carlstrom, T. N.; Deterly, T.; Finkenthal, D. K.

    2006-10-15

    A fiber optic, heterodyne, two-color interferometer utilizing wavelength division multiplexing technology has been developed for measuring electron density in plasmas. Vibration compensation is accomplished via common path 1.31 and 1.55 {mu}m distributed feedback laser interferometers. All beam combining, splitting, frequency modulation, and collimation are accomplished by shared single-mode fiber optic components. Measurements of an argon radio-frequency generated plasma with electron densities of 10{sup 20} m{sup -3} show effective vibration compensation and typical line-density resolution of approximately 2x10{sup 19} m{sup -2}.

  20. Implication of transient receptor potential vanilloid type 1 in 14,15-epoxyeicosatrienoic acid-induced angiogenesis.

    PubMed

    Su, Kuo-Hui; Lee, Kuan-I; Shyue, Song-Kun; Chen, Hsiang-Ying; Wei, Jeng; Lee, Tzong-Shyuan

    2014-01-01

    14,15-epoxyeicosatrienoic acid (14,15-EET) is implicated in regulating physiological functions of endothelial cells (ECs), yet the potential molecular mechanisms underlying the beneficial effects in ECs are not fully understood. In this study, we investigated whether transient receptor potential vanilloid receptor type 1 (TRPV1) is involved in 14,15-EET-mediated Ca(2+) influx, nitric oxide (NO) production and angiogenesis. In human microvascular endothelial cells (HMECs), 14,15-EET time-dependently increased the intracellular level of Ca(2+). Removal of extracellular Ca(2+), pharmacological inhibition or genetic disruption of TRPV1 abrogated 14,15-EET-mediated increase of intracellular Ca(2+) level in HMECs or TRPV1-transfected HEK293 cells. Furthermore, removal of extracellular Ca(2+) or pharmacological inhibition of TRPV1 decreased 14,15-EET-induced NO production. 14,15-EET-mediated tube formation was abolished by TRPV1 pharmacological inhibition. In an animal experiment, 14,15-EET-induced angiogenesis was diminished by inhibition of TRPV1 and in TRPV1-deficient mice. TRPV1 may play a crucial role in 14,15-EET-induced Ca(2+) influx, NO production and angiogenesis. PMID:25210497

  1. Two-color photons and nonlocality in fourth-order interference

    NASA Astrophysics Data System (ADS)

    Rarity, J. G.; Tapster, P. R.

    1990-05-01

    Angle-separated pair photons emitted in spontaneous parametric fluorescence are superimposed at a beamsplitter and detected by coincidence techniques. The coincidence disappears when the photon path lengths to the beamsplitter are equal to within their inverse bandwidth due to fourth-order interference. The photon bandwidth is set by wide apertures placed to satisfy phase-matching conditions at the nonlinear crystal. The resulting broadband photons are short (39-fs full width at half maximum) and show an oscillatory tail resulting from the hard-edge apertures. Two-color photons are created by blocking the central portion of the apertures leading to strong oscillations of the coincidence rate as a function of path-length difference. Both effects are predicted by the theory of fourth-order interference coupled with the detailed phase-matching conditions in the nonlinear crystal used as a source. The two colors overlap at different positions on the beamsplitter. We show how this could be used as a test of local realistic theories by formulating a Bell inequality based on relative phases between the colors.

  2. Two-color HgCdTe infrared staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Smith, Edward P.; Pham, Le T.; Venzor, Gregory M.; Norton, Elyse; Newton, Michael; Goetz, Paul; Randall, Valerie; Pierce, Gregory; Patten, Elizabeth A.; Coussa, Raymond A.; Kosai, Ken; Radford, William A.; Edwards, John; Johnson, Scott M.; Baur, Stefan T.; Roth, John A.; Nosho, Brett; Jensen, John E.; Longshore, Randolph E.

    2003-12-01

    Raytheon Vision Systems (RVS) in collaboration with HRL Laboratories is contributing to the maturation and manufacturing readiness of third-generation two-color HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256x256 30μm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) spectral regions. FPAs configured for MWIR/MWIR, MWIR/LWIR and LWIR/LWIR detection are used for target identification, signature recognition and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer-heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all two-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single mesa, single indium bump, and sequential mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies.

  3. Controlling electron-ion rescattering in two-color circularly polarized femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Hickstein, Daniel D.; Dorney, Kevin M.; Ellis, Jennifer L.; Hasović, Elvedin; Knut, Ronny; Grychtol, Patrik; Gentry, Christian; Gopalakrishnan, Maithreyi; Zusin, Dmitriy; Dollar, Franklin J.; Tong, Xiao-Min; Milošević, Dejan B.; Becker, Wilhelm; Kapteyn, Henry C.; Murnane, Margaret M.

    2016-05-01

    High-harmonic generation driven by two-color counter-rotating circularly polarized laser fields was recently demonstrated experimentally as a breakthrough source of bright, coherent, circularly polarized beams in the extreme ultraviolet and soft-x-ray regions. However, the conditions for optimizing the single-atom yield are significantly more complex than for linearly polarized driving lasers and are not fully understood. Here we present a comprehensive study of strong-field ionization—the complementary process to high-harmonic generation—driven by two-color circularly polarized fields. We uncover the conditions that lead to enhanced electron-ion rescattering, which should correspond to the highest single-atom harmonic flux. Using a velocity map imaging photoelectron spectrometer and tomographic reconstruction techniques, we record three-dimensional photoelectron distributions resulting from the strong-field ionization of argon atoms across a broad range of driving laser intensity ratios. In combination with analytical predictions and advanced numerical simulations, we show that "hard" electron-ion rescattering is optimized when the second-harmonic field has an intensity approximately four times higher than that of the fundamental driving field. We also investigate electron-ion rescattering with co-rotating fields, and find that rescattering is significantly suppressed when compared with counter-rotating fields.

  4. An RNA-aptamer-based two-color CRISPR labeling system.

    PubMed

    Wang, Siyuan; Su, Jun-Han; Zhang, Feng; Zhuang, Xiaowei

    2016-01-01

    The spatial organization and dynamics of chromatin play important roles in essential biological functions. However, direct visualization of endogenous genomic loci in living cells has proven to be laborious until the recent development of CRISPR-Cas9-based chromatin labeling methods. These methods rely on the recognition of specific DNA sequences by CRISPR single-guide RNAs (sgRNAs) and fluorescent-protein-fused catalytically inactive Cas9 to label specific chromatin loci in cells. Previously, multicolor chromatin labeling has been achieved using orthogonal Cas9 proteins from different bacterial species fused to different fluorescent proteins. Here we report the development of an alternative two-color CRISPR labeling method using only the well-characterized Streptococcus pyogenes Cas9, by incorporating MS2 or PP7 RNA aptamers into the sgRNA. The MS2 or PP7 aptamers then recruit the corresponding MS2 or PP7 coat proteins fused with different fluorescent proteins to the target genomic loci. Here we demonstrate specific and orthogonal two-color labeling of repetitive sequences in living human cells using this method. By attaching the MS2 or PP7 aptamers to different locations on the sgRNA, we found that extending the tetraloop and stem loop 2 of the sgRNA with MS2 or PP7 aptamers enhances the signal-to-background ratio of chromatin imaging. PMID:27229896

  5. Generation of strong terahertz field from two-color laser filamentation and optical rectification

    NASA Astrophysics Data System (ADS)

    Kuk, Donghoon; Yoo, Yungjun; Oh, Taek Il; You, Yong Sing; Kim, Ki-Yong

    2015-04-01

    We have demonstrated strong-field (>8 MV/cm), high-peak-power (12 MW) THz generation with a bandwidth of >20 THz via two-color laser filamentation. Moderate average power (1.4 mW) is also achieved by using a cryogenically-cooled Ti:sapphire amplifier capable of producing 30 fs, 15 mJ pulses at a 1 kHz repetition rate. For maximal THz generation and transmission, we have used a combination of a thin dichroic waveplate and a large Brewster-angled silicon filter. Here we have used a thin BBO crystal for frequency doubling (800 nm to 400 nm) and observed strong terahertz emission from the crystal itself. We also find that this type of terahertz emission can be optimized to yield more output power compared to two-color photoionization. In both cases, we have used a microbolometer camera for real-time THz beam profiling. This cost-effective THz camera along with our intense THz sources can be a useful tool for nonlinear THz studies including broadband THz spectroscopy and imaging. Work supported by DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. 014216-001.

  6. An RNA-aptamer-based two-color CRISPR labeling system

    PubMed Central

    Wang, Siyuan; Su, Jun-Han; Zhang, Feng; Zhuang, Xiaowei

    2016-01-01

    The spatial organization and dynamics of chromatin play important roles in essential biological functions. However, direct visualization of endogenous genomic loci in living cells has proven to be laborious until the recent development of CRISPR-Cas9-based chromatin labeling methods. These methods rely on the recognition of specific DNA sequences by CRISPR single-guide RNAs (sgRNAs) and fluorescent–protein-fused catalytically inactive Cas9 to label specific chromatin loci in cells. Previously, multicolor chromatin labeling has been achieved using orthogonal Cas9 proteins from different bacterial species fused to different fluorescent proteins. Here we report the development of an alternative two-color CRISPR labeling method using only the well-characterized Streptococcus pyogenes Cas9, by incorporating MS2 or PP7 RNA aptamers into the sgRNA. The MS2 or PP7 aptamers then recruit the corresponding MS2 or PP7 coat proteins fused with different fluorescent proteins to the target genomic loci. Here we demonstrate specific and orthogonal two-color labeling of repetitive sequences in living human cells using this method. By attaching the MS2 or PP7 aptamers to different locations on the sgRNA, we found that extending the tetraloop and stem loop 2 of the sgRNA with MS2 or PP7 aptamers enhances the signal-to-background ratio of chromatin imaging. PMID:27229896

  7. Two-color QCD at imaginary chemical potential and its impact on real chemical potential

    NASA Astrophysics Data System (ADS)

    Kashiwa, Kouji; Sasaki, Takahiro; Kouno, Hiroaki; Yahiro, Masanobu

    2013-01-01

    We study properties of two-color QCD at imaginary chemical potential (μ) from the viewpoint of the Roberge-Weiss periodicity, the charge conjugation, and the pseudoreality. At μ=±iπT/2, where T is temperature, the system is symmetric under the combination of the charge conjugation C and the Z2 transformation. The symmetry, called CZ2 symmetry, is preserved at lower T but spontaneously broken at higher T. The Polyakov-loop extended Nambu-Jona-Lasinio model has the same properties as two-color QCD for CZ2 symmetry and the pseudoreality. The nontrivial correlation between the chiral restoration and the deconfinement are investigated by introducing the entanglement vertex in the Polyakov-loop extended Nambu-Jona-Lasinio model. The order of CZ2 symmetry breaking at the Roberge-Weiss end point is second order when the correlation is weak, but becomes first order when the correlation is strong. We also investigate the impact of the correlation on the phase diagram at real μ.

  8. Control of photoelectron interference in asymmetric momentum distributions using two-color laser fields

    NASA Astrophysics Data System (ADS)

    Zheng, Xu; Liu, Ming-Ming; Xie, Hui; Ge, Peipei; Li, Min; Liu, Yunquan

    2015-11-01

    We theoretically study the control of photoelectron interference of atoms ionized by a two-color laser field with parallel polarizations. Based on both the quantum-trajectory Monte Carlo model and an ab initio simulation with numerically solving the time-dependent Schrödinger equation, we show that the photoelectron angular distributions can be controlled by changing the relative phase of the two frequency components. The high-energy and low-energy photoelectrons show different modulations with respect to the relative phase. Tracing back to the initial coordinates (the ionization time with respect to the laser phase and the initial momentum) of photoelectrons, we have studied the physical origin of the asymmetric structure in photoelectron angular distributions and the dynamics of controlling photoelectron emission using the two-color laser fields. We show that the long tail of the Coulomb potential plays a minor role in the position of the high-energy cutoff in the backward scattering, whereas it is of great importance in the formation of the asymmetric structures of the low-energy photoelectrons.

  9. True temperature measurement on metallic surfaces using a two-color pyroreflectometer method.

    PubMed

    Hernandez, D; Netchaieff, A; Stein, A

    2009-09-01

    In the most common case of optical pyrometry, the major obstacle in determining the true temperature is the knowledge of the thermo-optical properties for in situ conditions. We present experimental results obtained with a method able to determine the true temperature of metallic surfaces above 500 degrees C when there is not parasitic effect by surrounding radiation. The method is called bicolor pyroreflectometry and it is based on Planck's law, Kirchhoff's law, and the assumption of identical reflectivity indicatrixes for the target surface at two different close wavelengths (here, 1.3 and 1.55 microm). The diffusion factor eta(d), the key parameter of the method, is introduced to determine the convergence temperature T(*), which is expected to be equal to the true temperature T. Our goal is to asses this method for different metallic surfaces. The validation of this method is made by comparison with thermocouples. Measurements were made for tungsten, copper, and aluminum samples of different roughnesses, determined by a rugosimeter. After introducing a theoretical model for two-color pyroreflectometry, we give a description of the experimental setup and present experimental applications of the subject method. The quality of the results demonstrates the usefulness of two-color pyroreflectometry to determine the temperatures of hot metals when the emissivity is not known and for the commercially important case of specular surfaces. PMID:19791957

  10. Experimental implementation of a strong two-color asymmetric laser field in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Kaziannis, S.; Danakas, S.; Kotsina, N.; Kosmidis, C.

    2016-05-01

    We report the experimental implementation of a strong two-color (ω/2ω) asymmetric laser field in the mid-infrared regime (MIR) consisting of a fs pulse centered at 1400 nm and its second harmonic (700 nm). Control of the temporal delay between the two pulses with sub-cycle accuracy and, therefore, the two-color field phase is based on the use of a birefringent calcite plate. The experimental methodology is described in detail for the 1400/700 nm case, while its applicability is discussed for a broader wavelength range, nowadays accessible by optical parametric amplifiers. The validity of the proposed methodology is further supported by the application of the asymmetric 1400/700 nm field on the dissociative ionization of carbon monoxide, which is considered to be a benchmark target in the field of coherent control of strong laser‑matter interaction. It is demonstrated that efficient control on the directional emission of the CO ionic fragments is achieved by varying the relative phase of the 1400 and 700 nm field components.

  11. Micron Scale Mineralogy

    NASA Astrophysics Data System (ADS)

    Caldwell, W. A.; Tamura, N.; Celestre, R. S.; Padmore, H. A.; Patel, J. R.

    2002-12-01

    Although x-ray diffraction has been used for nearly a century as the mineralogist's definitive tool in determining crystalline structures, it has proved impossible to use this technique to spatially resolve the highly heterogeneous nature of many minerals at the mesoscopic level. Due to recent revolutions in the brightness of x-ray sources and in our ability to focus x-rays, we can now carry out conventional monochromatic rotation crystallography as well as Laue diffraction with sub-micron spatial resolution and produce maps of orientation, strain, mineral type, and even chemical speciation over tens of microns in a short amount of time. We have pioneered the development of these techniques at the 3rd generation synchrotron radiation source (Advanced Light Source) in Berkeley, and will describe their application to understanding the structure of a quartz-geode. Our results show the manner in which grain structure and texture change as a function of distance from the cavity wall and are compared with models of crystal growth in such systems. This example highlights the great utility of a synchrotron based x-ray micro-diffraction beamline and the possibilities it opens to the mineralogist.

  12. Airborne Astronomy with a 150 microns - 400 microns Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Betz, A. L.

    1995-01-01

    This report summarizes work done under NASA Grant NAG2-753 awarded to the University of Colorado. The project goal was to build a far-infrared heterodyne spectrometer for NASA's Kuiper Airborne Observatory, and to use this instrument to observe atomic and molecular spectral lines from the interstellar medium. This goal was successfully achieved. Detections of particular note have been the 370 micron line of neutral atomic carbon, the 158 micron transition of ionized carbon, many of the high-J rotational lines of CO-12 and CO-13 between J=9-8 and J=22-21, the 119 micron and 163 micron rotational lines of OH, the 219 micron ground-state rotational line of H2D(+), and the 63 micron fine structure line of neutral atomic oxygen. All of these lines were observed at spectral resolutions exceeding 1 part in 10(exp 6) thereby allowing accurate line shapes and Doppler velocities to be measured.

  13. Sub-micron filter

    DOEpatents

    Tepper, Frederick; Kaledin, Leonid

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  14. BEC-BCS crossover in a cold and magnetized two color NJL model

    NASA Astrophysics Data System (ADS)

    Duarte, Dyana C.; Allen, P. G.; Farias, R. L. S.; Manso, Pedro H. A.; Ramos, Rudnei O.; Scoccola, N. N.

    2016-01-01

    The BEC-BCS crossover for a Nambu-Jona-Lasinio (NJL) model with diquark interactions is studied in the presence of an external magnetic field. Particular attention is paid to different regularization schemes used in the literature. A thorough comparison of results is performed for the case of a cold and magnetized two-color NJL model. According to our results, the critical chemical potential for the BEC transition exhibits a clear inverse magnetic catalysis effect for magnetic fields in the range 1 ≲e B /mπ2≲20 . As for the BEC-BCS crossover, the corresponding critical chemical potential is very weakly sensitive to magnetic fields up to e B ˜9 mπ2, showing a much smaller inverse magnetic catalysis as compared to the BEC transition, and displays a strong magnetic catalysis from this point on.

  15. Memory effects, two color percolation, and the temperature dependence of Mott variable-range hopping

    NASA Astrophysics Data System (ADS)

    Agam, Oded; Aleiner, Igor L.

    2014-06-01

    There are three basic processes that determine hopping transport: (a) hopping between normally empty sites (i.e., having exponentially small occupation numbers at equilibrium), (b) hopping between normally occupied sites, and (c) transitions between normally occupied and unoccupied sites. In conventional theories all these processes are considered Markovian and the correlations of occupation numbers of different sites are believed to be small (i.e., not exponential in temperature). We show that, contrary to this belief, memory effects suppress the processes of type (c) and manifest themselves in a subleading exponential temperature dependence of the variable-range hopping conductivity. This temperature dependence originates from the property that sites of type (a) and (b) form two independent resistor networks that are weakly coupled to each other by processes of type (c). This leads to a two-color percolation problem which we solve in the critical region.

  16. Synthesis of Two-Color Laser Pulses for the Harmonic Cutoff Extension

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Li; Zhou, Li-Hua; Zhao, Song-Feng; Zhou, Xiao-Xin

    2016-05-01

    Increasing simultaneously both the cutoff energy and efficiency is a big challenge to all applications of high-order harmonic generation (HHG). For this purpose, the shaping of the waveform of driving pulse is an alternative approach. Here, we show that the harmonic cutoff can be extended by about two times without reducing harmonic yield after considering macroscopic propagation effects, by adopting a practical way to synthesize two-color fields with fixed energy. Our results, combined with the experimental techniques, show the great potential of HHG as a tabletop light source. Supported by the National Natural Science Foundation of China under Grant Nos. 11264036, 11164025, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  17. Quantitative surface temperature measurement using two-color thermographic phosphors and video equipment

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor)

    1989-01-01

    A thermal imaging system provides quantitative temperature information and is particularly useful in hypersonic wind tunnel applications. An object to be measured is prepared by coating with a two-color, ultraviolet-activated, thermographic phosphor. The colors emitted by the phosphor are detected by a conventional color video camera. A phosphor emitting blue and green light with a ratio that varies depending on temperature is used so that the intensity of light in the blue and green wavelengths detected by the blue and green tubes in the video camera can be compared. Signals representing the intensity of blue and green light at points on the surface of a model in a hypersonic wind tunnel are used to calculate a ratio of blue to green light intensity which provides quantitative temperature information for the surface of the model.

  18. Hadron wave functions as a probe of a two-color baryonic medium

    NASA Astrophysics Data System (ADS)

    Amato, Alessandro; Giudice, Pietro; Hands, Simon

    2015-04-01

    The properties of the ground state of two-color QCD at non-zero baryon chemical potential μ present an interesting problem in strongly interacting gauge theory; in particular the nature of the physically relevant degrees of freedom in the superfluid phase in the post-onset regime μ > m π /2 still needs clarification. In this study we present evidence for in-medium effects at high μ by studying the wave functions of mesonic and diquark states using orthodox lattice simulation techniques, made possible by the absence of a sign problem for the model with N f = 2. Our results show that beyond onset the spatial extent of hadrons decreases as μ grows, and that the wave function profiles are consistent with the existence of a dynamically gapped Fermi surface in this regime.

  19. Theoretical and experimental analyses of the performance of two-color laser ranging systems

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Gardner, C. S.

    1985-01-01

    The statistical properties of the signals reflected from the retroreflector equipped satellites were studied. It is found that coherence interference between pulse reflections from retroreflectors of different ranges on the array platform is the primary cause of signal fluctuations. The performance of a cross-correlation technique to estimate the differential propagation time is analyzed by considering both shot noise and speckle. For the retroreflector arrays, timing performance is dominated by interference induced speckle, and the differential propagation time cannot be resolved to better than the pulse widths of the received signals. The differential timing measurements obtained over a horizontal path are analyzed. The ocean-reflected pulse measurements obtained from the airborne two-color laser altimeter experiment are presented.

  20. Two color satellite laser ranging upgrades at Goddard's 1.2m telescope facility

    NASA Astrophysics Data System (ADS)

    Zagwodzki, Thomas W.; McGarry, Jan F.; Degnan, John J.; Varghese, Thomas K.

    1993-06-01

    The ranging laboratory at Goddard's 1.2 m telescope tracking facility has recently been upgraded to include a single photoelectron sensitive Hamamatsu streak camera-based range receiver which uses doubled and tripled Nd:YAG frequencies for satellite laser ranging. Other ranging system upgrades include a new continuum laser, which will deliver up to 30 millijoules (mJ) at both 532 and 355 nm at a pulsewidth of 30 picoseconds (FWHM), and replacement of both ranging and tracking computers with COMPAQ 386 based systems. Preliminary results using a photomultiplier-tube based receiver and waveform digitizer indicate agreement within the accuracy of the measurement with the theoretical Marini and Murray model for atmospheric refraction. Two color streak camera measurements are used to further analyze the accuracy of these and other atmospheric refraction models.

  1. Coherent control of broadband isolated attosecond pulses in a chirped two-color laser field

    SciTech Connect

    Zou Pu; Zeng Zhinan; Zheng Yinghui; Lu Yingying; Liu Peng; Li Ruxin; Xu Zhizhan

    2010-03-15

    A theoretical investigation is presented that uses a strong two-color laser field composed of a linearly chirped fundamental (900 nm) and its subharmonic (1800-nm) laser pulses to control coherently the broadband isolated attosecond pulses in high-order harmonic generations. After the subharmonic field is added, the intrinsic chirp of harmonic emission can be reduced significantly, and consequently, the temporal synchronization of harmonic emission with different photon energies at the level of the single-atom response can be realized. In addition, the scheme is robust against the carrier envelope phase variation to produce a twin pulse of stable sub-100-as duration, and the relative intensity of the twin pulses can be changed just by adjusting the relative time delay of the two driving pulses, which is of benefit in general pump-probe experiments.

  2. Infrared Two-Color Multicycle Laser Field Synthesis for Generating an Intense Attosecond Pulse

    NASA Astrophysics Data System (ADS)

    Takahashi, Eiji J.; Lan, Pengfei; Mücke, Oliver D.; Nabekawa, Yasuo; Midorikawa, Katsumi

    2010-06-01

    We propose and demonstrate the generation of a continuum high-order harmonic spectrum by mixing multicycle two-color (TC) laser fields with the aim of obtaining an intense isolated attosecond pulse. By optimizing the wavelength of a supplementary infrared pulse in a TC field, a continuum harmonic spectrum was created around the cutoff region without carrier-envelope phase stabilization. The obtained harmonic spectra clearly show the possibility of generating isolated attosecond pulses from a multicycle TC laser field, which is generated by an 800 nm, 30 fs pulse mixed with a 1300 nm, 40 fs pulse. Our proposed method enables us not only to relax the requirements for the pump pulse duration but also to reduce ionization of the harmonic medium. This concept opens the door to create an intense isolated attosecond pulse using a conventional femtosecond laser system.

  3. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    NASA Astrophysics Data System (ADS)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  4. Two-color photoexcitation of Rydberg states via an electric quadrupole transition

    SciTech Connect

    Li Leping; Gu Quanli; Knee, J. L.; Wright, J. D.; DiSciacca, J. M.; Morgan, T. J.

    2008-03-15

    We report the observation of an electric quadrupole transition between the 4s{sup '}[1/2]{sub 0}{sup o} and 3d[3/2]{sub 2}{sup o} states in the spectrum of argon and use it in the first step of a scheme to excite Rydberg states. The initial identification of the transition is based on one-color, two-photon photoionization. A different experiment utilizing two-color, two-photon photoexcitation to Rydberg states confirms the identification. Despite the unavoidable background of one-color, two-photon photoionization, the latter experimental technique makes possible two-photon spectroscopy of Rydberg states using a resonant intermediate state populated by an electric quadrupole transition.

  5. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air

    NASA Astrophysics Data System (ADS)

    Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.; Jhajj, N.; Milchberg, H. M.; Kim, K. Y.

    2016-03-01

    We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10-4, ˜7 times better than spherical lens focusing. The diverging THz lobes are refocused with a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.

  6. Two color satellite laser ranging upgrades at Goddard's 1.2m telescope facility

    NASA Technical Reports Server (NTRS)

    Zagwodzki, Thomas W.; Mcgarry, Jan F.; Degnan, John J.; Varghese, Thomas K.

    1993-01-01

    The ranging laboratory at Goddard's 1.2 m telescope tracking facility has recently been upgraded to include a single photoelectron sensitive Hamamatsu streak camera-based range receiver which uses doubled and tripled Nd:YAG frequencies for satellite laser ranging. Other ranging system upgrades include a new continuum laser, which will deliver up to 30 millijoules (mJ) at both 532 and 355 nm at a pulsewidth of 30 picoseconds (FWHM), and replacement of both ranging and tracking computers with COMPAQ 386 based systems. Preliminary results using a photomultiplier-tube based receiver and waveform digitizer indicate agreement within the accuracy of the measurement with the theoretical Marini and Murray model for atmospheric refraction. Two color streak camera measurements are used to further analyze the accuracy of these and other atmospheric refraction models.

  7. Direct and Indirect Two-color Coherent Control in Bulk Silicon

    NASA Astrophysics Data System (ADS)

    Cheng, Jinluo; Rioux, Julien; Sipe, John

    2012-02-01

    Using an empirical pseudopotential model for electron states and an adiabatic bond charge model for phonon states, we investigate the two-color direct and indirect coherent current injection with an incident optical field composed of a fundamental frequency and its second harmonic, and calculate the response tensors of the electron (hole) charge and spin currents. We show the current control for three different polarization scenarios: For co-circularly polarized beams, the direction of the charge current and the polarization direction of the spin current can be controlled by a relative-phase parameter; for the co-linearly and cross-linearly polarized beams, the current amplitude can be controlled by that parameter. For the indirect gap injection, the spectral dependence of the maximum swarm velocity shows that the direction of charge current reverses under an increase in photon energy.

  8. Decrease in deformation rate observed by two-color laser ranging in Long Valley Caldera

    USGS Publications Warehouse

    Linker, M.F.; Langbein, J.O.; McGarr, A.

    1986-01-01

    After the January 1983 earthquake swarm, the last period of notable seismicity, the rapid rate of deformation of the south moat and resurgent dome of the Long Valley caldera diminished. Frequently repeated two-color laser ranging measurements made within a geodetic network in the caldera during the interval June 1983 to November 1984 reveal that, although the deformation accumulated smoothly in time, the rate of extension of many of the baselines decreased by factors of 2 to 3 from mid-1983 to mid-1984. Areal dilatation was the dominant signal during this period, with rates of extension of several baselines reaching as high as 5 parts per million per annum during the summer of 1983. Within the south moat, shear deformation also was apparent. The cumulative deformation can be modeled as the result of injection of material into two points located beneath the resurgent dome in addition to shallow right lateral slip on a vertical fault in the south moat.

  9. Design of a real-time two-color interferometer for MAST Upgrade

    SciTech Connect

    O’Gorman, T. Naylor, G.; Scannell, R.; Cunningham, G.; Martin, R.; Croft, D.; Brunner, K. J.

    2014-11-15

    A single chord two-color CO{sub 2}/HeNe (10.6/0.633 μm) heterodyne laser interferometer has been designed to measure the line integral electron density along the mid-plane of the MAST Upgrade tokamak, with a typical error of 1 × 10{sup 18} m{sup −3} (∼2° phase error) at 4 MHz temporal resolution. To ensure this diagnostic system can be restored from any failures without stopping MAST Upgrade operations, it has been located outside of the machine area. The final design and initial testing of this system, including details of the optics, vibration isolation, and a novel phase detection scheme are discussed in this paper.

  10. Attosecond x-ray source generation from two-color polarized gating plasmonic field enhancement

    SciTech Connect

    Feng, Liqiang; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 ; Yuan, Minghu; Chu, Tianshu; Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071

    2013-12-15

    The plasmonic field enhancement from the vicinity of metallic nanostructures as well as the polarization gating technique has been utilized to the generation of the high order harmonic and the single attosecond x-ray source. Through numerical solution of the time-dependent Schrödinger equation, for moderate the inhomogeneity and the polarized angle of the two fields, we find that not only the harmonic plateau has been extended and enhanced but also the single short quantum path has been selected to contribute to the harmonic. As a result, a series of 50 as pulses around the extreme ultraviolet and the x-ray regions have been obtained. Furthermore, by investigating the other parameters effects on the harmonic emission, we find that this two-color polarized gating plasmonic field enhancement scheme can also be achieved by the multi-cycle pulses, which is much better for experimental realization.

  11. Two-Color Strong-Field Photoelectron Spectroscopy and the Phase of the Phase

    NASA Astrophysics Data System (ADS)

    Skruszewicz, S.; Tiggesbäumker, J.; Meiwes-Broer, K.-H.; Arbeiter, M.; Fennel, Th.; Bauer, D.

    2015-07-01

    The presence of a weak second-harmonic field in an intense-laser ionization experiment affects the momentum-resolved electron yield, depending on the relative phase between the ω and the 2 ω component. The proposed two-color "phase-of-the-phase spectroscopy" quantifies for each final electron momentum a relative-phase contrast (RPC) and a phase of the phase (PP) describing how much and with which phase lag, respectively, the yield changes as a function of the relative phase. Experimental results for RPC and PP spectra for rare gas atoms and CO2 are presented. The spectra demonstrate a rather universal structure that is analyzed with the help of a simple model based on electron trajectories, wave-packet spreading, and (multiple) rescattering. Details in the PP and RPC spectra are target sensitive and, thus, may be used to extract structural (or even dynamical) information with high accuracy.

  12. Mechanisms of two-color laser-induced field-free molecular orientation.

    PubMed

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-09-14

    Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally. PMID:23005623

  13. Design of a real-time two-color interferometer for MAST Upgrade.

    PubMed

    O'Gorman, T; Naylor, G; Scannell, R; Cunningham, G; Brunner, K J; Martin, R; Croft, D

    2014-11-01

    A single chord two-color CO2/HeNe (10.6/0.633 μm) heterodyne laser interferometer has been designed to measure the line integral electron density along the mid-plane of the MAST Upgrade tokamak, with a typical error of 1 × 10(18) m(-3) (∼2° phase error) at 4 MHz temporal resolution. To ensure this diagnostic system can be restored from any failures without stopping MAST Upgrade operations, it has been located outside of the machine area. The final design and initial testing of this system, including details of the optics, vibration isolation, and a novel phase detection scheme are discussed in this paper. PMID:25430274

  14. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    SciTech Connect

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-15

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  15. Physics of the conical broadband terahertz emission from two-color laser-induced plasma filaments

    NASA Astrophysics Data System (ADS)

    Gorodetsky, Andrei; Koulouklidis, Anastasios D.; Massaouti, Maria; Tzortzakis, Stelios

    2014-03-01

    We propose a comprehensive physical model explaining the conical character of broadband terahertz generation from femtosecond two-color laser-induced air plasma filaments. We show, that, in contrast to other models, emission is always conical, resulting from phase matching of the radiation produced inside the filament combined with a partial back reflection of the generated terahertz field from the filament itself due to the frequency-dependent critical plasma density. The obtained conical angle varies from 2∘ to 10∘, depending on the plasma density distribution and filament length. Unlike previously proposed models, our model shows good agreement with our experiments as well as a wide range of experimental findings from the literature.

  16. Angle resolved photoelectron spectroscopy of two-color XUV–NIR ionization with polarization control

    NASA Astrophysics Data System (ADS)

    Düsterer, S.; Hartmann, G.; Babies, F.; Beckmann, A.; Brenner, G.; Buck, J.; Costello, J.; Dammann, L.; De Fanis, A.; Geßler, P.; Glaser, L.; Ilchen, M.; Johnsson, P.; Kazansky, A. K.; Kelly, T. J.; Mazza, T.; Meyer, M.; Nosik, V. L.; Sazhina, I. P.; Scholz, F.; Seltmann, J.; Sotoudi, H.; Viefhaus, J.; Kabachnik, N. M.

    2016-08-01

    Electron emission caused by extreme ultraviolet (XUV) radiation in the presence of a strong near infrared (NIR) field leads to multiphoton interactions that depend on several parameters. Here, a comprehensive study of the influence of the angle between the polarization directions of the NIR and XUV fields on the two-color angle-resolved photoelectron spectra of He and Ne is presented. The resulting photoelectron angular distribution strongly depends on the orientation of the NIR polarization plane with respect to that of the XUV field. The prevailing influence of the intense NIR field over the angular emission characteristics for He(1s) and Ne(2p) ionization lines is shown. The underlying processes are modeled in the frame of the strong field approximation (SFA) which shows very consistent agreement with the experiment reaffirming the power of the SFA for multicolor-multiphoton ionization in this regime.

  17. Two-Color Strong-Field Photoelectron Spectroscopy and the Phase of the Phase.

    PubMed

    Skruszewicz, S; Tiggesbäumker, J; Meiwes-Broer, K-H; Arbeiter, M; Fennel, Th; Bauer, D

    2015-07-24

    The presence of a weak second-harmonic field in an intense-laser ionization experiment affects the momentum-resolved electron yield, depending on the relative phase between the ω and the 2ω component. The proposed two-color "phase-of-the-phase spectroscopy" quantifies for each final electron momentum a relative-phase contrast (RPC) and a phase of the phase (PP) describing how much and with which phase lag, respectively, the yield changes as a function of the relative phase. Experimental results for RPC and PP spectra for rare gas atoms and CO_{2} are presented. The spectra demonstrate a rather universal structure that is analyzed with the help of a simple model based on electron trajectories, wave-packet spreading, and (multiple) rescattering. Details in the PP and RPC spectra are target sensitive and, thus, may be used to extract structural (or even dynamical) information with high accuracy. PMID:26252678

  18. Spectral Linewidth Narrowing and Tunable Two-Color Laser Operation of Two Diode Laser Arrays

    SciTech Connect

    Liu, Bo; Braiman, Yehuda

    2012-01-01

    We propose and implement a common external cavity to narrow spectral linewidth of two broad-area laser diode arrays (LDAs) and align their center wavelengths. The locked center wavelength of two LDAs can be tuned in the range of {approx}10 nm by tuning the tilted angle of the diffraction grating. The output beams of two LDAs are spatially overlapped through the polarization beam splitter of the common external cavity, and the total output power equals the power of two LDAs. The center wavelength of each LDA can be independently tuned by shifting the corresponding fast-axis collimation lens. As a result, the high-power two-color LDA operation is demonstrated with the tunable wavelength difference of up to 2 nm ({approx}1 THz).

  19. In Silico Comparative Transcriptome Analysis of Two Color Morphs of the Common Coral Trout (Plectropomus Leopardus)

    PubMed Central

    Wang, Le; Yu, Cuiping; Guo, Liang; Lin, Haoran; Meng, Zining

    2015-01-01

    The common coral trout is one species of major importance in commercial fisheries and aquaculture. Recently, two different color morphs of Plectropomus leopardus were discovered and the biological importance of the color difference is unknown. Since coral trout species are poorly characterized at the molecular level, we undertook the transcriptomic characterization of the two color morphs, one black and one red coral trout, using Illumina next generation sequencing technologies. The study produced 55162966 and 54588952 paired-end reads, for black and red trout, respectively. De novo transcriptome assembly generated 95367 and 99424 unique sequences in black and red trout, respectively, with 88813 sequences shared between them. Approximately 50% of both trancriptomes were functionally annotated by BLAST searches against protein databases. The two trancriptomes were enriched into 25 functional categories and showed similar profiles of Gene Ontology category compositions. 34110 unigenes were grouped into 259 KEGG pathways. Moreover, we identified 14649 simple sequence repeats (SSRs) and designed primers for potential application. We also discovered 130524 putative single nucleotide polymorphisms (SNPs) in the two transcriptomes, supplying potential genomic resources for the coral trout species. In addition, we identified 936 fast-evolving genes and 165 candidate genes under positive selection between the two color morphs. Finally, 38 candidate genes underlying the mechanism of color and pigmentation were also isolated. This study presents the first transcriptome resources for the common coral trout and provides basic information for the development of genomic tools for the identification, conservation, and understanding of the speciation and local adaptation of coral reef fish species. PMID:26713756

  20. Palmitoylethanolamide: problems regarding micronization, ultra-micronization and additives.

    PubMed

    Kriek, Rutger

    2014-06-01

    It can be established that at least two of the writers of the article published in 'Inflammopharmacology', title: 'Palmitoylethanolamide (PEA), a naturally occurring disease-modifying agent in neuropathic pain' have a direct connection to the companies Epitech and Innovet. These companies produce micronized and ultra-micronized PEA. Therefore it is of eminent importance to determine whether the statements in this paper have also taken into consideration the European guidelines for Good Clinical Practice and the codes of good scientific practices. This is very questionable. A minimum condition in clinical studies for proving the claim that PEA in its micronized and ultra-micronized formulations works better than in its pure form or in other formulations is that a comparison be made between: PEA in pure form or in other formulations, on the one hand; PEA in the micronized and ultra-micronized formulations, on the other hand. This minimum condition is not complied with. Based on additional studies discussed in this commentary and in view of the effects of ultra-micronization on the parameters discussed, as well as the potential side-effects of additives such as excipients and herbal extracts added to the products cited in the article, the preference should be for the time being to treat patients with pure PEA without any of these additives. PMID:24647619

  1. Two-photon indirect optical injection and two-color coherent control in bulk silicon

    NASA Astrophysics Data System (ADS)

    Cheng, J. L.; Rioux, J.; Sipe, J. E.

    2011-12-01

    Using an empirical pseudopotential description of electron states and an adiabatic bond charge model for phonon states in bulk silicon, we theoretically investigate two-photon indirect optical injection of carriers and spins and two-color coherent control of the motion of the injected carriers and spins. For two-photon indirect carrier and spin injection, we identify the selection rules of band edge transitions, the injection in each conduction band valley, and the injection from each phonon branch at 4 and 300 K. At 4 K, the TA-phonon-assisted transitions dominate the injection at low photon energies and the TO-phonon-assisted transitions at high photon energies. At 300 K, the former dominates at all photon energies of interest. The carrier injection shows anisotropy and linear-circular dichroism with respect to the light propagation direction. For light propagating along the <001> direction, the carrier injection exhibits valley anisotropy, and the injection into the Z conduction band valley is larger than that into the X and Y valleys. For σ- light propagating along the <001> (<111>) direction, the degree of spin polarization gives a maximum value about 20% (6%) at 4 K and -10% (20%) at 300 K, and at both temperature shows abundant structure near the injection edges due to contributions from different phonon branches. For two-color coherent current injection with an incident optical field composed of a fundamental frequency and its second harmonic, the response tensors of the electron (hole) charge and spin currents are calculated at 4 and 300 K. We show the current control for three different polarization scenarios: For cocircularly polarized beams, the direction of the charge current and the polarization direction of the spin current can be controlled by a relative-phase parameter; for the collinearly and cross-linearly polarized beams, the current amplitude can be controlled by that parameter. The spectral dependence of the maximum swarm velocity shows that

  2. Large-bandwidth two-color free-electron laser driven by a comb-like electron beam

    NASA Astrophysics Data System (ADS)

    Ronsivalle, C.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Dattoli, G.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Giannessi, L.; Mostacci, A.; Musumeci, P.; Palumbo, L.; Petralia, A.; Petrillo, V.; Pompili, R.; Rau, J. V.; Rossi, A. R.; Vaccarezza, C.; Villa, F.

    2014-03-01

    We discuss a two-color SASE free-electron laser (FEL) amplifier where the time and energy separation of two separated radiation pulses are controlled by manipulation of the electron beam phase space. Two electron beamlets with adjustable time and energy spacing are generated in an RF photo-injector illuminating the cathode with a comb-like laser pulse followed by RF compression in the linear accelerator. We review the electron beam manipulation technique to generate bunches with time and energy properties suitable for driving two-color FEL radiation. Experimental measurements at the SPARC-LAB facility illustrate the flexibility of the scheme for the generation of two-color FEL spectra.

  3. Control of threshold enhancements in harmonic generation by atoms in a two-color laser field with orthogonal polarizations

    NASA Astrophysics Data System (ADS)

    Frolov, M. V.; Manakov, N. L.; Sarantseva, T. S.; Silaev, A. A.; Vvedenskii, N. V.; Starace, Anthony F.

    2016-02-01

    Threshold phenomena (or channel-closing effects) are analyzed in high-order harmonic generation (HHG) by atoms in a two-color laser field with orthogonal linearly polarized components of a fundamental field and its second harmonic. We show that the threshold behavior of HHG rates for the case of a weak second harmonic component is sensitive to the parity of a closing multiphoton ionization channel and the spatial symmetry of the initial bound state of the target atom, while for the case of comparable intensities of both components, suppression of threshold phenomena is observed as the relative phase between the components of a two-color field varies. A quantum orbit analysis as well as phenomenological considerations in terms of Baz' theory of threshold phenomena [Zh. Eksp. Teor. Fiz. 33, 923 (1957)] are presented in order to describe and explain the major features of threshold phenomena in HHG by a two-color field.

  4. Two-color method for optical astrometry - Theory and preliminary measurements with the Mark III stellar interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. Mark; Shao, Michael; Staelin, David H.

    1987-01-01

    The two-color method for interferometric astrometry provides a means of reducing the error in a stellar position measurement attributable to atmospheric turbulence. The primary limitation of the method is shown to be turbulent water vapor fluctuations. Secondary atmospheric effects caused by diffraction from small refractive-index inhomogeneities and differential refraction for the observation of stars away from zenith are shown to introduce errors that behave as white noise and which should not be significant. Other potential error sources due to photon noise, systematic instrumental effects, and imperfect data reduction are also considered. The improvement in accuracy possible with the two-color method is estimated as a factor of 5-10 over the corresponding one-color measurement. Some preliminary two-color measurements with the Mark III stellar interferometer at Mt. Wilson are presented, which demonstrate a factor of about 5 reduction in the amplitude of the atmospheric fluctuations in a stellar position measurement.

  5. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    PubMed

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-01

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale. PMID:27505831

  6. Cooperative phenomena in two-pulse, two-color laser photocoagulation of cutaneous blood vessels.

    PubMed

    Barton, J K; Frangineas, G; Pummer, H; Black, J F

    2001-06-01

    A novel laser system has been developed to study the effects of multiple laser pulses of differing wavelengths on cutaneous blood vessels in vivo, using the hamster dorsal skin flap preparation and in vitro, using cuvettes of whole or diluted blood. The system permits sequenced irradiation with well-defined intrapulse spacing at 532 nm, using a long-pulse frequency-doubled Nd:YAG laser, and at 1064 nm, using a long-pulse Nd:YAG laser. Using this system, we have identified a parameter space where two pulses of different wavelengths act in a synergistic manner to effect permanent vessel damage at radiant exposures where the two pulses individually have little or no effect. Using a two-color pump-probe technique in vitro, we have identified a phenomenon we call greenlight-induced infrared absorption, where a pulse of green light causes photochemical and photothermal modifications to the chemical constituents of blood and results in enhanced infrared absorption. We identify a new chemical species, met-hemoglobin, not normally present in healthy human blood but formed during laser photocoagulation which we believe is implicated in the enhanced near-infrared absorption. PMID:11421070

  7. Two-color excitation system for fluorescence detection in DNA sequencing by capillary array electrophoresis.

    PubMed

    Xue, Gang; Yeung, Edward S

    2002-05-01

    Two computer-controlled galvanometer scanners are adapted for two-dimensional step scanning across a 96-capillary array for laser-induced fluorescence detection. 488 nm and 514 nm laser lines from the same Ar(+) laser were alternately coupled for two-color excitation in each capillary. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries and the excitation wavelengths. Based on the differences in absorption spectra for the dyes, the peak-height ratios in the 488 nm and 514 nm excitation electropherograms were used for peak identification for multiplexed capillary electrophoresis. Successful base calling for 24-capillary DNA sequencing was achieved to 450 bp with 99% accuracy. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components and flexibility due to the independent paths for excitation and emission. PMID:12116160

  8. Bias Selective Operation of Sb-Based Two-Color Photodetectors

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, Tamer F.; Bhat, Ishwara B.; Xiao, Yegao; Johnson, David G.

    2006-01-01

    Multicolor detectors have a strong potential to replace conventional single-color detectors in application dealing with the simultaneous detection of more than one wavelength. This will lead to the reduction of heavy and complex optical components now required for spectral discrimination for multi-wavelengths applications. This multicolor technology is simpler, lighter, compact and cheaper with respect to the single-color ones. In this paper, Sb-based two-color detectors fabrication and characterization are presented. The color separation is achieved by fabricating dual band pn junction on a GaSb substrate. The first band consists of an InGaAsSb pn junction for long wavelength detection, while the second band consists of a GaSb pn junction for shorter wavelength detection. Three metal contacts were deposited to access the individual junctions. Surface morphology of multi-layer thin films and also device characteristics of quasi-dual band photodetector were characterized using standard optical microscope and electro-optic techniques respectively. Dark current measurements illustrated the diode behavior of both lattice-matched detector bands. Spectral response measurements indicated either independent operation of both detectors simultaneously, or selective operation of one detector, by the polarity of the bias voltage, while serially accessing both devices.

  9. Differences in Bacterial Community Structure in Two Color Morphs of the Hawaiian Reef Coral Montipora capitata.

    PubMed

    Shore-Maggio, Amanda; Runyon, Christina M; Ushijima, Blake; Aeby, Greta S; Callahan, Sean M

    2015-10-01

    Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods. PMID:26253663

  10. Exciton and Trion Valley dynamics in WSe2 measured by two-color pump-probe

    NASA Astrophysics Data System (ADS)

    Singh, Akshay; Tran, Kha; Seifert, Joe; Wang, Yiping; Scott, Marie; Pleskot, Dennis; Gabor, Nathaniel; Yan, Jiaqiang; Mandrus, David; Xu, Xiaodong; Li, Xiaoqin

    Monolayer transition metal dichalcogenides are semiconducting materials demonstrating spin-valley coupling as well as quasiparticles with large binding energies. These quasiparticles, excitons and trions (charged excitons), have quite different spin polarization properties, with the trion having larger spin lifetimes than excitons. Photoluminescence and time resolved Kerr rotation techniques have been used earlier to measure spin lifetimes. However, most of these early optical measurements have relied on non-resonant excitation conditions which tend to mask the intrinsic valley (spin) scattering properties. Here, we use circularly polarized two-color pump probe spectroscopy to measure valley (spin) polarization in monolayer WSe2 at low temperatures. We utilize quasi-resonant excitation with pump 1 meV (0.5 nm) spectrally separated from the probe, thus resulting in very efficient valley initialization. We present polarization resolved measurements on resonantly excited excitons and trions, which suggest that trions have larger spin lifetimes. Further, we probe spin polarization of trions when pumping at exciton energies, and vice-versa. We discuss the relative importance of different scattering mechanism at play. We acknowledge support from ARO and AFOSR.

  11. Coherent manipulation of cold cesium atoms in a nanofiber-based two-color dipole trap

    NASA Astrophysics Data System (ADS)

    Sayrin, Clement

    2013-05-01

    We have recently demonstrated a new experimental platform for trapping and optically interfacing laser-cooled cesium atoms. The scheme uses a two-color evanescent field surrounding an optical nanofiber to localize the atoms in a one-dimensional optical lattice 200 nm above the nanofiber surface. In order to use this fiber-coupled ensemble of trapped atoms for applications in the context of quantum communication and quantum information processing, non-classical states of the atomic spins have to be prepared and should live long enough to allow one to apply successive quantum operations. However, the close proximity of the trapped atoms to the nanofiber surface and the strong polarization gradients of nanofiber-guided light fields are potentially important sources of decoherence. In this talk, I will present our latest experimental results on characterizing the coherence properties of atomic spins in our nanofiber-based trap. Using a microwave field to drive the cesium clock transition, we determine inhomogeneous and homogeneous dephasing times by Ramsey and spin echo techniques, respectively, and identify the sources of the measured decoherence. Our results constitute the first measurement of the coherence properties of atoms trapped in the vicinity of a nanofiber and represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in quantum networks.

  12. Two-color mid-infrared thermometer using a hollow glass optical fiber

    SciTech Connect

    Small, W., IV.; Celliers, P.M.; Da Silva, L.D.; Matthews, D.L.

    1997-06-30

    A non-invasive two-color infrared thermometer has been developed for low-temperature biomedical applications. Mid-infrared radiation from the target is collected via a single 700 {mu}m-bore hollow glass optical fiber, simultaneously split into two paths and modulated by a gold-coated reflective optical chopper, and focused onto two thermoelectrically-cooled HgCdZnTe photoconductors (bandpasses of 2- 6 {mu}m and 2-12 {mu}m, respectively) by gold-coated spherical mirrors. The small numerical aperture of the hollow glass fiber provides high spatial resolution (is less than 1 mm), and the hollow bore eliminates reflective losses. The modulated detector signals are recovered using lock-in amplification, permitting measurement of small low-temperature signal buried in the background. A computer algorithm calculates the true temperature and emissivity of the target in real time based on a previous blackbody (emissivity equal to 1) calibration, taking into account reflection of the ambient radiation field from the target surface.

  13. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging

    SciTech Connect

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-14

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ∼243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ∼243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ∼243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H{sup +} images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation.

  14. Optimal design of genetic studies of gene expression with two-color microarrays in outbred crosses.

    PubMed

    Lam, Alex C; Fu, Jingyuan; Jansen, Ritsert C; Haley, Chris S; de Koning, Dirk-Jan

    2008-11-01

    Combining global gene-expression profiling and genetic analysis of natural allelic variation (genetical genomics) has great potential in dissecting the genetic pathways underlying complex phenotypes. Efficient use of microarrays is paramount in experimental design as the cost of conducting this type of study is high. For those organisms where recombinant inbred lines are available for mapping, the "distant pair design" maximizes the number of informative contrasts over all marker loci. Here, we describe an extension of this design, named the "optimal pair design," for use with F2 crosses between outbred lines. The performance of this design is investigated by simulation and compared to several other two-color microarray designs. We show that, for a given number of microarrays, the optimal pair design outperforms all other designs considered for detection of expression quantitative trait loci (eQTL) with additive effects by linkage analysis. We also discuss the suitability of this design for outbred crosses in organisms with large genomes and for detection of dominance. PMID:18791249

  15. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    SciTech Connect

    Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z.; Dvoretskii, S.

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.

  16. Differences in Bacterial Community Structure in Two Color Morphs of the Hawaiian Reef Coral Montipora capitata

    PubMed Central

    Shore-Maggio, Amanda; Runyon, Christina M.; Ushijima, Blake; Aeby, Greta S.

    2015-01-01

    Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods. PMID:26253663

  17. Gradient effects on two-color soot optical pyrometry in a heavy-duty DI diesel engine

    SciTech Connect

    Musculus, Mark P.B.; Singh, Satbir; Reitz, Rolf D.

    2008-04-15

    Two-color soot optical pyrometry is a widely used technique for measuring soot temperature and volume fraction in many practical combustion devices, but line-of-sight soot temperature and volume fraction gradients can introduce significant uncertainties in the measurements. For diesel engines, these uncertainties usually can only be estimated based on assumptions about the soot property gradients along the line of sight, because full three-dimensional transient diesel soot distribution data are not available. Such information is available, however, from multidimensional computer model simulations, which are phenomenologically based, and have been validated against available in-cylinder soot measurements and diesel engine exhaust soot emissions. Using the model-predicted in-cylinder soot distributions, uncertainties in diesel two-color pyrometry data are assessed, both for a conventional high-sooting, high-temperature combustion (HTC) operating condition, and for a low-sooting, low-temperature combustion (LTC) condition. The simulation results confirm that the two-color soot measurements are strongly biased toward the properties of the hot soot. For the HTC condition, line-of-sight gradients in soot temperature span 600 K, causing relatively large errors. The two-color temperature is 200 K higher than the soot-mass-averaged value, while the two-color volume fraction is 50% lower. For the LTC condition, the two-color measurement errors are half as large as for the HTC condition, because the model-predicted soot temperature gradients along the line of sight are half as large. By contrast, soot temperature and volume fraction gradients across the field of view introduce much smaller errors of less than 50 K in temperature and 20% in volume fraction. (author)

  18. 75 FR 3209 - Mission Statement: U.S. Aerospace Business Development Mission to Canada, April 14-15, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE..., April 14-15, 2010 AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. Mission Description The United States Department of Commerce's International Trade Administration,...

  19. PROCEEDINGS OF A WORKSHOP ON CATALYTIC COMBUSTION (4TH) HELD AT CINCINNATI, OHIO ON MAY 14-15, 1980

    EPA Science Inventory

    The proceedings document the major presentations at the Fourth Workshop on Catalytic Combustion, held in Cincinnati, OH, May 14-15, 1980. Sponsored by the Combustion Research Branch of EPA's Industrial Environmental Research Laboratory (Research Triangle Park), the workshop serve...

  20. Stanford bistatic radar experiment (S-170) on Apollos 14, 15, and 16

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Tyler, G. L.

    1973-01-01

    No special equipment was placed onboard the vehicles for the bistatic radar experiments which were carried out during the lunar orbit phases of the Apollo 14, 15, and 16 flights. Radio frequency transmissions from the orbiting command service module were directed toward the moon and received on the earth after reflection from the lunar surface. Two wavelengths, 13 cm (2287.5 MHz, S-band) and 116 cm (259.7 MHz, VHF), were used. Data were obtained at the two wavelengths simultaneously during periods when the spacecraft was maneuvered to maintain a predetermined, although changing, attitude with respect to the earth and moon. Data were also obtained at the 116 cm wavelength during periods of inertial hold and SIM bay attitude maneuvers.

  1. Electrical and optical characteristics of two color mid wave HgCdTe infrared detectors

    NASA Astrophysics Data System (ADS)

    Mason, Whitney; Waterman, J. R.

    1999-03-01

    Two-color mid wave triple-layer heterojunction HgCdTe detectors were studied using temperature-dependent current-voltage (I-V) measurements, temperature-dependent spectral response measurements, and temperature-dependent noise measurements. The reverse biased dark current shows diffusion-limited behavior for T>125 K. The same data show evidence for generation-recombination-type behavior for the longer wavelength junction at temperatures between 100 and 125 K. For temperatures less than 100 K, the measurements are background limited by photon flux, even though these measurements are performed at nominal zero background. The upper junction shows soft reverse breakdown voltages on the order of about 250 mV, while the bottom junction shows no breakdown for V<500 mV. At 80 K, the R0A product is in excess of 1×106 Ω cm2. In forward bias, the current-voltage characteristics of the lower junction are diffusion limited for all temperatures, while at lower temperatures, the upper junction showed generation-recombination behavior. Optical measurements found a cutoff wavelength of about 4 μm for the lower junction and about 4.5 μm for the upper junction. The spectral crosstalk was less than 3%. At 80 K, the frequency-dependent noise of the shorter wavelength junction showed no dependence on bias, while for the longer wavelength junction, the noise at lower frequencies increased with bias. There is no difference in the noise characteristics when either the photon flux or the temperature is increased.

  2. Two-Photon Excitation STED Microscopy in Two Colors in Acute Brain Slices

    PubMed Central

    Bethge, Philipp; Chéreau, Ronan; Avignone, Elena; Marsicano, Giovanni; Nägerl, U. Valentin

    2013-01-01

    Many cellular structures and organelles are too small to be properly resolved by conventional light microscopy. This is particularly true for dendritic spines and glial processes, which are very small, dynamic, and embedded in dense tissue, making it difficult to image them under realistic experimental conditions. Two-photon microscopy is currently the method of choice for imaging in thick living tissue preparations, both in acute brain slices and in vivo. However, the spatial resolution of a two-photon microscope, which is limited to ∼350 nm by the diffraction of light, is not sufficient for resolving many important details of neural morphology, such as the width of spine necks or thin glial processes. Recently developed superresolution approaches, such as stimulated emission depletion microscopy, have set new standards of optical resolution in imaging living tissue. However, the important goal of superresolution imaging with significant subdiffraction resolution has not yet been accomplished in acute brain slices. To overcome this limitation, we have developed a new microscope based on two-photon excitation and pulsed stimulated emission depletion microscopy, which provides unprecedented spatial resolution and excellent experimental access in acute brain slices using a long-working distance objective. The new microscope improves on the spatial resolution of a regular two-photon microscope by a factor of four to six, and it is compatible with time-lapse and simultaneous two-color superresolution imaging in living cells. We demonstrate the potential of this nanoscopy approach for brain slice physiology by imaging the morphology of dendritic spines and microglial cells well below the surface of acute brain slices. PMID:23442956

  3. One- and Two-Color Resonant Photoionization Spectroscopy of Chromium-Doped Helium Nanodroplets

    PubMed Central

    2014-01-01

    We investigate the photoinduced relaxation dynamics of Cr atoms embedded into superfluid helium nanodroplets. One- and two-color resonant two-photon ionization (1CR2PI and 2CR2PI, respectively) are applied to study the two strong ground state transitions z7P2,3,4° ← a7S3 and y7P2,3,4° ← a7S3. Upon photoexcitation, Cr* atoms are ejected from the droplet in various excited states, as well as paired with helium atoms as Cr*–Hen exciplexes. For the y7P2,3,4° intermediate state, comparison of the two methods reveals that energetically lower states than previously identified are also populated. With 1CR2PI we find that the population of ejected z5P3° states is reduced for increasing droplet size, indicating that population is transferred preferentially to lower states during longer interaction with the droplet. In the 2CR2PI spectra we find evidence for generation of bare Cr atoms in their septet ground state (a7S3) and metastable quintet state (a5S2), which we attribute to a photoinduced fast excitation–relaxation cycle mediated by the droplet. A fraction of Cr atoms in these ground and metastable states is attached to helium atoms, as indicated by blue wings next to bare atom spectral lines. These relaxation channels provide new insight into the interaction of excited transition metal atoms with helium nanodroplets. PMID:24708058

  4. Dynamics of surface thermal expansion and diffusivity using two-color reflection transient gratings

    SciTech Connect

    Pennington, D.M.; Harris, C.B.

    1993-02-01

    We report ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples at several temperatures. Using a 75 fs ultraviolet probe with visible excitation beams, the electronic effects that dominate single color experiments become negligible; thus surface expansion due to heating and the subsequent contraction caused by cooling provide the dominant influence on the diffracted probe. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, allowing the determination of the rate of expansion as well as the surface thermal diffusivity. At room temperature a signal rise due to thermal expansion was observed, corresponding to a maximum average displacement of {approx} 1 {angstrom} at 32 ps. Large fringe spacings were used, thus the dominant contributions to the signal were expansion and diffusion perpendicular to the surface. Values for the surface thermal diffusivity of GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, the diffusivity at the surface was more than an order of magnitude slower than in the bulk due to increased phonon boundary scattering. Comparison of the results with a straightforward thermal model yields good agreement over a range of temperatures (12--300{degrees}K). The applicability and advantages of the transient grating technique for studying photothermal and photoacoustic phenomena are discussed.

  5. Countermeasure effectiveness against a man-portable air-defense system containing a two-color spinscan infrared seeker

    NASA Astrophysics Data System (ADS)

    Jackman, James; Richardson, Mark; Butters, Brian; Walmsley, Roy

    2011-12-01

    Man-portable air-defense (MANPAD) systems have developed sophisticated counter-countermeasures (CCM) to try and defeat any expendable countermeasure that is deployed by an aircraft. One of these is a seeker that is able to detect in two different parts of the electromagnetic spectrum. Termed two-color, the seeker can compare the emissions from the target and a countermeasure in different wavebands and reject the countermeasure. In this paper we describe the modeling process of a two-color infrared seeker using COUNTERSIM, a missile engagement and countermeasure software simulation tool. First, the simulations model a MANPAD with a two-color CCM which is fired against a fast jet model and a transport aircraft model releasing reactive countermeasures. This is then compared to when the aircraft releases countermeasures throughout an engagement up to the hit point to investigate the optimum flare firing time. The results show that the release time of expendable decoys as a countermeasure against a MANPAD with a two-color CCM is critical.

  6. Digitized POSS-II: Galaxy Number Counts in Two Colors Over a Multi-Plate Region

    NASA Astrophysics Data System (ADS)

    Weir, N.; Djorgovski, S.; Fayyad, U.

    1993-05-01

    We have developed a software system for the reduction and analysis of the Palomar-STScI Digital Sky Survey (cf. B.A.A.S. 23, p. 1434, and B.A.A.S. 24, pp. 741, 750, and 1139). This system, named SKICAT, uses a number of image processing and machine-learning based modules, and conducts pipeline processing of the plate scans, from raw pixel measurement, object classification, photometric matching of multiple plate images, to high-level catalog database manipulation using an X-windows based GUI. We are now in the process of implementing a variety of tools for the scientific and multivariate statistical analysis of the object catalogs. We will present our initial results on galaxy and star counts in two colors (photographic J and F, calibrated to Gunn g and r bands), for a multi-plate region near the north Galactic pole, covering up to 5 Survey fields ( ~ 125 square degrees), and up to 11 Survey fields ( ~ 275 square degrees) in a single color. The data have been uniformly calibrated using CCD sequences and plate overlaps over the range 16 < r < 20, within which we are over 90% complete. We also performed extensive tests to assure the accuracy of automatic galaxy classifications over this magnitude range. Previous results from the southern APM Survey implied dramatic evolution of galaxies at low redshift. We will present our new galaxy counts as function of magnitudes colors in the context of these measurements and galaxy evolution models. Acknowledgements: The POSS-II is partially funded by grants to Caltech from the Eastman Kodak Co., the National Geographic Society, the Samuel Oschin Foundation, the NSF grants AST 84-08225 and AST 87-19465, and the NASA grants NGL 05002140 and NAGW 1710. NW was supported in part by a NSF graduate fellowship and by IPAC. SD acknowledges a partial support from the NASA contract NAS5-31348, the NSF PYI award AST-9157412, the Caltech President's fund, and JPL. Work at JPL is performed under a contract with the NASA.

  7. Human platelets produce 14,15-oxido-5,8,11-eicosatrienoic acid from phosphatidylinositol

    SciTech Connect

    Ballou, L.R.; Lam, B.K.; Wong, P.Y.K.; Cheung, W.Y.

    1987-05-01

    Human platelets contain a soluble enzyme or enzyme system which catalyzes the formation of a compound more polar than arachidonate from 2-arachidonyl-sn-phosphatidylinositol (PtdIns). The C-value and mass spectrum of the compound appears similar to the reported values of 14,15-oxido-5,8,11-eicosatrienoic acid (EET). 2-Arachidonyl-sn-phosphatidylcholine, 2-arachidonyl-sn-phosphatidylethanolamine and arachidonic acid were not substrates for EET production. The reaction was Ca/sup 2 +/-dependent and insensitive to aspirin, mepacrin and indomethacin. EET formation was greatly reduced under nitrogen or carbon monoxide, however, exposure to atmospheric air rapidly restored EET production to a rate comparable to that under air. Further, neither NADPH nor cyanide affected EET formation, suggesting that a cytochrome P-450 system was not involved. Intact platelets prelabeled with (/sup 14/C)arachidonic acid generated at least 0.5 nmole of EET/10/sup 9/ platelets in response to thrombin; other agonists such as collagen, epinephrine, ADP or ionophore A23187 were not effective. Collectively, these data suggest that human platelets possess an enzyme system which appears to catalyze epoxidation of the arachidonyl moiety of PtdIns and its subsequent hydrolysis to yield EET.

  8. First-principles study of hypothetical boron crystals: Bn(n = 13, 14, 15)

    NASA Astrophysics Data System (ADS)

    Aydın, Sezgin; Şimşek, Mehmet

    2012-11-01

    First-principles simulations within density functional theory are performed to investigate structural, electronic and mechanical properties of hypothetical boron crystals Bn(n = 13, 14, 15). These hypothetical crystals are generated by inserting boron atom(s) to the space in three-dimensional network of α-boron (α-B12). The effects of inserted atom(s) and their site(s) on the lattice parameters, mechanical and electronic properties are discussed. Cohesive energies and formation enthalpies are calculated to discuss energetic stability of purposed compounds, and also the elastic constants are determined to study mechanical stability and mechanical properties such as bulk, shear and Young moduli. To check the phase stability, molecular dynamics simulations and transition state search calculations are performed and to emphasize distinction of the phases energy-volume curves for all phases are presented. From calculated density of states and Mulliken atomic charges/bond overlap populations, it is observed that the charge transfers exist between inserted boron atom(s) located at different sites and icosahedral boron atoms. By mean of the optimized ground state geometry and other first-principles results, the micro-hardnesses of each boron phases are calculated.

  9. Low-Latitude Auroras: The Magnetic Storm of 14-15 May 1921

    NASA Technical Reports Server (NTRS)

    Silverman, S. M.; Cliver, E. W.

    2001-01-01

    We review solar geophysical data relating to the great magnetic storm of 14-15 May 1921, with emphasis on observations of the low-latitude visual aurora. From the reports we have gathered for this event the lowest geomagnetic latitude of definite overhead aurora (coronal form) was 40 deg and the lowest geomagnetic latitude from which auroras were observed on the poleward horizon in the northern hemisphere was 30 deg. For comparison, corresponding overhead/low-latitude values of 48 deg/32 deg and 41 deg/20 deg were reported for the great auroras on 28-29 August and 1-2 September 1859, respectively. However for the 1921 event, there is a report of aurora from Apia, Samoa, in the southern hemisphere, within 13 deg of the geomagnetic equator. This report by professional observers appears to be credible, based on the aurora description and timing, but is puzzling because of the discrepancy with the lowest latitude of observation in the northern hemisphere and the great implied aurora height (approximately 2000 km, assuming overhead aurora at Auckland, New Zealand). We discuss various possibilities that might account for this observation.

  10. Nanometer resolved single-molecule colocalization of nuclear factors by two-color super resolution microscopy imaging.

    PubMed

    Georgieva, Mariya; Cattoni, Diego I; Fiche, Jean-Bernard; Mutin, Thibaut; Chamousset, Delphine; Nollmann, Marcelo

    2016-08-01

    In order to study the detailed assembly and regulation mechanisms of complex structures and machineries in the cell, simultaneous in situ observation of all the individual interacting components should be achieved. Multi-color Single-Molecule Localization Microscopy (SMLM) is ideally suited for these quantifications. Here, we build on previous developments and thoroughly discuss a protocol for two-color SMLM combining PALM and STORM, including sample preparation details, image acquisition and data postprocessing analysis. We implement and evaluate a recently proposed colocalization analysis method (aCBC) that allows single-molecule colocalization quantification with the potential of revealing fine, nanometer-scaled, structural details of multicomponent complexes. Finally, using a doubly-labeled nuclear factor (Beaf-32) in Drosophila S2 cells we experimentally validate the colocalization quantification algorithm, highlight its advantages and discuss how using high molecular weight fluorescently labeled tags compromises colocalization precision in two-color SMLM experiments. PMID:27045944

  11. Saturation curves of two-color laser-induced incandescence measurements for the investigation of soot optical properties

    NASA Astrophysics Data System (ADS)

    Migliorini, F.; De Iuliis, S.; Maffi, S.; Zizak, G.

    2015-09-01

    Two-color laser-induced incandescence (LII) measurements are carried out in diffusion flames and at the exhaust of a homemade soot generator, both fueled with ethylene and methane. Two-color prompt LII signals, their ratio and the corresponding temperature have been analyzed as a function of laser fluence. In particular, the effect of fuel, soot load and gas/particle initial temperature on LII measurements have been investigated. LII spectral measurements have also been performed in all conditions for validation. The results suggest that the incandescence is sensitive to both optical and non-optical physical properties of the particles. Moreover, soot volume fraction measurements are dependent on the laser fluence used, indicating that the soot temperature influences the refractive index absorption function. Such issues can be overcome by working at high laser fluences, where the saturation curves are independent from the experimental conditions if the soot absorption function near soot sublimation threshold is known.

  12. Coherent control of the dissociation probability of H2+ in ω-3ω two-color fields

    NASA Astrophysics Data System (ADS)

    Xu, Han; Hu, Hongtao; Tong, Xiao-Min; Liu, Peng; Li, Ruxin; Sang, Robert T.; Litvinyuk, Igor V.

    2016-06-01

    We demonstrate that the coherent control of unimolecular reactions by using a waveform-controlled laser fields can lead to a strong modulation on the yield of the reaction. By using a synthesized ω (1800-nm) and 3ω (600-nm) two-color laser field, the probability of photodissociation of H2+ can be strongly modulated by varying the relative phase between the two colors. The dissociation probability maximizes at different relative phases for protons with different kinetic energy, and such energy dependence can also be qualitatively reproduced by our simulation. We attribute the observed dissociation probability modulation to the interference between two different dissociation pathways which start from the same electronic states and end with the same kinetic energy.

  13. Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements.

    PubMed

    Zhou, Heping; Bouwman, Kerri; Schotanus, Mark; Verweij, Cornelius; Marrero, Jorge A; Dillon, Deborah; Costa, Jose; Lizardi, Paul; Haab, Brian B

    2004-01-01

    The ability to conveniently and rapidly profile a diverse set of proteins has valuable applications. In a step toward further enabling such a capability, we developed the use of rolling-circle amplification (RCA) to measure the relative levels of proteins from two serum samples, labeled with biotin and digoxigenin, respectively, that have been captured on antibody microarrays. Two-color RCA produced fluorescence up to 30-fold higher than direct-labeling and indirect-detection methods using antibody microarrays prepared on both polyacrylamide-based hydrogels and nitrocellulose. Replicate RCA measurements of multiple proteins from sets of 24 serum samples were highly reproducible and accurate. In addition, RCA enabled reproducible measurements of distinct expression profiles from lower-abundance proteins that were not measurable using the other detection methods. Two-color RCA on antibody microarrays should allow the convenient acquisition of expression profiles from a great diversity of proteins for a variety of applications. PMID:15059261

  14. Detection of Ultracold Ground-State Molecules by One- and Two-Color Resonance-Enhanced Two-Photon Ionization

    NASA Astrophysics Data System (ADS)

    Li, Zhonghao; Ji, Zhonghua; Zhang, Xiang; Yuan, Jinpeng; Zhao, Yanting; Xiao, Liantuan; Jia, Suotang

    2016-08-01

    One- and two-color resonance-enhanced two-photon ionization (RETPI) is used to detect ultracold ground-state RbCs molecules which are formed via short-range photoassociation from laser-cooled atoms. The transition from the X1Σ+(v = 0) state to the 21Π(v = 10) state of ultracold RbCs molecules shows the consistence of one- and two-color RETPI. A multi-photon photoionization rate model is introduced to interpret the dependence of molecular ion intensity on photoionized laser energy, and can be used to verify the photoionization scheme. This photoionization rate model can be expanded to multi-color photoionization for all kinds of atoms and molecules, which is a powerful method of determining the photoionization scheme.

  15. Parity-selective enhancement of field-free molecular orientation in an intense two-color laser field

    SciTech Connect

    Yun, Hyeok; Nam, Chang Hee; Kim, Hyung Taek; Kim, Chul Min; Lee, Jongmin

    2011-12-15

    We investigated the characteristics of molecular orientation induced by a nonresonant two-color femtosecond laser field. By analyzing the rotational dynamics of asymmetric linear molecules, we revealed that the critical parameter in characterizing the molecular orientation was the hyperpolarizability of molecules that selected the excitation paths of rotational states between parity-changing and parity-conserving transitions. Especially, in the case of molecules with small hyperpolarizability, a significant enhancement of orientation was achieved at the half-rotational period, instead of the full-rotational period. This deeper understanding of the hyperpolarizability-dependent characteristics of molecular orientation in a two-color scheme can provide an effective method to achieve significantly enhanced field-free orientation for various polar molecules.

  16. Off-Axis Phase-Matched Terahertz Emission from Two-Color Laser-Induced Plasma Filaments

    NASA Astrophysics Data System (ADS)

    You, Y. S.; Oh, T. I.; Kim, K. Y.

    2012-11-01

    We observe off-axis phase-matched terahertz generation in long air-plasma filaments produced by femtosecond two-color laser focusing. Here, phase matching naturally occurs due to off-axis constructive interference between locally generated terahertz waves, and this determines the far-field terahertz radiation profiles and yields. For a filament longer than the characteristic two-color dephasing length, it emits conical terahertz radiation in the off-axis direction, peaked at 4-7° depending on the radiation frequencies. The total terahertz yield continuously increases with the filament length, well beyond the dephasing length. The phase-matching condition observed here provides a simple method for scalable terahertz generation in elongated plasmas.

  17. Hearing and loud music exposure in 14-15 years old adolescents.

    PubMed

    Serra, Mario R; Biassoni, Ester C; Hinalaf, María; Abraham, Mónica; Pavlik, Marta; Villalobo, Jorge Pérez; Curet, Carlos; Joekes, Silvia; Yacci, María R; Righetti, Andrea

    2014-01-01

    Adolescent exposure to loud music has become a social and health problem whose study demands a holistic approach. The aims of the current study are: (1) To detect early noise-induced hearing loss among adolescents and establish its relationship with their participation in musical recreational activities and (2) to determine sound immission levels in nightclubs and personal music players (PMPs). The participants consisted in 172 14-15 years old adolescents from a technical high school. Conventional and extended high frequency audiometry, transient evoked otoacoustic emissions and questionnaire on recreational habits were administered. Hearing threshold levels (HTLs) were classified as: normal (Group 1), slightly shifted (Group 2), and significantly shifted (Group 3). The musical general exposure (MGE), from participation in recreational musical activities, was categorized in low, moderate, and high exposure. The results revealed an increase of HTL in Group 2 compared with Group 1 (P < 0.01), in Group 3 compared with Group 2 (P < 0.05) only in extended high frequency range, in Group 3 compared with Group 1 (P < 0.01). Besides, a decrease in mean global amplitude, reproducibility and in frequencies amplitude in Group 2 compared with Group 1 (P < 0.05) and in Group 3 compared with Group 1 (P < 0.05). A significant difference (P < 0.05) was found in Group 1's HTL between low and high exposure, showing higher HTL in high exposure. The sound immission measured in nightclubs (107.8-112.2) dBA and PMPs (82.9-104.6) dBA revealed sound levels risky for hearing health according to exposure times. It demonstrates the need to implement preventive and hearing health promoting actions in adolescents. PMID:25209042

  18. Interaction Between Two CMEs During 14 - 15 February 2011 and Their Unusual Radio Signature

    NASA Astrophysics Data System (ADS)

    Shanmugaraju, A.; Prasanna Subramanian, S.; Vrsnak, Bojan; Ibrahim, M. Syed

    2014-12-01

    We report a detailed analysis of an interaction between two coronal mass ejections (CMEs) that were observed on 14 - 15 February 2011 and the corresponding radio enhancement, which was similar to the "CME cannibalism" reported by Gopalswamy et al. ( Astrophys. J. 548, L91, 2001). A primary CME, with a mean field-of-view velocity of 669 km s-1 in the Solar and Heliospheric Observatory (SOHO)/ Large Angle Spectrometric Coronagraph (LASCO), was more than as twice as fast as the slow CME preceding it (326 km s-1), which indicates that the two CMEs interacted. A radio-enhancement signature (in the frequency range 1 MHz - 400 kHz) due to the CME interaction was analyzed and interpreted using the CME data from LASCO and from the Solar Terrestrial Relations Observatory (STEREO) HI-1, radio data from Wind/ Radio and Plasma Wave Experiment (WAVES), and employing known electron-density models and kinematic modeling. The following results are obtained: i) The CME interaction occurred around 05:00 - 10:00 UT in a height range 20 - 25 R⊙. An unusual radio signature is observed during the time of interaction in the Wind/WAVES dynamic radio spectrum. ii) The enhancement duration shows that the interaction segment might be wider than 5 R⊙. iii) The shock height estimated using density models for the radio enhancement region is 10 - 30 R⊙. iv) Using kinematic modeling and assuming a completely inelastic collision, the decrease of kinetic energy based on speeds from LASCO data is determined to be 0.77×1023 J, and 3.67×1023 J if speeds from STEREO data are considered. vi) The acceleration, momentum, and force are found to be a=-168 m s-2, I=6.1×1018 kg m s-1, and F=1.7×1015 N, respectively, using STEREO data.

  19. High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs.

    PubMed

    Minoshima, Kaoru; Arai, Kaoru; Inaba, Hajime

    2011-12-19

    Long-path pulse-to-pulse interferometers of two-color frequency combs are developed using fundamental and second harmonics of a mode-locked fiber laser. Interferometric phase difference between two-color frequency combs was precisely measured by stabilizing the fundamental fringe phase by controlling the repetition frequency of the comb, and a stability of 10(-10) for 1000 s was achieved in the measurement of an optical path length difference between two wavelengths. In long-term measurements performed for 10 h, results of phase variation of interferometric measurements were highly consistent with the fluctuations in the calculated difference of refractive indices of air at two wavelengths with an accuracy of 10(-10). The difference between the measured optical distances corresponding to two wavelengths and the optical distance corresponding to the fundamental wavelength were used in the two-color method; high-accuracy self-correction of the fluctuation of refractive index of air was performed with an uncertainty of 5 × 10(-8) for 10-h measurements when the maximum refractive index change was on the order of 10(-6). PMID:22274198

  20. Greater than two orders of magnitude enhancement of high-order harmonic generation driven by two-color laser fields

    NASA Astrophysics Data System (ADS)

    Severt, T.; Troß, J.; Timilisina, P.; Kolliopoulos, G.; Buczek, S.; Trallero-Herrero, C.; Ben-Itzhak, I.

    2016-05-01

    In the past decade, there has been a drive to produce intense tabletop XUV laser sources to study ultrafast dynamics in atoms and molecules. One promising technique is high-order harmonic generation (HHG) driven by two-color laser fields, which has been shown to enhance the harmonic yield over harmonics generated by only the fundamental single-color field, depending on the wavelengths' relationship. In preliminary data, we observe more than two orders of magnitude enhancement of harmonics produced by the two-color (800/400-nm) laser field over the 800-nm field. We also explore the enhancement's dependence on the relative intensities between the two colors. This work and T.S. are partially supported by the National Science Foundation under Award No. IIA-1430493. JRML personnel and operations are funded by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office for Science, U.S. Department of Energy. S.B. was also supported by NSF-REU program Grant No. PHYS-1461251.

  1. Micronized-Coal Burner Facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W.

    1986-01-01

    Micronized-coal (coal-in-oil mix) burner facility developed to fulfill need to generate erosion/corrosion data on series of superalloy specimens. In order to successfully operate gas turbine using COM, two primary conditions must be met. First, there must be adequate atomization of COM and second, minimization of coking of burner. Meeting these conditions will be achieved only by clean burning and flame stability.

  2. Coherent control of D2/H2 dissociative ionization by a mid-infrared two-color laser field

    NASA Astrophysics Data System (ADS)

    Wanie, Vincent; Ibrahim, Heide; Beaulieu, Samuel; Thiré, Nicolas; Schmidt, Bruno E.; Deng, Yunpei; Alnaser, Ali S.; Litvinyuk, Igor V.; Tong, Xiao-Min; Légaré, François

    2016-01-01

    Steering the electrons during an ultrafast photo-induced process in a molecule influences the chemical behavior of the system, opening the door to the control of photochemical reactions and photobiological processes. Electrons can be efficiently localized using a strong laser field with a well-designed temporal shape of the electric component. Consequently, many experiments have been performed with laser sources in the near-infrared region (800 nm) in the interest of studying and enhancing the electron localization. However, due to its limited accessibility, the mid-infrared (MIR) range has barely been investigated, although it allows to efficiently control small molecules and even more complex systems. To push further the manipulation of basic chemical mechanisms, we used a MIR two-color (1800 and 900 nm) laser field to ionize H2 and D2 molecules and to steer the remaining electron during the photo-induced dissociation. The study of this prototype reaction led to the simultaneous control of four fragmentation channels. The results are well reproduced by a theoretical model solving the time-dependent Schrödinger equation for the molecular ion, identifying the involved dissociation mechanisms. By varying the relative phase between the two colors, asymmetries (i.e., electron localization selectivity) of up to 65% were obtained, corresponding to enhanced or equivalent levels of control compared to previous experiments. Experimentally easier to implement, the use of a two-color laser field leads to a better electron localization than carrier-envelope phase stabilized pulses and applying the technique in the MIR range reveals more dissociation channels than at 800 nm.

  3. Observations of strain accumulation across the San Andreas fault near Palmdale, California, with a two-color geodimeter

    USGS Publications Warehouse

    Langbein, J.O.; Linker, M.F.; McGarr, A.; Slater, L.E.

    1982-01-01

    Two-color laser ranging measurements during a 15-month period over a geodetic network spanning the San Andreas fault near Palmdale, California, indicate that the crust expands and contracts aseismically in episodes as short as 2 weeks. Shear strain parallel to the fault has accumulated monotonically since November 1980, but at a variable rate. Improvements in measurement precision and temporal resolution over those of previous geodetic studies near Palmdale have resulted in the definition of a time history of crustal deformation that is much more complex than formerly realized. Copyright ?? 1982 AAAS.

  4. Probe of the electron correlation in sequential double ionization of helium by two-color attosecond pulses

    NASA Astrophysics Data System (ADS)

    Peng, Liang-You; Zhang, Zheng; Jiang, Wei-Chao; Zhang, Gong-Qiu; Gong, Qihuang

    2012-12-01

    We theoretically study the sequential double ionization of He by two-color attosecond pulses. We show that, for short time delays between the two pulses, the ionization spectra cannot be explained by an independent model based on the time-dependent perturbation theory. By varying the time delay, one can probe the role of the electron correlation played in the double ionization, which is mostly obvious by examining the differential double-ionization yield. In the present scheme, we also identify a kind of “catch-up” interaction between the two ionized electrons.

  5. Enhanced high-order-harmonic generation and wave mixing via two-color multiphoton excitation of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Avchyan, B. R.; Mkrtchian, G. F.

    2016-07-01

    We consider harmonics generation and wave mixing by two-color multiphoton resonant excitation of three-level atoms and molecules in strong laser fields. The coherent part of the spectra corresponding to multicolor harmonics generation is investigated. The obtained analytical results on the basis of a generalized rotating wave approximation are in a good agreement with numerical calculations. The results applied to the hydrogen atoms and homonuclear diatomic molecular ions show that one can achieve efficient generation of moderately high multicolor harmonics via multiphoton resonant excitation by appropriate laser pulses.

  6. Systematic experimental study on a highly efficient terahertz source based on two-color laser-induced air plasma

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Fan, Wen-Hui; Chen, Xu

    2016-05-01

    In this paper, highly efficient terahertz radiation generated by two-color femtosecond laser-induced air plasma is reported. A number of variables that can obviously influence terahertz generation and detection have been investigated systematically. The dependence on experimental parameters, including pulse energy, the rotation angle of beta-barium boron oxide (BBO) crystal, the distance between BBO crystal and laser-induced plasma, focal length, chopper frequency, and detection angle are presented, and the optimal values of these parameters have also been obtained experimentally. Finally, a highly efficient terahertz source has been achieved and can be utilized to carry out further investigation on terahertz sensing, spectroscopy, and imaging.

  7. A Two Colorable Fourth Order Compact Difference Scheme and Parallel Iterative Solution of the 3D Convection Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Zhang, Jun; Ge, Lixin; Kouatchou, Jules

    2000-01-01

    A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.

  8. Observations of strain accumulation across the san andreas fault near palmdale, california, with a two-color geodimeter.

    PubMed

    Langbein, J O; Linker, M F; McGarr, A; Slater, L E

    1982-12-17

    Two-color laser ranging measurements during a 15-month period over a geodetic network spanning the San Andreas fault near Palmdale, California, indicate that the crust expands and contracts aseismically in episodes as short as 2 weeks. Shear strain parallel to the fault has accumulated monotonically since November 1980, but at a variable rate. Improvements in measurement precision and temporal resolution over those of previous geodetic studies near Palmdale have resulted in the definition of a time history of crustal deformation that is much more complex than formerly realized. PMID:17802470

  9. Two color laser fields for studying the Cooper minimum with phase-matched high-order harmonic generation

    SciTech Connect

    Ba Dinh, Khuong Vu Le, Hoang; Hannaford, Peter; Van Dao, Lap

    2014-05-28

    We experimentally study the observation of the Cooper minimum in a semi-infinite argon-filled gas cell using two-color laser fields at wavelengths of 1400 nm and 800 nm. The experimental results show that the additional 800 nm field can change the macroscopic phase-matching condition through change of the atomic dipole phase associated with the electron in the continuum state and that this approach can be used to control the appearance of the Cooper minimum in the high-order harmonic spectrum in order to study the electronic structure of atoms and molecules.

  10. High Energy 2-micron Laser Developments

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    This viewgraph presentation shows the development of 2-micron solid state lasers. The topics covered include: 1) Overview 2-micron solid state lasers; 2) Modeling and population inversion measurement; 3) Side pump oscillator; and 4) One Joule 2-m Laser.

  11. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers

    NASA Astrophysics Data System (ADS)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  12. Formation of 85Rb2 ultracold molecules via photoassociation by two-color laser fields modulating the Gaussian amplitude

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Zhang, Wei; Wang, Gao-Ren; Xie, Ting; Cong, Shu-Lin

    2012-10-01

    The formations of 85Rb2 molecules via photoassociation (PA) steered by two-color laser fields are explored theoretically in order to find an efficient and robust PA scheme. The PA processes steered by the PA pulses modulated by two Gaussian pulses and by two chirped pulses are discussed and compared in detail. The two pulses are coherent in the picosecond range and reach their maxima at the same time. The influences of the linear chirp rate, the frequency difference between two pulses, and the phase shift of the modulated envelope with respect to the maximum of the Gaussian envelope on the PA process are investigated. The yield of photoassociated molecules on vibrational levels with a binding energy of >1.0 cm-1 with respect to the 5S+5P1/2 dissociation limit can apparently be enhanced by choosing proper pulse parameters. Especially, the two-color laser field modulated by two chirped pulses can raise the PA efficiency on one side, and weaken the dependence of the PA process on phase shift on the other side.

  13. High-order harmonic generation of N2 molecule in two-color circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Hui, Du; Jun, Zhang; Shuai, Ben; Hui-Ying, Zhong; Tong-Tong, Xu; Jing, Guo; Xue-Shen, Liu

    2016-04-01

    The generation of high-order harmonics and the attosecond pulse of the N2 molecule in two-color circularly polarized laser fields are investigated by the strong-field Lewenstein model. We show that the plateau of spectra is dramatically extended and a continuous harmonic spectrum with the bandwidth of 113 eV is obtained. When a static field is added to the x direction, the quantum path control is realized and a supercontinuum spectrum can be obtained, which is beneficial to obtain a shorter attosecond pulse. The underlying physical mechanism is well explained by the time–frequency analysis and the semi-classical three-step model with a finite initial transverse velocity. By superposing several orders of harmonics in the combination of two-color circularly polarized laser fields and a static field, an isolated attosecond pulse with a duration of 30 as can be generated. Project supported by the National Natural Science Foundation of China (Grant Nos. 61575077, 11271158, and 11574117).

  14. Dynamic image correlation spectroscopy (ICS) and two-color image cross-correlation spectroscopy (ICCS): concepts and application

    NASA Astrophysics Data System (ADS)

    Wiseman, Paul W.; Squier, Jeffrey A.; Wilson, Kent R.

    2000-05-01

    The interaction of macromolecules in space and time are known to be important for the regulation of many biochemical reactions. Image correlation spectroscopy (ICS) was recently introduced as an imaging analog of fluorescence correlation spectroscopy optimized for measuring the aggregation state of fluorescently labeled macromolecules on the surface of biological cells. We present two novel developments of dynamic ICS that will greatly enhance our abilities to measure molecular interactions as a function of time and space in living cells. We illustrate the use of a rapid scan two-photon microscope system to collect image series at high time resolution (30 frames/s) for dynamic ICS analysis. Secondly, we demonstrate the implementation of two-color image cross-correlation spectroscopy (ICCS) with a CLSM using multiple wavelength excitation, and with two-photon excitation of samples containing two different fluorescent species. Cross-correlation analysis allows the degree of co- localization of two different fluorophores to be measured directly. By performing two-color ICCS, we can monitor the interactions of non-identical labeled macromolecules as a function of time and space. We describe the experimental setup for both methods and illustrate the application for measurements of the diffusion coefficients of singly and doubly labeled fluorescent microspheres in aqueous solutions.

  15. Controlling continuum wavepacket interference by two-color laser field in over-the-barrier ionization regime

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng-Peng; Yang, Yu-Jun; Ding, Da-Jun

    2016-02-01

    Continuum wavepacket interference is investigated by numerically solving the time-dependent Schrödinger equation for the interaction of hydrogen atoms with laser fields. The obtained wavepacket evolution indicates that, in the over-the-barrier ionization regime (1016 W/cm2), the continuum-continuum (CC) interference of ionizing electrons becomes the main process in highorder harmonics generation (HHG), compared with continuum-bound (CB) transition, as reported by Kohler et al. [ Phys. Rev. Lett. 105(20), 203902 (2010)].We propose a two-color laser field scheme for controlling the quantum trajectories of ionizing electrons and for extending the CC harmonic energy. As a result, a high energy platform occurs in the HHG spectrum, which entirely originates from the CC harmonics, with a cutoff adjustable by the relative phase of the two-color fields. This provides further understanding of the dynamic feature of atoms and molecules in super intense laser fields and provides an opportunity to image the atomic or molecular potential.

  16. Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields

    NASA Astrophysics Data System (ADS)

    Chen, Wenbo; Huang, Yindong; Meng, Chao; Liu, Jinlei; Zhou, Zhaoyan; Zhang, Dongwen; Yuan, Jianmin; Zhao, Zengxiu

    2015-09-01

    We study the generation of terahertz radiation from atoms and molecules driven by an ultrashort fundamental laser and its second-harmonic field by solving the time-dependent Schrödinger equation (TDSE). The comparisons between one-, two-, and three-dimensional TDSE numerical simulations show that the initial ionized wave packet and its subsequent acceleration in the laser field and rescattering with long-range Coulomb potential play key roles. We also present the dependence of the optimum phase delay and yield of terahertz radiation on the laser intensity, wavelength, duration, and ratio of two-color laser components. Terahertz wave generation from model hydrogen molecules is further investigated by comparing with high harmonic emission. It is found that the terahertz yield follows the alignment dependence of the ionization rate, while the optimal two-color phase delays vary by a small amount when the alignment angle changes from 0 to 90 degrees, which reflects the alignment dependence of attosecond electron dynamics. Finally, we show that terahertz emission might be used to clarify the origin of interference in high harmonic generation from aligned molecules by coincidentally measuring the alignment-dependent THz yields.

  17. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    NASA Astrophysics Data System (ADS)

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-06-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  18. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    PubMed

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  19. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    PubMed Central

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  20. A Case of Acute Myeloid Leukemia with a Previously Unreported Translocation (14; 15) (q32; q13).

    PubMed

    Khawandanah, Mohamad; Gehrs, Bradley; Li, Shibo; Holter Chakrabarty, Jennifer; Cherry, Mohamad

    2014-01-01

    Background. We hereby describe what we believe to be the first reported case of t (14; 15) (q32; q13) associated with acute myeloid leukemia (AML). Methods. PubMed, Embase, and OVID search engines were used to review the related literature and similar published cases. Case. A47-year-old female presented in December 2011 with AML (acute myelomonocytic leukemia) with normal cytogenetics; molecular testing revealed FLT-3 internal tandem duplication (ITD) mutation, while no mutations involving FLT3 D385/I836, NPM1 exon 12, or KIT exons 8 and 17 were detected. She was induced with 7 + 3 (cytarabine + idarubicin) and achieved complete remission after a second induction with high-dose cytarabine (HiDAC) followed by uneventful consolidation. She presented 19 months after diagnosis with relapsed disease. Of note, at relapse cytogenetic analysis revealed t (14; 15) (q32; q13), while FLT-3 analysis showed a codon D835 mutation (no ITD mutation was detected). She proved refractory to the initial clofarabine-based regimen, so FLAG-idarubicin then was used. She continued to have persistent disease, and she was discharged on best supportive care. Conclusion. Based on this single case of AML with t (14; 15) (q32; q13), this newly reported translocation may be associated with refractory disease. PMID:25436161

  1. Dynamics of the magnetosphere during geomagnetic storms on January 21-22, 2005 and December 14-15, 2006

    NASA Astrophysics Data System (ADS)

    Kalegaev, V. V.; Vlasova, N. A.; Peng, Z.

    2015-03-01

    The dynamics of large-scale magnetospheric current systems during geomagnetic storms on January 21-22, 2005 and December 14-15, 2006 is investigated using the A2000 model of the magnetospheric magnetic field. Storm development is controlled by both the interplanetary magnetic field and solar wind pressure that create conditions for injection of plasma into the inner magnetosphere. It is demonstrated that the main role in the development of the January 21-22, 2005 magnetic storm was played by a strong impulse of solar wind pressure, while the December 14-15, 2006 storm was initiated by a changed orientation of the interplanetary magnetic field. As a consequence, the Dst variation of the geomagnetic field during the January 21-22, 2005 storm is determined basically by ring current development. On December 14-15, 2006 it is determined by comparable contributions of the ring current and of the magnetotail currents. The results of modeling are confirmed by data on dynamic properties of the fluxes of three populations of ions with energies 30-80 keV (at low latitudes L < 2, and at latitudes below and above the isotropic precipitation boundary) measured by the solar-synchronous satellites of NOAA ( POES 15, POES 16, and POES 17).

  2. Fabrication of two-color surface emitting device of a coupled vertical cavity structure with InAs quantum dots formed by wafer bonding

    NASA Astrophysics Data System (ADS)

    Ota, Hiroto; Lu, Xiangmeng; Kumagai, Naoto; Kitada, Takahiro; Isu, Toshiro

    2016-04-01

    We fabricated a two-color surface emitting device of a coupled cavity structure, which is applicable to terahertz light source. GaAs/AlGaAs vertical multilayer cavity structures were grown on (001) and (113)B GaAs substrates and the coupled multilayer cavity structure was fabricated by wafer bonding them. The top cavity contains self-assembled InAs quantum dots (QDs) as optical gain materials for two-color emission of cavity-mode lights. The bonding position was optimized for the equivalent intensity of two-color emission. We formed a current injection structure, and two-color emission was observed by current injection, although no lasing was observed.

  3. A Two-Color Fourier Transform Mm-Wave Spectrometer for Gas Analysis Operating from 260-295 GHZ

    NASA Astrophysics Data System (ADS)

    Steber, Amanda L.; Harris, Brent J.; Lehmann, Kevin K.; Pate, Brooks H.

    2013-06-01

    We have designed a two-color mm-wave spectrometer for Fourier transform mm-wave spectroscopy that uses consumer level components for the tunable synthesizers, digital control of the pulse modulators, and digitization of the coherent free induction decay (FID). The excitation pulses are generated using an x24 active multiplier chain (AMC) that produces a peak power of 30 mW. The microwave input to the AMC is generated in a frequency up conversion circuit that accepts a microwave input frequency from about 2-4 GHz. This circuit also generates the input to the mm-wave subhamonic mixer that creates the local oscillator from a separate 2-4 GHz microwave input. Excitation pulses at two independently tunable frequencies are generated using a dual-channel source based on a low-cost, wideband synthesizer integrated circuit (Valon Technology Model 5008). The outputs of the synthesizer are pulse modulated using a PIN diode switch that is driven using the arbitrary waveform generator (AWG) output of a USB-controlled high-speed digitizer / arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM). The two pulses are combined using a Wilkinson power divider before input to the up conversion circuit. The FID frequency is down converted in a two-stage mixing process to 65 MHz. The two LO frequencies used in the receiver are provided by a second Valon 5008. The FID is digitized at 200 MSamples/s using the 12-bit Tie Pie digitizer. The digital oscilloscope (and its AWG channel) and the two synthesizers use a 10 MHz reference signal from a Rubidium clock to permit time-domain signal averaging. A key feature of the digital oscilloscope is its deep memory of 32 Mpts (complemented by the 64 Mpt memory in the 240 MS/s AWG). This makes it possible to perform several one- and two-color coherent measurements, including pulse echoes and double-resonance spectroscopy, in a single "readout" experiment to speed the analysis of mm-wave rotational spectra. The spectrometer sensitivity

  4. Influences of different gases on the terahertz radiation based on the application of two-color laser pulses

    SciTech Connect

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-10-15

    In this work, using a two-dimensional Particle In Cell-Monte Carlo Collision simulation method, a comparative study is performed on the influences of different types of atomic and molecular gases at various background gas pressures on the generation of broadband and intense Terahertz (THz) radiation via the application of two-color laser pulses. These two modes are focused into Argon (Ar), Xenon (Xe), Nitrogen (N{sub 2}), Oxygen (O{sub 2}), and air as the background gaseous media and the plasma channel is created. It is observed that the THz radiation emission dramatically changes due to the propagation effects. A wider THz pulse is emitted from the formed plasma channel at the higher gas pressures. The significant effects of the propagation features of the emitted THz pulse on its energy at the longer lengths of the plasma channel are observed.

  5. Two-color interference effect involving three-photon atomic excitation and four-wave mixing in crossed laser beams

    SciTech Connect

    Peet, V.

    2007-09-15

    Through multiphoton ionization measurements, the polarization effects in destructive quantum interference under three-photon resonant excitation have been studied. Recent observations [V. Peet, Phys. Rev. A 74, 033406 (2006)] have indicated that contrary to the well-known pattern of a total suppression of resonance excitation, the destructive interference becomes incomplete if three-photon transition is driven by crossed beams with orthogonal polarization planes. These observations have been tested for a more general case of two-color excitation and very similar polarization-dependent anomalies in the interference character have been registered. It has been shown that the destructive interference is modified and the resonance excitation does occur if two crossed laser beams have opposite circular polarizations. The pressure-induced evolution of the uncanceled ionization peaks has the ratio of blue shift to width close to 0.5 exactly as it is known for resonance ionization peaks registered under excitation by counterpropagating laser beams.

  6. Ionization-Induced Multiwave Mixing: Terahertz Generation with Two-Color Laser Pulses of Various Frequency Ratios

    NASA Astrophysics Data System (ADS)

    Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.; Vvedenskii, N. V.

    2016-07-01

    Ultrafast strong-field ionization is shown to be accompanied by atypical multiwave mixing with the number of mixed waves defined by the dependence of the ionization rate on the field strength. For two-color laser pulses of various frequency ratios, this results in the excitation of a free-electron current at laser combination frequencies and possibly in the excitation of the zero-frequency (residual) current responsible for terahertz (THz) generation in a formed plasma. The high-order nature of ionization-induced wave mixing may cause THz generation with uncommon laser frequency ratios (such as 2 : 3 and 3 : 4 ) to be virtually as effective as that with the commonly used frequency ratio of 1 : 2 .

  7. Analysis of two-color geodimeter measurements of deformation within the Long Valley caldera: June 1983 to October 1985.

    USGS Publications Warehouse

    Langbein, J.; Linker, M.; Tupper, D.

    1987-01-01

    Line length changes from several baselines in a trilateration network within the Long Valley caldera clearly define a decrease in strain rate from June 1983 through October 1985. The data consist of more than 1600 length measurements on 23 baselines using a two- color geodimeter, which has a precision of 0.2 ppm of the line length. A model is constructed using these observations as well as yearly observations of a trilateration network within and near the caldera. The model contains two points of inflation located at 5 and 10 km beneath the resurgent dome of the caldera plus dextral slip on a fault plane within the south moat within an elastic half-space. -from Authors

  8. Probing the influence of the Coulomb field on atomic ionization by sculpted two-color laser fields

    NASA Astrophysics Data System (ADS)

    Xie, Xinhua; Roither, Stefan; Gräfe, Stefanie; Kartashov, Daniil; Persson, Emil; Lemell, Christoph; Zhang, Li; Schöffler, Markus S.; Baltuška, Andrius; Burgdörfer, Joachim; Kitzler, Markus

    2013-04-01

    Interpretation of electron or photon spectra obtained with strong laser pulses that may carry attosecond dynamical and Ångström structural information about atoms or molecules usually relies on variants of the strong-field approximation (SFA) within which the influence of the Coulomb potential on the electron trajectory is neglected. We employ two-color sculpted laser fields to experimentally tune and probe the influence of the Coulomb field on the strong-field-driven wavepacket as observed by two-dimensional electron and ion momentum spectra. By comparison of measured spectra with predictions of the three-dimensional time-dependent Schrödinger equation as well as the quasi-classical limit of the SFA, the strong-field classical trajectory model, we are able to trace back the influence of the Coulomb field to the timing of the wavepacket release with sub-cycle precision.

  9. Two color multichannel heterodyne interferometer set up for high spatial resolution electron density profile measurements in TJ-II

    SciTech Connect

    Pedreira, P.; Criado, A. R.; Acedo, P.; Esteban, L.; Sanchez, M.; Sanchez, J.

    2010-10-15

    A high spatial resolution two color [CO{sub 2}, {lambda}=10.6 {mu}m/Nd:YAG (Nd:YAG denotes neodymium-doped yttrium aluminum garnet), and {lambda}=1.064 {mu}m] expanded-beam multichannel heterodyne interferometer has been installed on the TJ-II stellarator. Careful design of the optical system has allowed complete control on the evolution of both Gaussian beams along the interferometer, as well as the evaluation and optimization of the spatial resolution to be expected in the measurements. Five CO{sub 2} (measurement) channels and three Nd:YAG (vibration compensation) channels have been used to illuminate the plasma with a probe beam of 100 mm size. An optimum interpolation method has been applied to recover both interferometric phasefronts prior to mechanical vibration subtraction. The first results of the installed diagnostic are presented in this paper.

  10. Two-color light-emitting diodes with polarization-sensitive high extraction efficiency based on graphene

    NASA Astrophysics Data System (ADS)

    H, Sattarian; S, Shojaei; E, Darabi

    2016-05-01

    In the present study, graphene photonic crystals are employed to enhance the light extraction efficiency (LEE) of two-color, red and blue, light-emitting diode (LED). The transmission characteristics of one-dimensional (1D) Fibonacci graphene photonic crystal LED (FGPC-LED) are investigated by using the transfer matrix method and the scaling study is presented. We analyzed the influence of period, thickness, and permittivity in the structure to enhance the LEE. The transmission spectrum of 1D FGPC has been optimized in detail. In addition, the effects of the angle of incidence and the state of polarization are investigated. As the main result, we found the optimum values of relevant parameters to enhance the extraction of red and blue light from an LED as well as provide perfect omnidirectional and high peak transmission filters for the TE and TM modes.

  11. Selection rule and efficiency for autoionization of diazabicyclooctane as studied by two-color double-resonance spectroscopy

    SciTech Connect

    Fujii, M.; Sato, K.; Kimura, K.

    1987-12-17

    Photoelectron spectra due to autoionization for two series of high Rydberg states have been observed for diazabicyclooctane (DABCO) in a supersonic jet. The selection rule of the autoionization has been found to be ..delta..v = -1 for each vibrational mode involved in the Rydberg states, consistent with Berry's theory available for the vibrational autoionization of a polyatomic molecule. The relative autoionization efficiencies Phi/sub a/ for the high Rydberg series have also been determined from two-color MPI and fluorescence dip spectra. The irregular variation of Phi/sub a/ with the principal quantum number n has been found for the two Rydberg series, suggesting the irregular variation in their nonradiative rates

  12. Single-pinhole diffraction of few-cycle isolated attosecond pulses with a two-color field

    NASA Astrophysics Data System (ADS)

    Shaoyi, Wang; Dan, Han; Kegong, Dong; Yuchi, Wu; Fang, Tan; Bin, Zhu; Quanping, Fan; Leifeng, Cao; Yuqiu, Gu

    2016-03-01

    The spatio-temporal characterization of an isolated attosecond pulse is investigated theoretically in a two-color field. Our results show that a few-cycle isolated attosecond pulse with the center wavelength of 16 nm can be generated effectively by adding a weak controlling field. Using the split and delay units, the isolated attosecond pulse can be split to the two same ones, and then single-pinhole diffractive patterns of the two pulses with different delays can be achieved. The diffractive patterns depend severely on the periods of the attosecond pulses, which can be helpful to obtain temporal information of the coherent sources. Project supported by the National Science Instruments Major Project of China (Grant No. 2012YQ130125), the National Natural Science Foundation of China (Grant Nos. 11405159, 11375161, and 11174259), and the Science and Technology on Plasma Physics Laboratory at CAEP (Grant No. 9140C680302130C68242).

  13. Systematic studies of two-color pump-induced high-order harmonic generation in plasma plumes

    SciTech Connect

    Ganeev, R. A.; Singhal, H.; Naik, P. A.; Chakera, J. A.; Vora, H. S.; Khan, R. A.; Gupta, P. D.

    2010-11-15

    High-order harmonic generation (HHG) has been studied in various laser-produced plasma plumes using a two-color orthogonally polarized beam with a 12:1 energy ratio between the fundamental and second-harmonic (SH) components. The influence of the relative phase between the fundamental and SH waves on the HHG efficiency has been investigated. Odd and even harmonic generation in plasma plumes containing nanoparticles, fullerenes, carbon nanotubes, and other samples was optimized. The effect of the variation in the SH intensity on the HHG conversion efficiency in carbon aerogel and silver plasma plumes has also been studied. It is shown that by increasing the SH intensity, one can generate only even harmonics by suppressing the odd harmonics.

  14. Interaction of toluene with two-color asymmetric laser fields: Controlling the directional emission of molecular hydrogen fragments

    SciTech Connect

    Kaziannis, S.; Kotsina, N.; Kosmidis, C.

    2014-09-14

    The interaction of toluene with strong asymmetric two-color laser irradiation of 40 fs duration is studied by means of Time of flight mass spectrometry. Highly energetic H{sub 2}{sup +} and H{sub 3}{sup +} fragment ions are produced through an isomerization process taking place within transient multiply charged parent ions. Comparative study of deuterium labeled toluene isotopes enables the discrimination between molecular hydrogen fragments formed exclusively within the CH{sub 3}- part from those that require hydrogen atom exchange between the former and the phenyl moiety. It is demonstrated that by manipulating the relative phase of the ω/2ω field components the selective ionization of oriented toluene molecules can be used as a tool to control the directional emission of the H{sub 2}{sup +}, H{sub 3}{sup +} species.

  15. Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air

    SciTech Connect

    Wang, T.-J.; Daigle, J.-F.; Yuan, S.; Chin, S. L.; Theberge, F.; Chateauneuf, M.; Dubois, J.; Roy, G.; Zeng, H.

    2011-05-15

    We experimentally investigated the dynamic behavior of remote terahertz (THz) generation from two-color femtosecond laser-induced filamentation in air. A record-high THz pulse energy of 570 nJ at frequency below 5.5 THz was measured by optimizing the pump parameters at a controllable remote distance of 16 m, while super-broadband THz (<300 THz) pulse energy was up to 2.8 {mu}J. A further energy-scaling possibility was proposed. By analyzing simultaneously the fluorescence from both neutral N{sub 2} and N{sub 2}{sup +} in the filament, we found that the enhancement of THz radiation was due principally to guiding of the weak second-harmonic pulse inside the filament of the first strong fundamental pulse.

  16. Interaction of toluene with two-color asymmetric laser fields: Controlling the directional emission of molecular hydrogen fragments

    NASA Astrophysics Data System (ADS)

    Kaziannis, S.; Kotsina, N.; Kosmidis, C.

    2014-09-01

    The interaction of toluene with strong asymmetric two-color laser irradiation of 40 fs duration is studied by means of Time of flight mass spectrometry. Highly energetic H2+ and H3+ fragment ions are produced through an isomerization process taking place within transient multiply charged parent ions. Comparative study of deuterium labeled toluene isotopes enables the discrimination between molecular hydrogen fragments formed exclusively within the CH3- part from those that require hydrogen atom exchange between the former and the phenyl moiety. It is demonstrated that by manipulating the relative phase of the ω/2ω field components the selective ionization of oriented toluene molecules can be used as a tool to control the directional emission of the H2+, H3+ species.

  17. Interaction of toluene with two-color asymmetric laser fields: controlling the directional emission of molecular hydrogen fragments.

    PubMed

    Kaziannis, S; Kotsina, N; Kosmidis, C

    2014-09-14

    The interaction of toluene with strong asymmetric two-color laser irradiation of 40 fs duration is studied by means of Time of flight mass spectrometry. Highly energetic H2(+) and H3(+) fragment ions are produced through an isomerization process taking place within transient multiply charged parent ions. Comparative study of deuterium labeled toluene isotopes enables the discrimination between molecular hydrogen fragments formed exclusively within the CH3- part from those that require hydrogen atom exchange between the former and the phenyl moiety. It is demonstrated that by manipulating the relative phase of the ω/2ω field components the selective ionization of oriented toluene molecules can be used as a tool to control the directional emission of the H2(+), H3(+) species. PMID:25217928

  18. Table-top two-color soft X-ray laser by means of Ni-like plasmas

    NASA Astrophysics Data System (ADS)

    Masoudnia, Leili; Ruiz-Lopez, Mabel; Bleiner, Davide

    2016-04-01

    Laser-produced Ni-like plasmas are known as active media for extreme ultraviolet lasing, with the flexibility to two-color lasing. Two-color laser generation is very complex at accelerator facilities. In this work, plasma lasing at the 3d94d1(J = 0) → 3d94p1(J = 1) (collisional-pumping process) and the 3d94f1(J = 1) → 3d94d1(J = 1) (photo-pumping process) transitions is studied experimentally and computationally. Several key characteristics of collisional- and photo-pumping laser, such as divergence, pointing stability, and intensity have been investigated. The measurements showed different pulse characteristics for the two lasing processes affected by plasma inhomogeneity in temperature and density. Analytical expressions of these characteristics for both collisional- and photo-pumping are derived. It is found that the plasma that maximizes the photo-pumping lasing is 20% hotter and 70% denser than the plasma that optimizes the collisional-pumping lasing. The gain of collisional pumping is ≈4 times higher than the gain for the photo-pumping. The gain lifetime is a factor of ≈5.2 larger for the monopole-pumping. Similarly, the gain thickness is a factor of ≈1.8 larger. It is also found that the gain build-up time for collisional- and photo-pumping is 0.7 ps and 0.9 ps, respectively, whereas the build-up length-scale is 11.5 μm and 6.3 μm, respectively.

  19. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    PubMed

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-01

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. PMID:24338798

  20. Demonstration of a two-color 320×256 quantum dots-in-a-well focal plane array

    NASA Astrophysics Data System (ADS)

    Varley, Eric S.; Ramirez, David A.; Brown, Jay S.; Lee, Sang Jun; Stintz, Andreas; Lenz, Michael; Krishna, Sanjay; Reisinger, Axel; Sundaram, Mani

    2007-09-01

    In our research group, we develop novel dots-in-a-well (DWELL) photodetectors that are a hybrid of the quantum dot infrared photodetector (QDIP). The DWELL detector consists of an active region composed of InAs quantum dots embedded in InGaAs quantum wells. By adjusting the InGaAs well thickness, our structure allows for the manipulation of the operating wavelength and the nature of the transitions (bound-to-bound, bound-to-quasibound and bound-to-continuum) of the detector. Based on these principles, DWELL samples were grown using molecular beam epitaxy and fabricated into 320 x 256 focal plane arrays (FPAs) with Indium bumps using standard lithography at the University of New Mexico. The FPA evaluated was hybridized to an Indigo 9705 readout integrated circuit (ROIC) in collaboration with QmagiQ LLC and tested with a CamIRa TM system manufactured by SE-IR Corp. From this evaluation, we report the first two-color, co-located quantum dot based imaging system that can be used to take multicolor images using a single FPA. We demonstrated that we can operate the device at an intermediate bias (V b=-1.25 V) and obtain two color response from the FPA at 77K. Using filter lenses, both MWIR and LWIR responses were obtained from the array at the same bias voltage. The MWIR and LWIR responses are thought to be from bound states in the dot to higher and lower lying states in the quantum well respectively. Temporal NEDT for the DWELL FPA was measured to be 80mK at 77K.

  1. Ionization states of heavy elements observed in the 1974 May 14-15 anomalous solar particle event

    NASA Technical Reports Server (NTRS)

    Ma Sung, L. S.; Gloeckler, G.; Fan, C. Y.; Hovestadt, D.

    1981-01-01

    The charge states of heavy ions accelerated in the (3)He-Fe rich solar particle event of 1974 May 14-15 are determined using data from the Interplanetary Monitoring Platform-8. In addition to Fe(+11,12) both 0(+5) and Fe(+16,17,18) are also present suggesting variations in coronal temperatures over a range from approximately 400,000 to 5,000,000 K. The presence of 0(+5) and Fe(+16-18) may be explained by a resonant plasma heating mechanism proposed to account for the enhancements of (3)He and Fe.

  2. Molecular characterization of the t(4;12)(q27~28;q14~15) chromosomal rearrangement in lipoma

    PubMed Central

    Agostini, Antonio; Gorunova, Ludmila; Bjerkehagen, Bodil; Lobmaier, Ingvild; Heim, Sverre; Panagopoulos, Ioannis

    2016-01-01

    Lipomas are common benign soft tissue tumors whose genetic and cytogenetic features are well characterized. The karyotype is usually near- or pseudodiploid with characteristic structural chromosomal aberrations. The most common rearrangements target the high mobility group AT-hook 2 (HMGA2) gene in 12q14.3, with breakpoints occurring within or outside of the gene locus leading to deregulation of HMGA2. The most common fusion partner for HMGA2 in lipoma is lipoma-preferred partner (3q27), but also other genes frequently recombine with HMGA2. Furthermore, truncated HMGA2 transcripts are recurrently observed in lipomas. The present study describes 5 lipomas carrying the translocation t(4;12)(q27~28;q14~15) as the sole chromosomal anomaly, as well as 1 lipoma in which the three-way translocation t(1;4;12)(q21;q27~28;q14~15) was identified. Molecular analyses performed on 4 of these cases detected 4 truncated forms of HMGA2. In 3 tumors, the HMGA2 truncated transcripts included sequences originating from the chromosomal sub-band 4q28.1. Notably, in 2 of these cases, the fourth exon of HMGA2 was fused to transposable elements located in 4q28.1. PMID:27588119

  3. Modeling cloth at micron resolution

    NASA Astrophysics Data System (ADS)

    Bala, Kavita

    2014-02-01

    Fabric is one of the most common materials in our everyday lives, and accurately simulating the appearance of cloth is a critical problem in graphics, design, and virtual prototyping. But modeling and rendering fabric is very challenging because fabrics have a very complex structure, and this structure plays an important role in their visual appearance—cloth is made of fibers that are twisted into yarns which are woven into patterns. Light interacting with this complex structure produce the characteristic visual appearance that humans recognize as silk, cotton, or wool. In this paper we present an end-to-end pipeline to model and render fabrics: we introduce a novel modality to create volume models of fabric at micron resolution using CT technology coupled with photographs; a new technique to synthesize models of user-specified designs from such CT scans; and finally, an efficient algorithm to render these complex volumetric models for practical applications. This pipeline produces the most realistic images of virtual cloth to date, and opens the way to bridging the gap between real and virtual fabric appearance.

  4. Theoretical investigation of a novel high density cage compound 4,8,11,14,15-pentanitro-2,6,9,13-tetraoxa-4,8,11,14,15-pentaazaheptacyclo[5.5.1.1(3,11).1(5,9)] pentadecane.

    PubMed

    Lin, He; Zhu, Shun-guan; Zhang, Lin; Peng, Xin-hua; Chen, Peng-yuan; Li, Hong-zhen

    2013-03-01

    A novel polynitro cage compound 4,8,11,14,15-pentanitro-2,6,9,13-tetraoxa-4,8,11,14,15-pentaazaheptacyclo [5.5.1.1(3,11).1(5,9)]pentadecane(PNTOPAHP) has been designed and investigated at the DFT-B3LYP/6-31(d) level. Properties, such as electronic structure, IR spectrum, heat of formation, thermodynamic properties and crystal structure have been predicted. This compound is most likely to crystallize in C2/c space group, and the corresponding cell parameters are Z = 8, a = 29.78 Å, b = 6.42 Å, c = 32.69 Å, α = 90.00°, β = 151.05°, γ = 90.00° and ρ = 1.94 g/cm(3). In addition, the detonation velocity and pressure have also been calculated by the empirical Kamlet-Jacobs equation. As a result, the detonation velocity and pressure of this compound are 9.82 km/s, 44.67 GPa, respectively, a little higher than those of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane(TEX, 9.28 km/s, 40.72 GPa). This compound has a comparable chemical stability to TEX, based on the N-NO(2) trigger bond length analysis. The bond dissociation energy ranges from 153.09 kJ mol(-1) to 186.04 kJ mol(-1), which indicates that this compound meets the thermal stability requirement as an exploitable HEDM. PMID:23111684

  5. High Energy 2-Micron Laser Developments

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    A master oscillator power amplifier, high energy Q-switched 2-micron laser system has been recently demonstrated. The laser and amplifiers are all designed in side-pumped rod configuration, pumped by back-cooled conductive packaged GaAlAs diode laser arrays. This 2-micron laser system provides nearly transform limited beam quality.

  6. One Micron Laser Technology Advancements at GSFC

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  7. Generation of two-color ultra-short radiation pulses from two electron bunches and a chirped seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Wang, Zhen; Wang, Xingtao; Huang, Dazhang

    2016-01-01

    In this paper we describe a new method for the realization of two-color femtosecond radiation pulses in a seeded free-electron laser (FEL). The two-color pulses are obtained from two electron bunches and a chirped seeding laser. Compared to the previous methods based on seeded FELs, our method has the advantages of producing two-color FEL pulses with more flexible tunability both in the pulse durations and separations. Numerical simulations for the Dalian Coherent Light Source confirm that femtosecond XUV pulses with variable pulse durations and time delay can be directly generated from a chirped seed laser at 250 nm by using this technique. We also show the possibility of performing a proof-of-principle experiment of this technique based on the Shanghai Deep-Ultraviolet FEL facility.

  8. Measurement of diffusion and thermal diffusion in ternary fluid mixtures using a two-color optical beam deflection technique

    NASA Astrophysics Data System (ADS)

    Königer, A.; Wunderlich, H.; Köhler, W.

    2010-05-01

    We have developed a highly sensitive two-color beam deflection setup to measure diffusion and thermal diffusion in ternary fluid mixtures following a suggestion of Haugen and Firoozabadi [J. Phys. Chem. B 110, 17678 (2006)]. Simultaneous detection of two laser beams with different wavelengths makes it possible to determine the time dependent concentration profiles of all three components. By comparing the measured beam deflection signals to a numerical solution of the coupled heat and mass transport equations, the diffusion matrix, the thermal diffusion, and the Soret coefficients are obtained by a numerical model combined with a nonlinear least-squares fitting routine. The results can be improved by additional thermal diffusion forced Rayleigh scattering experiments, which yield a contrast-weighted average thermal diffusion coefficient. The three Soret coefficients can be obtained independently from the stationary beam deflection amplitudes. Measurements have been performed on the symmetric (equal weight fractions) ternary mixtures dodecane/isobutylbenzene/1,2,3,4-tetrahydronaphthalene and 1-methylnaphthalene/octane/decane. There is only partial agreement between our results and literature data.

  9. Nonsequential double ionization of helium in IR+XUV two-color laser fields: Collision-ionization process

    NASA Astrophysics Data System (ADS)

    Jin, Facheng; Tian, Yuanye; Chen, Jing; Yang, Yujun; Liu, Xiaojun; Yan, Zong-Chao; Wang, Bingbing

    2016-04-01

    We investigate the nonsequential double ionization (NSDI) process of an atom in IR+XUV two-color intense laser fields, where the photon energy of the XUV laser is higher than the atomic ionization threshold. By using the frequency-domain theory, we consider the NSDI as a process caused by the collision-ionization mechanism and obtain the NSDI spectrum that presents a multiplateau structure. With the help of channel analysis, we find that the height of a plateau in the NSDI spectrum is determined by the number of XUV photons absorbed by the electrons. Furthermore, to explain the interference structure in the NSDI spectrum, we also compare the contributions of forward and backward collisions to the NSDI probability. We find that the forward collision dominates the contributions to the NSDI when two electrons are ejected along the same direction and both forward and backward collisions make a comparable contribution to NSDI when the two electrons are ejected along opposite directions. By applying the saddle-point approximation, we obtain an energy-circle formula, which may illustrate the formation of the NSDI spectrum structure.

  10. Discrimination of glycoproteins via two-color laser-induced fluorescence detection coupled with postcolumn derivatization in capillary electrophoresis.

    PubMed

    Tabara, Ayumi; Kaneta, Takashi

    2013-08-01

    Here, we report a novel method consisting of capillary electrophoretic separation followed by two-color LIF detection with postcolumn derivatization. The method can be used to discriminate glycoproteins in a protein mixture containing both glycosylated and unglycosylated proteins. The detector permitted simultaneous measurements of two electropherograms obtained by 450 nm (diode laser) and 532 nm (Nd:YAG laser) lasers excited native proteins following postcolumn derivatization with naphthalene-2,3-dicarboxaldehyde and concanavalin A (Con A) labeled with tetramethylrhodamine (rhodamine-labeled Con A), respectively. So, a protein can be assigned as glycosylated if it shows a peak at the same migration time in both electropherograms. According to the proposed principle, in a single run we discriminated a glycosylated protein (thyroglobulin) from an unglycosylated protein (albumin) in the presence of rhodamine-labeled Con A. Because the methodology permits the simultaneous detection of native proteins and their complexes with a fluorescently labeled probe, it should have broad applicability to binding assays. PMID:23775479

  11. Tunable Two-color Luminescence and Host–guest Energy Transfer of Fluorescent Chromophores Encapsulated in Metal-Organic Frameworks

    PubMed Central

    Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan

    2014-01-01

    Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal–organic frameworks (MOFs) as a host structure for fabricating luminescent host–guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host–guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner. PMID:24614015

  12. Optimized two-color super resolution imaging of Drp1 during mitochondrial fission with a slow-switching Dronpa variant

    PubMed Central

    Rosenbloom, Alyssa B.; Lee, Sang-Hyuk; To, Milton; Lee, Antony; Shin, Jae Yen; Bustamante, Carlos

    2014-01-01

    We studied the single-molecule photo-switching properties of Dronpa, a green photo-switchable fluorescent protein and a popular marker for photoactivated localization microscopy. We found the excitation light photoactivates as well as deactivates Dronpa single molecules, hindering temporal separation and limiting super resolution. To resolve this limitation, we have developed a slow-switching Dronpa variant, rsKame, featuring a V157L amino acid substitution proximal to the chromophore. The increased steric hindrance generated by the substitution reduced the excitation light-induced photoactivation from the dark to fluorescent state. To demonstrate applicability, we paired rsKame with PAmCherry1 in a two-color photoactivated localization microscopy imaging method to observe the inner and outer mitochondrial membrane structures and selectively labeled dynamin related protein 1 (Drp1), responsible for membrane scission during mitochondrial fission. We determined the diameter and length of Drp1 helical rings encircling mitochondria during fission and showed that, whereas their lengths along mitochondria were not significantly changed, their diameters decreased significantly. These results suggest support for the twistase model of Drp1 constriction, with potential loss of subunits at the helical ends. PMID:25149858

  13. Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Akram, Ahsan R.; Choudhary, Tushar R.; McDonald, Neil; Tanner, Michael G.; Pedretti, Ettore; Dalgarno, Paul A.; Scholefield, Emma; Girkin, John M.; Moore, Anne; Bradley, Mark; Dhaliwal, Kevin

    2016-04-01

    We demonstrate a fast two-color widefield fluorescence microendoscopy system capable of simultaneously detecting several disease targets in intact human ex vivo lung tissue. We characterize the system for light throughput from the excitation light emitting diodes, fluorescence collection efficiency, and chromatic focal shifts. We demonstrate the effectiveness of the instrument by imaging bacteria (Pseudomonas aeruginosa) in ex vivo human lung tissue. We describe a mechanism of bacterial detection through the fiber bundle that uses blinking effects of bacteria as they move in front of the fiber core providing detection of objects smaller than the fiber core and cladding (˜3 μm). This effectively increases the measured spatial resolution of 4 μm. We show simultaneous imaging of neutrophils, monocytes, and fungus (Aspergillus fumigatus) in ex vivo human lung tissue. The instrument has 10 nM and 50 nM sensitivity for fluorescein and Cy5 solutions, respectively. Lung tissue autofluorescence remains visible at up to 200 fps camera acquisition rate. The optical system lends itself to clinical translation due to high-fluorescence sensitivity, simplicity, and the ability to multiplex several pathological molecular imaging targets simultaneously.

  14. Generation of attosecond x-ray pulses with a multi-cycle two-color ESASE scheme

    SciTech Connect

    Ding, Y.; Huang, Z.; Ratner, D.; Bucksbaum, P.; Merdji, H.; /Saclay /SLAC

    2009-03-04

    Generation of attosecond x-ray pulses is attracting much attention within the x-ray free-electron laser (FEL) user community. Several schemes using extremely short laser pulses to manipulate the electron bunches have been proposed. In this paper, we extend the attosecond two-color ESASE scheme proposed by Zholents et al. to the long optical cycle regime using a second detuned laser and a tapered undulator. Both lasers can be about ten-optical-cycles long, with the second laser frequency detuned from the first to optimize the contrast between the central and side current spikes. A tapered undulator mitigates the degradation effect of the longitudinal space charge (LSC) force in the undulator and suppresses the FEL gain of all side current peaks. Simulations using the LCLS parameters show a single attosecond x-ray spike of {approx} 110 attoseconds can be produced. The second laser can also be detuned to coherently control the number of the side x-ray spikes and the length of the radiation pulse.

  15. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    SciTech Connect

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-04-15

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  16. Thermoreversible Changes in Aligned and Cross-Linked Block Copolymer Melts Studied by Two Color Depolarized Light Scattering

    SciTech Connect

    Wilbur, Jeffrey D.; Gomez, Enrique D.; Ellsworth, Mark W.; Garetz, Bruce A.; Balsara, Nitash P.

    2012-09-04

    A procedure for creating samples that can be repeatedly cycled between weakly aligned and strongly aligned states is described. Poly(styrene-b-isoprene) block copolymer samples were first shear-aligned and then cross-linked using a high energy electron beam. Samples with more than 1.0 cross-links per chain on average showed almost complete recovery of their initial alignment state even after 20 cycles of heating above the order–disorder transition temperature of the un-cross-linked block copolymer. Samples with 1.1 cross-links per chain, which showed over 90% loss of alignment on heating and almost 100% recovery of alignment on cooling, provided the best example of a reversible aligned-to-unaligned transition. Samples with lower cross-linking densities exhibited irreversible loss of alignment upon heating, while those with higher cross-linking densities exhibited less than 90% loss of alignment upon heating. Alignment was quantified by a technique that we call two color depolarized light scattering (TCDLS), an extension of the traditional depolarized light scattering experiment used to determine the state of order in block copolymers. Qualitative confirmation of our interpretation of TCDLS data was obtained by small-angle X-ray scattering and transmission electron microscopy.

  17. Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses

    SciTech Connect

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-04-15

    In this work, using a two-dimensional kinetic model based on particle in cell-Monte Carlo collision simulation method, the influence of different parameters on the broadband intense Terahertz (THz) radiation generation via application of two-color laser fields, i.e., the fundamental and second harmonic modes, is studied. These two modes are focused into the molecular oxygen (O{sub 2}) with uniform density background gaseous media and the plasma channels are created. Thus, a broadband THz pulse that is around the plasma frequency is emitted from the formed plasma channel and co-propagates with the laser pulse. For different laser pulse shapes, the THz electric field and its spectrum are both calculated. The effects of laser pulse and medium parameters, i.e., positive and negative chirp pulse, number of laser cycles in the pulse, laser pulse shape, background gas pressure, and exerted DC electric field on THz spectrum are verified. Application of a negatively chirped femtosecond (40 fs) laser pulse results in four times enhancement of the THz pulse energy (2 times in THz electric field). The emission of THz radiation is mostly observed in the forward direction.

  18. Tunable Two-color Luminescence and Host-guest Energy Transfer of Fluorescent Chromophores Encapsulated in Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan

    2014-03-01

    Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal-organic frameworks (MOFs) as a host structure for fabricating luminescent host-guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host-guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner.

  19. Two-color infrared predissociation spectroscopy of C₆H₆²⁺ isomers using helium tagging.

    PubMed

    Jašík, Juraj; Gerlich, Dieter; Roithová, Jana

    2015-03-19

    Two-color IR-IR isomer selective predissociation spectra of helium-tagged C6H6(2+) are presented. The dications are generated via electron bombardment of either benzene or 1,3-cyclohexadiene. After mass selection they are injected into a 2.6 K cold ion trap where the presence of a dense He buffer gas not only cools them but also leads to He attachment. The ion ensemble is exposed to one or two intense IR pulses from optical parametric oscillators (OPOs) (1200-3100 cm(-1)) before it is extracted, mass analyzed, and detected. On the basis of a comparison with theoretical predictions, the resulting spectral features allow us to separate and assign different isomers of C6H6(2+) dications. Compression of the ion cloud very close to the axis of the linear quadrupole trap and coaxial superposition of well-collimated laser beams results in the fragmentation of almost all helium complexes at specific wavelengths. This unique feature enables us to record fluence-dependent attenuation curves for individual absorption bands and thus determine not only absorption cross sections but also the composition of the ion mixture. PMID:25402726

  20. Route to optimal generation of soft X-ray high harmonics with synthesized two-color laser pulses

    PubMed Central

    Jin, Cheng; Wang, Guoli; Le, Anh-Thu; Lin, C. D.

    2014-01-01

    High harmonics extending to X-rays have been generated from gases by intense lasers. To establish these coherent broadband radiations as an all-purpose tabletop light source for general applications in science and technology, new methods are needed to overcome the present low conversion efficiencies. Here we show that the conversion efficiency may be drastically increased with an optimized two-color pulse. By employing an optimally synthesized 2-µm mid-infrared laser and a small amount of its third harmonic, we show that harmonic yields from sub- to few-keV energy can be increased typically by ten-fold over the optimized single-color one. By combining with favorable phase-matching and together with the emerging high-repetition MHz mid-infrared lasers, we anticipate efficiency of harmonic yields can be increased by four to five orders in the near future, thus paving the way for employing high harmonics as useful broadband tabletop light sources from the extreme ultraviolet to the X-rays, as well as providing new tools for interrogating ultrafast dynamics of matter at attosecond timescales. PMID:25400015

  1. SPECTROSCOPIC CONFIRMATION OF UV-BRIGHT WHITE DWARFS FROM THE SANDAGE TWO-COLOR SURVEY OF THE GALACTIC PLANE

    SciTech Connect

    Lepine, Sebastien; Bergeron, P.; Lanning, Howard H.

    2011-03-15

    We present spectroscopic observations confirming the identification of hot white dwarfs among UV-bright sources from the Sandage Two-color Survey of the Galactic Plane and listed in the Lanning (Lan) catalog of such sources. A subsample of 213 UV-bright Lan sources have been identified as candidate white dwarfs based on the detection of a significant proper motion. Spectroscopic observations of 46 candidates with the KPNO 2.1 m telescope confirm 30 sources to be hydrogen white dwarfs with subtypes in the DA1-DA6 range, and with one of the stars (Lan 161) having an unresolved M dwarf as a companion. Five more sources are confirmed to be helium white dwarfs, with subtypes from DB3 to DB6. One source (Lan 364) is identified as a DZ 3 white dwarf, with strong lines of calcium. Three more stars are found to have featureless spectra (to within detection limits) and are thus classified as DC white dwarfs. In addition, three sources are found to be hot subdwarfs: Lan 20 and Lan 480 are classified as sdOB, and Lan 432 is classified sdB. The remaining four objects are found to be field F star interlopers. Physical parameters of the DA and DB white dwarfs are derived from model fits.

  2. Orientation dependence of the ionization of CO and NO in an intense femtosecond two-color laser field

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ray, Dipanwita; de, Sankar; Cao, Wei; Laurent, Guillaume; Wang, Zhenhua; Thu Le, Anh; Cocke, C. Lewis; Znakovskaya, Irina; Kling, Matthias

    2012-06-01

    Two-color (800 nm and 400 nm) ultrashort (30±10 fs) laser pulses were used to ionize and dissociate CO and NO. The emission of C^+q, N^+q and O^+ fragments were measured with a velocity-map-imaging (VMI) system. The data show that the ionization rate is dependent on the orientation of the molecules with respect to the laser polarization. Both molecules ionize more easily when the electric field points from C to O in CO and from N to O in NO. The asymmetry of emission is much higher for CO than for NO. The sign of the asymmetry is not strongly dependent on kinetic energy release (KER). The favored ionization orientation is in agreement with the expectation of the molecular orbital Ammosov-Delone-Krainov (MO-ADK) [1] theory and with a Stark-corrected version of a strong-field-approximation (SFA) calculation [2]. [4pt] [1] X.M. Tong, et al., Phys. Rev. A 66, 033402 (2002).[0pt] [2] H. Li, et al., Phys. Rev. A 84, 043429 (2011).

  3. Phase structure of two-color QCD at real and imaginary chemical potentials: Lattice simulations and model analyses

    NASA Astrophysics Data System (ADS)

    Makiyama, Takahiro; Sakai, Yuji; Saito, Takuya; Ishii, Masahiro; Takahashi, Junichi; Kashiwa, Kouji; Kouno, Hiroaki; Nakamura, Atsushi; Yahiro, Masanobu

    2016-01-01

    We investigate the phase structure of two-color QCD at both real and imaginary chemical potentials (μ ), performing lattice simulations and analyzing the data with the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. Lattice QCD simulations are done on an 83×4 lattice with the clover-improved two-flavor Wilson fermion action and the renormalization-group-improved Iwasaki gauge action. We test the analytic continuation of physical quantities from imaginary μ to real μ by comparing lattice QCD results calculated at real μ with the results of an analytic function, the coefficients of which are determined from lattice QCD results at imaginary μ . We also test the validity of the PNJL model by comparing model results with lattice QCD ones. The PNJL model is good in the deconfinement region, but less accurate in the transition and confinement regions. This problem is cured by introducing the baryon degree of freedom to the model. It is also found that the vector-type four-quark interaction is necessary to explain lattice data on the quark number density.

  4. Proposal of quantitative temperature measurements using two-color technique combined with several infrared radiometers having different detection wavelength bands

    NASA Astrophysics Data System (ADS)

    Inagaki, Terumi; Ishii, Toshimitsu

    2001-03-01

    Infrared thermography has been widely used to visualize a 2D temperature field for various engineering applications. However, in general, conventional infrared thermography cannot directly be applied to quantitative temperature measurement on glossy metal surfaces under near-ambient conditions, because of the severe influence of the reflected energy incident from the surroundings on the measurement. When it is necessary to measure the temperature quantitatively, an appropriate calibration involving complicated procedures must be performed. In this paper, therefore, a new technique of measuring temperature is proposed for near-ambient conditions, by combining simultaneously several infrared radiometers having different detection wavelength bands to enable a two-color technique, which does not require any temperature calibrations. The sensors concerned have a selective wavelength band of several micrometers in width in the range of 2 to 13 micrometers . The applicability of the method, including a series of proposed equations, has been confirmed by an investigation; the numerical simulation presented merely allows a parametric study of how the result varies for different values of emissivity corresponding to a pair of infrared radiometers. An experimental investigation is also performed to estimate or correct the measurement error pertaining to the present technique. This technique has the feature that a 2D temperature field can be evaluated quantitatively, nondestructively, and simultaneously at each picture element without presuming any emissivity and reflectivity, even though the object has a complicated shape; so that it may be useful in various medical or engineering applications.

  5. Two-color two-photon excited fluorescence of indole: Determination of wavelength-dependent molecular parameters

    NASA Astrophysics Data System (ADS)

    Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz; Shternin, Peter S.; Smolin, Andrey G.; Vasyutinskii, Oleg S.

    2015-01-01

    We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states 1La and 1Lb and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τf, and rotation correlation time τrot have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that 1Lb-1La inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the 1La state at all excitation wavelengths but in the 287-289 nm area which contained an absorption hump of the 1Lb state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τf and the rotation correlation time τrot showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τf = 3.83 ± 0.14 ns and τrot = 0.74 ± 0.06 ns.

  6. Ionization states of heavy elements observed in the 1974 May 14-15 anomalous solar particle event

    NASA Technical Reports Server (NTRS)

    Ma Sung, L. S.; Gloeckler, G.; Fan, C. Y.; Hovestadt, D.

    1981-01-01

    The charge states of heavy ions accelerated in the (He-3)-Fe-rich solar particle event of May 14-15, 1974 have been determined by the use of using data from the University of Maryland/Max-Planck-Institut experiment on IMP 8. In addition to Fe(+11,12), it is found that both O(+5) and Fe(+16,17,18) are also present, suggesting variations in coronal temperatures over a range from approximately 400,000 to 5,000,000 K. The presence of O(+5) and Fe(+16-18) may be explained by a resonant plasma heating mechanism proposed by Fisk (1978) to account for the enhancements of He-3 and Fe.

  7. Sub-micron particle sampler apparatus

    DOEpatents

    Gay, Don D.; McMillan, William G.

    1987-01-01

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

  8. Method for sampling sub-micron particles

    DOEpatents

    Gay, Don D.; McMillan, William G.

    1985-01-01

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

  9. Two-color two-photon excited fluorescence of indole: Determination of wavelength-dependent molecular parameters

    SciTech Connect

    Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz; Shternin, Peter S. Vasyutinskii, Oleg S.; Smolin, Andrey G.

    2015-01-14

    We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states {sup 1}L{sub a} and {sup 1}L{sub b} and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τ{sub f}, and rotation correlation time τ{sub rot} have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that {sup 1}L{sub b}–{sup 1}L{sub a} inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the {sup 1}L{sub a} state at all excitation wavelengths but in the 287–289 nm area which contained an absorption hump of the {sup 1}L{sub b} state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τ{sub f} and the rotation correlation time τ{sub rot} showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τ{sub f} = 3.83 ± 0.14 ns and τ{sub rot} = 0.74 ± 0.06 ns.

  10. Dual Femtosecond TITANIUM:SAPPHIRE Laser for Ultrafast Optical Sampling Two-Color Pump/probe Studies.

    NASA Astrophysics Data System (ADS)

    Luo, Ningyi Daniel

    A pair of self-synchronous Ti:Sapphire lasers have been setup for two-color pump/probe detection in the sub-picosecond time regime. The two 75 femtosecond self -mode-locked Ti:Sapphire lasers are operated asynchronously at slightly different repetition rates to provide continuously varying dynamic delay times. They are tunable at 700-890 nm. The shorter wavelength pulses from one laser are used as a pump source, while the longer wavelength pulses are used as a probe. The sum-frequency pulses generated by the cross-correlation of the two laser pulses are used to define the "time-zero" position and trigger the pump/probe process. The experiment is triggered at the difference frequency, and the signal can be averaged many times allowing a weak signal to build up. Dual-time scale is involved with the interpretation of the signal, which allows the experiment to be carried on the real time scale and the signal to be recorded on a much reduced equivalent time scale. Excited state lifetime measurement of laser HITCI has proven that this technology is practically feasible. Several advantages have been seen: (1) independent wavelength tunability of the pump and probe lasers; (2) variable femto- to nano -second pump/probe time delay; (3) fast (mu s-ms) data collection time; (4) compact optical layout, without the need for optical delay lines and modulators, and thus, simple optical alignment. This study sheds light on the development of a novel compact high speed optical instrument.