Science.gov

Sample records for 14-3-3 mediates histone

  1. Modulation of 14-3-3 interaction with phosphorylated histone H3 by combinatorial modification patterns

    PubMed Central

    Winter, Stefan; Fischle, Wolfgang; Seiser, Christian

    2011-01-01

    Post-translational modifications of histones are determining factors in the global and local regulation of genome activity. Phosphorylation of histone H3 is globally associated with mitotic chromatin compaction but occurs in a much more restricted manner during interphase transcriptional regulation of a limited subset of genes. In the course of gene regulation, serine 10 phosphorylation at histone H3 is targeted to a very small fraction of nucleosomes that is highly susceptible to additional acetylation events. Recently, we and others have identified 14-3-3 as a binding protein that recognizes both phosphorylated serine 10 and phosphorylated serine 28 on histone H3. In vitro, the affinity of 14-3-3 for phosphoserine 10 is weak but becomes significantly increased by additional acetylation of either lysine 9 or lysine 14 on the same histone tail. In contrast, the histone H3S28 site matches elements of 14-3-3 high affinity consensus motifs. This region mediates an initial stronger interaction that is less susceptible to modulation by “auxiliary” modifications. Here we discuss the binding of 14-3-3 proteins to histone H3 in detail and putative biological implications of these interactions. PMID:18418070

  2. 14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1.

    PubMed

    Hong, Hye-Young; Jeon, Woo-Kwang; Bae, Eun-Jin; Kim, Shin-Tae; Lee, Ho-Jae; Kim, Seong-Jin; Kim, Byung-Chul

    2010-03-01

    The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 zeta and 14-3-3 sigma on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-beta1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-beta1-mediated growth inhibition displayed increased expression of 14-3-3 zeta and decreased expression of 14-3-3 sigma compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 sigma or 14-3-3 zeta, we showed that 14-3-3 sigma is required for TGF-beta1-mediated growth inhibition whereas 14-3-3 zeta negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 zeta increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-beta1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 zeta phosphorylation sites in Smad3 markedly reduced the 14-3-3 zeta-mediated inhibition of TGF-beta1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 zeta in the suppression of TGF-beta1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 sigma or 14-3-3 zeta contributes to TGF-beta1 resistance in cancer cells. PMID:20082218

  3. 14-3-3-zeta participates in TLR3-mediated TICAM-1 signal-platform formation.

    PubMed

    Funami, Kenji; Matsumoto, Misako; Obuse, Chikashi; Seya, Tsukasa

    2016-05-01

    Recognition of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) is important in innate immune signaling. Toll-like receptors (TLRs) are well-characterized PRRs and are pivotal in antiviral and antitumor host defense. TIR domain-containing adaptor molecule 1 (TICAM-1, also called TRIF) is an adapter molecule in TLR3- and TLR4-mediated IRF3 activation, late-phase NF-κB activation and MAPK-mediated AP-1 activation. When a TLR3 ligand is added to TLR3-positive cells, TICAM-1 transiently interacts with TLR3 and forms multimers in the cytosol. However, the precise mechanism of TICAM-1 multimer formation remains unknown. In this study, we identified 14-3-3-zeta as a molecule that functions in TLR3-mediated signaling. Knockdown of 14-3-3-zeta reduced production of type I interferon and inflammatory cytokines, nuclear translocation of IRF3 and phosphorylation of IκB via the TLR3-TICAM-1 pathway. Furthermore, TICAM-1 multimerization by ligand stimulation was prohibited by 14-3-3-zeta knockdown. These results suggest that 14-3-3-zeta is involved in the TLR3-TICAM-1 pathway in promoting multimerization of TICAM-1 for the formation of a TICAM-1 signalosome. PMID:27058640

  4. Induction of activation-induced cytidine deaminase-targeting adaptor 14-3-3γ is mediated by NF-κB-dependent recruitment of CFP1 to the 5'-CpG-3'-rich 14-3-3γ promoter and is sustained by E2A.

    PubMed

    Mai, Thach; Pone, Egest J; Li, Guideng; Lam, Tonika S; Moehlman, J'aime; Xu, Zhenming; Casali, Paolo

    2013-08-15

    Class switch DNA recombination (CSR) crucially diversifies Ab biologic effector functions. 14-3-3γ specifically binds to the 5'-AGCT-3' repeats in the IgH locus switch (S) regions. By interacting directly with the C-terminal region of activation-induced cytidine deaminase (AID), 14-3-3γ targets this enzyme to S regions to mediate CSR. In this study, we showed that 14-3-3γ was expressed in germinal center B cells in vivo and induced in B cells by T-dependent and T-independent primary CSR-inducing stimuli in vitro in humans and mice. Induction of 14-3-3γ was rapid, peaking within 3 h of stimulation by LPSs, and sustained over the course of AID and CSR induction. It was dependent on recruitment of NF-κB to the 14-3-3γ gene promoter. The NF-κB recruitment enhanced the occupancy of the CpG island within the 14-3-3γ promoter by CFP1, a component of the COMPASS histone methyltransferase complex, and promoter-specific enrichment of histone 3 lysine 4 trimethylation (H3K4me3), which is indicative of open chromatin state and marks transcription-competent promoters. NF-κB also potentiated the binding of B cell lineage-specific factor E2A to an E-box motif located immediately downstream of the two closely-spaced transcription start sites for sustained 14-3-3γ expression and CSR induction. Thus, 14-3-3γ induction in CSR is enabled by the CFP1-mediated H3K4me3 enrichment in the promoter, dependent on NF-κB and sustained by E2A. PMID:23851690

  5. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells

    PubMed Central

    Li, Tong; Paudel, Hemant K.

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer’s disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445–6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  6. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells.

    PubMed

    Li, Tong; Paudel, Hemant K

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer's disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445-6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  7. Loss of the 14-3-3σ is essential for LASP1-mediated colorectal cancer progression via activating PI3K/AKT signaling pathway

    PubMed Central

    Shao, Ziyun; Cai, Yanjun; Xu, Lijun; Yao, Xueqing; Shi, Jiaolong; Zhang, Feifei; Luo, Yuhao; Zheng, Kehong; Liu, Jian; Deng, Fengliu; Li, Rui; Zhang, Lanzhi; Wang, Hui; Li, Mingyi; Ding, Yanqing; Zhao, Liang

    2016-01-01

    LIM and SH3 protein 1 (LASP1) can promote colorectal cancer (CRC) progression and metastasis, but the direct evidence that elucidates the molecular mechanism remains unclear. Here, our proteomic data showed that LASP1 interacted with 14-3-3σ and decreased the expression of 14-3-3σ in CRC. Deletion of 14-3-3σ was required for LASP1-mediated CRC cell aggressiveness. In vitro gain- and loss-of-function assays showed that 14-3-3σ suppressed the ability of cell migration and decreased the phosphorylation of AKT in CRC cells. We further observed clearly co-localization between AKT and 14-3-3σ in CRC cells. Treatment of PI3K inhibitor LY294002 markedly prevented phosphorylation of AKT and subsequently counteract aggressive phenotype mediated by siRNA of 14-3-3σ. Clinically, 14-3-3σ is frequently down-regulated in CRC tissues. Down-regulation of 14-3-3σ is associated with tumor progression and poor prognosis of patients with CRC. Multivariate analysis confirmed low expression of 14-3-3σ as an independent prognostic factor for CRC. A combination of low 14-3-3σ and high LASP1 expression shows a worse trend with overall survival of CRC patients. Our research paves the path to future investigation of the LASP1-14-3-3σ axis as a target for novel anticancer therapies of advanced CRC. PMID:27156963

  8. Suppression of 14-3-3γ-mediated surface expression of ANO1 inhibits cancer progression of glioblastoma cells

    PubMed Central

    Lee, Young-Sun; Lee, Jae Kwang; Bae, Yeonju; Lee, Bok-Soon; Kim, Eunju; Cho, Chang-Hoon; Ryoo, Kanghyun; Yoo, Jiyun; Kim, Chul-Ho; Yi, Gwan-Su; Lee, Seok-Geun; Lee, C. Justin; Kang, Sang Soo; Hwang, Eun Mi; Park, Jae-Yong

    2016-01-01

    Anoctamin-1 (ANO1) acts as a Ca2+-activated Cl− channel in various normal tissues, and its expression is increased in several different types of cancer. Therefore, understanding the regulation of ANO1 surface expression is important for determining its physiological and pathophysiological functions. However, the trafficking mechanism of ANO1 remains elusive. Here, we report that segment a (N-terminal 116 amino acids) of ANO1 is crucial for its surface expression, and we identified 14-3-3γ as a binding partner for anterograde trafficking using yeast two-hybrid screening. The surface expression of ANO1 was enhanced by 14-3-3γ, and the Thr9 residue of ANO1 was critical for its interaction with 14-3-3γ. Gene silencing of 14-3-3γ and/or ANO1 demonstrated that suppression of ANO1 surface expression inhibited migration and invasion of glioblastoma cells. These findings provide novel therapeutic implications for glioblastomas, which are associated with poor prognosis. PMID:27212225

  9. Suppression of 14-3-3γ-mediated surface expression of ANO1 inhibits cancer progression of glioblastoma cells.

    PubMed

    Lee, Young-Sun; Lee, Jae Kwang; Bae, Yeonju; Lee, Bok-Soon; Kim, Eunju; Cho, Chang-Hoon; Ryoo, Kanghyun; Yoo, Jiyun; Kim, Chul-Ho; Yi, Gwan-Su; Lee, Seok-Geun; Lee, C Justin; Kang, Sang Soo; Hwang, Eun Mi; Park, Jae-Yong

    2016-01-01

    Anoctamin-1 (ANO1) acts as a Ca(2+)-activated Cl(-) channel in various normal tissues, and its expression is increased in several different types of cancer. Therefore, understanding the regulation of ANO1 surface expression is important for determining its physiological and pathophysiological functions. However, the trafficking mechanism of ANO1 remains elusive. Here, we report that segment a (N-terminal 116 amino acids) of ANO1 is crucial for its surface expression, and we identified 14-3-3γ as a binding partner for anterograde trafficking using yeast two-hybrid screening. The surface expression of ANO1 was enhanced by 14-3-3γ, and the Thr9 residue of ANO1 was critical for its interaction with 14-3-3γ. Gene silencing of 14-3-3γ and/or ANO1 demonstrated that suppression of ANO1 surface expression inhibited migration and invasion of glioblastoma cells. These findings provide novel therapeutic implications for glioblastomas, which are associated with poor prognosis. PMID:27212225

  10. Combinatorial H3K9acS10ph histone modification in IgH locus S regions targets 14-3-3 adaptors and AID to specify antibody class-switch DNA recombination.

    PubMed

    Li, Guideng; White, Clayton A; Lam, Tonika; Pone, Egest J; Tran, Daniel C; Hayama, Ken L; Zan, Hong; Xu, Zhenming; Casali, Paolo

    2013-11-14

    Class-switch DNA recombination (CSR) is central to the antibody response, in that it changes the immunoglobulin heavy chain (IgH) constant region, thereby diversifying biological effector functions of antibodies. The activation-induced cytidine deaminase (AID)-centered CSR machinery excises and rejoins DNA between an upstream (donor) and a downstream (acceptor) S region, which precede the respective constant region DNA. AID is stabilized on S regions by 14-3-3 adaptors. These adaptors display a high affinity for 5'-AGCT-3' repeats, which recur in all S regions. However, how 14-3-3, AID, and the CSR machinery target exclusively the donor and acceptor S regions is poorly understood. Here, we show that histone methyltransferases and acetyltransferases are induced by CD40 or Toll-like receptor signaling and catalyze H3K4me3 and H3K9ac/K14ac histone modifications, which are enriched in S regions but do not specify the S region targets of CSR. By contrast, the combinatorial H3K9acS10ph modification specifically marks the S regions set to recombine and directly recruits 14-3-3 adaptors for AID stabilization there. Inhibition of the enzymatic activity of GCN5 and PCAF histone acetyltransferases reduces H3K9acS10ph in S regions, 14-3-3 and AID stabilization, and CSR. Thus, H3K9acS10ph is a histone code that is "written" specifically in S regions and is "read" by 14-3-3 adaptors to target AID for CSR as an important biological outcome. PMID:24209747

  11. Anchoring of both PKA-RIIα and 14-3-3θ regulates retinoic acid induced 16 mediated phosphorylation of heat shock protein 70

    PubMed Central

    Tang, Hai-Lin; Zhu, Shi-Ying; Zhao, Lan-Juan; Ren, Hao; Zhao, Ping; Qi, Zhong-Tian; Wang, Wen

    2015-01-01

    Our previous study reported that retinoic acid induced 16 (RAI16) could enhance tumorigenesis in hepatocellular carcinoma (HCC). However, the cellular functions of RAI16 are still unclear. In this study, by immunoprecipitation and tandem (MS/MS) mass spectrometry analysis, we identified that RAI16 interacted with the type II regulatory subunit of PKA (PKA-RIIα), acting as a novel protein kinase A anchoring protein (AKAP). In addition, RAI16 also interacted with heat shock protein 70 (HSP70) and 14-3-3θ. Further studies indicated that RAI16 mediated PKA phosphorylation of HSP70 at serine 486, resulting in anti-apoptosis events. RAI16 was also phosphorylated by the anchored PKA at serine 325, which promoted the recruitment of 14-3-3θ, which, in turn, inhibited RAI16 mediated PKA phosphorylation of HSP70. These findings offer mechanism insight into RAI16 mediated anti-apoptosis signaling in HCC. PMID:25900241

  12. Amifostine alleviates radiation-induced lethal small bowel damage via promotion of 14-3-3σ-mediated nuclear p53 accumulation.

    PubMed

    Huang, Eng-Yen; Wang, Feng-Sheng; Chen, Yu-Min; Chen, Yi-Fan; Wang, Chung-Chi; Lin, I-Hui; Huang, Yu-Jie; Yang, Kuender D

    2014-10-30

    Amifostine (AM) is a radioprotector that scavenges free radicals and is used in patients undergoing radiotherapy. p53 has long been implicated in cell cycle arrest for cellular repair after radiation exposure. We therefore investigated the protective p53-dependent mechanism of AM on small bowel damage after lethal whole-abdominal irradiation (WAI). AM increased both the survival rate of rats and crypt survival following lethal 18 Gy WAI. The p53 inhibitor PFT-α compromised AM-mediated effects when administered prior to AM administration. AM significantly increased clonogenic survival in IEC-6 cells expressing wild type p53 but not in p53 knockdown cells. AM significantly increased p53 nuclear accumulation and p53 tetramer expression before irradiation through the inhibition of p53 degradation. AM inhibited p53 interactions with MDM2 but enhanced p53 interactions with 14-3-3σ. Knockdown of 14-3-3σ also compromised the effect of AM on clonogenic survival and p53 nuclear accumulation in IEC-6 cells. For the first time, our data reveal that AM alleviates lethal small bowel damage through the induction of 14-3-3σ and subsequent accumulation of p53. Enhancement of the p53/14-3-3σ interaction results in p53 tetramerization in the nucleus that rescues lethal small bowel damage. PMID:25230151

  13. 14-3-3 and aggresome formation

    PubMed Central

    Jia, Baohui; Wu, Yuying; Zhou, Yi

    2014-01-01

    Protein misfolding and aggregation underlie the pathogenesis of many neurodegenerative diseases. In addition to chaperone-mediated refolding and proteasomal degradation, the aggresome-macroautophagy pathway has emerged as another defense mechanism for sequestration and clearance of toxic protein aggregates in cells. Previously, the 14-3-3 proteins were shown to be indispensable for the formation of aggresomes induced by mutant huntingtin proteins. In a recent study, we have determined that 14-3-3 functions as a molecular adaptor to recruit chaperone-associated misfolded proteins to dynein motors for transport to aggresomes. This molecular complex involves a dimeric binding of 14-3-3 to both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3). As 14-3-3 has been implicated in various neurodegenerative diseases, our findings may provide mechanistic insights into its role in managing misfolded protein stress during the process of neurodegeneration. PMID:24549097

  14. An unusual arrangement of two 14-3-3-like domains in the SMG5–SMG7 heterodimer is required for efficient nonsense-mediated mRNA decay

    PubMed Central

    Jonas, Stefanie; Weichenrieder, Oliver; Izaurralde, Elisa

    2013-01-01

    The nonsense-mediated mRNA decay (NMD) pathway triggers the rapid degradation of aberrant mRNAs containing premature translation termination codons (PTCs). In metazoans, NMD requires three 14-3-3-like proteins: SMG5, SMG6, and SMG7. These proteins are recruited to PTC-containing mRNAs through the interaction of their 14-3-3-like domains with phosphorylated UPF1, the central NMD effector. Recruitment of SMG5, SMG6, and SMG7 causes NMD target degradation. In this study, we report the crystal structure of the Caenorhabditis elegans SMG5–SMG7 complex. The 14-3-3-like phosphopeptide recognition domains of SMG5 and SMG7 heterodimerize in an unusual perpendicular back-to-back orientation in which the peptide-binding sites face opposite directions. Structure-based mutants and functional assays indicate that the SMG5–SMG7 interaction is conserved and is crucial for efficient NMD in human cells. Notably, we demonstrate that heterodimerization increases the affinity of the SMG5–SMG7 complex for UPF1. Furthermore, we show that the degradative activity of the SMG5–SMG7 complex resides in SMG7 and that the SMG5–SMG7 complex and SMG6 play partially redundant roles in the degradation of aberrant mRNAs. We propose that the SMG5–SMG7 complex binds to phosphorylated UPF1 with high affinity and recruits decay factors to the mRNA target through SMG7, thus promoting target degradation. PMID:23348841

  15. Echinococcus multilocularis proliferation in mice and respective parasite 14-3-3 gene expression is mainly controlled by an αβ+ CD4+ T-cell-mediated immune response

    PubMed Central

    Dai, Wen Juan; Waldvogel, Andreas; Siles-Lucas, Mar; Gottstein, Bruno

    2004-01-01

    The role of specific B lymphocytes and T-cell populations in the control of experimental Echinococus multilocularis infection was studied in µMT, nude, T-cell receptor (TCR)-β–/–, major histocompatibility complex (MHC)-I–/– and MHC-II–/– mice. At 2 months postinfection, the parasite mass was more than 10 times higher in nude, TCR-β–/– and MHC-II–/– mice than in infected C57BL/6 wild-type (WT) mice, and these T-cell-deficient mice started to die of the high parasite load at this time-point. In contrast, MHC-I–/– and µMT mice exhibited parasite growth rates similar to those found in WT controls. These findings clearly point to the major role that CD4+ αβ+ T cells play in limiting the E. multilocularis proliferation, while CD8+ T and B cells appeared to play a minor role in the control of parasite growth. In the absence of T cells, especially CD4+ or αβ+ T cells, the cellular immune response to infection was impaired, as documented by the lack of hepatic granuloma formation around the parasite and by a decreased splenocyte responsiveness to concanavalin A (Con A) and parasite antigen stimulation. Surprisingly, in T-cell-deficient mice, the ex vivo expression of interferon-γ (IFN-γ) and other inflammatory cytokines (except for interleukin-6) were increased in association with a high parasite load. Thus, the relative protection mediated by CD4+ αβ+ T cells against E. multilocularis infection seemed not be IFN-γ dependent, but rather to rely on the effector's function of CD4+ αβ+ T cells. The local restriction of parasite germinal cell proliferation was reflected by a regulatory effect on the expression of 14-3-3 protein within the parasite tissue in T-cell-deficient mice. These results provide a strong indication that the CD4+ αβ+ T-cell-mediated immune response contributes to the control of the parasite growth and to the regulation of production of the parasite 14-3-3 protein in metacestode tissues. PMID:15196217

  16. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides

    PubMed Central

    Madeira, Fábio; Tinti, Michele; Murugesan, Gavuthami; Berrett, Emily; Stafford, Margaret; Toth, Rachel; Cole, Christian; MacKintosh, Carol; Barton, Geoffrey J.

    2015-01-01

    Motivation: The 14-3-3 family of phosphoprotein-binding proteins regulates many cellular processes by docking onto pairs of phosphorylated Ser and Thr residues in a constellation of intracellular targets. Therefore, there is a pressing need to develop new prediction methods that use an updated set of 14-3-3-binding motifs for the identification of new 14-3-3 targets and to prioritize the downstream analysis of >2000 potential interactors identified in high-throughput experiments. Results: Here, a comprehensive set of 14-3-3-binding targets from the literature was used to develop 14-3-3-binding phosphosite predictors. Position-specific scoring matrix, support vector machines (SVM) and artificial neural network (ANN) classification methods were trained to discriminate experimentally determined 14-3-3-binding motifs from non-binding phosphopeptides. ANN, position-specific scoring matrix and SVM methods showed best performance for a motif window spanning from −6 to +4 around the binding phosphosite, achieving Matthews correlation coefficient of up to 0.60. Blind prediction showed that all three methods outperform two popular 14-3-3-binding site predictors, Scansite and ELM. The new methods were used for prediction of 14-3-3-binding phosphosites in the human proteome. Experimental analysis of high-scoring predictions in the FAM122A and FAM122B proteins confirms the predictions and suggests the new 14-3-3-predictors will be generally useful. Availability and implementation: A standalone prediction web server is available at http://www.compbio.dundee.ac.uk/1433pred. Human candidate 14-3-3-binding phosphosites were integrated in ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome database. Contact: cmackintosh@dundee.ac.uk or gjbarton@dundee.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25735772

  17. 14-3-3 Proteins in Guard Cell Signaling

    PubMed Central

    Cotelle, Valérie; Leonhardt, Nathalie

    2016-01-01

    Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses. PMID:26858725

  18. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    PubMed

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-01

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization. PMID:25748451

  19. 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila.

    PubMed

    Le, Thao Phuong; Vuong, Linh Thuong; Kim, Ah-Ram; Hsu, Ya-Chieh; Choi, Kwang-Wook

    2016-01-01

    14-3-3 family proteins regulate multiple signalling pathways. Understanding biological functions of 14-3-3 proteins has been limited by the functional redundancy of conserved isotypes. Here we provide evidence that 14-3-3 proteins regulate two interacting components of Tor signalling in Drosophila, translationally controlled tumour protein (Tctp) and Rheb GTPase. Single knockdown of 14-3-3ɛ or 14-3-3ζ isoform does not show obvious defects in organ development but causes synergistic genetic interaction with Tctp and Rheb to impair tissue growth. 14-3-3 proteins physically interact with Tctp and Rheb. Knockdown of both 14-3-3 isoforms abolishes the binding between Tctp and Rheb, disrupting organ development. Depletion of 14-3-3s also reduces the level of phosphorylated S6 kinase, phosphorylated Thor/4E-BP and cyclin E (CycE). Growth defects from knockdown of 14-3-3 and Tctp are suppressed by CycE overexpression. This study suggests a novel mechanism of Tor regulation mediated by 14-3-3 interaction with Tctp and Rheb. PMID:27151460

  20. 14-3-3 proteins regulate Tctp–Rheb interaction for organ growth in Drosophila

    PubMed Central

    Le, Thao Phuong; Vuong, Linh Thuong; Kim, Ah-Ram; Hsu, Ya-Chieh; Choi, Kwang-Wook

    2016-01-01

    14-3-3 family proteins regulate multiple signalling pathways. Understanding biological functions of 14-3-3 proteins has been limited by the functional redundancy of conserved isotypes. Here we provide evidence that 14-3-3 proteins regulate two interacting components of Tor signalling in Drosophila, translationally controlled tumour protein (Tctp) and Rheb GTPase. Single knockdown of 14-3-3ɛ or 14-3-3ζ isoform does not show obvious defects in organ development but causes synergistic genetic interaction with Tctp and Rheb to impair tissue growth. 14-3-3 proteins physically interact with Tctp and Rheb. Knockdown of both 14-3-3 isoforms abolishes the binding between Tctp and Rheb, disrupting organ development. Depletion of 14-3-3s also reduces the level of phosphorylated S6 kinase, phosphorylated Thor/4E-BP and cyclin E (CycE). Growth defects from knockdown of 14-3-3 and Tctp are suppressed by CycE overexpression. This study suggests a novel mechanism of Tor regulation mediated by 14-3-3 interaction with Tctp and Rheb. PMID:27151460

  1. Dual binding of 14-3-3 protein regulates Arabidopsis nitrate reductase activity.

    PubMed

    Chi, Jen-Chih; Roeper, Juliane; Schwarz, Guenter; Fischer-Schrader, Katrin

    2015-03-01

    14-3-3 proteins represent a family of ubiquitous eukaryotic proteins involved in numerous signal transduction processes and metabolic pathways. One important 14-3-3 target in higher plants is nitrate reductase (NR), whose activity is regulated by different physiological conditions. Intra-molecular electron transfer in NR is inhibited following 14-3-3 binding to a conserved phospho-serine motif located in hinge 1, a surface exposed loop between the catalytic molybdenum and central heme domain. Here we describe a novel 14-3-3 binding site within the NR N-terminus, an acidic motif conserved in NRs of higher plants, which significantly contributes to 14-3-3-mediated inhibition of NR. Deletion or mutation of the N-terminal acidic motif resulted in a significant loss of 14-3-3 mediated inhibition of Ser534 phosphorylated NR-Mo-heme (residues 1-625), a previously established model of NR regulation. Co-sedimentation and crosslinking studies with NR peptides comprising each of the two binding motifs demonstrated direct binding of either peptide to 14-3-3. Surface plasmon resonance spectroscopy disclosed high-affinity binding of 14-3-3ω to the well-known phospho-hinge site and low-affinity binding to the N-terminal acidic motif. A binding groove-deficient 14-3-3ω variant retained interaction to the acidic motif, but lost binding to the phospho-hinge motif. To our knowledge, NR is the first enzyme that harbors two independent 14-3-3 binding sites with different affinities, which both need to be occupied by 14-3-3ω to confer full inhibition of NR activity under physiological conditions. PMID:25578809

  2. Phosphorylation and Interaction with the 14-3-3 Protein of the Plasma Membrane H+-ATPase are Involved in the Regulation of Magnesium-Mediated Increases in Aluminum-Induced Citrate Exudation in Broad Bean (Vicia faba. L).

    PubMed

    Chen, Qi; Kan, Qi; Wang, Ping; Yu, Wenqian; Yu, Yuzhen; Zhao, Yan; Yu, Yongxiong; Li, Kunzhi; Chen, Limei

    2015-06-01

    Several studies have shown that external application of micromolar magnesium (Mg) can increase the resistance of legumes to aluminum (Al) stress by enhancing Al-induced citrate exudation. However, the exact mechanism underlying this regulation remains unknown. In this study, the physiological and molecular mechanisms by which Mg enhances Al-induced citrate exudation to alleviate Al toxicity were investigated in broad bean. Micromolar concentrations of Mg that alleviated Al toxicity paralleled the stimulation of Al-induced citrate exudation and increased the activity of the plasma membrane (PM) H(+)-ATPase. Northern blot analysis shows that a putative MATE-like gene (multidrug and toxic compound extrusion) was induced after treatment with Al for 4, 8 and 12 h, whereas the mRNA abundance of the MATE-like gene showed no significant difference between Al plus Mg and Al-only treatments during the entire treatment period. Real-time reverse transcription-PCR (RT-PCR) and Western blot analyses suggest that the transcription and translation of the PM H(+)-ATPase were induced by Al but not by Mg. In contrast, immunoprecipitation suggests that Mg enhanced the phosphorylation levels of VHA2 and its interaction with the vf14-3-3b protein under Al stress. Taken together, our results suggest that micromolar concentrations of Mg can alleviate the Al rhizotoxicity by increasing PM H(+)-ATPase activity and Al-induced citrate exudation in YD roots. This enhancement is likely to be attributable to Al-induced increases in the expression of the MATE-like gene and vha2 and Mg-induced changes in the phosphorylation levels of VHA2, thus changing its interaction with the vf14-3-3b protein. PMID:25745032

  3. Neuroprotective Function of 14-3-3 Proteins in Neurodegeneration

    PubMed Central

    Shimada, Tadayuki; Fournier, Alyson E.; Yamagata, Kanato

    2013-01-01

    14-3-3 proteins are abundantly expressed adaptor proteins that interact with a vast number of binding partners to regulate their cellular localization and function. They regulate substrate function in a number of ways including protection from dephosphorylation, regulation of enzyme activity, formation of ternary complexes and sequestration. The diversity of 14-3-3 interacting partners thus enables 14-3-3 proteins to impact a wide variety of cellular and physiological processes. 14-3-3 proteins are broadly expressed in the brain, and clinical and experimental studies have implicated 14-3-3 proteins in neurodegenerative disease. A recurring theme is that 14-3-3 proteins play important roles in pathogenesis through regulating the subcellular localization of target proteins. Here, we review the evidence that 14-3-3 proteins regulate aspects of neurodegenerative disease with a focus on their protective roles against neurodegeneration. PMID:24364034

  4. Ywhaz/14-3-3ζ Deletion Improves Glucose Tolerance Through a GLP-1-Dependent Mechanism.

    PubMed

    Lim, Gareth E; Piske, Micah; Lulo, James E; Ramshaw, Hayley S; Lopez, Angel F; Johnson, James D

    2016-07-01

    Multiple signaling pathways mediate the actions of metabolic hormones to control glucose homeostasis, but the proteins that coordinate such networks are poorly understood. We previously identified the molecular scaffold protein, 14-3-3ζ, as a critical regulator of in vitro β-cell survival and adipogenesis, but its metabolic roles in glucose homeostasis have not been studied in depth. Herein, we report that Ywhaz gene knockout mice (14-3-3ζKO) exhibited elevated fasting insulin levels while maintaining normal β-cell responsiveness to glucose when compared with wild-type littermate controls. In contrast with our observations after an ip glucose bolus, glucose tolerance was significantly improved in 14-3-3ζKO mice after an oral glucose gavage. This improvement in glucose tolerance was associated with significantly elevated fasting glucagon-like peptide-1 (GLP-1) levels. 14-3-3ζ knockdown in GLUTag L cells elevated GLP-1 synthesis and increased GLP-1 release. Systemic inhibition of the GLP-1 receptor attenuated the improvement in oral glucose tolerance that was seen in 14-3-3ζKO mice. When taken together these findings demonstrate novel roles of 14-3-3ζ in the regulation of glucose homeostasis and suggest that modulating 14-3-3ζ levels in intestinal L cells may have beneficial metabolic effects through GLP-1-dependent mechanisms. PMID:27167773

  5. 14-3-3ζ coordinates adipogenesis of visceral fat

    PubMed Central

    Lim, Gareth E.; Albrecht, Tobias; Piske, Micah; Sarai, Karnjit; Lee, Jason T. C; Ramshaw, Hayley S.; Sinha, Sunita; Guthridge, Mark A.; Acker-Palmer, Amparo; Lopez, Angel F.; Clee, Susanne M.; Nislow, Corey; Johnson, James D.

    2015-01-01

    The proteins that coordinate complex adipogenic transcriptional networks are poorly understood. 14-3-3ζ is a molecular adaptor protein that regulates insulin signalling and transcription factor networks. Here we report that 14-3-3ζ-knockout mice are strikingly lean from birth with specific reductions in visceral fat depots. Conversely, transgenic 14-3-3ζ overexpression potentiates obesity, without exacerbating metabolic complications. Only the 14-3-3ζ isoform is essential for adipogenesis based on isoform-specific RNAi. Mechanistic studies show that 14-3-3ζ depletion promotes autophagy-dependent degradation of C/EBP-δ, preventing induction of the master adipogenic factors, Pparγ and C/EBP-α. Transcriptomic data indicate that 14-3-3ζ acts upstream of hedgehog signalling-dependent upregulation of Cdkn1b/p27Kip1. Indeed, concomitant knockdown of p27Kip1 or Gli3 rescues the early block in adipogenesis induced by 14-3-3ζ knockdown in vitro. Adipocyte precursors in 14-3-3ζKO embryos also appear to have greater Gli3 and p27Kip1 abundance. Together, our in vivo and in vitro findings demonstrate that 14-3-3ζ is a critical upstream driver of adipogenesis. PMID:26220403

  6. Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis.

    PubMed

    Marcos, Caroline Maria; Silva, Julhiany de Fátima ds; Oliveira, Haroldo Cesar de; Assato, Patrícia Akemi; Singulani, Junya de Lacorte; Lopez, Angela Maria; Tamayo, Diana Patricia; Hernandez-Ruiz, Orville; McEwen, Juan G; Mendes-Giannini, Maria José Soares; Fusco-Almeida, Ana Marisa

    2016-01-01

    The interaction between the fungal pathogen Paracoccidioides brasiliensis and host cells is usually mediated by specific binding events between adhesins on the fungal surface and receptors on the host extracellular matrix or cell surface. One molecule implicated in the P. brasiliensis-host interaction is the 14-3-3 protein. The 14-3-3 protein belongs to a family of conserved regulatory molecules that are expressed in all eukaryotic cells and are involved in diverse cellular functions. Here, we investigated the relevance of the 14-3-3 protein to the virulence of P. brasiliensis. Using antisense RNA technology and Agrobacterium tumefaciens-mediated transformation, we generated a 14-3-3-silenced strain (expression reduced by ˜55%). This strain allowed us to investigate the interaction between 14-3-3 and the host and to correlate the functions of P. brasiliensis 14-3-3 with cellular features, such as morphological characteristics and virulence, that are important for pathogenesis. PMID:26646480

  7. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage

    PubMed Central

    Nefla, Meriam; Sudre, Laure; Denat, Guillaume; Priam, Sabrina; Andre-Leroux, Gwenaëlle; Berenbaum, Francis; Jacques, Claire

    2015-01-01

    ABSTRACT Osteoarthritis is a whole-joint disease characterized by the progressive destruction of articular cartilage involving abnormal communication between subchondral bone and cartilage. Our team previously identified 14-3-3ε protein as a subchondral bone soluble mediator altering cartilage homeostasis. The aim of this study was to investigate the involvement of CD13 (also known as aminopeptidase N, APN) in the chondrocyte response to 14-3-3ε. After identifying CD13 in chondrocytes, we knocked down CD13 with small interfering RNA (siRNA) and blocking antibodies in articular chondrocytes. 14-3-3ε-induced MMP-3 and MMP-13 was significantly reduced with CD13 knockdown, which suggests that it has a crucial role in 14-3-3ε signal transduction. Aminopeptidase N activity was identified in chondrocytes, but the activity was unchanged after stimulation with 14-3-3ε. Direct interaction between CD13 and 14-3-3ε was then demonstrated by surface plasmon resonance. Using labeled 14-3-3ε, we also found that 14-3-3ε binds to the surface of chondrocytes in a manner that is dependent on CD13. Taken together, these results suggest that 14-3-3ε might directly bind to CD13, which transmits its signal in chondrocytes to induce a catabolic phenotype similar to that observed in osteoarthritis. The 14-3-3ε–CD13 interaction could be a new therapeutic target in osteoarthritis. PMID:26208633

  8. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage.

    PubMed

    Nefla, Meriam; Sudre, Laure; Denat, Guillaume; Priam, Sabrina; Andre-Leroux, Gwenaëlle; Berenbaum, Francis; Jacques, Claire

    2015-09-01

    Osteoarthritis is a whole-joint disease characterized by the progressive destruction of articular cartilage involving abnormal communication between subchondral bone and cartilage. Our team previously identified 14-3-3ε protein as a subchondral bone soluble mediator altering cartilage homeostasis. The aim of this study was to investigate the involvement of CD13 (also known as aminopeptidase N, APN) in the chondrocyte response to 14-3-3ε. After identifying CD13 in chondrocytes, we knocked down CD13 with small interfering RNA (siRNA) and blocking antibodies in articular chondrocytes. 14-3-3ε-induced MMP-3 and MMP-13 was significantly reduced with CD13 knockdown, which suggests that it has a crucial role in 14-3-3ε signal transduction. Aminopeptidase N activity was identified in chondrocytes, but the activity was unchanged after stimulation with 14-3-3ε. Direct interaction between CD13 and 14-3-3ε was then demonstrated by surface plasmon resonance. Using labeled 14-3-3ε, we also found that 14-3-3ε binds to the surface of chondrocytes in a manner that is dependent on CD13. Taken together, these results suggest that 14-3-3ε might directly bind to CD13, which transmits its signal in chondrocytes to induce a catabolic phenotype similar to that observed in osteoarthritis. The 14-3-3ε-CD13 interaction could be a new therapeutic target in osteoarthritis. PMID:26208633

  9. Phosphoregulatory protein 14-3-3 facilitates SAC1 transport from the endoplasmic reticulum

    PubMed Central

    Bajaj Pahuja, Kanika; Wang, Jinzhi; Blagoveshchenskaya, Anastasia; Lim, Lillian; Madhusudhan, M. S.; Mayinger, Peter; Schekman, Randy

    2015-01-01

    Most secretory cargo proteins in eukaryotes are synthesized in the endoplasmic reticulum and actively exported in membrane-bound vesicles that are formed by the cytosolic coat protein complex II (COPII). COPII proteins are assisted by a variety of cargo-specific adaptor proteins required for the concentration and export of secretory proteins from the endoplasmic reticulum (ER). Adaptor proteins are key regulators of cargo export, and defects in their function may result in disease phenotypes in mammals. Here we report the role of 14-3-3 proteins as a cytosolic adaptor in mediating SAC1 transport in COPII-coated vesicles. Sac1 is a phosphatidyl inositol-4 phosphate (PI4P) lipid phosphatase that undergoes serum dependent translocation between the endoplasmic reticulum and Golgi complex and controls cellular PI4P lipid levels. We developed a cell-free COPII vesicle budding reaction to examine SAC1 exit from the ER that requires COPII and at least one additional cytosolic factor, the 14-3-3 protein. Recombinant 14-3-3 protein stimulates the packaging of SAC1 into COPII vesicles and the sorting subunit of COPII, Sec24, interacts with 14-3-3. We identified a minimal sorting motif of SAC1 that is important for 14-3-3 binding and which controls SAC1 export from the ER. This LS motif is part of a 7-aa stretch, RLSNTSP, which is similar to the consensus 14-3-3 binding sequence. Homology models, based on the SAC1 structure from yeast, predict this region to be in the exposed exterior of the protein. Our data suggest a model in which the 14-3-3 protein mediates SAC1 traffic from the ER through direct interaction with a sorting signal and COPII. PMID:26056309

  10. Genome-Wide Identification and Expression Analysis of the 14-3-3 Family Genes in Medicago truncatula

    PubMed Central

    Qin, Cheng; Cheng, Linming; Shen, Jingqin; Zhang, Yunhong; Cao, Huimin; Lu, Dan; Shen, Chenjia

    2016-01-01

    The 14-3-3 gene family, which is conserved in eukaryotes, is involved in protein-protein interactions and mediates signal transduction. However, detailed investigations of the 14-3-3 gene family in Medicago truncatula are largely unknown. In this study, the identification and study of M. truncatula 14-3-3-family genes were performed based on the latest M. truncatula genome. In the M. truncatula genome, 10 14-3-3 family genes were identified, and they can be grouped into ε and non-ε groups. An exon-intron analysis showed that the gene structures are conserved in the same group. The protein structure analysis showed that 14-3-3 proteins in M. truncatula are composed of nine typical antiparallel α-helices. The expression patterns of Mt14-3-3 genes indicated that they are expressed in all tissues. Furthermore, the gene expression levels of Mt14-3-3 under hormone treatment and Sinorhizobium meliloti infection showed that the Mt14-3-3 genes were involve in nodule formation. Our findings lay a solid foundation for further functional studies of 14-3-3 in M. truncatula. PMID:27047505

  11. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor

    SciTech Connect

    Zhao, Jing; Du, Yuhong; Horton, John R.; Upadhyay, Anup K.; Lou, Bin; Bai, Yan; Zhang, Xing; Du, Lupei; Li, Minyong; Wang, Binghe; Zhang, Lixin; Barbieri, Joseph T.; Khuri, Fadlo R.; Cheng, Xiaodong; Fu, Haian

    2013-02-14

    The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kD{sub a} and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3{zeta} in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer.

  12. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor.

    PubMed

    Zhao, Jing; Du, Yuhong; Horton, John R; Upadhyay, Anup K; Lou, Bin; Bai, Yan; Zhang, Xing; Du, Lupei; Li, Minyong; Wang, Binghe; Zhang, Lixin; Barbieri, Joseph T; Khuri, Fadlo R; Cheng, Xiaodong; Fu, Haian

    2011-09-27

    The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kD(a) and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3ζ in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer. PMID:21908710

  13. Molecular evolution of the 14-3-3 protein family.

    PubMed

    Wang, W; Shakes, D C

    1996-10-01

    Members of the highly conserved and ubiquitous 14-3-3 protein family modulate a wide variety of cellular processes. To determine the evolutionary relationships among specific 14-3-3 proteins in different plant, animal, and fungal species and to initiate a predictive analysis of isoform-specific differences in light of the latest functional and structural studies of 14-3-3, multiple alignments were constructed from forty-six 14-3-3 sequences retrieved from the GenBank and SwissProt databases and a newly identified second 14-3-3 gene from Caenorhabditis elegans. The alignment revealed five highly conserved sequence blocks. Blocks 2-5 correlate well with the alpha helices 3, 5, 7, and 9 which form the proposed internal binding domain in the three-dimensional structure model of the functioning dimer. Amino acid differences within the functional and structural domains of plant and animal 14-3-3 proteins were identified which may account for functional diversity amongst isoforms. Protein phylogenic trees were constructed using both the maximum parsimony and neighbor joining methods of the PHYLIP(3.5c) package; 14-3-3 proteins from Entamoeba histolytica, an amitochondrial protozoa, were employed as an outgroup in our analysis. Epsilon isoforms from the animal lineage form a distinct grouping in both trees, which suggests an early divergence from the other animal isoforms. Epsilons were found to be more similar to yeast and plant isoforms than other animal isoforms at numerous amino acid positions, and thus epsilon may have retained functional characteristics of the ancestral protein. The known invertebrate proteins group with the nonepsilon mammalian isoforms. Most of the current 14-3-3 isoform diversity probably arose through independent duplication events after the divergence of the major eukaryotic kingdoms. Divergence of the seven mammalian isoforms beta, zeta, gamma, eta, epsilon, tau, and sigma (stratifin/HME1) occurred before the divergence of mammalian and perhaps

  14. Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation.

    PubMed

    Li, Zhenfei; Nie, Fen; Wang, Sheng; Li, Lin

    2011-02-22

    Histone methylation has an important role in transcriptional regulation. However, unlike H3K4 and H3K9 methylation, the role of H4K20 monomethylation (H4K20me-1) in transcriptional regulation remains unclear. Here, we show that Wnt3a specifically stimulates H4K20 monomethylation at the T cell factor (TCF)-binding element through the histone methylase SET8. Additionally, SET8 is crucial for activation of the Wnt reporter gene and target genes in both mammalian cells and zebrafish. Furthermore, SET8 interacts with lymphoid enhancing factor-1 (LEF1)/TCF4 directly, and this interaction is regulated by Wnt3a. Therefore, we conclude that SET8 is a Wnt signaling mediator and is recruited by LEF1/TCF4 to regulate the transcription of Wnt-activated genes, possibly through H4K20 monomethylation at the target gene promoters. Our findings also indicate that H4K20me-1 is a marker for gene transcription activation, at least in canonical Wnt signaling. PMID:21282610

  15. 14-3-3 proteins: Macro-regulators with great potential for improving abiotic stress tolerance in plants.

    PubMed

    Liu, Qing; Zhang, Shaohong; Liu, Bin

    2016-08-12

    14-3-3 proteins (14-3-3s) are highly conserved regulatory proteins that are uniquely eukaryotic, and deeply involved in protein-protein interactions that mediate diverse signaling pathways. In plants, 14-3-3s have been validated to regulate many biological processes, such as metabolism, light and hormone signaling, cell-cycle control and protein trafficking. Recent years we have also witnessed an increasing number of reports describing the functions of 14-3-3s in plant stress responses through interactions with key proteins in both biotic and abiotic stresses. In this review, we highlight the advances that have been made in investigating the roles of 14-3-3s in plant abiotic stress tolerance. These advances provide a framework for our understanding of how signals are integrated to perceive and respond to the abiotic stresses in plants. PMID:27233603

  16. Destabilisation of dimeric 14-3-3 proteins as a novel approach to anti-cancer therapeutics.

    PubMed

    Woodcock, Joanna M; Coolen, Carl; Goodwin, Katy L; Baek, Dong Jae; Bittman, Robert; Samuel, Michael S; Pitson, Stuart M; Lopez, Angel F

    2015-06-10

    14-3-3 proteins play a pivotal role in controlling cell proliferation and survival, two commonly dysregulated hallmarks of cancers. 14-3-3 protein expression is enhanced in many human cancers and correlates with more aggressive tumors and poor prognosis, suggesting a role for 14-3-3 proteins in tumorigenesis and/or progression. We showed previously that the dimeric state of 14-3-3 proteins is regulated by the lipid sphingosine, a physiological inducer of apoptosis. As the functions of 14-3-3 proteins are dependent on their dimeric state, this sphingosine-mediated 14-3-3 regulation provides a possible means to target dimeric 14-3-3 for therapeutic effect. However, sphingosine mimics are needed that are not susceptible to sphingolipid metabolism. We show here the identification and optimization of sphingosine mimetics that render dimeric 14-3-3 susceptible to phosphorylation at a site buried in the dimer interface and induce mitochondrial-mediated apoptosis. Two such compounds, RB-011 and RB-012, disrupt 14-3-3 dimers at low micromolar concentrations and induce rapid down-regulation of Raf-MAPK and PI3K-Akt signaling in Jurkat cells. Importantly, both RB-011 and RB-012 induce apoptosis of human A549 lung cancer cells and RB-012, through disruption of MAPK signaling, reduces xenograft growth in mice. Thus, these compounds provide proof-of-principle for this novel 14-3-3-targeting approach for anti-cancer drug discovery. PMID:25971334

  17. 14-3-3θ is a binding partner of rat Eag1 potassium channels.

    PubMed

    Hsu, Po-Hao; Miaw, Shi-Chuen; Chuang, Chau-Ching; Chang, Pei-Yu; Fu, Ssu-Ju; Jow, Guey-Mei; Chiu, Mei-Miao; Jeng, Chung-Jiuan

    2012-01-01

    The ether-à-go-go (Eag) potassium (K(+)) channel belongs to the superfamily of voltage-gated K(+) channel. In mammals, the expression of Eag channels is neuron-specific but their neurophysiological role remains obscure. We have applied the yeast two-hybrid screening system to identify rat Eag1 (rEag1)-interacting proteins from a rat brain cDNA library. One of the clones we identified was 14-3-3θ, which belongs to a family of small acidic protein abundantly expressed in the brain. Data from in vitro yeast two-hybrid and GST pull-down assays suggested that the direct association with 14-3-3θ was mediated by both the N- and the C-termini of rEag1. Co-precipitation of the two proteins was confirmed in both heterologous HEK293T cells and native hippocampal neurons. Electrophysiological studies showed that over-expression of 14-3-3θ led to a sizable suppression of rEag1 K(+) currents with no apparent alteration of the steady-state voltage dependence and gating kinetics. Furthermore, co-expression with 14-3-3θ failed to affect the total protein level, membrane trafficking, and single channel conductance of rEag1, implying that 14-3-3θ binding may render a fraction of the channel locked in a non-conducting state. Together these data suggest that 14-3-3θ is a binding partner of rEag1 and may modulate the functional expression of the K(+) channel in neurons. PMID:22911758

  18. 14-3-3 in Thoracic Aortic Aneurysms

    PubMed Central

    Chakravarti, Ritu; Gupta, Karishma; Swain, Mamuni; Willard, Belinda; Scholtz, Jaclyn; Svensson, Lars G.; Roselli, Eric E.; Pettersson, Gosta; Johnston, Douglas R.; Soltesz, Edward G.; Yamashita, Michifumi; Stuehr, Dennis; Daly, Thomas M.; Hoffman, Gary S.

    2015-01-01

    Objective Large vessel vasculitides (LVV) are a group of autoimmune diseases characterized by injury to and anatomic modifications of large vessels, including the aorta and its branch vessels. Disease etiology is unknown. This study was undertaken to identify antigen targets within affected vessel walls in aortic root, ascending aorta, and aortic arch surgical specimens from patients with LVV, including giant cell arteritis, Takayasu arteritis, and isolated focal aortitis. Methods Thoracic aortic aneurysm specimens and autologous blood were acquired from consenting patients who underwent aorta reconstruction procedures. Aorta proteins were extracted from both patients with LVV and age-, race-, and sex-matched disease controls with noninflammatory aneurysms. A total of 108 serum samples from patients with LVV, matched controls, and controls with antinuclear antibodies, different forms of vasculitis, or sepsis were tested. Results Evaluation of 108 serum samples and 22 aortic tissue specimens showed that 78% of patients with LVV produced antibodies to 14-3-3 proteins in the aortic wall (93.7% specificity), whereas controls were less likely to do so (6.7% produced antibodies). LVV patient sera contained autoantibody sufficient to immunoprecipitate 14-3-3 protein(s) from aortic lysates. Three of 7 isoforms of 14-3-3 were found to be up-regulated in aorta specimens from patients with LVV, and 2 isoforms (ε and ζ) were found to be antigenic in LVV. Conclusion This is the first study to use sterile, snap-frozen thoracic aorta biopsy specimens to identify autoantigens in LVV. Our findings indicate that 78% of patients with LVV have antibody reactivity to 14-3-3 protein(s). The precise role of these antibodies and 14-3-3 proteins in LVV pathogenesis deserves further study. PMID:25917817

  19. 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes

    PubMed Central

    Xu, Zhe; Graham, Kourtney; Foote, Molly; Liang, Fengshan; Rizkallah, Raed; Hurt, Myra; Wang, Yanchang; Wu, Yuying; Zhou, Yi

    2013-01-01

    Summary The aggresome is a key cytoplasmic organelle for sequestration and clearance of toxic protein aggregates. Although loading misfolded proteins cargos to dynein motors has been recognized as an important step in the aggresome formation process, the molecular machinery that mediates the association of cargos with the dynein motor is poorly understood. Here, we report a new aggresome-targeting pathway that involves isoforms of 14-3-3, a family of conserved regulatory proteins. 14-3-3 interacts with both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3), thereby recruiting chaperone-associated protein cargos to dynein motors for their transport to aggresomes. This molecular cascade entails functional dimerization of 14-3-3, which we show to be crucial for the formation of aggresomes in both yeast and mammalian cells. These results suggest that 14-3-3 functions as a molecular adaptor to promote aggresomal targeting of misfolded protein aggregates and may link such complexes to inclusion bodies observed in various neurodegenerative diseases. PMID:23843611

  20. Inhibition of the Arabidopsis Salt Overly Sensitive Pathway by 14-3-3 Proteins[C][W

    PubMed Central

    Zhou, Huapeng; Lin, Huixin; Chen, She; Becker, Katia; Yang, Yongqing; Zhao, Jinfeng; Kudla, Jörg; Schumaker, Karen S.; Guo, Yan

    2014-01-01

    The Salt Overly Sensitive (SOS) pathway regulates intracellular sodium ion (Na+) homeostasis and salt tolerance in plants. Until recently, little was known about the mechanisms that inhibit the SOS pathway when plants are grown in the absence of salt stress. In this study, we report that the Arabidopsis thaliana 14-3-3 proteins λ and κ interact with SOS2 and repress its kinase activity. Growth in the presence of salt decreases the interaction between SOS2 and the 14-3-3 proteins, leading to kinase activation in planta. 14-3-3 λ interacts with the SOS2 junction domain, which is important for its kinase activity. A phosphorylation site (Ser-294) is identified within this domain by mass spectrometry. Mutation of Ser-294 to Ala or Asp does not affect SOS2 kinase activity in the absence of the 14-3-3 proteins. However, in the presence of 14-3-3 proteins, the inhibition of SOS2 activity is decreased by the Ser-to-Ala mutation and enhanced by the Ser-to-Asp exchange. These results identify 14-3-3 λ and κ as important regulators of salt tolerance. The inhibition of SOS2 mediated by the binding of 14-3-3 proteins represents a novel mechanism that confers basal repression of the SOS pathway in the absence of salt stress. PMID:24659330

  1. Histone deacetylase 10 promotes autophagy-mediated cell survival

    PubMed Central

    Oehme, Ina; Linke, Jan-Peter; Böck, Barbara C.; Milde, Till; Lodrini, Marco; Hartenstein, Bettina; Wiegand, Inga; Eckert, Christian; Roth, Wilfried; Kool, Marcel; Kaden, Sylvia; Gröne, Hermann-Josef; Schulte, Johannes H.; Lindner, Sven; Hamacher-Brady, Anne; Brady, Nathan R.; Deubzer, Hedwig E.; Witt, Olaf

    2013-01-01

    Tumor cells activate autophagy in response to chemotherapy-induced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived-amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome. PMID:23801752

  2. Histone deacetylase 10 promotes autophagy-mediated cell survival.

    PubMed

    Oehme, Ina; Linke, Jan-Peter; Böck, Barbara C; Milde, Till; Lodrini, Marco; Hartenstein, Bettina; Wiegand, Inga; Eckert, Christian; Roth, Wilfried; Kool, Marcel; Kaden, Sylvia; Gröne, Hermann-Josef; Schulte, Johannes H; Lindner, Sven; Hamacher-Brady, Anne; Brady, Nathan R; Deubzer, Hedwig E; Witt, Olaf

    2013-07-01

    Tumor cells activate autophagy in response to chemotherapy-induced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived-amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome. PMID:23801752

  3. Up-regulated 14-3-3β and 14-3-3ζ proteins in prefrontal cortex of subjects with schizophrenia: effect of psychotropic treatment.

    PubMed

    Rivero, Guadalupe; Gabilondo, Ane M; García-Sevilla, Jesús A; La Harpe, Romano; Morentín, Benito; Meana, J Javier

    2015-02-01

    14-3-3 is a family of conserved regulatory proteins that bind to a multitude of functionally diverse signalling proteins. Various genetic studies and gene expression and proteomic analyses have involved 14-3-3 proteins in schizophrenia (SZ). On the other hand, studies about the status of these proteins in major depressive disorder (MD) are still missing. Immunoreactivity values of cytosolic 14-3-3β and 14-3-3ζ proteins were evaluated by Western blot in prefrontal cortex (PFC) of subjects with schizophrenia (SZ; n=22), subjects with major depressive disorder (MD; n=21) and age-, gender- and postmortem delay-matched control subjects (n=52). The modulation of 14-3-3β and 14-3-3ζ proteins by psychotropic medication was also assessed. The analysis of both proteins in SZ subjects with respect to matched control subjects showed increased 14-3-3β (Δ=33±10%, p<0.05) and 14-3-3ζ (Δ=29±6%, p<0.05) immunoreactivity in antipsychotic-free but not in antipsychotic-treated SZ subjects. Immunoreactivity values of 14-3-3β and 14-3-3ζ were not altered in MD subjects. These results show the specific up-regulation of 14-3-3β and 14-3-3ζ proteins in PFC of SZ subjects and suggest a possible down-regulation of both proteins by antipsychotic treatment. PMID:25549848

  4. Cancer Chemoprotection Through Nutrient-mediated Histone Modifications

    PubMed Central

    Gao, Yifeng; Tollefsbol, Trygve O.

    2016-01-01

    Epigenetics, the study of heritable changes in gene expression without modifying the nucleotide sequence, is among the most important topics in medicinal chemistry and cancer chemoprotection. Among those changes, DNA methylation and histone modification have been shown to be associated with various types of cancers in a number of ways, many of which are regulated by dietary components that are mostly found in plants. Although, mechanisms of nutrient components affecting histone acetylation/deacetylation in cancer are widely studied, how those natural compounds affect cancer through other histone modifications, such as methylation, phosphorylation and ubiquitylation, is rarely reviewed. Thus, this review article discusses impacts recently studied on histone acetylation as well as other histone modifications by dietary components, such as genistein, resveratrol, curcumin, epigallocatechin-3-gallate (EGCG), 3,3′-diindolylmethane (DIM), diallyl disulfide, garcinol, procyanidin B3, quercetin, sulforaphane and other isothiocyanates, in various types of cancer. PMID:25891109

  5. Functional responses and molecular mechanisms involved in histone-mediated platelet activation.

    PubMed

    Carestia, A; Rivadeneyra, L; Romaniuk, M A; Fondevila, C; Negrotto, S; Schattner, M

    2013-11-01

    Histones are highly alkaline proteins found in cell nuclei and they can be released by either dying or inflammatory cells. The recent observations that histones are major components of neutrophil extracellular traps and promote platelet aggregation and platelet-dependent thrombin generation have shown that these proteins are potent prothrombotic molecules. Because the mechanism(s) of platelet activation by histones are not completely understood, we explored the ability of individual recombinant human histones H1, H2A, H2B, H3 and H4 to induce platelet activation as well as the possible molecular mechanisms involved. All histones were substrates for platelet adhesion and spreading and triggered fibrinogen binding, aggregation, von Willebrand factor release, P-selectin and phosphatidylserine (PS) exposure and the formation of platelet-leukocyte aggregates; however, H4 was the most potent. Histone-mediated fibrinogen binding, P-selectin and PS exposure and the formation of mixed aggregates were potentiated by thrombin. Histones induced the activation of ERK, Akt, p38 and NFκB. Accordingly, histone-induced platelet activation was significantly impaired by pretreatment of platelets with inhibitors of ERK (U 0126), PI3K/Akt (Ly 294002), p38 (SB 203580) and NFκB (BAY 11-7082 and Ro 106-9920). Preincubation of platelets with either aspirin or dexamethasone markedly decreased fibrinogen binding and the adhesion mediated by histones without affecting P-selectin exposure. Functional platelet responses induced by H3 and H4, but not H1, H2A and H2B, were partially mediated through interaction with Toll-like receptors -2 and -4. Our data identify histones as important triggers of haemostatic and proinflammatory platelet responses, and only haemostatic responses are partially inhibited by anti-inflammatory drugs. PMID:23965842

  6. Circulating Histones Are Mediators of Trauma-associated Lung Injury

    PubMed Central

    Abrams, Simon T.; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping

    2013-01-01

    Rationale: Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. Objectives: To investigate the pathological roles of circulating histones in trauma-induced lung injury. Methods: Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause–effect relationship was studied using cells and mouse models. Measurements and Main Results: In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. Conclusions: This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival

  7. Acetylation-Mediated Proteasomal Degradation of Core Histones during DNA Repair and Spermatogenesis

    PubMed Central

    Qian, Min-Xian; Pang, Ye; Liu, Cui Hua; Haratake, Kousuke; Du, Bo-Yu; Ji, Dan-Yang; Wang, Guang-Fei; Zhu, Qian-Qian; Song, Wei; Yu, Yadong; Zhang, Xiao-Xu; Huang, Hai-Tao; Miao, Shiying; Chen, Lian-Bin; Zhang, Zi-Hui; Liang, Ya-Nan; Liu, Shan; Cha, Hwangho; Yang, Dong; Zhai, Yonggong; Komatsu, Takuo; Tsuruta, Fuminori; Li, Haitao; Cao, Cheng; Li, Wei; Li, Guo-Hong; Cheng, Yifan; Chiba, Tomoki; Wang, Linfang; Goldberg, Alfred L.; Shen, Yan; Qiu, Xiao-Bo

    2013-01-01

    SUMMARY Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes (“spermatoproteasomes”) contain a spermatid/sperm-specific α-subunit α4s/PSMA8 and/or the catalytic β-subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks, and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis. PMID:23706739

  8. Modulation of GluK2a subunit-containing kainate receptors by 14-3-3 proteins.

    PubMed

    Sun, Changcheng; Qiao, Haifa; Zhou, Qin; Wang, Yan; Wu, Yuying; Zhou, Yi; Li, Yong

    2013-08-23

    Kainate receptors (KARs) are one of the ionotropic glutamate receptors that mediate excitatory postsynaptic currents (EPSCs) with characteristically slow kinetics. Although mechanisms for the slow kinetics of KAR-EPSCs are not totally understood, recent evidence has implicated a regulatory role of KAR-associated proteins. Here, we report that decay kinetics of GluK2a-containing receptors is modulated by closely associated 14-3-3 proteins. 14-3-3 binding requires PKC-dependent phosphorylation of serine residues localized in the carboxyl tail of the GluK2a subunit. In transfected cells, 14-3-3 binding to GluK2a slows desensitization kinetics of both homomeric GluK2a and heteromeric GluK2a/GluK5 receptors. Moreover, KAR-EPSCs at mossy fiber-CA3 synapses decay significantly faster in the 14-3-3 functional knock-out mice. Collectively, these results demonstrate that 14-3-3 proteins are an important regulator of GluK2a-containing KARs and may contribute to the slow decay kinetics of native KAR-EPSCs. PMID:23861400

  9. Neurotrophin-mediated degradation of histone methyltransferase by S-nitrosylation cascade regulates neuronal differentiation

    PubMed Central

    Sen, Nilkantha; Snyder, Solomon H.

    2011-01-01

    Epigenetic regulation of histones mediates neurotrophin actions with histone acetylation enhancing cAMP response element-binding (CREB)-associated transcription elicited by brain-derived neurotrophic factor (BDNF) and nerve-growth factor (NGF). Roles for histone methylation in CREB's transcriptional activity have not been well characterized. We show that depletion of the histone methyltransferase suppressor of variegation 3–9 homolog 1 (SUV39H1) selectively augments BDNF- and NGF-mediated neurite outgrowth. SUV39H1 is the principal enzyme responsible for trimethylation of histone H3 at lysine 9, a molecular mark associated with transcriptional silencing. BDNF and NGF act via a signaling cascade wherein degradation of SUV39H1 down-regulates trimethylation of H3K9 in a nitric oxide-dependent pathway. BDNF activates neuronal NOS with the nitrosylated GAPDH/seven in absentia (Siah) homolog complex translocating to the nucleus. Degradation of SUV39H1 by Siah facilitates histone H3 on lysine 9 acetylation, CREB binding to DNA, enhanced expression of CREB-regulated genes and neurite outgrowth. PMID:22123949

  10. 14-3-3 family members act coordinately to regulate mitotic progression.

    PubMed

    Dalal, Sorab N; Yaffe, Michael B; DeCaprio, James A

    2004-05-01

    The mitosis promoting phosphatase, cdc25C, is a target of both the DNA replication and DNA damage checkpoint pathways. These pathways regulate cdc25C function, in part, by promoting the association of cdc25C with 14-3-3 proteins, which results in the retention of cdc25C in the cytoplasm. To determine which 14-3-3 proteins were required to regulate cdc25C function, we tested the ability of various 14-3-3 family members to form a complex with and negatively regulate cdc25C in human cells. Two 14-3-3 family members, 14-3-3epsilon and 14-3-3gamma specifically formed a complex with cdc25C but not with the 14-3-3 binding defective cdc25C mutant, S216A. In addition, 14-3-3epsilon and 14-3-3gamma inhibited the ability of cdc25C, but not the S216A mutant, to induce premature chromatin condensation (PCC) in U-2OS cells. These results suggested that the reduction in PCC by 14-3-3epsilon and 14-3-3gamma was due to inhibition of cdc25C function. In contrast, 14-3-3sigma was unable to form a complex with cdc25C, but was able to inhibit the ability of both wild type cdc25C and S216A to induce PCC. This suggests that 14-3-3sigma regulates entry into mitosis independently of cdc25C and 14-3-3epsilon and 14-3-3gamma. Thus, specific members of the 14-3-3 family of proteins may act coordinately to maintain the DNA replication checkpoint by regulating the activity of different cell cycle proteins. PMID:15107609

  11. The histone deacetylase inhibitor Entinostat enhances polymer-mediated transgene expression in cancer cell lines.

    PubMed

    Elmer, Jacob J; Christensen, Matthew D; Barua, Sutapa; Lehrman, Jennifer; Haynes, Karmella A; Rege, Kaushal

    2016-06-01

    Eukaryotic cells maintain an immense amount of genetic information by tightly wrapping their DNA around positively charged histones. While this strategy allows human cells to maintain more than 25,000 genes, histone binding can also block gene expression. Consequently, cells express histone acetyl transferases (HATs) to acetylate histone lysines and release DNA for transcription. Conversely, histone deacetylases (HDACs) are employed for restoring the positive charge on the histones, thereby silencing gene expression by increasing histone-DNA binding. It has previously been shown that histones bind and silence viral DNA, while hyperacetylation of histones via HDAC inhibition restores viral gene expression. In this study, we demonstrate that treatment with Entinostat, an HDAC inhibitor, enhances transgene (luciferase) expression by up to 25-fold in human prostate and murine bladder cancer cell lines when used with cationic polymers for plasmid DNA delivery. Entinostat treatment altered cell cycle progression, resulting in a significant increase in the fraction of cells present in the G0/G1 phase at low micromolar concentrations. While this moderate G0/G1 arrest disappeared at higher concentrations, a modest increase in the fraction of apoptotic cells and a decrease in cell proliferation were observed, consistent with the known anticancer effects of the drug. DNase accessibility studies revealed no significant change in plasmid transcriptional availability with Entinostat treatment. However, quantitative PCR studies indicated that Entinostat treatment, at the optimal dose for enhancing transgene expression, led to an increase in the amount of plasmid present in the nucleus in two cancer cell lines. Taken together, our results show that Entinostat enhances polymer- mediated transgene expression and can be useful in applications related to transient protein expression in mammalian cells. Biotechnol. Bioeng. 2016;113: 1345-1356. © 2015 Wiley Periodicals, Inc. PMID

  12. The role of 14-3-3{beta} in transcriptional activation of estrogen receptor {alpha} and its involvement in proliferation of breast cancer cells

    SciTech Connect

    Kim, Yoonseo; Kim, Hyungjin; Jang, Sung-Wuk; Ko, Jesang

    2011-10-14

    Highlights: {yields} 14-3-3{beta} interacts with ER{alpha} and the interaction is Akt-dependent. {yields} 14-3-3{beta} regulates the transcriptional activity of ER{alpha} in a ligand-dependent manner. {yields} 14-3-3{beta} increases expressions of ER{alpha} target genes. {yields} 14-3-3{beta} increases breast cancer cell proliferation. -- Abstract: The estrogen receptor (ER) functions as a transcription factor that mediates the effects of estrogen. ER{alpha}, which plays a crucial role in the development and progression of breast cancer, is activated by estrogen binding, leading to receptor phosphorylation, dimerization, and recruitment of co-activators and chaperons to the estrogen-bound receptor complex. The 14-3-3 proteins bind to target proteins via phosphorylation and influence many cellular events by altering their subcellular localization or acting as a chaperone. However, regulation of ER{alpha} expression and transactivation by the 14-3-3 proteins has not been reported. We demonstrate that 14-3-3{beta} functions as a positive regulator of ER{alpha} through a direct protein-protein interaction in an estrogen-dependent manner. Ectopic expression of 14-3-3{beta} stimulated ER{alpha}-mediated transcriptional activity in MCF-7 breast cancer cells. Enhanced ER{alpha} transcriptional activity due to 14-3-3{beta} increased the expressions of the endogenous ER{alpha} target genes, leading to proliferation of breast cancer cells. We suggest that 14-3-3{beta} has oncogenic potential in breast cancer via binding to ER{alpha} and activation of the transcriptional activity of ER{alpha}.

  13. Identification of a functional splice variant of 14-3-3E1 in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 14-3-3 proteins are a family of regulatory proteins involved in diverse cellular processes. The presence of 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 isoforms suggest functional specificity of the isoforms. In this study, we report the identification and charact...

  14. Genetic variations of 14-3-3E1 isoform in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly conserved family of 14-3-3 proteins functions in the regulation of a wide variety of cellular processes. The presence of 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 isoforms suggest functional specificity of the isoforms. Several studies have observed diffe...

  15. Involvement of 14-3-3 Proteins in Regulating Tumor Progression of Hepatocellular Carcinoma.

    PubMed

    Wu, Yi-Ju; Jan, Yee-Jee; Ko, Bor-Sheng; Liang, Shu-Man; Liou, Jun-Yang

    2015-01-01

    There are seven mammalian isoforms of the 14-3-3 protein, which regulate multiple cellular functions via interactions with phosphorylated partners. Increased expression of 14-3-3 proteins contributes to tumor progression of various malignancies. Several isoforms of 14-3-3 are overexpressed and associate with higher metastatic risks and poorer survival rates of hepatocellular carcinoma (HCC). 14-3-3β and 14-3-3ζ regulate HCC cell proliferation, tumor growth and chemosensitivity via modulating mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and p38 signal pathways. Moreover, 14-3-3ε suppresses E-cadherin and induces focal adhesion kinase (FAK) expression, thereby enhancing epithelial-mesenchymal transition (EMT) and HCC cell migration. 14-3-3ζ forms complexes with αB-crystallin, which induces EMT and is the cause of sorafenib resistance in HCC. Finally, a recent study has indicated that 14-3-3σ induces heat shock protein 70 (HSP70) expression, which increases HCC cell migration. These results suggest that selective 14-3-3 isoforms contribute to cell proliferation, EMT and cell migration of HCC by regulating distinct targets and signal pathways. Targeting 14-3-3 proteins together with specific downstream effectors therefore has potential to be therapeutic and prognostic factors of HCC. In this article, we will overview 14-3-3's regulation of its downstream factors and contributions to HCC EMT, cell migration and proliferation. PMID:26083935

  16. 14-3-3σ confers cisplatin resistance in esophageal squamous cell carcinoma cells via regulating DNA repair molecules.

    PubMed

    Lai, Kenneth K Y; Chan, Kin Tak; Choi, Mei Yuk; Wang, Hector K; Fung, Eva Y M; Lam, Ho Yu; Tan, Winnie; Tung, Lai Nar; Tong, Daniel K H; Sun, Raymond W Y; Lee, Nikki P; Law, Simon

    2016-02-01

    Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal cancer in Asia. Cisplatin is commonly used in chemoradiation for unresectable ESCC patients. However, the treatment efficacy is diminished in patients with established cisplatin resistance. To understand the mechanism leading to the development of cisplatin resistance in ESCC, we compared the proteomes from a cisplatin-resistant HKESC-2R cell line with its parental-sensitive counterpart HKESC-2 to identify key molecule involved in this process. Mass spectrometry analysis detected 14-3-3σ as the most abundant molecule expressed exclusively in HKESC-2R cells, while western blot result further validated it to be highly expressed in HKESC-2R cells when compared to HKESC-2 cells. Ectopic expression of 14-3-3σ increased cisplatin resistance in HKESC-2 cells, while its suppression sensitized SLMT-1 cells to cisplatin. Among the molecules involved in drug detoxification, drug transportation, and DNA repair, the examined DNA repair molecules HMGB1 and XPA were found to be highly expressed in HKESC-2R cells with high 14-3-3σ expression. Subsequent manipulation of 14-3-3σ by both overexpression and knockdown approaches concurrently altered the expression of HMGB1 and XPA. 14-3-3σ, HMGB1, and XPA were preferentially expressed in cisplatin-resistant SLMT-1 cells when compared to those more sensitive to cisplatin. In ESCC patients with poor response to cisplatin-based chemoradiation, their pre-treatment tumors expressed higher expression of HMGB1 than those with response to such treatment. In summary, our results demonstrate that 14-3-3σ induces cisplatin resistance in ESCC cells and that 14-3-3σ-mediated cisplatin resistance involves DNA repair molecules HMGB1 and XPA. Results from this study provide evidences for further work in researching the potential use of 14-3-3σ and DNA repair molecules HMGB1 and XPA as biomarkers and therapeutic targets for ESCC. PMID:26346170

  17. Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes

    PubMed Central

    2011-01-01

    Background 14-3-3 proteins are considered master regulators of many signal transduction cascades in eukaryotes. In plants, 14-3-3 proteins have major roles as regulators of nitrogen and carbon metabolism, conclusions based on the studies of a few specific 14-3-3 targets. Results In this study, extensive novel roles of 14-3-3 proteins in plant metabolism were determined through combining the parallel analyses of metabolites and enzyme activities in 14-3-3 overexpression and knockout plants with studies of protein-protein interactions. Decreases in the levels of sugars and nitrogen-containing-compounds and in the activities of known 14-3-3-interacting-enzymes were observed in 14-3-3 overexpression plants. Plants overexpressing 14-3-3 proteins also contained decreased levels of malate and citrate, which are intermediate compounds of the tricarboxylic acid (TCA) cycle. These modifications were related to the reduced activities of isocitrate dehydrogenase and malate dehydrogenase, which are key enzymes of TCA cycle. In addition, we demonstrated that 14-3-3 proteins interacted with one isocitrate dehydrogenase and two malate dehydrogenases. There were also changes in the levels of aromatic compounds and the activities of shikimate dehydrogenase, which participates in the biosynthesis of aromatic compounds. Conclusion Taken together, our findings indicate that 14-3-3 proteins play roles as crucial tuners of multiple primary metabolic processes including TCA cycle and the shikimate pathway. PMID:22104211

  18. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation

    PubMed Central

    Haggarty, Stephen J.; Koeller, Kathryn M.; Wong, Jason C.; Grozinger, Christina M.; Schreiber, Stuart L.

    2003-01-01

    Protein acetylation, especially histone acetylation, is the subject of both research and clinical investigation. At least four small-molecule histone deacetylase inhibitors are currently in clinical trials for the treatment of cancer. These and other inhibitors also affect microtubule acetylation. A multidimensional, chemical genetic screen of 7,392 small molecules was used to discover “tubacin,” which inhibits α-tubulin deacetylation in mammalian cells. Tubacin does not affect the level of histone acetylation, gene-expression patterns, or cell-cycle progression. We provide evidence that class II histone deacetylase 6 (HDAC6) is the intracellular target of tubacin. Only one of the two catalytic domains of HDAC6 possesses tubulin deacetylase activity, and only this domain is bound by tubacin. Tubacin treatment did not affect the stability of microtubules but did decrease cell motility. HDAC6 overexpression disrupted the localization of p58, a protein that mediates binding of Golgi elements to microtubules. Our results highlight the role of α-tubulin acetylation in mediating the localization of microtubule-associated proteins. They also suggest that small molecules that selectively inhibit HDAC6-mediated α-tubulin deacetylation, a first example of which is tubacin, might have therapeutic applications as antimetastatic and antiangiogenic agents. PMID:12677000

  19. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis.

    PubMed

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T; Allam, Amr H; Pollard, Anthony N; Magenau, Astrid; Wright, Rebecca L; Kolesnikoff, Natasha; Moretti, Paul A; Wullkopf, Lena; Stomski, Frank C; Cowin, Allison J; Woodcock, Joanna M; Grimbaldeston, Michele A; Pitson, Stuart M; Timpson, Paul; Ramshaw, Hayley S; Lopez, Angel F; Samuel, Michael S

    2015-12-21

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities. PMID:26702834

  20. The role of the 14-3-3 protein family in health, disease, and drug development.

    PubMed

    Aghazadeh, Yasaman; Papadopoulos, Vassilios

    2016-02-01

    14-3-3 proteins regulate intracellular signaling pathways, such as signal transduction, protein trafficking, cell cycle, and apoptosis. In addition to the ubiquitous roles of 14-3-3 isoforms, unique tissue-specific functions are also described for each isoform. Owing to their role in regulating cell cycle, protein trafficking, and steroidogenesis, 14-3-3 proteins are prevalent in human diseases, such as cancer, neurodegeneration, and reproductive disorders, and, therefore, serve as valuable drug targets. In this review, we summarize the role of 14-3-3 proteins in normal and disease states, with a focus on 14-3-3γ and ɛ. We also discuss drug compounds targeting 14-3-3 proteins and their potential therapeutic uses. PMID:26456530

  1. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation

    PubMed Central

    Leus, Niek G.J.; Zwinderman, Martijn R.H.; Dekker, Frank J.

    2016-01-01

    Activation of inflammatory gene expression is regulated, among other factors, by post-translational modifications of histone proteins. The most investigated type of histone modifications are lysine acetylations. Histone deacetylases (HDACs) remove acetylations from lysines, thereby influencing (inflammatory) gene expression. Intriguingly, apart from histones, HDACs also target non-histone proteins. The nuclear factor κB (NF-κB) pathway is an important regulator in the expression of numerous inflammatory genes, and acetylation plays a crucial role in regulating its responses. Several studies have shed more light on the role of HDAC 1-3 in inflammation with a particular pro-inflammatory role for HDAC 3. Nevertheless, the HDAC-NF-κB interactions in inflammatory signalling have not been fully understood. An important challenge in targeting the regulatory role of HDACs in the NF-κB pathway is the development of highly potent small molecules that selectively target HDAC iso-enzymes. This review focuses on the role of HDAC 3 in (NF-κB-mediated) inflammation and NF-κB lysine acetylation. In addition, we address the application of frequently used small molecule HDAC inhibitors as an approach to attenuate inflammatory responses, and their potential as novel therapeutics. Finally, recent progress and future directions in medicinal chemistry efforts aimed at HDAC 3-selective inhibitors are discussed. PMID:27371876

  2. Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson's disease.

    PubMed

    Yacoubian, T A; Slone, S R; Harrington, A J; Hamamichi, S; Schieltz, J M; Caldwell, K A; Caldwell, G A; Standaert, D G

    2010-01-01

    14-3-3 proteins are important negative regulators of cell death pathways. Recent studies have revealed alterations in 14-3-3s in Parkinson's disease (PD) and the ability of 14-3-3s to interact with alpha-synuclein (α-syn), a protein central to PD pathophysiology. In a transgenic α-syn mouse model, we found reduced expression of 14-3-3θ, ε, and γ. These same isoforms prevent α-syn inclusion formation in an H4 neuroglioma cell model. Using dopaminergic cell lines stably overexpressing each 14-3-3 isoform, we found that overexpression of 14-3-3θ, ε, or γ led to resistance to both rotenone and 1-methyl-4-phenylpyridinium (MPP(+)), while other isoforms were not protective against both toxins. Inhibition of a single protective isoform, 14-3-3θ, by shRNA did not increase vulnerability to neurotoxic injury, but toxicity was enhanced by broad-based inhibition of 14-3-3 action with the peptide inhibitor difopein. Using a transgenic C. elegans model of PD, we confirmed the ability of both human 14-3-3θ and a C. elegans 14-3-3 homolog (ftt-2) to protect dopaminergic neurons from α-syn toxicity. Collectively, these data show a strong neuroprotective effect of enhanced 14-3-3 expression - particularly of the 14-3-3θ, ε, and γ isoforms - in multiple cellular and animal models of PD, and point to the potential value of these proteins in the development of neuroprotective therapies for human PD. PMID:21152247

  3. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose.

    PubMed

    Harthill, Jean E; Meek, Sarah E M; Morrice, Nick; Peggie, Mark W; Borch, Jonas; Wong, Barry H C; Mackintosh, Carol

    2006-07-01

    Trehalose-6-phosphate is a 'sugar signal' that regulates plant metabolism and development. The Arabidopsis genome encodes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphatase (TPP) enzymes. It also encodes class II proteins (TPS isoforms 5-11) that contain both TPS-like and TPP-like domains, although whether these have enzymatic activity is unknown. In this paper, we show that TPS5, 6 and 7 are phosphoproteins that bind to 14-3-3 proteins, by using 14-3-3 affinity chromatography, 14-3-3 overlay assays, and by co-immunoprecipitating TPS5 and 14-3-3 isoforms from cell extracts. GST-TPS5 bound to 14-3-3s after in vitro phosphorylation at Ser22 and Thr49 by either mammalian AMP-activated protein kinase (AMPK) or partially purified plant Snf1-related protein kinase 1 (SnRK1s). Dephosphorylation of TPS5, or mutation of either Ser22 or Thr49, abolished binding to 14-3-3s. Ser22 and Thr49 are both conserved in TPS5, 7, 9 and 10. When GST-TPS5 was expressed in human HEK293 cells, Thr49 was phosphorylated in response to 2-deoxyglucose or phenformin, stimuli that activate the AMPK via the upstream kinase LKB1. 2-deoxyglucose stimulated Thr49 phosphorylation of endogenous TPS5 in Arabidopsis cells, whereas phenformin did not. Moreover, extractable SnRK1 activity was increased in Arabidopsis cells in response to 2-deoxyglucose. The plant kinase was inactivated by dephosphorylation and reactivated by phosphorylation with human LKB1, indicating that elements of the SnRK1/AMPK pathway are conserved in Arabidopsis and human cells. We hypothesize that coordinated phosphorylation and 14-3-3 binding of nitrate reductase (NR), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (F2KP) and class II TPS isoforms mediate responses to signals that activate SnRK1. PMID:16771775

  4. Hypothalamic leptin action is mediated by histone deacetylase 5.

    PubMed

    Kabra, Dhiraj G; Pfuhlmann, Katrin; García-Cáceres, Cristina; Schriever, Sonja C; Casquero García, Veronica; Kebede, Adam Fiseha; Fuente-Martin, Esther; Trivedi, Chitrang; Heppner, Kristy; Uhlenhaut, N Henriette; Legutko, Beata; Kabra, Uma D; Gao, Yuanqing; Yi, Chun-Xia; Quarta, Carmelo; Clemmensen, Christoffer; Finan, Brian; Müller, Timo D; Meyer, Carola W; Paez-Pereda, Marcelo; Stemmer, Kerstin; Woods, Stephen C; Perez-Tilve, Diego; Schneider, Robert; Olson, Eric N; Tschöp, Matthias H; Pfluger, Paul T

    2016-01-01

    Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and greater diet-induced obesity when fed high-fat diet. Pharmacological and genetic inhibition of HDAC5 activity in the mediobasal hypothalamus increases food intake and modulates pathways implicated in leptin signalling. We show HDAC5 directly regulates STAT3 localization and transcriptional activity via reciprocal STAT3 deacetylation at Lys685 and phosphorylation at Tyr705. In vivo, leptin sensitivity is substantially impaired in HDAC5 loss-of-function mice. Hypothalamic HDAC5 overexpression improves leptin action and partially protects against HFD-induced leptin resistance and obesity. Overall, our data suggest that hypothalamic HDAC5 activity is a regulator of leptin signalling that adapts food intake and body weight to our dietary environment. PMID:26923837

  5. Hypothalamic leptin action is mediated by histone deacetylase 5

    PubMed Central

    Kabra, Dhiraj G.; Pfuhlmann, Katrin; García-Cáceres, Cristina; Schriever, Sonja C.; Casquero García, Veronica; Kebede, Adam Fiseha; Fuente-Martin, Esther; Trivedi, Chitrang; Heppner, Kristy; Uhlenhaut, N. Henriette; Legutko, Beata; Kabra, Uma D.; Gao, Yuanqing; Yi, Chun-Xia; Quarta, Carmelo; Clemmensen, Christoffer; Finan, Brian; Müller, Timo D.; Meyer, Carola W.; Paez-Pereda, Marcelo; Stemmer, Kerstin; Woods, Stephen C.; Perez-Tilve, Diego; Schneider, Robert; Olson, Eric N.; Tschöp, Matthias H.; Pfluger, Paul T.

    2016-01-01

    Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and greater diet-induced obesity when fed high-fat diet. Pharmacological and genetic inhibition of HDAC5 activity in the mediobasal hypothalamus increases food intake and modulates pathways implicated in leptin signalling. We show HDAC5 directly regulates STAT3 localization and transcriptional activity via reciprocal STAT3 deacetylation at Lys685 and phosphorylation at Tyr705. In vivo, leptin sensitivity is substantially impaired in HDAC5 loss-of-function mice. Hypothalamic HDAC5 overexpression improves leptin action and partially protects against HFD-induced leptin resistance and obesity. Overall, our data suggest that hypothalamic HDAC5 activity is a regulator of leptin signalling that adapts food intake and body weight to our dietary environment. PMID:26923837

  6. Association of 14-3-3 Proteins to β1-Adrenergic Receptors Modulates Kv11.1 K+ Channel Activity in Recombinant Systems

    PubMed Central

    Tutor, Antonio S.; Delpón, Eva; Caballero, Ricardo; Gómez, Ricardo; Núñez, Lucía; Vaquero, Miguel; Tamargo, Juan; Penela, Petronila

    2006-01-01

    We identify a new mechanism for the β1-adrenergic receptor (β1AR)-mediated regulation of human ether-a-go-go–related gene (HERG) potassium channel (Kv11.1). We find that the previously reported modulatory interaction between Kv11.1 channels and 14-3-3ε proteins is competed by wild type β1AR by means of a novel interaction between this receptor and 14-3-3ε. The association between β1AR and 14-3-3ε is increased by agonist stimulation in both transfected cells and heart tissue and requires cAMP-dependent protein kinase (PKA) activity. The β1AR/14-3-3ε association is direct, since it can be recapitulated using purified 14-3-3ε and β1AR fusion proteins and is abolished in cells expressing β1AR phosphorylation–deficient mutants. Biochemical and electrophysiological studies of the effects of isoproterenol on Kv11.1 currents recorded using the whole-cell patch clamp demonstrated that β1AR phosphorylation–deficient mutants do not recruit 14-3-3ε away from Kv11.1 and display a markedly altered agonist-mediated modulation of Kv11.1 currents compared with wild-type β1AR, increasing instead of inhibiting current amplitudes. Interestingly, such differential modulation is not observed in the presence of 14-3-3 inhibitors. Our results suggest that the dynamic association of 14-3-3 proteins to both β1AR and Kv11.1 channels is involved in the adrenergic modulation of this critical regulator of cardiac repolarization and refractoriness. PMID:16914520

  7. A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1

    PubMed Central

    Kilisch, Markus; Lytovchenko, Olga; Arakel, Eric C.; Bertinetti, Daniela; Schwappach, Blanche

    2016-01-01

    ABSTRACT The transport of the K+ channels TASK-1 and TASK-3 (also known as KCNK3 and KCNK9, respectively) to the cell surface is controlled by the binding of 14-3-3 proteins to a trafficking control region at the extreme C-terminus of the channels. The current model proposes that phosphorylation-dependent binding of 14-3-3 sterically masks a COPI-binding motif. However, the direct effects of phosphorylation on COPI binding and on the binding parameters of 14-3-3 isoforms are still unknown. We find that phosphorylation of the trafficking control region prevents COPI binding even in the absence of 14-3-3, and we present a quantitative analysis of the binding of all human 14-3-3 isoforms to the trafficking control regions of TASK-1 and TASK-3. Surprisingly, the affinities of 14-3-3 proteins for TASK-1 are two orders of magnitude lower than for TASK-3. Furthermore, we find that phosphorylation of a second serine residue in the C-terminus of TASK-1 inhibits 14-3-3 binding. Thus, phosphorylation of the trafficking control region can stimulate or inhibit transport of TASK-1 to the cell surface depending on the target serine residue. Our findings indicate that control of TASK-1 trafficking by COPI, kinases, phosphatases and 14-3-3 proteins is highly dynamic. PMID:26743085

  8. Identification of 14-3-3zeta associated protein networks in oral cancer.

    PubMed

    Matta, Ajay; Masui, Olena; Siu, K W Michael; Ralhan, Ranju

    2016-04-01

    Advancements in genomics, proteomics, and bioinformatics have improved our understanding of gene/protein networks involved in intra- and intercellular communication and tumor-host interactions. Using proteomics integrated with bioinformatics, previously we reported overexpression of 14-3-3ζ in premalignant oral lesions and oral squamous cell carcinoma tissues in comparison with normal oral epithelium. 14-3-3ζ emerged as a novel molecular target for therapeutics and a potential prognostic marker in oral squamous cell carcinoma patients. However, the role of 14-3-3ζ in development and progression of oral cancer is not known yet. This study aimed to identify the 14-3-3ζ associated protein networks in oral cancer cell lines using IP-MS/MS and bioinformatics. A total of 287 binding partners of 14-3-3ζ were identified in metastatic (MDA1986) and nonmetastatic (SCC4) oral cancer cell lines including other 14-3-3 isoforms (2%), proteins involved in apoptosis (2%), cytoskeleton (9%), metabolism (16%), and maintenance of redox potential (2%). Our bioinformatics analysis revealed involvement of 14-3-3ζ in protein networks regulating cell cycle, proliferation, apoptosis, cellular trafficking, and endocytosis in oral cancer. In conclusion, our data revealed several novel protein interaction networks involving 14-3-3ζ in oral cancer progression and metastasis. PMID:26857332

  9. A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1.

    PubMed

    Kilisch, Markus; Lytovchenko, Olga; Arakel, Eric C; Bertinetti, Daniela; Schwappach, Blanche

    2016-02-15

    The transport of the K(+) channels TASK-1 and TASK-3 (also known as KCNK3 and KCNK9, respectively) to the cell surface is controlled by the binding of 14-3-3 proteins to a trafficking control region at the extreme C-terminus of the channels. The current model proposes that phosphorylation-dependent binding of 14-3-3 sterically masks a COPI-binding motif. However, the direct effects of phosphorylation on COPI binding and on the binding parameters of 14-3-3 isoforms are still unknown. We find that phosphorylation of the trafficking control region prevents COPI binding even in the absence of 14-3-3, and we present a quantitative analysis of the binding of all human 14-3-3 isoforms to the trafficking control regions of TASK-1 and TASK-3. Surprisingly, the affinities of 14-3-3 proteins for TASK-1 are two orders of magnitude lower than for TASK-3. Furthermore, we find that phosphorylation of a second serine residue in the C-terminus of TASK-1 inhibits 14-3-3 binding. Thus, phosphorylation of the trafficking control region can stimulate or inhibit transport of TASK-1 to the cell surface depending on the target serine residue. Our findings indicate that control of TASK-1 trafficking by COPI, kinases, phosphatases and 14-3-3 proteins is highly dynamic. PMID:26743085

  10. Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke.

    PubMed

    Jeon, Seong-Jun; Sung, Jin-Hee; Koh, Phil-Ok

    2016-07-28

    Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO. PMID:27177727

  11. Locomotor hyperactivity in 14-3-3ζ KO mice is associated with dopamine transporter dysfunction

    PubMed Central

    Ramshaw, H; Xu, X; Jaehne, E J; McCarthy, P; Greenberg, Z; Saleh, E; McClure, B; Woodcock, J; Kabbara, S; Wiszniak, S; Wang, Ting-Yi; Parish, C; van den Buuse, M; Baune, B T; Lopez, A; Schwarz, Q

    2013-01-01

    Dopamine (DA) neurotransmission requires a complex series of enzymatic reactions that are tightly linked to catecholamine exocytosis and receptor interactions on pre- and postsynaptic neurons. Regulation of dopaminergic signalling is primarily achieved through reuptake of extracellular DA by the DA transporter (DAT) on presynaptic neurons. Aberrant regulation of DA signalling, and in particular hyperactivation, has been proposed as a key insult in the presentation of schizophrenia and related neuropsychiatric disorders. We recently identified 14-3-3ζ as an essential component of neurodevelopment and a central risk factor in the schizophrenia protein interaction network. Our analysis of 14-3-3ζ-deficient mice now shows that baseline hyperactivity of knockout (KO) mice is rescued by the antipsychotic drug clozapine. 14-3-3ζ KO mice displayed enhanced locomotor hyperactivity induced by the DA releaser amphetamine. Consistent with 14-3-3ζ having a role in DA signalling, we found increased levels of DA in the striatum of 14-3-3ζ KO mice. Although 14-3-3ζ is proposed to modulate activity of the rate-limiting DA biosynthesis enzyme, tyrosine hydroxylase (TH), we were unable to identify any differences in total TH levels, TH localization or TH activation in 14-3-3ζ KO mice. Rather, our analysis identified significantly reduced levels of DAT in the absence of notable differences in RNA or protein levels of DA receptors D1–D5. Providing insight into the mechanisms by which 14-3-3ζ controls DAT stability, we found a physical association between 14-3-3ζ and DAT by co-immunoprecipitation. Taken together, our results identify a novel role for 14-3-3ζ in DA neurotransmission and provide support to the hyperdopaminergic basis of pathologies associated with schizophrenia and related disorders. PMID:24301645

  12. Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein.

    PubMed

    Jeon, Yeong Ha; Ko, Kwan Young; Lee, Jea Hwang; Park, Ki Jun; Jang, Jun Ki; Kim, Ick Young

    2016-01-01

    Selenoprotein W (SelW) contains a selenocysteine (Sec, U) in a conserved CXXU motif corresponding to the CXXC redox motif of thioredoxin, suggesting a putative redox function of SelW. We have previously reported that the binding of 14-3-3 protein to its target proteins, including CDC25B, Rictor and TAZ, is inhibited by the interaction of 14-3-3 protein with SelW. However, the binding mechanism is unclear. In this study, we sought to determine the binding site of SelW to understand the regulatory mechanism of the interaction between SelW and 14-3-3 and its biological effects. Phosphorylated Ser(pS) or Thr(pT) residues in RSXpSXP or RXXXp(S/T)XP motifs are well-known common 14-3-3-binding sites, but Thr41, Ser59, and T69 of SelW, which are computationally predicted to serve are phosphorylation sites, were neither phosphorylation sites nor sites involved in the interaction. A mutant SelW in which Sec13 is changed to Ser (U13S) was unable to interact with 14-3-3 protein and thus did not inhibit the interaction of 14-3-3 to other target proteins. However, other Cys mutants of SelW(C10S, C33S and C37S) normally interacted with 14-3-3 protein. The interaction of SelW to 14-3-3 protein was enhanced by diamide or H2O2 and decreased by dithiothreitol (DTT). Taken together, these findings demonstrate that the Sec of SelW is involved in its interaction with 14-3-3 protein and that this interaction is increased under oxidative stress conditions. Thus, SelW may have a regulatory function in redox cell signaling by interacting with 14-3-3 protein. PMID:26474786

  13. 14-3-3σ regulation of and interaction with YAP1 in acquired gemcitabine resistance via promoting ribonucleotide reductase expression

    PubMed Central

    Qin, Li; Dong, Zizheng; Zhang, Jian-Ting

    2016-01-01

    Gemcitabine is an important anticancer therapeutics approved for treatment of several human cancers including locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). Its clinical effectiveness, however, is hindered by existence of intrinsic and development of acquired resistances. Previously, it was found that 14-3-3σ expression associates with poor clinical outcome of PDAC patients. It was also found that 14-3-3σ expression is up-regulated in gemcitabine resistant PDAC cells and contributes to the acquired gemcitabine resistance. In this study, we investigated the molecular mechanism of 14-3-3σ function in gemcitabine resistance and found that 14-3-3σ up-regulates YAP1 expression and then binds to YAP1 to inhibit gemcitabine-induced caspase 8 activation and apoptosis. 14-3-3σ association with YAP1 up-regulates the expression of ribonucleotide reductase M1 and M2, which may mediate 14-3-3σ/YAP1 function in the acquired gemcitabine resistance. These findings suggest a possible role of YAP1 signaling in gemcitabine resistance. PMID:26894857

  14. 14-3-3β protein expression in eosinophilic meningitis caused by Angiostrongylus cantonensis infection

    PubMed Central

    2014-01-01

    Background Angiostrongylus cantonensis is a parasite endemic in the Southeast Asian and Pacific regions. Humans are incidentally infected either by eating uncooked intermediate hosts or by consuming vegetables containing the living third-stage larvae. The 14-3-3β protein is a cerebrospinal fluid (CSF) marker of neuronal damage during the development of Creutzfeldt-Jakob disease. In addition, increased 14-3-3β protein is also found in CSF from patients with a variety of neurological disorders. The goal of this study is to determine the roles of serum/CSF14-3-3β protein in patients with eosinophilic meningitis. Methods In a cohort study among nine Thai laborers with eosinophilic meningitis due to eating raw snails (Pomacea canaliculata), we examined the CSF weekly while patients were still hospitalized and followed up the serum for 6 months. The levels of 14-3-3β protein in CSF were analyzed by western blot and an in-house 14-3-3β enzyme-linked immunosorbent assay (ELISA) measurement was established and tested in an animal model of eosinophilic meningitis. Results The elevated 14-3-3β level was detected in the CSF from eight out of nine (81%) patients After 2 weeks of treatment, all patients showed a declined level or cleared of 14-3-3β protein in the CSF. By developing an in-house ELISA for measurement of 14-3-3β protein, it was found that the serum 14-3-3β level was significantly increased in patients during initial visit. . This finding was consistent to the animal experiment result in which there was severe blood brain barrier damage three weeks after infection and increased 14-3-3β protein expression in the CSF and serum by western blot and in house ELISA. After treatment, the serum 14-3-3β level in meningitis patients was rapidly returned to normal threshold. There was a correlation between initial CSF 14-3-3β level with severity of headache (r = 0.692, p = 0.039), CSF pleocytosis (r = 0.807, p = 0.009) and eosinophilia (r = 0

  15. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming

    PubMed Central

    Phan, Liem; Chou, Ping-Chieh; Velazquez-Torres, Guermarie; Samudio, Ismael; Parreno, Kenneth; Huang, Yaling; Tseng, Chieh; Vu, Thuy; Gully, Chris; Su, Chun-Hui; Wang, Edward; Chen, Jian; Choi, Hyun-Ho; Fuentes-Mattei, Enrique; Shin, Ji-Hyun; Shiang, Christine; Grabiner, Brian; Blonska, Marzenna; Skerl, Stephen; Shao, Yiping; Cody, Dianna; Delacerda, Jorge; Kingsley, Charles; Webb, Douglas; Carlock, Colin; Zhou, Zhongguo; Hsieh, Yun-Chih; Lee, Jaehyuk; Elliott, Andrew; Ramirez, Marc; Bankson, Jim; Hazle, John; Wang, Yongxing; Li, Lei; Weng, Shaofan; Rizk, Nibal; Wen, Yu Ye; Lin, Xin; Wang, Hua; Wang, Huamin; Zhang, Aijun; Xia, Xuefeng; Wu, Yun; Habra, Mouhammed; Yang, Wei; Pusztai, Lajos; Yeung, Sai-Ching; Lee, Mong-Hong

    2015-01-01

    Summary Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumourigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programs by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anti-cancer metabolism therapy development in future. PMID:26179207

  16. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana

    PubMed Central

    Chang, Ing-Feng; Curran, Amy; Woolsey, Rebekah; Quilici, David; Cushman, John; Mittler, Ron; Harmon, Alice; Harper, Jeffrey

    2014-01-01

    In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, a 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a “tandem affinity purification” (TAP) tag and expressed in transgenic plants. Purified complexes were analyzed by tandem mass spectrometry. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (1) Ion transport, such as a K+ channel (GORK), a Cl− channel (CLCg), Ca2+ channels belonging to the glutamate receptor family (GLRs 1.2, 2.1, 2.9, 3.4, 3.7); (2) hormone signaling, such as ACC synthase (isoforms ACS-6, 7 and 8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (3) transcription, such as 7 WRKY family transcription factors; (4) metabolism, such as phosphoenol pyruvate (PEP) carboxylase; and (5) lipid signaling, such as phospholipase D (β, and γ). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300. PMID:19452453

  17. Clinical implication of 14-3-3 epsilon expression in gastric cancer

    PubMed Central

    Leal, Mariana Ferreira; Calcagno, Danielle Queiroz; Demachki, Sâmia; Assumpção, Paulo Pimentel; Chammas, Roger; Burbano, Rommel Rodríguez; Smith, Marília de Arruda Cardoso

    2012-01-01

    AIM: To evaluate for the first time the protein and mRNA expression of 14-3-3ε in gastric carcinogenesis. METHODS: 14-3-3ε protein expression was determined by western blotting, and mRNA expression was examined by real-time quantitative RT-PCR in gastric tumors and their matched non-neoplastic gastric tissue samples. RESULTS: Authors observed a significant reduction of 14-3-3ε protein expression in gastric cancer (GC) samples compared to their matched non-neoplastic tissue. Reduced levels of 14-3-3ε were also associated with diffuse-type GC and early-onset of this pathology. Our data suggest that reduced 14-3-3ε may have a role in gastric carcinogenesis process. CONCLUSION: Our results reveal that the reduced 14-3-3ε expression in GC and investigation of 14-3-3ε interaction partners may help to elucidate the carcinogenesis process. PMID:22509086

  18. 14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression

    PubMed Central

    Mukhopadhyay, Amitabha; Sehgal, Lalit; Bose, Arunabha; Gulvady, Anushree; Senapati, Parijat; Thorat, Rahul; Basu, Srikanta; Bhatt, Khyati; Hosing, Amol S.; Balyan, Renu; Borde, Lalit; Kundu, Tapas K.; Dalal, Sorab N.

    2016-01-01

    More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering. PMID:27253419

  19. Differential expression of 14-3-3 isoforms in human alcoholic brain

    PubMed Central

    MacKay, Rachel K.; Colson, Natalie J.; Dodd, Peter R.; Lewohl, Joanne M.

    2011-01-01

    Background Neuropathological damage due to chronic alcohol abuse often results in impairment of cognitive function. The damage is particularly marked in the frontal cortex. The 14-3-3 protein family consists of 7 proteins, β, γ, ε, ζ, η, θ and σ, encoded by 7 distinct genes. They are highly conserved molecular chaperones with roles in regulation of metabolism, signal transduction, cell-cycle control, protein trafficking, and apoptosis. They may also play an important role in neurodegeneration in chronic alcoholism. Methods We used Real-Time PCR to measure the expression of 14-3-3 mRNA transcripts in both the dorsolateral prefrontal cortex and motor cortex of human brains obtained at autopsy. Results We found significantly lower 14-3-3β, γ and θ expression in both cortical areas of alcoholics; but no difference in 14-3-3η expression, and higher expression of 14-3-3σ, in both areas. Levels of 14-3-3ζ and ε transcripts were significantly lower only in alcoholic motor cortex. Conclusions Altered 14-3-3 expression could contribute to synaptic dysfunction and altered neurotransmission in chronic alcohol misuse by human subjects. PMID:21332526

  20. Dysregulated 14-3-3 Family in Peripheral Blood Leukocytes of Patients with Schizophrenia

    PubMed Central

    Qing, Ying; Sun, Liya; Yang, Chao; Jiang, Jie; Yang, Xuhan; Hu, Xiaowen; Cui, Donghong; Xu, Yifeng; He, Lin; Han, Dongmei; Wan, Chunling

    2016-01-01

    The 14-3-3 family, which is composed of seven distinct members in humans, plays important roles in the cell cycle, apoptosis, synaptic plasticity and neuronal differentiation and migration. Previous genetic and post-mortem gene expression studies have linked this family to schizophrenia. However, the direction of gene expression changes in these studies has been inconsistent, and reports of 14-3-3 gene expression in living schizophrenic patients are still lacking. Here, we assessed 14-3-3 gene and protein expression levels in peripheral blood leukocytes from drug-naïve first-episode schizophrenic patients and matched controls. mRNA and protein expression levels were quantified by qRT-PCR and UPLC-MRM/MS, respectively. Expression analysis revealed four downregulated and one upregulated mRNA transcripts as well as five downregulated protein levels of 14-3-3 isoforms in schizophrenia. Moreover, significant positive correlations between 14-3-3 mRNA and protein expression levels were found in schizophrenia, and we also identified negative correlations between ε, θ and ζ isoform expression levels and positive symptoms of schizophrenia. Our results suggest that gene and protein expression levels for the 14-3-3 family are dysregulated in schizophrenia, perhaps owing to specific regulatory mechanisms, and we also suggest that expression of the 14-3-3ε, θ and ζ isoform genes could be useful indicators of disease severity. PMID:27030512

  1. 14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression.

    PubMed

    Mukhopadhyay, Amitabha; Sehgal, Lalit; Bose, Arunabha; Gulvady, Anushree; Senapati, Parijat; Thorat, Rahul; Basu, Srikanta; Bhatt, Khyati; Hosing, Amol S; Balyan, Renu; Borde, Lalit; Kundu, Tapas K; Dalal, Sorab N

    2016-01-01

    More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering. PMID:27253419

  2. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation.

    PubMed

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G; Fondufe-Mittendorf, Yvonne N

    2016-07-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413

  3. Regulation of starch accumulation by granule-associated plant 14-3-3 proteins.

    PubMed

    Sehnke, P C; Chung, H J; Wu, K; Ferl, R J

    2001-01-16

    In higher plants the production of starch is orchestrated by chloroplast-localized biosynthetic enzymes, namely starch synthases, ADP-glucose pyrophosphorylase, and starch branching and debranching enzymes. Diurnal regulation of these enzymes, as well as starch-degrading enzymes, influences both the levels and composition of starch, and is dependent in some instances upon phosphorylation-linked regulation. The phosphoserine/threonine-binding 14-3-3 proteins participate in environmentally responsive phosphorylation-related regulatory functions in plants, and as such are potentially involved in starch regulation. We report here that reduction of the epsilon subgroup of Arabidopsis 14-3-3 proteins by antisense technology resulted in a 2- to 4-fold increase in leaf starch accumulation. Dark-governed starch breakdown was unaffected in these "antisense plants," indicating an unaltered starch-degradation pathway and suggesting a role for 14-3-3 proteins in regulation of starch synthesis. Absorption spectra and gelatinization properties indicate that the starch from the antisense plants has an altered branched glucan composition. Biochemical characterization of protease-treated starch granules from both Arabidopsis leaves and maize endosperm showed that 14-3-3 proteins are internal intrinsic granule proteins. These data suggest a direct role for 14-3-3 proteins in starch accumulation. The starch synthase III family is a possible target for 14-3-3 protein regulation because, uniquely among plastid-localized starch metabolic enzymes, all members of the family contain the conserved 14-3-3 protein phosphoserine/threonine-binding consensus motif. This possibility is strengthened by immunocapture using antibodies to DU1, a maize starch synthase III family member, and direct interaction with biotinylated 14-3-3 protein, both of which demonstrated an association between 14-3-3 proteins and DU1 or DU1-like proteins. PMID:11149942

  4. 14-3-3σ regulates keratinocyte proliferation and differentiation by modulating Yap1 cellular localization

    PubMed Central

    Sambandam, Sumitha A.T.; Kasetti, Ramesh Babu; Xue, Lei; Dean, Douglas C.; Lu, Qingxian; Li, Qiutang

    2015-01-01

    The homozygous repeated epilation (Er/Er) mouse mutant of the gene encoding 14-3-3σ displays an epidermal phenotype characterized by hyperproliferative keratinocytes and undifferentiated epidermis. Heterozygous Er/+ mice develop spontaneous skin tumors and are highly sensitive to tumor-promoting DMBA/TPA induction. The molecular mechanisms underlying 14-3-3σ regulation of epidermal proliferation, differentiation, and tumor formation have not been well elucidated. In the present study, we found that Er/Er keratinocytes failed to sequester Yap1 in the cytoplasm, leading to its nuclear localization during epidermal development in vivo and under differentiation-inducing culture conditions in vitro. In addition, enhanced Yap1 nuclear localization was also evident in DMBA/TPA-induced tumors from Er/+ skin. Furthermore, shRNA knockdown of Yap1 expression in Er/Er keratinocytes inhibited their proliferation, suggesting that YAP1 functions as a downstream effector of 14-3-3σ controlling epidermal proliferation. We then demonstrated that keratinocytes express all seven 14-3-3 protein isoforms, some of which form heterodimers with 14-3-3σ, either full-length WT or the mutant form found in Er/Er mice. However Er 14-3-3σ does not interact with Yap1, as demonstrated by co-immunoprecipitation. We conclude that Er 14-3-3σ disrupts the interaction between 14-3-3 and Yap1, thus fails to block Yap1 nuclear transcriptional function, causing continued progenitor expansion and inhibition of differentiation in Er/Er epidermis. PMID:25668240

  5. Alternations of 14-3-3 θ and β protein levels in brain during experimental sepsis.

    PubMed

    Memos, Nikolaos; Kataki, Agapi; Chatziganni, Emmy; Nikolopoulou, Marilena; Skoulakis, Euthimios; Consoulas, Christos; Zografos, George; Konstadoulakis, Manousos

    2011-09-01

    The 14-3-3 family members play a crucial role in the determination of cell fate, exerting their antiapoptotic activity through directly interfering with the critical function of the mitochondrial core proapoptotic machinery. Dimerization of 14-3-3 is vital for the interaction with many of its client proteins and is regulated by phosphorylation. In a previous study, we observed time-dependent neuronal apoptosis during sepsis. Therefore, in the present study, we sought to evaluate the expression of 14-3-3 θ and β isoforms in septic brain and their association with apoptosis. Sepsis was induced by a CLP model in Wistar rats that were sacrificed at predefined time points. Flow cytometric analysis showed a sepsis-induced, time-dependent alteration of 14-3-3 θ and β isoforms in both Neun(+) and GFAP(+) cells. 14-3-3 θ was linearly correlated with apoptosis, and stratified analysis for alive and apoptotic neuronal cells demonstrated a gradual down-regulation of θ isoform in alive neurons and astrocytes. The phospho-P38 (pP38) MAP kinase levels were altered in a time-dependent manner during sepsis, presenting a peak at 6 hr post-CLP. A significant correlation between the two isoforms of 14-3-3 was observed in septic rats, with the θ isoform predominant at all time points. The hippocampus, Purkinje cells, and glia-like cells showed intense immunohistochemical reactivity for 14-3-3 θ isoform, whereas the choroid plexus showed constantly increased β isoform expression. Our results showed that sepsis alters the expression of both 14-3-3 θ and β isoforms in a time-, cell-, and topography-dependent manner. PMID:21618583

  6. Cell Signaling Switches HOX-PBX Complexes from Repressors to Activators of Transcription Mediated by Histone Deacetylases and Histone Acetyltransferases

    PubMed Central

    Saleh, Maya; Rambaldi, Isabel; Yang, Xiang-Jiao; Featherstone, Mark S.

    2000-01-01

    The Hoxb1 autoregulatory element comprises three HOX-PBX binding sites. Despite the presence of HOXB1 and PBX1, this enhancer fails to activate reporter gene expression in retinoic acid-treated P19 cell monolayers. Activation requires cell aggregation in addition to RA. This suggests that HOX-PBX complexes may repress transcription under some conditions. Consistent with this, multimerized HOX-PBX binding sites repress reporter gene expression in HEK293 cells. We provide a mechanistic basis for repressor function by demonstrating that a corepressor complex, including histone deacetylases (HDACs) 1 and 3, mSIN3B, and N-CoR/SMRT, interacts with PBX1A. We map a site of interaction with HDAC1 to the PBX1 N terminus and show that the PBX partner is required for repression by the HOX-PBX complex. Treatment with the deacetylase inhibitor trichostatin A not only relieves repression but also converts the HOX-PBX complex to a net activator of transcription. We show that this activation function is mediated by the recruitment of the coactivator CREB-binding protein by the HOX partner. Interestingly, HOX-PBX complexes are switched from transcriptional repressors to activators in response to protein kinase A signaling or cell aggregation. Together, our results suggest a model whereby the HOX-PBX complex can act as a repressor or activator of transcription via association with corepressors and coactivators. The model implies that cell signaling is a direct determinant of HOX-PBX function in the patterning of the animal embryo. PMID:11046157

  7. 14-3-3 Proteins regulate Akt Thr308 phosphorylation in intestinal epithelial cells.

    PubMed

    Gómez-Suárez, M; Gutiérrez-Martínez, I Z; Hernández-Trejo, J A; Hernández-Ruiz, M; Suárez-Pérez, D; Candelario, A; Kamekura, R; Medina-Contreras, O; Schnoor, M; Ortiz-Navarrete, V; Villegas-Sepúlveda, N; Parkos, C; Nusrat, A; Nava, P

    2016-06-01

    Akt activation has been associated with proliferation, differentiation, survival and death of epithelial cells. Phosphorylation of Thr308 of Akt by phosphoinositide-dependent kinase 1 (PDK1) is critical for optimal stimulation of its kinase activity. However, the mechanism(s) regulating this process remain elusive. Here, we report that 14-3-3 proteins control Akt Thr308 phosphorylation during intestinal inflammation. Mechanistically, we found that IFNγ and TNFα treatment induce degradation of the PDK1 inhibitor, 14-3-3η, in intestinal epithelial cells. This mechanism requires association of 14-3-3ζ with raptor in a process that triggers autophagy and leads to 14-3-3η degradation. Notably, inhibition of 14-3-3 function by the chemical inhibitor BV02 induces uncontrolled Akt activation, nuclear Akt accumulation and ultimately intestinal epithelial cell death. Our results suggest that 14-3-3 proteins control Akt activation and regulate its biological functions, thereby providing a new mechanistic link between cell survival and apoptosis of intestinal epithelial cells during inflammation. PMID:26846144

  8. A fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs.

    PubMed Central

    Korthout, H A; de Boer, A H

    1994-01-01

    The fusicoccin binding protein (FCBP) is a highly conserved plasma membrane protein present in all higher plants tested thus far. It exhibits high- and low-affinity binding for the fungal toxin fusicoccin (FC). We purified the active FCBP from a fraction highly enriched in plasma membrane by selective precipitation and anion exchange chromatography. After SDS-PAGE, the two FCBP subunits of 30 and 31 kD were detected as major bands. Amino acid sequence analysis of the 31-kD polypeptide displayed a high degree of identity with so-called 14-3-3 proteins, a class of mammalian brain proteins initially described as regulators of neurotransmitter synthesis and protein kinase C inhibitors. Thereafter, we affinity purified the 30- and 31-kD FCBP subunits, using biotinylated FC in combination with a monomeric avidin column. Immunodecoration of these 30- and 31-kD FCBP subunits with polyclonal antibodies raised against a 14-3-3 homolog from yeast confirmed the identity of the FCBP as a 14-3-3 homolog. Similar to all 14-3-3 protein homologs, the FCBP seems to exist as a dimer in native form. Thus far, the FCBP is the only 14-3-3 homolog with a receptor-like function. The conserved structure of the 14-3-3 protein family is a further indication that the FCBP plays an important role in the physiology of higher plants. PMID:7827499

  9. 14-3-3zeta is indispensable for aggregate formation of polyglutamine-expanded huntingtin protein.

    PubMed

    Omi, Kazuya; Hachiya, Naomi S; Tanaka, Mayumi; Tokunaga, Katsushi; Kaneko, Kiyotoshi

    2008-01-24

    Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder caused by polyglutamine (polyQ) expansions in the huntingtin (Htt) protein. A hallmark of HD is the presence of aggregates-predominantly composed of NH(2)-terminal fragments of polyQ-expanded Htt-in the nucleus and cytoplasm of affected neurons. We previously proposed that 14-3-3zeta might act as a sweeper of misfolded proteins by facilitating the formation of aggregates possibly for neuroprotection; these aggregates are referred to as inclusion bodies. However, evidence available in this regard is indirect and circumstantial. In this study, analysis of the aggregation-prone protein Htt encoded by HD gene exon 1 containing polyglutamine expansions (Htt86Q) revealed that 17 residues in the NH(2)-terminal of this protein are indispensable for its aggregate formation. Immunoprecipitation assays revealed that 14-3-3beta, gamma, eta, and zeta interact with Htt86Q transfected in N2a cells. Interestingly, the small interfering ribonucleic acid (siRNA) suppression of 14-3-3zeta exclusively abolished Htt86Q aggregate formation, whereas 14-3-3beta or eta siRNA suppression did not. This indicates that 14-3-3zeta participates in aggregate formation under nonnative conditions. Our data support a novel role for 14-3-3zeta in the aggregate formation of nonnative, aggregation-prone proteins. PMID:18078716

  10. FTICR-MS analysis of 14-3-3 isoform substrate selection.

    PubMed

    Cardasis, Helene L; Sehnke, Paul C; Laughner, Beth; Eyler, John R; Powell, David H; Ferl, Robert J

    2007-07-01

    The 14-3-3s are a ubiquitous class of eukaryotic proteins that participate in a second regulatory step in many phosphorylation-based signal transduction systems. The Arabidopsis family of 14-3-3 proteins represents a rather large 14-3-3 gene family. The biological motive for such diversity within a single protein family is not yet completely understood. The work presented here utilizes 14-3-3 micro-affinity chromatography in conjunction with Fourier transform ion cyclotron resonance mass spectrometry to survey the substrate sequence selectivity of two Arabidopsis 14-3-3 isoforms that represent the two major subclasses of this protein family. A method was developed to compare the relative binding of eight synthetic phosphopeptide sequences. The degree to which each phosphopeptide bound to either isoform was assigned a relative value, defined here as the binding ratio. The method provided a simple means for visualizing differences in substrate sequence selection among different 14-3-3 isoforms. A reproducible preference for specific phosphopeptide sequences was measured for both isoforms. This binding preference was consistent among the two classes of isoforms, suggesting that any pressure for isoform selectivity must reside outside the central core that interacts with the phosphopeptide sequence of the client. PMID:17569603

  11. 14-3-3ζ: A numbers game in adipocyte function?

    PubMed Central

    Lim, Gareth E.; Johnson, James D.

    2016-01-01

    ABSTRACT Molecular scaffolds are often viewed as passive signaling molecules that facilitate protein-protein interactions. However, new evidence gained from the use of loss-of-function or gain-of-function models is dispelling this notion. Our own recent discovery of 14-3-3ζ as an essential regulator of adipogenesis highlights the complex roles of this member of the 14-3-3 protein family. Depletion of the 14-3-3ζ isoform affected parallel pathways that drive adipocyte development, including pathways controlling the stability of key adipogenic transcription factors and cell cycle progression. Going beyond adipocyte differentiation, this study opens new avenues of research in the context of metabolism, as 14-3-3ζ binds to a variety of well-established metabolic proteins that harbor its canonical phosphorylation binding motifs. This suggests that 14-3-3ζ may contribute to key metabolic signaling pathways, such as those that facilitate glucose uptake and fatty acid metabolism. Herein, we discuss these novel areas of research, which will undoubtedly shed light onto novel roles of 14-3-3ζ, and perhaps its related family members, on glucose homeostasis. PMID:27386155

  12. Quantitating the specificity and selectivity of Gcn5-mediated acetylation of histone H3.

    PubMed

    Kuo, Yin-Ming; Andrews, Andrew J

    2013-01-01

    Lysine acetyltransferases (KATs) play a unique role in regulating gene transcription as well as maintaining the epigenetic state of the cell. KATs such as Gcn5 and p300/CBP can modify multiple residues on a single histone; however, order and specificity of acetylation can be altered by factors such as histone chaperones, subunit proteins or external stimulus. While the importance of acetylation is well documented, it has been difficult to quantitatively measure the specificity and selectivity of acetylation at different residues within a histone. In this paper, we demonstrate a label-free quantitative high throughput mass spectrometry-based assay capable of quantitatively monitoring all known acetylation sites of H3 simultaneously. Using this assay, we are able to analyze the steady-state enzyme kinetics of Gcn5, an evolutionarily conserved KAT. In doing so, we measured Gcn5-mediated acetylation at six residues (K14>K9 ≈ K23> K18> K27 ≈ K36) and the catalytic efficiency (k(cat)/K(m)) for K9, K14, K18, and K23 as well as the nonenzymatic acetylation rate. We observed selectivity differences of up to -4 kcal/mol between K14 and K18, the highest and lowest measurable k(cat)/K(m). These data provide a first look at quantitating the specificity and selectivity of multiple lysines on a single substrate (H3) by Gcn5. PMID:23437046

  13. Regulation of Molecular Chaperone Gene Transcription Involves the Serine Phosphorylation, 14-3-3ɛ Binding, and Cytoplasmic Sequestration of Heat Shock Factor 1

    PubMed Central

    Wang, XiaoZhe; Grammatikakis, Nicholas; Siganou, Aliki; Calderwood, Stuart K.

    2003-01-01

    Heat shock factor 1 (HSF1) regulates the transcription of molecular chaperone hsp genes. However, the cellular control mechanisms that regulate HSF1 activity are not well understood. In this study, we have demonstrated for the first time that human HSF1 binds to the essential cell signaling protein 14-3-3ɛ. Binding of HSF1 to 14-3-3ɛ occurs in cells in which extracellular signal regulated kinase (ERK) is activated and blockade of the ERK pathway by treatment with the specific ERK pathway inhibitor PD98059 in vivo strongly suppresses the binding. We previously showed that ERK1 phosphorylates HSF1 on serine 307 and leads to secondary phosphorylation by glycogen synthase kinase 3 (GSK3) on serine 303 within the regulatory domain and that these phosphorylation events repress HSF1. We show here that HSF1 binding to 14-3-3ɛ requires HSF1 phosphorylation on serines 303 and 307. Furthermore, the serine phosphorylation-dependent binding of HSF1 to 14-3-3ɛ results in the transcriptional repression of HSF1 and its sequestration in the cytoplasm. Leptomycin B, a specific inhibitor of nuclear export receptor CRM1, was found to reverse the cytoplasmic sequestration of HSF1 mediated by 14-3-3ɛ, suggesting that CRM1/14-3-3ɛ directed nuclear export plays a major role in repression of HSF1 by the ERK/GSK3/14-3-3ɛ pathway. Our experiments indicate a novel pathway for HSF1 regulation and suggest a mechanism for suppression of its activity during cellular proliferation. PMID:12917326

  14. Functional identification of a novel 14-3-3 epsilon splicing variant suggests dimerization is not necessary for 14-3-3 epsilon to inhibit UV-induced apoptosis

    SciTech Connect

    Han, Dingding; Ye, Guangming; Liu, Tingting; Chen, Cong; Yang, Xianmei; Wan, Bo; Pan, Yuanwang; Yu, Long

    2010-05-28

    14-3-3 proteins function as a dimer and have been identified to involve in diverse signaling pathways. Here we reported the identification of a novel splicing variant of human 14-3-3 epsilon (14-3-3 epsilon sv), which is derived from a novel exon 1' insertion. The insertion contains a stop codon and leads to a truncated splicing variant of 14-3-3 epsilon. The splicing variant is translated from the exon 2 and results in the deletion of an N-terminal {alpha}-helix which is crucial for the dimerization. Therefore, the 14-3-3 epsilon sv could not form a dimer with 14-3-3 zeta. However, after UV irradiation 14-3-3 epsilon sv could also support cell survival, suggesting monomer of 14-3-3 epsilon is sufficient to protect cell from apoptosis.

  15. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling

    PubMed Central

    Grant, Michael P.; Cavanaugh, Alice; Breitwieser, Gerda E.

    2015-01-01

    Calcium sensing receptors (CaSR) interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium. PMID:26317416

  16. Diagnosing Sporadic Creutzfeldt-Jakob Disease: Accuracy of CSF 14-3-3 Protein Test of the Spinal Fluid

    MedlinePlus

    ... JAKOB DISEASE: ACCURACY OF THE 14-3-3 PROTEIN TEST OF THE SPINAL FLUID This information sheet ... help you understand how the 14-3-3 protein test helps in diagnosing sporadic Creutzfeldt-Jakob disease ( ...

  17. 14-3-3, an integrator of cell mechanics and cytokinesis.

    PubMed

    Robinson, Douglas N

    2010-11-01

    One of the goals of understanding cytokinesis is to uncover the molecular regulation of the cellular mechanical properties that drive cell shape change. Such regulatory pathways are likely to be used at multiple stages of a cell's life, but are highly featured during cell division. Recently, we demonstrated that 14-3-3 (encoded by a single gene in the social amoeba Dictyostelium discoideum) serves to integrate key cytoskeletal components-microtubules, Rac and myosin II-to control cell mechanics and cytokinesis. As 14-3-3 proteins are frequently altered in a variety of human tumors, we extend these observations to suggest possible additional roles for how 14-3-3 proteins may contribute to tumorigenesis. PMID:21686271

  18. Histone acetyltransferase p300 mediates histone acetylation of PS1 and BACE1 in a cellular model of Alzheimer's disease.

    PubMed

    Lu, Xi; Deng, Yushuang; Yu, Daohai; Cao, Huiming; Wang, Li; Liu, Li; Yu, Caijia; Zhang, Yuping; Guo, Xiuming; Yu, Gang

    2014-01-01

    Epigenetic modifications, particularly histone acetylation, have been implicated in Alzheimer's disease (AD). While previous studies have suggested that histone hypoacetylation may regulate the expression of genes associated with memory and learning in AD, little is known about histone regulation of AD-related genes such as Presenilin 1(PS1) and beta-site amyloid precursor protein cleaving enzyme 1(BACE1). By utilizing neuroblastoma N2a cells transfected with Swedish mutated human amyloid precursor protein (APP) (N2a/APPswe) and wild-type APP (N2a/APPwt) as cellular models of AD, we examined the alterations of histone acetylation at the promoter regions of PS1 and BACE1 in these cells. Our results revealed that histone H3 acetylation in PS1 and BACE1 promoters is markedly increased in N2a/APPswe cells when compared to N2a/APPwt cells and control cells (vector-transfected), respectively, causing the elevated expression of PS1 and BACE1. In addition, expression of histone acetyltransferase (HAT) adenoviral E1A-associated 300-kDa protein (p300) is dramatically enhanced in N2a/APPswe cells compared to N2a/APPwt and control cells. We have further demonstrated the direct binding of p300 protein to the PS1 and BACE1 promoters in N2a/APPswe cells. The expression levels of H3 acetylation of the PS1 and BACE1 promoters and p300 protein, however, were found to be not significantly different in N2a/APPwt cells when compared to controls in our studies. Furthermore, curcumin, a natural selective inhibitor of p300 in HATs, significantly suppressed the expression of PS1 and BACE1 through inhibition of H3 acetylation in their promoter regions in N2a/APPswe cells. These findings indicated that histone acetyltransferase p300 plays a critical role in controlling the expression of AD-related genes through regulating the acetylation of their promoter regions, suggesting that p300 may represent a novel potential therapeutic target for AD. PMID:25051175

  19. Ischemia preconditioning protects astrocytes from ischemic injury through 14-3-3γ.

    PubMed

    Pang, Ying; Chai, Chao Rui; Gao, Kai; Jia, Xi Hua; Kong, Jin Ge; Chen, Xiao Qian; Vatcher, Greg; Chen, Jian Guo; Yu, Albert Cheung Hoi

    2015-10-01

    Stroke is a leading cause of death and disability, and new strategies are required to reduce neuronal injury and improve prognosis. Ischemia preconditioning (IPC) is an intrinsic phenomenon that protects cells from subsequent ischemic injury and might provide promising mechanisms for clinical treatment. In this study, primary astrocytes exhibited significantly less cell death than control when exposed to different durations of IPC (15, 30, 60, or 120 min). A 15-min duration was the most effective IPC to protect astrocytes from 8-hr-ischemia injury. The protective mechanisms of IPC involve the upregulation of protective proteins, including 14-3-3γ, and attenuation of malondialdehyde (MDA) content and ATP depletion. 14-3-3γ is an antiapoptotic intracellular protein that was significantly upregulated for up to 84 hr after IPC. In addition, IPC promoted activation of the c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK)-1/2, p38, and protein kinase B (Akt) signaling pathways. When JNK was specifically inhibited with SP600125, the upregulation of 14-3-3γ induced by IPC was almost completely abolished; however, there was no effect on ATP or MDA levels. This suggests that, even though both energy preservation and 14-3-3γ up-regulation were turned on by IPC, they were controlled by different pathways. The ERK1/2, p38, and Akt signaling pathways were not involved in the 14-3-3γ upregulation and energy preservation. These results indicate that IPC could protect astrocytes from ischemia injury by inducing 14-3-3γ and by alleviating energy depletion through different pathways, suggesting multiple protection of IPC and providing new insights into potential stroke therapies. PMID:25711139

  20. Cyclin Y phosphorylation- and 14-3-3-binding-dependent activation of PCTAIRE-1/CDK16

    PubMed Central

    Shehata, Saifeldin N.; Deak, Maria; Morrice, Nicholas A.; Ohta, Eriko; Hunter, Roger W.; Kalscheuer, Vera M.; Sakamoto, Kei

    2015-01-01

    PCTAIRE-1 [also known as cyclin-dependent kinase 16 (CDK16)] is implicated in various physiological processes such as neurite outgrowth and vesicle trafficking; however, its molecular regulation and downstream targets are largely unknown. Cyclin Y has recently been identified as a key interacting/activating cyclin for PCTAIRE-1; however, the molecular mechanism by which it activates PCTAIRE-1 is undefined. In the present study, we initially performed protein sequence analysis and identified two candidate phosphorylation sites (Ser12 and Ser336) on cyclin Y that might be catalysed by PCTAIRE-1. Although in vitro peptide analysis favoured Ser12 as the candidate phosphorylation site, immunoblot analysis of cell lysates that had been transfected with wild-type (WT) or kinase-inactive (KI) PCTAIRE-1 together with WT or phospho-deficient mutants of cyclin Y suggested Ser336, but not Ser12, as a PCTAIRE-1-dependent phosphorylation site. Monitoring phosphorylation of Ser336 may provide a useful read-out to assess cellular activity of PCTAIRE-1 in vivo; however, a phospho-deficient S336A mutant displayed normal interaction with PCTAIRE-1. Unbiased mass spectrometry and targeted mutagenesis analysis of cyclin Y identified key phosphorylation sites (Ser100 and Ser326) required for 14-3-3 binding. Recombinant WT cyclin Y, but not a S100A/S326A mutant, prepared in COS-1 cells co-purified with 14-3-3 and was able to activate bacterially expressed recombinant PCTAIRE-1 in cell-free assays. Finally, we observed that recently identified PCTAIRE-1 variants found in patients with intellectual disability were unable to interact with cyclin Y, and were inactive enzymes. Collectively, the present work has revealed a new mechanistic insight into activation of PCTAIRE-1, which is mediated through interaction with the phosphorylated form of cyclin Y in complex with 14-3-3. PMID:26205494

  1. Cyclin Y phosphorylation- and 14-3-3-binding-dependent activation of PCTAIRE-1/CDK16.

    PubMed

    Shehata, Saifeldin N; Deak, Maria; Morrice, Nicholas A; Ohta, Eriko; Hunter, Roger W; Kalscheuer, Vera M; Sakamoto, Kei

    2015-08-01

    PCTAIRE-1 [also known as cyclin-dependent kinase 16 (CDK16)] is implicated in various physiological processes such as neurite outgrowth and vesicle trafficking; however, its molecular regulation and downstream targets are largely unknown. Cyclin Y has recently been identified as a key interacting/activating cyclin for PCTAIRE-1; however, the molecular mechanism by which it activates PCTAIRE-1 is undefined. In the present study, we initially performed protein sequence analysis and identified two candidate phosphorylation sites (Ser(12) and Ser(336)) on cyclin Y that might be catalysed by PCTAIRE-1. Although in vitro peptide analysis favoured Ser(12) as the candidate phosphorylation site, immunoblot analysis of cell lysates that had been transfected with wild-type (WT) or kinase-inactive (KI) PCTAIRE-1 together with WT or phospho-deficient mutants of cyclin Y suggested Ser(336), but not Ser(12), as a PCTAIRE-1-dependent phosphorylation site. Monitoring phosphorylation of Ser(336) may provide a useful read-out to assess cellular activity of PCTAIRE-1 in vivo; however, a phospho-deficient S336A mutant displayed normal interaction with PCTAIRE-1. Unbiased mass spectrometry and targeted mutagenesis analysis of cyclin Y identified key phosphorylation sites (Ser(100) and Ser(326)) required for 14-3-3 binding. Recombinant WT cyclin Y, but not a S100A/S326A mutant, prepared in COS-1 cells co-purified with 14-3-3 and was able to activate bacterially expressed recombinant PCTAIRE-1 in cell-free assays. Finally, we observed that recently identified PCTAIRE-1 variants found in patients with intellectual disability were unable to interact with cyclin Y, and were inactive enzymes. Collectively, the present work has revealed a new mechanistic insight into activation of PCTAIRE-1, which is mediated through interaction with the phosphorylated form of cyclin Y in complex with 14-3-3. PMID:26205494

  2. Regulation of the Regulators: Post-Translational Modifications, Subcellular, and Spatiotemporal Distribution of Plant 14-3-3 Proteins

    PubMed Central

    Wilson, Rashaun S.; Swatek, Kirby N.; Thelen, Jay J.

    2016-01-01

    14-3-3 proteins bind to and modulate the activity of phosphorylated proteins that regulate a variety of metabolic processes in eukaryotes. Multiple 14-3-3 isoforms are expressed in most organisms and display redundancy in both sequence and function. Plants contain the largest number of 14-3-3 isoforms. For example, Arabidopsis thaliana contains thirteen 14-3-3 genes, each of which is expressed. Interest in the plant 14-3-3 field has swelled over the past decade, largely due to the vast number of possibilities for 14-3-3 metabolic regulation. As the field progresses, it is essential to understand these proteins' activities at both the spatiotemporal and subcellular levels. This review summarizes current knowledge of 14-3-3 proteins in plants, including 14-3-3 interactions, regulatory functions, isoform specificity, and post-translational modifications. We begin with a historical overview and structural analysis of 14-3-3 proteins, which describes the basic principles of 14-3-3 function, and then discuss interactions and regulatory effects of plant 14-3-3 proteins in specific tissues and subcellular compartments. We conclude with a summary of 14-3-3 phosphorylation and current knowledge of the functional effects of this modification in plants. PMID:27242818

  3. Identification of 14-3-3β Gene as a Novel miR-152 Target Using a Proteome-based Approach*

    PubMed Central

    Jasinski-Bergner, Simon; Stehle, Franziska; Gonschorek, Evamaria; Kalich, Jana; Schulz, Kristin; Huettelmaier, Stefan; Braun, Juliane; Seliger, Barbara

    2014-01-01

    Recent studies demonstrated that miR-152 overexpression down-regulates the nonclassical human leukocyte antigen (HLA) class I molecule HLA-G in human tumors thereby contributing to their immune surveillance. Using two-dimensional gel electrophoresis followed by MALDI-TOF mass spectrometry, the protein expression profile of HLA-G+, miR-152low cells, and their miR-152-overexpressing (miRhigh) counterparts was compared leading to the identification of 24 differentially expressed proteins. These were categorized according to their function and localization demonstrating for most of them an important role in the initiation and progression of tumors. The novel miR-152 target 14-3-3 protein β/α/YWHAB (14-3-3β) is down-regulated upon miR-152 overexpression, although its overexpression was often found in tumors of distinct origin. The miR-152-mediated reduction of the 14-3-3β expression was accompanied by an up-regulation of BAX protein expression resulting in a pro-apoptotic phenotype. In contrast, the reconstitution of 14-3-3β expression in miR-152high cells increased the expression of the anti-apoptotic BCL2 gene, enhances the proliferative activity in the presence of the cytostatic drug paclitaxel, and causes resistance to apoptosis induced by this drug. By correlating clinical microarray data with the patients' outcome, a link between 14-3-3β and HLA-G expression was found, which could be associated with poor prognosis and overall survival of patients with tumors. Because miR-152 controls both the expression of 14-3-3β and HLA-G, it exerts a dual role in tumor cells by both altering the immunogenicity and the tumorigenicity. PMID:25228695

  4. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α

    PubMed Central

    Zhu, Τao; Liang, Chen; Li, Dongdong; Tian, Miaomiao; Liu, Sanxiong; Gao, Guanjun; Guan, Ji-Song

    2016-01-01

    Activity-dependent transcription is critical for the regulation of long-term synaptic plasticity and plastic rewiring in the brain. Here, we report that the transcription of neurexin1α (nrxn1α), a presynaptic adhesion molecule for synaptic formation, is regulated by transient neuronal activation. We showed that 10 minutes of firing at 50 Hz in neurons repressed the expression of nrxn1α for 24 hours in a primary cortical neuron culture through a transcriptional repression mechanism. By performing a screening assay using a synthetic zinc finger protein (ZFP) to pull down the proteins enriched near the nrxn1α promoter region in vivo, we identified that Ash1L, a histone methyltransferase, is enriched in the nrxn1α promoter. Neuronal activity triggered binding of Ash1L to the promoter and enriched the histone marker H3K36me2 at the nrxn1α promoter region. Knockout of Ash1L in mice completely abolished the activity-dependent repression of nrxn1α. Taken together, our results reveal that a novel process of activity-dependent transcriptional repression exists in neurons and that Ash1L mediates the long-term repression of nrxn1α, thus implicating an important role for epigenetic modification in brain functioning. PMID:27229316

  5. 14-3-3 proteins restrain the Exo1 nuclease to prevent overresection.

    PubMed

    Chen, Xiaoqing; Kim, In-Kwon; Honaker, Yuchi; Paudyal, Sharad C; Koh, Won Kyun; Sparks, Melanie; Li, Shan; Piwnica-Worms, Helen; Ellenberger, Tom; You, Zhongsheng

    2015-05-01

    The DNA end resection process dictates the cellular response to DNA double strand break damage and is essential for genome maintenance. Although insufficient DNA resection hinders homology-directed repair and ATR (ataxia telangiectasia and Rad3 related)-dependent checkpoint activation, overresection produces excessive single-stranded DNA that could lead to genomic instability. However, the mechanisms controlling DNA end resection are poorly understood. Here we show that the major resection nuclease Exo1 is regulated both positively and negatively by protein-protein interactions to ensure a proper level of DNA resection. We have shown previously that the sliding DNA clamp proliferating cell nuclear antigen (PCNA) associates with the C-terminal domain of Exo1 and promotes Exo1 damage association and DNA resection. In this report, we show that 14-3-3 proteins interact with a central region of Exo1 and negatively regulate Exo1 damage recruitment and subsequent resection. 14-3-3s limit Exo1 damage association, at least in part, by suppressing its association with PCNA. Disruption of the Exo1 interaction with 14-3-3 proteins results in elevated sensitivity of cells to DNA damage. Unlike Exo1, the Dna2 resection pathway is apparently not regulated by PCNA and 14-3-3s. Our results provide critical insights into the mechanism and regulation of the DNA end resection process and may have implications for cancer treatment. PMID:25833945

  6. Polycations Globally Enhance Binding of 14-3-3 omega to Target Proteins in Spinach Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The binding of 14-3-3' to phosphorylated NR (pNR) is stimulated by cations such as Mg2+ or spermine, and decreased by 5'-AMP. In order to determine whether binding to other cellular proteins is affected similarly, Far-Western overlays of extracts prepared from light- or dark-treated spinach (Spinac...

  7. Identification of 14-3-3 Family in Common Bean and Their Response to Abiotic Stress

    PubMed Central

    Dhaubhadel, Sangeeta; Bian, Shaomin; Li, Xuyan

    2015-01-01

    14-3-3s are a class of conserved regulatory proteins ubiquitously found in eukaryotes, which play important roles in a variety of cellular processes including response to diverse stresses. Although much has been learned about 14-3-3s in several plant species, it remains unknown in common bean. In this study, 9 common bean 14-3-3s (PvGF14s) were identified by exhaustive data mining against the publicly available common bean genomic database. A phylogenetic analysis revealed that each predicted PvGF14 was clustered with two GmSGF14 paralogs from soybean. Both epsilon-like and non-epsilon classes of PvGF14s were found in common bean, and the PvGF14s belonging to each class exhibited similar gene structure. Among 9 PvGF14s, only 8 are transcribed in common bean. Expression patterns of PvGF14s varied depending on tissue type, developmental stage and exposure of plants to stress. A protein-protein interaction study revealed that PvGF14a forms dimer with itself and with other PvGF14 isoforms. This study provides a first comprehensive look at common bean 14-3-3 proteins, a family of proteins with diverse functions in many cellular processes, especially in response to stresses. PMID:26599110

  8. Verteporfin inhibits YAP function through up-regulating 14-3-3σ sequestering YAP in the cytoplasm

    PubMed Central

    Wang, Chao; Zhu, Xiaoyong; Feng, Weiwei; Yu, Yinhua; Jeong, Kangjin; Guo, Wei; Lu, Yiling; Mills, Gordon B

    2016-01-01

    Yes-associated protein (YAP), the central mediator of Hippo pathway, not only regulates a diversity of cellular processes during development but also plays a pivotal role in tumorigenesis. YAP is overexpressed in many types of human cancers with its expression level being associated with patient outcomes. Thus, inhibiting YAP function could provide a novel therapeutic approach. Verteporfin, a photosensitizer, which has been used in photodynamic therapy (PDT), was recently identified as an inhibitor of the interaction of YAP with TEAD, which, in turn, blocks transcriptional activation of targets downstream of YAP. However, the mechanism by which Verteporfin inhibits YAP activity remains to be elucidated. We demonstrate that overexpression of YAP stimulates cell proliferation whereas knocking down YAP or treating cells with Verteporfin inhibited cell proliferation, even in the presence of growth factors. Protoporphyrin IX, another photosensitizer, did not have similar activity demonstrating specificity to Verteporfin. Verteporfin induced sequestration of YAP in cytoplasm through increasing levels of 14-3-3σ, a YAP chaperon protein that retains YAP in cytoplasm and targets it for degradation in the proteosome. Interestingly, while knockdown of YAP had no effect on the ability of Verteporfin to induce 14-3-3σ, p53 is required for this effect of Verteporfin. This provides potential approaches to select patients likely to benefit from Verteporfin. PMID:27073720

  9. Analysis of 14-3-3 Family Member Function in Xenopus Embryos by Microinjection of Antisense Morpholino Oligos

    NASA Astrophysics Data System (ADS)

    Lau, Jeffrey M. C.; Muslin, Anthony J.

    The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.

  10. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing.

    PubMed

    Zhao, Quan; Rank, Gerhard; Tan, Yuen T; Li, Haitao; Moritz, Robert L; Simpson, Richard J; Cerruti, Loretta; Curtis, David J; Patel, Dinshaw J; Allis, C David; Cunningham, John M; Jane, Stephen M

    2009-03-01

    Mammalian gene silencing is established through methylation of histones and DNA, although the order in which these modifications occur remains contentious. Using the human beta-globin locus as a model, we demonstrate that symmetric methylation of histone H4 arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for subsequent DNA methylation. H4R3me2s serves as a direct binding target for the DNA methyltransferase DNMT3A, which interacts through the ADD domain containing the PHD motif. Loss of the H4R3me2s mark through short hairpin RNA-mediated knockdown of PRMT5 leads to reduced DNMT3A binding, loss of DNA methylation and gene activation. In primary erythroid progenitors from adult bone marrow, H4R3me2s marks the inactive methylated globin genes coincident with localization of PRMT5. Our findings define DNMT3A as both a reader and a writer of repressive epigenetic marks, thereby directly linking histone and DNA methylation in gene silencing. PMID:19234465

  11. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    SciTech Connect

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin; Bie, Xiao-Hua

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  12. 14-3-3ζ Interacts with Stat3 and Regulates Its Constitutive Activation in Multiple Myeloma Cells

    PubMed Central

    Li, Wenliang; Xiong, Qian; Yang, Mingkun; Zheng, Peng; Li, Chongyang; Pei, Jianfeng; Ge, Feng

    2012-01-01

    The 14-3-3 proteins are a family of regulatory signaling molecules that interact with other proteins in a phosphorylation-dependent manner and function as adapter or scaffold proteins in signal transduction pathways. One family member, 14-3-3ζ, is believed to function in cell signaling, cycle control, and apoptotic death. A systematic proteomic analysis done in our laboratory has identified signal transducers and activators of transcription 3 (Stat3) as a novel 14-3-3ζ interacting protein. Following our initial finding, in this study, we provide evidence that 14-3-3ζ interacts physically with Stat3. We further demonstrate that phosphorylation of Stat3 at Ser727 is vital for 14-3-3ζ interaction and mutation of Ser727 to Alanine abolished 14-3-3ζ/Stat3 association. Inhibition of 14-3-3ζ protein expression in U266 cells inhibited Stat3 Ser727 phosphorylation and nuclear translocation, and decreased both Stat3 DNA binding and transcriptional activity. Moreover, 14-3-3ζ is involved in the regulation of protein kinase C (PKC) activity and 14-3-3ζ binding to Stat3 protects Ser727 dephosphorylation from protein phosphatase 2A (PP2A). Taken together, our findings support the model that multiple signaling events impinge on Stat3 and that 14-3-3ζ serves as an essential coordinator for different pathways to regulate Stat3 activation and function in MM cells. PMID:22279540

  13. Possible additional roles in mating for Ustilago maydis Rho1 and 14-3-3 homologues

    PubMed Central

    Pham, Cau D

    2010-01-01

    Both the Rho GTPases and 14-3-3 proteins each belong to ubiquitous families of proteins involved in a variety of cellular processes, including cytokinesis, cell polarity, cellular differentiation and apoptosis. In fungi, these components of signaling pathways are involved in cell cycle regulation, cytokinesis and virulence. We study cellular differentiation and pathogenesis for Ustilago maydis, the dimorphic fungal pathogen of maize. We have reported on the interactions of Pdc1, a U. maydis homologue of human 14-3-3ɛ, with Rho1, a small GTP binding protein; these proteins participate in cell polarity and filamentation pathways that include another small G protein, Rac1, and its effector PAK kinase, Cla4. Here we describe additional experiments that explore possible relationships of Pdc1 and Rho1 with another PAK-like kinase pathway and with the a matingtype locus. PMID:20539785

  14. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta.

    PubMed

    Yu, Duonan; dos Santos, Camila O; Zhao, Guowei; Jiang, Jing; Amigo, Julio D; Khandros, Eugene; Dore, Louis C; Yao, Yu; D'Souza, Janine; Zhang, Zhe; Ghaffari, Saghi; Choi, John; Friend, Sherree; Tong, Wei; Orange, Jordan S; Paw, Barry H; Weiss, Mitchell J

    2010-08-01

    The bicistronic microRNA (miRNA) locus miR-144/451 is highly expressed during erythrocyte development, although its physiological roles are poorly understood. We show that miR-144/451 ablation in mice causes mild erythrocyte instability and increased susceptibility to damage after exposure to oxidant drugs. This phenotype is deeply conserved, as miR-451 depletion synergizes with oxidant stress to cause profound anemia in zebrafish embryos. At least some protective activities of miR-451 stem from its ability to directly suppress production of 14-3-3zeta, a phospho-serine/threonine-binding protein that inhibits nuclear accumulation of transcription factor FoxO3, a positive regulator of erythroid anti-oxidant genes. Thus, in miR-144/451(-/-) erythroblasts, 14-3-3zeta accumulates, causing partial relocalization of FoxO3 from nucleus to cytoplasm with dampening of its transcriptional program, including anti-oxidant-encoding genes Cat and Gpx1. Supporting this mechanism, overexpression of 14-3-3zeta in erythroid cells and fibroblasts inhibits nuclear localization and activity of FoxO3. Moreover, shRNA suppression of 14-3-3zeta protects miR-144/451(-/-) erythrocytes against peroxide-induced destruction, and restores catalase activity. Our findings define a novel miRNA-regulated pathway that protects erythrocytes against oxidant stress, and, more generally, illustrate how a miRNA can influence gene expression by altering the activity of a key transcription factor. PMID:20679398

  15. Dissociable roles for histone acetyltransferases p300 and PCAF in hippocampus and perirhinal cortex-mediated object memory.

    PubMed

    Mitchnick, K A; Creighton, S D; Cloke, J M; Wolter, M; Zaika, O; Christen, B; Van Tiggelen, M; Kalisch, B E; Winters, B D

    2016-07-01

    The importance of histone acetylation for certain types of memory is now well established. However, the specific contributions of the various histone acetyltransferases to distinct memory functions remain to be determined; therefore, we employed selective histone acetyltransferase protein inhibitors and short-interference RNAs to evaluate the roles of CREB-binding protein (CBP), E1A-binding protein (p300) and p300/CBP-associated factor (PCAF) in hippocampus and perirhinal cortex (PRh)-mediated object memory. Rats were tested for short- (STM) and long-term memory (LTM) in the object-in-place task, which relies on the hippocampus and PRh for spatial memory and object identity processing, respectively. Selective inhibition of these histone acetyltransferases by small-interfering RNA and pharmacological inhibitors targeting the HAT domain produced dissociable effects. In the hippocampus, CBP or p300 inhibition impaired long-term but not short-term object memory, while inhibition of PCAF impaired memory at both delays. In PRh, HAT inhibition did not impair STM, and only CBP and PCAF inhibition disrupted LTM; p300 inhibition had no effects. Messenger RNA analyses revealed findings consistent with the pattern of behavioral effects, as all three enzymes were upregulated in the hippocampus (dentate gyrus) following learning, whereas only CBP and PCAF were upregulated in PRh. These results demonstrate, for the first time, the necessity of histone acetyltransferase activity for PRh-mediated object memory and indicate that the specific mnemonic roles of distinctive histone acetyltransferases can be dissociated according to specific brain regions and memory timeframe. PMID:27251651

  16. Molecular tweezers modulate 14-3-3 protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  17. Molecular tweezers modulate 14-3-3 protein-protein interactions.

    PubMed

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins--a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)--in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions. PMID:23422566

  18. GATA2 regulates GATA1 expression through LSD1-mediated histone modification.

    PubMed

    Guo, Yidi; Fu, Xueqi; Huo, Bo; Wang, Yongsen; Sun, Jing; Meng, Lingyuan; Hao, Tian; Zhao, Zhizhuang Joe; Hu, Xin

    2016-01-01

    The dynamic and reversed expression of GATA1 and GATA2 are essential for proper erythroid differentiation. Our previous work demonstrates that LSD1, a histone H3K4 demethylase, represses GATA2 expression at late stage of erythroid differentiation. K562 and MEL cells were used and cultured in Roswell Park Memorial Institute-1640 medium (RPMI) and Dulbecco's modified Eagle's medium (DMEM), respectively. Western blot assay was used to examine the GATA1, GATA2, TAL1, HDAC1, HDAC2, CoREST and β-actin protein. The immunoprecipitation assay and GST pull-down assay were employed to detect the precipitated protein complexes and investigate the interaction between the proteins. The small interfering RNA (siRNA) and nonspecific control siRNA were synthesized to silence the target genes. Double fluorescence immunostaining was used to observe the association of LSD1 with GATA2 in K562 cells. The results indicated that knockdown of LSD1 in K562 cell causes increased H3K4 di-methylation at GATA1 locus and activates GATA1 expression, demonstrating that LSD1 represses GATA1 expression through LSD1-mediated histone demethylation. Upon induced erythroid differentiation of K562 cells, the interaction between GATA2 and LSD1 is decreased, consistent with a de-repression of GATA1 expression. Meanwhile, the interaction between TAL1 and LSD1 is increased, which forms a complex that efficiently suppresses GATA2 expression. In conclusion, these observations reveal an elegant mechanism to modulate GATA1 and GATA2 expression during erythroid differentiation. While LSD1 mainly forms complex with GATA2 to repress GATA1 expression in hematopoietic progenitor cells, it mostly forms complex with TAL1 to repress GATA2 expression in differentiated cells. PMID:27347333

  19. GATA2 regulates GATA1 expression through LSD1-mediated histone modification

    PubMed Central

    Guo, Yidi; Fu, Xueqi; Huo, Bo; Wang, Yongsen; Sun, Jing; Meng, Lingyuan; Hao, Tian; Zhao, Zhizhuang Joe; Hu, Xin

    2016-01-01

    The dynamic and reversed expression of GATA1 and GATA2 are essential for proper erythroid differentiation. Our previous work demonstrates that LSD1, a histone H3K4 demethylase, represses GATA2 expression at late stage of erythroid differentiation. K562 and MEL cells were used and cultured in Roswell Park Memorial Institute-1640 medium (RPMI) and Dulbecco’s modified Eagle’s medium (DMEM), respectively. Western blot assay was used to examine the GATA1, GATA2, TAL1, HDAC1, HDAC2, CoREST and β-actin protein. The immunoprecipitation assay and GST pull-down assay were employed to detect the precipitated protein complexes and investigate the interaction between the proteins. The small interfering RNA (siRNA) and nonspecific control siRNA were synthesized to silence the target genes. Double fluorescence immunostaining was used to observe the association of LSD1 with GATA2 in K562 cells. The results indicated that knockdown of LSD1 in K562 cell causes increased H3K4 di-methylation at GATA1 locus and activates GATA1 expression, demonstrating that LSD1 represses GATA1 expression through LSD1-mediated histone demethylation. Upon induced erythroid differentiation of K562 cells, the interaction between GATA2 and LSD1 is decreased, consistent with a de-repression of GATA1 expression. Meanwhile, the interaction between TAL1 and LSD1 is increased, which forms a complex that efficiently suppresses GATA2 expression. In conclusion, these observations reveal an elegant mechanism to modulate GATA1 and GATA2 expression during erythroid differentiation. While LSD1 mainly forms complex with GATA2 to repress GATA1 expression in hematopoietic progenitor cells, it mostly forms complex with TAL1 to repress GATA2 expression in differentiated cells. PMID:27347333

  20. Molecular Dynamics Simulations and Structural Analysis of Giardia duodenalis 14-3-3 Protein-Protein Interactions.

    PubMed

    Cau, Ylenia; Fiorillo, Annarita; Mori, Mattia; Ilari, Andrea; Botta, Maurizo; Lalle, Marco

    2015-12-28

    Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duodenalis, which affects annually over 200 million people worldwide. The limited antigiardial drug arsenal and the emergence of clinical cases refractory to standard treatments dictate the need for new chemotherapeutics. The 14-3-3 family of regulatory proteins, extensively involved in protein-protein interactions (PPIs) with pSer/pThr clients, represents a highly promising target. Despite homology with human counterparts, the single 14-3-3 of G. duodenalis (g14-3-3) is characterized by a constitutive phosphorylation in a region critical for target binding, thus affecting the function and the conformation of g14-3-3/clients interaction. However, to approach the design of specific small molecule modulators of g14-3-3 PPIs, structural elucidations are required. Here, we present a detailed computational and crystallographic study exploring the implications of g14-3-3 phosphorylation on protein structure and target binding. Self-Guided Langevin Dynamics and classical molecular dynamics simulations show that phosphorylation affects locally and globally g14-3-3 conformation, inducing a structural rearrangement more suitable for target binding. Profitable features for g14-3-3/clients interaction were highlighted using a hydrophobicity-based descriptor to characterize g14-3-3 client peptides. Finally, the X-ray structure of g14-3-3 in complex with a mode-1 prototype phosphopeptide was solved and combined with structure-based simulations to identify molecular features relevant for clients binding to g14-3-3. The data presented herein provide a further and structural understanding of g14-3-3 features and set the basis for drug design studies. PMID:26551337

  1. Rapid antidepressants stimulate the decoupling of GABAB receptors from GIRK/Kir3 channels through increased protein stability of 14-3-3η

    PubMed Central

    Workman, E R; Haddick, P C G; Bush, K; Dilly, G A; Niere, F; Zemelman, B V; Raab-Graham, K F

    2015-01-01

    A single injection of N-methyl-D-aspartate receptor (NMDAR) antagonists produces a rapid antidepressant response. Lasting changes in the synapse structure and composition underlie the effectiveness of these drugs. We recently discovered that rapid antidepressants cause a shift in the γ-aminobutyric acid receptor (GABABR) signaling pathway, such that GABABR activation shifts from opening inwardly rectifiying potassium channels (Kir/GIRK) to increasing resting dendritic calcium signal and mammalian Target of Rapamycin activity. However, little is known about the molecular and biochemical mechanisms that initiate this shift. Herein, we show that GABABR signaling to Kir3 (GIRK) channels decreases with NMDAR blockade. Blocking NMDAR signaling stabilizes the adaptor protein 14-3-3η, which decouples GABABR signaling from Kir3 and is required for the rapid antidepressant efficacy. Consistent with these results, we find that key proteins involved in GABABR signaling bidirectionally change in a depression model and with rapid antidepressants. In socially defeated rodents, a model for depression, GABABR and 14-3-3η levels decrease in the hippocampus. The NMDAR antagonists AP5 and Ro-25-6981, acting as rapid antidepressants, increase GABABR and 14-3-3η expression and decrease Kir3.2. Taken together, these data suggest that the shift in GABABR function requires a loss of GABABR-Kir3 channel activity mediated by 14-3-3η. Our findings support a central role for 14-3-3η in the efficacy of rapid antidepressants and define a critical molecular mechanism for activity-dependent alterations in GABABR signaling. PMID:25560757

  2. The 14-3-3 Gene Function of Cryptococcus neoformans Is Required for its Growth and Virulence.

    PubMed

    Li, Jingbo; Chang, Yun C; Wu, Chun-Hua; Liu, Jennifer; Kwon-Chung, Kyung J; Huang, Sheng-He; Shimada, Hiro; Fante, Rob; Fu, Xiaowei; Jong, Ambrose

    2016-05-28

    Cryptococcus neoformans is a life-threatening pathogenic yeast that causes devastating meningoencephalitis. The mechanism of cryptococcal brain invasion is largely unknown, and recent studies suggest that its extracellular microvesicles may be involved in the invasion process. The 14-3-3 protein is abundant in the extracellular microvesicles of C. neoformans, and the 14-3-3-GFP fusion has been used as the microvesicle's marker. However, the physiological role of 14-3-3 has not been explored. In this report, we have found that C. neoformans contains a single 14-3-3 gene that apparently is an essential gene. To explore the functions of 14-3-3, we substituted the promoter region of the 14-3-3 with the copper-controllable promoter CTR4. The CTR4 regulatory strain showed an enlarged cell size, drastic changes in morphology, and a decrease in the thickness of the capsule under copper-enriched conditions. Furthermore, the mutant cells produced a lower amount of total proteins in their extracellular microvesicles and reduced adhesion to human brain microvascular endothelial cells in vitro. Proteomic analyses of the protein components under 14-3-3-overexpressed and -suppressed conditions revealed that the 14-3-3 function(s) might be associated with the microvesicle biogenesis. Our results support that 14-3-3 has diverse pertinent roles in both physiology and pathogenesis in C. neoformans. Its gene functions are closely relevant to the pathogenesis of this fungus. PMID:26437944

  3. Dynamic interaction between 14-3-3zeta and bax during TNF-α-induced apoptosis in living cells

    NASA Astrophysics Data System (ADS)

    Gao, Xuejuan; Xing, Da; Chen, Tongsheng

    2006-09-01

    Bax, a proapoptotic member of the Bcl-2 family, localizes largely in the cytoplasm but redistributes to mitochondria and undergoes oligomerization to induce the release of apoptogenic factors such as cytochrome c in response to apoptotic stimuli. Cytoplasmic protein 14-3-3zeta binds to Bax and, upon apoptotic stimulation, releases Bax by a caspase-independent mechanism. However, the direct interaction of the cytoplasmic 14-3-3zeta and Bax in living cells has not been observed. In present study, to monitor the dynamic interaction between 14-3-3zeta and Bax in living cells in real time during apoptosis induced by tumor necrosis factor (TNF-α), DsRed-14-3-3zeta plasmid is constructed. By cotransfecting DsRed- 14-3-3zeta and GFP-Bax plasmids into human lung adenocarcinoma cells (ASTC-a-1), we observe the dynamic interaction between Bax and 14-3-3zeta using fluorescence resonance energy transfer (FRET) technique on laser scanning confocal microscope. The results show that 14-3-3zeta remains in the cytoplasm but GFP-Bax translocates to mitochondria completely after TNF-α stimulation. These results reveal that 14-3-3zeta binds directly to Bax in healthy cells, and that 14-3-3zeta negatively regulates Bax translocation to mitochondria during TNF-α-induced apoptosis.

  4. Histone H2B Monoubiquitination Mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 Is Involved in Anther Development by Regulating Tapetum Degradation-Related Genes in Rice1[OPEN

    PubMed Central

    Cao, Hong; Li, Xiaoying; Wang, Zhi; Ding, Meng; Sun, Yongzhen; Dong, Fengqin; Chen, Fengying; Liu, Li’an; Doughty, James; Li, Yong; Liu, Yong-Xiu

    2015-01-01

    Histone H2B monoubiquitination (H2Bub1) is an important regulatory mechanism in eukaryotic gene transcription and is essential for normal plant development. However, the function of H2Bub1 in reproductive development remains elusive. Here, we report rice (Oryza sativa) HISTONE MONOUBIQUITINATION1 (OsHUB1) and OsHUB2, the homologs of Arabidopsis (Arabidopsis thaliana) HUB1 and HUB2 proteins, which function as E3 ligases in H2Bub1, are involved in late anther development in rice. oshub mutants exhibit abnormal tapetum development and aborted pollen in postmeiotic anthers. Knockout of OsHUB1 or OsHUB2 results in the loss of H2Bub1 and a reduction in the levels of dimethylated lysine-4 on histone 3 (H3K4me2). Anther transcriptome analysis revealed that several key tapetum degradation-related genes including OsC4, rice Cysteine Protease1 (OsCP1), and Undeveloped Tapetum1 (UDT1) were down-regulated in the mutants. Further, chromatin immunoprecipitation assays demonstrate that H2Bub1 directly targets OsC4, OsCP1, and UDT1 genes, and enrichment of H2Bub1 and H3K4me2 in the targets is consistent to some degree. Our studies suggest that histone H2B monoubiquitination, mediated by OsHUB1 and OsHUB2, is an important epigenetic modification that in concert with H3K4me2, modulates transcriptional regulation of anther development in rice. PMID:26143250

  5. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3{zeta} protein

    SciTech Connect

    Sadik, Golam; Tanaka, Toshihisa; Kato, Kiyoko; Yanagi, Kentaro; Kudo, Takashi; Takeda, Masatoshi

    2009-05-22

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3{zeta}. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3{zeta} is {approx}3-folds higher than that between unphosphorylated 4R-tau and 14-3-3{zeta}. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3{zeta} to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3{zeta}. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3{zeta} exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3{zeta} suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.

  6. The 14-3-3 gene expression specificity in response to stress is promoter-dependent.

    PubMed

    Aksamit, Anna; Korobczak, Alina; Skala, Jacek; Lukaszewicz, Marcin; Szopa, Jan

    2005-10-01

    Genomic clone coding for the 16R isoform of 14-3-3 proteins from potato plants has recently been described. This paper reports on 20R-gene isolation and analysis, and compares two isoforms. The northern blot analysis of mRNA of the 20R 14-3-3 isoform suggests its similarity to 16R. Vascular tissue-specific expression and age-dependent synthesis in potato leaves has been detected in both promoters. Screening of the potato genomic library using 20R cDNA isoform resulted in identification and isolation of the corresponding gene. This gene contains four exons and three introns. Inspecting the promoter sequence of the 20R isoform revealed several boxes important for the regulation of gene expression. The strongest GUS expression in transgenic potato plants transformed with the uidA reporter gene under the 20R promoter has been found in young leaf and stem vascular tissue, root tips, pollen and ovules. Mature fragments exhibit a significant decrease in GUS staining, which suggests age-dependent promoter activity. The analysis of transgenic plants transformed with 20R-GUS in contrast to 16R-GUS has revealed strong activation of the 20R promoter by metal ions and NaCl. Instead the 16R promoter is strongly affected by virus and salicylic acid treatments. The only factor, which strongly induced both promoters, was abscisic acid. It is thus suggested that promoter domain composition is the main factor differentiating the appearance of 14-3-3 isoforms. PMID:16081528

  7. G9a-mediated histone methylation regulates cadmium-induced male fertility damage in pubertal mice.

    PubMed

    Li, Min; Liu, Chuan; Yang, Lingling; Zhang, Lei; Chen, Chunhai; He, Mindi; Lu, Yonghui; Feng, Wei; Pi, Huifeng; Zhang, Yanwen; Zhong, Min; Yu, Zhengping; Zhou, Zhou

    2016-06-11

    Increasing evidence suggests that cadmium (Cd) is associated with male fertility damage. However, the effects of histone modification on Cd-induced male fertility damage remain obscure. This study aims to evaluate the roles of histone methylation mediated by euchromatin histone methyltransferase (EHMT2/G9a) in regulating Cd-induced male fertility damage. We exposed 4-week-old male C57BL/6J mice to Cd by intraperitoneal injection at 2mg/kg for 1, 3 and 5days. Our data showed that Cd exposure decreased the numbers of impregnated females and litter sizes, which was concomitant with sperm count reduction, histological changes in the cauda epididymal ducts and seminiferous epithelium, and testicular cell apoptosis as evaluated by terminal dUTP nick-end labeling (TUNEL) assay and immunoblotting with increased levels of cleaved caspase 3, PARP and Bax and a decreased level of Bcl-2. Cd-induced male fertility damage was accompanied by enhanced G9a activity followed by increased histone H3 lysine 9 monomethylation (H3K9me1) and dimethylation (H3K9me2) in testes. Furthermore, inhibition of G9a by BIX-01294 normalized H3K9me1 and H3K9me2 to basal levels and prevented Cd-induced male fertility damage and testicular cell apoptosis. Our present study revealed that G9a-mediated histone methylation plays a critical role in Cd-induced male fertility damage and testicular cell apoptosis. PMID:27060504

  8. Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia.

    PubMed

    Bishton, Mark J; Harrison, Simon J; Martin, Benjamin P; McLaughlin, Nicole; James, Chloé; Josefsson, Emma C; Henley, Katya J; Kile, Benjamin T; Prince, H Miles; Johnstone, Ricky W

    2011-03-31

    Histone deacetylase inhibitor (HDACI)-induced thrombocytopenia (TCP) is a major dose-limiting toxicity of this new class of drugs. Using preclinical models to study the molecular and biologic events that underpin this effect of HDACI, we found that C57BL/6 mice treated with both the HDAC1/2-selective HDACI romidepsin and the pan-HDACI panobinostat developed significant TCP. HDACI-induced TCP was not due to myelosuppression or reduced platelet lifespan, but to decreased platelet release from megakaryocytes. Cultured primary murine megakaryocytes showed reductions in proplatelet extensions after HDACI exposure and a dose-dependent increase in the phosphorylation of myosin light chain 2 (MLC2). Phosphorylation of MLC to phospho-MLC (pMLC) and subsequent proplatelet formation in megakaryocytes is regulated by the Rho-GTPase proteins Rac1, CDC42, and RhoA. Primary mouse megakaryocytes and the human megakaryoblastic cell line Meg-01 showed reductions in Rac1, CDC42, and RhoA protein levels after treatment with HDACIs. We were able to overcome HDACI-induced TCP by administering the mouse-specific thrombopoietin (TPO) mimetic AMP-4, which improved platelet numbers to levels similar to untreated controls. Our report provides the first detailed account of the molecular and biologic processes involved in HDACI-mediated TCP. Moreover, our preclinical studies provide evidence that dose-limiting TCP induced by HDACIs may be circumvented using a TPO mimetic. PMID:21292776

  9. Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma

    PubMed Central

    Vardabasso, Chiara; Gaspar-Maia, Alexandre; Hasson, Dan; Pünzeler, Sebastian; Valle-Garcia, David; Straub, Tobias; Keilhauer, Eva C.; Strub, Thomas; Dong, Joanna; Panda, Taniya; Chung, Chi-Yeh; Yao, Jonathan L.; Singh, Rajendra; Segura, Miguel F.; Fontanals-Cirera, Barbara; Verma, Amit; Mann, Matthias; Hernando, Eva; Hake, Sandra B.; Bernstein, Emily

    2015-01-01

    SUMMARY Histone variants are emerging as key regulatory molecules in cancer. Here we report a novel role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. H2A.Z.2 is highly expressed in metastatic melanoma, correlates with decreased patient survival, and is required for cellular proliferation. Our integrated genomic analyses reveal that H2A.Z.2 controls the transcriptional output of E2F target genes in melanoma cells. These genes are highly expressed and display a distinct signature of H2A.Z occupancy. We identify BRD2 as an H2A.Z interacting protein, whose levels are also elevated in melanoma. We further demonstrate that H2A.Z.2 regulated genes are bound by BRD2 and E2F1 in a H2A.Z.2-dependent manner. Importantly, H2A.Z.2 deficiency sensitizes melanoma cells to chemotherapy and targeted therapies. Collectively, our findings implicate H2A.Z.2 as a mediator of cell proliferation and drug sensitivity in malignant melanoma, holding translational potential for novel therapeutic strategies. PMID:26051178

  10. PIWI homologs mediate histone H4 mRNA localization to planarian chromatoid bodies.

    PubMed

    Rouhana, Labib; Weiss, Jennifer A; King, Ryan S; Newmark, Phillip A

    2014-07-01

    The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans. PMID:24903754

  11. PIWI homologs mediate Histone H4 mRNA localization to planarian chromatoid bodies

    PubMed Central

    Rouhana, Labib; Weiss, Jennifer A.; King, Ryan S.; Newmark, Phillip A.

    2014-01-01

    The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans. PMID:24903754

  12. Quantitative proteomic dissection of a native 14-3-3ε interacting protein complex associated with hepatocellular carcinoma.

    PubMed

    Bai, Chen; Tang, Siwei; Bai, Chen; Chen, Xian

    2014-04-01

    The 14-3-3 proteins regulate diverse biological processes that are implicated in cancer development, and seven 14-3-3 isoforms were identified with isoform-specific roles in different human tumors. In our previous work, we dissected the interactome of 14-3-3ε formed during the DNA damage response in a hepatocellular carcinoma (HCC) cell using an AACT/SILAC-based quantitative proteomic approach. In this study, we used a similar proteomic approach to profile/identify the 14-3-3ε interactome formed in native HCC cells. Functional categorization and data-dependent network analysis of the native HCC-specific 14-3-3ε interactome revealed that 14-3-3ε is involved in the regulation of multiple biological processes (BPs)/pathways, including cell cycle control, apoptosis, signal transduction, transport, cell adhesion, carbohydrate metabolism, and nucleic acid metabolism. Biological validation further supports that 14-3-3ε, via association with multiple BP/pathway-specific proteins, coordinates the regulation of proliferation, survival, and metastasis of HCC. The findings in this study, together with those of our previous study, provide an extensive profile of the 14-3-3ε interaction network in HCC cells, which should be valuable for understanding the pathology of HCC and HCC therapy. PMID:24363202

  13. 14-3-3 Proteins Bind to the Brassinosteroid Receptor Kinase, BRI1 and are Positive Regulators of Brassinosteroid Signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple members of the 14-3-3 protein family have been found in all eukaryotes, the biological functions of which are to interact physically with specific client proteins and thereby effect a change in the client. Thus, 14-3-3s are involved in many processes. The plant brassinosteroid (BR) recepto...

  14. A novel sphingosine-dependent protein kinase (SDK1) specifically phosphorylates certain isoforms of 14-3-3 protein.

    PubMed

    Megidish, T; Cooper, J; Zhang, L; Fu, H; Hakomori, S

    1998-08-21

    Protein kinases activated by sphingosine or N,N'-dimethylsphingosine, but not by other lipids, have been detected and are termed sphingosine-dependent protein kinases (SDKs). These SDKs were previously shown to phosphorylate endogenous 14-3-3 proteins (Megidish, T., White, T., Takio, K., Titani, K., Igarashi, Y., and Hakomori, S. (1995) Biochem. Biophys. Res. Commun. 216, 739-747). We have now partially purified one SDK, termed SDK1, from cytosol of mouse Balb/c 3T3(A31) fibroblasts. SDK1 is a serine kinase with molecular mass 50-60 kDa that is strongly activated by N, N'-dimethylsphingosine and sphingosine, but not by ceramide, sphingosine 1-phosphate, or other sphingo-, phospho-, or glycerolipids tested. Its activity is inhibited by the protein kinase C activator phosphatidylserine. Activity of SDK1 is clearly distinct from other types of serine kinases tested, including casein kinase II, the alpha and zeta isoforms of protein kinase C, extracellular signal-regulated mitogene-activated protein kinase 1 (Erk-1), Erk-2, and Raf-1. SDK1 specifically phosphorylates certain isoforms of 14-3-3 (eta, beta, zeta) but not others (sigma, tau). The phosphorylation site was identified as Ser* in the sequence Arg-Arg-Ser-Ser*-Trp-Arg in 14-3-3 beta. The sigma and tau isoforms of 14-3-3 lack serine at this position, potentially explaining their lack of phosphorylation by SDK1. Interestingly, the phosphorylation site is located on the dimer interface of 14-3-3. Phosphorylation of this site by SDK1 was studied in 14-3-3 mutants. Mutation of a lysine residue, located 9 amino acids N-terminal to the phosphorylation site, abolished 14-3-3 phosphorylation. Furthermore, co-immunoprecipitation experiments demonstrate an association between an SDK and 14-3-3 in situ. Exogenous N, N'-dimethylsphingosine stimulates 14-3-3 phosphorylation in Balb/c 3T3 fibroblasts, suggesting that SDK1 may phosphorylate 14-3-3 in situ. These data support a biological role of SDK1 activation and consequent

  15. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  16. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures

    PubMed Central

    Leshner, Marc; Wang, Shu; Lewis, Carrie; Zheng, Han; Chen, Xiangyun Amy; Santy, Lorraine; Wang, Yanming

    2012-01-01

    NETosis, the process wherein neutrophils release highly decondensed chromatin called neutrophil extracellular traps (NETs), has gained much attention as an alternative means of killing bacteria. In vivo, NETs are induced by bacteria and pro-inflammatory cytokines. We have reported that peptidylarginine deiminase 4 (PAD4), an enzyme that converts Arg or monomethyl-Arg to citrulline in histones, is essential for NET formation. The areas of extensive chromatin decondensation along the NETs were rich in histone citrullination. Here, upon investigating the effect of global citrullination in cultured cells, we discovered that PAD4 overexpression in osteosarcoma U2OS cells induces extensive chromatin decondensation independent of apoptosis. The highly decondensed chromatin is released to the extracellular space and stained strongly by a histone citrulline-specific antibody. The structure of the decondensed chromatin is reminiscent of NETs but is unique in that it occurs without stimulation of cells with pro-inflammatory cytokines and bacteria. Furthermore, histone citrullination during chromatin decondensation can dissociate heterochromatin protein 1 beta (HP1β) thereby offering a new molecular mechanism for understanding how citrullination regulates chromatin function. Taken together, our study suggests that PAD4 mediated citrullination induces chromatin decondensation, implicating its essential role in NET formation under physiological conditions in neutrophils. PMID:23060885

  17. Increased Histone Deacetylase Activity Involved in the Suppressed Invasion of Cancer Cells Survived from ALA-Mediated Photodynamic Treatment

    PubMed Central

    Li, Pei-Tzu; Tsai, Yi-Jane; Lee, Ming-Jen; Chen, Chin-Tin

    2015-01-01

    Previously, we have found that cancer cells survived from 5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) have abnormal mitochondrial function and suppressed cellular invasiveness. Here we report that both the mRNA expression level and enzymatic activity of histone deacetylase (HDAC) were elevated in the PDT-derived variants with dysfunctional mitochondria. The activated HDAC deacetylated histone H3 and further resulted in the reduced migration and invasion, which correlated with the reduced expression of the invasion-related genes, matrix metalloproteinase 9 (MMP9), paternally expressed gene 1 (PEG1), and miR-355, the intronic miRNA. Using chromatin immunoprecipitation, we further demonstrate the reduced amount of acetylated histone H3 on the promoter regions of MMP9 and PEG1, supporting the down-regulation of these two genes in PDT-derived variants. These results indicate that HDAC activation induced by mitochondrial dysfunction could modulate the cellular invasiveness and its related gene expression. This argument was further verified in the 51-10 cybrid cells with the 4977 bp mtDNA deletion and A375 ρ0 cells with depleted mitochondria. These results indicate that mitochondrial dysfunction might suppress tumor invasion through modulating histone acetylation. PMID:26473836

  18. Validation of 14-3-3 Protein as a Marker in Sporadic Creutzfeldt-Jakob Disease Diagnostic.

    PubMed

    Schmitz, Matthias; Ebert, Elisabeth; Stoeck, Katharina; Karch, André; Collins, Steven; Calero, Miguel; Sklaviadis, Theodor; Laplanche, Jean-Louis; Golanska, Ewa; Baldeiras, Ines; Satoh, Katsuya; Sanchez-Valle, Raquel; Ladogana, Anna; Skinningsrud, Anders; Hammarin, Anna-Lena; Mitrova, Eva; Llorens, Franc; Kim, Yong Sun; Green, Alison; Zerr, Inga

    2016-05-01

    At present, the testing of 14-3-3 protein in cerebrospinal fluid (CSF) is a standard biomarker test in suspected sporadic Creutzfeldt-Jakob disease (sCJD) diagnosis. Increasing 14-3-3 test referrals in CJD reference laboratories in the last years have led to an urgent need to improve established 14-3-3 test methods. The main result of our study was the validation of a commercially available 14-3-3 ELISA next to the commonly used Western blot method as a high-throughput screening test. Hereby, 14-3-3 protein expression was quantitatively analyzed in CSF of 231 sCJD and 2035 control patients. We obtained excellent sensitivity/specificity values of 88 and 96% that are comparable to the established Western blot method. Since standard protocols and preanalytical sample handling have become more important in routine diagnostic, we investigated in a further step the reproducibility and stability of 14-3-3 as a biomarker for human prion diseases. Ring trial data from 2009 to 2013 revealed an increase of Fleiss' kappa from 0.51 to 0.68 indicating an improving reliability of 14-3-3 protein detection. The stability of 14-3-3 protein under short-term and long-term storage conditions at various temperatures and after repeated freezing/thawing cycles was confirmed. Contamination of CSF samples with blood appears likely to be an important factor at a concentration of more than 2500 erythrocytes/μL. Hemolysis of erythrocytes with significant release of 14-3-3 protein started after 2 days at room temperature. We first define clear standards for the sample handling, short- and long-term storage of CSF samples as well as the handling of blood- contaminated samples which may result in artificially elevated CSF levels of 14-3-3. PMID:25947081

  19. CRL4(WDR23)-Mediated SLBP Ubiquitylation Ensures Histone Supply during DNA Replication.

    PubMed

    Brodersen, Mia M L; Lampert, Fabienne; Barnes, Christopher A; Soste, Martin; Piwko, Wojciech; Peter, Matthias

    2016-05-19

    To maintain genome integrity and epigenetic information, mammalian cells must carefully coordinate the supply and deposition of histones during DNA replication. Here we report that the CUL4 E3 ubiquitin ligase complex CRL4(WDR23) directly regulates the stem-loop binding protein (SLBP), which orchestrates the life cycle of histone transcripts including their stability, maturation, and translation. Lack of CRL4(WDR23) activity is characterized by depletion of histones resulting in inhibited DNA replication and a severe slowdown of growth in human cells. Detailed analysis revealed that CRL4(WDR23) is required for efficient histone mRNA 3' end processing to produce mature histone mRNAs for translation. CRL4(WDR23) binds and ubiquitylates SLBP in vitro and in vivo, and this modification activates SLBP function in histone mRNA 3' end processing without affecting its protein levels. Together, these results establish a mechanism by which CUL4 regulates DNA replication and possible additional chromatin transactions by controlling the concerted expression of core histones. PMID:27203182

  20. Molecular Characterization of the 14-3-3 Gene Family in Brachypodium distachyon L. Reveals High Evolutionary Conservation and Diverse Responses to Abiotic Stresses

    PubMed Central

    Cao, Hui; Xu, Yuxing; Yuan, Linlin; Bian, Yanwei; Wang, Lihui; Zhen, Shoumin; Hu, Yingkao; Yan, Yueming

    2016-01-01

    The 14-3-3 gene family identified in all eukaryotic organisms is involved in a wide range of biological processes, particularly in resistance to various abiotic stresses. Here, we performed the first comprehensive study on the molecular characterization, phylogenetics, and responses to various abiotic stresses of the 14-3-3 gene family in Brachypodium distachyon L. A total of seven 14-3-3 genes from B. distachyon and 120 from five main lineages among 12 species were identified, which were divided into five well-conserved subfamilies. The molecular structure analysis showed that the plant 14-3-3 gene family is highly evolutionarily conserved, although certain divergence had occurred in different subfamilies. The duplication event investigation revealed that segmental duplication seemed to be the predominant form by which the 14-3-3 gene family had expanded. Moreover, seven critical amino acids were detected, which may contribute to functional divergence. Expression profiling analysis showed that BdGF14 genes were abundantly expressed in the roots, but showed low expression in the meristems. All seven BdGF14 genes showed significant expression changes under various abiotic stresses, including heavy metal, phytohormone, osmotic, and temperature stresses, which might play important roles in responses to multiple abiotic stresses mainly through participating in ABA-dependent signaling and reactive oxygen species-mediated MAPK cascade signaling pathways. In particular, BdGF14 genes generally showed upregulated expression in response to multiple stresses of high temperature, heavy metal, abscisic acid (ABA), and salicylic acid (SA), but downregulated expression under H2O2, NaCl, and polyethylene glycol (PEG) stresses. Meanwhile, dynamic transcriptional expression analysis of BdGF14 genes under longer treatments with heavy metals (Cd2+, Cr3+, Cu2+, and Zn2+) and phytohormone (ABA) and recovery revealed two main expression trends in both roots and leaves: up-down and up

  1. Analysis of the cruciform binding activity of recombinant 14-3-3zeta-MBP fusion protein, its heterodimerization profile with endogenous 14-3-3 isoforms, and effect on mammalian DNA replication in vitro.

    PubMed

    Alvarez, David; Callejo, Mario; Shoucri, Rami; Boyer, Lee; Price, Gerald B; Zannis-Hadjopoulos, Maria

    2003-06-17

    The human cruciform binding protein (CBP), a member of the 14-3-3 protein family, has been recently identified as an origin of DNA replication binding protein and involved in DNA replication. Here, pure recombinant 14-3-3zeta tagged with maltose binding protein (r14-3-3zeta-MBP) at its N-terminus was tested for binding to cruciform DNA either in the absence or presence of F(TH), a CBP-enriched fraction, by electromobility shift assay (EMSA), followed by Western blot analysis of the electroeluted CBP-cruciform DNA complex. The r14-3-3zeta-MBP was found to have cruciform binding activity only after preincubation with F(TH). Anti-MBP antibody immunoprecipitation of F(TH) preincubated with r14-3-3zeta-MBP, followed by Western blot analysis with antibodies specific to the beta, gamma, epsilon, zeta, and sigma 14-3-3 isoforms showed that r14-3-3zeta-MBP heterodimerized with the endogenous beta, epsilon, and zeta isoforms present in the F(TH) but not with the gamma or sigma isoforms. Immunoprecipitation of endogenous 14-3-3zeta from nuclear extracts (NE) of HeLa cells that were either serum-starved (s-s) or blocked at the G(1)/S or G(2)/M phases of the cell cycle revealed that at G(1)/S and G(2)/M, the zeta isoform heterodimerized only with the beta and epsilon isoforms, while in s-s extracts, the 14-3-3zeta/epsilon heterodimer was never detected, and the 14-3-3zeta/beta heterodimer was seldom detected. Furthermore, addition of r14-3-3zeta-MBP to HeLa cell extracts used in a mammalian in vitro replication system increased the replication level of p186, a plasmid bearing the minimal 186-bp origin of the monkey origin of DNA replication ors8, by approximately 3.5-fold. The data suggest that specific dimeric combinations of the 14-3-3 isoforms have CBP activity and that upregulation of this activity leads to an increase in DNA replication. PMID:12795617

  2. 14-3-3 proteins interact with the insulin-like growth factor receptor but not the insulin receptor.

    PubMed Central

    Furlanetto, R W; Dey, B R; Lopaczynski, W; Nissley, S P

    1997-01-01

    We have used a yeast two-hybrid system to identify proteins which bind to the cytosolic portion of the type 1 insulin-like growth factor (IGF) receptor (IGFIR) but not the insulin receptor (IR). This analysis identified 14-3-3beta and zeta proteins. 14-3-3beta also binds to the IGFIR but not the IR in vitro and 14-3-3-IGFIR complexes are present in insect cells overexpressing the IGFIR cytoplasmic domain. 14-3-3 proteins are substrates of the IGFIR in the yeast system and in vitro. The interaction of 14-3-3 with the IGFIR requires receptor-kinase activity and maps to the C-terminus of the receptor, but does not depend on tyrosine residues in this or the juxtamembrane regions. Instead, the binding maps to serine residue 1283 and requires phosphorylation of this residue. 14-3-3 proteins are phosphoserine-binding proteins which have been shown to interact directly with components of the mitogenic and apoptotic signalling pathways, suggesting that they participate in growth regulation. Our findings suggest that 14-3-3 proteins may play a role in IGFIR signal transduction and may contribute to the differences in IGF and IR signalling capabilities. PMID:9581554

  3. Isoform-specific cleavage of 14-3-3 proteins in apoptotic JURL-MK1 cells.

    PubMed

    Kuzelová, Katerina; Grebenová, Dana; Pluskalová, Michaela; Kavan, Daniel; Halada, Petr; Hrkal, Zbynek

    2009-03-01

    The proteins of 14-3-3 family are substantially involved in the regulation of many biological processes including the apoptosis. We studied the changes in the expression of five 14-3-3 isoforms (beta, gamma, epsilon, tau, and zeta) during the apoptosis of JURL-MK1 and K562 cells. The expression level of all these proteins markedly decreased in relation with the apoptosis progression and all isoforms underwent truncation, which probably corresponds to the removal of several C-terminal amino acids. The observed 14-3-3 modifications were partially blocked by caspase-3 inhibition. In addition to caspases, a non-caspase protease is likely to contribute to 14-3-3's cleavage in an isoform-specific manner. While 14-3-3 gamma seems to be cleaved mainly by caspase-3, the alternative mechanism is essentially involved in the case of 14-3-3 tau, and a combined effect was observed for the isoforms epsilon, beta, and zeta. We suggest that the processing of 14-3-3 proteins could form an integral part of the programmed cell death or at least of some apoptotic pathways. PMID:19173300

  4. Arsenite Stress Down-regulates Phosphorylation and 14-3-3 Binding of Leucine-rich Repeat Kinase 2 (LRRK2), Promoting Self-association and Cellular Redistribution*

    PubMed Central

    Mamais, Adamantios; Chia, Ruth; Beilina, Alexandra; Hauser, David N.; Hall, Christine; Lewis, Patrick A.; Cookson, Mark R.; Bandopadhyay, Rina

    2014-01-01

    Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a common genetic cause of Parkinson disease, but the mechanisms whereby LRRK2 is regulated are unknown. Phosphorylation of LRRK2 at Ser910/Ser935 mediates interaction with 14-3-3. Pharmacological inhibition of its kinase activity abolishes Ser910/Ser935 phosphorylation and 14-3-3 binding, and this effect is also mimicked by pathogenic mutations. However, physiological situations where dephosphorylation occurs have not been defined. Here, we show that arsenite or H2O2-induced stresses promote loss of Ser910/Ser935 phosphorylation, which is reversed by phosphatase inhibition. Arsenite-induced dephosphorylation is accompanied by loss of 14-3-3 binding and is observed in wild type, G2019S, and kinase-dead D2017A LRRK2. Arsenite stress stimulates LRRK2 self-association and association with protein phosphatase 1α, decreases kinase activity and GTP binding in vitro, and induces translocation of LRRK2 to centrosomes. Our data indicate that signaling events induced by arsenite and oxidative stress may regulate LRRK2 function. PMID:24942733

  5. Histone Deacetylase Inhibition–Mediated Differentiation of RGC-5 Cells and Interaction with Survival

    PubMed Central

    Schwechter, Brandon R.; Millet, Lucia E.; Levin, Leonard A.

    2008-01-01

    PURPOSE The acetylation state of histones is modulated by histone deacetylase (HDAC) and histone acetyltransferase and is an important component in regulating gene transcription, including neuronal differentiation. The authors studied the relationship between histone acetylation and the differentiation and survival of the RGC-5 cell line and compared it with nontranscriptional-dependent differentiation with staurosporine. METHODS The retinal ganglion cell line RGC-5 was treated with trichostatin A (TSA), other HDAC inhibitors, and staurosporine; differentiation, neuritogenesis, neurotrophic factor dependence, and dependence on RNA transcription were assessed. RESULTS TSA caused significant differentiation and neuritogenesis. Differences between HDAC inhibition and staurosporine differentiation included the proportion of differentiated cells, cell viability, cell morphology, and transcriptional dependence. HDAC inhibition, but not staurosporine differentiation, resulted in RGC-5 cells that were neurotrophic factor dependent. CONCLUSIONS These results implicate two different mechanisms for RGC-5 differentiation, with a common downstream effect on neurite outgrowth but a differential effect on neurotrophic factor dependence. PMID:17525221

  6. 14-3-3sigma is a cruciform DNA binding protein and associates in vivo with origins of DNA replication.

    PubMed

    Alvarez, David; Novac, Olivia; Callejo, Mario; Ruiz, Marcia T; Price, Gerald B; Zannis-Hadjopoulos, Maria

    2002-01-01

    A human cruciform binding protein (CBP) was previously shown to bind to cruciform DNA in a structure-specific manner and be a member of the 14-3-3 protein family. CBP had been found to contain the 14-3-3 isoforms beta, gamma, epsilon, and zeta. Here, we show by Western blot analysis that the CBP-cruciform DNA complex eluted from band-shift polyacrylamide gels also contains the 14-3-3sigma isoform, which is present in HeLa cell nuclear extracts. An antibody specific for the 14-3-3sigma isoform was able to interfere with the formation of the CBP-cruciform DNA complex. The effect of the same anti-14-3-3sigma antibody in the in vitro replication of p186, a plasmid containing the minimal replication origin of the monkey origin ors8, was also analyzed. Pre-incubation of total HeLa cell extracts with this antibody decreased p186 in vitro replication to approximately 30% of control levels, while non-specific antibodies had no effect. 14-3-3sigma was found to associate in vivo with the monkey origins of DNA replication ors8 and ors12 in a cell cycle-dependent manner, as assayed by a chromatin immunoprecipitation (ChIP) assay that involved formaldehyde cross-linking, followed by immunoprecipitation with anti-14-3-3sigma antibody and quantitative PCR. The association of 14-3-3sigma with the replication origins was maximal at the G(1)/S phase. The results indicate that 14-3-3sigma is an origin binding protein involved in the regulation of DNA replication via cruciform DNA binding. PMID:12244572

  7. Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using an Affinity-Based Computational Approach.

    PubMed

    Li, Zhao; Tang, Jijun; Guo, Fei

    2016-01-01

    The 14-3-3 proteins are a highly conserved family of homodimeric and heterodimeric molecules, expressed in all eukaryotic cells. In human cells, this family consists of seven distinct but highly homologous 14-3-3 isoforms. 14-3-3σ is the only isoform directly linked to cancer in epithelial cells, which is regulated by major tumor suppressor genes. For each 14-3-3 isoform, we have 1,000 peptide motifs with experimental binding affinity values. In this paper, we present a novel method for identifying peptide motifs binding to 14-3-3σ isoform. First, we propose a sampling criteria to build a predictor for each new peptide sequence. Then, we select nine physicochemical properties of amino acids to describe each peptide motif. We also use auto-cross covariance to extract correlative properties of amino acids in any two positions. Finally, we consider elastic net to predict affinity values of peptide motifs, based on ridge regression and least absolute shrinkage and selection operator (LASSO). Our method tests on the 1,000 known peptide motifs binding to seven 14-3-3 isoforms. On the 14-3-3σ isoform, our method has overall pearson-product-moment correlation coefficient (PCC) and root mean squared error (RMSE) values of 0.84 and 252.31 for N-terminal sublibrary, and 0.77 and 269.13 for C-terminal sublibrary. We predict affinity values of 16,000 peptide sequences and relative binding ability across six permutated positions similar with experimental values. We identify phosphopeptides that preferentially bind to 14-3-3σ over other isoforms. Several positions on peptide motifs are in the same amino acid category with experimental substrate specificity of phosphopeptides binding to 14-3-3σ. Our method is fast and reliable and is a general computational method that can be used in peptide-protein binding identification in proteomics research. PMID:26828594

  8. Sporadic Creutzfeldt-Jakob disease diagnostic accuracy is improved by a new CSF ELISA 14-3-3γ assay.

    PubMed

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-05-13

    Protein 14-3-3 is a reliable marker of rapid neuronal damage, specifically increased in cerebrospinal fluid (CSF) of sporadic Creutzfeldt-Jakob disease (sCJD) patients. Its detection is usually performed by Western Blot (WB), prone to methodological issues. Our aim was to evaluate the diagnostic performance of a recently developed quantitative enzyme-linked immunosorbent (ELISA) assay for 14-3-3γ, in comparison with WB and other neurodegeneration markers. CSF samples from 145 patients with suspicion of prion disease, later classified as definite sCJD (n=72) or Non-prion diseases (Non-CJD; n=73) comprised our population. 14-3-3 protein was determined by WB and ELISA. Total Tau (t-Tau) and phosphorylated Tau (p-Tau) were also evaluated. Apolipoprotein E gene (ApoE) and prionic protein gene (PRNP) genotyping was assessed. ELISA 14-3-3γ levels were significantly increased in sCJD compared to Non-CJD patients (p<0.001), showing very good accuracy (AUC=0.982; sensitivity=97%; specificity=94%), and matching WB results in 81% of all cases. It strongly correlated with t-Tau and p-Tau (p<0.0001), showing slightly higher specificity (14-3-3 WB - 63%; Tau - 90%; p-Tau/t-Tau ratio - 88%). From WB inconclusive results (n=44), ELISA 14-3-3γ correctly classified 41 patients. Additionally, logistic regression analysis selected ELISA 14-3-3γ as the best single predictive marker for sCJD (overall accuracy=93%). ApoE and PRNP genotypes did not influence ELISA 14-3-3γ levels. Despite specificity for 14-3-3γ isoform, ELISA results not only match WB evaluation but also help discrimination of inconclusive results. Our results therefore reinforce this assay as a single screening test, allowing higher sample throughput and unequivocal results. PMID:26940479

  9. Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B

    PubMed Central

    Russo, Roberta; Zito, Francesca; Costa, Caterina; Bonaventura, Rosa

    2010-01-01

    Members of the 14-3-3 protein family are involved in many important cellular events, including stress response, survival and apoptosis. Genes of the 14-3-3 family are conserved from plants to humans, and some members are responsive to UV radiation. Here, we report the isolation of the complete cDNA encoding the 14-3-3 epsilon isoform from Paracentrotus lividus sea urchin embryos, referred to as Pl14-3-3ε, and the phylogenetic relationship with other homologues described in different phyla. Pl14-3-3ε mRNA levels were measured by QPCR during development and found to increase from the mesenchyme blastula to the prism stage. In response to UV-B (312 nm) exposure, early stage embryos collected 2 h later showed a 2.3-fold (at 400 J/m2) and a 2.7-fold (at 800 J/m2) increase in Pl14-3-3ε transcript levels compared with controls. The spatial expression of Pl14-3-3ε mRNA, detected by whole mount in situ hybridization in both control and UV-B exposed embryos, harvested at late developmental stages, showed transcripts to be located in the archenteron of gastrula stage and widely distributed in all germ layers, respectively. The Pl14-3-3ε mRNA delocalization parallels the failure in archenteron elongation observed morphologically, as well as the lack of specific endoderm markers, investigated by indirect immuno-fluorescence on whole mount embryos. Results confirm the involvement of 14-3-3ε in the stress response elicited by UV-B and demonstrate, for the first time, its contribution at the transcriptional level in the sea urchin embryo. PMID:20607471

  10. Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using an Affinity-Based Computational Approach

    PubMed Central

    Li, Zhao; Tang, Jijun; Guo, Fei

    2016-01-01

    The 14-3-3 proteins are a highly conserved family of homodimeric and heterodimeric molecules, expressed in all eukaryotic cells. In human cells, this family consists of seven distinct but highly homologous 14-3-3 isoforms. 14-3-3σ is the only isoform directly linked to cancer in epithelial cells, which is regulated by major tumor suppressor genes. For each 14-3-3 isoform, we have 1,000 peptide motifs with experimental binding affinity values. In this paper, we present a novel method for identifying peptide motifs binding to 14-3-3σ isoform. First, we propose a sampling criteria to build a predictor for each new peptide sequence. Then, we select nine physicochemical properties of amino acids to describe each peptide motif. We also use auto-cross covariance to extract correlative properties of amino acids in any two positions. Finally, we consider elastic net to predict affinity values of peptide motifs, based on ridge regression and least absolute shrinkage and selection operator (LASSO). Our method tests on the 1,000 known peptide motifs binding to seven 14-3-3 isoforms. On the 14-3-3σ isoform, our method has overall pearson-product-moment correlation coefficient (PCC) and root mean squared error (RMSE) values of 0.84 and 252.31 for N–terminal sublibrary, and 0.77 and 269.13 for C–terminal sublibrary. We predict affinity values of 16,000 peptide sequences and relative binding ability across six permutated positions similar with experimental values. We identify phosphopeptides that preferentially bind to 14-3-3σ over other isoforms. Several positions on peptide motifs are in the same amino acid category with experimental substrate specificity of phosphopeptides binding to 14-3-3σ. Our method is fast and reliable and is a general computational method that can be used in peptide-protein binding identification in proteomics research. PMID:26828594

  11. Mammalian Lysine Histone Demethylase KDM2A Regulates E2F1-Mediated Gene Transcription in Breast Cancer Cells

    PubMed Central

    Rizwani, Wasia; Schaal, Courtney; Kunigal, Sateesh; Coppola, Domenico; Chellappan, Srikumar

    2014-01-01

    It is established that histone modifications like acetylation, methylation, phosphorylation and ubiquitination affect chromatin structure and modulate gene expression. Lysine methylation/demethylation on Histone H3 and H4 is known to affect transcription and is mediated by histone methyl transferases and histone demethylases. KDM2A/JHDM1A/FBXL11 is a JmjC-containing histone demethylase that targets mono- and dimethylated Lys36 residues of Histone H3; its function in breast cancer is not fully understood. Here we show that KDM2A is strongly expressed in myoepithelial cells (MEPC) in breast cancer tissues by immunohistochemistry. Ductal cells from ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC) show positive staining for KDM2A, the expression decreases with disease progression to metastasis. Since breast MEPCs have tumor-suppressive and anti-angiogenic properties, we hypothesized that KDM2A could be contributing to some of these functions. Silencing KDM2A with small interfering RNAs demonstrated increased invasion and migration of breast cancer cells by suppressing a subset of matrix metalloproteinases (MMP-2, -9, -14 and -15), as seen by real-time PCR. HUVEC cells showed increased angiogenic tubule formation ability in the absence of KDM2A, with a concomitant increase in the expression of VEGF receptors, FLT-1 and KDR. KDM2A physically bound to both Rb and E2F1 in a cell cycle dependent manner and repressed E2F1 transcriptional activity. Chromatin immunoprecipitation (ChIP) assays revealed that KDM2A associates with E2F1-regulated proliferative promoters CDC25A and TS in early G-phase and dissociates in S-phase. Further, KDM2A could also be detected on MMP9, 14 and 15 promoters, as well as promoters of FLT1 and KDR. KDM2A could suppress E2F1-mediated induction of these promoters in transient transfection experiments. These results suggest a regulatory role for KDM2A in breast cancer cell invasion and migration, through the regulation of E2F1

  12. 14-3-3 Proteins SGF14c and SGF14l Play Critical Roles during Soybean Nodulation1[W][OA

    PubMed Central

    Radwan, Osman; Wu, Xia; Govindarajulu, Manjula; Libault, Marc; Neece, David J.; Oh, Man-Ho; Berg, R. Howard; Stacey, Gary; Taylor, Christopher G.; Huber, Steven C.; Clough, Steven J.

    2012-01-01

    The soybean (Glycine max) genome contains 18 members of the 14-3-3 protein family, but little is known about their association with specific phenotypes. Here, we report that the Glyma0529080 Soybean G-box Factor 14-3-3c (SGF14c) and Glyma08g12220 (SGF14l) genes, encoding 14-3-3 proteins, appear to play essential roles in soybean nodulation. Quantitative reverse transcription-polymerase chain reaction and western-immunoblot analyses showed that SGF14c mRNA and protein levels were specifically increased in abundance in nodulated soybean roots 10, 12, 16, and 20 d after inoculation with Bradyrhizobium japonicum. To investigate the role of SGF14c during soybean nodulation, RNA interference was employed to silence SGF14c expression in soybean roots using Agrobacterium rhizogenes-mediated root transformation. Due to the paleopolyploid nature of soybean, designing a specific RNA interference sequence that exclusively targeted SGF14c was not possible. Therefore, two highly similar paralogs (SGF14c and SGF14l) that have been shown to function as dimers were silenced. Transcriptomic and proteomic analyses showed that mRNA and protein levels were significantly reduced in the SGF14c/SGF14l-silenced roots, and these roots exhibited reduced numbers of mature nodules. In addition, SGF14c/SGF14l-silenced roots contained large numbers of arrested nodule primordia following B. japonicum inoculation. Transmission electron microscopy further revealed that the host cytoplasm and membranes, except the symbiosome membrane, were severely degraded in the failed nodules. Altogether, transcriptomic, proteomic, and cytological data suggest a critical role of one or both of these 14-3-3 proteins in early development stages of soybean nodules. PMID:23060368

  13. Recruitment of histone methyltransferase G9a mediates transcriptional repression of Fgf21 gene by E4BP4 protein.

    PubMed

    Tong, Xin; Zhang, Deqiang; Buelow, Katie; Guha, Anirvan; Arthurs, Blake; Brady, Hugh J M; Yin, Lei

    2013-02-22

    The liver responds to fasting-refeeding cycles by reprogramming expression of metabolic genes. Fasting potently induces one of the key hepatic hormones, fibroblast growth factor 21 (FGF21), to promote lipolysis, fatty acid oxidation, and ketogenesis, whereas refeeding suppresses its expression. We previously reported that the basic leucine zipper transcription factor E4BP4 (E4 binding protein 4) represses Fgf21 expression and disrupts its circadian oscillations in cultured hepatocytes. However, the epigenetic mechanism for E4BP4-dependent suppression of Fgf21 has not yet been addressed. Here we present evidence that histone methyltransferase G9a mediates E4BP4-dependent repression of Fgf21 during refeeding by promoting repressive histone modification. We find that Fgf21 expression is up-regulated in E4bp4 knock-out mouse liver. We demonstrate that the G9a-specific inhibitor BIX01294 abolishes suppression of the Fgf21 promoter activity by E4BP4, whereas overexpression of E4bp4 leads to increased levels of dimethylation of histone 3 lysine 9 (H3K9me2) around the Fgf21 promoter region. Furthermore, we also show that E4BP4 interacts with G9a, and knockdown of G9a blocks repression of Fgf21 promoter activity and expression in cells overexpressing E4bp4. A G9a mutant lacking catalytic activity, due to deletion of the SET domain, fails to inhibit the Fgf21 promoter activity. Importantly, acute hepatic knockdown by adenoviral shRNA targeting G9a abolishes Fgf21 repression by refeeding, concomitant with decreased levels of H3K9me2 around the Fgf21 promoter region. In summary, we show that G9a mediates E4BP4-dependent suppression of hepatic Fgf21 by enhancing histone methylation (H3K9me2) of the Fgf21 promoter. PMID:23283977

  14. Phosphodiesterase 3A binds to 14-3-3 proteins in response to PMA-induced phosphorylation of Ser428

    PubMed Central

    Pozuelo Rubio, Mercedes; Campbell, David G.; Morrice, Nicholas A.; Mackintosh, Carol

    2005-01-01

    PDE3A (phosphodiesterase 3A) was identified as a phosphoprotein that co-immunoprecipitates with endogenous 14-3-3 proteins from HeLa cell extracts, and binds directly to 14-3-3 proteins in a phosphorylation-dependent manner. Among cellular stimuli tested, PMA promoted maximal binding of PDE3A to 14-3-3 proteins. While p42/p44 MAPK (mitogen-activated protein kinase), SAPK2 (stress-activated protein kinase 2)/p38 and PKC (protein kinase C) were all activated by PMA in HeLa cells, the PMA-induced binding of PDE3A to 14-3-3 proteins was inhibited by the non-specific PKC inhibitors Ro 318220 and H-7, but not by PD 184352, which inhibits MAPK activation, nor by SB 203580 and BIRB0796, which inhibit SAPK2 activation. Binding of PDE3A to 14-3-3 proteins was also blocked by the DNA replication inhibitors aphidicolin and mimosine, but the PDE3A–14-3-3 interaction was not cell-cycle-regulated. PDE3A isolated from cells was able to bind to 14-3-3 proteins after in vitro phosphorylation with PKC isoforms. Using MS/MS of IMAC (immobilized metal ion affinity chromatography)-enriched tryptic phosphopeptides and phosphospecific antibodies, at least five sites on PDE3A were found to be phosphorylated in vivo, of which Ser428 was selectively phosphorylated in response to PMA and dephosphorylated in cells treated with aphidicolin and mimosine. Phosphorylation of Ser428 therefore correlated with 14-3-3 binding to PDE3A. Ser312 of PDE3A was phosphorylated in an H-89-sensitive response to forskolin, indicative of phosphorylation by PKA (cAMP-dependent protein kinase), but phosphorylation at this site did not stimulate 14-3-3 binding. Thus 14-3-3 proteins can discriminate between sites in a region of multisite phosphorylation on PDE3A. An additional observation was that the cytoskeletal cross-linker protein plectin-1 coimmunoprecipitated with PDE3A independently of 14-3-3 binding. PMID:16153182

  15. 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase

    SciTech Connect

    Mizuno, Emi; Kitamura, Naomi; Komada, Masayuki

    2007-10-01

    The deubiquitinating enzyme UBPY, also known as USP8, regulates cargo sorting and membrane traffic at early endosomes. Here we demonstrate the regulatory mechanism of the UBPY catalytic activity. We identified 14-3-3 {epsilon}, {gamma}, and {zeta} as UBPY-binding proteins using co-immunoprecipitation followed by mass spectrometric analysis. The 14-3-3 binding of UBPY was inhibited by mutating the consensus 14-3-3-binding motif RSYS{sup 680}SP, by phosphatase treatment, and by competition with the Ser{sup 680}-phosphorylated RSYS{sup 680}SP peptide. Metabolic labeling with [{sup 32}P]orthophosphate and immunoblotting using antibody against the phosphorylated 14-3-3-binding motif showed that Ser{sup 680} is a major phosphorylation site in UBPY. These results indicated that 14-3-3s bind to the region surrounding Ser{sup 680} in a phosphorylation-dependent manner. The mutation at Ser{sup 680} led to enhanced ubiquitin isopeptidase activity of UBPY toward poly-ubiquitin chains and a cellular substrate, epidermal growth factor receptor, in vitro and in vivo. Moreover, addition of 14-3-3{epsilon} inhibited the UBPY activity in vitro. Finally, UBPY was dephosphorylated at Ser{sup 680} and dissociated from 14-3-3s in the M phase, resulting in enhanced activity of UBPY during cell division. We conclude that UBPY is catalytically inhibited in a phosphorylation-dependent manner by 14-3-3s during the interphase, and this regulation is cancelled in the M phase.

  16. Histone H4 Lys 20 methyltransferase SET8 promotes androgen receptor-mediated transcription activation in prostate cancer

    SciTech Connect

    Yao, Lushuai; Li, Yanyan; Du, Fengxia; Han, Xiao; Li, Xiaohua; Niu, Yuanjie; Ren, Shancheng; Sun, Yingli

    2014-07-18

    Highlights: • Dihydrotestosterone stimulates H4K20me1 enrichment at the PSA promoter. • SET8 promotes AR-mediated transcription activation. • SET8 interacts with AR and promotes cell proliferation. - Abstract: Histone methylation status in different lysine residues has an important role in transcription regulation. The effect of H4K20 monomethylation (H4K20me1) on androgen receptor (AR)-mediated gene transcription remains unclear. Here we show that AR agonist stimulates the enrichment of H4K20me1 and SET8 at the promoter of AR target gene PSA in an AR dependent manner. Furthermore, SET8 is crucial for the transcription activation of PSA. Co-immunoprecipitation analyses demonstrate that SET8 interacts with AR. Therefore, we conclude that SET8 is involved in AR-mediated transcription activation, possibly through its interaction with AR and H4K20me1 modification.

  17. Proteomic analysis of media from lung cancer cells reveals role of 14-3-3 proteins in cachexia

    PubMed Central

    McLean, Julie B.; Moylan, Jennifer S.; Horrell, Erin M. W.; Andrade, Francisco H.

    2015-01-01

    Aims: At the time of diagnosis, 60% of lung cancer patients present with cachexia, a severe wasting syndrome that increases morbidity and mortality. Tumors secrete multiple factors that contribute to cachectic muscle wasting, and not all of these factors have been identified. We used Orbitrap electrospray ionization mass spectrometry to identify novel cachexia-inducing candidates in media conditioned with Lewis lung carcinoma cells (LCM). Results: One-hundred and 58 proteins were confirmed in three biological replicates. Thirty-three were identified as secreted proteins, including 14-3-3 proteins, which are highly conserved adaptor proteins known to have over 200 binding partners. We confirmed the presence of extracellular 14-3-3 proteins in LCM via western blot and discovered that LCM contained less 14-3-3 content than media conditioned with C2C12 myotubes. Using a neutralizing antibody, we depleted extracellular 14-3-3 proteins in myotube culture medium, which resulted in diminished myosin content. We identified the proposed receptor for 14-3-3 proteins, CD13, in differentiated C2C12 myotubes and found that inhibiting CD13 via Bestatin also resulted in diminished myosin content. Conclusions: Our novel findings show that extracellular 14-3-3 proteins may act as previously unidentified myokines and may signal via CD13 to help maintain muscle mass. PMID:25972815

  18. 14-3-3ζ promotes hepatocellular carcinoma venous metastasis by modulating hypoxia-inducible factor-1α

    PubMed Central

    Shi, Jie; Yu, Hongming; Zhang, Long; Wang, Kang; Liu, Shangrong; Cheng, Shuqun

    2016-01-01

    Portal vein tumor thrombus (PVTT) is a type of intrahepatic metastasis arising from hepatocellular carcinoma (HCC) and is highly correlated with a poor prognosis. Hypoxia is common in solider tumors, including HCC, where it alters the behavior of HCC cells. We asked whether and how hypoxia contributes to PVTT formation. We demonstrated that increased intratumoral hypoxia is strongly associated with PVTT formation in HCC. We also showed that 14-3-3ζ is induced by hypoxia in HCC cells and correlates with PVTT formation in clinical HCC samples. In addition, 14-3-3ζ up-regulates HIF-1α expression by recruiting HDAC4, which prevents HIF-1α acetylation, thereby stabilizing the protein. Under hypoxic conditions in vitro, 14-3-3ζ knockdown inhibits hypoxia-induced HCC invasion by the HIF-1α/EMT pathway. Blockade of 14-3-3ζ in HCC cells reduces PVTT formation and distant lung metastasis in vivo. Moreover, a combination of 14-3-3ζ and HIF-1α expression is more prognostic for HCC patients than either protein alone. These results suggest that the hypoxia/14-3-3ζ/HIF-1α pathway plays an important role in PVTT formation and HCC metastasis. PMID:26910835

  19. 14-3-3{sigma} controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    SciTech Connect

    Xin, Ying; Lu, Qingxian; Li, Qiutang

    2010-02-19

    14-3-3{sigma} (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3{sigma} mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3{sigma} activity in corneal epithelial cells by overexpressing dominative negative 14-3-3{sigma} led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3{sigma} mutant-expressing corneal epithelial cells. We conclude that 14-3-3{sigma} is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  20. The alternative role of 14-3-3 zeta as a sweeper of misfolded proteins in disease conditions.

    PubMed

    Kaneko, Kiyotoshi; Hachiya, Naomi S

    2006-01-01

    Here, we propose a novel hypothesis that 14-3-3 zeta might act as a sweeper of misfolded proteins by facilitating the formation of aggregates, which are referred to as inclusion bodies. Studies on the localization of the 14-3-3 proteins in different types of inclusion bodies in the brain including neurofibrillary tangle in Alzheimer's disease, pick bodies in Pick's disease, Lewy body-like hyaline inclusions in sporadic amyotrophic lateral sclerosis, prion/florid plaques in sporadic/variant Creutzfeldt-Jakob disease, nuclear inclusions in spinocerebellar ataxia-1, and possibly Lewy bodies in Parkinson's disease suggest a close association of these diseases with 14-3-3 zeta. The highly conserved hydrophobic surface of the amphipathic groove in 14-3-3 zeta represents a general mechanism with diverse cellular proteins, and it may also allow for the molecular recognition of misfolded proteins by hydrophobic interaction in disease conditions. When the abnormal processing of misfolded proteins overwhelms the quality control systems of the cell, it is likely that 14-3-3 zeta is recruited to form deposits of protein aggregates with nonnative, misfolded proteins in order to protect the cell against toxicity. Hence, 14-3-3 zeta may be considered as an auxiliary therapeutic tool in the protein aggregation disorders. PMID:16516399

  1. 14-3-3ε and ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain

    PubMed Central

    Wachi, Tomoka; Hunt, Robert F.; Baraban, Scott C.; Taya, Shinichiro; Ramshaw, Hayley; Kaibuchi, Kozo; Schwarz, Quenten P.; Lopez, Angel F.

    2014-01-01

    During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of β-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades. PMID:25186760

  2. 14-3-3ε and ζ regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain.

    PubMed

    Toyo-oka, Kazuhito; Wachi, Tomoka; Hunt, Robert F; Baraban, Scott C; Taya, Shinichiro; Ramshaw, Hayley; Kaibuchi, Kozo; Schwarz, Quenten P; Lopez, Angel F; Wynshaw-Boris, Anthony

    2014-09-01

    During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of β-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades. PMID:25186760

  3. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism.

    PubMed

    Liu, Lian; Wang, Jian-Fei; Fan, Jie; Rao, Yi-Song; Liu, Fang; Yan, You-E; Wang, Hui

    2016-01-01

    Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression. PMID:27598153

  4. Akt and 14-3-3 control a PACS-2 homeostatic switch that integrates membrane traffic with TRAIL-induced apoptosis

    PubMed Central

    Aslan, Joseph E.; You, Huihong; Williamson, Danielle M.; Endig, Jessica; Youker, Robert T.; Thomas, Laurel; Shu, Hongjun; Du, Yuhong; Milewski, Robert L.; Brush, Matthew H.; Possemato, Anthony; Sprott, Kam; Fu, Haian; Greis, Kenneth D.; Runckel, Douglas N.; Vogel, Arndt; Thomas, Gary

    2009-01-01

    Summary TRAIL selectively kills diseased cells in vivo, spurring interest in this death ligand as a potential therapeutic. However, many cancer cells are resistant to TRAIL suggesting the mechanism mediating TRAIL-induced apoptosis is complex. Here we identify PACS-2 as an essential TRAIL effector, required for killing tumor cells in vitro and virally infected hepatocytes in vivo. PACS-2 is phosphorylated at Ser437 in vivo and pharmacologic and genetic studies demonstrate Akt is an in vivo Ser437 kinase. Akt cooperates with 14-3-3 to regulate the homeostatic and apoptotic properties of PACS-2 that mediate TRAIL action. Phosphorylated Ser437 binds 14-3-3 with high affinity, which represses PACS-2 apoptotic activity and is required for PACS-2 to mediate trafficking of membrane cargo. TRAIL triggers dephosphorylation of Ser437, reprogramming PACS-2 to promote apoptosis. Together, these studies identify the phosphorylation state of PACS-2 Ser437 as a molecular switch that integrates cellular homeostasis with TRAIL-induced apoptosis. PMID:19481529

  5. Akt and 14-3-3 control a PACS-2 homeostatic switch that integrates membrane traffic with TRAIL-induced apoptosis.

    PubMed

    Aslan, Joseph E; You, Huihong; Williamson, Danielle M; Endig, Jessica; Youker, Robert T; Thomas, Laurel; Shu, Hongjun; Du, Yuhong; Milewski, Robert L; Brush, Matthew H; Possemato, Anthony; Sprott, Kam; Fu, Haian; Greis, Kenneth D; Runckel, Douglas N; Vogel, Arndt; Thomas, Gary

    2009-05-14

    TRAIL selectively kills diseased cells in vivo, spurring interest in this death ligand as a potential therapeutic. However, many cancer cells are resistant to TRAIL, suggesting the mechanism mediating TRAIL-induced apoptosis is complex. Here we identify PACS-2 as an essential TRAIL effector, required for killing tumor cells in vitro and virally infected hepatocytes in vivo. PACS-2 is phosphorylated at Ser437 in vivo, and pharmacologic and genetic studies demonstrate Akt is an in vivo Ser437 kinase. Akt cooperates with 14-3-3 to regulate the homeostatic and apoptotic properties of PACS-2 that mediate TRAIL action. Phosphorylated Ser437 binds 14-3-3 with high affinity, which represses PACS-2 apoptotic activity and is required for PACS-2 to mediate trafficking of membrane cargo. TRAIL triggers dephosphorylation of Ser437, reprogramming PACS-2 to promote apoptosis. Together, these studies identify the phosphorylation state of PACS-2 Ser437 as a molecular switch that integrates cellular homeostasis with TRAIL-induced apoptosis. PMID:19481529

  6. CSF Tau proteins reduce misdiagnosis of sporadic Creutzfeldt-Jakob disease suspected cases with inconclusive 14-3-3 result.

    PubMed

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-09-01

    Cerebrospinal fluid (CSF) 14-3-3 protein supports sporadic Creutzfeldt-Jakob (sCJD) diagnosis, but often leads to weak-positive results and lacks standardization. In this study, we explored the added diagnostic value of Total Tau (t-Tau) and phosphorylated Tau (p-Tau) in sCJD diagnosis, particularly in the cases with inconclusive 14-3-3 result. 95 definite sCJD and 287 patients without prion disease (non-CJD) were included in this study. CSF samples were collected in routine clinical diagnosis and analysed for 14-3-3 detection by Western blot (WB). CSF t-Tau and p-Tau were quantified by commercial ELISA kits and PRNP and APOE genotyping assessed by PCR-RFLP. In a regression analysis of the whole cohort, 14-3-3 protein revealed an overall accuracy of 82 % (sensitivity = 96.7 %; specificity = 75.6 %) for sCJD. Regarding 14-3-3 clear positive results, we observed no added value either of t-Tau alone or p-Tau/t-Tau ratio in the model. On the other hand, considering 14-3-3 weak-positive cases, t-Tau protein increased the overall accuracy of 14-3-3 alone from 91 to 94 % and specificity from 74 to 93 % (p < 0.05), with no sensitivity improvement. However, inclusion of p-Tau/t-Tau ratio did not significantly improve the first model (p = 0.0595). Globally, t-Tau protein allowed a further discrimination of 65 % within 14-3-3 inconclusive results. Furthermore, PRNP MV genotype showed a trend to decrease 14-3-3 sensitivity (p = 0.051), but such effect was not seen on t-Tau protein. In light of these results, we suggest that t-Tau protein assay is of significant importance as a second marker in identifying 14-3-3 false-positive results among sCJD probable cases. PMID:27357003

  7. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    PubMed

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening. PMID:22009053

  8. The Cohesin loading factor NIPBL recruits histone deacetylases to mediate local chromatin modifications

    PubMed Central

    Jahnke, Philipp; Xu, Weizhen; Wülling, Manuela; Albrecht, Melanie; Gabriel, Heinz; Gillessen-Kaesbach, Gabriele; Kaiser, Frank J.

    2008-01-01

    Cornelia de Lange Syndrome (CdLS) is a rare congenital malformation disorder. About half of the patients with CdLS carry mutations in the NIPBL gene encoding the NIPBL protein, a subunit of the Cohesin loading complex. Recent studies show association of Cohesin with chromatin-remodeling complexes, either by establishing cohesion or by recruiting Cohesin to specific chromosome locations. In yeast two-hybrid assays, we identified an interaction of NIPBL with the histone deacetylases -1 and -3. These interactions were confirmed in mammalian cells by coimmunoprecipitation and a critical region for interaction was defined to a stretch of 163 amino acids of a highly conserved region of NIPBL, which is mutated in patients with CdLS. Utilizing reporter gene assays, we could show that NIPBL fused to the GAL4-DNA-binding domain (GAL4-DBD) represses promoter activity via the recruitment of histone deacetylases. Interestingly, this effect is dramatically reduced by both NIPBL missense mutations identified in CdLS and by chemical inhibition of the histone deacetylases. Our data are the first to indicate a molecular and functional connection of NIPBL with chromatin-remodeling processes via the direct interaction with histone deacetylases. PMID:18854353

  9. Attenuation of Histone Methyltransferase KRYPTONITE-mediated transcriptional gene silencing by Geminivirus

    PubMed Central

    Sun, Yan-Wei; Tee, Chuan-Sia; Ma, Yong-Huan; Wang, Gang; Yao, Xiang-Mei; Ye, Jian

    2015-01-01

    Although histone H3K9 methylation has been intensively studied in animals and a model plant Arabidopsis thaliana, little is known about the evolution of the histone methyltransferase and its roles in plant biotic stress response. Here we identified a Nicotiana benthamiana homolog of H3K9 histone methyltransferase KRYPTONITE (NbKYP) and demonstrated its fundamental roles on methylation of plant and virus, beside of leading to the suppression of endogenous gene expression and virus replication. NbKYP and another gene encoding DNA methyltransferase CHROMOMETHYLTRANSFERASE 3 (NbCMT3-1) were further identified as the key components of maintenance of transcriptional gene silencing, a DNA methylation involved anti-virus machinery. All three types of DNA methylations (asymmetric CHH and symmetric CHG/CG) were severely affected in NbKYP-silenced plants, but only severe reduction of CHG methylation found in NbCMT3-1-silenced plants. Attesting to the importance of plant histone H3K9 methylation immunity to virus, the virulence of geminiviruses requires virus-encoded trans-activator AC2 which inhibits the expression of KYP via activation of an EAR-motif-containing transcription repressor RAV2 (RELATED TO ABI3 and VP1). The reduction of KYP was correlated with virulence of various similar geminiviruses. These findings provide a novel mechanism of how virus trans-activates a plant endogenous anti-silencing machinery to gain high virulence. PMID:26602265

  10. C-terminal domains of a histone demethylase interact with a pair of transcription factors and mediate specific chromatin association

    PubMed Central

    Zhang, Shuaibin; Zhou, Bing; Kang, Yanyuan; Cui, Xia; Liu, Ao; Deleris, Angelique; Greenberg, Maxim V. C.; Cui, Xiekui; Qiu, Qi; Lu, Falong; Wohlschlegel, James A.; Jacobsen, Steven E.; Cao, Xiaofeng

    2015-01-01

    JmjC domain containing protein 14 (JMJ14) is an H3K4-specific histone demethylase that plays important roles in RNA-mediated gene silencing and flowering time regulation in Arabidopsis. However, how JMJ14 is recruited to its target genes remains unclear. Here, we show that the C-terminal FYRN and FYRC domains of JMJ14 are required for RNA silencing and flowering time regulation. Chromatin binding of JMJ14 is lost upon deletion of its FYRN and FYRC domains, and H3K4me3 is increased. FYRN and FYRC domains interact with a pair of NAC domain containing transcription factors, NAC050 and NAC052. Genome-wide ChIP analysis revealed that JMJ14 and NAC050/052 share a set of common target genes with CTTGNNNNNCAAG consensus sequences. Mutations in either NAC052 or NAC050 impair RNA-mediated gene silencing. Together, our findings demonstrate an important role of FYRN and FYRC domains in targeting JMJ14 through direct interaction with NAC050/052 proteins, which reveals a novel mechanism of histone demethylase recruitment. PMID:26617990

  11. GENERAL CONTROL NONREPRESSED PROTEIN5-Mediated Histone Acetylation of FERRIC REDUCTASE DEFECTIVE3 Contributes to Iron Homeostasis in Arabidopsis1

    PubMed Central

    Xing, Jiewen; Wang, Tianya; Liu, Zhenshan; Xu, Jianqin; Yao, Yingyin; Hu, Zhaorong; Peng, Huiru; Xin, Mingming; Yu, Futong; Zhou, Daoxiu; Ni, Zhongfu

    2015-01-01

    Iron homeostasis is essential for plant growth and development. Here, we report that a mutation in GENERAL CONTROL NONREPRESSED PROTEIN5 (GCN5) impaired iron translocation from the root to the shoot in Arabidopsis (Arabidopsis thaliana). Illumina high-throughput sequencing revealed 879 GCN5-regulated candidate genes potentially involved in iron homeostasis. Chromatin immunoprecipitation assays indicated that five genes (At3G08040, At2G01530, At2G39380, At2G47160, and At4G05200) are direct targets of GCN5 in iron homeostasis regulation. Notably, GCN5-mediated acetylation of histone 3 lysine 9 and histone 3 lysine 14 of FERRIC REDUCTASE DEFECTIVE3 (FRD3) determined the dynamic expression of FRD3. Consistent with the function of FRD3 as a citrate efflux protein, the iron retention defect in gcn5 was rescued and fertility was partly restored by overexpressing FRD3. Moreover, iron retention in gcn5 roots was significantly reduced by the exogenous application of citrate. Collectively, these data suggest that GCN5 plays a critical role in FRD3-mediated iron homeostasis. Our results provide novel insight into the chromatin-based regulation of iron homeostasis in Arabidopsis. PMID:26002909

  12. Phosphorylation Dependence and Stoichiometry of the Complex Formed by Tyrosine Hydroxylase and 14-3-3γ*

    PubMed Central

    Kleppe, Rune; Rosati, Sara; Jorge-Finnigan, Ana; Alvira, Sara; Ghorbani, Sadaf; Haavik, Jan; Valpuesta, José María; Heck, Albert J. R.; Martinez, Aurora

    2014-01-01

    Phosphorylated tyrosine hydroxylase (TH) can form complexes with 14-3-3 proteins, resulting in enzyme activation and stabilization. Although TH was among the first binding partners identified for these ubiquitous regulatory proteins, the binding stoichiometry and the activation mechanism remain unknown. To address this, we performed native mass spectrometry analyses of human TH (nonphosphorylated or phosphorylated on Ser19 (TH-pS19), Ser40 (TH-pS40), or Ser19 and Ser40 (TH-pS19pS40)) alone and together with 14-3-3γ. Tetrameric TH-pS19 (224 kDa) bound 14-3-3γ (58.3 kDa) with high affinity (Kd = 3.2 nM), generating complexes containing either one (282.4 kDa) or two (340.8 kDa) dimers of 14-3-3. Electron microscopy also revealed one major population of an asymmetric complex, consistent with one TH tetramer and one 14-3-3 dimer, and a minor population of a symmetric complex of one TH tetramer with two 14-3-3 dimers. Lower phosphorylation stoichiometries (0.15–0.54 phosphate/monomer) produced moderate changes in binding kinetics, but native MS detected much less of the symmetric TH:14-3-3γ complex. Interestingly, dephosphorylation of [32P]-TH-pS19 was mono-exponential for low phosphorylation stoichiometries (0.18–0.52), and addition of phosphatase accelerated the dissociation of the TH-pS19:14-3-3γ complex 3- to 4-fold. All together this is consistent with a model in which the pS19 residues in the TH tetramer contribute differently in the association to 14-3-3γ. Complex formation between TH-pS40 and 14-3-3γ was not detected via native MS, and surface plasmon resonance showed that the interaction was very weak. Furthermore, TH-pS19pS40 behaved similarly to TH-pS19 in terms of binding stoichiometry and affinity (Kd = 2.1 nM). However, we found that 14-3-3γ inhibited the phosphorylation rate of TH-pS19 by PKA (3.5-fold) on Ser40. We therefore conclude that Ser40 does not significantly contribute to the binding of 14-3-3γ, and rather has reduced accessibility in

  13. Small-Molecule Stabilization of the 14-3-3/Gab2 Protein-Protein Interaction (PPI) Interface.

    PubMed

    Bier, David; Bartel, Maria; Sies, Katharina; Halbach, Sebastian; Higuchi, Yusuke; Haranosono, Yu; Brummer, Tilman; Kato, Nobuo; Ottmann, Christian

    2016-04-19

    Small-molecule modulation of protein-protein interactions (PPIs) is one of the most promising new areas in drug discovery. In the vast majority of cases only inhibition or disruption of PPIs is realized, whereas the complementary strategy of targeted stabilization of PPIs is clearly under-represented. Here, we report the example of a semi-synthetic natural product derivative-ISIR-005-that stabilizes the cancer-relevant interaction of the adaptor protein 14-3-3 and Gab2. The crystal structure of ISIR-005 in complex with 14-3-3 and the binding motif of Gab2 comprising two phosphorylation sites (Gab2pS210pT391) showed how the stabilizing molecule binds to the rim-of-the-interface of the protein complex. Only in the direct vicinity of 14-3-3/Gab2pT391 site is a pre-formed pocket occupied by ISIR-005; binding of the Gab2pS210 motif to 14-3-3 does not create an interface pocket suitable for the molecule. Accordingly, ISIR-005 only stabilizes the binding of the Gab2pT391 but not the Gab2pS210 site. This study represents structural and biochemical proof of the druggability of the 14-3-3/Gab2 PPI interface with important implications for the development of PPI stabilizers. PMID:26644359

  14. Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3

    PubMed Central

    Galan, Jacob A.; Geraghty, Kathryn M.; Lavoie, Geneviève; Kanshin, Evgeny; Tcherkezian, Joseph; Calabrese, Viviane; Jeschke, Grace R.; Turk, Benjamin E.; Ballif, Bryan A.; Blenis, John; Thibault, Pierre; Roux, Philippe P.

    2014-01-01

    The Ras/MAPK signaling cascade regulates various biological functions, including cell growth and proliferation. As such, this pathway is frequently deregulated in several types of cancer, including most cases of melanoma. RSK (p90 ribosomal S6 kinase) is a MAPK-activated protein kinase required for melanoma growth and proliferation, but relatively little is known about its exact function and the nature of its substrates. Herein, we used a quantitative phosphoproteomics approach to define the signaling networks regulated by RSK in melanoma. To more accurately predict direct phosphorylation substrates, we defined the RSK consensus phosphorylation motif and found significant overlap with the binding consensus of 14-3-3 proteins. We thus characterized the phospho-dependent 14-3-3 interactome in melanoma cells and found that a large proportion of 14-3-3 binding proteins are also potential RSK substrates. Our results show that RSK phosphorylates the tumor suppressor PDCD4 (programmed cell death protein 4) on two serine residues (Ser76 and Ser457) that regulate its subcellular localization and interaction with 14-3-3 proteins. We found that 14-3-3 binding promotes PDCD4 degradation, suggesting an important role for RSK in the inactivation of PDCD4 in melanoma. In addition to this tumor suppressor, our results suggest the involvement of RSK in a vast array of unexplored biological functions with relevance in oncogenesis. PMID:25002506

  15. Interaction of 14-3-3 proteins with the Estrogen Receptor Alpha F domain provides a drug target interface

    PubMed Central

    De Vries-van Leeuwen, Ingrid J.; da Costa Pereira, Daniel; Flach, Koen D.; Piersma, Sander R.; Haase, Christian; Bier, David; Yalcin, Zeliha; Michalides, Rob; Feenstra, K. Anton; Jiménez, Connie R.; de Greef, Tom F. A.; Brunsveld, Luc; Ottmann, Christian; Zwart, Wilbert; de Boer, Albertus H.

    2013-01-01

    Estrogen receptor alpha (ERα) is involved in numerous physiological and pathological processes, including breast cancer. Breast cancer therapy is therefore currently directed at inhibiting the transcriptional potency of ERα, either by blocking estrogen production through aromatase inhibitors or antiestrogens that compete for hormone binding. Due to resistance, new treatment modalities are needed and as ERα dimerization is essential for its activity, interference with receptor dimerization offers a new opportunity to exploit in drug design. Here we describe a unique mechanism of how ERα dimerization is negatively controlled by interaction with 14-3-3 proteins at the extreme C terminus of the receptor. Moreover, the small-molecule fusicoccin (FC) stabilizes this ERα/14-3-3 interaction. Cocrystallization of the trimeric ERα/14-3-3/FC complex provides the structural basis for this stabilization and shows the importance of phosphorylation of the penultimate Threonine (ERα-T594) for high-affinity interaction. We confirm that T594 is a distinct ERα phosphorylation site in the breast cancer cell line MCF-7 using a phospho-T594–specific antibody and by mass spectrometry. In line with its ERα/14-3-3 interaction stabilizing effect, fusicoccin reduces the estradiol-stimulated ERα dimerization, inhibits ERα/chromatin interactions and downstream gene expression, resulting in decreased cell proliferation. Herewith, a unique functional phosphosite and an alternative regulation mechanism of ERα are provided, together with a small molecule that selectively targets this ERα/14-3-3 interface. PMID:23676274

  16. Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease

    PubMed Central

    Wenderski, Wendy; Maze, Ian

    2016-01-01

    In postmitotic neurons, nucleosomal turnover was long considered to be a static process that is inconsequential to transcription. However, our recent studies in human and rodent brain indicate that replication-independent (RI) nucleosomal turnover, which requires the histone variant H3.3, is dynamic throughout life and is necessary for activity-dependent gene expression, synaptic connectivity, and cognition. H3.3 turnover also facilitates cellular lineage specification and plays a role in suppressing the expression of heterochromatic repetitive elements, including mutagenic transposable sequences, in mouse embryonic stem cells. In this essay, we review mechanisms and functions for RI nucleosomal turnover in brain and present the hypothesis that defects in histone dynamics may represent a common mechanism underlying neurological aging and disease. PMID:26990528

  17. Suppression of Gluconeogenic Gene Expression by LSD1-Mediated Histone Demethylation

    PubMed Central

    Pan, Dongning; Mao, Chunxiao; Wang, Yong-Xu

    2013-01-01

    Aberrant gluconeogenic gene expression is associated with diabetes, glycogen storage disease, and liver cancer. However, little is known how these genes are regulated at the chromatin level. In this study, we investigated in HepG2 cells whether histone demethylation is a potential mechanism. We found that knockdown or pharmacological inhibition of histone demethylase LSD1 causes remarkable transcription activation of two gluconeogenic genes, FBP1 and G6Pase, and consequently leads to increased de novo glucose synthesis and decreased intracellular glycogen content. Mechanistically, LSD1 occupies the promoters of FBP1 and G6Pase, and modulates their H3K4 dimethylation levels. Thus, our work identifies an epigenetic pathway directly governing gluconeogenic gene expression, which might have important implications in metabolic physiology and diseases. PMID:23755305

  18. ATRA transcriptionally induces nSMase2 through CBP/p300-mediated histone acetylation.

    PubMed

    Clarke, Christopher J; Shamseddine, Achraf A; Jacob, Joseph J; Khalife, Gabrielle; Burns, Tara A; Hannun, Yusuf A

    2016-05-01

    Neutral sphingomyelinase-2 (nSMase2) is a key ceramide-producing enzyme in cellular stress responses. While many posttranslational regulators of nSMase2 are known, emerging evidence suggests a more protracted regulation of nSMase2 at the transcriptional level. Previously, we reported that nSMase2 is induced by all-trans retinoic acid (ATRA) in MCF7 cells and implicated nSMase2 in ATRA-induced growth arrest. Here, we further investigated how ATRA regulates nSMase2. We find that ATRA regulates nSMase2 transcriptionally through the retinoic acid receptor-α, but this is independent of previously identified transcriptional regulators of nSMase2 (Sp1, Sp3, Runx2) and is not through increased promoter activity. Epigenetically, the nSMase2 gene is not repressively methylated in MCF7 cells. However, inhibition of histone deacetylases (HDACs) with trichostatin A (TSA) induced nSMase2 comparably to ATRA; furthermore, combined ATRA and TSA treatment was not additive, suggesting ATRA regulates nSMase2 through direct modulation of histone acetylation. Confirming this, the histone acetyltransferases CREB-binding protein and p300 were required for ATRA induction of nSMase2. Finally, use of class-specific HDAC inhibitors suggested that HDAC4 and/or HDAC5 are negative regulators of nSMase2 expression. Collectively, these results identify a novel pathway of nSMase2 regulation and suggest that physiological or pharmacological modulation of histone acetylation can directly affect nSMase2 levels. PMID:27013100

  19. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis

    PubMed Central

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  20. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa

    PubMed Central

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C.; Bisht, Naveen C.

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1–5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses. PMID:26858736

  1. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa.

    PubMed

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C; Bisht, Naveen C

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1-5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses. PMID:26858736

  2. WHSC1 links transcription elongation to HIRA-mediated histone H3.3 deposition.

    PubMed

    Sarai, Naoyuki; Nimura, Keisuke; Tamura, Tomohiko; Kanno, Tomohiko; Patel, Mira C; Heightman, Tom D; Ura, Kiyoe; Ozato, Keiko

    2013-08-28

    Actively transcribed genes are enriched with the histone variant H3.3. Although H3.3 deposition has been linked to transcription, mechanisms controlling this process remain elusive. We investigated the role of the histone methyltransferase Wolf-Hirschhorn syndrome candidate 1 (WHSC1) (NSD2/MMSET) in H3.3 deposition into interferon (IFN) response genes. IFN treatment triggered robust H3.3 incorporation into activated genes, which continued even after cessation of transcription. Likewise, UV radiation caused H3.3 deposition in UV-activated genes. However, in Whsc1(-/-) cells IFN- or UV-triggered H3.3 deposition was absent, along with a marked reduction in IFN- or UV-induced transcription. We found that WHSC1 interacted with the bromodomain protein 4 (BRD4) and the positive transcription elongation factor b (P-TEFb) and facilitated transcriptional elongation. WHSC1 also associated with HIRA, the H3.3-specific histone chaperone, independent of BRD4 and P-TEFb. WHSC1 and HIRA co-occupied IFN-stimulated genes and supported prolonged H3.3 incorporation, leaving a lasting transcriptional mark. Our results reveal a previously unrecognized role of WHSC1, which links transcriptional elongation and H3.3 deposition into activated genes through two molecularly distinct pathways. PMID:23921552

  3. HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated transactivation

    PubMed Central

    Schnekenburger, Michael; Peng, Li; Puga, Alvaro

    2007-01-01

    Metabolic bioactivation of polycyclic aromatic hydrocarbons, such as the environmental procarcinogen benzo[a]pyrene, is catalyzed by a cytochrome P450 monooxygenase encoded by the substrate-inducible Cyp1a1 gene. Cyp1a1 induction requires trans-activation by the heterodimeric transcriptional complex formed by the liganded Ah receptor (AHR) and its partner, ARNT. Previously, we showed that constitutively bound HDAC1 dissociates from Cyp1a1 promoter chromatin after ligand-mediated induction, concomitantly with the recruitment of AHR/ARNT complexes and p300. Here, we investigated the hypothesis that HDAC1 binding maintains the Cyp1a1 gene in a silenced state in uninduced cells. We find that Cyp1a1 induction by the AHR/ARNT is associated with modification of specific chromatin marks, including hyperacetylation of histone H3K14 and H4K16, trimethylation of histone H3K4, and phosphorylation of H3S10. HDAC1 and DNMT1 form complexes on the Cyp1a1 promoter of uninduced cells but HDAC1 inhibition alone is not sufficient to induce Cyp1a1 expression, although it allows for the hyperacetylation of H3K14 and H4K16 to levels similar to those found in B[a]P-induced cells. These results show that by blocking modification of histone marks, HDAC1 plays a central role in Cyp1a1 expression and that its removal is a necessary but not sufficient condition for Cyp1a1 induction, underscoring the requirement for a concerted series of chromatin remodeling events to complete the initial steps of gene trans-activation by the Ah receptor. PMID:17707923

  4. Histone Lysine Methylation in TGF-β1 Mediated p21 Gene Expression in Rat Mesangial Cells

    PubMed Central

    Guo, Qiaoyan; Li, Xiaoxia; Han, Hongbo; Li, Chaoyuan; Liu, Shujun; Gao, Wenhui

    2016-01-01

    Transforming growth factor beta1- (TGF-β1-) induced p21-dependent mesangial cell (MC) hypertrophy plays a key role in the pathogenesis of chronic renal diseases including diabetic nephropathy (DN). Increasing evidence demonstrated the role of posttranscriptional modifications (PTMs) in the event; however, the precise regulatory mechanism of histone lysine methylation remains largely unknown. Here, we examined the roles of both histone H3 lysine 4 and lysine 9 methylations (H3K4me/H3K9me) in TGF-β1 induced p21 gene expression in rat mesangial cells (RMCs). Our results indicated that TGF-β1 upregulated the expression of p21 gene in RMCs, which was positively correlated with the increased chromatin marks associated with active genes (H3K4me1/H3K4me2/H3K4me3) and negatively correlated with the decreased levels of repressive marks (H3K9me2/H3K9me3) at p21 gene promoter. TGF-β1 also elevated the recruitment of the H3K4 methyltransferase (HMT) SET7/9 to the p21 gene promoter. SET7/9 gene silencing with small interfering RNAs (siRNAs) significantly abolished the TGF-β1 induced p21 gene expression. Taken together, these results reveal the key role of histone H3Kme in TGF-β1 mediated p21 gene expression in RMC, partly through HMT SET7/9 occupancy, suggesting H3Kme and SET7/9 may be potential renoprotective agents in managing chronic renal diseases. PMID:27247942

  5. Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation

    PubMed Central

    Alvarez-Saavedra, Matías; De Repentigny, Yves; Lagali, Pamela S.; Raghu Ram, Edupuganti V. S.; Yan, Keqin; Hashem, Emile; Ivanochko, Danton; Huh, Michael S.; Yang, Doo; Mears, Alan J.; Todd, Matthew A. M.; Corcoran, Chelsea P.; Bassett, Erin A.; Tokarew, Nicholas J. A.; Kokavec, Juraj; Majumder, Romit; Ioshikhes, Ilya; Wallace, Valerie A.; Kothary, Rashmi; Meshorer, Eran; Stopka, Tomas; Skoultchi, Arthur I.; Picketts, David J.

    2014-01-01

    Chromatin compaction mediates progenitor to post-mitotic cell transitions and modulates gene expression programs, yet the mechanisms are poorly defined. Snf2h and Snf2l are ATP-dependent chromatin remodelling proteins that assemble, reposition and space nucleosomes, and are robustly expressed in the brain. Here we show that mice conditionally inactivated for Snf2h in neural progenitors have reduced levels of histone H1 and H2A variants that compromise chromatin fluidity and transcriptional programs within the developing cerebellum. Disorganized chromatin limits Purkinje and granule neuron progenitor expansion, resulting in abnormal post-natal foliation, while deregulated transcriptional programs contribute to altered neural maturation, motor dysfunction and death. However, mice survive to young adulthood, in part from Snf2l compensation that restores Engrailed-1 expression. Similarly, Purkinje-specific Snf2h ablation affects chromatin ultrastructure and dendritic arborization, but alters cognitive skills rather than motor control. Our studies reveal that Snf2h controls chromatin organization and histone H1 dynamics for the establishment of gene expression programs underlying cerebellar morphogenesis and neural maturation. PMID:24946904

  6. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis

    PubMed Central

    Wike, Candice L; Graves, Hillary K; Hawkins, Reva; Gibson, Matthew D; Ferdinand, Michelle B; Zhang, Tao; Chen, Zhihong; Hudson, Damien F; Ottesen, Jennifer J; Poirier, Michael G; Schumacher, Jill; Tyler, Jessica K

    2016-01-01

    Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.11402.001 PMID:26878753

  7. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis.

    PubMed

    Wike, Candice L; Graves, Hillary K; Hawkins, Reva; Gibson, Matthew D; Ferdinand, Michelle B; Zhang, Tao; Chen, Zhihong; Hudson, Damien F; Ottesen, Jennifer J; Poirier, Michael G; Schumacher, Jill; Tyler, Jessica K

    2016-01-01

    Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation. PMID:26878753

  8. Identification of a host 14-3-3 Protein that Interacts with Xanthomonas effector AvrRxv

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AvrRxv is a member of a family of pathogen effectors from both plant and mammalian pathogens. Using a yeast two hybrid screen, we identified a 14-3-3 protein from tomato that interacts with AvrRxv called AvrRxv Interactor 1 (ARI1). The interaction was confirmed in vitro with affinity chromatograph...

  9. Revealing the binding modes and the unbinding of 14-3-3σ proteins and inhibitors by computational methods

    PubMed Central

    Hu, Guodong; Cao, Zanxia; Xu, Shicai; Wang, Wei; Wang, Jihua

    2015-01-01

    The 14-3-3σ proteins are a family of ubiquitous conserved eukaryotic regulatory molecules involved in the regulation of mitogenic signal transduction, apoptotic cell death, and cell cycle control. A lot of small-molecule inhibitors have been identified for 14-3-3 protein-protein interactions (PPIs). In this work, we carried out molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method to study the binding mechanism between a 14-3-3σ protein and its eight inhibitors. The ranking order of our calculated binding free energies is in agreement with the experimental results. We found that the binding free energies are mainly from interactions between the phosphate group of the inhibitors and the hydrophilic residues. To improve the binding free energy of Rx group, we designed the inhibitor R9 with group R9 = 4-hydroxypheny. However, we also found that the binding free energy of inhibitor R9 is smaller than that of inhibitor R1. By further using the steer molecular dynamics (SMD) simulations, we identified a new hydrogen bond between the inhibitor R8 and residue Arg64 in the pulling paths. The information obtained from this study may be valuable for future rational design of novel inhibitors, and provide better structural understanding of inhibitor binding to 14-3-3σ proteins. PMID:26568041

  10. Interaction of a 14-3-3 protein with the plant microtubule-associated protein EDE1

    PubMed Central

    Pignocchi, Cristina; Doonan, John H.

    2011-01-01

    Background and Aims The cell cycle-regulated protein ENDOSPERM DEFECTIVE 1 (EDE1) is a novel plant microtubule-associated protein essential for plant cell division and for microtubule organization in endosperm. EDE1 is only present on microtubules at mitosis and its expression is highly cell cycle regulated both at the protein and the transcript levels. Methods To search for EDE1-interacting proteins, a yeast two-hybrid screen was used in which EDE1 was fused with GAL4 DNA binding domain and expressed in a yeast strain that was then mated with a strain carrying a cDNA library fused to the GAL4 transactivation domain. Candidate interacting proteins were identified and confirmed in vitro. Key Results 14-3-3 upsilon was isolated several times from the library screen. In in vitro tests, it also interacted with EDE1: 14-3-3 upsilon most strongly associates with EDE1 in its free form, but also weakly when EDE1 is bound to microtubules. This study shows that EDE1 is a cyclin-dependent kinase substrate but that phosphorylation is not required for interaction with 14-3-3 upsilon. Conclusions The results suggest that 14-3-3 proteins may play a role in cytoskeletal organization of plant cells. The potential role of this interaction in the dynamics of EDE1 during the cell cycle is discussed. PMID:21558460

  11. Aqueous Extract from Hibiscus sabdariffa Linnaeus Ameliorate Diabetic Nephropathy via Regulating Oxidative Status and Akt/Bad/14-3-3γ in an Experimental Animal Model

    PubMed Central

    Wang, Shou-Chieh; Lee, Shiow-Fen; Wang, Chau-Jong; Lee, Chao-Hsin; Lee, Wen-Chin; Lee, Huei-Jane

    2011-01-01

    Several studies point out that oxidative stress maybe a major culprit in diabetic nephropathy. Aqueous extract of Hibiscus sabdariffa L. (HSE) has been demonstrated as having beneficial effects on anti-oxidation and lipid-lowering in experimental studies. This study aimed at investigating the effects of Hibiscus sabdariffa L. on diabetic nephropathy in streptozotocin induced type 1 diabetic rats. Our results show that HSE is capable of reducing lipid peroxidation, increasing catalase and glutathione activities significantly in diabetic kidney, and decreasing the plasma levels of triglyceride, low-density lipoprotein (LDL) and increasing high-density lipoprotein (HDL) value. In histological examination, HSE improves hyperglycemia-caused osmotic diuresis in renal proximal convoluted tubules (defined as hydropic change) in diabetic rats. The study also reveals that up-regulation of Akt/Bad/14-3-3γ and NF-κB-mediated transcription might be involved. In conclusion, our results show that HSE possesses the potential effects to ameliorate diabetic nephropathy via improving oxidative status and regulating Akt/Bad/14-3-3γ signaling. PMID:19965962

  12. 14-3-3σ is an independent prognostic biomarker for gastric cancer and is associated with apoptosis and proliferation in gastric cancer.

    PubMed

    Li, Yi-Liang; Liu, Lihua; Xiao, Yang; Zeng, Tao; Zeng, Chao

    2015-01-01

    14-3-3 proteins participate in various cellular processes, including apoptosis, proliferation and malignant transformation. 14-3-3σ, a member of the 14-3-3 protein family, is important in several types of cancer; however, little is known about the clinical significance and biological roles of 14-3-3σ in gastric cancer. The present study analyzed the expression pattern of 14-3-3σ in gastric cancer and investigated its correlation with the prognosis of gastric cancer patients. Furthermore, the association of 14-3-3σ with Ki-67, Bcl-2 and Bax was evaluated. 14-3-3σ was expressed at higher level in gastric cancer tissue compared with healthy gastric tissue, and 14-3-3σ expression was significantly correlated with tumor size and tumor node metastasis stage (P<0.05). To the best of our knowledge, the present study data are the first to suggest that 14-3-3σ expression has been significantly associated with poor prognosis in gastric cancer. Additionally, 14-3-3σ overexpression was positively correlated with Ki-67 and Bcl-2 expression levels. Thus, 14-3-3σ is a potential prognostic marker for gastric cancer patients, and may be involved in regulating the apoptosis and proliferation of gastric cancer cells. PMID:25435977

  13. Protein kinase C zeta mediates cigarette smoke/aldehyde- and lipopolysaccharide-induced lung inflammation and histone modifications.

    PubMed

    Yao, Hongwei; Hwang, Jae-woong; Moscat, Jorge; Diaz-Meco, Maria T; Leitges, Michael; Kishore, Nandini; Li, Xiong; Rahman, Irfan

    2010-02-19

    Atypical protein kinase C (PKC) zeta is an important regulator of inflammation through activation of the nuclear factor-kappaB (NF-kappaB) pathway. Chromatin remodeling on pro-inflammatory genes plays a pivotal role in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced abnormal lung inflammation. However, the signaling mechanism whereby chromatin remodeling occurs in CS- and LPS-induced lung inflammation is not known. We hypothesized that PKCzeta is an important regulator of chromatin remodeling, and down-regulation of PKCzeta ameliorates lung inflammation by CS and LPS exposures. We determined the role and molecular mechanism of PKCzeta in abnormal lung inflammatory response to CS and LPS exposures in PKCzeta-deficient (PKCzeta(-/-)) and wild-type mice. Lung inflammatory response was decreased in PKCzeta(-/-) mice compared with WT mice exposed to CS and LPS. Moreover, inhibition of PKCzeta by a specific pharmacological PKCzeta inhibitor attenuated CS extract-, reactive aldehydes (present in CS)-, and LPS-mediated pro-inflammatory mediator release from macrophages. The mechanism underlying these findings is associated with decreased RelA/p65 phosphorylation (Ser(311)) and translocation of the RelA/p65 subunit of NF-kappaB into the nucleus. Furthermore, CS/reactive aldehydes and LPS exposures led to activation and translocation of PKCzeta into the nucleus where it forms a complex with CREB-binding protein (CBP) and acetylated RelA/p65 causing histone phosphorylation and acetylation on promoters of pro-inflammatory genes. Taken together, these data suggest that PKCzeta plays an important role in CS/aldehyde- and LPS-induced lung inflammation through acetylation of RelA/p65 and histone modifications via CBP. These data provide new insights into the molecular mechanisms underlying the pathogenesis of chronic inflammatory lung diseases. PMID:20007975

  14. cAMP Prevents Glucose-mediated Modifications of Histone H3 and Recruitment of the RNA Polymerase II Holoenzyme to the L-PK Gene Promoter

    PubMed Central

    Burke, Susan J.; Collier, J. Jason; Scott, Donald K.

    2009-01-01

    Glucose and cAMP reciprocally regulate expression of the L-type pyruvate kinase (L-PK) gene by controlling the formation of a complex containing Carbohydrate Response Element Binding Protein (ChREBP) and the coactivator CREB Binding Protein (CBP) on the L-PK promoter. However, the role of post-translational histone modifications on the opposing effects of glucose and cAMP on the L-PK gene are unknown. Using the highly glucose-sensitive 832/13 rat insulinoma cell line, we demonstrated that glucose regulates acetylation and methylation of various histone residues at the L-PK gene promoter. These glucose-dependent histone modifications correlated with an increase in the recruitment and phosphorylation of RNA Polymerase II (Pol II) on the L-PK gene promoter. Conversely, the cAMP agonist forskolin prevented glucose-mediated expression of the L-PK gene by decreasing the acetylation of histones H3 and H4 on the promoter, decreasing the methylation of H3-K4 on the coding region and increasing the methylation of H3-K9 on the coding region. These changes induced by cAMP culminated with a decrease in the glucose-dependent recruitment of phosphorylated Pol II to the L-PK gene promoter. Furthermore, maneuvers that interfere with the glucose-dependent assembly of ChREBP and CBP on the L-PK promoter, such as: 1) increasing intracellular cAMP levels; 2) overexpression of a dominant-negative form of ChREBP; or 3) siRNA-mediated suppression of CBP abundance all altered the acetylation and methylation of histones on the L-PK promoter, which decreased Pol II recruitment and subsequently inhibited transcriptional activation of the L-PK gene. We conclude that the effects of glucose and cAMP are mediated in part by epigenetic modulation of histones. PMID:19631660

  15. The 14-3-3σ/GSK3β/β-catenin/ZEB1 regulatory loop modulates chemo-sensitivity in human tongue cancer

    PubMed Central

    Xiong, Yan; Yin, Jiang; Li, Nan; Deng, Yingen; Luo, Kai; Zhang, Qiong; Wang, Chengkun; Zhang, Zhijie; Zheng, Guopei; He, Zhimin

    2015-01-01

    Here we demonstrated that chemotherapy induced 14-3-3σ expression in tongue cancer (TC) cells and overexpressed 14-3-3σ sensitized TC cells to chemotherapy especially in multidrug resistant TC (MDR-TC) cells. In agreement, 14-3-3σ knockdown enhanced resistance of TC cells to chemotherapy. Mechanically, we found 14-3-3σ physically bound to GSK3β in protein level and the binding inhibited β-catenin signaling. Coincidentally, chemotherapy as well as 14-3-3σ overexpression led to increase of GSK3β protein level. Increased GSK3β protein sensitized TC cells to chemotherapy. Moreover, deregulation of 14-3-3σ/GSK3β/β-catenin axis led to overexpressed ZEB1 in TC cells, especially in MDR-TC cells. As a negative feedback loop, ZEB1 bond to 14-3-3σ promoter to enhance promoter hypermethylation in TC cells. Promoter hypermethylation resulted into the decrease of 14-3-3σ expression. Importantly, a positive correlation was observed between 14-3-3σ and GSK3β protein expression in TC tissues from patients receiving chemotherapy. High levels of 14-3-3σ and GSK3β were associated with better prognosis in TC patients. PMID:26036631

  16. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability

    PubMed Central

    Seo, Gi Won; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Kim, Sun-Am; Lee, Yong Seok; Kim, Yu Jung; Han, Yeon Soo

    2016-01-01

    The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform. PMID:27556493

  17. 14-3-3σ Gene Loss Leads to Activation of the Epithelial to Mesenchymal Transition Due to the Stabilization of c-Jun Protein.

    PubMed

    Raychaudhuri, Kumarkrishna; Chaudhary, Neelam; Gurjar, Mansa; D'Souza, Roseline; Limzerwala, Jazeel; Maddika, Subbareddy; Dalal, Sorab N

    2016-07-29

    Loss of 14-3-3σ has been observed in multiple tumor types; however, the mechanisms by which 14-3-3σ loss leads to tumor progression are not understood. The experiments in this report demonstrate that loss of 14-3-3σ leads to a decrease in the expression of epithelial markers and an increase in the expression of mesenchymal markers, which is indicative of an induction of the epithelial to mesenchymal transition (EMT). The EMT was accompanied by an increase in migration and invasion in the 14-3-3σ(-/-) cells. 14-3-3σ(-/-) cells show increased stabilization of c-Jun, resulting in an increase in the expression of the EMT transcription factor slug. 14-3-3σ induces the ubiquitination and degradation of c-Jun in an FBW7-dependent manner. c-Jun ubiquitination is dependent on the presence of an intact nuclear export pathway as c-Jun is stabilized and localized to the nucleus in the presence of a nuclear export inhibitor. Furthermore, the absence of 14-3-3σ leads to the nuclear accumulation and stabilization of c-Jun, suggesting that 14-3-3σ regulates the subcellular localization of c-Jun. Our results have identified a novel mechanism by which 14-3-3σ maintains the epithelial phenotype by inhibiting EMT and suggest that this property of 14-3-3σ might contribute to its function as a tumor suppressor gene. PMID:27261462

  18. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability.

    PubMed

    Seo, Gi Won; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Kim, Sun-Am; Lee, Yong Seok; Kim, Yu Jung; Han, Yeon Soo

    2016-01-01

    The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform. PMID:27556493

  19. Protein Modifications Regulate the Role of 14-3-3γ Adaptor Protein in cAMP-induced Steroidogenesis in MA-10 Leydig Cells*

    PubMed Central

    Aghazadeh, Yasaman; Ye, Xiaoying; Blonder, Josip; Papadopoulos, Vassilios

    2014-01-01

    The 14-3-3 protein family comprises adaptors and scaffolds that regulate intracellular signaling pathways. The 14-3-3γ isoform is a negative regulator of steroidogenesis that is hormonally induced and transiently functions at the initiation of steroidogenesis by delaying maximal steroidogenesis in MA-10 mouse tumor Leydig cells. Treatment of MA-10 cells with the cAMP analog 8-bromo-cAMP (8-Br-cAMP), which stimulates steroidogenesis, triggers the interaction of 14-3-3γ with the steroidogenic acute regulatory protein (STAR) in the cytosol, limiting STAR activity to basal levels. Over time, this interaction ceases, allowing for a 2-fold induction in STAR activity and maximal increase in the rate of steroid formation. The 14-3-3γ/STAR pattern of interaction was found to be opposite that of the 14-3-3γ homodimerization pattern. Phosphorylation and acetylation of 14-3-3γ showed similar patterns to homodimerization and STAR binding, respectively. 14-3-3γ Ser58 phosphorylation and 14-3-3γ Lys49 acetylation were blocked using trans-activator of HIV transcription factor 1 peptides coupled to 14-3-3γ sequences containing Ser58 or Lys49. Blocking either one of these modifications further induced 8-Br-cAMP-induced steroidogenesis while reducing lipid storage, suggesting that the stored cholesterol is used for steroid formation. Taken together, these results indicate that Ser58 phosphorylation and Lys49 acetylation of 14-3-3γ occur in a coordinated time-dependent manner to regulate 14-3-3γ homodimerization. 14-3-3γ Ser58 phosphorylation is required for STAR interactions under control conditions, and 14-3-3γ Lys49 acetylation is important for the cAMP-dependent induction of these interactions. PMID:25086053

  20. Requirement of a novel splicing variant of human histone deacetylase 6 for TGF-{beta}1-mediated gene activation

    SciTech Connect

    Zhuang, Yan; Nguyen, Hong T.; Lasky, Joseph A.; Cao, Subing; Li, Cui; Hu, Jiyao; Guo, Xinyue; Burow, Matthew E.; Shan, Bin

    2010-02-19

    Histone deacetylase 6 (HDAC6) belongs to the family of class IIb HDACs and predominantly deacetylates non-histone proteins in the cytoplasm via the C-terminal deacetylase domain of its two tandem deacetylase domains. HDAC6 modulates fundamental cellular processes via deacetylation of {alpha}-tubulin, cortactin, molecular chaperones, and other peptides. Our previous study indicates that HDAC6 mediates TGF-{beta}1-induced epithelial-mesenchymal transition (EMT) in A549 cells. In the current study, we identify a novel splicing variant of human HDAC6, hHDAC6p114. The hHDAC6p114 mRNA arises from incomplete splicing and encodes a truncated isoform of the hHDAC6p114 protein of 114 kDa when compared to the major isoform hHDAC6p131. The hHDAC6p114 protein lacks the first 152 amino acids from N-terminus in the hHDAC6p131 protein, which harbors a nuclear export signal peptide and 76 amino acids of the N-terminal deacetylase domain. hHDAC6p114 is intact in its deacetylase activity against {alpha}-tubulin. The expression hHDAC6p114 is elevated in a MCF-7 derivative that exhibits an EMT-like phenotype. Moreover, hHDAC6p114 is required for TGF-{beta}1-activated gene expression associated with EMT in A549 cells. Taken together, our results implicate that expression and function of hHDAC6p114 is differentially regulated when compared to hHDAC6p131.

  1. Protein kinase B (AKT) regulates SYK activity and shuttling through 14-3-3 and importin 7.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2016-09-01

    The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK's interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK's binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK's interaction with Importin 7. PMID:27381982

  2. Binding and Transcriptional Regulation by 14-3-3 (Bmh) Proteins Requires Residues Outside of the Canonical Motif

    PubMed Central

    Parua, Pabitra K.

    2014-01-01

    Evolutionarily conserved 14-3-3 proteins have important functions as dimers in numerous cellular signaling processes, including regulation of transcription. Yeast 14-3-3 proteins, known as Bmh, inhibit a post-DNA binding step in transcription activation by Adr1, a glucose-regulated transcription factor, by binding to its regulatory domain, residues 226 to 240. The domain was originally defined by regulatory mutations, ADR1c alleles that alter activator-dependent gene expression. Here, we report that ADR1c alleles and other mutations in the regulatory domain impair Bmh binding and abolish Bmh-dependent regulation both directly and indirectly. The indirect effect is caused by mutations that inhibit phosphorylation of Ser230 and thus inhibit Bmh binding, which requires phosphorylated Ser230. However, several mutations inhibit Bmh binding without inhibiting phosphorylation and thus define residues that provide important interaction sites between Adr1 and Bmh. Our proposed model of the Adr1 regulatory domain bound to Bmh suggests that residues Ser238 and Tyr239 could provide cross-dimer contacts to stabilize the complex and that this might explain the failure of a dimerization-deficient Bmh mutant to bind Adr1 and to inhibit its activity. A bioinformatics analysis of Bmh-interacting proteins suggests that residues outside the canonical 14-3-3 motif might be a general property of Bmh target proteins and might help explain the ability of 14-3-3 to distinguish target and nontarget proteins. Bmh binding to the Adr1 regulatory domain, and its failure to bind when mutations are present, explains at a molecular level the transcriptional phenotype of ADR1c mutants. PMID:24142105

  3. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation

    PubMed Central

    Lian, Hui-Yong; Robertson, E. Douglas; Hiraga, Shin-ichiro; Alvino, Gina M.; Collingwood, David; McCune, Heather J.; Sridhar, Akila; Brewer, Bonita J.; Raghuraman, M. K.; Donaldson, Anne D.

    2011-01-01

    DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length–mediated control of replication timing requires the TG1–3 repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG1–3 tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG1–3 repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed. PMID:21441303

  4. Oxidative damage of 14-3-3 zeta and gamma isoforms in Alzheimer's disease and cerebral amyloid angiopathy.

    PubMed

    Santpere, G; Puig, B; Ferrer, I

    2007-06-01

    Previous studies have shown oxidative damage resulting from amyloid Abeta exposure to cultured cells and in murine models. A target of oxidation is 14-3-3 which comprises a group of proteins involved in kinase activation and chaperone activity. The present study shows glycoxidative damage, as revealed with mono and bi-dimensional gel electrophoresis and Western blotting, followed by in-gel digestion and mass spectrometry, in the frontal cortex in Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), a neurodegenerative disease with deposition of Abeta in cerebral blood vessels and in diffuse plaques unaccompanied by intraneuronal hyper-phosphorylated tau deposition. malondialdehyde-lysine (MDA-Lys)-, but not 4-hydroxy-2-nonenal (HNE)-immunoreactive adducts, and N-carboxyethyl-lysine (CEL), but not N-carboxymethyl-lysine (CML)-products, were present in 14-3-3 involving zeta and gamma isoforms in both AD and CAA. These findings demonstrate that 14-3-3 glyco- and lipoxidation occurs in AD and CAA, probably as a direct consequence of Abeta deposition. PMID:17445990

  5. Characterization and subcellular localization of two 14-3-3 genes and their response to abiotic stress in wheat.

    PubMed

    Meng, Xiaodan; Chen, Xin; Wang, Yaying; Xiao, Ruixia; Liu, Hailun; Wang, Xinguo; Ren, Jiangping; Li, Yongchun; Niu, Hongbin; Wang, Xiang; Yin, Jun

    2014-02-01

    In order to investigate biological functions of the 14-3-3 genes and their response to abiotic stress, two cDNAs (designated as Ta14R1 and Ta14R2) encoding putative 14-3-3 proteins were isolated from wheat by PCR and rapid amplification of cDNA end (RACE) technique. The cDNA of Ta14R1 is 999bp and encodes a protein of 262 amino acids, while the cDNA of Ta14R2 is 897bp in length and encodes a protein of 261 amino acids. Transient expression assays using Ta14R1/Ta14R2-GFP fusion constructs indicated that Ta14R1 and Ta14R2 were located in cytoplasm and cell membrane but not in chloroplasts. Real-time quantitative (RT-PCR) analysis revealed that Ta14R1 and Ta14R2 were differentially expressed in wheat tissues and significantly up-regulated in roots and shoots 1d after germination, indicating they may play a role in process of seed germination. The expression of the two genes in roots and leaves were significantly induced by plant hormone ABA, as well as heat, cold and drought treatments, suggesting that the two 14-3-3 genes in wheat may be involved in ABA dependent stress-responding pathway and response to heat, cold and drought stress. PMID:24941745

  6. HISTONE MONOUBIQUITINATION1 Interacts with a Subunit of the Mediator Complex and Regulates Defense against Necrotrophic Fungal Pathogens in Arabidopsis[W

    PubMed Central

    Dhawan, Rahul; Luo, Hongli; Foerster, Andrea Maria; AbuQamar, Synan; Du, Hai-Ning; Briggs, Scott D.; Scheid, Ortrun Mittelsten; Mengiste, Tesfaye

    2009-01-01

    This work examines the role of the Arabidopsis thaliana RING E3 ligase, HISTONE MONOUBIQUITINATION1 (HUB1) in disease resistance. Loss-of-function alleles of HUB1 show increased susceptibility to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola, whereas HUB1 overexpression conferred resistance to B. cinerea. By contrast, responses to the bacterial pathogen Pseudomonas syringae are unaltered in hub1 plants. hub1 mutants have thinner cell walls but increased callose around an infection site. HUB1 acts independently of jasmonate, but ethylene (ET) responses and salicylate modulate the resistance of hub1 mutants to necrotrophic fungi. The ET response factor ETHYLENE INSENSITIVE2 is epistatic to HUB1 for A. brassicicola resistance but additive to HUB1 for B. cinerea resistance. HUB1 interacts with MED21, a subunit of the Arabidopsis Mediator, a conserved complex that regulates RNA polymerase II. RNA interference lines with reduced MED21 expression are highly susceptible to A. brassicicola and B. cinerea, whereas T-DNA insertion alleles are embryonic lethal, suggesting an essential role for MED21. However, HUB1-mediated histone H2B modification is independent of histone H3 and DNA methylation. In sum, histone H2B monoubiquitination is an important chromatin modification with regulatory roles in plant defense against necrotrophic fungi most likely through modulation of gene expression. PMID:19286969

  7. Histone Chaperone NAP1 Mediates Sister Chromatid Resolution by Counteracting Protein Phosphatase 2A

    PubMed Central

    Kan, Tsung-Wai; Chalkley, Gillian E.; Sap, Karen; Bezstarosti, Karel; Demmers, Jeroen A.; Ozgur, Zeliha; van Ijcken, Wilfred F. J.; Verrijzer, C. Peter

    2013-01-01

    Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis. PMID:24086141

  8. A Characterization of the expression of 14-3-3 isoforms in psoriasis, basal cell carcinoma, atopic dermatitis and contact dermatitis

    PubMed Central

    Raaby, Line; Otkjær, Kristian; Salvskov-Iversen, Maria Luise; Johansen, Claus; Iversen, Lars

    2010-01-01

    14-3-3 is a highly conserved protein involved in a number of cellular processes including cell signalling, cell cycle regulation and gene transcription. Seven isoforms of the protein have been identified; β, γ, ε, ζ η σ and τ. The expression profile of the various isoforms in skin diseases is unknown. To investigate the expression of the seven 14-3-3 isoforms in involved and uninvolved skin from psoriasis, basal cell carcinoma (BCC), atopic dermatitis and nickel induced allergic contact dermatitis. Punch biopsies from involved and uninvolved skin were analyzed with quantitative reverse transcription-polymerase chain reaction to determine the mRNA expression of the 14-3-3 isoforms. The protein level of 14-3-3 isoforms was measured by Western blot technique in keratome biopsies from patients with psoriasis. Evaluation of dermal and epidermal protein expression was performed by immunofluorescence staining. Increased 14-3-3τ mRNA levels were detected in involved skin from patients with psoriasis, contact dermatitis and BCC. 14-3-3σ mRNA expression was increased in psoriasis and contact dermatitis, but not in BCC. In atopic dermatitis no significant difference between involved and uninvolved skin was found. The expression of the 14-3-3 isoforms was also studied at the protein level in psoriasis. Only 14-3-3τ expression was significantly increased in involved psoriatic skin compared with uninvolved skin. Immunofluorescence staining with 14-3-3τ- and 14-3-3σ-specific antibodies showed localization of both isoforms to the cytoplasm of the keratinocytes in the various skin sections. These results demonstrate a disease specific expression profile of the 14-3-3τ and 14-3-3σ iso-forms. PMID:25386251

  9. Decreased expression of 14-3-3σ is predictive of poor prognosis for patients with human uterine papillary serous carcinoma.

    PubMed

    Suzuki, Fumihiko; Nagase, Satoru; Suzuki, Kichiya; Oba, Etsuko; Hiroki, Eri; Matsuda, Yukika; Akahira, Jun-Ichi; Nishigori, Hidekazu; Sugiyama, Takashi; Otsuki, Takeo; Yoshinaga, Kousuke; Takano, Tadao; Niikura, Hitoshi; Ito, Kiyoshi; Sasano, Hironobu; Yaegashi, Nobuo

    2013-01-01

    Uterine papillary serous carcinoma (UPSC) morphologically resembles ovarian serous carcinoma and is categorized as a type II endometrial cancer. UPSC comprises about 10% of all types of endometrial cancer and has an aggressive clinical course and a poor prognosis. The 14-3-3σ gene was originally discovered as a p53-inducible gene; its expression is induced by DNA damage in a p53-dependent manner, which leads to G2 arrest and repair of damaged DNA. Moreover, it has been reported that expression of 14-3-3σ is frequently lost in various types of human cancer, including ovarian cancer. We therefore examined the association between 14-3-3σ expression determined by immunohistochemistry and clinical outcomes of 51 patients with UPSC. UPSC was considered positive for 14-3-3σ when > 30% of tumor cells were stained with a specific antibody. Of these patients, 29 (58.7%) showed positive immunoreactivity for 14-3-3σ and 22 (41.3%) had decreased 14-3-3σ staining. Decreased immunoreactivity for 14-3-3σ was associated with stage (P = 0.001) and lymphovascular space involvement (P = 0.005). Moreover, decreased 14-3-3σ expression was an independent risk factor for reduced overall survival (P = 0.0416) in multivariate analysis. Direct bisulfite sequencing was performed to evaluate the methylation status of the 27 CpG islands in the promoter region and first exon of the 14-3-3σ gene. These CpG islands were hypermethylated in 30% of 14-3-3σ-positive UPSC and 80% of 14-3-3σ-negative UPSC, although the difference was not statistically significant. These findings suggest that decreased expression of immunoreactive 14-3-3σ may be a predictor of poor prognosis in patients with UPSC. PMID:24201220

  10. Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling

    PubMed Central

    Pauly, Barbara; Lasi, Margherita; MacKintosh, Carol; Morrice, Nick; Imhof, Axel; Regula, Jörg; Rudd, Stephen; David, Charles N; Böttger, Angelika

    2007-01-01

    Background 14-3-3 proteins have been implicated in many signalling mechanisms due to their interaction with Ser/Thr phosphorylated target proteins. They are evolutionarily well conserved in eukaryotic organisms from single celled protozoans and unicellular algae to plants and humans. A diverse array of target proteins has been found in higher plants and in human cell lines including proteins involved in cellular metabolism, apoptosis, cytoskeletal organisation, secretion and Ca2+ signalling. Results We found that the simple metazoan Hydra has four 14-3-3 isoforms. In order to investigate whether the diversity of 14-3-3 target proteins is also conserved over the whole animal kingdom we isolated 14-3-3 binding proteins from Hydra vulgaris using a 14-3-3-affinity column. We identified 23 proteins that covered most of the above-mentioned groups. We also isolated several novel 14-3-3 binding proteins and the Hydra specific secreted fascin-domain-containing protein PPOD. In addition, we demonstrated that one of the 14-3-3 isoforms, 14-3-3 HyA, interacts with one Hydra-Bcl-2 like protein in vitro. Conclusion Our results indicate that 14-3-3 proteins have been ubiquitous signalling components since the start of metazoan evolution. We also discuss the possibility that they are involved in the regulation of cell numbers in response to food supply in Hydra. PMID:17651497

  11. Phosphorylation of Arabidopsis Ubiquitin Ligase ATL31 Is Critical for Plant Carbon/Nitrogen Nutrient Balance Response and Controls the Stability of 14-3-3 Proteins*

    PubMed Central

    Yasuda, Shigetaka; Sato, Takeo; Maekawa, Shugo; Aoyama, Shoki; Fukao, Yoichiro; Yamaguchi, Junji

    2014-01-01

    Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr209, Ser247, Ser270, and Ser303 as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr209 and Ser247 on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr209 peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response. PMID:24722992

  12. Spinach 14-3-3 protein interacts with the plasma membrane H(+)-ATPase and nitrate reductase in response to excess nitrate stress.

    PubMed

    Xu, Huini; Zhao, Xiuling; Guo, Chuanlong; Chen, Limei; Li, Kunzhi

    2016-09-01

    To investigate the function of 14-3-3 protein in response to excess nitrate stress, a 14-3-3 protein, designated as So14-3-3, was isolated from spinach. Phylogenetic analysis demonstrated that So14-3-3 belongs to non-ε group of 14-3-3 superfamily. Real time-quantitative RT-PCR and western blot analysis showed that So14-3-3 was induced by excess nitrate stress in spinach roots and leaves. After nitrate treatment, the phosphorylated H(+)-ATPase and nitrate reductase (NR) increased and decreased respectively. Co-Immunoprecipitation (Co-IP) suggested that the interaction of So14-3-3 with the phosphorylated H(+)-ATPase enhanced, but reduced with phosphorylated NR in spinach roots after nitrate treatment. Besides, 5 proteins interacted with So14-3-3 were found by Co-IP and LC-MS/MS analysis. So14-3-3 overexpressing transgenic tobacco plants showed enhanced tolerance to nitrate treatment at the germination and young seedlings stage. The transgenic plants showed longer root length, lower malondialdehyde (MDA), H2O2, protein carbonyl contents, relatively higher soluble sugar and protein contents, than the WT plants after nitrate treatment. The phosphorylation levels of H(+)-ATPase in transgenic plants were higher than the WT plants after nitrate treatment, whereas NR were lower. Additionally, in transgenic plants, the interaction of So14-3-3 with phosphorylated H(+)-ATPase and NR increased and decreased more than the WT plants under nitrate stress, leading to higher H(+)-ATPase and NR activities in transgenic plants. These data suggested that So14-3-3 might be involved in nitrate stress response by interacting with H(+)-ATPase and NR. PMID:27161584

  13. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl–mediated drug resistance

    PubMed Central

    Carew, Jennifer S.; Nawrocki, Steffan T.; Kahue, Charissa N.; Zhang, Hui; Yang, Chunying; Chung, Linda; Houghton, Janet A.; Huang, Peng; Giles, Francis J.

    2007-01-01

    Novel therapeutic strategies are needed to address the emerging problem of imatinib resistance. The histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) is being evaluated for imatinib-resistant chronic myelogenous leukemia (CML) and has multiple cellular effects, including the induction of autophagy and apoptosis. Considering that autophagy may promote cancer cell survival, we hypothesized that disrupting autophagy would augment the anticancer activity of SAHA. Here we report that drugs that disrupt the autophagy pathway dramatically augment the antineoplastic effects of SAHA in CML cell lines and primary CML cells expressing wild-type and imatinib-resistant mutant forms of Bcr-Abl, including T315I. This regimen has selectivity for malignant cells and its efficacy was not diminished by impairing p53 function, another contributing factor in imatinib resistance. Disrupting autophagy by chloroquine treatment enhances SAHA-induced superoxide generation, triggers relocalization and marked increases in the lysosomal protease cathepsin D, and reduces the expression of the cathepsin-D substrate thioredoxin. Finally, knockdown of cathepsin D diminishes the potency of this combination, demonstrating its role as a mediator of this therapeutic response. Our data suggest that, when combined with HDAC inhibitors, agents that disrupt autophagy are a promising new strategy to treat imatinib-refractory patients who fail conventional therapy. PMID:17363733

  14. HUMAN PAPILLOMAVIRUS E7 ENHANCES HYPOXIA-INDUCIBLE FACTOR 1 MEDIATED TRANSCRIPTION BY INHIBITING BINDING OF HISTONE DEACETYLASES

    PubMed Central

    Bodily, Jason M.; Mehta, Kavi P. M.; Laimins, Laimonis A.

    2010-01-01

    Infection by human papillomaviruses (HPVs) leads to the formation of benign lesions, warts, and in some cases, cervical cancer. The formation of these lesions is dependent upon increased expression of pro-angiogenic factors. Angiogenesis is linked to tissue hypoxia through the activity of the oxygen sensitive hypoxia inducible factor 1α (HIF-1α). Our studies indicate that the HPV E7 protein enhances HIF-1 transcriptional activity while E6 functions to counteract the repressive effects of p53. Both high and low risk HPV E7 proteins were found to bind to HIF-1α through a domain located in the the N terminus. Importantly, the ability of E7 to enhance HIF-1 activity mapped to the C terminus and correlated with the displacement of the histone deacetylases HDAC1, HDAC4, and HDAC7 from HIF-1α by E7. Our findings describe a novel role of the E7 oncoprotein in activating the function of a key transcription factor mediating hypoxic responses by blocking the binding of HDACs. PMID:21148070

  15. Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex.

    PubMed

    Rampalli, Shravanti; Pavithra, L; Bhatt, Altaf; Kundu, Tapas K; Chattopadhyay, Samit

    2005-10-01

    Matrix attachment region binding proteins have been shown to play an important role in gene regulation by altering chromatin in a stage- and tissue-specific manner. Our previous studies report that SMAR1, a matrix-associated protein, regresses B16-F1-induced tumors in mice. Here we show SMAR1 targets the cyclin D1 promoter, a gene product whose dysregulation is attributed to breast malignancies. Our studies reveal that SMAR1 represses cyclin D1 gene expression, which can be reversed by small interfering RNA specific to SMAR1. We demonstrate that SMAR1 interacts with histone deacetylation complex 1, SIN3, and pocket retinoblastomas to form a multiprotein repressor complex. This interaction is mediated by the SMAR1(160-350) domain. Our data suggest SMAR1 recruits a repressor complex to the cyclin D1 promoter that results in deacetylation of chromatin at that locus, which spreads to a distance of at least the 5 kb studied upstream of the cyclin D1 promoter. Interestingly, we find that the high induction of cyclin D1 in breast cancer cell lines can be correlated to the decreased levels of SMAR1 in these lines. Our results establish the molecular mechanism exhibited by SMAR1 to regulate cyclin D1 by modification of chromatin. PMID:16166625

  16. Mitochondrial Bax translocation partially mediates synergistic cytotoxicity between histone deacetylase inhibitors and proteasome inhibitors in glioma cells

    PubMed Central

    Yu, Chunrong; Friday, Bret B.; Yang, Lin; Atadja, Peter; Wigle, Dennis; Sarkaria, Jann; Adjei, Alex A.

    2008-01-01

    The effects of combining histone deacetylase (HDAC) inhibitors and proteasome inhibitors were evaluated in both established glioblastoma multiforme (GBM) cell lines and short-term cultures derived from the Mayo Clinic xenograft GBM panel. Coexposure of LBH589 and bortezomib at minimally toxic doses of either drug alone resulted in a striking induction of apoptosis in established U251, U87, and D37 GBM cell lines, as well as in GBM8, GBM10, GBM12, GBM14, and GBM56 short-term cultured cell lines. Synergism of apoptosis induction was also observed in U251 cells when coexposing cells to other HDAC inhibitors, including LAQ824 and trichostatin A, with the proteasome inhibitor MG132, thus demonstrating a class effect. In U251 cells, bortezomib alone or in combination with LBH589 decreased Raf-1 levels and suppressed Akt and Erk activation. LBH589 or bortezomib alone increased expression of the cell cycle regulators p21 and p27. Additionally, the combination, but not the individual agents, markedly enhanced JNK activation. Synergistic induction of apoptosis after exposure to LBH589 and bortezomib was partially mediated by Bax translocation from the cytosol to the mitochondria resulting from Bax conformational changes. Bax translocation precedes cytochrome c release and apoptosis, and selective down-regulation of Bax using siRNA significantly mitigates the cytotoxicity of LBH589 and bortezomib. This combination regimen warrants further preclinical and possible clinical study for glioma patients. PMID:18445700

  17. Transcriptional repression of the testis-specific histone H1t gene mediated by an element upstream of the H1/AC box.

    PubMed

    Wolfe, Steven A; Grimes, Sidney R

    2003-04-10

    The testis-specific histone H1t gene is transcribed exclusively in primary spermatocytes and may be important for chromatin structure, transcription, and DNA repair during this stage of spermatogenesis. Transcriptional repression of the gene in other cell types is mediated in part by specific proximal and distal promoter elements and in some cell types by methylation of CpG dinucleotides within the promoter. Our laboratory identified a distal promoter element located between 948 and 780 bp upstream from the transcription initiation site and another laboratory identified a GC-rich region between the TATA box and transcription initiation site that contribute to repression. In this article we address transcriptional repression of the histone H1t gene by an element within the proximal promoter. We report discovery of an element designated H1t promoter repressor element (RE) located between -130 and -106 bp that contributes to repression. The findings support the hypothesis that multiple mechanisms are involved in transcriptional repression of the H1t gene. Transcriptional repression mediated by the RE element in NIH 3T3 cells appears to differ significantly from the mechanism mediated by the GC-rich region. Furthermore, binding proteins that form the RE complex are not present in rat testis where the gene is actively transcribed. Our findings provide a molecular basis for histone H1t gene repression. PMID:12711397

  18. Inhibition of Different Histone Acetyltransferases (HATs) Uncovers Transcription-Dependent and -Independent Acetylation-Mediated Mechanisms in Memory Formation

    ERIC Educational Resources Information Center

    Merschbaecher, Katja; Hatko, Lucyna; Folz, Jennifer; Mueller, Uli

    2016-01-01

    Acetylation of histones changes the efficiency of the transcription processes and thus contributes to the formation of long-term memory (LTM). In our comparative study, we used two inhibitors to characterize the contribution of different histone acetyl transferases (HATs) to appetitive associative learning in the honeybee. For one we applied…

  19. Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis

    PubMed Central

    Margolis, Seth S.; Perry, Jennifer A.; Forester, Craig M.; Nutt, Leta K.; Guo, Yanxiang; Jardim, Melanie J.; Thomenius, Michael J.; Freel, Christopher D.; Darbandi, Rashid; Ahn, Jung-Hyuck; Arroyo, Jason D.; Wang, Xiao-Fan; Shenolikar, Shirish; Nairn, Angus C.; Dunphy, William G.; Hahn, William C.; Virshup, David M.; Kornbluth, Sally

    2009-01-01

    Summary DNA-responsive checkpoints prevent cell cycle progression following DNA damage or replication inhibition. The mitotic activator Cdc25 is suppressed by checkpoints through inhibitory phosphorylation at Ser287 (Xenopus numbering) and docking of 14-3-3. S287 phosphorylation is a major locus of G2/M checkpoint control, though several checkpoint-independent kinases can phosphorylate this site. We reported previously that mitotic entry requires 14-3-3 removal and S287 dephosphorylation. We show here that DNA-responsive checkpoints activate PP2A/B56δ phosphatase complexes to dephosphorylate Cdc25 at a site (T138) whose phosphorylation is required for 14-3-3 release. However, phosphorylation of T138 is not sufficient for 14-3-3 release from Cdc25. Rather, our data suggest that creation of a 14-3-3 “sink”, consisting of phosphorylated 14-3-3-binding intermediate filament proteins, coupled with reduced Cdc25-14-3-3 affinity, contribute to Cdc25 activation. These observations identify PP2A/B56δ as a central checkpoint effector, and suggest a mechanism for controlling 14-3-3 interactions to promote mitosis. PMID:17110335

  20. Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration.

    PubMed

    Jafar-Nejad, Paymaan; Ward, Christopher S; Richman, Ronald; Orr, Harry T; Zoghbi, Huda Y

    2011-02-01

    Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by the expansion of a CAG repeat encoding a polyglutamine tract in Ataxin-1 (ATXN1). Both WT and mutant ATXN1 interact with 14-3-3 proteins, and 14-3-3 overexpression stabilizes ATXN1 levels in cells and increases ATXN1 toxicity in flies. To determine whether reducing 14-3-3 levels might mitigate SCA1 pathogenesis, we bred Sca1(154Q/+) mice to mice lacking one allele of 14-3-3ε. 14-3-3ε haploinsufficiency rescued cerebellar pathology and motor phenotypes but, surprisingly, not weight loss, respiratory dysfunction, or premature lethality. Biochemical studies revealed that reducing 14-3-3ε levels exerted different effects in two brain regions especially vulnerable in SCA1: Although diminishing levels of both WT and mutant ATXN1 in the cerebellum, 14-3-3ε haploinsufficiency did not alter ATXN1 levels in the brainstem. Furthermore, 14-3-3ε haploinsufficiency decreased the incorporation of expanded ATXN1 into its large toxic complexes in the cerebellum but not in the brainstem, and the distribution of ATXN1's small and large native complexes differed significantly between the two regions. These data suggest that distinct pathogenic mechanisms operate in different vulnerable brain regions, adding another level of complexity to SCA1 pathogenesis. PMID:21245341

  1. ISOFORM-SPECIFIC BINDING OF 14-3-3 PROTEINS TO NITRATE REDUCTASE AND THE BRASSINOSTEROID INSENSITIVE 1 RECEPTOR KINASE SIGNALING COMPLEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 14-3-3 proteins are known to bind many different soluble protein clients, but less is known about binding to integral membrane proteins, and in both cases the issue of isoform specificity remains largely unexplored. Using an array of anti-14-3-3 antibodies and 2-dimensional electrophoresis (2-DE...

  2. Transcription variants of the prostate-specific PrLZ gene and their interaction with 14-3-3 proteins

    SciTech Connect

    Wang, Ruoxiang; He, Hui; Sun, Xiaojuan; Xu, Jianchun; Marshall, Fray F.; Zhau, Haiyen; Chung, Leland W.K.; Fu, Haian; He, Dalin

    2009-11-20

    We have reported isolation and characterization of the prostate-specific and androgen-regulated PrLZ gene abnormally expressed in prostate cancer. PrLZ is a potential biomarker for prostate cancer and a candidate oncogene promoting cell proliferation and survival in prostate cancer cells. A full delineation of the PrLZ gene and its gene products may provide clues to the mechanisms regulating its expression and function. In this report, we identified three additional exons in the PrLZ gene and recognized five transcript variants from alternative splicing that could be detected by RT-PCR and Western blotting. Structural comparison demonstrated that the PrLZ proteins are highly conserved among species. PrLZ contains multiple potential sites for interaction with other proteins. We used mammalian two-hybrid assays to demonstrate that PrLZ isoforms interact with 14-3-3 proteins, and multiple sites in the PrLZ may be involved in the interaction. Alternative splicing may contribute to abnormally enhanced PrLZ levels in prostate cancer, and interaction with 14-3-3 proteins may be a mechanism by which PrLZ promotes cell proliferation and survival during prostate cancer development and progression. This information is a valuable addition to the investigation of the oncogenic properties of the PrLZ gene.

  3. Functions of Saccharomyces cerevisiae 14-3-3 proteins in response to DNA damage and to DNA replication stress.

    PubMed Central

    Lottersberger, Francisca; Rubert, Fabio; Baldo, Veronica; Lucchini, Giovanna; Longhese, Maria Pia

    2003-01-01

    Two members of the 14-3-3 protein family, involved in key biological processes in different eukaryotes, are encoded by the functionally redundant Saccharomyces cerevisiae BMH1 and BMH2 genes. We produced and characterized 12 independent bmh1 mutant alleles, whose presence in the cell as the sole 14-3-3 source causes hypersensitivity to genotoxic agents, indicating that Bmh proteins are required for proper response to DNA damage. In particular, the bmh1-103 and bmh1-266 mutant alleles cause defects in G1/S and G2/M DNA damage checkpoints, whereas only the G2/M checkpoint is altered by the bmh1-169 and bmh1-221 alleles. Impaired checkpoint responses correlate with the inability to maintain phosphorylated forms of Rad53 and/or Chk1, suggesting that Bmh proteins might regulate phosphorylation/dephosphorylation of these checkpoint kinases. Moreover, several bmh1 bmh2Delta mutants are defective in resuming DNA replication after transient deoxynucleotide depletion, and all display synthetic effects when also carrying mutations affecting the polalpha-primase and RPA DNA replication complexes, suggesting a role for Bmh proteins in DNA replication stress response. Finally, the bmh1-169 bmh2Delta and bmh1-170 bmh2Delta mutants show increased rates of spontaneous gross chromosomal rearrangements, indicating that Bmh proteins are required to suppress genome instability. PMID:14704161

  4. Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

    PubMed

    Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-Oka, Kazuhito

    2016-06-01

    14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 600-614, 2016. PMID:26297819

  5. Regulation of Aldo-keto-reductase family 1 B10 by 14-3-3ε and their prognostic impact of hepatocellular carcinoma

    PubMed Central

    Lu, Yi-Jhu; Liang, Shu-Man; Liu, Chia-Chia; Chen, Shyh-Chang; Wang, John; Shyue, Song-Kun; Liou, Jun-Yang

    2015-01-01

    14-3-3ε is overexpressed in hepatocellular carcinoma (HCC) and its expression significantly associates with a poor prognostic outcome. To uncover how 14-3-3ε contributes to the tumor progression of HCC, we investigated the potential downstream targets regulated by 14-3-3ε. We found that 14-3-3ε increases expression and nuclear translocation of β-catenin and that 14-3-3ε-induced cell proliferation is attenuated by β-catenin silencing in HCC cells. Moreover, 14-3-3ε induces aldo-keto reductase family 1 member B10 (AKR1B10) expression through the activation of β-catenin signaling. Knockdown of AKR1B10 by siRNAs abolished 14-3-3ε-induced in vitro cell proliferation, anchorage-independent growth as well as in vivo tumor growth. Furthermore, AKR1B10 silencing increased retinoic acid (RA) levels in the serum of tumor-bearing mice and RA treatment attenuated 14-3-3ε-induced HCC cell proliferation. We further examined 14-3-3ε and AKR1B10 expression and clinicopathological characteristics of HCC tumors. Although the expression of AKR1B10 was significantly correlated with 14-3-3ε, an increase of AKR1B10 expression in 14-3-3ε positive patients paradoxically had better overall survival and disease-free survival rates as well as lower metastatic incidence than those without an AKR1B10 increase. Finally, we found a loss of AKR1B10 expression in cells exhibiting a high capacity of invasiveness. Silencing of AKR1B10 resulted in inducing snail and vimentin expression in HCC cells. These results indicate that AKR1B10 may play a dual role during HCC tumor progression. Our results also indicate that 14-3-3ε regulates AKR1B10 expression by activating β-catenin signaling. A combination of 14-3-3ε with AKR1B10 is a potential therapeutic target and novel prognostic biomarker of HCC. PMID:26516929

  6. Histone phosphorylation

    PubMed Central

    Rossetto, Dorine; Avvakumov, Nikita; Côté, Jacques

    2012-01-01

    Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes. PMID:22948226

  7. Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction

    PubMed Central

    Lam, Hilaire C.; Cloonan, Suzanne M.; Bhashyam, Abhiram R.; Haspel, Jeffery A.; Singh, Anju; Sathirapongsasuti, J. Fah; Cervo, Morgan; Yao, Hongwei; Chung, Anna L.; Mizumura, Kenji; An, Chang Hyeok; Shan, Bin; Franks, Jonathan M.; Haley, Kathleen J.; Owen, Caroline A.; Tesfaigzi, Yohannes; Washko, George R.; Quackenbush, John; Silverman, Edwin K.; Rahman, Irfan; Kim, Hong Pyo; Mahmood, Ashfaq; Biswal, Shyam S.; Ryter, Stefan W.; Choi, Augustine M.K.

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) that are associated with epithelial cell dysfunction, cilia shortening, and mucociliary clearance disruption. Exposure to CS reduced cilia length and induced autophagy in vivo and in differentiated mouse tracheal epithelial cells (MTECs). Autophagy-impaired (Becn1+/– or Map1lc3B–/–) mice and MTECs resisted CS-induced cilia shortening. Furthermore, CS increased the autophagic turnover of ciliary proteins, indicating that autophagy may regulate cilia homeostasis. We identified cytosolic deacetylase HDAC6 as a critical regulator of autophagy-mediated cilia shortening during CS exposure. Mice bearing an X chromosome deletion of Hdac6 (Hdac6–/Y) and MTECs from these mice had reduced autophagy and were protected from CS-induced cilia shortening. Autophagy-impaired Becn1–/–, Map1lc3B–/–, and Hdac6–/Y mice or mice injected with an HDAC6 inhibitor were protected from CS-induced mucociliary clearance (MCC) disruption. MCC was preserved in mice given the chemical chaperone 4-phenylbutyric acid, but was disrupted in mice lacking the transcription factor NRF2, suggesting that oxidative stress and altered proteostasis contribute to the disruption of MCC. Analysis of human COPD specimens revealed epigenetic deregulation of HDAC6 by hypomethylation and increased protein expression in the airways. We conclude that an autophagy-dependent pathway regulates cilia length during CS exposure and has potential as a therapeutic target for COPD. PMID:24200693

  8. Pat1 protects centromere-specific histone H3 variant Cse4 from Psh1-mediated ubiquitination

    PubMed Central

    Mishra, Prashant K.; Guo, Jiasheng; Dittman, Lauren E.; Haase, Julian; Yeh, Elaine; Bloom, Kerry; Basrai, Munira A.

    2015-01-01

    Evolutionarily conserved histone H3 variant Cse4 and its homologues are essential components of specialized centromere (CEN)-specific nucleosomes and serve as an epigenetic mark for CEN identity and propagation. Cse4 is a critical determinant for the structure and function of the kinetochore and is required to ensure faithful chromosome segregation. The kinetochore protein Pat1 regulates the levels and spatial distribution of Cse4 at centromeres. Deletion of PAT1 results in altered structure of CEN chromatin and chromosome segregation errors. In this study, we show that Pat1 protects CEN-associated Cse4 from ubiquitination in order to maintain proper structure and function of the kinetochore in budding yeast. PAT1-deletion strains exhibit increased ubiquitination of Cse4 and faster turnover of Cse4 at kinetochores. Psh1, a Cse4-specific E3-ubiquitin ligase, interacts with Pat1 in vivo and contributes to the increased ubiquitination of Cse4 in pat1∆ strains. Consistent with a role of Psh1 in ubiquitination of Cse4, transient induction of PSH1 in a wild-type strain resulted in phenotypes similar to a pat1∆ strain, including a reduction in CEN-associated Cse4, increased Cse4 ubiquitination, defects in spatial distribution of Cse4 at kinetochores, and altered structure of CEN chromatin. Pat1 interacts with Scm3 and is required for its maintenance at kinetochores. In conclusion, our studies provide novel insights into mechanisms by which Pat1 affects the structure of CEN chromatin and protects Cse4 from Psh1-mediated ubiquitination for faithful chromosome segregation. PMID:25833709

  9. 14-3-3ζ deficient mice in the BALB/c background display behavioural and anatomical defects associated with neurodevelopmental disorders

    PubMed Central

    Xu, Xiangjun; Jaehne, Emily J.; Greenberg, Zarina; McCarthy, Peter; Saleh, Eiman; Parish, Clare L.; Camera, Daria; Heng, Julian; Haas, Matilda; Baune, Bernhard T.; Ratnayake, Udani; Buuse, Maarten van den; Lopez, Angel F.; Ramshaw, Hayley S.; Schwarz, Quenten

    2015-01-01

    Sequencing and expression analyses implicate 14-3-3ζ as a genetic risk factor for neurodevelopmental disorders such as schizophrenia and autism. In support of this notion, we recently found that 14-3-3ζ−/− mice in the Sv/129 background display schizophrenia-like defects. As epistatic interactions play a significant role in disease pathogenesis we generated a new congenic strain in the BALB/c background to determine the impact of genetic interactions on the 14-3-3ζ−/− phenotype. In addition to replicating defects such as aberrant mossy fibre connectivity and impaired spatial memory, our analysis of 14-3-3ζ−/− BALB/c mice identified enlarged lateral ventricles, reduced synaptic density and ectopically positioned pyramidal neurons in all subfields of the hippocampus. In contrast to our previous analyses, 14-3-3ζ−/− BALB/c mice lacked locomotor hyperactivity that was underscored by normal levels of the dopamine transporter (DAT) and dopamine signalling. Taken together, our results demonstrate that dysfunction of 14-3-3ζ gives rise to many of the pathological hallmarks associated with the human condition. 14-3-3ζ-deficient BALB/c mice therefore provide a novel model to address the underlying biology of structural defects affecting the hippocampus and ventricle, and cognitive defects such as hippocampal-dependent learning and memory. PMID:26207352

  10. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

    PubMed

    Stevers, Loes M; Lam, Chan V; Leysen, Seppe F R; Meijer, Femke A; van Scheppingen, Daphne S; de Vries, Rens M J M; Carlile, Graeme W; Milroy, Lech G; Thomas, David Y; Brunsveld, Luc; Ottmann, Christian

    2016-03-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics. PMID:26888287

  11. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression

    PubMed Central

    Zhang, Xi; Peng, Danni; Xi, Yuanxin; Yuan, Chao; Sagum, Cari A.; Klein, Brianna J.; Tanaka, Kaori; Wen, Hong; Kutateladze, Tatiana G.; Li, Wei; Bedford, Mark T.; Shi, Xiaobing

    2016-01-01

    The euchromatin histone methyltransferase 2 (also known as G9a) methylates histone H3K9 to repress gene expression, but it also acts as a coactivator for some nuclear receptors. The molecular mechanisms underlying this activation remain elusive. Here we show that G9a functions as a coactivator of the endogenous oestrogen receptor α (ERα) in breast cancer cells in a histone methylation-independent manner. G9a dimethylates ERα at K235 both in vitro and in cells. Dimethylation of ERαK235 is recognized by the Tudor domain of PHF20, which recruits the MOF histone acetyltransferase (HAT) complex to ERα target gene promoters to deposit histone H4K16 acetylation promoting active transcription. Together, our data suggest the molecular mechanism by which G9a functions as an ERα coactivator. Along with the PHF20/MOF complex, G9a links the crosstalk between ERα methylation and histone acetylation that governs the epigenetic regulation of hormonal gene expression. PMID:26960573

  12. Decreased expression of 14-3-3 σ, an early event of malignant transformation of respiratory epithelium, also facilitates progression of squamous cell lung cancer

    PubMed Central

    Sun, Nan; Wu, Yongkai; Huang, Bo; Liu, Qian; Dong, Yinan; Ding, Jianqiao; Liu, Yongyu

    2015-01-01

    Background It has been shown that 14-3-3 σ serves as a tumor suppressor gene, and is downregulated in various tumor tissues. However, the role of 14-3-3 σ during the initiation and progression of lung squamous cell carcinoma (SqCC) is not well understood. Methods The expression status of 14-3-3 σ in archival tissue samples from 40 lung SqCC patients (36 with normal bronchia, 19 squamous metaplasia, and 17 dysplasia/carcinoma in situ, in their tissue samples) was examined by immunohistochemical analysis. The proliferation rate and tumor formation ability of the H520 cell transfected with 14-3-3 σ was tested with methyl thiazolyl tetrazolium assay and nude mice subcutaneous injection, respectively. Results In the normal bronchial epithelia, 14-3-3 σ was highly expressed, whereas it was significantly decreased in precancerous and cancerous tissues. Compared with matched invasive cancer tissues, the expression level of 14-3-3 σ in squamous metaplasia was significantly higher (P = 0.049), while that in dysplasia/carcinoma in situ showed no significant changes (P = 0.135). Statistical analysis showed that the expression level of 14-3-3 σ in tumor tissue was associated with the differentiation grade of the tumor (P = 0.001) and the prognosis of the patient (P = 0.003). The overexpression of 14-3-3 σ significantly suppressed the proliferation of H520 cells in vitro and in vivo. Conclusion The inactivation of 14-3-3 σ may be a very early event in tumorigenesis and could facilitate the initiation and progression of lung SqCC in a sustainable way. PMID:26557909

  13. Overexpression of the 14-3-3gamma protein in embryonic mice results in neuronal migration delay in the developing cerebral cortex.

    PubMed

    Cornell, Brett; Wachi, Tomoka; Zhukarev, Vladimir; Toyo-Oka, Kazuhito

    2016-08-15

    The 14-3-3 protein family is a group of multifunctional proteins that are highly expressed in the brain; however, their functions in brain development are largely unknown. Williams Syndrome is a neurodevelopmental disorder caused by a deletion in the 7q11.23 chromosome locus, including the gene encoding 14-3-3gamma, resulting in developmental delay, intellectual disabilities and epilepsy. We have previously shown that knocking down the 14-3-3gamma protein in utero in mice results in delays in neuronal migration of pyramidal neurons in the cortex. Importantly, there is a reciprocal duplication syndrome to Williams Syndrome where the 7q11.23 locus is duplicated, resulting in epilepsy and intellectual disabilities. Thus, the deletion or the duplication of the 7q11.23 chromosome locus results in epilepsy. Taken together with the fact that defects in neuronal migration are one of main causes for epilepsy, we analyzed if the overexpression of 14-3-3gamma causes neuronal migration defects. In this work, we found that the overexpression of 14-3-3gamma in utero in the developing mouse cortex results in delays in pyramidal neuron migration, similar to what was previously observed when 14-3-3gamma was knocked down. These results, in conjunction with our previous research, indicate that a balance of 14-3-3gamma expression is required during cortical development to prevent delays in neuronal migration. This work provides clear evidence as to the involvement of 14-3-3gamma in neurodevelopmental disorders and how a disruption in 14-3-3gamma expression may contribute to the neurodevelopmental disorders that manifest when the 7q11.23 locus is altered. PMID:27288018

  14. Dissection of Binding between a Phosphorylated Tyrosine Hydroxylase Peptide and 14-3-3ζ: A Complex Story Elucidated by NMR

    PubMed Central

    Hritz, Jozef; Byeon, In-Ja L.; Krzysiak, Troy; Martinez, Aurora; Sklenar, Vladimir; Gronenborn, Angela M.

    2014-01-01

    Human tyrosine hydroxylase activity is regulated by phosphorylation of its N-terminus and by an interaction with the modulator 14-3-3 proteins. We investigated the binding of singly or doubly phosphorylated and thiophosphorylated peptides, comprising the first 50 amino acids of human tyrosine hydroxylase, isoform 1 (hTH1), that contain the critical interaction domain, to 14-3-3ζ, by 31P NMR. Single phosphorylation at S19 generates a high affinity 14-3-3ζ binding epitope, whereas singly S40-phosphorylated peptide interacts with 14-3-3ζ one order-of-magnitude weaker than the S19-phosphorylated peptide. Analysis of the binding data revealed that the 14-3-3ζ dimer and the S19- and S40-doubly phosphorylated peptide interact in multiple ways, with three major complexes formed: 1), a single peptide bound to a 14-3-3ζ dimer via the S19 phosphate with the S40 phosphate occupying the other binding site; 2), a single peptide bound to a 14-3-3ζ dimer via the S19 phosphorous with the S40 free in solution; or 3), a 14-3-3ζ dimer with two peptides bound via the S19 phosphorous to each binding site. Our system and data provide information as to the possible mechanisms by which 14-3-3 can engage binding partners that possess two phosphorylation sites on flexible tails. Whether these will be realized in any particular interacting pair will naturally depend on the details of each system. PMID:25418103

  15. The Hsp70 homolog Ssb and the 14-3-3 protein Bmh1 jointly regulate transcription of glucose repressed genes in Saccharomyces cerevisiae

    PubMed Central

    Hübscher, Volker; Mudholkar, Kaivalya; Chiabudini, Marco; Fitzke, Edith; Wölfle, Tina; Pfeifer, Dietmar; Drepper, Friedel; Warscheid, Bettina; Rospert, Sabine

    2016-01-01

    Chaperones of the Hsp70 family interact with a multitude of newly synthesized polypeptides and prevent their aggregation. Saccharomyces cerevisiae cells lacking the Hsp70 homolog Ssb suffer from pleiotropic defects, among others a defect in glucose-repression. The highly conserved heterotrimeric kinase SNF1/AMPK (AMP-activated protein kinase) is required for the release from glucose-repression in yeast and is a key regulator of energy balance also in mammalian cells. When glucose is available the phosphatase Glc7 keeps SNF1 in its inactive, dephosphorylated state. Dephosphorylation depends on Reg1, which mediates targeting of Glc7 to its substrate SNF1. Here we show that the defect in glucose-repression in the absence of Ssb is due to the ability of the chaperone to bridge between the SNF1 and Glc7 complexes. Ssb performs this post-translational function in concert with the 14-3-3 protein Bmh, to which Ssb binds via its very C-terminus. Raising the intracellular concentration of Ssb or Bmh enabled Glc7 to dephosphorylate SNF1 even in the absence of Reg1. By that Ssb and Bmh efficiently suppressed transcriptional deregulation of Δreg1 cells. The findings reveal that Ssb and Bmh comprise a new chaperone module, which is involved in the fine tuning of a phosphorylation-dependent switch between respiration and fermentation. PMID:27001512

  16. The Hsp70 homolog Ssb and the 14-3-3 protein Bmh1 jointly regulate transcription of glucose repressed genes in Saccharomyces cerevisiae.

    PubMed

    Hübscher, Volker; Mudholkar, Kaivalya; Chiabudini, Marco; Fitzke, Edith; Wölfle, Tina; Pfeifer, Dietmar; Drepper, Friedel; Warscheid, Bettina; Rospert, Sabine

    2016-07-01

    Chaperones of the Hsp70 family interact with a multitude of newly synthesized polypeptides and prevent their aggregation. Saccharomyces cerevisiae cells lacking the Hsp70 homolog Ssb suffer from pleiotropic defects, among others a defect in glucose-repression. The highly conserved heterotrimeric kinase SNF1/AMPK (AMP-activated protein kinase) is required for the release from glucose-repression in yeast and is a key regulator of energy balance also in mammalian cells. When glucose is available the phosphatase Glc7 keeps SNF1 in its inactive, dephosphorylated state. Dephosphorylation depends on Reg1, which mediates targeting of Glc7 to its substrate SNF1. Here we show that the defect in glucose-repression in the absence of Ssb is due to the ability of the chaperone to bridge between the SNF1 and Glc7 complexes. Ssb performs this post-translational function in concert with the 14-3-3 protein Bmh, to which Ssb binds via its very C-terminus. Raising the intracellular concentration of Ssb or Bmh enabled Glc7 to dephosphorylate SNF1 even in the absence of Reg1. By that Ssb and Bmh efficiently suppressed transcriptional deregulation of Δreg1 cells. The findings reveal that Ssb and Bmh comprise a new chaperone module, which is involved in the fine tuning of a phosphorylation-dependent switch between respiration and fermentation. PMID:27001512

  17. ErbB2, FoxM1 and 14-3-3ζ prime breast cancer cells for invasion in response to ionizing radiation

    PubMed Central

    Kambach, DM; Sodi, VL; Lelkes, PI; Azizkhan-Clifford, J; Reginato, MJ

    2014-01-01

    ErbB2 is frequently highly expressed in premalignant breast cancers, including ductal carcinoma in situ (DCIS); however, little is known about the signals or pathways it contributes to progression into the invasive/malignant state. Radiotherapy is often used to treat early premalignant lesions regardless of ErbB2 status. Here, we show that clinically relevant doses of ionizing radiation (IR)-induce cellular invasion of ErbB2-expressing breast cancer cells, as well as MCF10A cells overexpressing ErbB2. ErbB2-negative breast cancer cells, such as MCF7 and T47D, do not invade following treatment with IR nor do MCF10A cells overexpressing epidermal growth factor receptor. ErbB2 becomes phosphorylated at tyrosine 877 in a dose- and time- dependent manner following exposure to X-rays, and activates downstream signaling cascades including PI3K/Akt. Inhibition of these pathways, as well as inhibition of reactive oxygen species (ROS) with antioxidants, prevents IR-induced invasion. Activation of ErbB2-dependent signaling results in upregulation of the forkhead family transcription factor, FoxM1, and its transcriptional targets, including matrix metalloproteinase 2 (MMP2). Inhibition of FoxM1 by RNA interference prevented induction of invasion by IR, and overexpression of FoxM1 in MCF10A cells was sufficient to promote IR-induced invasion. Moreover, we found that 14-3-3ζ is also upregulated by IR in cancer cells in a ROS-dependent manner, is required for IR-induced invasion in ErbB2-positive breast cancer cells and together with FoxM1 is sufficient for invasion in ErbB2-negative breast cancer cells. Thus, our data show that IR-mediated activation of ErbB2 and induction of 14-3-3ζ collaborate to regulate FoxM1 and promote invasion of breast cancer cells and furthermore, may serve as therapeutic targets to enhance radiosensitivity of breast cancers. PMID:23318431

  18. Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis.

    PubMed

    Kornet, Noortje; Scheres, Ben

    2009-04-01

    The PLETHORA (PLT) stem cell transcription factors form a developmentally instructive protein gradient in Arabidopsis thaliana roots. Histone acetylation is known to facilitate gene transcription and plays an important role in developmental processes. Here, we show that histone acetyltransferase GCN5 (for general control nonderepressible 5) attenuates the PLT gradient. Based on genetic evidence, we establish that GCN5 is essential for root stem cell niche maintenance and acts in the PLT pathway. The GCN5-associated factor ADA2b (for alteration/deficiency in activation 2b) is also positioned in the PLT pathway and regulates PLT expression, similar to GCN5. Both GCN5 and ADA2b mediate proliferation of the transit amplifying cells, but ADA2b does not affect stem cell niche maintenance. Overexpression of PLT2 rescues the stem cell niche defect of gcn5 mutants, indicating that GCN5 regulation of PLT expression is essential for maintenance of the root stem cell niche. We conclude that histone acetylation complexes play an important role in shaping a developmentally instructive gradient in the root. PMID:19376933

  19. Members of the GCN5 Histone Acetyltransferase Complex Regulate PLETHORA-Mediated Root Stem Cell Niche Maintenance and Transit Amplifying Cell Proliferation in Arabidopsis[W

    PubMed Central

    Kornet, Noortje; Scheres, Ben

    2009-01-01

    The PLETHORA (PLT) stem cell transcription factors form a developmentally instructive protein gradient in Arabidopsis thaliana roots. Histone acetylation is known to facilitate gene transcription and plays an important role in developmental processes. Here, we show that histone acetyltransferase GCN5 (for general control nonderepressible 5) attenuates the PLT gradient. Based on genetic evidence, we establish that GCN5 is essential for root stem cell niche maintenance and acts in the PLT pathway. The GCN5-associated factor ADA2b (for alteration/deficiency in activation 2b) is also positioned in the PLT pathway and regulates PLT expression, similar to GCN5. Both GCN5 and ADA2b mediate proliferation of the transit amplifying cells, but ADA2b does not affect stem cell niche maintenance. Overexpression of PLT2 rescues the stem cell niche defect of gcn5 mutants, indicating that GCN5 regulation of PLT expression is essential for maintenance of the root stem cell niche. We conclude that histone acetylation complexes play an important role in shaping a developmentally instructive gradient in the root. PMID:19376933

  20. Phosphorylation of Thr-948 at the C terminus of the plasma membrane H(+)-ATPase creates a binding site for the regulatory 14-3-3 protein.

    PubMed Central

    Svennelid, F; Olsson, A; Piotrowski, M; Rosenquist, M; Ottman, C; Larsson, C; Oecking, C; Sommarin, M

    1999-01-01

    The plant plasma membrane H(+)-ATPase is activated by the binding of 14-3-3 protein to the C-terminal region of the enzyme, thus forming an H(+)-ATPase-14-3-3 complex that can be stabilized by the fungal toxin fusicoccin. A novel 14-3-3 binding motif, QQXYpT(948)V, at the C terminus of the H(+)-ATPase is identified and characterized, and the protein kinase activity in the plasma membrane fraction that phosphorylates this threonine residue in the H(+)-ATPase is identified. A synthetic peptide that corresponds to the C-terminal 16 amino acids of the H(+)-ATPase and that is phosphorylated on Thr-948 prevents the in vitro activation of the H(+)-ATPase that is obtained in the presence of recombinant 14-3-3 and fusicoccin. Furthermore, binding of 14-3-3 to the H(+)-ATPase in the absence of fusicoccin is absolutely dependent on the phosphorylation of Thr-948, whereas binding of 14-3-3 in the presence of fusicoccin occurs independently of phosphorylation but still involves the C-terminal motif YTV. Finally, by complementing yeast that lacks its endogenous H(+)-ATPase with wild-type and mutant forms of the Nicotiana plumbaginifolia H(+)-ATPase isoform PMA2, we provide physiological evidence for the importance of the phosphothreonine motif in 14-3-3 binding and, hence, in the activation of the H(+)-ATPase in vivo. Indeed, replacing Thr-948 in the plant H(+)-ATPase with alanine is lethal because this mutant fails to functionally replace the yeast H(+)-ATPase. Considering the importance of the motif QQXYpTV for 14-3-3 binding and yeast growth, this motif should be of vital importance for regulating H(+)-ATPase activity in the plant and thus for plant growth. PMID:10590165

  1. Functional relationship between CABIT, SAM and 14-3-3 binding domains of GAREM1 that play a role in its subcellular localization

    SciTech Connect

    Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki

    2015-08-21

    GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association with the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.

  2. Identification of 14-3-3 proteins as a target of ATL31 ubiquitin ligase, a regulator of the C/N response in Arabidopsis.

    PubMed

    Sato, Takeo; Maekawa, Shugo; Yasuda, Shigetaka; Domeki, Yukie; Sueyoshi, Kuni; Fujiwara, Masayuki; Fukao, Yoichiro; Goto, Derek B; Yamaguchi, Junji

    2011-10-01

    The balance between carbon (C) and nitrogen (N) availability is an important determinant for various phases of plant growth; however, the detailed mechanisms regulating the C/N response are not well understood. We previously described two related ubiquitin ligases, ATL31 and ATL6, that function in the C/N response in Arabidopsis thaliana. Here, we used FLAG tag affinity purification and MS analysis to identify proteins targeted by ATL31, and thus likely to be involved in regulating the phase transition checkpoint based on C/N status. This analysis revealed that 14-3-3 proteins were associated with ATL31, and one of these, 14-3-3χ, was selected for detailed characterization. The interaction between ATL31 and 14-3-3χ was confirmed by yeast two-hybrid and co-immunoprecipitation analyses. In vitro assays showed that ubiquitination of 14-3-3χ is catalyzed by ATL31. Degradation of 14-3-3χin vivo was shown to be correlated with ATL31 activity, and to occur in a proteasome-dependent manner. Furthermore, 14-3-3 protein accumulation was induced by a shift to high-C/N stress conditions in Arabidopsis seedlings, and this regulated response required both ATL31 and ATL6. It was also shown that over-expression of 14-3-3χ leads to hypersensitivity of Arabidopsis seedlings to C/N stress conditions. These results indicate that ATL31 targets and ubiquitinates 14-3-3 proteins for degradation via the ubiquitin-proteasome system during the response to cellular C/N status. PMID:21668537

  3. 14-3-3 eta isoform colocalizes TDP-43 on the coarse granules in the anterior horn cells of patients with sporadic amyotrophic lateral sclerosis.

    PubMed

    Umahara, Takahiko; Uchihara, Toshiki; Shibata, Noriyuki; Nakamura, Ayako; Hanyu, Haruo

    2016-09-01

    The immunolocalization of the 14-3-3 eta isoform in the anterior horn cells (AHCs) of patients with sporadic amyotrophic lateral sclerosis (ALS) and controls was examined. Compared with the immunolocalization of other 14-3-3 isoforms, the immunolocalization of the 14-3-3 eta isoform was either synaptic at the periphery of AHCs, spindle-shaped in neurites, or granular in the cytoplasm. By double labeling with phosphorylated (p-)TDP-43, the transactivation response DNA binding protein of 43kDa (TDP-43) demonstrated frequent colocalization of the 14-3-3 eta isoform in granular structures (90%) and spindle-shaped structures (85.4%), but not in p-TDP-43-positive round inclusions. It is speculated that the 14-3-3 eta isoform is associated with not only a synaptic pathology of ALS but also TDP-positive small lesions in the cytoplasm and neurites. The absence of eta-like immunoreactivity in p-TDP-43-positive large inclusions suggests the restricted relevance of the 14-3-3 eta isoform during ALS pathogenesis to some phases of the p-TDP pathology. PMID:27256400

  4. 14-3-3 proteins sequester a pool of soluble TRIM32 ubiquitin ligase to repress autoubiquitylation and cytoplasmic body formation.

    PubMed

    Ichimura, Tohru; Taoka, Masato; Shoji, Ikuo; Kato, Hiroki; Sato, Tomonobu; Hatakeyama, Shigetsugu; Isobe, Toshiaki; Hachiya, Naomi

    2013-05-01

    Deregulated expression of tripartite motif-containing protein 32 (TRIM32, an E3 ubiquitin-protein ligase) contributes to various diseases. Here we report, using quantitative proteomics and biochemistry, that 14-3-3 proteins bind to phosphorylated TRIM32 and prevent TRIM32 autoubiquitylation and the formation of TRIM32-containing cytoplasmic bodies, which are potential autoregulatory mechanisms that can reduce the concentration of soluble free TRIM32. The 14-3-3-TRIM32 interaction is dependent on protein-kinase-A-catalyzed phosphorylation of TRIM32 at Ser651. We found that the inhibitory effect of 14-3-3 is, in part, a consequence of disrupting the propensity of TRIM32 to undergo higher-order self-association without affecting its dimerization. Consequently, dimerized TRIM32 bound to 14-3-3 was sequestered in a distinct cytoplasmic pool away from the microtubule network, whereas a TRIM32 mutant that cannot bind 14-3-3 underwent multimerization and was unavailable to facilitate cell growth. Our results reveal a novel connection between ubiquitylation and phosphorylation pathways, which could modulate a variety of cell events by stimulating the formation of the 14-3-3-TRIM32 signaling complex. PMID:23444366

  5. 14-3-3 isoforms bind directly exon B of the 5′-UTR of human surfactant protein A2 mRNA

    PubMed Central

    Noutsios, Georgios T.; Ghattas, Paul; Bennett, Stephanie

    2015-01-01

    Human surfactant protein (SP) A (SP-A), an innate immunity molecule, is encoded by two genes, SFTPA1 and SFTPA2. The 5′-untranslated splice variant of SP-A2 (ABD), but not SP-A1 (AD), contains exon B (eB). eB is an enhancer for transcription and translation and contains cis-regulatory elements. Specific trans-acting factors, including 14-3-3, bind eB. The 14-3-3 protein family contains seven isoforms that have been found by mass spectrometry in eB electromobility shift assays (Noutsios et al. Am J Physiol Lung Cell Mol Physiol 304: L722–L735, 2013). We used four different approaches to investigate whether 14-3-3 isoforms bind directly to eB. 1) eB RNA pulldown assays showed that 14-3-3 isoforms specifically bind eB. 2) RNA electromobility shift assay complexes were formed using purified 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, with wild-type eB RNA. 3 and 4) RNA affinity chromatography assays and surface plasmon resonance analysis showed that 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, specifically and directly bind eB. Inhibition of 14-3-3 isoforms γ, ε, η, and τ/θ with shRNAs in NCI-H441 cells resulted in downregulation of SP-A2 levels but did not affect SP-A1 levels. However, inhibition of 14-3-3 isoform σ was correlated with lower levels of SP-A1 and SP-A2. Inhibition of 14-3-3 isoform ζ/δ, which does not bind eB, had no effect on expression levels of SP-A1 and SP-A2. In conclusion, the 14-3-3 protein family affects differential regulation of SP-A1 and SP-A2 by binding directly to SP-A2 5′-UTR mRNA. PMID:26001776

  6. The 14-3-3 protein PAR-5 regulates the asymmetric localization of the LET-99 spindle positioning protein.

    PubMed

    Wu, Jui-Ching; Espiritu, Eugenel B; Rose, Lesilee S

    2016-04-15

    PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. PMID:26921457

  7. Dot1a-AF9 Complex Mediates Histone H3 Lys-79 Hypermethylation and Repression of ENaCα in an Aldosterone-sensitive Manner*

    PubMed Central

    Zhang, Wenzheng; Xia, Xuefeng; Reisenauer, Mary Rose; Hemenway, Charles S.; Kone, Bruce C.

    2010-01-01

    Aldosterone is a major regulator of epithelial Na+ absorption and acts in large part through induction of the epithelial Na+ channel (ENaC) gene in the renal collecting duct. We previously identified Dot1a as an aldosterone early repressed gene and a repressor of ENaCα transcription through mediating histone H3 Lys-79 methylation associated with the ENaCα promoter. Here, we report a novel aldosterone-signaling network involving AF9, Dot1a, and ENaCα. AF9 and Dot1a interact in vitro and in vivo as evidenced in multiple assays and colocalize in the nuclei of mIMCD3 renal collecting duct cells. Overexpression of AF9 results in hypermethylation of histone H3 Lys-79 at the endogenous ENaCα promoter at most, but not all subregions examined, repression of endogenous ENaCα mRNA expression and acts synergistically with Dot1a to inhibit ENaCα promoter-luciferase constructs. In contrast, RNA interference-mediated knockdown of AF9 causes the opposite effects. Chromatin immunoprecipitation assays reveal that overexpressed FLAG-AF9, endogenous AF9, and Dot1a are each associated with the ENaCα promoter. Aldosterone negatively regulates AF9 expression at both mRNA and protein levels. Thus, Dot1a-AF9 modulates histone H3 Lys-79 methylation at the ENaCα promoter and represses ENaCα transcription in an aldosterone-sensitive manner. This mechanism appears to be more broadly applicable to other aldosterone-regulated genes because overexpression of AF9 alone or in combination with Dot1a inhibited mRNA levels of three other known aldosterone-inducible genes in mIMCD3 cells. PMID:16636056

  8. `Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine.

    PubMed

    Montagud-Romero, S; Montesinos, J; Pascual, M; Aguilar, M A; Roger-Sanchez, C; Guerri, C; Miñarro, J; Rodríguez-Arias, M

    2016-10-01

    Social defeat (SD) induces a long-lasting increase in the rewarding effects of psychostimulants measured using the self-administration and conditioned place procedures (CPP). However, little is known about the epigenetic changes induced by social stress and about their role in the increased response to the rewarding effects of psychostimulants. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced behavioral changes, we addressed the hypothesis that SD induces transcriptional changes by histone modifications associated with the acquisition of place conditioning. After a fourth defeat, H3(K9) acetylation was decreased in the hippocampus, while there was an increase of HAT and a decrease of HDAC levels in the cortex. Three weeks after the last defeat, mice displayed an increase in histone H4(K12) acetylation and an upregulation of histone acetyl transferase (HAT) activity in the hippocampus. In addition, H3(K4)me3, which is closely associated with transcriptional initiation, was also augmented in the hippocampus three weeks after the last defeat. Inhibition of HAT by curcumin (100mg/kg) before each SD blocked the increase in the conditioned reinforcing effects of 1mg/kg of cocaine, while inhibition of HDAC by valproic acid (500mg/kg) before social stress potentiated cocaine-induced CPP. Preference was reinstated when animals received a priming dose of 0.5mg/kg of cocaine, an effect that was absent in untreated defeated mice. These results suggest that the experience of SD induces chromatin remodeling, alters histone acetylation and methylation, and modifies the effects of cocaine on place conditioning. They also point to epigenetic mechanisms as potential avenues leading to new treatments for the long-term effects of social stress on drug addiction. PMID:27180319

  9. 14-3-3γ regulates cell viability and milk fat synthesis in lipopolysaccharide-induced dairy cow mammary epithelial cells

    PubMed Central

    LIU, LIXIN; ZHANG, LI; LIN, YE; BIAN, YANJIE; GAO, XUEJUN; QU, BO; LI, QINGZHANG

    2016-01-01

    Our previous study demonstrated that 14-3-3γ overexpression was able to inhibit the production of lipopolysaccharide (LPS)-induced cytokines in dairy cow mammary epithelial cells (DCMECs) by inhibiting the activation of nuclear factor-κB (NF-κB) signaling pathways. However, the association between 14-3-3γ overexpression and milk fat synthesis in LPS-induced DCMECs remains unclear. Therefore, the present study investigated the effect of 14-3-3γ on cell viability and milk fat synthesis in LPS-induced DCMECs. The results of the MTT assay and lactate dehydrogenase activity assay demonstrated that 14-3-3γ overexpression was able to attenuate LPS-induced cytotoxicity in DCMECs, and increase the viability of the cells. In addition, the results of reverse transcription-quantitative polymerase chain reaction suggested that mRNA expression levels of genes associated with milk fat synthesis, including sterol regulatory element binding protein (SREBP1), peroxisome proliferator-activated receptor-γ (PPARG), cluster of differentiation 36, acetyl-coA carboxylase (ACC), fatty acid synthase (FAS) and fatty acid binding protein-3, were significantly upregulated in cells overexpressing the 14-3-3γ protein. In addition, as compared with the LPS-treated group, the activities of FAS and ACC were significantly increased. Furthermore, western blotting demonstrated that 14-3-3γ overexpression enhanced the protein expression levels of phosphorylated SREBP1 and PPARG. These results suggested that high levels of 14-3-3γ protein were able to attenuate LPS-induced cell damage and promote milk fat synthesis in LPS-induced DCMECs by increasing the cell viability and upregulating the expression levels of transcription factors associated with milk fat synthesis. PMID:27073437

  10. Ethanol Induced Acetylation of Histone at G9a Exon1 and G9a-Mediated Histone H3 Dimethylation leads to Neurodegeneration in Neonatal Mice

    PubMed Central

    Subbanna, Shivakumar; Nagre, Nagaraja N.; Shivakumar, Madhu; Umapathy, Nagavedi S.; Psychoyos, Delphine; Basavarajappa, Balapal S.

    2014-01-01

    The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), comparable to a time point within the third trimester of human pregnancy, induces neurodegeneration. However, the molecular mechanisms underlying the deleterious effects of ethanol on the developing brain are poorly understood. In our previous study, we showed that a high dose administration of ethanol at P7 enhances G9a and leads to caspase-3-mediated degradation of dimethylated H3 on lysine 9 (H3K9me2). In this study, we investigated the potential role of epigenetic changes at G9a exon1, G9a-mediated H3 dimethylation on neurodegeneration and G9a-associated proteins in the P7 brain following exposure to a low dose of ethanol. We found that a low dose of ethanol induces mild neurodegeneration in P7 mice, enhances specific acetylation of H3 on lysine 14 (H3K14ace) at G9a exon1, G9a protein levels, augments the dimethylation of H3K9 and H3 lysine 27 (H3K27me2). However, neither dimethylated H3K9 nor K27 underwent degradation. Pharmacological inhibition of G9a activity prior to ethanol treatment prevented H3 dimethylation and neurodegeneration. Further, our immunoprecipitation data suggest that G9a directly associates with DNA methyltransferase (DNMT3A) and methyl-CpG-binding protein 2 (MeCP2). In addition, DNMT3A and MeCP2 protein levels were enhanced by a low dose of ethanol that was shown to induce mild neurodegeneration. Collectively, these epigenetic alterations lead to association of G9a, DNMT3A and MeCP2 to form a larger repressive complex and have a significant role in low dose ethanol-induced neurodegeneration in the developing brain. PMID:24300108