Science.gov

Sample records for 14th international vacuum

  1. 14th International Conference 'Laser Optics 2010'

    SciTech Connect

    Mak, Artur A

    2010-10-15

    The 14th International Conference 'Laser Optics 2010' in which more than 800 scientists and experts from 35 countries took part, was held from June 28 to July 2, 2010, in St. Petersburg. (information)

  2. 14th International Headache Congress: basic science highlights.

    PubMed

    Schwedt, Todd J; Goadsby, Peter J

    2010-03-01

    During the 14th International Headache Congress the results of several innovative studies that contribute to our understanding of headache pathophysiology and treatment were presented. Here we summarize work expected to contribute substantially to understanding headache mechanisms, while an accompanying manuscript summarizes presentations regarding the treatment of headache. This manuscript highlights research on mechanisms of photophobia and phonophobia, pharmacologic inhibition of cortical spreading depression, a proposed mechanism by which oxygen effectively treats cluster headache, identification of functional and structural aberrations in people with hypnic headache, and research on functional imaging markers of a migraine attack. PMID:20456146

  3. 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015")

    NASA Astrophysics Data System (ADS)

    Przybyłowicz, Wojciech Józef; Pineda-Vargas, Carlos

    2015-11-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015") that was held in Somerset West (South Africa) from 25th February to 3rd March 2015.

  4. 77 FR 52693 - Request for Comments on U.S. Technical Participation in the 14th Conference of the International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... 14th Conference of the International Organization of Legal Metrology (OIML) AGENCY: National Institute... 14th Conference of the International Organization of Legal Metrology (OIML). This conference is held... Conference. DATES: Written comments should be submitted to the NIST International Legal Metrology Program...

  5. EDITORIAL: The 14th International Symposium on Flow Visualization, ISFV14 The 14th International Symposium on Flow Visualization, ISFV14

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Chun; Lee, Sang Joon

    2011-06-01

    The 14th International Symposium on Flow Visualization (ISFV14) was held in Daegu, Korea, on 21-24 June 2010. There were 304 participants from 17 countries. The state of the art in many aspects of flow visualization was presented and discussed, and a total of 243 papers from 19 countries were presented. Two special lectures and four invited lectures, 48 paper sessions and one poster session were held in five session rooms and in a lobby over four days. Among the paper sessions, those on 'biological flows', 'micro/nano fluidics', 'PIV/PTV' and 'compressible and sonic flows' received great attention from the participants of ISFV14. Special events included presentations of 'The Asanuma Award' and 'The Leonardo Da Vinci Award' to prominent contributors. Awards for photos and movies were given to three scientists for their excellence in flow visualizations. Sixteen papers were selected by the Scientific Committee of ISFV14. After the standard peer review process of this journal, six papers were finally accepted for publication. We wish to thank the editors of MST for making it possible to publish this special feature from ISFV14. We also thank the authors for their careful and insightful work and cooperation in the preparation of revised papers. It will be our pleasure if readers appreciate the hot topics in flow visualization research as a result of this special feature. We also hope that the progress in flow visualization will create new research fields. The 15th International Symposium on Flow Visualization will be held in Minsk, Belarus in 2012. We would like to express sincere thanks to the staff at IOP Publishing for their kind support.

  6. 14th Annual international meeting of wind turbine test stations: Proceedings

    SciTech Connect

    Not Available

    1994-11-01

    These proceedings are of the 14th Annual International Meeting of Test Stations. As the original charter states these meetings are intended to be an international forum for sharing wind turbine testing experiences. By sharing their experiences they can improve testing skills and techniques. As with all new industries the quality of the products is marked by how well they learn from their experiences and incorporate this learning into the next generation of products. The test station`s role in this process is to provide accurate information to the companies they serve. This information is used by designers to conform and improve their designs. It is also used by certification agencies for confirming the quality of these designs. By sharing of experiences they are able to accomplished these goals, serve these customers better and ultimately improve the international wind energy industry.

  7. PREFACE: 14th International Conference on Metrology and Properties of Engineering Surfaces (Met & Props 2013)

    NASA Astrophysics Data System (ADS)

    Fu, Wei-En

    2014-03-01

    Proceedings of the 14th International Conference, Taipei, Taiwan, 17th-21st June, 2013 Taiwan Organized by: Center for Measurement Standards/Industrial Technology Research Institute Mechanical and Systems Research Laboratories/Industrial Technology Research Institute National Taiwan University National Cheng Kung University National Taiwan University of Science and Technology National Tsing Hua University Greetings from Chairman of International Programme CommitteeTom Thomas When Professor Ken Stout and I founded this series of conferences in the United Kingdom more than thirty years ago, we did not anticipate its longevity or its success. Since that first meeting at Leicester, the conference has been often held in England, but also in several other European countries: France, Poland and Sweden, as well as in the United States. Ken, sadly no longer with us, would be proud of what it has achieved and has come to represent. Generations of researchers have presented their new ideas and innovations here which are now embodied in many textbooks and international standards. But this conference in 2013 marks a new departure and perhaps a new future. For the first time it is being held in Asia, reflecting the historic rise of the economies of the Pacific Rim, adding modern technology to their long-existing traditions of ordered insight and precise craftsmanship. Many of you have travelled far to attend this meeting, and we hope you will feel your trouble has been rewarded. We have an excellent selection of papers from all over the world from many of the world's experts, embodying the consolidation of tested ideas as well as the latest advances in the subject. These will be set in context by a glittering array of keynote and invited speakers. On behalf of the International Programme Committee, I am glad to acknowledge the hard work of the members of the Local Organising Committee in putting the programme together and making all the arrangements, and to accept their

  8. PREFACE: 14th International Conference on Transport in Interacting Disordered Systems (TIDS-14)

    NASA Astrophysics Data System (ADS)

    Frydman, Aviad

    2012-07-01

    The '14th Transport in interacting disordered systems - TIDS14' conference took place during 5-8 September 2011 in Acre Israel. The conference was a continuation of the biennial meeting traditionally called HRP (hopping and related phenomena) and later named TIDS (transport in interacting disordered systems). Previous conferences took place in Trieste (1985), Bratislava (1987), Chapel Hill (1989), Marburg (1991), Glasgow (1993), Jerusalem (1995), Rackeve (1997), Murcia (1999), Shefayim (2001), Trieste (2003), Egmond, aan Zee (2005), Marburg (2007) and Rackeve (2009). Central to these conferences are systems that are characterized by a large degree of disorder and hence they lack translational symmetry. In such systems interactions are usually very important. Dramatic differences in the behavior of crystalline solids and the 'disordered' systems are possible. Some examples of the latter are amorphous materials, polymer aggregates, materials whose properties are governed by impurities, granular systems and biological systems. This conference series is notable for the pleasant atmosphere and fruitful exchange of ideas between theoreticians and experimentalists in these areas. This tradition was also maintained in the conference in Israel. Specific topics of TIDS14 included: hopping, electron and Coulomb glasses, Anderson localization and many body localization, noise, magneto-transport, metal-insulator and superconductor-insulator transition, transport through low dimensional and nanostructures, quantum coherence, interference and dephasing and other related topics. Over sixty scientists from fourteen countries participated in the conference and presented papers either as oral presentations or as posters in two sessions that took place during the conference. Many of these papers are included in these proceedings. I would like to thank all the conference participants for the interesting presentations, debates and discussions that created a stimulating but pleasant

  9. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the

  10. PREFACE: 14th International Conference on Metrology and Properties of Engineering Surfaces (Met & Props 2013)

    NASA Astrophysics Data System (ADS)

    Fu, Wei-En

    2014-03-01

    Proceedings of the 14th International Conference, Taipei, Taiwan, 17th-21st June, 2013 Taiwan Organized by: Center for Measurement Standards/Industrial Technology Research Institute Mechanical and Systems Research Laboratories/Industrial Technology Research Institute National Taiwan University National Cheng Kung University National Taiwan University of Science and Technology National Tsing Hua University Greetings from Chairman of International Programme CommitteeTom Thomas When Professor Ken Stout and I founded this series of conferences in the United Kingdom more than thirty years ago, we did not anticipate its longevity or its success. Since that first meeting at Leicester, the conference has been often held in England, but also in several other European countries: France, Poland and Sweden, as well as in the United States. Ken, sadly no longer with us, would be proud of what it has achieved and has come to represent. Generations of researchers have presented their new ideas and innovations here which are now embodied in many textbooks and international standards. But this conference in 2013 marks a new departure and perhaps a new future. For the first time it is being held in Asia, reflecting the historic rise of the economies of the Pacific Rim, adding modern technology to their long-existing traditions of ordered insight and precise craftsmanship. Many of you have travelled far to attend this meeting, and we hope you will feel your trouble has been rewarded. We have an excellent selection of papers from all over the world from many of the world's experts, embodying the consolidation of tested ideas as well as the latest advances in the subject. These will be set in context by a glittering array of keynote and invited speakers. On behalf of the International Programme Committee, I am glad to acknowledge the hard work of the members of the Local Organising Committee in putting the programme together and making all the arrangements, and to accept their

  11. PREFACE: 14th International Conference on the Physics of Highly Charged Ions (HCI 2008)

    NASA Astrophysics Data System (ADS)

    Azuma, Toshiyuki; Nakamura, Nobuyuki; Yamada, Chikashi

    2009-07-01

    This volume contains the Proceedings of the 14th International Conference on the Physics of Highly Charged Ions (HCI2008), held at the University of Electro-Communications, Chofu, Tokyo, Japan from 1-5 September 2008. This series of conferences began in Stockholm, Sweden in 1982 and has since been held every other year; in Oxford, UK (1984), Groningen, the Netherlands (1986), Grenoble, France (1988), Giessen, Germany (1990), Manhattan, Kansas, USA (1992), Vienna, Austria (1994), Omiya, Japan (1996), Bensheim, Germany (1998), Berkeley, USA (2000), Caen, France (2002), Vilnius, Lithuania (2004) and Belfast, UK (2006). Highly charged ions (HCI), which are defined as highly ionized (i.e. positively charged atomic) ions here, mainly exist in hot plasmas such as the solar corona and fusion plasmas. It is true that its importance in plasma physics has driven researchers to the spectroscopic studies of HCIs, but the spectroscopy of few-electron ions is not only important for plasmas but also interesting for fundamental atomic physics. Electrons moving fast near a heavy nucleus give a suitable system to test the fundamental atomic theory involving relativistic and quantum electro-dynamic effects in a strong field. Also, the huge potential energy of a HCI induces drastic reaction in the interaction with matter. This unique property of HCIs, coupled with the recent development of efficient ion sources, is opening the possibility to utilize them in new technologies in the field such as nano-fabrication, surface analysis, medical physics, and so on. Hence, this conference is recognized as a valuable gathering place for established practitioners and also for newcomers; we exchange information, we are introduced to the subject itself, and to unexpected interfaces with other fields. On 31 August, the day before the opening of HCI2008, we welcomed the delegates at the university's restaurant—and we were greeted with an unusually heavy summer shower! The conference then opened on

  12. COMMITTEES: SQM2009 - 14th International Conference on Strangeness in Quark Matter SQM2009 - 14th International Conference on Strangeness in Quark Matter

    NASA Astrophysics Data System (ADS)

    2008-04-01

    Local Organizing Committee Takeshi Kodama Chair, UFRJ Jun Takahashi Co-chair, UNICAMP Ignácio Bediaga e Hickman CBPF Eduardo Fraga UFRJ Frederique Grassi USP Yogiro Hama USP Gastão Krein IFT Erasmo Madureira Ferreira UFRJ Marcelo G. Munhoz USP Fernando Navarra USP Sandra Padula IFT Alejandro Szanto de Toledo USP César Augusto Zen Vasconcellos UFRGS International Advisory Committee Jörg Aichelin Nantes Federico Antinori Padova Tamás Biró Budapest Peter Braun-Munzinger GSI Jean Cleymans Cape Town Láaszló Csernai Bergen Timothy Hallman BNL Huan Zhong Huang UCLA Takeshi Kodama Rio de Janeiro Yu-Gang Ma Shanghai Jes Madsen Aarhus Ágnes Mócsy Pratt University Berndt Müller Duke University Grazyna Odyniec LBNL Helmut Oeschler Darmstadt Johann Rafelski Arizona Hans Georg Ritter LBNL Gunther Rolland MIT Karel Šafařík CERN Ladislav Sandor Kosice University Jack Sandweiss Yale University George S F Stephans MIT Horst Stöcker Frankfurt Larry McLerranBNL Helmut Satz Universitä Bielefeld Nu Xu LBNL Fuqiang Wang Purdue University William A. Zajc Columbia University Pengfei Zhuang Tsinghua University

  13. PREFACE: 14th International Conference on Strangeness in Quark Matter (SQM2013)

    NASA Astrophysics Data System (ADS)

    2014-05-01

    . We thank the International Organizing Committee for their help and advice in planning the conference, and we are grateful to the University of Birmingham Conference Service and to the Birmingham Botanical Gardens for the excellent way in which the catering and room provision was provided. David Evans School of Physics and Astronomy, The University of Birmingham Simon Hands Department of Physics, Swansea University Roman Lietava School of Physics and Astronomy, The University of Birmingham Rosa Romita Oliver Lodge Laboratory, The University of Liverpool Orlando Villalobos Baillie School of Physics and Astronomy, The University of Birmingham Editors

  14. Proceedings of the Annual International Conference on Outdoor Recreation and Education (ICORE) (14th, Oxford, Ohio, November 7-12, 2000).

    ERIC Educational Resources Information Center

    Freidline, Mark, Ed.; Phipps, Maurice, Ed.; Moore, Tim, Ed.; Versteeg, Julie, Ed.

    This proceedings contains 15 conference papers and presentation summaries from the 14th annual International Conference on Outdoor Recreation and Education (ICORE). Titles are: "The Hidden Costs of Outdoor Education/Recreation Academic Training" (Christian Bisson); "The Service Learning Concept: Service Learning in the National Parks" (Tom…

  15. PREFACE: 14th Annual International Astrophysics Conference: Linear and Nonlinear Particle Energization throughout the Heliosphere and Beyond

    NASA Astrophysics Data System (ADS)

    Zank, G. P.

    2015-09-01

    The 14th Annual International Astrophysics Conference was held at the Sheraton Tampa Riverwalk Hotel, Tampa, Florida, USA, during the week of 19-24 April 2015. The meeting drew some 75 participants from all over the world, representing a wide range of interests and expertise in the energization of particles from the perspectives of theory, modelling and simulations, and observations. The theme of the meeting was "Linear and Nonlinear Particle Energization throughout the Heliosphere and Beyond." Energetic particles are ubiquitous to plasma environments, whether collisionless such as the supersonic solar wind, the magnetospheres of planets, the exospheres of nonmagnetized planets and comets, the heliospheric-local interstellar boundary regions, interstellar space and supernova remnant shocks, and stellar wind boundaries. Energetic particles are found too in more collisional regions such as in the solar corona, dense regions of the interstellar medium, accretion flows around stellar objects, to name a few. Particle acceleration occurs wherever plasma boundaries, magnetic and electric fields, and turbulence are present. The meeting addressed the linear and nonlinear physical processes underlying the variety of particle acceleration mechanisms, the role of particle acceleration in shaping different environments, and acceleration processes common to different regions. Both theory and observations were addressed with a view to encouraging crossdisciplinary fertilization of ideas, concepts, and techniques. The meeting addressed all aspects of particle acceleration in regions ranging from the Sun to the interplanetary medium to magnetospheres, exospheres, and comets, the boundaries of the heliosphere, and beyond to supernova remnant shocks, galactic jets, stellar winds, accretion flows, and more. The format of the meeting included 25-minute presentations punctuated by two 40-minute talks, one by Len Fisk that provided an historical overview of particle acceleration in the

  16. PREFACE: 14th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2014)

    NASA Astrophysics Data System (ADS)

    2014-11-01

    It is our great pleasure to welcome you to the 14th International Conference on Micro- and Nano-Technology for Power Generation and Energy Conversion Applications, or PowerMEMS 2014, in Awaji Island, Japan. The aim of PowerMEM is to present the latest research results in the field of miniature, micro- and nano-scale technologies for power generation and energy conversion. The conference will also- give us the opportunity to exchange informations and new ideas in the field of Power MEMS/NEMS. The current status of the field of PowerMEMS spans the full spectrum from basic research to practical applications. We will enjoy valuable discussions not only from the viewpoint of academia but from commercial and industrial perspectives. In the conference, three invited speakers lead the technical program. We received 172 abstracts and after a careful reviewing process by the Technical Program Committee a total of 133 papers were selected for presentation. These have been organized into 16 Oral sessions in two parallel streams and two poster sessions including some late-news papers. The oral and regular poster papers are published by the Institute of Physics (IOP). We have also organized a PowerMEMS School in Kobe-Sannomiya contiguous to the main conference. This two-day school will cover various topics of energy harvesting. World leading experts will give invited lectures on their main topics. This is a new experiment to broaden the technology remit of our conference by organizing mini symposiums that aim to gather the latest research on the following topics by the organizers: Microscale Combustion, Wideband Vibration Energy Harvesting, RF Energy Transfer and Industrial Application. We hope this, and other activities will make PowerMEMS2014 a memorable success. One of the important programs in an international conference is the social program, and we prepare the PowerMEMS2014 banquet in the banquet room at the Westin Awaji Island Hotel. This will provide an opportunity to

  17. 14th St. Gallen International Breast Cancer Conference 2015: Evidence, Controversies, Consensus – Primary Therapy of Early Breast Cancer: Opinions Expressed by German Experts

    PubMed Central

    Jackisch, Christian; Harbeck, Nadia; Huober, Jens; von Minckwitz, Gunter; Gerber, Bernd; Kreipe, Hans-Heinrich; Liedtke, Cornelia; Marschner, Norbert; Möbus, Volker; Scheithauer, Heike; Schneeweiss, Andreas; Thomssen, Christoph; Loibl, Sibylle; Beckmann, Matthias W.; Blohmer, Jens-Uwe; Costa, Serban-Dan; Decker, Thomas; Diel, Ingo; Fasching, Peter A.; Fehm, Tanja; Janni, Wolfgang; Lück, Hans-Joachim; Maass, Nicolai; Scharl, Anton; Untch, Michael

    2015-01-01

    Summary The key topics of this year's 14th St. Gallen Consensus Conference on the diagnosis and therapy of primary breast cancer were again questions about breast surgery and axillary surgery, radio-oncology and systemic therapy options in consideration of tumor biology, and the clinical application of multigene assays. This year, the consensus conference took place in Vienna. From a German perspective, it makes sense to substantiate the results of the vote of the international panel representing 19 countries in light of the updated national therapy recommendations of the AGO (Arbeitsgemeinschaft Gynäkologische Onkologie). Therefore, 14 German breast cancer experts, 3 of whom are members of the International St. Gallen Panel, have commented on the voting results of the St. Gallen Consensus Conference 2015 in relation to clinical routine in Germany. PMID:26557827

  18. Better vaccines for healthier life. Part I. Conference report of the DCVMN International 14th Annual General Meeting Hanoi, Vietnam.

    PubMed

    Pagliusi, Sonia; Rustan, Rahman; Huang, Weidan; Nguyen, Thuvan

    2014-11-12

    The Developing Countries Vaccine Manufacturers' Network (DCVMN) brought together nearly 220 senior representatives of governmental and non-governmental global health organizations, as well as corporate executives of emerging vaccine manufacturers, from 26 countries for a two-day tailored lectures, Q&A sessions, CEOs panel discussion and networking opportunities, followed by a vaccine-technology symposium and visit to manufacturing facilities in Hanoi, Vietnam. Participants included representatives of 38 vaccine manufacturers, as well as international partners and collaborating research institutions, with 39% female participants. The Vice-Minister of Health to Vietnam commended the speakers and participants to this Annual General Meeting, devoted to achieve our common goal of protecting people against infectious diseases with better vaccines, for a healthier life. He reminded the audience that the first vaccine produced in Vietnam was oral polio vaccine (OPV) in the early 1960s and contributed to polio eradication in Vietnam, in 2000. Through its manufacturing resources, Vietnam eliminated neonatal tetanus in 2005, and has controlled measles and hepatitis B spread. The Ministry of Health hopes that by sharing experiences, delegates at this conference will foster international cooperation and partnerships among organizations. CEOs elaborated on challenges and opportunities for emerging countries. PMID:24923636

  19. Better vaccines for healthier life. Part II. Conference report of the DCVMN International 14th Annual General Meeting Hanoi, Vietnam.

    PubMed

    Pagliusi, Sonia; Tippoo, Patrick; Sivaramakrishnan, Venkatraman; Nguyen, Thuvan

    2014-11-12

    New vaccines are required to meet the public health challenges of the next generation and many unmet global health needs can be addressed by developing countries vaccine manufacturers such as lower-cost vaccines based on single-dose, thermostable formulations, efficacious in children with compromised gastrointestinal tracts. GMP compliance is also a challenge, as sometimes innovation and clinical development focus is not accompanied by command of scale-up and quality assurance for large volume manufacturing and supply. Identifying and addressing such challenges, beyond cost and cold-chain space, including safety considerations and health worker behavior, regulatory alliances and harmonization to foster access to vaccines, will help countries to ensure sustainable immunization. There needs to be continuous and close management of the global vaccine supply both at national and international levels, requiring careful risk management, coordination and cooperation with manufacturers. Successful partnership models based on sharing a common goal, mutual respect and good communication were discussed among stakeholders. PMID:24923638

  20. International Congress of the International Council of Health, Physical Education, and Recreation (14th, Kingston, Jamaica, July 30-August 3, 1971).

    ERIC Educational Resources Information Center

    International Council on Health, Physical Education, and Recreation, Washington, DC.

    Papers presented at the Fourteenth International Congress of the International Council on Health, Physical Education, and Recreation (ICHPER) are included in this document. Among the subjects discussed are suggestions for physical education in the 1970's (primary school level, research divisions for the 1970's, research needs in girls and women's…

  1. AIAA International Communication Satellite Systems Conference and Exhibit, 14th, Washington, DC, Mar. 22-26, 1992, Technical Papers. Pts. 1-3

    SciTech Connect

    Not Available

    1992-01-01

    The present conference on international communication satellite systems discusses GEO launch vehicle development, military Satcom systems, GEO mobile Satcom systems, advanced transponder technology, and digital network architecture. Attention is given to digital network architecture, the optical Satcom system, emerging launch alternatives, military and government Satcom systems, satellite communications developments in newly industrialized nations, launch options to nongeostationary orbits, and data relay satellite technology. Topics addressed include LEO satellite systems, earth terminal technology, personal communications, high data rate links via satellite, Italsat, antenna systems, Intelsat system and service development, new spacecraft system concepts, orbit/spectrum allocation and use, and ACTS technology. Also discussed are array antenna technology, VSAT and other small terminal systems, orbits, propagation, onboard satellite switching, reflector antenna technology, and panel small communication satellite systems.

  2. The relevance of "non-criteria" clinical manifestations of antiphospholipid syndrome: 14th International Congress on Antiphospholipid Antibodies Technical Task Force Report on Antiphospholipid Syndrome Clinical Features.

    PubMed

    Abreu, Mirhelen M; Danowski, Adriana; Wahl, Denis G; Amigo, Mary-Carmen; Tektonidou, Maria; Pacheco, Marcelo S; Fleming, Norma; Domingues, Vinicius; Sciascia, Savino; Lyra, Julia O; Petri, Michelle; Khamashta, Munther; Levy, Roger A

    2015-05-01

    The purpose of this task force was to critically analyze nine non-criteria manifestations of APS to support their inclusion as APS classification criteria. The Task Force Members selected the non-criteria clinical manifestations according to their clinical relevance, that is, the patient-important outcome from clinician perspective. They included superficial vein thrombosis, thrombocytopenia, renal microangiopathy, heart valve disease, livedo reticularis, migraine, chorea, seizures and myelitis, which were reviewed by this International Task Force collaboration, in addition to the seronegative APS (SN-APS). GRADE system was used to evaluate the quality of evidence of medical literature of each selected item. This critical appraisal exercise aimed to support the debate regarding the clinical picture of APS. We found that the overall GRADE analysis was very low for migraine and seizures, low for superficial venous thrombosis, thrombocytopenia, chorea, longitudinal myelitis and the so-called seronegative APS and moderate for APS nephropathy, heart valve lesions and livedo reticularis. The next step can be a critical redefinition of an APS gold standard, for instance derived from the APS ACTION registry that will include not only current APS patients but also those with antiphospholipid antibodies not meeting current classification criteria. PMID:25641203

  3. 14th international symposium on molecular beams

    SciTech Connect

    Not Available

    1992-09-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation & dynamics; and surfaces.

  4. 14th international symposium on molecular beams

    SciTech Connect

    Not Available

    1992-01-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation dynamics; and surfaces.

  5. Tick-borne encephalitis (TBE): an underestimated risk…still: report of the 14th annual meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE).

    PubMed

    Kunze, Ursula

    2012-06-01

    Today, the risk of getting tick-borne encephalitis (TBE) is still underestimated in many parts of Europe and worldwide. Therefore, the 14th meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE) - a group of neurologists, general practitioners, clinicians, travel physicians, virologists, pediatricians, and epidemiologists - was held under the title "Tick-borne encephalitis: an underestimated risk…still". Among the discussed issues were: TBE, an underestimated risk in children, a case report in two Dutch travelers, the very emotional report of a tick victim, an overview of the epidemiological situation, investigations to detect new TBE cases in Italy, TBE virus (TBEV) strains circulation in Northern Europe, TBE Program of the European Centre for Disease Prevention and Control (ECDC), efforts to increase the TBE vaccination rate in the Czech Republic, positioning statement of the World Health Organization (WHO), and TBE in dogs. To answer the question raised above: Yes, the risk of getting TBE is underestimated in children and adults, because awareness is still too low. It is still underestimated in several areas of Europe, where, for a lack of human cases, TBEV is thought to be absent. It is underestimated in travelers, because they still do not know enough about the risk, and diagnostic awareness in non-endemic countries is still low. PMID:22765977

  6. NEWTON'S APPLE 14th Season Teacher's Guide.

    ERIC Educational Resources Information Center

    Wichmann, Sue, Ed.

    This guide was developed to help teachers use the 14th season of NEWTON'S APPLE in their classrooms and contains lessons formatted to follow the National Science Education Standards. The "Overview,""Main Activity," and "Try-This" sections were created with inquiry-based learning in mind. Each lesson page begins with "Getting Started," which…

  7. Highlights from the 14th St Gallen International Breast Cancer Conference 2015 in Vienna: Dealing with classification, prognostication, and prediction refinement to personalize the treatment of patients with early breast cancer

    PubMed Central

    Esposito, Angela; Criscitiello, Carmen; Curigliano, Giuseppe

    2015-01-01

    The refinement of the classification, the risk of relapse and the prediction of response to multidisciplinary treatment for early breast cancer has been the major theme of the 14th St Gallen International Breast Cancer Consensus Conference 2015. The meeting, held in Vienna, assembled 3500–4000 participants from 134 countries worldwide. It culminated, on the final day, with the International Consensus Session, delivered by 40–50 of the world’s most experienced opinion leaders in the field of breast cancer treatment. The panelist addressed the “semantic” classification of breast cancer subtypes by pathology-based biomarkers (e.g. estrogen receptor, progesterone receptor and HER2) vs genomic classifiers. They also refined the biomarker prognostication dissecting the impact of the various gene signatures and pathologic variables in predicting the outcome of patients with early breast cancer in terms of early and late relapse. Finally they addressed the challenges stemming from the intra- and inter-observer variability in the assessment of pathologic variables and the role of gene signatures for the prediction of response to specific therapeutic approach such as endocrine therapy and chemotherapy and for personalizing local treatment of patients with early breast cancer. The vast majority of the questions asked during the consensus were about controversial issues. The opinion of the panel members has been used to implement guidance for treatment choice. This is the unique feature of the St. Gallen Consensus, ensuring that the resulting recommendations will take due cognizance of the variable resource limitations in different countries. Information derived from evidence based medicine and large meta-analyses is of obvious and enormous value. The weakness of this approach is that it gives particular weight to older trials (which have accumulated more event endpoints) and is frequently unable to collect sufficient detail on the patients and tumors in the trials

  8. PREFACE: International Symposium on `Vacuum Science and Technology' (IVS 2007)

    NASA Astrophysics Data System (ADS)

    Mittal, K. C.; Gupta, S. K.

    2008-03-01

    The Indian Vacuum Society (established in 1970) has organized a symposium every alternate year on various aspects of vacuum science and technology. There has been considerable participation from R & D establishments, universities and Indian industry in this event. In view of the current global scenario and emerging trends in vacuum technology, this year, the executive committee of IVS felt it appropriate to organize an international symposium at Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 from 29-30 November 2007. This symposium provided a forum for exchange of information among vacuum scientists, technologists and industrialists on recent advances made in the areas of large vacuum systems, vacuum production, its measurement and applications in industry, and material processing in vacuum. Vacuum science and technology has made vital contributions in high tech areas like space, high energy particle accelerators, large plasma systems, electronics, thin films, melting and refining of metals, extraction and processing of advanced materials etc. The main areas covered in the symposium were the production and measurement of vacuums, leak detection, large vacuum systems, vacuum metallurgy, vacuum materials and processing inclusive of applications of vacuum in industry. Large vacuum systems for high energy particle accelerators, plasma devices and light sources are of special significance for this symposium. Vacuum evaporation, hard coatings, thin films, joining techniques, sintering, melting and heat treatment, furnaces and thermo dynamics are also covered in this symposium. There were eighteen invited talks from the best experts in the respective fields and more than one hundred contributed papers. This fact itself indicates the interest that has been generated amongst the scientists, technologists and industrialists in this field. In view of the industrial significance of the vacuum technology, an exhibition of vacuum and vacuum processing related

  9. Vacuum Packaging of MEMS With Multiple Internal Seal Rings

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken; Yee, Karl; Shcheglov, Kirill; Bae, Youngsam; Wiberg, Dean; Peay, Chris; Challoner, Anthony

    2008-01-01

    A proposed method of design and fabrication of vacuum-packaged microelectromechanical systems (MEMS) and of individual microelectromechanical devices involves the use of multiple internal seal rings (MISRs) in conjunction with vias (through holes plated with metal for electrical contacts). The proposed method is compatible with mass production in a wafer-level fabrication process, in which the dozens of MEMS or individual microelectromechanical devices on a typical wafer are simultaneously vacuum packaged by bonding a capping wafer before the devices are singulated (cut apart by use of a dicing saw). In addition to being compatible with mass production, the proposed method would eliminate the need for some complex and expensive production steps and would yield more reliable vacuum seals. Conventionally, each MEMS or individual microelectromechanical device is fabricated as one of many identical units on a device wafer. Vacuum packaging is accomplished by bonding the device wafer to a capping wafer with metal seal rings (one ring surrounding each unit) that have been formed on the capping wafer. The electrical leads of each unit are laid out on what would otherwise be a flat surface of the device wafer, against which the seal ring is to be pressed for sealing. The resulting pattern of metal lines and their insulating oxide coverings presents a very rough and uneven surface, upon which it is difficult to pattern the sealing metal. Consequently, the seal is prone to leakage unless additional costly and complex planarization steps are performed before patterning the seal ring and bonding the wafers.

  10. Proceedings of the Annual Conference of the International Group for the Psychology of Mathematics Education with the North American Chapter 12th PME-NA Conference (14th, Mexico, July 15-20, 1990), Volume 3.

    ERIC Educational Resources Information Center

    Booker, George, Ed.; Cobb, Paul, Ed.; de Mendicuti, Teresa N.

    This proceedings of the annual conference of the International Group for the Psychology of Mathematics Education (PME) contains the following research papers: "The Construct Theory of Rational Numbers: Toward a Semantic Analysis" (M. Behr & G. Harel); "Reflections on Dealing: An Analysis of One Child's Interpretations" (G. Davis); "About…

  11. Libraries and Electronic Publishing: Promises and Challenges for the 90's. Festschrift in Honor of Richard M. Dougherty. Proceedings of the International Essen Symposium (14th, Essen, Germany, October 14-17, 1991). Publications of Essen University Library, 14.

    ERIC Educational Resources Information Center

    Helal, Ahmed H., Ed.; Weiss, Joachim W., Ed.

    The goal of the Essen symposium was to bring together internationally recognized librarians and library automation specialists to discuss new developments in electronic publishing. All 16 papers included in this collection were presented at the conference: (1) "Barriers to the Introduction of New Technology" (J. Andrew Braid); (2) "Nudging a…

  12. Proceedings of the Annual Conference of the International Group for the Psychology of Mathematics Education with the North American Chapter 12th PME-NA Conference (14th, Mexico, July 15-20, 1990), Volume 2.

    ERIC Educational Resources Information Center

    Booker, George, Ed.; Cobb, Paul, Ed.; de Mendicuti, Teresa N., Ed.

    This proceedings of the annual conference of the International Group for the Psychology of Mathematics Education (PME) includes the following research papers: "Children's Connections among Representations of Mathematical Ideas" (A. Alston & C.A. Maher); "Algebraic Syntax Errors: A Study with Secondary School Children" (A. Avila, F. Garcia, & T.…

  13. Proceedings of the Annual Conference of the International Group for the Psychology of Mathematics Education with the North American Chapter 12th PME-NA Conference (14th, Mexico, July 15-20, 1990), Volume 1.

    ERIC Educational Resources Information Center

    Booker, George, Ed.; Cobb, Paul, Ed.; de Mendicuti, Teresa N., Ed.

    This proceedings of the annual conference of the International Group for the Psychology of Mathematics Education (PME) includes the following papers: "The Knowledge of Cats: Epistemological Foundations of Mathematics Education" (R.B. Davis) and "PME Algebra Research: A Working Perspective" (E. Filloy); "Some Misconceptions in Calculus: Anecdotes…

  14. The Moon in the 14th Century Frescoes in Padova

    NASA Astrophysics Data System (ADS)

    Bellinati, Claudio

    Padova, already in the 14th century a great cultural center of international reputation, struggled with the problems posed by the Moon with Pietro d'Abano, physician and astronomer. But it was with the great painters of that time, namely Giotto and Giusto de'Menabuoi, that its most intimate connections with the contemporary popular culture and theology were illustrated. Giotto depicts the Moon in the Giudizio Universale of the Scrovegni Chapel (1305). The Moon appears on the upper part of the painting, to the left of Christ the Judge, to crown together with the Sun, His presence. The Moon is a heavenly body similar to those appearing on Roman coins of emperors, to signify the Judge is an immortal creature. The color is pale, witeish, almost veiled. More important, the Moon has a face that by popular belief was that of Cain, condemned to amass `mucchi di rovi spinosi' for the fire of the damned (Dante Alighieri, Divina Commedia, Inferno XX, 126). Giusto de' Menabuoi on the other hand expounds, in the Crucifixion of the Duomo (1375 ca), a theological interpretation. The day of God's justice, following the death of the Savior, the Moon will burn and the Sun will pale (Isaiah, 24, 23). And indeed the Moon has a dark reddish colour. Therefore, while in Giotto the Moon is seen as in the popular beliefs, Giusto underlines the theological visions of his times with the words of the prophets.

  15. The water outgassing rate of internal surfaces of vacuum systems

    NASA Astrophysics Data System (ADS)

    Rozanov, L. N.

    2016-07-01

    On the basis of experimental adsorption isotherm the ratio between the real and geometrical surfaces was calculated and the amount of gas required to form a monolayer was defined. Simultaneous usage of Henry and Frendlih equations allowed to determine the dependence of the heat of adsorption on the logarithm of the absorbed gas amount A mathematical model of pumping of the vacuum systems with adsorbing walls is presented. This model uses the parameters of the vacuum system and the dependence of the adsorption heat on the amount of the adsorbed gas .The conditions of the existence of regular pumping regime are discussed. The structure database vacuum adsorption properties of materials was proposed. The experimental data on the determination of the adsorption outgassing rate were released.

  16. Aims and Results of the 23rd International Conference on Vacuum Technique and Technology (VTT2016)

    NASA Astrophysics Data System (ADS)

    Lisenkov, A. A.; Kostrin, D. K.; Pavlova, V. A.

    2016-07-01

    In this preface the main features, aims and results of the 23rd International Conference on Vacuum Technique and Technology (VTT2016) that was held on 7-9 June 2016 in Saint Petersburg, Russia are discussed.

  17. Viruses in a 14th-century coprolite.

    PubMed

    Appelt, Sandra; Fancello, Laura; Le Bailly, Matthieu; Raoult, Didier; Drancourt, Michel; Desnues, Christelle

    2014-05-01

    Coprolites are fossilized fecal material that can reveal information about ancient intestinal and environmental microbiota. Viral metagenomics has allowed systematic characterization of viral diversity in environmental and human-associated specimens, but little is known about the viral diversity in fossil remains. Here, we analyzed the viral community of a 14th-century coprolite from a closed barrel in a Middle Ages site in Belgium using electron microscopy and metagenomics. Viruses that infect eukaryotes, bacteria, and archaea were detected, and we confirmed the presence of some of them by ad hoc suicide PCR. The coprolite DNA viral metagenome was dominated by sequences showing homologies to phages commonly found in modern stools and soil. Although their phylogenetic compositions differed, the metabolic functions of the viral communities have remained conserved across centuries. Antibiotic resistance was one of the reconstructed metabolic functions detected. PMID:24509925

  18. Viruses in a 14th-Century Coprolite

    PubMed Central

    Appelt, Sandra; Fancello, Laura; Le Bailly, Matthieu; Raoult, Didier; Drancourt, Michel

    2014-01-01

    Coprolites are fossilized fecal material that can reveal information about ancient intestinal and environmental microbiota. Viral metagenomics has allowed systematic characterization of viral diversity in environmental and human-associated specimens, but little is known about the viral diversity in fossil remains. Here, we analyzed the viral community of a 14th-century coprolite from a closed barrel in a Middle Ages site in Belgium using electron microscopy and metagenomics. Viruses that infect eukaryotes, bacteria, and archaea were detected, and we confirmed the presence of some of them by ad hoc suicide PCR. The coprolite DNA viral metagenome was dominated by sequences showing homologies to phages commonly found in modern stools and soil. Although their phylogenetic compositions differed, the metabolic functions of the viral communities have remained conserved across centuries. Antibiotic resistance was one of the reconstructed metabolic functions detected. PMID:24509925

  19. 14th Young Scientists Conference on Astronomy and Space Physics

    NASA Astrophysics Data System (ADS)

    Ivashchenko, G.; Golovin, A.

    2007-12-01

    The present Proceedings of Contributed Papers include 21 papers presented during 14th Young Scientists Conference on Astronomy and Space Physics which was held in Kyiv, at Kyiv National Taras Shevchenko University, Faculty of Physics, from April, 23 to April 28, 2007. The aim of the annual Open Young Scientists Conference on Astronomy and Space Physics is to provide young scientists a possibility to communicate and present their scientific work. The conference is intended for participation of students, PhD students and young researches who are involved in research in one of the following fields: astrometry and geophysics, plasma physics and physics of the near space, planetary systems, small bodies of the solar system, solar physics and physics of heliosphere, stellar astrophysics, interstellar medium, extragalactic astrophysics, high-energy astrophysics, cosmology, history of astronomy and related to the mentioned above.

  20. Influence of ceramic package internal components on the performance of vacuum sealed uncooled bolometric detectors

    NASA Astrophysics Data System (ADS)

    Paquet, Alex; Deshaies, Sébastien; Desroches, Yan; Whalin, Jeff; Topart, Patrice

    2013-03-01

    INO has developed a hermetic vacuum packaging technology for uncooled bolometric detectors based on ceramic leadless chip carriers (LCC). Cavity pressures less than 3 mTorr are obtained. Processes are performed in a state-of-the art semi-automated vacuum furnace that allows for independent activation of non-evaporable thin film getters. The getter activation temperature is limited by both the anti-reflection coated silicon or germanium window and the MEMS device built on CMOS circuits. Temperature profiles used to achieve getter activation and vacuum sealing were optimized to meet lifetime and reliability requirements of packaged devices. Internal package components were carefully selected with respect to their outgassing behavior so that a good vacuum performance was obtained. In this paper, INO's packaging process is described. The influence of various package internal components, in particular the CMOS circuits, on vacuum performance is presented. The package cavity pressure was monitored using INO's pressure microsensors and the gas composition was determined by internal vapor analysis. Lifetime was derived from accelerated testing after storage of packaged detectors at various temperatures from room temperature to 120°C. A hermeticity yield over 80% was obtained for batches of twelve devices packaged simultaneously. Packaged FPAs submitted to standard MIL-STD-810 reliability testing (vibration, shock and temperature cycling) exhibited no change in IR response. Results show that vacuum performance strongly depends on CMOS circuit chips. Detectors packaged using a thin film getter show no change in cavity pressure after storage for more than 30 days at 120°C. Moreover, INO's vacuum sealing process is such that even without a thin film getter, a base pressure of less than 10 mTorr is obtained and no pressure change is observed after 40 days at 85°C.

  1. Internal friction and velocity measurements. [vacuum effects on lunar basalt resonance

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L.; Curnow, J.

    1976-01-01

    The Q of a lunar basalt sample was measured under varying vacuum conditions, and it was found that even at pressures as low as 10 to the -7th to 10 to the -10th torr, substantial increases in Q with decreasing pressure are observed, while the resonant frequency increases only slightly. This suggests that only small amounts of volatiles are sufficient to increase the internal friction (lower the Q) dramatically. The technique of vibrating encapsulated samples in the torsional mode was used to measure Q of terrestrial rocks as a function of hydrostatic pressure under lunar vacuum conditions. Young's modulus measurements in the temperature range 25-600 C under a variety of conditions including high vacuum show no evidence of any irreversibility upon temperature cycling and no indication that the high Q-values obtained are associated with any permanent structure changes such as the formation of lossless 'welded' contacts.

  2. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  3. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  4. Vacuum system design of the International Thermonuclear Experimental Reactor pellet fueling system

    SciTech Connect

    Langley, R.A.; Gouge, M.J. ); Santeler, D.J. )

    1994-07-01

    The International Thermonuclear Experimental Reactor (ITER) will use an advanced, high-velocity pellet injection system to fuel ignited plasmas. For rampup to ignition, a moderate-velocity (1--1.5 km/s) single-stage pneumatic injector and a high-velocity (1.5--5 km/s) two-stage pneumatic injector using pellets encased in sabots are envisioned. For the steady-state burn phase a continuous, single-stage pneumatic injector and a centrifugal injector are proposed. The purpose of this study is to simulate the ITER pellet injection line vacuum pumping system to determine the pump requirements. This study analyzed the injector vacuum system using commercially available vacuum pumps compatible with tritium operation. The vacuum system design program, VSD-II, was used to determine the gas flow through the system components for various pumping arrangements and component sizes and geometries. The VSD-II computer program allows changes to be made easily in the input so that results from different configurations are readily obtained and compared. Results are presented and issues in the design are discussed as well as limitations in the existing pump data.

  5. Thermal Vacuum Testing of the Crew and Equipment Translation Aid for the International Space Station

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Montz, Michael; Gill, Mark

    1998-01-01

    The Crew and Equipment Translation Aid (CETA) is a human powered cart that will aid astronauts in conducting extra-vehicular activity (EVA) maintenance on the International Space Station (ISS). There are two critical EVA tasks relevant to the successful operation of the CETA. These are the removal of the launch restraint bolts during its initial deployment from the Space Shuttle payload bay and the manual deceleration of the cart, its two onboard astronauts, and a payload. To validate the launch restraint and braking system designs, the hardware engineers needed to verify their performance in an environment similar to that in which it will be used. This environment includes the vacuum of low earth orbit and temperatures as low as -11O F and as high as +200 F. The desire for quantitative data, as opposed to subjective information which could be provided by a suited astronaut, coupled with test scheduling conflicts resulted in an unmanned testing scenario. Accommodating these test objectives in an unmanned test required a solution that would provide remotely actuated thermal vacuum compatible torque sources of up to 25 ft-lbs at four horizontally oriented and four vertically oriented bolts, a variable input force of up to 125 lbs at the four brake actuators, and thermal vacuum compatible torque and force sensors. The test objectives were successfully met in both the thermal Chamber H and the thermal vacuum Chamber B at NASA's Johnson Space Center.

  6. 1. NORTH APPROACH TO SE 14TH STREET BRIDGE CROSSING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTH APPROACH TO SE 14TH STREET BRIDGE CROSSING THE DES MOINES RIVER, LOOKING SOUTH. - Southeast Fourteenth Street Bridge, Spanning Des Moines River at U.S. Highway 65/69, Des Moines, Polk County, IA

  7. Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.

    2000-01-01

    The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.

  8. Internal thermal coupling in direct-flow coaxial vacuum tube collectors

    SciTech Connect

    Glembin, J.; Rockendorf, G.; Scheuren, J.

    2010-07-15

    This investigation covers the impact of low flow rates on the efficiency of coaxial vacuum tube collectors. Measurements show an efficiency reduction of 10% if reducing the flow rate from 78 kg/m{sup 2} h to 31 kg/m{sup 2} h for a collector group with 60 parallel vacuum tubes with a coaxial flow conduit at one-sided connection. For a more profound understanding a model of the coaxial tube was developed which defines the main energy fluxes including the internal thermal coupling. The tube simulations show a non-linear temperature profile along the tube with the maximum temperature in the outer pipe. Due to heat transfer to the entering flow this maximum is not located at the fluid outlet. The non-linearity increases with decreasing flow rates. The experimentally determined flow distribution allows simulating the measured collector array. The simulation results confirm the efficiency decrease at low flow rates. The flow distribution has a further impact on efficiency reduction, but even at an ideal uniform flow, a considerable efficiency reduction at low flow rates is to be expected. As a consequence, low flow rates should be prevented for coaxial tube collectors, thus restricting the possible operation conditions. The effect of constructional modifications like diameter or material variations is presented. Finally the additional impact of a coaxial manifold design is discussed. (author)

  9. History of On-orbit Satellite Fragmentations (14th Edition)

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Stansbery, Eugene; Whitlock, David O.; Abercromby, Kira J.; Shoots, Debra

    2008-01-01

    Since the first serious satellite fragmentation occurred in June 1961 (which instantaneously increased the total Earth satellite population by more than 400%) the issue of space operations within the finite region of space around the Earth has been the subject of increasing interest and concern. The prolific satellite fragmentations of the 1970s and the marked increase in the number of fragmentations in the 1980s served to widen international research into the characteristics and consequences of such events. Continued events in all orbits in later years make definition and historical accounting of those events crucial to future research. Large, manned space stations and the growing number of operational robotic satellites demand a better understanding of the hazards of the dynamic Earth satellite population.

  10. Multiple internal seal ring micro-electro-mechanical system vacuum packaging method

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Bae, Youngsam (Inventor); Wiberg, Dean V. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum packaging method that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.

  11. Multiple internal seal right micro-electro-mechanical system vacuum package

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Bae, Youngsam (Inventor); Wiberg, Dean V. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2007-01-01

    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum package that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.

  12. Development of vacuum seals for diagnostic windows of the International Thermonuclear Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Nagashima, A.; Nishitani, T.; Fujisawa, T.; Sugie, T.; Kasai, S.

    1999-01-01

    For International Thermonuclear Experiment Reactor (ITER) diagnostic windows a new sealing method based on a V-shaped elastic ring has been developed. The ring, compressed by two valves, makes vacuum tight contact on the polished edge of the window material. Two types of V-shaped rings have been tested (one of silver coated copper and one in polyimide vespel SP-1) with three different window materials (fused quartz, sapphire, and ZnSe). The wavelength range of interest is from ˜0.4 to ˜10 μm. The performance of the seals to inner pressure rise resistance, the heat cycle, and acceleration at the level expected in the ITER environment has been examined. The tests have been carried out successfully for 120 mm diameter windows.

  13. Internal Energies of Ion-Sputtered Neutral Tryptophan and Thymine Molecules Determined by Vacuum Ultraviolet Photoionization

    SciTech Connect

    Zhou, Jia; Takahashi, Lynelle; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2010-03-11

    Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi3 + indicates that the ion-sputtered parent molecules have ~;;2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi3 + ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis.

  14. International Test Program for Synergistic Atomic Oxygen and Vacuum Ultraviolet Radiation Exposure of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K.

    2001-01-01

    The components and materials of spacecraft in low Earth orbit can degrade in thermal and optical performance through interaction with atomic oxygen and vacuum ultraviolet (VUV) radiation, which are predominant in low Earth orbit. Because of the importance of low Earth orbit durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests at the NASA Glenn Research Center consisted of exposure of samples representing a variety of thermal control paints, multilayer insulation materials, and Sun sensors that have been used in space. Materials donated from various international sources were tested alongside materials whose performance is well known, such as Teflon FEP, Kapton H, or Z-93-P white paint. The optical, thermal, or mass loss data generated during the tests were then provided to the participating material suppliers. Data were not published unless the participant donating the material consented to publication. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects so that they can improve their predictions of spacecraft performance.

  15. Internal energies of ion-sputtered neutral tryptophan and thymine molecules determined by vacuum ultraviolet photoionization.

    PubMed

    Zhou, Jia; Takahashi, Lynelle K; Wilson, Kevin R; Leone, Stephen R; Ahmed, Musahid

    2010-05-01

    Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi(3)(+) indicates that the ion-sputtered parent molecules have approximately 2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi(3)(+) ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis. PMID:20353160

  16. PREFACE: 14th Latin American Workshop on Plasma Physics (LAWPP 2011)

    NASA Astrophysics Data System (ADS)

    Bilbao, Luis; Minotti, Fernando; Kelly, Hector

    2012-06-01

    These proceedings present the written contributions from participants of the Latin American Workshop on Plasma Physics (LAWPP), which was held in Mar del Plata, Argentina, on 20-25 November 2011. This was the 14th session of the series of LAWPP biennial meetings, which started in 1982. The five-day scientific program of LAWPP 2011 consisted of 32 talks and various poster sessions, with the participation of 135 researchers from Argentina, Brazil, Canada, Chile, Colombia, Mexico, Puerto Rico, USA, Venezuela, as well as others from Europe and Asia. In addition, a School on Plasma Physics and a Workshop on Industrial Applications of Plasma Technology (AITP) were organized together with the main meeting. The five-day School held in the week previous to the meeting was intended for young scientists starting their research in Plasma Physics. On the other hand, the objective of the AITP Workshop was to enhance regional academic and industrial cooperation in the field of plasma assisted surface technology. Topics addressed at LAWPP 2011 included space plasmas, dusty plasmas, nuclear fusion, non-thermal plasmas, basic plasma processes, plasma simulation and industrial plasma applications. This variety of subjects is reflected in these proceedings, which the editors hope will result in enjoyable and fruitful reading for those interested in Plasma Physics. It is a pleasure to thank the Institutions that sponsored the meeting, as well as all the participants and collaborators for making this meeting possible. The Editors Luis Bilbao, Fernando Minotti and Hector Kelly LAWPP participants Participants of the 14th Latin American Workshop on Plasma Physics, 20-25 November 2011, Mar del Plata, Argentina International Scientific Committee Carlos Alejaldre, Spain María Virginia Alves, Brazil Ibere Caldas, Brazil Luis Felipe Delgado-Aparicio, Peru Mayo Villagrán, Mexico Kohnosuke Sato, Japan Héctor Kelly, Argentina Edberto Leal-Quirós, Puerto Rico George Morales, USA Julio Puerta

  17. EDITORIAL: 17th International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2011)

    NASA Astrophysics Data System (ADS)

    van de Sanden, M. C. M.; Dimitrova, Miglena; Ghelev, Chavdar

    2012-03-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1977, when the VEIT Summer School series was launched by the Institute of Electronics, Bulgarian Academy of Sciences. The aim was to act as a forum for the exchange and dissemination of knowledge and ideas on the latest developments in electron-, ion- and plasma-assisted technologies. The organizers of the 2011 edition of the event were the Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria and the Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. Whilst the school initially provided a meeting place for researchers mainly from Eastern and Central European countries, its importance has grown issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions and exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers and Journal of Physics: Conference Series. The Seventeenth edition of VEIT was held in the Black Sea resort of Sunny Beach, Bulgaria on 19-23 September 2011. It was attended by 96 participants from 18 countries: Belgium, Brazil, Bulgaria, Czech Republic, Denmark, France, Germany, Greece, The Netherlands, Romania, Russia, Serbia, Sweden, Switzerland, Turkey, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this special issue of Journal of

  18. The 14th Annual James L. Waters Symposium at Pittcon: Raman Spectroscopy

    ERIC Educational Resources Information Center

    Gardner, Charles W.

    2007-01-01

    Raman Spectroscopy was the main topic of the 14th Annual James L. Waters Symposium, which was held in March 2003 at Pittcon. The development of the enabling technologies that have made Raman spectroscopy a routine analysis tool in many laboratories worldwide is discussed.

  19. PREFACE: 16th International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2009)

    NASA Astrophysics Data System (ADS)

    Möller, Wolfhard; Guerassimov, Nikolay; Ghelev, Chavdar

    2010-04-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1977 when the series of VEIT Schools was launched by the Institute of Electronics, Bulgarian Academy of Sciences with the aim to act as a forum for interchange and dissemination of knowledge and ideas on the latest developments in electron-, ion-, and plasma-assisted technologies. Beginning from 2001, the school has been jointly organized with the Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, Germany. Whereas, the school initially provided a meeting place for researchers mainly from Eastern and Central European countries, its importance grew issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions or exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers, Journal of Physics: Conference Series. The Sixteenth VEIT school was held in the Black Sea resort Sunny Beach, Bulgaria on 28 September to 2 October 2009. It was attended by close to 110 participants from 13 countries: Belgium, Bulgaria, Czech Republic, France, Germany, The Netherlands, Romania, Slovak Republic, Spain, Sweden, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this volume of Journal of Physics: Conference Series, under the originality and quality criteria of acceptance by the journal, including

  20. PREFACE: 16th International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2009)

    NASA Astrophysics Data System (ADS)

    Möller, Wolfhard; Guerassimov, Nikolay; Ghelev, Chavdar

    2010-04-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1977 when the series of VEIT Schools was launched by the Institute of Electronics, Bulgarian Academy of Sciences with the aim to act as a forum for interchange and dissemination of knowledge and ideas on the latest developments in electron-, ion-, and plasma-assisted technologies. Beginning from 2001, the school has been jointly organized with the Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, Germany. Whereas, the school initially provided a meeting place for researchers mainly from Eastern and Central European countries, its importance grew issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions or exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers, Journal of Physics: Conference Series. The Sixteenth VEIT school was held in the Black Sea resort Sunny Beach, Bulgaria on 28 September to 2 October 2009. It was attended by close to 110 participants from 13 countries: Belgium, Bulgaria, Czech Republic, France, Germany, The Netherlands, Romania, Slovak Republic, Spain, Sweden, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this volume of Journal of Physics: Conference Series, under the originality and quality criteria of acceptance by the journal, including

  1. 76 FR 19373 - The 14th Annual Food and Drug Administration-Orange County Regulatory Affairs Educational...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... HUMAN SERVICES Food and Drug Administration The 14th Annual Food and Drug Administration-Orange County... announcing the following conference: 14th Annual Educational Conference co-sponsored with the Orange County...: 949-608-4417; or Orange County Regulatory Affairs Discussion Group, Attention to Detail,...

  2. EDITORIAL: 17th International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2011)

    NASA Astrophysics Data System (ADS)

    van de Sanden, M. C. M.; Dimitrova, Miglena; Ghelev, Chavdar

    2012-03-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1977, when the VEIT Summer School series was launched by the Institute of Electronics, Bulgarian Academy of Sciences. The aim was to act as a forum for the exchange and dissemination of knowledge and ideas on the latest developments in electron-, ion- and plasma-assisted technologies. The organizers of the 2011 edition of the event were the Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria and the Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. Whilst the school initially provided a meeting place for researchers mainly from Eastern and Central European countries, its importance has grown issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions and exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers and Journal of Physics: Conference Series. The Seventeenth edition of VEIT was held in the Black Sea resort of Sunny Beach, Bulgaria on 19-23 September 2011. It was attended by 96 participants from 18 countries: Belgium, Brazil, Bulgaria, Czech Republic, Denmark, France, Germany, Greece, The Netherlands, Romania, Russia, Serbia, Sweden, Switzerland, Turkey, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this special issue of Journal of

  3. INTRODUCTION: The 8th International Conference on Vacuum Ultraviolet Radiation Physics

    NASA Astrophysics Data System (ADS)

    Nilsson, Per Olof; Hedin, Lars

    1987-01-01

    The VUV conferences series The international conferences on vacuum ultraviolet radiation physics started in 1962, and are now being held every third year. VUV-8 took place at Lund University, August 4-8, 1986. VUV-9 will be arranged at the University of Hawaii, USA, August 14-18, 1989, with Prof. C S Fadley as conference chairman. Chairman of the international advisory board for the period 1986-89 is Prof. L Hedin. The theme of the series can be summarized as experimental and theoretical progress in research fields utilizing the interaction of VUV radiation with matter. The topics cover broad areas within atomic and molecular physics, solid state physics and VUV instrumentation. The conferences emphasize interdisciplinary aspects. To these belong common experimental techniques as, e.g., synchrotron radiation instrumentation, and common theoretical foundations for the description of photon interactions with matter. The VUV-8 conference The VUV-8 conference in Lund was attended by 300 participants from 26 countries. An address list of the participants is given at the end of this volume. There were 33 invited papers given as plenary or key-note talks. As many as 229 posters were presented; 49 of them were also given orally. These numbers are typical for the VUV conferences, except for the number of posters, which was unusually large. In the conference planning the poster sessions were stressed, and particular care was taken to provide a good atmosphere at these sessions. Thus the posters were kept up during the whole conference, coffee was served in the hail with the posters and there were convenient places to sit down close to the posters. Considering the wide scope of the conference it was necessary to emphasize a limited number of topics of high current interest and importance. Thus besides traditional topics, several rapidly expanding fields were discussed in special sessions. At VUV-8 there were the following sessions. Theory of atoms and molecules

  4. PREFACE: Fifteenth International Summer School on Vacuum, Electron and Ion Technologies (VEIT 2007)

    NASA Astrophysics Data System (ADS)

    Guerassimov, Nikolay; Möller, Wolfhard; Ghelev, Chavdar

    2008-03-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biannually since 1977. It is a forum for the interchange and dissemination of knowledge and ideas on the latest developments in electron-, ion-, and plasma-assisted technologies. The organizers of the event (since 2001) have been the Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria, the Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, Dresden, Germany, and the Evrika Foundation, Sofia, Bulgaria. The fifteenth meeting of VEIT was held in the Black Sea resort of Sozopol, Bulgaria from 17-21 September 2007 and was attended by around 120 participants from 17 countries: Australia, Belgium, Bulgaria, Canada, Czech Republic, Germany, Hungary, Italy, The Netherlands, Poland, Pakistan, Romania, Sweden, Switzerland, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this volume of Journal of Physics: Conference Series, all peer reviewed to meet the originality and quality criteria of the journal. The school consisted of 11 oral and 3 poster sessions. There were 17 invited talks of general interest and 12 progress reports were presented orally. In total 86 contributed papers were presented during the three poster sessions. There were several scientific highlights covering the fundamentals of gas discharges and interaction of fast particles with solids, a wide range of conventional and novel applications such as for hard coatings and optical/protective layers, nanosized structures produced by evaporation, sputtering or external irradiation. Recent achievements in the modification of materials using charged particles or laser beams, thin layers deposition, properties, and characterization and novel materials, techniques, devices were highlighted. Despite the busy scientific program, the atmosphere was relaxed and informal

  5. Proceedings of the 2011 IEEE international vacuum electronics conference: book of abstracts

    SciTech Connect

    2011-07-01

    This book includes a unique panorama of latest advances in vacuum electronic devices and applications covered in plenary talks, contributed papers and posters. High power microwaves and microwave tubes were the two themes for the pre-conference tutorials. Papers relevant to INIS are indexed separately.

  6. Business of biosimilars - 14th annual conference (October 15-17, 2013 - Boston, Massachusetts, USA).

    PubMed

    Bourgoin, A

    2013-12-01

    Competition in the biological market offers a new set of opportunities and challenges within the healthcare industry. Biosimilars, like generic small-molecule drugs, can provide cost savings and increase patient access, while also promoting innovation. While large molecule manufacturers face many challenges unique to complex therapeutics, it is becoming clear that the commercialization of biosimilars shares many of the same hurdles as the generics market. The 14th Annual Business of Biosimilars Conference provided quality presentations from industry leaders regarding many commercial considerations for stakeholders interested in entering the biosimilars market. Opportunities to network with industry experts were offered, with over 120 attendees. PMID:24524098

  7. ITER vacuum vessel fabrication plan and cost study (D 68) for the international thermonuclear experimental reactor

    SciTech Connect

    1995-01-01

    ITER Task No. 8, Vacuum Vessel Fabrication Plan and Cost Study (D68), was initiated to assess ITER vacuum vessel fabrication, assembly, and cost. The industrial team of Raytheon Engineers & Constructors and Chicago Bridge & Iron (Raytheon/CB&I) reviewed the current vessel basis and prepared a manufacturing plan, assembly plan, and cost estimate commensurate with the present design. The guidance for the Raytheon/CB&I assessment activities was prepared by the ITER Garching Work Site. This guidance provided in the form of work descriptions, sketches, drawings, and costing guidelines for each of the presently identified vacuum vessel Work Breakdown Structure (WBS) elements was compiled in ITER Garching Joint Work Site Memo (Draft No. 9 - G 15 MD 01 94-17-05 W 1). A copy of this document is provided as Appendix 1 to this report. Additional information and clarifications required for the Raytheon/CB&I assessments were coordinated through the US Home Team (USHT) and its technical representative. Design details considered essential to the Task 8 assessments but not available from the ITER Joint Central Team (JCT) were generated by Raytheon/CB&I and documented accordingly.

  8. Desorption Dynamics, Internal Energies and Imaging of Organic Molecules from Surfaces with Laser Desorption and Vacuum Ultraviolet (VUV) Photoionization

    SciTech Connect

    Kostko, Oleg; Takahashi, Lynelle K.; Ahmed, Musahid

    2011-04-05

    There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures, as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer, using laser desorption VUV postionization shows 5 mu m feature details while using a 30 mu m laser spot size and 7 ns duration. Applications of laser desorption postionization to the analysis of cellulose, lignin and humic acids are briefly discussed.

  9. Pseudoaneurysm of the Right Internal Mammary Artery Post Vacuum-Assisted Closure Therapy: A Rare Complication and Literature Review.

    PubMed

    Datta, Subir; Manoly, Imthiaz; Karangelis, Dimos; Hasan, Ragheb

    2016-02-01

    Vacuum-assisted closure (VAC) therapy in the management of sternal wound infection post cardiac surgery has gained popularity since last decade. It is very cost effective and has survival benefit compared with conventional management. Although there are few complications associated with VAC therapy including right ventricular free wall rupture and infectious erosion to aorta, there are now isolated reports of vein graft pseudoaneurysm associated with it. We describe an extremely rare complication of right internal mammary artery pseudoaneurysm post VAC therapy in a 56-year-old man which was successfully managed surgically. We also did a literature review on the possible complications of VAC therapy post cardiac surgery and its management. PMID:26597235

  10. Schools without Fear. Proceedings of the Annual International Alliance for Invitational Education Conference (14th). International Alliance for Invitational Education.

    ERIC Educational Resources Information Center

    Francis, Adrianna Hayes, Ed.

    Papers presented at the fourteenth Annual Conference of the Alliance for Invitational Education are (1) "Caring, Sharing, Daring: Three Tests to Help Develop More Inviting Policies, Programmes, and Procedures" (M. Ayers); (2) "Project: Gentlemen on the Move - Combating the Poor Academic and Social Performance of African American Male Youth" (D. F.…

  11. The 14th Ile residue is essential for Leptin function in regulating energy homeostasis in rat

    PubMed Central

    Xu, Shuyang; Zhu, Xianmin; Li, Hong; Hu, Youtian; Zhou, Jinping; He, Di; Feng, Yun; Lu, Lina; Du, Guizhen; Hu, Youjin; Liu, Tiancheng; Wang, Zhen; Ding, Guohui; Chen, Jiayu; Gao, Shaorong; Wu, Fang; Xue, Zhigang; Li, Yixue; Fan, Guoping

    2016-01-01

    LEPTIN (LEP) is a circulating hormone released primarily from white adipocytes and is crucial for regulating satiety and energy homeostasis in humans and animals. Using the CRISPR technology, we created a set of Lep mutant rats that carry either null mutations or a deletion of the 14th Ile (LEP∆I14) in the mature LEP protein. We examined the potential off-target sites (OTS) by whole-genome high-throughput sequencing and/or Sanger-sequencing analysis and found no OTS in mutant rats. Mature LEP∆I14 is incessantly produced and released to blood at a much elevated level due to the feedback loop. Structure modeling of binding conformation between mutant LEP∆I14 and LEPTIN receptor (LEPR) suggests that the conformation of LEP∆I14 impairs its binding with LEPR, consistent with its inability to activate STAT3-binding element in the luciferase reporter assay. Phenotypic study demonstrated that Lep∆I14 rats recapitulate phenotypes of Lep-null mutant rats including obesity, hyperinsulinemia, hepatic steatosis, nephropathy, and infertility. Compared to the existing ob/ob mouse models, this Lep∆I14/∆I14 rat strain provides a robust tool for further dissecting the roles of LEP in the diabetes related kidney disease and reproduction problem, beyond its well established function in regulating energy homeostasis. PMID:27378381

  12. Radio imaging of synchrotron emission associated with a CME on the 14th of August 2010

    NASA Astrophysics Data System (ADS)

    Bain, H. M.; Krucker, S.; Raftery, C. L.; Saint-Hilaire, P.

    2012-12-01

    Radio observations can be used to identify sources of electron acceleration within flares and CMEs. In a small number of events, radio imaging has revealed the presence of synchrotron emission from nonthermal electrons in the expanding loops of the CME (Bastian et al. (2001), Maia et al. (2007) and Démoulin et al. (2012)). Events in which the synchrotron emission is sufficiently bright to be identified in the presence of plasma emission from radio bursts, which are prevalent at meter wavelengths, are infrequent. Using radio images from the Nançay Radioheliograph (NRH) we present observations of synchrotron emission associated with a CME which occurred on the 14th of August 2010. Using context observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory, the SWAP instrument onboard Proba2, the LASCO coronograph onboard SOHO and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we follow the propagation of the CME out to 2-3 solar radii and characterize the associated electron distribution. We find that the synchrotron emission is cospatial with the CME core.

  13. Report of the 14th Genomic Standards Consortium Meeting, Oxford, UK, September 17-21, 2012.

    PubMed Central

    Davies, Neil; Field, Dawn; Amaral-Zettler, Linda; Barker, Katharine; Bicak, Mesude; Bourlat, Sarah; Coddington, Jonathan; Deck, John; Drummond, Alexei; Gilbert, Jack A.; Glöckner, Frank Oliver; Kottmann, Renzo; Meyer, Chris; Morrison, Norman; Obst, Matthias; Robbins, Robert; Schriml, Lynn; Sterk, Peter; Stones-Havas, Steven

    2014-01-01

    This report summarizes the proceedings of the 14th workshop of the Genomic Standards Consortium (GSC) held at the University of Oxford in September 2012. The primary goal of the workshop was to work towards the launch of the Genomic Observatories (GOs) Network under the GSC. For the first time, it brought together potential GOs sites, GSC members, and a range of interested partner organizations. It thus represented the first meeting of the GOs Network (GOs1). Key outcomes include the formation of a core group of “champions” ready to take the GOs Network forward, as well as the formation of working groups. The workshop also served as the first meeting of a wide range of participants in the Ocean Sampling Day (OSD) initiative, a first GOs action. Three projects with complementary interests – COST Action ES1103, MG4U and Micro B3 – organized joint sessions at the workshop. A two-day GSC Hackathon followed the main three days of meetings.

  14. The 14th Ile residue is essential for Leptin function in regulating energy homeostasis in rat.

    PubMed

    Xu, Shuyang; Zhu, Xianmin; Li, Hong; Hu, Youtian; Zhou, Jinping; He, Di; Feng, Yun; Lu, Lina; Du, Guizhen; Hu, Youjin; Liu, Tiancheng; Wang, Zhen; Ding, Guohui; Chen, Jiayu; Gao, Shaorong; Wu, Fang; Xue, Zhigang; Li, Yixue; Fan, Guoping

    2016-01-01

    LEPTIN (LEP) is a circulating hormone released primarily from white adipocytes and is crucial for regulating satiety and energy homeostasis in humans and animals. Using the CRISPR technology, we created a set of Lep mutant rats that carry either null mutations or a deletion of the 14(th) Ile (LEP(∆I14)) in the mature LEP protein. We examined the potential off-target sites (OTS) by whole-genome high-throughput sequencing and/or Sanger-sequencing analysis and found no OTS in mutant rats. Mature LEP(∆I14) is incessantly produced and released to blood at a much elevated level due to the feedback loop. Structure modeling of binding conformation between mutant LEP(∆I14) and LEPTIN receptor (LEPR) suggests that the conformation of LEP(∆I14) impairs its binding with LEPR, consistent with its inability to activate STAT3-binding element in the luciferase reporter assay. Phenotypic study demonstrated that Lep(∆I14) rats recapitulate phenotypes of Lep-null mutant rats including obesity, hyperinsulinemia, hepatic steatosis, nephropathy, and infertility. Compared to the existing ob/ob mouse models, this Lep(∆I14/∆I14) rat strain provides a robust tool for further dissecting the roles of LEP in the diabetes related kidney disease and reproduction problem, beyond its well established function in regulating energy homeostasis. PMID:27378381

  15. "May the force be with you": 14th Samuel Haughton lecture.

    PubMed

    Prendergast, P J

    2008-12-01

    This paper presents the 14th Samuel Haughton lecture delivered on the 26th of January 2008. The lecture began by describing Haughton's research on animal mechanics. Haughton opposed Charles Darwin's theory of natural selection using the argument that the skeleton obeys the 'principle of least action' and therefore must have been designed with that principle in mind. In the course of his research he dissected many animals, including albatrosses, cassowaries, llamas, tigers, jackals and jaguars. He took anatomical measurements and did calculations to prove that muscle attachment sites were optimally located. The relationship between optimality and evolution continues to be studied. Computer simulations show optimality is difficult to achieve. This is because, even if optimality could be defined, the gene recombinations required to evolve an optimal phenotype may not exist. The drive towards optimality occurs under gravitational forces. Simulations to predict mechano-regulation of tissue differentiation and remodelling have been developed and tested. They have been used to design biomechanically optimized scaffolds for regenerative medicine and to identify the mechanoregularory mechanisms in osteoporosis. It is proposed that an important development in bioengineering will be the discovery of algorithms that can be used for the prediction of mechano-responsiveness in biological tissues. PMID:18641919

  16. 14th Workshop on Crystalline Silicon Solar Cells& Modules: Materials and Processes; Summary of Discussion Sessions

    SciTech Connect

    Sopori, B.; Tan, T.; Sinton, R.; Swanson, D.

    2004-10-01

    The 14th Workshop discussion sessions addressed funding needs for Si research and for R&D to enhance U.S. PV manufacturing. The wrap-up session specifically addressed topics for the new university silicon program. The theme of the workshop, Crystalline Silicon Solar Cells: Leapfrogging the Barriers, was selected to reflect the astounding progress in Si PV technology during last three decades, despite a host of barriers and bottlenecks. A combination of oral, poster, and discussion sessions addressed recent advances in crystal growth technology, new cell structures and doping methods, silicon feedstock issues, hydrogen passivation and fire through metallization, and module issues/reliability. The following oral/discussion sessions were conducted: (1) Technology Update; (2) Defects and Impurities in Si/Discussion; (3) Rump Session; (4) Module Issues and Reliability/Discussion; (5) Silicon Feedstock/Discussion; (6) Novel Doping, Cells, and Hetero-Structure Designs/Discussion; (7) Metallization/Silicon Nitride Processing/Discussion; (8) Hydrogen Passivation/Discussion; (9) Characterization/Discussion; and (10) Wrap-Up. This year's workshop lasted three and a half days and, for the first time, included a session on Si modules. A rump session was held on the evening of August 8, which addressed efficiency expectations and challenges of c Si solar cells/modules. Richard King of DOE and Daren Dance of Wright Williams& Kelly (formerly of Sematech) spoke at two of the luncheon sessions. Eleven students received Graduate Student Awards from funds contributed by the PV industry.

  17. Investigation of acceleration processes of the 14th july 2005 flare series occurred in ar 10786

    NASA Astrophysics Data System (ADS)

    Sizykh, Tatyana; Kashapova, Larisa

    We present the results of acceleration process study in the flare series occurred 14th July 2005 on the western limb of the Sun. Our investigation is based on HXR data obtained by RHESSI. It was observed increasing of solar flare activity with X1.2 class flare at its culmination. The presence of accelerated electrons (the power-law component of HXR spectrum for energies more than 25 keV) was clearly signified only in the first (C3.8) and the last of studied flares. We applied lgT-1/2lgEM diagrams ( Jakimiec et al,1986) for quantitative study of HXR spectrums for all flares. For analysis of the flares showed presence of significant flux of accelerated electrons we also used diagrams made on base of parameters obtained from non-thermal part of the spectrum (flux, spectral index, spectral curvature, Grigis Benz 2009). The possible scenario of evolution of this active region is discussed.

  18. Restoring the Trust in Native Education. Annual NIEA Legislative Summit (14th, February 7-9, 2011). Briefing Papers

    ERIC Educational Resources Information Center

    National Indian Education Association, 2011

    2011-01-01

    Several briefing papers were presented during the 14th Annual National Indian Education Association (NIEA) Legislative Summit. This briefing book contains the following papers presented during the summit: (1) Restoring the Trust in Native Education; (2) NIEA Legislative Priorities for 2011: "Talking Points"; (3) Reauthorization of the Elementary…

  19. Reading and Reality. Proceedings of the Annual Reading Conference (14th, Terre Haute, Indiana, June 14, 1984).

    ERIC Educational Resources Information Center

    Gibbs, Vanita M., Comp.; Waterman, David C., Comp.

    Intended for reading teachers, this pamphlet contains the presentations of the 14th annual reading conference at Indiana State University, beginning with opening remarks by David C. Waterman and welcoming comments by J. Stephen Hazlett. In the opening address, "What Good is Comprehension without Composition?" by Sharon and David Moore, the role of…

  20. Military Librarians Workshop; Department of Defense Libraries in Transition (14th, 30 November - 2 December 1970). Conference Proceedings.

    ERIC Educational Resources Information Center

    Industrial Coll. of the Armed Forces (DOD), Washington, DC.

    The theme of the 14th Annual Military Librarians Workshop is: "Department of Defense Libraries in Transition." The National War College and the Industrial College libraries seek to see what support they can give each other. The ten workshops are: (1) Standardization of Bibliographic Data, (2) Evolution of Technical Reports, (3) DOD Coordination of…

  1. Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers

    NASA Astrophysics Data System (ADS)

    Bodi, Andras

    2013-10-01

    Internal energy selected ethanol monomer and ethanol dimer ions were prepared by threshold photoionization of a supersonic molecular beam seeded with ethanol. The dissociative photoionization processes of the monomer, the lowest-energy CH3-loss channel of the dimer, and the fragmentation of larger clusters were found to be disjunct from the ionization onset to about 12 eV, which made it possible to determine the 0 K appearance energy of C-C bond breaking in the H-donor unit of the ethanol dimer cation as 9.719 ± 0.004 eV. This reaction energy is used together with ab initio calculations in a thermochemical cycle to determine the binding energy change from the neutral ethanol dimer to a protonated ethanol-formaldehyde adduct. The cycle also shows general agreement between experiment, theory, and previously published enthalpies of formation. The role of the initial ionization site, or rather the initial photoion state, is also discussed based on the dimer breakdown diagram and excited state calculations. There is no evidence for isolated state behavior, and the ethanol dimer dissociative photoionization processes appear to be governed by statistical theory and the ground electronic state of the ion. In the monomer breakdown diagram, the smoothly changing branching ratio between H and CH3 loss is at odds with rate theory predictions, and shows that none of the currently employed few-parameter rate models, appropriate for experimental rate curve fitting, yields a correct description for this process in the experimental energy range.

  2. Radio Imaging of a Type IVM Radio Burst on the 14th of August 2010

    NASA Astrophysics Data System (ADS)

    Bain, H. M.; Krucker, S.; Saint-Hilaire, P.; Raftery, C. L.

    2014-02-01

    Propagating coronal mass ejections (CMEs) are often accompanied by burst signatures in radio spectrogram data. We present Nançay Radioheliograph observations of a moving source of broadband radio emission, commonly referred to as a type IV radio burst (type IVM), which occurred in association with a CME on the 14th of August 2010. The event was well observed at extreme ultraviolet (EUV) wavelengths by SDO/AIA and PROBA2/SWAP, and by the STEREO SECCHI and SOHO LASCO white light (WL) coronagraphs. The EUV and WL observations show the type IVM source to be cospatial with the CME core. The observed spectra is well fitted by a power law with a negative slope, which is consistent with optically thin gyrosynchrotron emission. The spectrum shows no turn over at the lowest Nançay frequencies. By comparing simulated gyrosynchrotron spectra with Nançay Radioheliograph observations, and performing a rigorous parameter search we are able to constrain several key parameters of the underlying plasma. Simulated spectra found to fit the data suggest a nonthermal electron distribution with a low energy cutoff of several tens to 100 keV, with a nonthermal electron density in the range 100-102 cm-3, in a magnetic field of a few Gauss. The nonthermal energy content of the source is found to contain 0.001%-0.1% of the sources thermal energy content. Furthermore, the energy loss timescale for this distribution equates to several hours, suggesting that the electrons could be accelerated during the CME initiation or early propagation phase and become trapped in the magnetic structure of the CME core without the need to be replenished.

  3. Radio imaging of a type IVM radio burst on the 14th of August 2010

    SciTech Connect

    Bain, H. M.; Krucker, S.; Saint-Hilaire, P.; Raftery, C. L.

    2014-02-10

    Propagating coronal mass ejections (CMEs) are often accompanied by burst signatures in radio spectrogram data. We present Nançay Radioheliograph observations of a moving source of broadband radio emission, commonly referred to as a type IV radio burst (type IVM), which occurred in association with a CME on the 14th of August 2010. The event was well observed at extreme ultraviolet (EUV) wavelengths by SDO/AIA and PROBA2/SWAP, and by the STEREO SECCHI and SOHO LASCO white light (WL) coronagraphs. The EUV and WL observations show the type IVM source to be cospatial with the CME core. The observed spectra is well fitted by a power law with a negative slope, which is consistent with optically thin gyrosynchrotron emission. The spectrum shows no turn over at the lowest Nançay frequencies. By comparing simulated gyrosynchrotron spectra with Nançay Radioheliograph observations, and performing a rigorous parameter search we are able to constrain several key parameters of the underlying plasma. Simulated spectra found to fit the data suggest a nonthermal electron distribution with a low energy cutoff of several tens to 100 keV, with a nonthermal electron density in the range 10{sup 0}-10{sup 2} cm{sup –3}, in a magnetic field of a few Gauss. The nonthermal energy content of the source is found to contain 0.001%-0.1% of the sources thermal energy content. Furthermore, the energy loss timescale for this distribution equates to several hours, suggesting that the electrons could be accelerated during the CME initiation or early propagation phase and become trapped in the magnetic structure of the CME core without the need to be replenished.

  4. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  5. Effects of vacuum packaging conditions on the quality, biochemical changes and the durability of ostrich meat.

    PubMed

    Brenesselová, Martina; Koréneková, Beáta; Mačanga, Ján; Marcinčák, Slavomír; Jevinová, Pavlína; Pipová, Monika; Turek, Peter

    2015-03-01

    In this study, the effects of vacuum packaging conditions on the concentrations of lactic acid, malondialdehyde, pH, microbial and sensory analysis were determined during chilled storage of ostrich meat. Meat was packed as follows: vacuum packed from 1st day (VP-1), vacuum packed from 3rd day (VP-3) and non-vacuum packed (NVP). Analysis were performed at 1st, 7th, 14th, 21st day after slaughter. Meat consisted of 74.69% water, 2.29% fats, 20.95% proteins. Package conditions had significant effect on the pH (NVP: 6.54 on the 14th day, VP-1: 6.05 and VP-3: 6.07 on the 21th day p<0.001), amount of malondialdehyde (NVP: 8.62mg/kg on the 14th day; VP-1: 1.95 and VP-3: 2.55 on the 21th day; p<0.001) and total microbial count (NVP: 7.4 log CFU/g on the 14th day; VP-1: 6.7 and VP-3: 6.8 on the 21th day p<0.01). Based on these results we can assess that vacuum packed from 1st day is necessary for the 21 days storage of ostrich meat. PMID:25462381

  6. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  7. Seeing Ourselves: Visualization in a Social Context. Readings from the Annual Conference of the International Visual Literacy Association (14th).

    ERIC Educational Resources Information Center

    Braden, Roberts A., Ed.; Walker, Alice D., Ed.

    The 40 papers in this collection cover a wide variety of topics within the broad field of visual literacy. Three preliminary papers discuss visualization through film. The second section, which emphasizes visualization in a social context, contains 10 papers addressing cultural, political, social, and psychological issues, touching upon such…

  8. Selected Papers from the International Conference on College Teaching and Learning (14th, Jacksonville, Florida, April 1-5, 2003).

    ERIC Educational Resources Information Center

    Chambers, Jack A., Ed.

    This collection of conference papers includes: "Building a Pedagogical Model for Synchronous Distance Learning Courses" (Panagiotes S. Anastasiades); "Delivery of Courseware using CD-ROM Media" (Brian Brighouse and Denis Edgar-Nevill); "Lessons Learned from Blended Biology Classes" (Arthur L. Buikema, Jr.); "Everything I Ever Needed to Know I…

  9. What Would Peggy Do? 14th Annual Peggy Glanville-Hicks Address 2012

    ERIC Educational Resources Information Center

    Harvey, Michael Kieran

    2012-01-01

    The New Music Network established the Peggy Glanville-Hicks Address in 1999 in honour of one of Australia's great international composers. It is an annual forum for ideas relating to the creation and performance of Australian music. In the spirit of the great Australian composer Peggy Glanville-Hicks, an outstanding advocate of Australian music…

  10. The Successive CME on 13th; 14th and 15th February 2011 and Forbush decrease on 18 February 2011

    NASA Astrophysics Data System (ADS)

    Maričić, D.; Bostasyan, N.; Dumbović, M.; Chilingarian, A.; Mailyan, B.; Rostomyan, H.; Arakelyan, K.; Vršnak, B.; Roša, D.; Hržina, D.; Romštajn, I.; Veronig, A.

    2013-02-01

    Aims. We analyze the kinematics of three interplanetary coronal mass ejections (ICMEs) that occurred on 13th, 14th and 15th February 2011 in the active region AR 11155 and have shown that they appeared at the Earth orbit on February, 18th and caused Forbush decrease (FD). Methods. The solar coordinates of flares are (S19W03), (S20W14) and (S21W18). The kinematic curves were obtained using STEREO (A&B) data. Additionally, we explore the possibility of the CME-CME interaction for these three events. We compare obtained estimates of ICME arrival with the in-situ measurements from WIND satellite at L1 point and with ground-based cosmic ray data obtained from SEVAN network. Results. The acceleration of each CME is highly correlated with the associated SXR flares energy release. CMEs that erupted at 13 and 14 Feb 2011 are not associated with prominence eruption; maximum velocity was vmax550 ± 50 km/s and vmax400 ± 50 km/s, respectively. However, 15 Feb 2011 CME is connected with much more violent eruption associated with a prominence, with maximum velocity of vmax 1400 ± 50 km/s. The last overtakes 13th and 14th Feb CMEs at distances of 32 and 160 Rsolar, respectively.

  11. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    PubMed

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants. PMID:26906006

  12. Radio imaging spectroscopy of synchrotron emission associated with a CME on the 14th of August 2010

    NASA Astrophysics Data System (ADS)

    Bain, Hazel; Krucker, S.; Saint-Hilaire, P.; Raftery, C.

    2013-07-01

    We present Nancay Radioheliograph observations of a moving type IV solar radio burst which occurred in association with a CME on the 14th of August 2010. The event was well observed at extreme ultraviolet wavelengths by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, the SWAP instrument onboard Proba2 and by the LASCO white light coronograph. The burst emission was found to be cospatial with the core of the CME. Using radio imaging spectroscopy we are able to characterize the underlying electron distribution and plasma parameters within the source. Fitted spectra reveal a clear power law component consistent with optically thin synchrotron emission from accelerated electrons trapped in the erupting flux rope. As is often observed in type IV bursts, polarization measurements show the source to be moderately polarized during the peak of the burst, before steadily increasing to around 70% as the brightness temperature of the burst decays.

  13. The 14 TH Annual Intelligent Ground Vehicle Competition: intelligent teams creating intelligent ground robots

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.; Nguyen, Dmitri

    2006-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 14 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 50 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  14. FOREWORD: The 4th CCM International Conference on Pressure Metrology from Ultra-High Vacuum to Very High Pressures (10-9 Pa to 109 Pa)

    NASA Astrophysics Data System (ADS)

    Legras, Jean-Claude; Jousten, Karl; Severn, Ian

    2005-12-01

    The fourth CCM (Consultative Committee for Mass and related quantities) International Conference on Pressure Metrology from Ultra-High Vacuum to Very High Pressures (10-9 Pa to 109 Pa) was held at the Institute of Physics in London from 19-21 April 2005. The event, which was organized by the Low, Medium and High Pressure working groups of the CCM, was attended by in excess of one hundred participants with representatives from five continents and every regional metrology organization. The purpose of this conference is to review all the work that is devoted to the highest quality of pressure measurement by primary standards as well as the dissemination of the pressure scale. A total of 52 papers were presented orally, and 26 as posters, in sessions that covered the following topics: Latest scientific advances in pressure and vacuum metrology Innovative transfer standards, advanced sensors and new instrument development Primary (top-level) measurement standards International and regional key comparisons New approaches to calibration It is interesting the note that since the third conference in 1999 the pressure range covered has increased by two orders of magnitude to 109 Pa, to take into account more exacting scientific and industrial demands for traceable vacuum measurement. A further feature of the conference was the increased range of instrumentation and techniques used in the realization and potential realization of pressure standards. Seton Bennett, Director of International Metrology at the National Physical Laboratory, opened the conference and Andrew Wallard, Director of the Bureau International des Poids et Mesures (BIPM), gave the keynote address which described the implementation of the mutual recognition arrangement and the resulting removal of metrological barriers to international trade. Many experts have contributed significant amounts of their time to organize the event and to review the submitted papers. Thanks are due to all of these people

  15. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  16. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  17. Understand vacuum-system fundamentals

    SciTech Connect

    Martin, G.R. ); Lines, J.R. ); Golden, S.W. )

    1994-10-01

    Crude vacuum unit heavy vacuum gas-oil (HVGO) yield is significantly impacted by ejector-system performance, especially at conditions below 20 mmHg absolute pressure. A deepcut vacuum unit, to reliably meet the yields, calls for proper design of all the major pieces of equipment. Ejector-system performance at deepcut vacuum column pressures may be independently or concurrently affected by: atmospheric column overflash, stripper performance or cutpoint; vacuum column top temperature and heat balance; light vacuum gas-oil (LVGO) pumparound entrainment to the ejector system; cooling-water temperature; motive steam pressure; non-condensible loading, either air leakage or cracked light-end hydrocarbons; condensible hydrocarbons; intercondenser or aftercondenser fouling ejector internal erosion or product build-up; and system vent back pressure. The paper discusses gas-oil yields; ejector-system fundamentals; condensers; vacuum-system troubleshooting; process operations; and a case study of deepcut operations.

  18. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  19. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  20. Dealing with Diversity: A Key Issue for Educational Management. Proceedings of the ENIRDEM Conference (14th, Brno and Telc, the Czech Republic, September 22-25, 2005)

    ERIC Educational Resources Information Center

    Pol, Milan, Ed.

    2006-01-01

    An anthology of speeches of the 14th conference of the European Network for Improving Research and Development in Educational Management (ENIRDEM), held on 22 to 25 September 2005 in Brno and Telc, the Czech Republic, this book contains 13 contributions by 19 speakers and co-authors, covering various questions related to the topic of diversity in…

  1. PREFACE: European Microbeam Analysis Society's 14th European Workshop on Modern Developments and Applications in Microbeam Analysis (EMAS 2015), Portorož, Slovenia, 3-7 May 2015

    NASA Astrophysics Data System (ADS)

    Llovet, Xavier; Matthews, Michael B.; Čeh, Miran; Langer, Enrico; Žagar, Kristina

    2016-02-01

    This volume of the IOP Conference Series: Materials Science and Engineering contains papers from the 14th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis which took place from the 3rd to the 7th of May 2015 in the Grand Hotel Bernardin, Portorož, Slovenia. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a unique format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field.This workshop was organized in collaboration with the Jožef Stefan Institute and SDM - Slovene Society for Microscopy. The technical programme included the following topics: electron probe microanalysis, STEM and EELS, materials applications, cathodoluminescence and electron backscatter diffraction (EBSD), and their applications. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2016 Microscopy and Microanalysis meeting at Columbus, Ohio. The prize went to Shirin Kaboli, of the Department of Metals and Materials Engineering of McGill University (Montréal, Canada), for her talk entitled "Electron channelling contrast reconstruction with electron backscattered diffraction". The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 71 posters from 16 countries were on display at the meeting and that the participants came from as far away as Japan, Canada, USA, and Australia. A selection of participants with posters was invited

  2. Familial Aggregation between the 14th and 21st Century and Type 2 Diabetes Risk in an Isolated Dutch Population

    PubMed Central

    de Visser, Kees L.; Landman, Gijs W. D.; Meyboom-de Jong, Betty; de Visser, Wim; te Meerman, Gerard J.; Bilo, Henk J. G.

    2015-01-01

    Introduction The development of type 2 diabetes results from an interaction of hereditary factors and environmental factors. This study aimed to investigate the contribution of interrelatedness to the risk of developing type 2 diabetes in an isolated Dutch population. Materials and Methods A genealogical database from inhabitants living on the former island Urk between the 14th and 21st century was constructed. In a case-control study, effects of interrelatedness and the risk of type 2 diabetes were estimated with Kinship Coefficients (KCs). Relative risks in first, second, and third degree relatives and spouses of inhabitants with type 2 diabetes were compared to matched controls. Results Patients with type 2 diabetes were more interrelated, expressed by a higher KC compared to controls (7.2 vs. 5.2, p=0.001). First, second and third degree relatives had an increased risk of developing type 2 diabetes. Second degree relatives had a similar risk,1.7 (1.5-2.0) as third degree relatives,1.8 (1.5-2.2). Spouses of patients with diabetes had a 3.4 (2.7-4.4) higher risk of developing type 2 diabetes. Conclusions Interrelatedness was higher among inhabitants with type 2 diabetes compared to controls. This differences extended beyond the nuclear family, thereby supporting the hypothesis that interrelatedness contributed to the development of type 2 diabetes on Urk. However, the size of this effect was small and the patterns of risk in first, second and third degree relatives suggested that factors other than interrelatedness were the main contributors to the development of type 2 diabetes on Urk. PMID:26193086

  3. Intercomparison of Nine National High-vacuum Standards under the Auspices of the Bureau International des Poids et Mesures

    NASA Astrophysics Data System (ADS)

    Messer, G.; Jitschin, W.; Rubet, L.; Calcatelli, A.; Redgrave, F. J.; Keprt, A.; Wei-nan, Fei; Sharma, J. K. N.; Dittmann, S.; Ono, M.

    1989-01-01

    The Bureau International des Poids et Mesures has initiated world-wide intercomparisons of pressure standards. The intercomparison in the regime of very low pressures, i.e. 10-4 to 1 Pa, using Ar as the test gas, has now been completed with the participation of laboratories in nine countries (in alphabetical order): Czechoslovakia, Federal Republic of Germany, France, India, Italy, Japan, People's Republic of China, UK and United States of America. In addition, five of these laboratories made measurements using H2 as the test gas. Four spinning-rotor gauges were employed as transfer standards. The achieved transfer uncertainty between the pilot laboratory (Physikalisch-Technische Bundesanstalt) and a participating laboratory lies between 0.16% and 0.30% (1σ) for Ar and has allowed an intercomparison at this level of accuracy. At all investigated pressures the standards in the various laboratories lie within an interval of +/-3% around the standard of the pilot laboratory. For a brief synopsis of the intercomparison results, the calibration data of each laboratory for one gas species are reduced to a single number, i.e., the average over the pressure range 10-3 to 1 Pa, although this procedure is somewhat arbitrary and obscures scatter and pressure-dependence of some calibration results. These averages deviate from their mean by not more than about 1%. Systematic deviations between some laboratories are clearly identifiable: however, for most of the laboratories it appears that these are compatible with the estimated uncertainties of the pressure generation and the transfer uncertainty.

  4. Cryogenic engineering and superconductor technology; Proceedings of the 14th International Cryogenic Engineering Conference and International Cryogenic Materials Conference, Kiev, Ukraine, June 8-12, 1992

    NASA Astrophysics Data System (ADS)

    Komarek, P.; Rizzuto, C.

    Consideration is given to application concepts of small regenerative cryocoolers in superconducting magnet systems, thermoelectric materials for Peltier cryogenic coolers, closed-cycle liquid helium refrigerators, built-in cryogenic control fixtures with electric drive, large cryogenic helium systems for superconducting magnets, low temperature adsorptive hydrogen isotope separation, cryogenic thermometry for space testing systems, performance of parallel flow He-II heat exchangers, and transient heat transfer to liquid helium at a 100 Hz pulsed heat load. Also discussed are He II cooling of a large superconducting magnet system, a computer code for simulation of thermal processes during quench in superconducting magnet windings, quench energies of multistable composite superconductors, a superconducting hydrogen-cooled switch on Nb-Sn tape, a gravity radiometer with coupled superconducting suspensions, new design of RSFQ logic family, and high-temperature Josephson junctions and their applications.

  5. 2.5 Gbps clock data recovery using 1/4th-rate quadricorrelator frequency detector and skew-calibrated multi-phase clock generator

    NASA Astrophysics Data System (ADS)

    Tontisirin, S.; Tielert, R.

    2006-09-01

    A Gb/s clock and data recovery (CDR) circuit using 1/4th-rate digital quadricorrelator frequency detector and skew-calibrated multi-phase voltage-controlled oscillator is presented. With 1/4th-rate clock architecture, the coil-free oscillator can have lower operation frequency providing sufficient low-jitter operation. Moreover, it is an inherent 1-to-4 DEMUX. The skew calibration scheme is applied to reduce phase offset in multi-phase clock generator. The CDR with frequency detector can have small loop bandwidth, wide pull-in range and can operate without the need for a local reference clock. This 1/4th-rate CDR is implemented in standard 0.18 μm CMOS technology. It has an active area of 0.7 mm2 and consumes 100 mW at 1.8 V supply. The CDR has low jitter operation in a wide frequency range from 1-2.25 Gb/s. Measurement of Bit-Error Rate is less than 10-12 for 2.25 Gb/s incoming data 27-1 PRBS, jitter peak-to-peak of 0.7 unit interval (UI) modulation at 10 MHz.

  6. Taxonomical outlines of bio-diversity of Karnataka in a 14th century Kannada toxicology text Khagendra Mani Darpana.

    PubMed

    Bhat, Sathyanarayana; Udupa, Kumaraswamy

    2013-08-01

    Origin of ancient Indian toxicology can be dated back to vedic literature. Toxins of both animate and inanimate world were very well understood during the era. Rig and Atharva vedic texts describe such details. After classifying such toxins, Charaka Samhitha, the basic literature of Indian Medicine used gold and ghee as panaceas to counter act them. Ayurveda considers toxicology as one among the eight specialized branches of medical wisdom. Unfortunately, the available literature on this is very limited. Moreover, they have been discussed briefly in Charaka and Sushrutha Samhitha. Mangarasa I, a Jain scholar who lived on the foothills of the Western Ghats, in Southern India in 1350 A.D., felt this vacuum and composed an independent, elaborate Kannada text on toxicology. His less known text Khagendra Mani Darpana (KMD) is the first ever documented complete text on toxicology in the world. Medieval Indian wisdom on plant and animal diversities are very well reflected in this unique toxicological text. Centuries past to Linnean era, KMD gives vivid descriptions on zoological and botanical diversities of the time. This astonishing fact is an evidence of our ancestor's curiosities about the nature around them. A critical overview of the bio-diversity described in KMD text is discussed in this paper. PMID:23905027

  7. Taxonomical outlines of bio-diversity of Karnataka in a 14th century Kannada toxicology text Khagendra Mani Darpana

    PubMed Central

    Bhat, Sathyanarayana; Udupa, Kumaraswamy

    2013-01-01

    Origin of ancient Indian toxicology can be dated back to vedic literature. Toxins of both animate and inanimate world were very well understood during the era. Rig and Atharva vedic texts describe such details. After classifying such toxins, Charaka Samhitha, thebasic literature of Indian Medicine used gold and ghee as panaceas to counter act them. Ayurveda considers toxicology as one among the eight specialized branches of medical wisdom. Unfortunately, the available literature on this is very limited. Moreover, they have been discussed briefly in Charaka and Sushrutha Samhitha. Mangarasa I, a Jain scholar who lived on the foothills of the Western Ghats, in Southern India in 1350 A.D., felt this vacuum and composed an independent, elaborate Kannada text on toxicology. His less known text Khagendra Mani Darpana (KMD) is the first ever documented complete text on toxicology in the world. Medieval Indian wisdom on plant and animal diversities are very well reflected in this unique toxicological text. Centuries past to Linnean era, KMD gives vivid descriptions on zoological and botanical diversities of the time. This astonishing fact is an evidence of our ancestor's curiosities about the nature around them. A critical overview of the bio-diversity described in KMD text is discussed in this paper. PMID:23905027

  8. The hospital microbiome project: meeting report for the UK science and innovation network UK-USA workshop ‘beating the superbugs: hospital microbiome studies for tackling antimicrobial resistance’, October 14th 2013

    PubMed Central

    2014-01-01

    The UK Science and Innovation Network UK-USA workshop ‘Beating the Superbugs: Hospital Microbiome Studies for tackling Antimicrobial Resistance’ was held on October 14th 2013 at the UK Department of Health, London. The workshop was designed to promote US-UK collaboration on hospital microbiome studies to add a new facet to our collective understanding of antimicrobial resistance. The assembled researchers debated the importance of the hospital microbial community in transmission of disease and as a reservoir for antimicrobial resistance genes, and discussed methodologies, hypotheses, and priorities. A number of complementary approaches were explored, although the importance of the built environment microbiome in disease transmission was not universally accepted. Current whole genome epidemiological methods are being pioneered in the UK and the benefits of moving to community analysis are not necessarily obvious to the pioneers; however, rapid progress in other areas of microbiology suggest to some researchers that hospital microbiome studies will be exceptionally fruitful even in the short term. Collaborative studies will recombine different strengths to tackle the international problems of antimicrobial resistance and hospital and healthcare associated infections.

  9. Vacuum phenomenon.

    PubMed

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome. PMID:27147527

  10. On the possibility of the determining the average mass composition near 10 to the 14th power eV through the solar magnetic field

    NASA Technical Reports Server (NTRS)

    Lloyd-Evans, J.

    1985-01-01

    The discovery of primary ultrahigh energy (UHE) gamma-rays has spawned plans for a new generation of air shower experiments with unprecedented directional resolution. Such accuracy permits observation of a cosmic ray shadow due to the solar disc. Particle trajectory simulations through models of the large scale solar magnetic field were performed. The shadow is apparent above 10 to the 15th power eV for all cosmic ray charges /Z/ 26; at lower energies, trajectories close to the Sun are bent sufficiently for this shadow to be lost. The onset of the shadow is rigidity dependent, and occurs at an energy per nucleus of approx. Z x 10 to the 13th power eV. The possibility of determining the average mass composition near 10 to the 14th power eV from 1 year's observation at a mountain altitude array is investigated.

  11. Edge conduction in vacuum glazing

    SciTech Connect

    Simko, T.M.; Collins, R.E.; Beck, F.A.; Arasteh, D.

    1995-03-01

    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  12. International Symposium on Remote Sensing of Environment, 14th, San Jose, Costa Rica, April 23-30, 1980, Proceedings. Volumes 1, 2 & 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Papers are presented on remote sensing applications in resource monitoring and management, data classification and modeling procedures, and the use of remote sensing techniques in developing nations. The subjects of land use/land cover, soil mapping, crop identification, mapping of geological resources, renewable resource analysis, and oceanographic applications are discussed. Papers from Argentina, Bolivia, Brazil, Costa Rica, the Syrian Arab Republic, the People's Republic of China, the Phillipines, Italy, Upper Volta and the United States are included.

  13. International Symposium on Remote Sensing of Environment, 14th, San Jose, Costa Rica, April 23-30, 1980, Proceedings. Volumes 1, 2 and 3

    SciTech Connect

    Not Available

    1980-01-01

    Papers are presented on remote sensing applications in resource monitoring and management, data classification and modeling procedures, and the use of remote sensing techniques in developing nations. The subjects of land use/land cover, soil mapping, crop identification, mapping of geological resources, renewable resource analysis, and oceanographic applications are discussed. Papers from Argentina, Bolivia, Brazil, Costa Rica, the Syrian Arab Republic, the People's Republic of China, the Phillipines, Italy, Upper Volta and the United States are included.

  14. Cross-Culturalism in Children's Literature: Selected papers from the 1987 International Conference of the Children's Literature Association (14th, Ottawa, Canada, May 14-17, 1987).

    ERIC Educational Resources Information Center

    Gannon, Susan R., Ed.; Thompson, Ruth Anne, Ed.

    This conference proceedings contains a selection of the papers and awards given at a conference held at Carleton University in Canada. After the text of an address by the president of the Children's Literature Association, the following papers are included: (1) "Lone Voices in the Crowd: The Limits of Multiculturalism" (Brian Alderson); (2) "The…

  15. Selected Theoretical Studies Group contributions to the 14th International Cosmic Ray conference. [including studies on galactic molecular hydrogen, interstellar reddening, and on the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The galactic distribution of H2 was studied through gamma radiation and through X-ray, optical, and infrared absorption measurements from SAS-2 and other sources. A comparison of the latitude distribution of gamma-ray intensity with reddening data shows reddening data to give the best estimate of interstellar gas in the solar vicinity. The distribution of galactic cosmic ray nucleons was determined and appears to be identical to the supernova remnant distribution. Interactions between ultrahigh energy cosmic-ray nuclei and intergalactic photon radiation fields were calculated, using the Monte Carlo method.

  16. Research Symposium. Teacher Education in Reading: Worldwide Issues. International Reading Association World Congress on Reading (14th, Maui, Hawaii, July 14, 1992). Yearbook 1992.

    ERIC Educational Resources Information Center

    Organization of Teacher Educators in Reading.

    This collection of 24 papers focuses on teacher education, literacy, and literature. Papers in the collection are: "Implementing Holistic Literacy Strategies in Chinese Teacher Preparation Programs" (R. L. Baker and M. H. Shaw-Baker); "I-Searching in Teacher Education" (A. Bartlett); "Strategies for Reducing Stress and Promoting Self-Esteem in…

  17. Vacuum Cleaner Fan Being Improved

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    1997-01-01

    As part of the technology utilization program at the NASA Lewis Research Center, efforts are underway to transfer aerospace technologies to new areas of practical application. One such effort involves using advanced computational fluid dynamics (CFD) codes for turbomachinery to analyze the internal fluid dynamics of low-speed fans and blowers. This year, the Kirby Company in Cleveland, Ohio, approached NASA with a request for technologies that could help them improve their vacuum cleaners. Of particular interest to Kirby is the high-frequency blade-passing noise generation of their vacuum cleaner fan at low airflow rates.

  18. Vacuum systems for the ILC helical undulator

    SciTech Connect

    Malyshev, O. B.; Scott, D. J.; Bailey, I. R.; Barber, D. P.; Baynham, E.; Bradshaw, T.; Brummitt, A.; Carr, S.; Clarke, J. A.; Cooke, P.; Dainton, J. B.; Ivanyushenkov, Y.; Malysheva, L. I.; Moortgat-Pick, G. A.; Rochford, J.; Department of Physics, University of Liverpool Oxford St. Liverpool L69 7ZE; Cockcroft Institute, Warrington WA4 4AD

    2007-07-15

    The International Linear Collider (ILC) positron source uses a helical undulator to generate polarized photons of {approx}10 MeV at the first harmonic. Unlike many undulators used in synchrotron radiation sources, the ILC helical undulator vacuum chamber will be bombarded by photons, generated by the undulator, with energies mostly below that of the first harmonic. Achieving the vacuum specification of {approx}100 nTorr in a narrow chamber of 4-6 mm inner diameter, with a long length of 100-200 m, makes the design of the vacuum system challenging. This article describes the vacuum specifications and calculations of the flux and energy of photons irradiating the undulator vacuum chamber and considers possible vacuum system design solutions for two cases: cryogenic and room temperature.

  19. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  20. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  1. Stability of reference masses: VII. Cleaning methods in air and vacuum applied to a platinum mass standard similar to the international and national kilogram prototypes

    NASA Astrophysics Data System (ADS)

    Cumpson, Peter J.; Sano, Naoko; Barlow, Anders J.; Portoles, Jose F.

    2013-10-01

    Mercury contamination and the build-up of carbonaceous contamination are two contributing factors to the instability observed in kilogram prototype masses. The kilogram prototypes that lie at the core of the dissemination of the SI base unit were manufactured in the late 19th century, and have polished surfaces. In papers IV and V of this series we developed a method for cleaning noble metal mass standards in air to remove carbonaceous contamination. At the core of this ‘UVOPS’ protocol is the application of UV light and ozone gas generated in situ in air. The precise nature of the carbonaceous contamination that builds up on such surfaces is difficult to mimic demonstrably or quickly on new test surfaces, yet data from such tests are needed to provide the final confidence to allow UVOPS to be applied to a real 19th century kilogram prototype. Therefore, in the present work we have applied the UVOPS method to clean a platinum avoirdupois pound mass standard, ‘RS2’, manufactured in the mid-19th century. This is thought to have been polished in a similar manner to the kilogram prototypes. To our knowledge this platinum surface has not previously been cleaned by any method. We used x-ray photoelectron spectroscopy to identify organic contamination, and weighing to quantify the mass lost at each application of the UVOPS procedure. The UVOPS procedure is shown to be very effective. It is likely that the redefinition of the kilogram will require mass comparisons in vacuum in the years to come. Therefore, in addition to UVOPS a cleaning method for use in vacuum will also be needed. We introduce and evaluate gas cluster ion-beam (GCIB) treatment as a potential method for cleaning reference masses in vacuum. Again, application of this GCIB cleaning to a real artefact, RS2, allows us to make a realistic evaluation of its performance. While it has some attractive features, we cannot recommend it for cleaning mass standards in its present form.

  2. The RHIC vacuum systems

    NASA Astrophysics Data System (ADS)

    Burns, R.; Hseuh, H. C.; Lee, R. C.; McIntyre, G.; Pate, D.; Smart, L.; Sondericker, J.; Weiss, D.; Welch, K.

    2003-03-01

    There are three vacuum systems in RHIC: the insulating vacuum vessels housing the superconducting magnets, the cold beam tubes surrounded by the superconducting magnets, and the warm beam tube sections at the insertion regions and the experimental regions. These systems have a cumulative length over 10 km and a total volume over 3000 m 3. Conventional ultrahigh vacuum technology was used in the design and construction of the cold and warm beam vacuum systems with great success. The long and large insulating vacuum volumes without vacuum barriers require careful management of the welding and leak checking of the numerous helium line joints. There are about 1500 vacuum gauges and pumps serial-linked to eight PLCs distributed around RHIC, which allow the monitoring and control of these devices through Ethernet networks to remote control consoles. With the exception of helium leaks through the cryogenic valve boxes into the insulating vacuum volumes, the RHIC vacuum systems have performed well beyond expectations.

  3. ULTRA HIGH VACUUM VALVE

    DOEpatents

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  4. Image Understanding, 14th Workshop

    NASA Astrophysics Data System (ADS)

    Baumann, L. S.

    1983-06-01

    Technical and annual progress reports of principal investigators of image understanding are presented. Topics covered include: surface constraint from linear entents; computing visual correspondance; smoothing optical flow fields; viewframes; a connectionist model of form perception; use of difference fields in processing sensor motion; a facet approach to optic flow; special purpose automatic programming for 3-d model-based vision; MAPS: organization of a spatial data base system using imagery, terrain, and map data; segment-based stereo matching; software metrics for performance analysis of parallel hardware; scene analysis algorithms; and robot vehicles.

  5. Genotyping Yersinia pestis in Historical Plague: Evidence for Long-Term Persistence of Y. pestis in Europe from the 14th to the 17th Century

    PubMed Central

    Seifert, Lisa; Wiechmann, Ingrid; Harbeck, Michaela; Thomas, Astrid; Grupe, Gisela; Projahn, Michaela; Scholz, Holger C.; Riehm, Julia M.

    2016-01-01

    Ancient DNA (aDNA) recovered from plague victims of the second plague pandemic (14th to 17th century), excavated from two different burial sites in Germany, and spanning a time period of more than 300 years, was characterized using single nucleotide polymorphism (SNP) analysis. Of 30 tested skeletons 8 were positive for Yersinia pestis-specific nucleic acid, as determined by qPCR targeting the pla gene. In one individual (MP-19-II), the pla copy number in DNA extracted from tooth pulp was as high as 700 gene copies/μl, indicating severe generalized infection. All positive individuals were identical in all 16 SNP positions, separating phylogenetic branches within nodes N07_N10 (14 SNPs), N07_N08 (SNP s19) and N06_N07 (s545), and were highly similar to previously investigated plague victims from other European countries. Thus, beside the assumed continuous reintroduction of Y. pestis from central Asia in multiple waves during the second pandemic, long-term persistence of Y. pestis in Europe in a yet unknown reservoir host has also to be considered. PMID:26760973

  6. Initial deployment of the 14th Parachutist Forward Surgical Team at the beginning of the operation Sangaris in Central African Republic.

    PubMed

    Malgras, Brice; Barbier, Olivier; Pasquier, Pierre; Petit, Ludovic; Polycarpe, Aristide; Rigal, Sylvain; Pons, Francois

    2015-05-01

    As part of the operation Sangaris begun in December 2013 in the Central African Republic, the 14th Parachutist Forward Surgical Team (FST) was deployed to support French troops. The FST (role 2 in the NATO classification) is a mobile surgical-medical treatment facility. The main goal of the FST is to assure the initial damage control surgery and resuscitation for combat casualties, allowing for the early evacuation to combat support hospitals (roles 3 or 4), where further treatments are completed. During the first trimester of the operation Sangaris, 42 patients were treated at FST, of whom 29 underwent surgery. Almost 50% of patients operated on were French servicemen. All admissions were emergency admissions. Orthopedic surgery represented two-thirds of surgical interventions executed as a result of the high proportion of limb injuries. Fifty percent of injuries were specifically linked to combat. Surgery in an FST is primarily dedicated to the treatment of combat casualties with hemorrhagic injuries, but additionally plays a part in supporting general medical care of French troops. Medical aid to the general civilian population is justifiable because of the presence of medical treatment facilities, even in the initial implementation of a military operation. PMID:25939107

  7. Diffuse gamma rays with energies greater than 1 x 10 to the 14th eV observed in the Southern Hemisphere

    SciTech Connect

    Suga, K.; Toyoda, Y.; Kamata, K.; Murakami, K.; Lapointe, M.

    1988-03-01

    The data of extensive air showers with a low content of muons and hadrons, observed in the period 1964-1966 at Mount Chacaltaya in Bolivia, have been reanalyzed. Arrival directions of those showers selected so as to favor small initiation depths in the atmosphere (to enhance the contribution from gamma-ray-initiated showers) reveal a 3.8 sigma peak above an expected background from the region of alpha = 180-210 deg in the band of delta = 0 to -40 deg. The integral flux of diffuse gamma-rays above 1 x 10 to the 14th eV estimated from this excess is about 6.0 x 10 to the -12th/sq cm per sec per sr. In order to explain this very high flux, the possible contribution of gamma-rays from Loop 1 as well as the inverse Compton photons produced in the 2.7 K photon background as progeny of gamma-rays from Cyg X-3-like sources. 24 references.

  8. Genotyping Yersinia pestis in Historical Plague: Evidence for Long-Term Persistence of Y. pestis in Europe from the 14th to the 17th Century.

    PubMed

    Seifert, Lisa; Wiechmann, Ingrid; Harbeck, Michaela; Thomas, Astrid; Grupe, Gisela; Projahn, Michaela; Scholz, Holger C; Riehm, Julia M

    2016-01-01

    Ancient DNA (aDNA) recovered from plague victims of the second plague pandemic (14th to 17th century), excavated from two different burial sites in Germany, and spanning a time period of more than 300 years, was characterized using single nucleotide polymorphism (SNP) analysis. Of 30 tested skeletons 8 were positive for Yersinia pestis-specific nucleic acid, as determined by qPCR targeting the pla gene. In one individual (MP-19-II), the pla copy number in DNA extracted from tooth pulp was as high as 700 gene copies/μl, indicating severe generalized infection. All positive individuals were identical in all 16 SNP positions, separating phylogenetic branches within nodes N07_N10 (14 SNPs), N07_N08 (SNP s19) and N06_N07 (s545), and were highly similar to previously investigated plague victims from other European countries. Thus, beside the assumed continuous reintroduction of Y. pestis from central Asia in multiple waves during the second pandemic, long-term persistence of Y. pestis in Europe in a yet unknown reservoir host has also to be considered. PMID:26760973

  9. Employment and Disability: Trends and Issues for the 1990's. A Report on the 14th Mary E. Switzer Memorial Seminar (Washington, D.C., May 7-9, 1990).

    ERIC Educational Resources Information Center

    Perlman, Leonard G., Ed.; Hansen, Carl E., Ed.

    This report on the 14th Mary E. Switzer Memorial Seminar addresses trends and prospects for employment of persons with disabilities. The monograph begins with an introduction by Leonard G. Perlman and Carl E. Hansen, a foreword by Richard S. Materson, a list of seminar sponsors and Switzer scholars, a statement on the legacy of Mary Elizabeth…

  10. Environmental Education, The Last Measure of Man. An Anthology of Papers for the Consideration of the 14th and 15th Conference of the U.S. National Commission for UNESCO.

    ERIC Educational Resources Information Center

    Kohn, Raymond F.

    An anthology of papers for consideration by delegates to the 14th and 15th conferences of the United States National Commission for UNESCO are presented in this book. As a wide-ranging collection of ideas, it is intended to serve as background materials for the conference theme - our responsibility for preserving and defending a human environment…

  11. Optimizing process vacuum condensers

    SciTech Connect

    Lines, J.R.; Tice, D.W.

    1997-09-01

    Vacuum condensers play a critical role in supporting vacuum processing operations. Although they may appear similar to atmospheric units, vacuum condensers have their own special designs, considerations and installation needs. By adding vacuum condensers, precondensers and intercondensers, system cost efficiency can be optimized. Vacuum-condensing systems permit reclamation of high-value product by use of a precondenser, or reduce operating costs with intercondensers. A precondenser placed between the vacuum vessel and ejector system will recover valuable process vapors and reduce vapor load to an ejector system--minimizing the system`s capital and operating costs. Similarly, an intercondenser positioned between ejector stages can condense motive steam and process vapors and reduce vapor load to downstream ejectors as well as lower capital and operating costs. The paper describes vacuum condenser systems, types of vacuum condensers, shellside condensing, tubeside condensing, noncondensable gases, precondenser pressure drop, system interdependency, equipment installation, and equipment layout.

  12. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  13. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  14. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  15. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    SciTech Connect

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  16. Effects of prenatal X-irradiation on the 14th-18th days of gestation on postnatal growth and development in the rat

    SciTech Connect

    Jensh, R.P.; Brent, R.L.

    1988-11-01

    Thirty-nine pregnant adult Wistar strain rats were randomly assigned to one of three exposure groups: 0, 0.75, or 1.50 Gy X-radiation total exposure. Animals were exposed from the 14th to the 18th days of gestation at 0, 0.15, or 0.30 Gy per day. At term, 15 rats were killed and morphologic analyses were completed. Twenty-four rats were allowed to deliver their offspring. On the first day of postnatal life, litters were reduced to a maximum of eight pups per litter, with equal numbers of male and female offspring wherever possible. A total of 187 pups were observed for the age of acquisition of five reflexes (air righting, surface righting, visual placing, negative geotaxis, auditory startle) and the appearance of four physiologic markers (pinna detachment, eye opening, vaginal opening, testes descent). There was significant dose-related weight reduction in term fetuses and offspring throughout the 86-day postnatal period. Postnatal growth rate (g gained/day) was unaffected. Adult offspring brain and gonadal weight and organ weight:body weight ratios were reduced. Using the PAC50 methodology, dose-related alterations occurred in the acquisition of several reflexes. All physiologic markers exhibited a dose-related delay in appearance. These results indicate that fractionated exposure to X-radiation during the fetal period in the rat results in dose-dependent alterations in postnatal growth and physiologic development. These studies are important for our understanding of the long-range effects of prenatal exposure to ionizing radiation late in gestation.

  17. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  18. Vacuum leak detector

    NASA Technical Reports Server (NTRS)

    Kazokas, G. P. (Inventor)

    1975-01-01

    A leak detector for use with high vacuum seals as used in feedthroughs and hatch covers for manned spacecraft and vacuum systems is described. Two thermistors are used, one exposed directly to vacuum and the other exposed to a secondary chamber formed by the seal being monitored and a second auxiliary seal. Leakage into the secondary chamber causes an unbalance of an electrical bridge circuit in which the thermistors are connected.

  19. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  20. NSLS II Vacuum System

    SciTech Connect

    Ferreira, M.; Doom, L.; Hseuh, H.; Longo, C.; Settepani, P.; Wilson, K.; Hu, J.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning and mounting the chambers are given.

  1. High vacuum facility for hydrazine thruster testing

    NASA Technical Reports Server (NTRS)

    Neary, Patrick F.

    1990-01-01

    An ongoing modification is described of a large vacuum chamber to accommodate the ignition of an arcjet hydrazine thruster while maintaining a vacuum level of 1 x 10(exp -5) torr or less. The vacuum facility consists of a 20 ft stainless steel vacuum tank with an internal LN2 shroud, four 35 in. cryopumps and an 8 in. turbopump. To maintain a vacuum level of 1 x 10(exp -5) torr or less, 900 sq ft of liquid helium (LHe) shroud surface was installed to maintain the vacuum level and pumping requirements. A vacuum level of 1 x 10(exp -5) torr or less will allow the hydrazine thrust to exit the thruster nozzle and radiate into a space type environment so that the plume flow field can be analyzed and compared to the analytical model density distribution profile. Some other arcjet thruster characteristics measured are the electromagnetic interference (EMI) and exhaust contamination. This data is used to evaluate if the arcjet thruster with its high specific impulse in comparison to current chemical propulsion thruster can be used for the next generation of communication satellites.

  2. A more perfect vacuum. [behind contamination protecting wake shield in low orbit spacecraft

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1987-01-01

    Design and operational features, problems and benefits of a Space Ultravacuum Research Facility (SURF), a wake shield, are discussed. SURF is primarily targeted at providing vacuums exceeding 10 to the -14th torr for performing materials processing experiments and, eventually, commercial-scale production. The materials to be processed would be at the apex of a convex shield, with the quality of vacuum limited mainly by the backscattering toward the wake surface of atmospheric molecules which have collided with molecules leaving the SURF surface. A stainless steel skin on the SURF, cured in orbit, is proposed as a means to minimize the molecules outgassed from the surface. Applications of SURF could include coating mirrors or other optical equipment, containerless melting and solidification of materials, and ultrapurification processing.

  3. Working in a Vacuum

    ERIC Educational Resources Information Center

    Rathey, Allen

    2005-01-01

    In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)…

  4. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  5. DEVELOPMENTS AT FOURTEENTH INTERNATIONAL CONFERENCE ON WATER POLLUTION RESEARCH - BRIGHTON, ENGLAND, JULY 17-22, 1988

    EPA Science Inventory

    The purpose of this report is to provide a mechanism whereby current water research developments from around the world as reported at the 14th International Conference on Water Pollution Research of the International Association on Water Pollution Research and Control can be high...

  6. 75 FR 8190 - Art Advisory Panel of the Commissioner of Internal Revenue Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    .... FOR FURTHER INFORMATION CONTACT: Joseph E. Bothwell, C:AP:P&V:ART, 1099 14th Street, NW., Room 4200E... Internal Revenue Service Art Advisory Panel of the Commissioner of Internal Revenue Service AGENCY... Art Advisory Panel. SUMMARY: It is in the public interest to continue the existence of the...

  7. Historical flood data series of Eastern Spanish Coast (14th-20th centuries). Improving identification of climatic patterns and human factors of flood events from primary documentary sources

    NASA Astrophysics Data System (ADS)

    Alberola, Armando; Barriendos, Mariano; Gil-Guirado, Salvador; Pérez-Morales, Alfredo; Balasch, Carles; Castelltort, Xavier; Mazón, Jordi; Pino, David; Lluís Ruiz-Bellet, Josep; Tuset, Jordi

    2016-04-01

    Historical flood data series of Eastern Spanish Coast (14th-20th centuries). Improving identification of climatic patterns and human factors of flood events from primary documentary sources Armando Alberola, Barriendos, M., Gil-Guirado, S., Pérez Morales, A., Balasch, C., Castelltort, X., Mazón, J., Pino, D., Ruiz-Bellet, J.L., Tuset, J. Historical flood events in eastern spanish coast have been studied by different research groups and projects. Complexity of flood processes, involving atmospheric, surface and human factors, is not easily understandable when long time series are required. Present analysis from PREDIFLOOD Project Consortium defines a new step of flood event databases: Improved access to primary (documentary) and secondary (bibliographical) sources, data collection for all possible locations where floods are detected, and improved system of classification (Barriendos et al., 2014). A first analysis is applied to 8 selected flood series. Long chronologies from PREDIFLOOD Project for Catalonia region (Girona, Barcelona, Tarragona, Lleida, Tortosa). In addition, to cover all sector of spanish mediterranean coast, we introduce Valencia city in Turia River basin. South Eastern sector is cover with Murcia and Caravaca cities, Segura River basin. Extension of area under study required contributions of research teams experienced in work of documentary primary sources (Alberola, 2006; Gil-Guirado, 2013). Flood frequency analysis for long scale periods show natural climatic oscillations into so-called Little Ice Age. There are general patterns, affecting most of basins, but also some local anomalies or singularities. To explain these differences and analogies it is not enough to use purely climatic factors. In this way, we analyze human factors that have been able to influence the variability of floods along last 6 centuries (demography, hydraulic infrastructures, urban development...). This approach improves strongly understanding of mechanisms producing

  8. Housing protects laser in vacuum

    NASA Technical Reports Server (NTRS)

    Canali, V. G.

    1978-01-01

    Airtight housing encloses laser for easy alinement and operation in high-vacuum chamber. Beam is transmitted through window into vacuum chamber. Flexible line runs through vacuum chamber to outside, maintaining laser enclosure at atmospheric pressure.

  9. Vacuum deposition system

    SciTech Connect

    Austin, S.; Bark, D.

    1990-05-31

    The Physics Section vacuum deposition system is available for several types of thin film techniques. This vacuum evaporation system operates in the high vacuum range. The evaporation source is a resistive heating element, either a boat or a filament design. Coating is then line of sight from the source. Substrates to be coated can have a maximum diameter of 17 inches. At this time the variations in the thickness of the coatings can be controlled, by monitor, to within about 100 angstroms. The system diagrams follow the Operation Procedures and the Sample Coating Procedures provided in this document. 3 figs.

  10. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2000-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  11. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2001-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  12. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  13. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  14. Welding space vacuum technology

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1991-01-01

    The objective was to assist the EH 42 Division in putting together a vacuum system that could attain the desired pressure and be large enough to accommodate the gas-metal arc (GMA) welding fixture apparatus. A major accomplishment was the design and fabrication of the controller/annunciator for the 4' by 8' system. It contains many safety features such as thermocouple set point relays that will only allow inlet and exit gas and vacuum valves to be operated at pre-selected system pressures, and a fail safe mode for power interruptions and operator mistakes. It is felt that significant progress was made in this research effort to weld in a vacuum environment. With continued efforts to increase the pump speeds for vacuum chambers and further studies on weld fixtures and gas inlet pressures, the NASA program will be successful.

  15. TFTR diagnostic vacuum controller

    SciTech Connect

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  16. Metal vapor vacuum arc switching - Applications and results. [for launchers

    NASA Technical Reports Server (NTRS)

    Cope, D.; Mongeau, P.

    1984-01-01

    The design of metal-vapor vacuum-arc switches (MVSs) for electromagnetic launchers is discussed, and preliminary results are presented for an experimental MVS. The general principles of triggered-vacuum-gap and vacuum-interrupter MVSs are reviewed, and the requirements of electromagnetic launchers are analyzed. High-current design problems such as electrode erosion, current sharing, magnetic effects, and thermal effects are examined. The experimental MVS employs stainless-steel flanges, a glass vacuum vessel, an adjustable electrode gap, autonomous internal magnetic-field coils, and a tungsten-pin trigger assembly. Some results from tests without magnetic augmentation are presented graphically.

  17. Students Speak With Vacuum Chamber Project Manager Mary Cerimele

    NASA Video Gallery

    From the International Space Station Flight Control Room at NASA's Johnson Space Center, Vacuum Chamber A Project Manager Mary Cerimele participates in a Digital Learning Network (DLN) event with s...

  18. ISABELLE vacuum systems

    SciTech Connect

    Halama, H J

    1980-01-01

    The Intersecting Storage Accelerator (ISABELLE) consists of two rings having a circumference of 3.8 km each. In these rings superconducting magnets, held at 4 K, bend and focus the proton beam which is accelerated up to 400 GeV. Due to very different pressure requirements, ISABELLE has two completely independent vacuum systems. One, which operates at 1 x 10/sup -11/ Torr, provides a very clean environment for the circulating proton beam. Here only ion and titanium sublimation pumps are used to provide the vacuum. The other system maintains superconducting magnet vessels at a pressure below 1 x 10/sup -4/ Torr, since at this pressure the gas conduction becomes negligible. In this so-called insulating vacuum system, turbomolecular pumps pump the inadvertent small helium leaks. Other gases are cryocondensed on the cold surfaces of the cryogenic system. The basic element of ISABELLE known as Full Cell containing 45 meters of beam tube, 8 pumping stations, 8 superconducting magnets and complete instrumentation has been constructed, leak checked and tested. All design parameters have been achieved in both vacuum systems. The two vacuum systems are described with particular emphasis on the influence of superconducting magnets in the selection of materials and UHV components.

  19. Standard of Calibration for Vacuum Gauges by Direct Comparison with Reference Gauge

    NASA Astrophysics Data System (ADS)

    Akimichi, Hitoshi

    Standards of calibration for vacuum gauges by direct comparison with reference gauge were described. Japanese standard, JIS Z 8750 (Methods of calibration for vacuum gauges), was established in 1962. International standard, ISO/TS 3567 (Vacuum gauges—Calibration by direct comparison with a reference gauge) was established in 2005.

  20. Transient Astronomical Events as Inspiration Sources of Medieval Art. III: the 13th and 14th Centuries, and the case of the French "Ordre de L'Étoile"

    NASA Astrophysics Data System (ADS)

    Bònoli, F.; Incerti, M.; Polcaro, V. F.

    2015-05-01

    Going ahead in our long-term project of analysis of the role of transient astronomical events as inspirational sources of medieval art, we extend our interest towards the 13th and 14th centuries, epochs of strong changes either in society, art or science. It is our aim to verify if the relationship we found in the 11th century between the number of artworks where a star is represented, and astonishing transient astronomical events was, in this new situation, still valid. Moreover, in order to check the influence of astronomical events on the 14th-century social and cultural environment, we focus on the case of the Ordre de l'Étoile, a chivalrous society founded by John II of France (Jan le Bon, roi de France) at the end of 1351, looking in ancient chronicles for some relevant contemporary astronomical event as an inspiration source for the "star" in the Order's name, in the garb of its knights and in its motto.

  1. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  2. PREFACE: 15th International Conference on Thin Films (ICTF-15)

    NASA Astrophysics Data System (ADS)

    Takai, Osamu; Saito, Nagahiro; Zettsu, Nobuyuki; Cho, Sung-Pyo; Terashima, Chiaki; Ueno, Tomonaga; Sakai, Osamu; Miyazaki, Seiichi; Yoshimura, Kazuki; Akamatsu, Kensuke; Ito, Takahiro; Yogo, Toshinobu; Inoue, Yasushi; Ohtake, Naoto; Yoshida, Tsukasa; Tosa, Masahiro; Takai, Madoka; Fujiwara, Yasufumi; Matsuda, Naoki; Teshima, Katsuya; Seki, Takahiro; Matsunaga, Katsuyuki; Fujita, Daisuke

    2013-03-01

    The International Conference on Thin Films is the most established conference for all researchers and persons interested in thin films and coatings. It is one of the tri-annual conference series endorsed and co-organized by the Thin Film Division of the International Union for Vacuum Science, Technique and Applications (IUVSTA), a union of national member societies whose role is to stimulate international collaboration in the fields of vacuum science, techniques and applications and related multi-disciplinary topics including solid-vacuum and other interfaces. The 15th International Conference on Thin Films (ICTF-15) is organized by The Vacuum Society of Japan (VSJ) and held at Kyoto TERRSA in Kyoto, Japan on 8-11 November 2011, following the 14th International Conference on Thin Films (ICTF-14), which was held in Ghent, Belgium in 2008. Thin films and coatings are daily becoming increasingly important in the fields of various industries. This International Conference provides a multi-disciplinary forum for recent advances in basic research, development and applications of thin films and coatings. This conference will present a unique opportunity for researchers, engineers and managers to acquire new knowledge of thin films and coatings. We hope that our understanding on thin films and coatings will be deepened through this conference. The conference site, 'Kyoto TERRSA' is located in the historical heart of the old capital Kyoto. Kyoto is an ancient city with a 1200-year history. It was established as Japan's capital under the name 'Heian-kyo' in the year 794. Although many transformations have taken place over the years, Kyoto has always embraced the most advanced standards of the times. It has greatly contributed to the nation's industrial, economic and cultural development. The dauntless spirit of leadership of Kyoto's past as a capital city is still felt here today. Kyoto also preserves the beloved examples of its culture as testimonials of time. This is shown

  3. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  4. VACUUM SEALING MEANS FOR LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-12

    S>A vacuum seal is designed in which the surface tension of a thin layer of liquid metal of low vapor pressure cooperates with adjacent surfaces to preclude passages of gases across pressure differentials as low as 10/sup -8/ mm Hg. Mating contiguous surfaces composed of copper, brass, stainless steel, nickel, molybdenum, tungsten, tantalum, glass, quartz, and/or synthetic mica are disposed to provide a maximum tolerance, D, expressed by 2 gamma /P/sub 1/, where gamma is the coefflcient of the surface tension of the metal sealant selected in dynes/cm/sub 2/. Means for heating the surfaces remotely is provided where temperatures drop below about 250 deg C. A sealant consisting of an alloy of gallium, indium, and tin, among other combinations tabulated, is disposed therebetween after treating the surfaces to improve wettability, as by ultrasonic vibrations, the surfaces and sealants being selected according to the anticipated experimental conditions of use. (AEC)

  5. SXLS Phase 2 vacuum system

    SciTech Connect

    Schuchman, J.C.; Chou, T.S.; Halama, H.; Hsieh, H.; Kim, T.; Pjerov, S.; Staicu, F.

    1991-01-01

    Phase 1 of the SXLS (Superconducting X-Ray Lithography Source) is described. It is a room temperature, racetrack-shaped electron storage ring, 8.5 meters in circumference. The Phase 2 design consists of replacing the two room temperature 180{degree} dipole magnets of Phase 1 with superconducting magnets. However, even though superconducting magnets are used, the vacuum chambers within them will operate at room temperature. The chambers are constructed as weldments and are made of INCONEL-625. They are bakeable to 150{degrees}C in-situ and incorporate nine photon beam ports. Each have built-in distributed sputter-ion pumps (DIP), non-evaporable getter (NEG) pumps, beam position monitors, and ion clearing electrodes. R D is underway to optimize the DIP, which much operate at 3.86 Tesla, and to develop a low photo yield coating or treatment for the internal surfaces of the chambers.

  6. Langmuir vacuum and superconductivity

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.

    2012-06-01

    It is shown that, in the "jelly" model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  7. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  8. Vacuum ultraviolet holography

    NASA Technical Reports Server (NTRS)

    Bjorklund, G. C.; Harris, S. E.; Young, J. F.

    1974-01-01

    We report the first demonstration of holographic techniques in the vacuum ultraviolet spectral region. Holograms were produced with coherent 1182-A radiation. The holograms were recorded in polymethyl methacrylate and examined with an electron microscope. A holographic grating with a fringe spacing of 386 A was produced and far-field Fraunhofer holograms of submicron particles were recorded.

  9. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  10. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  11. Vacuum ultraviolet holography

    NASA Technical Reports Server (NTRS)

    Bjorklund, G. C.; Harris, S. E.; Young, J. F.

    1974-01-01

    The authors report the first demonstration of holographic techniques in the vacuum ultraviolet spectral region. Holograms were produced with coherent 1182 A radiation. The holograms were recorded in polymethyl methacrylate and read out with an electron microscope. A holographic grating with a fringe spacing of 836 A was produced and far-field Fraunhofer holograms of sub-micron particles were recorded.

  12. Various unique vacuum holders

    SciTech Connect

    Gregar, J.S.

    1992-12-01

    Glassblowers use vacuum holding devices to support a flat plate in the glassflowing lathe to seal onto the end of, or inside of, a glass cylinder. Glassblowing blowhose swivels tend to leak; a rotating union from the hydraulics industry is better. Various graphite holder designs are described.

  13. Vacuum Kundt waves

    NASA Astrophysics Data System (ADS)

    McNutt, David; Milson, Robert; Coley, Alan

    2013-03-01

    We discuss the invariant classification of vacuum Kundt waves using the Cartan-Karlhede algorithm and determine the upper bound on the number of iterations of the Karlhede algorithm to classify the vacuum Kundt waves (Collins (1991 Class. Quantum Grav. 8 1859-69), Machado Ramos (1996 Class. Quantum Grav. 13 1589)). By choosing a particular coordinate system we partially construct the canonical coframe used in the classification to study the functional dependence of the invariants arising at each iteration of the algorithm. We provide a new upper bound, q ⩽ 4, and show that this bound is sharp by analyzing the subclass of Kundt waves with invariant count beginning with (0, 1,…) to show that the class with invariant count (0, 1, 3, 4, 4) exists. This class of vacuum Kundt waves is shown to be unique as the only set of metrics requiring the fourth covariant derivatives of the curvature. We conclude with an invariant classification of the vacuum Kundt waves using a suite of invariants.

  14. Tara vacuum system

    SciTech Connect

    Post, R.S.; Brindza, P.; Goodrich, P.; Gaudreau, M.P.

    1985-11-01

    The Tara tandem mirror experiment vacuum system will be discussed including system design, specifications, and performance required for plug thermal barrier operation. A detailed description of the major pumpig systems, reflux control, plasma pumping, measurement and control, fast gas handling and quality control procedures will be presented. Data from the two 5 month periods of operation will be presented.

  15. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…

  16. Tritium handling in vacuum systems

    SciTech Connect

    Gill, J.T.; Coffin, D.O.

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  17. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  18. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  19. Insertion device vacuum system designs

    SciTech Connect

    Hoyer, E.

    1988-05-01

    Synchrotron light source insertion device vacuum systems now in operation and systems proposed for the future are reviewed. An overview of insertion devices is given and four generic vacuum chamber designs, transition section design and pumping considerations are discussed. Examples of vacuum chamber systems are presented.

  20. Portable vacuum object handling device

    DOEpatents

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  1. Surge-damping vacuum valve

    DOEpatents

    Bullock, Jack C.; Kelly, Benjamin E.

    1980-01-01

    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  2. Solar heated vacuum flask

    SciTech Connect

    Posnansky, M.

    1980-04-08

    The wall of a protective jacket of a vacuum flask, containing a double-walled vessel whose walls are permeable to solar radiation , includes parts capable of being swung open. These parts and a wall part situated between them each have a reflective coating. The reflective surfaces of these coatings, viewed in crosssection, extend along a parabola when the movable wall parts are opened out, so that incident solar radiation is collected in the core zone of the vessel. A solar-radiation absorbing member may be disposed in this core zone, E.G., a metal tube having a black outer surface. Liquid contents of such a vacuum flask can be heated by means of solar energy.

  3. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  4. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  6. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  7. Vacuum tool manipulator

    DOEpatents

    Zollinger, William T.

    1993-01-01

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm.

  8. An automated vacuum system

    SciTech Connect

    Atkins, W.H. ); Vaughn, G.D. ); Bridgman, C. )

    1991-01-01

    Software tools available with the Ground Test Accelerator (GTA) control system provide the capability to express a control problem as a finite state machine. System states and transitions are expressed in terms of accelerator parameters and actions are taken based on state transitions. This is particularly useful for sequencing operations which are modal in nature or are unwieldy when implemented with conventional programming. State diagrams are automatically translated into code which is executed by the control system. These tools have been applied to the vacuum system for the GTA accelerator to implement automatic sequencing of operations. With a single request, the operator may initiate a complete pump-down sequence. He can monitor the progress and is notified if an anomaly occurs requiring intervention. The operator is not required to have detailed knowledge of the vacuum system and is protected from taking inappropriate actions. 1 ref., 6 figs.

  9. Can vacuum energy gravitate?

    NASA Astrophysics Data System (ADS)

    Prasad Datta, Dhurjati

    1995-03-01

    In this essay we discuss an interesting recent development in semiclassical gravity. Using an improved Born-Oppenheimer approximation, the semiclassical reduction of the Wheeler-DeWitt equation turns out to give important insights into the nature and the level of validity of the semi-classical Einstein equations (SCEE). Back reactions from the quantized matter fields in SCEE are shown to be completely determined by adiabatically induced geometricU(N) gauge potentials. The finite energy from the vacuum polarization, in particular, is found to be intimately related to the ‘magnetic’ type geometric gauge potential. As a result the vacuum energy in a universe emerging from a ‘source-free’ flat simply-connected superspace is gauge equivalent to zero, leading to some dramatic consequences.

  10. Integrated structure vacuum tube

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  11. Vacuum tool manipulator

    DOEpatents

    Zollinger, W.T.

    1993-11-23

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm. 6 figures.

  12. The LHC Vacuum System

    NASA Astrophysics Data System (ADS)

    Gröbner, O.

    1997-05-01

    The Large Hadron Collider (LHC) at CERN, involves two proton storage rings with colliding beams of 7 TeV. The machine will be housed in the existing LEP tunnel and requires 16 m long superconducting bending magnets. The vacuum chamber will be the inner wall of the cryostat and hence at the temperature of the magnet cold bore, i.e. at 1.9 K and therefore a very good cryo-pump. To reduce the cryogenic power consumption, the heat load from synchrotron radiation and from the image currents in the vacuum chamber will be absorbed on a 'beam screen', which operates between 5 and 20 K, inserted in the magnet cold bore. The design pressure necessary for operation must provide a lifetime of many days and a stringent requirement comes from the power deposition in the superconducting magnet coils due to protons scattered on the residual gas which could lead to a magnet quench. Cryo-pumping of gas on the cold surfaces provides the necessary low gas densities but it must be ensured that the vapour pressure of cryo-sorbed molecules, of which H2 and He would be the most critical species, remains within acceptable limits. The room temperature sections of the LHC, specifically in the experiments, the vacuum must be stable against ion induced desorption and ISR-type 'pressure bumps'.

  13. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  14. Polymers in a Vacuum

    SciTech Connect

    Deutsch, J. M.

    2007-12-07

    In a variety of situations, isolated polymer molecules are found in a vacuum, and here we examine their properties. Angular momentum conservation is shown to significantly alter the average size of a chain and its conservation is only broken slowly by thermal radiation. For an ideal chain, the time autocorrelation for monomer position oscillates with a period proportional to chain length. The oscillations and damping are analyzed in detail. Short-range repulsive interactions suppress oscillations and speed up relaxation, but stretched chains still show damped oscillatory correlations.

  15. R&D ERL: Vacuum

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  16. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  17. MOLECULAR VACUUM PUMP

    DOEpatents

    Eckberg, E.E.

    1960-09-27

    A multiple molecular vacuum pump capable of producing a vacuum of the order of 10/sup -9/ mm Hg is described. The pump comprises a casing of an aggregate of paired and matched cylindrical plates, a recessed portion on one face of each plate concentrically positioned formed by a radially extending wall and matching the similarly recessed portion of its twin plate of that pair of plates and for all paired and matched plates; a plurality of grooves formed in the radially extending walls of each and all recesses progressing in a spiral manner from their respective starting points out at the periphery of the recess inwardly to the central area; a plurality of rotors rotatably mounted to closely occupy the spaces as presented by the paired and matched recesses between all paired plates; a hollowed drive-shaft perforated at points adjacent to the termini of all spiral grooves; inlet ports at the starting points of all grooves and through all plates at common points to each respectively; and a common outlet passage presented by the hollow portion of the perforated hollowed drive-shaft of the molecular pump. (AEC)

  18. Portable vacuum object handling device

    DOEpatents

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  19. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  20. Low partial discharge vacuum feedthrough

    NASA Technical Reports Server (NTRS)

    Benham, J. W.; Peck, S. R.

    1979-01-01

    Relatively discharge free vacuum feedthrough uses silver-plated copper conductor jacketed by carbon filled silicon semiconductor to reduce concentrated electric fields and minimize occurrence of partial discharge.

  1. Vacuum vessel for the tandem Mirror Fusion Test Facility

    SciTech Connect

    Gerich, J.W.

    1986-03-10

    In 1980, the US Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32,000-tonne concrete-shielding vault with the 2850-tonne vacuum vessel system. To maintain a vacuum of 2 x 10/sup -8/ torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200-m/sup 3/ internal volume) has been fabricated and erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system.

  2. Control Dewar Secondary Vacuum Container

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-10-04

    This engineering note provides background information regarding the control dewar secondary vacuum container. The secondary vacuum container has it's origin with the CDP control dewar design. The name secondary vacuum container replaced the CDP term 'Watt can' which was named after Bob Watt (SLAC), a PAC/DOE review committee member who participated in a review of CDP and recommended a secondary vacuum enclosure. One of the most fragile parts of the control dewar design is the ceramic electrical feed throughs located in the secondary vacuum container. The secondary vacuum container is provided to guard against potential leaks in these ceramic insulating feed throughs. The secondary vacuum container has a pumping line separate from the main solenoid/control dewar insulating vacuum. This pumping line is connected to the inlet of the turbo pump for initial pumpdown. Under normal operation the container is isolated. Should a feedthrough develop a small leak, alternate pumping arrangements for the secondary vacuum container could be arranged. The pressure in the secondary vacuum container should be kept in a range that the breakdown voltage is kept at a maximum. The breakdown voltage is known to be a function of pressure and is described by a Paschen curve. I cannot find a copy of the curve at this time, but from what I remember, the breakdown voltage is a minimum somewhere around 10-3 torr. Ideally the pressure in the secondary vacuum can should be kept very low, around 10 E-6 or 10 E-7 torr for maximum breakdown voltage. If however a leak developed and this was not possible, then one could operate at a pressure higher than the minima point.

  3. THERMOCOUPLE VACUUM GAUGE

    DOEpatents

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  4. Duality and the vacuum

    NASA Astrophysics Data System (ADS)

    Allen, Theodore J.

    1993-04-01

    We examine the issue of duality both in electrodynamics and in Kalb-Ramond scalar axion systems. In D space-time dimensions the dual abelian theories of ( p -1)- and ( D - p - 1)-form potentials have vacua classified by the dimensions of the cohomology spaces Hp - 1(( D - 1) M) or HD - p -( (D - 1)M) , respectively. The vacua are characterized by topological charges which are expectation values for generalized "Wilson loop" operators around non-trivial cycles. In certain instances the vacua exhibit a theta angle parametrization much as in QCD. The relation of axionic hair and discrete gauge hair is analyzed in the topologically massive Kalb-Ramond theory. If there are no fundamental strings in the theory, axionic charge is replaced by an irrelevant vacuum angle.

  5. Pseudoredundant vacuum energy

    SciTech Connect

    Batra, Puneet; Hinterbichler, Kurt; Hui, Lam; Kabat, Daniel

    2008-08-15

    We discuss models that can account for today's dark energy. The underlying cosmological constant may be Planck scale but starts as a redundant coupling which can be eliminated by a field redefinition. The observed vacuum energy arises when the redundancy is explicitly broken, say by a nonminimal coupling to curvature. We give a recipe for constructing models, including R+1/R-type models, that realize this mechanism and satisfy all solar system constraints on gravity. A similar model, based on Gauss-Bonnet gravity, provides a technically natural explanation for dark energy and exhibits an interesting seesaw behavior: a large underlying cosmological constant gives rise to both low- and high-curvature solutions. Such models could be statistically favored in the string landscape.

  6. 14th Annual ALS Users' Association meeting

    SciTech Connect

    Robinson, Art

    2001-11-29

    Sponsored by the Users' Executive Committee (UEC) and spread over three days from October 15-17, the fourteen annual ALS Users' Association Meeting featured an exceptional program with science as the main theme. While the first day was reserved for the traditional facility and Washington reports and for science highlights, the following two days, devoted to several workshops covering topics from theory to detectors, new experimental facilities, and forefront science, were strong draws. As a result, it should not be surprising that the number of registered attendees jumped to a record level of 352, more than 100 above the typical attendance in recent years. The successful commissioning of the long-awaited superconducting bend magnets, or superbends, in the ALS storage-ring lattice just before the meeting opened also helped stimulate interest.

  7. Abdominal intrauterine vacuum aspiration.

    PubMed

    Tjalma, W A A

    2014-01-01

    Evaluating and "cleaning" of the uterine cavity is probably the most performed operation in women. It is done for several reasons: abortion, evaluation of irregular bleeding in premenopausal period, and postmenopausal bleeding. Abortion is undoubtedly the number one procedure with more than 44 million pregnancies terminated every year. This procedure should not be underestimated and a careful preoperative evaluation is needed. Ideally a sensitive pregnancy test should be done together with an ultrasound in order to confirm a uterine pregnancy, excluding extra-uterine pregnancy, and to detect genital and/or uterine malformations. Three out of four abortions are performed by surgical methods. Surgical methods include a sharp, blunt, and suction curettage. Suction curettage or vacuum aspiration is the preferred method. Despite the fact that it is a relative safe procedure with major complications in less than one percent of cases, it is still responsible for 13% of all maternal deaths. All the figures have not declined in the last decade. Trauma, perforation, and bleeding are a danger triage. When there is a perforation, a laparoscopy should be performed immediately, in order to detect intra-abdominal lacerations and bleeding. The bleeding should be stopped as soon as possible in order to not destabilize the patient. When there is a perforation in the uterus, this "entrance" can be used to perform the curettage. This is particularly useful if there is trauma of the isthmus and uterine wall, and it is difficult to identify the uterine canal. A curettage is a frequent performed procedure, which should not be underestimated. If there is a perforation in the uterus, then this opening can safely be used for vacuum aspiration. PMID:25134300

  8. Vacuum system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1994-03-01

    This report presents a review of vacuum system operating experiences from particle accelerator, fusion experiment, space simulation chamber, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of vacuum system component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with vacuum systems are discussed, including personnel safety, foreign material intrusion, and factors relevant to vacuum systems being the primary confinement boundary for tritium and activated dusts. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  9. Design of a variable-conductance vacuum insulation

    SciTech Connect

    Benson, D K; Potter, T F; Tracy, C E

    1994-01-01

    This paper describes one approach to the design of a variable-conductance vacuum insulation. In this design, the vacuum insulation consists of a permanently sealed, thin sheet steel, evacuated envelope of whatever geometry is required for the application. The steel envelope is supported internally against the atmospheric pressure loads by an array of discrete, low-conductance, ceramic supports, and radiative heat transfer is blocked by layers of thin metal radiation shields. Thermal conductance through this insulation is controlled electronically by changing the temperature of a small metal hydride connected to the vacuum envelope. The hydride reversibly absorbs/desorbs hydrogen to produce a hydrogen pressure typically within the range from less than 10{sup {minus}6} to as much as 1 torr. Design calculations are compared with results from laboratory tests of bench scale samples, and some possible automotive applications for this variable-conductance vacuum insulation are suggested.

  10. Application of porcelain enamel as an ultra-high-vacuum-compatible electrical insulator

    SciTech Connect

    Biscardi, C.; Hseuh, H.; Mapes, M.

    2000-07-01

    Many accelerator vacuum system components require electrical insulation internal to the vacuum system. Some accelerator components at Brookhaven National Laboratory are installed in ultra-high-vacuum systems which require the insulation to have excellent vacuum characteristics, be radiation resistant, and be able to withstand high temperatures when used on baked systems. Porcelain enamel satisfies all these requirements. This article describes the process and application of coating metal parts with porcelain enamel to provide electrical insulation. The mechanical and vacuum testing of Marman flanges coated with porcelain and using metal Helicoflex seals to form a zero-length electrical break are detailed. The use of porcelain enameled parts is attractive since it can be done quickly, is inexpensive and environmentally safe, and most of all satisfies stringent vacuum system requirements. (c) 2000 American Vacuum Society.

  11. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  12. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  13. Vacuum Ampoule Isolates Corrosive Materials

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Debnam, W. J.; Taylor, R.

    1983-01-01

    Quartz vacuum ampoule confines corrosive sample wafer between two quartz plugs inserted in quartz tube. One quartz plug is window for measuring sample thermodynamic properties while laser pulse entering other quartz plug heats sample to molten state. Confinement of sample in vacuum prevents contamination of measurement system by hot corrosive vapors and any interference by preferential evaporation of melt.

  14. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  15. Quantum vacuum, inertia and gravitation

    NASA Astrophysics Data System (ADS)

    Jaekel, Marc-Thierry; Lambrecht, Astrid; Reynaud, Serge

    2002-11-01

    Since the early developments of quantum theory, vacuum has been recognized to be filled with irreducible zero-point field fluctuations. The corresponding very large energy density, as predicted by quantum theory, conflicts however, with observation of gravitational phenomena on macroscopic scales, a paradox also associated with the cosmological constant problem. This vacuum catastrophe has led to the common view that vacuum fluctuations should not be taken into account as a source of inertia or gravitation. Vacuum fluctuations however, produce observable mechanical effects, like Casimir forces, which are now accurately measured and agree with theoretical predictions. Vacuum fluctuations can also be shown, within the standard framework of quantum theory, to induce effects on motion in vacuum, and to lead to a contribution of Casimir energy to inertia, in conformity with the principles of relativity. Here, we advocate that paradoxes which emerge in an acute way when confronting quantum and relativity theories should rather be considered as positive hints, as they allow to raise questions about relativity of motion in quantum vacuum amenable to experimental confrontation, and also to reconsider the role of vacuum with respect to gravitation.

  16. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  17. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  18. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  19. Cosmology with decaying vacuum energy

    SciTech Connect

    Freese, K.; Adams, F.; Frieman, J.; Mottola, E.

    1987-09-01

    Motivated by recent attempts to solve the cosmological constant problem, we examine the observational consequences of a vacuum energy density which decays in time. For all times later than t approx. 1 sec, the ratio of the vacuum to the total energy density of the universe must be small. Although the vacuum cannot provide the ''missing mass'' required to close the universe today, its presence earlier in the history of the universe could have important consequences. We discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, the microwave and gamma ray background spectra, and galaxy formation. A small vacuum component at the era of nucleosynthesis, 0.01 < rho/sub vac//rho/sup rad/ < 0.1, increase the number of allowed neutino species to N/sup nu/ > 5, but in some cases would severely distort the microwave spectrum. 9 refs., 3 figs.

  20. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  1. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  2. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  3. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  4. Hydrodynamics of spacetime and vacuum viscosity

    NASA Astrophysics Data System (ADS)

    Eling, Christopher

    2008-11-01

    It has recently been shown that the Einstein equation can be derived by demanding a non-equilibrium entropy balance law dS = δQ/T+diS hold for all local acceleration horizons through each point in spacetime. The entropy change dS is proportional to the change in horizon area while δQ and T are the energy flux across the horizon and Unruh temperature seen by an accelerating observer just inside the horizon. The internal entropy production term diS is proportional to the squared shear of the horizon and the ratio of the proportionality constant to the area entropy density is hbar/4π. Here we will show that this derivation can be reformulated in the language of hydrodynamics. We postulate that the vacuum thermal state in the Rindler wedge of spacetime obeys the holographic principle. Hydrodynamic perturbations of this state exist and are manifested in the dynamics of a stretched horizon fluid at the horizon boundary. Using the equations of hydrodynamics we derive the entropy balance law and show the Einstein equation is a consequence of vacuum hydrodynamics. This result implies that hbar/4π is the shear viscosity to entropy density ratio of the local vacuum thermal state. The value hbar/4π has attracted much attention as the shear viscosity to entropy density ratio for all gauge theories with an Einstein gravity dual. It has also been conjectured as the universal lower bound on the ratio. We argue that our picture of the vacuum thermal state is consistent with the physics of the gauge/gravity dualities and then consider possible applications to open questions.

  5. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  6. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  7. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  8. NCSX Vacuum Vessel Fabrication

    SciTech Connect

    Viola, M. E.; Brown, T.; Heitzenroeder, P.; Malinowski, F.; Reiersen, W.; Sutton, L.; Goranson, P.; Nelson, B.; Cole, M.; Manuel, M.; McCorkle, D.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120º vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1" of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120º vessel segments are formed by welding two 60º segments together. Each 60º segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8" (20.3 cm) wide spacer "spool pieces." The vessel must have a total leak rate less than 5 X 10-6 t-l/s, magnetic permeability less than 1.02μ, and its contours must be within 0.188" (4.76 mm). It is scheduled for completion in January 2006.

  9. Vacuum energy and cosmological evolution

    NASA Astrophysics Data System (ADS)

    Solà, Joan

    2014-07-01

    An expanding universe is not expected to have a static vacuum energy density. The so-called cosmological constant Λ should be an approximation, certainly a good one for a fraction of a Hubble time, but it is most likely a temporary description of a true dynamical vacuum energy variable that is evolving from the inflationary epoch to the present day. We can compare the evolving vacuum energy with a Casimir device where the parallel plates slowly move apart ("expand"). The total vacuum energy density cannot be measured, only the effect associated to the presence of the plates, and then also their increasing separation with time. In the universe there is a nonvanishing spacetime curvature R as compared to Minkowskian spacetime that is changing with the expansion. The vacuum energy density must change accordingly, and we naturally expect δΛ˜R˜H2. A class of dynamical vacuum models that trace such rate of change can be constructed. They are compatible with the current cosmological data, and conveniently extended can account for the complete cosmic evolution from the inflationary epoch till the present days. These models are very close to the ΛCDM model for the late universe, but very different from it at the early times. Traces of the inherent vacuum dynamics could be detectable in our recent past.

  10. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  11. Vacuum type D initial data

    NASA Astrophysics Data System (ADS)

    García-Parrado Gómez-Lobo, Alfonso

    2016-09-01

    A vacuum type D initial data set is a vacuum initial data set of the Einstein field equations whose data development contains a region where the space–time is of Petrov type D. In this paper we give a systematic characterisation of a vacuum type D initial data set. By systematic we mean that the only quantities involved are those appearing in the vacuum constraints, namely the first fundamental form (Riemannian metric) and the second fundamental form. Our characterisation is a set of conditions consisting of the vacuum constraints and some additional differential equations for the first and second fundamental forms These conditions can be regarded as a system of partial differential equations on a Riemannian manifold and the solutions of the system contain all possible regular vacuum type D initial data sets. As an application we particularise our conditions for the case of vacuum data whose data development is a subset of the Kerr solution. This has applications in the formulation of the nonlinear stability problem of the Kerr black hole.

  12. Vacuum applications of metal foams

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1980-01-01

    Several vacuum applications of copper foams in the density range 2-5% and pore sizes of 0.5-0.7 mm are discussed, such as a foreline hydrocarbon trap in a mechanical vacuum pump, a molecular-flow resistor, a diffuser, and a water injector. Other suggested applications include the use of foam copper in the form of an externally heated plug to remove traces of oxygen from inert gases bled into a vacuum system through a stainless steel line and the use of the porous surface for minimizing release of secondary electrons from electrodes in the path of charged particle beams.

  13. HESYRL storage ring vacuum system

    SciTech Connect

    Li, G.; Pang, Y.; Wang, Y.; Zhou, H.; Zhang, Z.; Jiang, D.; Xu, B.; Xu, S.

    1988-09-30

    The Storage Ring Vacuum System of the Synchrotron Radiation source project of HESYRL (Hefei Synchrotron Radiation Laboratory) in USTC, Hefei, Anhui, China, will be completed this year. Since the designed beam current of the 800 MeV electron storage ring is 300 mA, synchrotron radiation and hence high photon stimulated degassing will occur in the vacuum chamber. In order to get the stored beam lifetime of several hours, the pressure must be maintained at 10/sup -8/ approx.10/sup -9/ Torr. The gas desorption from synchrotron radiation and thermal outgas has been calculated. The UHV system of the storage ring and vacuum pretreatment methods are described in this paper.

  14. Three stage vacuum system for ultralow temperature installation

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.

  15. Motion of a mirror under infinitely fluctuating quantum vacuum stress

    NASA Astrophysics Data System (ADS)

    Wang, Qingdi; Unruh, William G.

    2014-04-01

    The actual value of the quantum vacuum energy density is generally regarded as irrelevant in nongravitational physics. However, this paper presents a nongravitational system where this value does have physical significance. The system is a mirror with an internal degree of freedom that interacts with a scalar field. We find that the force exerted on the mirror by the field vacuum undergoes wild fluctuations with a magnitude proportional to the value of the vacuum energy density, which is mathematically infinite. This infinite fluctuating force gives infinite instantaneous acceleration of the mirror. We show that this infinite fluctuating force and infinite instantaneous acceleration make sense because they will not result in infinite fluctuation of the mirror's position. On the contrary, the mirror's fluctuating motion will be confined in a small region due to two special properties of the quantum vacuum: (1) the vacuum friction that resists the mirror's motion and (2) the strong anticorrelation of vacuum fluctuations that constantly changes the direction of the mirror's infinite instantaneous acceleration and thus cancels the effect of infinities to make the fluctuation of the mirror's position finite.

  16. Covariant Electrodynamics in Vacuum

    NASA Astrophysics Data System (ADS)

    Wilhelm, H. E.

    1990-05-01

    The generalized Galilei covariant Maxwell equations and their EM field transformations are applied to the vacuum electrodynamics of a charged particle moving with an arbitrary velocity v in an inertial frame with EM carrier (ether) of velocity w. In accordance with the Galilean relativity principle, all velocities have absolute meaning (relative to the ether frame with isotropic light propagation), and the relative velocity of two bodies is defined by the linear relation uG = v1 - v2. It is shown that the electric equipotential surfaces of a charged particle are compressed in the direction parallel to its relative velocity v - w (mechanism for physical length contraction of bodies). The magnetic field H(r, t) excited in the ether by a charge e moving uniformly with velocity v is related to its electric field E(r, t) by the equation H=ɛ0(v - w)xE/[ 1 +w • (t>- w)/c20], which shows that (i) a magnetic field is excited only if the charge moves relative to the ether, and (ii) the magnetic field is weak if v - w is not comparable to the velocity of light c0 . It is remarkable that a charged particle can excite EM shock waves in the ether if |i> - w > c0. This condition is realizable for anti-parallel charge and ether velocities if |v-w| > c0- | w|, i.e., even if |v| is subluminal. The possibility of this Cerenkov effect in the ether is discussed for terrestrial and galactic situations

  17. Ultrarapid vacuum-microwave histoprocessing.

    PubMed

    Kok, L P; Boon, M E

    1995-05-01

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at relatively low temperatures during each of the steps from dehydration, clearing, and impregnation. In this vacuum-microwave method, an extremely short time suffices for the preparation of optimal-quality paraffin blocks. No xylene (but isopropanol instead) was used as the intermediate solvent. Thirty biopsies (thickness 2-4 mm) can be processed in 40 min. In addition, this approach can be used to produce large sections of giant blocks (4 x 6 x 1 cm3) which can be easily cut on a routine microtome due to the optimal paraffin impregnation. These giant blocks do not shrink during this vacuum-microwave histoprocessing. PMID:7657560

  18. Space-age vacuum cleaning

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1978-01-01

    Varied concepts for brushes and air handling remove dirt more effectively. Vacuum-cleaning techniques may be used in combination. Many of these concepts, while not appropriate for household cleaning, may find use in industry, research, and medicine.

  19. Vacuum system pump down analysis

    SciTech Connect

    Rohrdanz, D.R.

    1990-08-01

    My assignment on the SP-100 Vacuum Vessel Vacuum System Team was to perform a transient pump down analysis for the vacuum vessel that will house the SP-100 reactor during testing. Pump down time was calculated for air and helium. For all cases the proposed vacuum system will be able to pump down the vessel within the required time. The use of a larger rotary piston pump (DUO250) improves the pump down time by 35 minutes and therefore should be considered. The 6-inch duct for the roughing line is optimal, however, because all cases are well below the 24 hour time frame, the 4-inch duct is sufficient. The use of the single turbomolecular pump during pump down is sufficient. A pump down with helium in the vessel and a helium inleakage delays the time to achieve the base pressure marginally and is acceptable.

  20. [Endoscopic vacuum-assisted closure].

    PubMed

    Wedemeyer, J; Lankisch, T

    2013-03-01

    Anastomotic leakage in the upper and lower intestinal tract is associated with high morbidity and mortality. Within the last 10 years endoscopic treatment options have been accepted as sufficient treatment option of these surgical complications. Endoscopic vacuum assisted closure (E-VAC) is a new innovative endoscopic therapeutic option in this field. E-VAC transfers the positive effects of vacuum assisted closure (VAC) on infected cutaneous wounds to infected cavities that can only be reached endoscopically. A sponge connected to a drainage tube is endoscopically placed in the leakage and a continuous vacuum is applied. Sponge and vacuum allow removal of infected fluids and promote granulation of the leakage. This results in clean wound grounds and finally allows wound closure. Meanwhile the method was also successfully used in the treatment of necrotic pancreatitis. PMID:23430199

  1. IRIS Leaves Thermal Vacuum Chamber

    NASA Video Gallery

    This video shows the transportation of the IRIS observatory from the thermal vacuum chamber back to the clean tent for final testing and preparations for delivery to the launch site at Vandenberg A...

  2. Vacuum lamination of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1982-01-01

    Vacuum lamination of terrestrial photovoltaic modules is a new high volume process requiring new equipment and newly develop materials. Equipment development, materials research, and some research in related fields and testing methods are discussed.

  3. Vacuum measurements of the K500 cyclotron accelerator chamber

    SciTech Connect

    Mallory, M.L.; Miller, P.S.; Kuchar, J.; Hudson, E.D.

    1986-01-01

    To evaluate the effectiveness of the unique internal cryopumping system, the pressure in the K500 superconducting cyclotron was measured as a function of radius for various gas flow rates emanating from the internal PIG source. For the test, a nude ion gauge with vertical dimension less than 2.3 cm was built and mounted on the internal beam probe. The effect of magnetic field on the ion gauge reading was determined and a method of degaussing the cyclotron was devised. Data from the normal shielded ion gauge located approximately 6 m away from the median plane was correlated with the internal vacuum measurements.

  4. Approximating Fluid Flow from Ambient to Very Low Pressures: Modeling ISS Experiments that Vent to Vacuum

    NASA Technical Reports Server (NTRS)

    Minor, Robert

    2002-01-01

    Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.

  5. Technical specification for vacuum systems

    SciTech Connect

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)

  6. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  7. Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories

    SciTech Connect

    Casey,R.; Haas, E.; Hseuh, H-C.; Kane, S.; Lessard, E.; Sharma, S.; Collins, J.; Toter, W. F.; Olis, D. R.; Pushka, D. R.; Ladd, P.; Jobe, R. K.

    2008-09-09

    Vacuum vessels, including evacuated chambers and insulated jacketed dewars, can pose a potential hazard to equipment and personnel from collapse, rupture due to back-fill pressurization, or implosion due to vacuum window failure. It is therefore important to design and operate vacuum systems in accordance with applicable and sound engineering principles. 10 CFR 851 defines requirements for pressure systems that also apply to vacuum vessels subject to back-fill pressurization. Such vacuum vessels are potentially subject to the requirements of the American Society of Mechanical Engineers (ASME) Pressure Vessel Code Section VIII (hereafter referred to as the 'Code'). However, the scope of the Code excludes vessels with internal or external operating pressure that do not exceed 15 pounds per square inch gauge (psig). Therefore, the requirements of the Code do not apply to vacuum systems provided that adequate pressure relief assures that the maximum internal pressure within the vacuum vessel is limited to less than 15 psig from all credible pressure sources, including failure scenarios. Vacuum vessels that cannot be protected from pressurization exceeding 15 psig are subject to the requirements of the Code. 10 CFR 851, Appendix A, Part 4, Pressure Safety, Section C addresses vacuum system requirements for such cases as follows: (c) When national consensus codes are not applicable (because of pressure range, vessel geometry, use of special materials, etc.), contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local code. Measures must include the following: (1) Design drawings, sketches, and calculations must be reviewed and approved by a qualified independent design professional (i.e., professional engineer). Documented organizational peer review is acceptable. (2) Qualified personnel must be used to perform examinations and

  8. Vacuum-Gauge Connection For Shipping Container

    NASA Technical Reports Server (NTRS)

    Henry, Robert H.

    1990-01-01

    External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.

  9. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  10. Reduce costs with vacuum excavation

    SciTech Connect

    Vitale, S.A.

    1983-09-01

    Although vacuum excavation equipment and methods are in their infancy, this developing technology offers tremendous promise for the future. The author explains Brooklyn Union Gas Co.'s experience with five vacuum trucks and the procedures that are used. In recent years, the higher cost of natural gas has increased the need for gas utilities to reduce their operating expenses. One way, which has been successful at Brooklyn Union Gas, is the use of vacuum excavation. Although vacuum excavation equipment and techniques are in their infancy, this developing technology offers substantial savings today and tremendous promise for the future. Brooklyn Union started its vacuum digging program by locating keyhole cutoffs--small surface openings ranging from 1 ft by 1 ft to 1 1/2 ft by 1 1/2 ft (0.3 m to 0.45 m square). It is no easy task to accurately locate a service that was installed 60 years ago. Reading the street indications, locating an existing curb valve or repair opening, gaining access to the building, making a physical lineup, and using an M-scope, plus any other tools available, have produced a high success rate.

  11. Vacuum Refining of Molten Silicon

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Tangstad, Merete

    2012-12-01

    Metallurgical fundamentals for vacuum refining of molten silicon and the behavior of different impurities in this process are studied. A novel mass transfer model for the removal of volatile impurities from silicon in vacuum induction refining is developed. The boundary conditions for vacuum refining system—the equilibrium partial pressures of the dissolved elements and their actual partial pressures under vacuum—are determined through thermodynamic and kinetic approaches. It is indicated that the vacuum removal kinetics of the impurities is different, and it is controlled by one, two, or all the three subsequent reaction mechanisms—mass transfer in a melt boundary layer, chemical evaporation on the melt surface, and mass transfer in the gas phase. Vacuum refining experimental results of this study and literature data are used to study the model validation. The model provides reliable results and shows correlation with the experimental data for many volatile elements. Kinetics of phosphorus removal, which is an important impurity in the production of solar grade silicon, is properly predicted by the model, and it is observed that phosphorus elimination from silicon is significantly increased with increasing process temperature.

  12. VACUUM TRAP AND VALVE COMBINATION

    DOEpatents

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  13. Predicted thermal performance of triple vacuum glazing

    SciTech Connect

    Fang, Yueping; Hyde, Trevor J.; Hewitt, Neil

    2010-12-15

    The simulated triple vacuum glazing (TVG) consists of three 4 mm thick glass panes with two vacuum gaps, with each internal glass surface coated with a low-emittance coating with an emittance of 0.03. The two vacuum gaps are sealed by an indium based sealant and separated by a stainless steel pillar array with a height of 0.12 mm and a pillar diameter of 0.3 mm spaced at 25 mm. The thermal transmission at the centre-of-glazing area of the TVG was predicted to be 0.26 W m{sup -2} K{sup -1}. The simulation results show that although the thermal conductivity of solder glass (1 W m{sup -1} K{sup -1}) and indium (83.7 W m{sup -1} K{sup -1}) are very different, the difference in thermal transmission of TVGs resulting from the use of an indium and a solder glass edge seal was 0.01 W m{sup -2} K{sup -1}. This is because the edge seal is so thin (0.12 mm), consequently there is a negligible temperature drop across it irrespective of the material that the seal is made from relative to the total temperature difference across the glazing. The results also show that there is a relatively large increase in the overall thermal conductance of glazings without a frame when the width of the indium edge seal is increased. Increasing the rebate depth in a solid wood frame decreased the heat transmission of the TVG. The overall heat transmission of the simulated 0.5 m by 0.5 m TVG was 32.6% greater than that of the 1 m by 1 m TVG, since heat conduction through the edge seal of the small glazing has a larger contribution to the total glazing heat transfer than that of the larger glazing system. (author)

  14. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  15. D-Zero Vacuum System

    SciTech Connect

    Wintercorn, S.J.; /Fermilab

    1986-04-07

    The system pumping speed was calculated by taking the reciprocal of the sum of the reciprocal pump speed and the reciprocal line conductances. The conductances of the pipe were calculated from the following formulas taken from the Varian vacuum manual. This report updates the original to reflect the pumping curves and basic vacuum system characteristics for the purchased components and installed piping of the D-Zero vacuum system. The system consists of two Edward's E2M275 two stage mechanical pumps, a Leybold-Heraeus WSU2000 Blower and three Varian 4' diffusion pumps (one for each cryostat). Individual pump and system pumping speed curves and a diagram of the system is included.

  16. RF cavity vacuum interlock system

    NASA Astrophysics Data System (ADS)

    Jordan, K.; Crawford, K.; Bundy, R.; Dylla, H. F.; Heckman, J.; Marshall, J.; Nichols, R.; Osullivan, S.; Preble, J.; Robb, J.

    1992-03-01

    The Continuous Electron Beam Accelerator Facility (CEBAF), a continuous wave (CW) 4 GeV Electron Accelerator is undergoing construction in Newport News, Virginia. When completed in 1994, the accelerator will be the largest installation of radio-frequency superconductivity. Production of cryomodules, the fundamental building block of the machine, has started. A cryomodule consists of four sets of pairs of 1497 MHz, 5 cell niobium cavities contained in separate helium vessels and mounted in a cryostat with appropriate end caps for helium supply and return. Beam vacuum of the cavities, the connecting beam piping, the waveguides, and the cryostat insulating vacuum are crucial to the performance of the machine. The design and initial experience of the vacuum systems for the first 2 1/4 cryomodules that makeup the 45 MEV injector are discussed.

  17. Microscale Digital Vacuum Electronic Gates

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.

  18. Silicon crystal growth in vacuum

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.

    1982-01-01

    The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.

  19. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  20. Method for vacuum fusion bonding

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  1. Vacuum powered heat exchanger

    SciTech Connect

    Ruffolo, R.F.

    1986-06-24

    In an internal combustion engine including an oil lubrication system, a liquid cooling system, and an improved air intake system is described. The improved air intake system comprises: a housing including a first opening in one end, which opening is open to the atmosphere and a second opening comprising an air outlet opening in the other end open to the air intake manifold of the engine, a heat exchanger positioned in the first opening. The heat exchanger consists of a series of coils positioned in the flow path of the atmospheric air as it enters the housing, the heat exchanger being fluidly connected to either the engine lubrication system or the cooling system to provide a warm heat source for the incoming air to the housing, acceleration means positioned in the housing downstream of the heat exchanger, the acceleration means comprising a honeycomb structure positioned across the air intake flow path. The honey-comb structure includes a multitude of honey combed mini-venturi cells through which the heated air flows in an accelerated mode, a removable air filter positioned between the heat exchanger and the acceleration means and a single opening provided in the housing through which the air filter can be passed and removed, and additional openings in the housing positioned downstream of the heat exchanger and upstream of the air filter, the additional openings including removable flaps for opening and closing the openings to control the temperature of the air flowing through the housing.

  2. LTC vacuum blasting machine (concrete): Baseline report

    SciTech Connect

    1997-07-31

    The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration.

  3. Environmental Testing in Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Inside a thermal vacuum at Lockheed Martin Space Systems, Denver, technicians prepare NASA's Phoenix Mars Lander for environmental testing.

    The Phoenix lander was encapsulated in its aeroshell -- which included both the back shell and heat shield -- as it was subjected to extreme cold and heat in a vacuum, space-like condition. The spacecraft undergoes extensive environmental testing to confirm Phoenix will perform in the extreme conditions it will experience during its trip from Earth to Mars, during its arrival and landing, and while it works on the surface of Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  4. Vacuum compatible miniature CCD camera head

    DOEpatents

    Conder, Alan D.

    2000-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close(0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  5. Phoenix Lowered into Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander was lowered into a thermal vacuum chamber at Lockheed Martin Space Systems, Denver, in December 2006.

    The spacecraft was folded in its aeroshell and underwent environmental testing that simulated the extreme conditions the spacecraft will see during its nine-and-a-half-month cruse to Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  6. Vacuum compatible miniature CCD camera head

    SciTech Connect

    Conder, A.D.

    2000-06-20

    A charge-coupled device (CCD) camera head is disclosed which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close (0.04 inches for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military, industrial, and medical imaging applications.

  7. Quantum Vacuum Structure and Cosmology

    SciTech Connect

    Rafelski, Johann; Labun, Lance; Hadad, Yaron; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2011-12-05

    Contemporary physics faces three great riddles that lie at the intersection of quantum theory, particle physics and cosmology. They are: (1) The expansion of the universe is accelerating - an extra factor of two appears in the size; (2) Zero-point fluctuations do not gravitate - a matter of 120 orders of magnitude; and (3) The 'True' quantum vacuum state does not gravitate. The latter two are explicitly problems related to the interpretation and the physical role and relation of the quantum vacuum with and in general relativity. Their resolution may require a major advance in our formulation and understanding of a common unified approach to quantum physics and gravity. To achieve this goal we must develop an experimental basis and much of the discussion we present is devoted to this task. In the following, we examine the observations and the theory contributing to the current framework comprising these riddles. We consider an interpretation of the first riddle within the context of the universe's quantum vacuum state, and propose an experimental concept to probe the vacuum state of the universe.

  8. Degassing procedure for ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Moore, B. C.

    1979-01-01

    Calculations based on diffusion coefficients and degassing rates for stainless-steel vacuum chambers indicate that baking at lower temperatures for longer periods give lower ultimate pressures than rapid baking at high temperatures. Process could reduce pressures in chambers for particle accelerators, fusion reactors, material research, and other applications.

  9. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, Roger P.

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  10. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  11. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  12. Plates for vacuum thermal fusion

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2002-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  13. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    Dr. M.A. Ebadian

    2000-01-13

    The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process.

  14. Vacuum Head Removes Sanding Dust

    NASA Technical Reports Server (NTRS)

    Bengle, C. G.; Holt, J. W.

    1982-01-01

    Vacuum sander prevents sanding dust from entering a work area, since dust particles are drawn off as quickly as they are produced. Tool is useful where dust presents health hazards, interferes with such processes as semiconductor manufacture, or could destroy wet paint or varnish finishes. Could be used to sand such materials as lead paint.

  15. Vacuum Flushing of Sewer Solids

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  16. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    William S. McPhee

    1999-05-31

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and

  17. Vacuum polarization and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  18. Ellipsometer for measurement in ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Walter, H. U.; Weitzenkamp, L. A.; Peters, P. N.

    1976-01-01

    Ellipsometer, used with ultrahigh vacuum, allows measurement of varied angles of incidence. Vacuum chamber, directly incorporated into optical bench systems, allows varied angle measurements to be taken through same region of a window.

  19. Breakdown-Resistant RF Connectors for Vacuum

    NASA Technical Reports Server (NTRS)

    Caro, Edward R.; Bonazza, Walter J.

    1987-01-01

    Resilient inserts compensate for insulation shrinkage. Coaxial-cable connector for radio-frequency (RF) energy resists electrical breakdown in vacuum. Used on RF equipment in vacuum chambers as well as in spaceborne radar and communication gear.

  20. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  1. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  2. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  3. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  4. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  5. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  6. Utilize Vacuum Forming to Make Interdisciplinary Connections

    ERIC Educational Resources Information Center

    Love, Tyler S.; Valenza, Frank

    2011-01-01

    The concept of vacuum forming has been around since the 19th century, despite not being fully utilized in industry until the 1950s. In the past, industrial arts classes have used vacuum-forming projects to concentrate solely on the manufacturing process and the final product. However, vacuum forming is not just an old industrial arts activity; it…

  7. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  8. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  9. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  10. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  11. Drying leather with vacuum and toggling sequentially

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated a drying method that will enable leather to be dried under vacuum and stretch sequentially to improve area yield. Vacuum drying offers fast speed at a low temperature, which would be advantageous to heat-vulnerable chrome-free leather. Adding a toggle action after vacuum drying cou...

  12. A simple, high-yield, apparatus for NEG coating of vacuum beamline elements

    SciTech Connect

    Ron, Guy; Oort, Ron; Lee, Daniel

    2010-12-01

    Non-Evaporable Getter (NEG) materials are extremely useful in vacuum systems for achieving Ultra High Vacuum. Recently, these materials have been used to coat the inner surfaces of vacuum components, acting as an internal, passive, vacuum pump. We have constructed a low cost apparatus, which allows coating of very small diameter vacuum tubes, used as differential pumping stages. Despite the relative ease of construction, we are routinely able to achieve high coating yields. We further describe an improvement to our system, which is able to achieve the same yield, at an even lower complexity by using an easily manufactured permanent magnet arrangement. The designs described are extendible to virtually any combination of length and diameter of the components to be coated.

  13. Kinetics of scrap tyre pyrolysis under vacuum conditions

    SciTech Connect

    Lopez, Gartzen; Aguado, Roberto; Olazar, Martin Arabiourrutia, Miriam; Bilbao, Javier

    2009-10-15

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.

  14. Quantum vacuum and dark matter

    NASA Astrophysics Data System (ADS)

    Hajdukovic, Dragan Slavkov

    2012-01-01

    Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.

  15. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    William S. McPhee

    2001-08-31

    The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites.

  16. In-vacuum exposure shutter

    DOEpatents

    Johnson, Terry A.; Replogle, William C.; Bernardez, Luis J.

    2004-06-01

    An in-vacuum radiation exposure shutter device can be employed to regulate a large footprint light beam. The shutter device includes (a) a source of radiation that generates an energy beam; (2) a shutter that includes (i) a frame defining an aperture toward which the energy beam is directed and (ii) a plurality of blades that are secured to the frame; and (3) device that rotates the shutter to cause the plurality of blades to intercept or allow the energy beam to travel through the aperture. Each blade can have a substantially planar surface and the plurality of blades are secured to the frame such that the planar surfaces of the plurality of blades are substantially parallel to each other. The shutter device is particularly suited for operation in a vacuum environment and can achieve shuttering speeds from about 0.1 second to 0.001 second or faster.

  17. 22nd International Conference on Ion Beam Analysis

    NASA Astrophysics Data System (ADS)

    Radović, Iva Bogdanović; Jakšić, Milko; Fazinić, Stjepko

    2016-03-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 22nd International Conference on Ion Beam Analysis (IBA 2015). The conference was held in Grand Hotel 4 Opatijska Cvijeta in Opatija, Croatia, between 14th and 19th June 2015. Opatija, one of the Croatia's most famous touristic destinations, often called the pearl of the Adriatic, is celebrating this year 170 years of tourism. During the past, kings and emperors, writers, philosophers, poets and composers, but also scientists, used to stay in the town mainly built at the turn of the 20th century.

  18. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  19. Random numbers from vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Shi, Yicheng; Chng, Brenda; Kurtsiefer, Christian

    2016-07-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  20. The statistics of vacuum geometry

    NASA Astrophysics Data System (ADS)

    Duncan, Melissa; Gu, Wei; He, Yang-Hui; Zhou, Da

    2014-06-01

    We investigate the vacuum moduli space of supersymmetric gauge theories en masse by probing the space of such vacua from a statistical standpoint. Using quiver gauge theories with = 1 supersymmetry as a testing ground, we sample over a large number of vacua as algebraic varieties, computing explicitly their dimension, degree and Hilbert series. We study the distribution of these geometrical quantities, and also address the question of how likely it is for the moduli space to be Calabi-Yau.

  1. Cosmic vacuum and galaxy formation

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2006-04-01

    It is demonstrated that the protogalactic perturbations must enter the nonlinear regime before the red shift z≈ 1; otherwise they would be destroyed by the antigravity of the vacuum dark energy at the subsequent epoch of the vacuum domination. At the zrrV={M/[(8π/3)ρV]}1/3, where M is the mass of a given over-density and ρV is the vacuum density. The criterion provides a new relation between the largest mass condensations and their spatial scales. All the real large-scale systems follow this relation definitely. It is also shown that a simple formula is possible for the key quantity in the theory of galaxy formation, namely the initial amplitude of the perturbation of the gravitational potential in the protogalactic structures. The amplitude is time independent and given in terms of the Friedmann integrals, which are genuine physical characteristics of the cosmic energies. The results suggest that there is a strong correspondence between the global design of the Universe as a whole and the cosmic structures of various masses and spatial scales.

  2. Improved Aerogel Vacuum Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren P.; Bue, Grant C.

    2009-01-01

    An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.

  3. Vacuum pyrolysis of used tires

    SciTech Connect

    Roy, C.; Darmstadt, H.; Benallal, B.; Chaala, A.; Schwerdtfeger, A.E.

    1995-11-01

    The vacuum pyrolysis of used tires enables the recovery of useful products, such as pyrolytic oil and pyrolytic carbon black (CB{sub P}). The light part of the pyrolytic oil contains dl-limonene which has a high price on the market. The naphtha fraction can be used as a high octane number component for gasoline. The middle distillate demonstrated mechanical and lubricating properties similar to those of the commercial aromatic oil Dutrex R 729. The heavy oil was tested as a feedstock for the production of needle coke. It was found that the surface morphology of CB{sub P} produced by vacuum pyrolysis resembles that of commercial carbon black. The CB{sub P} contains a higher concentration of inorganic compounds (especially ZnO and S) than commercial carbon black. The pyrolysis process feasibility looks promising. One old tire can generate upon vacuum pyrolysis, incomes of at least $2.25 US with a potential of up to $4.83 US/tire upon further product improvement. The process has been licensed to McDermott Marketing Servicing Inc. (Houston) for its exploitation in the US.

  4. Running Jobs in the Vacuum

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Ubeda Garcia, M.

    2014-06-01

    We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously "in the vacuum" rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.

  5. Vacuum multilayer lamination of printed wiring boards

    NASA Astrophysics Data System (ADS)

    Wilkus, J. W.

    1992-11-01

    This experiment investigates vacuum multilayer lamination of rigid/flex, epoxy glass, polyimide glass, and polyimide quartz printed wiring boards. The effectiveness of the vacuum in removing entrapped air during the lamination cycle is demonstrated. The results of the experiment have also shown that vacuum lamination of epoxy glass multilayers improves the delamination resistance. Thus, epoxy glass multilayers that have been vacuum laminated will be able to withstand soldering temperatures longer without delaminating. Also, the experiment shows that vacuum multilayer lamination does not significantly change thickness, layer-to-layer registration, glass transition temperature, dielectric spacing between conductors, electrical resistance following thermal shock test, and other critical printed wiring board properties.

  6. High throughput vacuum chemical epitaxy

    NASA Astrophysics Data System (ADS)

    Fraas, L. M.; Malocsay, E.; Sundaram, V.; Baird, R. W.; Mao, B. Y.; Lee, G. Y.

    1990-10-01

    We have developed a vacuum chemical epitaxy (VCE) reactor which avoids the use of arsine and allows multiple wafers to be coated at one time. Our vacuum chemical epitaxy reactor closely resembles a molecular beam epitaxy system in that wafers are loaded into a stainless steel vacuum chamber through a load chamber. Also as in MBE, arsenic vapors are supplied as reactant by heating solid arsenic sources thereby avoiding the use of arsine. However, in our VCE reactor, a large number of wafers are coated at one time in a vacuum system by the substitution of Group III alkyl sources for the elemental metal sources traditionally used in MBE. Higher wafer throughput results because in VCE, the metal-alkyl sources for Ga, Al, and dopants can be mixed at room temperature and distributed uniformly though a large area injector to multiple substrates as a homogeneous array of mixed element molecular beams. The VCE reactor that we have built and that we shall describe here uniformly deposits films on 7 inch diameter substrate platters. Each platter contains seven two inch or three 3 inch diameter wafers. The load chamber contains up to nine platters. The vacuum chamber is equipped with two VCE growth zones and two arsenic ovens, one per growth zone. Finally, each oven has a 1 kg arsenic capacity. As of this writing, mirror smooth GaAs films have been grown at up to 4 μm/h growth rate on multiple wafers with good thickness uniformity. The background doping is p-type with a typical hole concentration and mobility of 1 × 10 16/cm 3 and 350 cm 2/V·s. This background doping level is low enough for the fabrication of MESFETs, solar cells, and photocathodes as well as other types of devices. We have fabricated MESFET devices using VCE-grown epi wafers with peak extrinsic transconductance as high as 210 mS/mm for a threshold voltage of - 3 V and a 0.6 μm gate length. We have also recently grown AlGaAs epi layers with up to 80% aluminum using TEAl as the aluminum alkyl source. The Al

  7. Loop quantization of vacuum Bianchi I cosmology

    SciTech Connect

    Martin-Benito, M.; Mena Marugan, G. A.; Pawlowski, T.

    2008-09-15

    We analyze the loop quantization of the family of vacuum Bianchi I spacetimes, a gravitational system of which classical solutions describe homogeneous anisotropic cosmologies. We rigorously construct the operator that represents the Hamiltonian constraint, showing that the states of zero volume completely decouple from the rest of quantum states. This fact ensures that the classical cosmological singularity is resolved in the quantum theory. In addition, this allows us to adopt an equivalent quantum description in terms of a well-defined densitized Hamiltonian constraint. This latter constraint can be regarded in a certain sense as a difference evolution equation in an internal time provided by one of the triad components, which is polymerically quantized. Generically, this evolution equation is a relation between the projection of the quantum states in three different sections of constant internal time. Nevertheless, around the initial singularity the equation involves only the two closest sections with the same orientation of the triad. This has a double effect: on the one hand, physical states are determined just by the data on one section, on the other hand, the evolution defined in this way never crosses the singularity, without the need of any special boundary condition. Finally, we determine the inner product and the physical Hilbert space employing group averaging techniques, and we specify a complete algebra of Dirac observables. This completes the quantization program.

  8. Rotary bayonets for cryogenic and vacuum service

    SciTech Connect

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1994-12-31

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1 1/2 inches inner pipe size, 3 inches vacuum jacket, and 4 inches inner pipe size, 6 inches vacuum jacket. The single wall vacuum service bayonets are in 4 inch and 6 inch pipe sizes. The bayonets have successfully been in active service for over one year.

  9. Rotary bayonets for cryogenic and vacuum service

    SciTech Connect

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1993-07-01

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1-1/2 in. inner pipe size, 3 in. vacuum jacket, and 4 in. inner pipe size, 6 in. vacuum jacket The single wall vacuum service bayonets are in 4 in. and 6 in. pipe sizes. The bayonets have successfully been in active service for over one year.

  10. Slat Heater Boxes for Thermal Vacuum Testing

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene

    2003-01-01

    Slat heater boxes have been invented for controlling the sink temperatures of objects under test in a thermal vacuum chamber, the walls of which are cooled to the temperature of liquid nitrogen. A slat heater box (see Figure 1) includes a framework of struts that support electrically heated slats that are coated with a high-emissivity optically gray paint. The slats can be grouped together into heater zones for the purpose of maintaining an even temperature within each side. The sink temperature of an object under test is defined as the steady-state temperature of the object in the vacuum/ radiative environment during the absence of any internal heat source or sink. The slat heater box makes it possible to closely control the radiation environment to obtain a desired sink temperature. The slat heater box is placed inside the cold thermal vacuum chamber, and the object under test is placed inside (but not in contact with) the slat heater box. The slat heaters occupy about a third of the field of view from any point on the surface of the object under test, the remainder of the field of view being occupied by the cold chamber wall. Thus, the radiation environment is established by the combined effects of the slat heater box and the cold chamber wall. Given (1) the temperature of the chamber wall, (2) the fractions of the field of view occupied by the chamber wall and the slat heater box, and (3) the emissivities of the slats, chamber wall, and the surface of object under test, the slat temperature required to maintain a desired sink temperature can be calculated by solving the equations of gray-body radiation for the steady-state adiabatic case (equal absorption and emission by the object under test). Slat heater boxes offer an important advantage over the infrared lamps that have been previously used to obtain desired sink temperatures: In comparison with an infrared lamp, a slat heater box provides a greater degree of sink temperature uniformity for a test

  11. Vacuum Energy and Inflation: 2. A Vacuum Energy Universe

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2013-10-01

    In most of our undergraduate physics courses, we study what can happen in space, but space itself plays a passive role. In basic cosmology, the opposite is true. It is the behavior of space that plays the major role. In this, paper #2, we first discuss the nature of a simple expanding space, and then look at the consequence of applying Newton's law of gravity in this space. The calculations are particularly simple if most of the energy behaves like the vacuum energy discussed earlier in paper #1. The calculation is easy but the results are spectacular.

  12. Axions and inflation: Vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Lyth, D. H.

    1992-05-01

    Cosmological consequences of the Peccei-Quinn field ψ=reiθ/ √2 are explored. It has a Mexican-hat potential W=1/4λ(r2-f2a)2. During inflation the potential may be modified so that fa has a different effective value fa1; it is assumed that r sits in the vacuum at r=fa1. After inflation the temperature is supposed to be less than fa so that r=fa, and the only degree of freedom is the axion field faθ. It has a Gaussian inhomogeneity coming from the vacuum fluctuation of θ during inflation. When the axion mass ma(T) becomes significant at T~1 GeV, θ has dispersion σθ~=(4/2π)(H1/fa1) and some mean θ¯ (in the observable Universe). The axion potential is U(θ)=(79 MeV)4(1-cosNθ), and the ensuing cosmology is determined by the three parameters fa/N, Nθ¯, and Nσθ. The entire domain of parameter space is considered, including the regime where the axion density perturbation is non-Gaussian and the regime where axionic domain walls are produced. Observational constraints on the parameters are established. At the end of the paper the additional assumption is made that during inflation the vacuum is at r=fa. Unless fa/N is near the Planck scale and axions make up only a small fraction of the dark matter, this leads to the bound V1/41<2×1015 GeV, where V1 is the energy density during inflation, at the epoch when the observable Universe leaves the horizon.

  13. Cosmological and astrophysical probes of vacuum energy

    NASA Astrophysics Data System (ADS)

    Bellazzini, Brando; Csáki, Csaba; Hubisz, Jay; Serra, Javi; Terning, John

    2016-06-01

    Vacuum energy changes during cosmological phase transitions and becomes relatively important at epochs just before phase transitions. For a viable cosmology the vacuum energy just after a phase transition must be set by the critical temperature of the next phase transition, which exposes the cosmological constant problem from a different angle. Here we propose to experimentally test the properties of vacuum energy under circumstances different from our current vacuum. One promising avenue is to consider the effect of high density phases of QCD in neutron stars. Such phases have different vacuum expectation values and a different vacuum energy from the normal phase, which can contribute an order one fraction to the mass of neutron stars. Precise observations of the mass of neutron stars can potentially yield information about the gravitational properties of vacuum energy, which can significantly affect their mass-radius relation. A more direct test of cosmic evolution of vacuum energy could be inferred from a precise observation of the primordial gravitational wave spectrum at frequencies corresponding to phase transitions. While traditional cosmology predicts steps in the spectrum determined by the number of degrees of freedom both for the QCD and electroweak phase transitions, an adjustment mechanism for vacuum energy could significantly change this. In addition, there might be other phase transitions where the effect of vacuum energy could show up as a peak in the spectrum.

  14. Extraordinary vacuum black string solutions

    SciTech Connect

    Kim, Hyeong-Chan; Lee, Jungjai

    2008-01-15

    In addition to the boosted static solution there are two other classes of stationary stringlike solutions of the vacuum Einstein equation in (4+1) dimensions. Each class is characterized by three parameters of mass, tension, and momentum flow along the fifth coordinate. We analyze the metric properties of one of the two classes, which was previously assumed to be naked singular, and show that the solution spectrum contains black string and wormhole in addition to the known naked singularity as the momentum flow to mass ratio increases. Interestingly, there does not exist new zero momentum solution in these cases.

  15. Laser-triggered vacuum switch

    DOEpatents

    Brannon, Paul J.; Cowgill, Donald F.

    1990-01-01

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.

  16. Wet/Dry Vacuum Cleaner

    NASA Technical Reports Server (NTRS)

    Reimers, Harold; Andampour, Jay; Kunitser, Craig; Thomas, Ike

    1995-01-01

    Vacuum cleaner collects and retains dust, wet debris, and liquids. Designed for housekeeping on Space Station Freedom, it functions equally well in normal Earth Gravity or in microgravity. Generates acoustic noise at comfortably low levels and includes circuitry that reduces electromagnetic interference to other electronic equipment. Draws materials into bag made of hydrophobic sheet with layers of hydrophilic super-absorbing pads at downstream end material. Hydrophilic material can gel many times its own weight of liquid. Blower also provides secondary airflow to cool its electronic components.

  17. Ultra high vacuum seal arrangement

    SciTech Connect

    Flaherty, R.

    1981-08-11

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation is claimed. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  18. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  19. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  20. Case study: Vacuuming for VOCs

    SciTech Connect

    Das, A.; Mazowiecki, C.R.

    1996-06-01

    The soil-vapor extraction system, which draws VOC-laden vapors from the subsurface, has become a popular remediation tool. The soil-vapor extraction (SVE) system, also know as {open_quotes}venting,{close_quotes} has proven to be a popular and cost-effective choice to remediate sites contaminated with volatile organic compounds (VOCs) in the vadose zone. The SVE system includes airflow in the subsurface by applying a vacuum through extraction wells. The system is described in this article, with a report on performance monitoring included.

  1. Ultra high vacuum seal arrangement

    DOEpatents

    Flaherty, Robert

    1981-01-01

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  2. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  3. Robot design for a vacuum environment

    NASA Technical Reports Server (NTRS)

    Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.

    1987-01-01

    The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.

  4. Meeting today's requirements for large thermal vacuum test facilities

    NASA Technical Reports Server (NTRS)

    Corinth, R. L.; Rouse, J. A.

    1986-01-01

    The Lockheed Thermal Vacuum Facility at Sunnyvale, California, completed in late 1986, one of the largest multi-program facilities constructed to date is described. The horizontal 12.2 m diameter by 24.4 m long chamber has removable heads at each end and houses a thermal shroud providing a test volume 10.4 m diameter by 24.4 m long. The chamber and thermal shroud are configured to permit the insertion of a 6.1 m wide by 24.4 m long vibration isolated optical bench. The pumpimg system incorporates an internal cryopumping array, turbomolecular pumps and cryopumps to handle multi-program needs and ranges of gas loads. The high vacuum system is capable of achieving clean, dry and empty pressures below 1.3 times 10 to the minus 6 power Pa (10 to the minus 8 power torr.)

  5. High separative power vacuum arc centrifuge (HSP-VAC)

    SciTech Connect

    Qi, Niansheng; Krishnan, M.

    1997-12-01

    The reliability of supply of stable isotopes needed in medicine and science has been a problem for decades. Among the many sources of enriched stable isotopes are the Calutrons at Oak Ridge National Laboratory, ICONS of Cambridge Isotopes Limited, and reactors such as at Atomic Energy of Canada Ltd. and elsewhere. Alameda Applied Sciences Corporation (AASC) staff have spearheaded the development of a new type of isotope separator, dubbed the Vacuum Arc Centrifuge (VAC). This effort dates to the 1980s under National Science Foundation sponsorship at Yale, the early 1990s under a U.S. Department of Energy grant, and more recently, under AASC internal funding. The VAC consists of a vacuum arc discharge between a metal cathode (containing the substances to be separated) and a mesh anode across a small gap.

  6. LTC American`s, Inc. vacuum blasting machine: Baseline report

    SciTech Connect

    1997-07-31

    The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing focused on two main areas of exposure: dust and noise.

  7. Hydrodynamics of the Physical Vacuum: I. Scalar Quantum Sector

    NASA Astrophysics Data System (ADS)

    Sbitnev, Valeriy I.

    2016-05-01

    Physical vacuum is a special superfluid medium. Its motion is described by the Navier-Stokes equation having two slightly modified terms that relate to internal forces. They are the pressure gradient and the dissipation force because of viscosity. The modifications are as follows: (a) the pressure gradient contains an added term describing the pressure multiplied by the entropy gradient; (b) time-averaged viscosity is zero, but its variance is not zero. Owing to these modifications, the Navier-Stokes equation can be reduced to the Schrödinger equation describing behavior of a particle into the vacuum, which looks like a superfluid medium populated by enormous amount of virtual particle-antiparticle pairs.

  8. Thin film microelectronics materials production in the vacuum of space

    NASA Astrophysics Data System (ADS)

    Ignatiev, A.; Sterling, M.; Horton, C.; Freundlich, A.; Pei, S.; Hill, R.

    1997-01-01

    The international Space Station era will open up a new dimension in the use of one of the unique attributes of space, vacuum, for the production of advanced semiconductor materials and devices for microelectronics applications. Ultra-vacuum is required for the fabrication in thin film form of high quality semiconductors. This can be accomplished behind a free flying platform similar to the current Wake Shield Facility which is specifically designed to support in-space production. The platform will require apparatus for thin film growth, a robotics interface to allow for the change out of raw materials and the harvesting of finished product, and a servicing plant incorporating Space Station that will support long-term utilization of the platform.

  9. Vacuum Processing Technique for Development of Primary Standard Blackbodies

    PubMed Central

    Navarro, M.; Bruce, S. S.; Johnson, B. Carol; Murthy, A. V.; Saunders, R. D.

    1999-01-01

    Blackbody sources with nearly unity emittance that are in equilibrium with a pure freezing metal such as gold, silver, or copper are used as primary standard sources in the International Temperature Scale of 1990 (ITS-90). Recently, a facility using radio-frequency induction heating for melting and filling the blackbody crucible with the freeze metal under vacuum conditions was developed at the National Institute of Standards and Technology (NIST). The blackbody development under a vacuum environment eliminated the possibility of contamination of the freeze metal during the process. The induction heating, compared to a resistively heated convection oven, provided faster heating of crucible and resulted in shorter turn-around time of about 7 h to manufacture a blackbody. This paper describes the new facility and its application to the development of fixed-point blackbodies.

  10. Polymer Lubricants For Use In Vacuum

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1989-01-01

    Report describes tests of lubricating properties of 10 polymer-based materials - in particular, polyimides - in vacuum. Commercially available materials, in forms of solid bodies and films on metals, were tested on pin-on-disk apparatus in vacuum. Best low-wear, low-friction material was 80 PMDA/20 BTDA solid-body polyimide. Friction and wear properties of most polyimides so good in vacuum that solid-lubricant additives not necessary.

  11. Advanced Photon Source accelerator ultrahigh vacuum guide

    SciTech Connect

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS.

  12. LCLS XTOD Tunnel Vacuum System (XVTS)

    SciTech Connect

    Beale, R; Duffy, P; Kishiyama, K; Mckernan, M; McMahon, D; Lewis, S; Trent, J; Tung, L; Shen, S

    2005-11-04

    The vacuum system of the XVTS (X-Ray Vacuum Transport System) for the LCLS (Linac Coherent Light Source) XTOD (X-ray Transport, Optics and Diagnostics) system has been analyzed and configured by the Lawrence Livermore National Laboratory's NTED (New Technologies Engineering Division) as requested by the SLAC/LCLS program. The system layout, detailed analyses and selection of the vacuum components for the XTOD tunnel section are presented in this preliminary design report. The vacuum system was analyzed and optimized using a coupled gas load balance model of sub-volumes of the components to be evacuated. Also included are the plans for procurement, mechanical integration, and the cost estimates.

  13. Test stand system for vacuum chambers

    NASA Technical Reports Server (NTRS)

    Newman, D. F. (Inventor)

    1973-01-01

    A test stand system for supporting test items in a vacuum chamber is described. The system consists of a frame adapted to conform to the inside of the vacuum chamber and supporting a central vertical shaft. The shaft rotates on bearings located at each end of the shaft. Several vertically spaced plates which fixed to the vertical shaft may be adjusted for height to support the test equipment as required. The test equipment may be rotated during tests without disturbing the vacuum by a manually actuated drive external to the vacuum chamber.

  14. Electrical Strength of Multilayer Vacuum Insulators

    SciTech Connect

    Harris, J R; Kendig, M; Poole, B; Sanders, D M; Caporaso, G J

    2008-07-01

    The electrical strength of vacuum insulators is a key constraint in the design of particle accelerators and pulsed power systems. Vacuum insulating structures assembled from alternating layers of metal and dielectric can result in improved performance compared to conventional insulators, but previous attempts to optimize their design have yielded seemingly inconsistent results. Here, we present two models for the electrical strength of these structures, one assuming failure by vacuum arcing between adjacent metal layers and the other assuming failure by vacuum surface flashover. These models predict scaling laws which are in agreement with the experimental data currently available.

  15. Attractor Explosions and Catalyzed Vacuum Decay

    SciTech Connect

    Green, Daniel; Silverstein, Eva; Starr, David

    2006-05-05

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new endpoint for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  16. Attractor explosions and catalyzed vacuum decay

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Silverstein, Eva; Starr, David

    2006-07-01

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new end point for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  17. Vacuum Technology Considerations For Mass Metrology

    PubMed Central

    Abbott, Patrick J.; Jabour, Zeina J.

    2011-01-01

    Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593

  18. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  19. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vacuum brakes shall operate in conjunction with the truck or truck tractor brake pedal. (2) Inspection procedure. (i) Check the trailer vacuum system by coupling trailer(s) to truck or truck tractor and...

  20. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    SciTech Connect

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user`s risk and may lead to rejection of the whole assembly.

  1. Solar thermal vacuum tests of Magellan spacecraft

    NASA Technical Reports Server (NTRS)

    Neuman, James C.

    1990-01-01

    The Magellen solar/thermal/vacuum test involved a number of unique requirements and approaches. Because of the need to operate in orbit around Venus, the solar intensity requirement ranged up to 2.3 suns or Earth equivalent solar constants. Extensive modification to the solar simulator portion of the test facility were required to achieve this solar intensity. Venus albedo and infrared emission were simulated using temperature controlled movable louver panels to allow the spacecraft to view either a selectable temperature black heat source with closed louvers, or the chamber coldwall behind open louvers. The test conditions included widely varying solar intensities, multiple sun angles, alternate hardware configurations, steady state and transient cases, and cruise and orbital power profiles. Margin testing was also performed, wherein supplemental heaters were mounted to internal thermal blankets to verify spacecraft performance at higher than expected temperatures. The test was successful, uncovering some spacecraft anomalies and verifying the thermal design. The test support equipment experienced some anomalous behavior and a significant failure during the test.

  2. LTC vacuum blasting machine (metal): Baseline report

    SciTech Connect

    1997-07-31

    The LTC coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC coating removal system consisted of several hand tools, a Roto Peen scaler, and a needlegun. They are designed to remove coatings from steel, concrete, brick, and wood. These hand tools are used with the LTC PTC-6 vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. The dust exposure was minimal but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  3. Flash vacuum pyrolysis of lignin model compounds

    SciTech Connect

    Cooney, M.J.; Britt, P.F.; Buchanan, A.C. III

    1997-03-01

    Despite the extensive research into the pyrolysis of lignin, the underlying chemical reactions that lead to product formation are poorly understood. Detailed mechanistic studies on the pyrolysis of biomass and lignin under conditions relevant to current process conditions could provide insight into utilizing this renewable resource for the production of chemicals and fuel. Currently, flash or fast pyrolysis is the most promising process to maximize the yields of liquid products (up to 80 wt %) from biomass by rapidly heating the substrate to moderate temperatures, typically 500{degrees}C, for short residence times, typically less than two seconds. To provide mechanistic insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds that contain a {beta}-ether. linkage and {alpha}- or {gamma}-alcohol, which are key structural elements in lignin. The dominant products from the FVP of PhCH{sub 2}CH{sub 2}OPh (PPE), PhC(OH)HCH{sub 2}OPh, and PhCH{sub 2}CH(CH{sub 2}OH)OPh at 500{degrees}C can be attributed to homolysis of the weakest bond in the molecule (C-O bond) or 1,2-elimination. Surprisingly, the hydroxy-substituent dramatically increases the decomposition of PPE. It is proposed that internal hydrogen bonding is accelerating the reaction.

  4. Gravitational correction to vacuum polarization

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.

    2015-02-01

    We consider the gravitational correction to (electronic) vacuum polarization in the presence of a gravitational background field. The Dirac propagators for the virtual fermions are modified to include the leading gravitational correction (potential term) which corresponds to a coordinate-dependent fermion mass. The mass term is assumed to be uniform over a length scale commensurate with the virtual electron-positron pair. The on-mass shell renormalization condition ensures that the gravitational correction vanishes on the mass shell of the photon, i.e., the speed of light is unaffected by the quantum field theoretical loop correction, in full agreement with the equivalence principle. Nontrivial corrections are obtained for off-shell, virtual photons. We compare our findings to other works on generalized Lorentz transformations and combined quantum-electrodynamic gravitational corrections to the speed of light which have recently appeared in the literature.

  5. Laser sealed vacuum insulation window

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  6. Laser sealed vacuum insulating window

    DOEpatents

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  7. Flux tubes in the SU(3) vacuum

    NASA Astrophysics Data System (ADS)

    Cardaci, M. S.; Cea, P.; Cosmai, L.; Falcone, R.; Papa, A.

    We analyze the distribution of the chromoelectric field generated by a static quark-antiquark pair in the SU(3) vacuum. We find that the transverse profile of the flux tube resembles the dual version of the Abrikosov vortex field distribution and give an estimate of the London penetration length in the confined vacuum.

  8. Nonperturbative vacuum and hard scattering processes

    SciTech Connect

    Sakai, N.

    1980-08-01

    A number of interesting suggestions for the QCD nonperturbative vacuum have been advocated in recent years by a group of people in Copenhagen. Some of the main ideas are briefly reviewed. An attempt to obtain the physical effects of the nonperturbative vacuum by studying hard scattering processes such as e/sup +/e/sup -/ ..-->.. hadrons is also described. 2 figures.

  9. Vacuum chamber for an undulator straight section

    SciTech Connect

    Kim, S.; Wehrle, R.; Genens, L.

    1987-01-01

    A prototype aluminum extruded vacuum chamber for an undulator straight section of the Advanced Photon Source is described. The 52.-m long vacuum system is designed so that the undulator gap variation does not interfere with it. The chamber is gripped in a stiff close toleranced mounting structure to insure dimensional tolerance of the chamber height.

  10. Elastic vacuum seal for cryogenic temperatures

    SciTech Connect

    Kolenko, E.A.

    1988-06-01

    Cold-hardened silicone rubber is proposed as a vacuum seal in units that contain materials with vastly different expansion coefficients and which operate at cryogenic temperatures. The cold vulcanization process and the polymerization catalyst used to accelerate and stabilize the process are described. Test results obtained for vacuum tightness in liquid nitrogen are assessed.

  11. TSNIIMASH's U-22 gasdynamic vacuum chamber

    NASA Astrophysics Data System (ADS)

    Anfimov, N. A.; Prochukhaev, M. V.

    1993-06-01

    The description of operating principles of the TSNIIMASH's U-22 large-scale gasdynamic vacuum chamber is presented. The chamber's key systems and their performances are described. Examples of using the gasdynamic vacuum chamber for conducting experimental research and ground testing of rockets, launch vehicles and spacecraft are given.

  12. Vacuum deposition and curing of liquid monomers

    DOEpatents

    Affinito, J.D.

    1995-03-07

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  13. Vacuum deposition and curing of liquid monomers

    DOEpatents

    Affinito, John D.

    1993-01-01

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  14. Vacuum deposition and curing of liquid monomers

    DOEpatents

    Affinito, John D.

    1995-01-01

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  15. Vacuum deposition and curing of liquid monomers

    DOEpatents

    Affinito, J.D.

    1993-11-09

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of standard polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  16. Anaerobic polymers as high vacuum leak sealants

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1982-01-01

    Anaerobic polymers are useful as solventless leak sealants with good vacuum properties at moderate temperatures. Loctite 290 can seal leaks in a range generally encountered in carefully constructed ultrahigh vacuum and high vacuum systems. It was found that small leaks are sealed best under vacuum, whereas large leaks should be sealed at atmospheric pressure. The high-temperature behavior of Loctite 290 is limited by its fast cure, which prevents deep penetration into small leaks; cracking eventually occurs at the entrance to the leak. Repeated thermal cycling to about 300 C is possible, however, provided viscosity, curing time, and leak size are properly matched to ensure penetration into the body of the leak. This may require special formulations for high temperature vacuum applications.

  17. Maxwell electrodynamics subjected to quantum vacuum fluctuations

    SciTech Connect

    Gevorkyan, A. S.; Gevorkyan, A. A.

    2011-06-15

    The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) equations. For a model of 'white noise' fluctuations, using ML equations, a second order partial differential equation is found which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the 'ground state' energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of the vacuum quantum field fluctuations may be constructed on a 6D space-time continuum with a 2D compactified subspace. Their influence on the refraction indexes of vacuum is studied.

  18. Electron spin control of optically levitated nanodiamonds in vacuum

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-05-01

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect.

  19. Wireless Integrated Microelectronic Vacuum Sensor System

    NASA Technical Reports Server (NTRS)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  20. Apparatus For Metal/Inert-Gas Welding In Vacuum

    NASA Technical Reports Server (NTRS)

    Stocks, C. O.

    1994-01-01

    Metal/inert-gas welding-torch assembly operates in vacuum. Plasma generated in interior chamber and focused onto workpiece in vacuum. Pinch rollers feed wire to weld puddle. Controlled flow of plasma reduces dispersal in vacuum, preventing extinction.

  1. International Standard Payload Rack volume

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Outer dimensions of the International Standard Payload Rack (ISPR) that will be used on the International Space Station (ISS) sets the envelope for scientists designing hardware for experiments in biological and physical sciences aboard ISS. The ISPR includes attachments to ISS utilities (electrical power, heating and cooling, data, fluids, vacuum, etc.) through standoffs that hold the racks in place in the lab modules. Usage will range from facilities that take entire racks to specialized drawers occupying a portion of a rack.

  2. Vacuum brazing beryllium to Monel

    SciTech Connect

    Glenn, T.G.; Grotsky, V.K.; Keller, D.L.

    1982-10-01

    The tensile strength of beryllium to Monel vacuum furnace brazed joints was studied. The filler used was the 72% Ag-28%Cu(BAg-8) alloy. The strength of these joints, which require the use of a titanium hydride powder or physical vapor deposited titanium wetting agent on the beryllium, was found to approach the yield strength of the base metals. Strength was found to be reduced by the interaction of increased titanium hydride quantity and brazing time. Metallographic and scanning electron microscope (SEM) studies correlated these effects with microstructure. The formation of the brittle copper-beryllium delta phase was found to require conditions of high brazing temperature and the presence of a reservoir of the copper-containing filler such as found in fillet areas. Two other filler metals: pure silver, and a 60% Ag-30% Cu-10%Sn (BAg-17) alloy were shown to be acceptable alternatives to the BAg-8 alloy in cases where the filler metal can be preplaced between the base metal surfaces.

  3. Vacuum arc plasma mass separator

    NASA Astrophysics Data System (ADS)

    Paperny, V. L.; Krasov, V. I.; Lebedev, N. V.; Astrakchantsev, N. V.; Chernikch, A. A.

    2015-02-01

    The propagation of a metal plasma flow in a transport system with a curvilinear magnetic field was studied experimentally. The flow was generated by a pulsed vacuum arc discharge with a composite (W+Fe) cathode. The ion energy measurements at the transport system output showed that all ion components were accelerated up to equal energies per charge unit, about 150 eV and 320 eV in the outer and inner areas of the curved plasma flow, respectively. The spatial separation of the atoms of the cathode material was measured at the system output by x-ray fluorescence spectrometry. The ions of the lighter element (Fe) were concentrated in the inner part of the cathodic plasma flow deflected by the magnetic field while the distribution of the heavy element (W) was substantially shifted toward the outer area of the flow. The maximum mass separation efficiency reached 45, the effective value being 7.7. Such a system is promising for use in plasma technology for reprocessing spent nuclear fuel, namely for the separation of the heavy radioactive fission product from nuclear waste.

  4. Impacts on Dissipative Sonic Vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Yichao; Nesterenko, Vitali

    We investigate the propagating compression bell shape stress waves generated by the strikers with different masses impacting the sonic vacuum - the discrete dissipative strongly nonlinear metamaterial with zero long wave sound speed. The metamaterial is composed of alternating steel disks and Nitrile O-rings. Being a solid material, it has exceptionally low speed of the investigated stress waves in the range of 50 - 74 m/s, which is a few times smaller than the speed of sound or shock waves in air generated by blast. The shape of propagating stress waves was dramatically changed by the viscous dissipation. It prevented the incoming pulses from splitting into trains of solitary waves, a phenomenon characteristic of the non-dissipative strongly nonlinear discrete systems when the striker mass is larger than the cell mass. Both high-speed camera images and numerical simulations demonstrate the unusual rattling behavior of the top disk between the striker and the rest of the system. The linear momentum and energy from the striker were completely transferred to the metamaterial. This strongly nonlinear dissipative metamaterial can be designed for the optimal attenuation of dynamic loads generated by impact or contact explosion. Author 1 wants to acknowledge the support provided by UCSD.

  5. Cold vacuum drying facility site evaluation report

    SciTech Connect

    Diebel, J.A.

    1996-03-11

    In order to transport Multi-Canister Overpacks to the Canister Storage Building they must first undergo the Cold Vacuum Drying process. This puts the design, construction and start-up of the Cold Vacuum Drying facility on the critical path of the K Basin fuel removal schedule. This schedule is driven by a Tri-Party Agreement (TPA) milestone requiring all of the spent nuclear fuel to be removed from the K Basins by December, 1999. This site evaluation is an integral part of the Cold Vacuum Drying design process and must be completed expeditiously in order to stay on track for meeting the milestone.

  6. Vacuum control subsystem for the Fermilab Tevatron

    SciTech Connect

    Zagel, J.R.; Chapman, L.J.

    1981-06-01

    The CAMAC 170 module and CIA crate provide a convenient, cost effective method of interfacing any system requiring a large number of simple devices to be multiplexed into the Accelerator Control System. The system is ideal for relatively slowly changing systems where ten bit analog to digital conversions are sufficiently accurate. Together with vacuum interface CIA cards and prom-based software resident in the 170, this system is used to provide intelligent local monitoring and control for the Tevatron vacuum subsystems. Although not implemented in the vacuum interface, digital to analog converters could be included on the plug in modules as well, providing a total digital and analog multiplexing scheme. 2 refs.

  7. Vacuum resource provision for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Laskey, Kenneth J.; Mordfin, Theodore G.; Russ, Thomas W.

    1989-01-01

    The use of vacuum resources is integral to a number of proposed concepts for gas disposal from Space Staton Freedom. These include both direct overboard venting and onboard collection and storage of waste gases. A methodology is presented for determining flowrates through proposed vacuum lines. The flowrates through overboard vents are used to calculate number column densities, which are compared with current Freedom program requirements. The results are combined with discussions about the relative merits of some proposed and alternate concepts for providing vacuum resources.

  8. Report of the Synchrotron Radiation Vacuum Workshop

    SciTech Connect

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well.

  9. Quantum interactions between nonperturbative vacuum fields

    SciTech Connect

    Millo, R.; Faccioli, P.; Scorzato, L.

    2010-04-01

    We develop an approach to investigate the nonperturbative dynamics of quantum field theories, in which specific vacuum field fluctuations are treated as the low-energy dynamical degrees of freedom, while all other vacuum field configurations are explicitly integrated out from the path integral. We show how to compute the effective interaction between the vacuum field degrees of freedom both perturbatively (using stochastic perturbation theory) and fully nonperturbatively (using lattice field theory simulations). The present approach holds to all orders in the couplings and does not rely on the semiclassical approximation.

  10. Transient Molecular Transfer During Vacuum Testing

    NASA Technical Reports Server (NTRS)

    Perry, Radford L.

    2011-01-01

    A common question in contamination budgeting involves the loss of collected volatiles during ambient I&T activity under vacuum and the resultant cross-contamination from outgassing. (1) How much of the material collected under ambient conditions evaporates under vacuum? (2) Why do pristine surfaces sometimes show increased molecular contamination after vacuum bakeout? (3) How much of the collected molecular contamination is transient (i.e. migratory) and how much is permanent? Measuring the transient deposition may be accomplished using a thermally passive QCM

  11. Vacuum coupling of rotating superconducting rotor

    DOEpatents

    Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante

    2003-12-02

    A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.

  12. Sequestering effects on and of vacuum decay

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Padilla, Antonio; Stefanyszyn, David

    2016-07-01

    We consider phase transitions and their contributions to vacuum energy in the manifestly local theory of vacuum energy sequestering. We demonstrate that the absence of instabilities imposes constraints on the couplings of gravitating and nongravitating sectors, which can be satisfied in a large class of models. We further show by explicit construction that the vacuum energy contributions to the effective cosmological constant in the descendant vacua are generically strongly suppressed by the ratios of space-time volumes of parent and descendant geometries. This means that the cosmological constant in de Sitter descendant vacua remains insensitive to phase transitions which may have occurred in the course of its cosmic history.

  13. Wightman function and vacuum fluctuations in higher dimensional brane models

    SciTech Connect

    Saharian, Aram A.

    2006-02-15

    The Wightman function and the vacuum expectation value of the field square are evaluated for a massive scalar field with a general curvature coupling parameter subject to Robin boundary conditions on two codimension-one parallel branes located on a (D+1)-dimensional background spacetime AdS{sub D{sub 1}}{sub +1}x{sigma} with a warped internal space {sigma}. The general case of different Robin coefficients on separate branes is considered. The application of the generalized Abel-Plana formula for the series over zeros of combinations of cylinder functions allows us to manifestly extract the part due to the bulk without boundaries. Unlike the purely anti-de Sitter (AdS) bulk, the vacuum expectation value of the field square induced by a single brane, in addition to the distance from the brane, depends also on the position of the brane in the bulk. The brane induced part in this expectation value vanishes when the brane position tends to the AdS horizon or the AdS boundary. The asymptotic behavior of the vacuum densities near the branes and at large distances is investigated. The contribution of Kaluza-Klein modes along {sigma} is discussed in various limiting cases. In the limit when the curvature radius for the AdS spacetime tends to infinity, we derive the results for two parallel Robin plates on the background spacetime R{sup (D{sub 1},1)}x{sigma}. For strong gravitational fields corresponding to large values of the AdS energy scale, both the single brane and interference parts of the expectation values integrated over the internal space are exponentially suppressed. As an example the case {sigma}=S{sup 1} is considered, corresponding to the AdS{sub D+1} bulk with one compactified dimension. An application to the higher dimensional generalization of the Randall-Sundrum brane model with arbitrary mass terms on the branes is discussed.

  14. SHINE Vacuum Pump Test Verification

    SciTech Connect

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this

  15. Vacuum-isolation vessel and method for measurement of thermal noise in microphones

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Ngo, Kim Chi T. (Inventor)

    1992-01-01

    The vacuum isolation vessel and method in accordance with the present invention are used to accurately measure thermal noise in microphones. The apparatus and method could be used in a microphone calibration facility or any facility used for testing microphones. Thermal noise is measured to determine the minimum detectable sound pressure by the microphone. Conventional isolation apparatus and methods have been unable to provide an acoustically quiet and substantially vibration free environment for accurately measuring thermal noise. In the present invention, an isolation vessel assembly comprises a vacuum sealed outer vessel, a vacuum sealed inner vessel, and an interior suspension assembly coupled between the outer and inner vessels for suspending the inner vessel within the outer vessel. A noise measurement system records thermal noise data from the isolation vessel assembly. A vacuum system creates a vacuum between an internal surface of the outer vessel and an external surface of the inner vessel. The present invention thus provides an acoustically quiet environment due to the vacuum created between the inner and outer vessels and a substantially vibration free environment due to the suspension assembly suspending the inner vessel within the outer vessel. The thermal noise in the microphone, effectively isolated according to the invention, can be accurately measured.

  16. Design, construction, and testing of the vacuum vessel for the tandem Mirror Fusion Test Facility

    NASA Astrophysics Data System (ADS)

    Gerich, J. W.

    1985-11-01

    In 1980, the US Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32,000-ton concrete-shielding vault with the 2850-ton vacuum vessel system. To maintain a vacuum of 2 x 10 to the -8 Torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200 cu m) has been fabricated, erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system.

  17. Is there vacuum when there is mass? Vacuum and non-vacuum solutions for massive gravity

    NASA Astrophysics Data System (ADS)

    Martín-Moruno, Prado; Visser, Matt

    2013-08-01

    Massive gravity is a theory which has a tremendous amount of freedom to describe different cosmologies, but at the same time, the various solutions one encounters must fulfil some rather nontrivial constraints. Most of the freedom comes not from the Lagrangian, which contains only a small number of free parameters (typically three depending on counting conventions), but from the fact that one is in principle free to choose the reference metric almost arbitrarily—which effectively introduces a non-denumerable infinity of free parameters. In the current paper, we stress that although changing the reference metric would lead to a different cosmological model, this does not mean that the dynamics of the universe can be entirely divorced from its matter content. That is, while the choice of reference metric certainly influences the evolution of the physically observable foreground metric, the effect of matter cannot be neglected. Indeed the interplay between matter and geometry can be significantly changed in some specific models; effectively since the graviton would be able to curve the spacetime by itself, without the need of matter. Thus, even the set of vacuum solutions for massive gravity can have significant structure. In some cases, the effect of the reference metric could be so strong that no conceivable material content would be able to drastically affect the cosmological evolution. Dedicated to the memory of Professor Pedro F González-Díaz

  18. Electrostatic particle collection in vacuum

    NASA Astrophysics Data System (ADS)

    Afshar-Mohajer, Nima; Damit, Brian; Wu, Chang-Yu; Sorloaica-Hickman, Nicoleta

    2011-09-01

    Lunar grains accumulate charges due to solar-based ionizing radiations, and the repelling action of like-charged particles causes the levitation of lunar dust. The lunar dust deposit on sensitive and costly surfaces of investigative equipment is a serious concern in lunar explorations. Inspired by electrostatic precipitators (ESPs), the Electrostatic Lunar Dust Collector (ELDC) was proposed for collecting already charged lunar dust particles to prevent the lunar dust threat. As the conditions for terrestrial counterparts are not valid in the lunar environment, equations developed for terrestrial devices yield incorrect predictions in lunar application. Hence, a mathematical model was developed for the ELDC operating in vacuum to determine its collection efficiency. The ratios of electrical energy over potential energy, kinetic energy over potential energy and the ratio of ELDC dimensions were identified to be the key dimensionless parameters. Sensitivity analyses of the relevant parameters showed that depending on ELDC orientation, smaller particles would be collected more easily at vertical orientation, whereas larger particles were easier to collect in a horizontal ELDC configuration. In the worst case scenario, the electrostatic field needed to be 10 times stronger in the vertical mode in order to adequately collect larger particles. The collection efficiency was very sensitive to surface potential of lunar dust and it reached the maximum when surface potential was between 30 and 120 V. Except for regions of the lunar day side with surface potential close to zero, providing 1 kV ( E = 20 kV m -1) with the ELDC was more than enough for collecting all the particles in the most critical orientation. The needed field strength was about 4000 times less than that for repelling 1-μm size particles already settled on the surfaces. The analysis shows that the ELDC offers a viable solution for lunar dust control due to its effectiveness, ease of cleaning and low voltage

  19. REVIEWS OF TOPICAL PROBLEMS: Cosmic vacuum

    NASA Astrophysics Data System (ADS)

    Chernin, Artur D.

    2001-11-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered.

  20. Source replenishment device for vacuum deposition

    DOEpatents

    Hill, R.A.

    1986-05-15

    A material source replenishment device for use with a vacuum deposition apparatus is described. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.

  1. Source replenishment device for vacuum deposition

    DOEpatents

    Hill, Ronald A.

    1988-01-01

    A material source replenishment device for use with a vacuum deposition apparatus. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.

  2. Re-circulating linac vacuum system

    SciTech Connect

    Wells, Russell P.; Corlett, John N.; Zholents, Alexander A.

    2003-05-09

    The vacuum system for a proposed 2.5 GeV, 10{Mu}A recirculating linac synchrotron light source [1] is readily achievable with conventional vacuum hardware and established fabrication processes. Some of the difficult technical challenges associated with synchrotron light source storage rings are sidestepped by the relatively low beam current and short beam lifetime requirements of a re-circulating linac. This minimal lifetime requirement leads directly to relatively high limits on the background gas pressure through much of the facility. The 10{Mu}A average beam current produces very little synchrotron radiation induced gas desorption and thus the need for an ante-chamber in the vacuum chamber is eliminated. In the arc bend magnets, and the insertion devices, the vacuum chamber dimensions can be selected to balance the coherent synchrotron radiation and resistive wall wakefield effects, while maintaining the modest limits on the gas pressure and minimal outgassing.

  3. APS storage ring vacuum system development

    SciTech Connect

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Ferry, R.; Goeppner, G.A.; Gonczy, J.D.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1991-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's materials research program. The Storage Ring's 1104 m circumference is divided into 40 sectors which contain vacuum, beam transport, control, rf and insertion device systems. The vacuum system will operate at a pressure of 1 nTorr and is fabricated from aluminum. The system includes distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. An overview of the vacuum system design and details of selected development program results are presented. 5 refs.

  4. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  5. SLAC All Access: Vacuum Microwave Device Department

    SciTech Connect

    Haase, Andy

    2012-10-09

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  6. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, G.W.; Bushman, J.F.; Alger, T.W.

    1996-07-23

    A vacuum housing and pumping system is described for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof. 7 figs.

  7. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, Gerald W.; Bushman, John F.; Alger, Terry W.

    1996-01-01

    A vacuum housing and pumping system for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof.

  8. Cold vacuum drying facility design requirements

    SciTech Connect

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  9. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema

    Haase, Andy

    2014-06-13

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  10. Heat transfer in vacuum packaged microelectromechanical system devices

    NASA Astrophysics Data System (ADS)

    Cai, Chunpei

    2008-01-01

    This study analyzes heat transfer effects inside vacuum packaged microelectromechanical system (MEMS) devices. A packaged device is simplified as four plates forming a square cavity, the bottom plate represents a hot chip, while the other three plates are maintained at room temperature. For a highly rarefied free molecular internal gas flow scenario, the corresponding detailed density and temperature fields are analytically determined with a proposed speculation. This speculation indicates that for a steady free molecular gas flow inside a convex closure domain formed by walls maintained at different temperatures: (1) the velocity distribution functions for those molecules diffusely reflected at different walls and traveling away from them are Maxwellian with different number densities; (2) for each distribution, ni√Ti is a constant, where ni is the number density for the group of reflected molecules, and Ti is the temperature for the ith plate. For a near continuum flow scenario, the governing energy equation degenerates to Laplace's equation with several temperature-jump wall boundary conditions. This study also includes discussions and comparisons among analytical results, simulation results from the direct simulation Monte Carlo method, and results by solving the Navier-Stokes equations with proper wall boundary conditions. The approach used in this study is generally applicable to study internal flows and heat transfer effects in other vacuum packaged MEMS devices with different shapes.

  11. Vacuum decay in an interacting multiverse

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, S.; Alonso-Serrano, A.; Bastos, C.; Bertolami, O.

    2016-08-01

    We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of "true" vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.

  12. Cryogenic Insulation System for Soft Vacuum

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.

    1999-01-01

    The development of a cryogenic insulation system for operation under soft vacuum is presented in this paper. Conventional insulation materials for cryogenic applications can be divided into three levels of thermal performance, in terms of apparent thermal conductivity [k-value in milliwatt per meter-kelvin (mW/m-K)]. System k-values below 0.1 can be achieved for multilayer insulation operating at a vacuum level below 1 x 10(exp -4) torr. For fiberglass or powder operating below 1 x 10(exp -3) torr, k-values of about 2 are obtained. For foam and other materials at ambient pressure, k-values around 30 are typical. New industry and aerospace applications require a versatile, robust, low-cost thermal insulation with performance in the intermediate range. The target for the new composite insulation system is a k-value below 4.8 mW/m-K (R-30) at a soft vacuum level (from 1 to 10 torr) and boundary temperatures of approximately 77 and 293 kelvin (K). Many combinations of radiation shields, spacers, and composite materials were tested from high vacuum to ambient pressure using cryostat boiloff methods. Significant improvement over conventional systems in the soft vacuum range was demonstrated. The new layered composite insulation system was also shown to provide key benefits for high vacuum applications as well.

  13. Genuine vacuum-induced geometric phases

    NASA Astrophysics Data System (ADS)

    Wang, Minghao; Wei, L. F.; Liang, J. Q.

    2015-04-01

    Since a pioneer work on vacuum-induced Berry phase (VIBP) was done by Fuentes-Guridi et al. [Phys. Rev. Lett. 89 (2002) 220404], much attention has been paid to the geometric phase effects of vacuum field. However, all the so-called VIBPs investigated previously are not purely vacuum-induced (i.e. the nonvacuum components of the field are also involved). In this paper, we discuss how to deliver geometric phases from the evolution of a genuine vacuum field in a standard cavity quantum electrodynamics (QED) system. First, we design a cyclic evolution of an atom-field system with the atom being initially prepared at the excited state and the field at the genuine vacuum. Then, we calculate the geometric phases acquired during such a cyclic evolution. It is found that such geometric phases are really induced by an evolution of the genuine vacuum field. Specifically, our generic proposal is demonstrated with both the one- and two-mode Jaynes-Cummings model interactions (JCM).

  14. Proceedings of the 19th International Conference on Ion Beam Modification of Materials (IBMM 2014)

    NASA Astrophysics Data System (ADS)

    Vantomme, André; Temst, Kristiaan

    2015-12-01

    It is our pleasure to present the proceedings of the 19th International Conference on Ion Beam Modification of Materials, which took place from September 14th until September 19th, 2014. The conference was held in the historic center of Leuven, a medieval city in the heart of Europe, a city where centuries-old culture meets frontier science and technology. Among other places, the conference brought us to the University Hall, which has been in use by the university since its foundation in 1425, to the Infirmerie of the Grand Beguinage and to the medieval city of Bruges, the latter two being Unesco World Heritage sites.

  15. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  16. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  17. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  18. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  19. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  20. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fetal vacuum extractor. 884.4340 Section 884.4340....4340 Fetal vacuum extractor. (a) Identification. A fetal vacuum extractor is a device used to... means of a suction cup attached to the scalp and is powered by an external vacuum source. This...

  1. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  2. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  3. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  4. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  5. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fetal vacuum extractor. 884.4340 Section 884.4340....4340 Fetal vacuum extractor. (a) Identification. A fetal vacuum extractor is a device used to... means of a suction cup attached to the scalp and is powered by an external vacuum source. This...

  6. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  7. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal vacuum extractor. 884.4340 Section 884.4340....4340 Fetal vacuum extractor. (a) Identification. A fetal vacuum extractor is a device used to... means of a suction cup attached to the scalp and is powered by an external vacuum source. This...

  8. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fetal vacuum extractor. 884.4340 Section 884.4340....4340 Fetal vacuum extractor. (a) Identification. A fetal vacuum extractor is a device used to... means of a suction cup attached to the scalp and is powered by an external vacuum source. This...

  9. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fetal vacuum extractor. 884.4340 Section 884.4340....4340 Fetal vacuum extractor. (a) Identification. A fetal vacuum extractor is a device used to... means of a suction cup attached to the scalp and is powered by an external vacuum source. This...

  10. Vacuum Energy and Inflation: 4. An Inflationary Universe

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2013-01-01

    This is the fourth paper in a series of four. The first paper in the series, "Vacuum Energy and Inflation: 1. A Liter of Vacuum Energy" [EJ1024183] discusses an example of vacuum energy. Vacuum energy is explained as an energy with a negative pressure whose energy density remains constant in an expanding space. Paper 2, "Vacuum…

  11. Cold Vacuum Drying (CVD) Facility General Service Helium System Design Description

    SciTech Connect

    FARWICK, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility general service helium system (GSHe). The GSHe is a general service facility process support system, but does include safety-class systems, structures and components providing protection to the offsite public. The GSHe also performs safety-significant functions that provide protection to onsite workers. The GSHe essential function is to provide helium to support process functions during all phases of facility operations. GSHe helium is used to purge the cask and the MCO in order to maintain their internal atmospheres below hydrogen flammability concentrations. The GSHe also supplies helium to purge the PWC lines and components and the VPS vacuum pump.

  12. Efficient All-Vacuum Deposited Perovskite Solar Cells by Controlling Reagent Partial Pressure in High Vacuum.

    PubMed

    Hsiao, Sheng-Yi; Lin, Hong-Lin; Lee, Wei-Hung; Tsai, Wei-Lun; Chiang, Kai-Ming; Liao, Wei-Yu; Ren-Wu, Chen-Zheng; Chen, Chien-Yu; Lin, Hao-Wu

    2016-08-01

    All-vacuum-deposited perovskite solar cells produced by controlling reagent partial pressure in high vacuum with newly developed multi-layer electron and hole transporting structures show outstanding power conversion efficiency of 17.6% and smooth, pinhole-free, micrometer-sized perovskite crystal grains. PMID:27226143

  13. Inactivation of Listeria on Frankfurter Surfaces Using UVC Radiation and Vacuum-Steam-Vacuum Pasteurization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes, a psychrotrophic food-borne pathogen, is a frequent post-process contaminant on ready-to-eat meat (RTE) products including frankfurters. Both Ultraviolet (254 nm) radiation and Vacuum-Steam-Vacuum (VSV) surface steam pasteurization are FDA approved technologies that can be u...

  14. Cold Vacuum Drying (CVD) Set Point Determination

    SciTech Connect

    PHILIPP, B.L.

    2000-09-04

    The Safety Class Instrumentation and Control (SCIC) system provides active detection and response to process anomalies that, if unmitigated, would result in a safety event. Specifically, actuation of the SCIC system includes two portions. The portion which isolates the MCO and initiates the safety-class helium (SCHe) purge, and the portion which detects and stops excessive heat input to the MCO annulus on high Tempered Water (TW) inlet temperature. For the MCO isolation and purge, the SCIC receives MCO pressure (both positive pressure and vacuum), helium flow rate, bay high temperature switch status, seismic trip status, and time-under-vacuum trips signals. The SCIC system will isolate the MCO and start an SCHe system purge if any of the following occur. (1) Isolation and purge from one of the SCHe ''isolation'' and ''purge'' buttons is manually initiated (administratively controlled). (2) The first vacuum cycle exceeds 8 hours at vacuum, or any subsequent vacuum cycle exceeds 4 hours at vacuum without re-pressurizing the MCO for a minimum of 4 hours. (This is referred to as the 8/4/4 requirement and provides thermal equilibrium within the MCO.) (3) MCO is below atmospheric pressure and the helium flow is below the minimum required to keep hydrogen less than 4% by volume. (When MCO pressure is below 12 torr there is insufficient hydrogen to exceed the 4% level and therefore no purge is required. A five minute time delay on low flow allows flow to be stopped in order to reach < 12 torr.) (4) The duration for the transition from above atmospheric pressure to vacuum (time to reach pressure below -11.7 psig [{approx}155 torr]) exceeds 5 minutes. (5) The duration for the transition from vacuum (below -11.1 psig [{approx}185 torr]) back to pressure [greater than 0.5 psig] exceeds 5 minutes. (6) MCO reaches a vacuum state (<0.5 psig) without an adequate, verified purge volume. (The MCO must be maintained above atmospheric pressure (approximately 0.5 psig) to prevent

  15. 18th International Conference on Antiviral Research.

    PubMed

    Mitchell, William M

    2005-08-01

    The 18th International Conference on Antiviral Research (ICAR) was held at the Princess Sofia Hotel in Barcelona, Spain, from 11th-14th April, 2005. This is a yearly international meeting sponsored by the International Society for Antiviral Research (ISAR). The current president of ISAR is John A Secrest 3rd of the Southern Research Institute. The scientific programme committee was chaired by John C Drach from the University of Michigan. ISAR was founded in 1987 to exchange prepublication basic, applied and clinical information on the development of antiviral, chemical and biological agents as well as to promote collaborative research. The ISAR has had a major role in the significant advances of the past decade in the reduction of the societal burdens of viral diseases by the focus of ICAR on the discovery and clinical application of antiviral agents. The 18th ICAR was organised as a series of focus presentations on specific viral groups consisting of oral and poster presentations of original research findings. In addition, the conference included plenary speakers, award presentations, a minisymposium on bioterrorism, and a satellite symposium on clinical antiviral drug developments. The size of the conference (> 50 oral and 250 poster presentations) necessitates limitation to the most noteworthy in the judgment of this reviewer. The current membership of the ISAR is approximately 700 with approximately 50% the membership in attendance. PMID:16086663

  16. Treatment of vacuum residues in hydroconversion conditions

    NASA Astrophysics Data System (ADS)

    León, A. Y.; Mendoza, D. L.; Espinosa, J. O.; Laverde, D.

    2016-02-01

    In this paper the use of a liquid homogeneous catalyst has been studied in reactivity vacuum residues by hydroconversion under different conditions. To cover a wide range of compositions, six (6) vacuum residues were selected from crude mixtures. Hydroconversion test were performed in batch reactor with hydrogen atmosphere at about 2000psi in a temperature range between 430 and 480°C. The results allowed to establish that the reactivity hydroconversion conditions about coke formation is higher in vacuum residues with higher content of resins and asphaltenes. The reaction conditions promote distillate formation, however, with increasing stringency conditions, the distillate yield decreases due to distillate transformation into temperature range 430 and 460°C compared to the tests performed without catalyst demonstrating that the use of homogeneous catalyst is an alternative to treating vacuum residues and results are satisfactory in the conversion processes. Finally, predictive expressions have been developed in the formation of products depending on the conditions of temperature and physicochemical properties of processed vacuum residue.

  17. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  18. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  19. Vacuum Nuller Testbed Performance, Characterization and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, R. G.; Clampin, M.; Petrone, P.; Mallik, U.; Madison, T.; Bolcar, M.; Noecker, C.; Kendrick, S.; Helmbrecht, M. A.

    2011-01-01

    The Visible Nulling Coronagraph (VNC) can detect and characterize exoplanets with filled, segmented and sparse aperture telescopes, thereby spanning the choice of future internal coronagraph exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has developed a Vacuum Nuller Testbed (VNT) to advance this approach, and assess and advance technologies needed to realize a VNC as a flight instrument. The VNT is an ultra-stable testbed operating at 15 Hz in vacuum. It consists of a MachZehnder nulling interferometer; modified with a "W" configuration to accommodate a hexpacked MEMS based deformable mirror (DM), coherent fiber bundle and achromatic phase shifters. The 2-output channels are imaged with a vacuum photon counting camera and conventional camera. Error-sensing and feedback to DM and delay line with control algorithms are implemented in a real-time architecture. The inherent advantage of the VNC is that it is its own interferometer and directly controls its errors by exploiting images from bright and dark channels simultaneously. Conservation of energy requires the sum total of the photon counts be conserved independent of the VNC state. Thus sensing and control bandwidth is limited by the target stars throughput, with the net effect that the higher bandwidth offloads stressing stability tolerances within the telescope. We report our recent progress with the VNT towards achieving an incremental sequence of contrast milestones of 10(exp 8) , 10(exp 9) and 10(exp 10) respectively at inner working angles approaching 2A/D. Discussed will be the optics, lab results, technologies, and null control. Shown will be evidence that the milestones have been achieved.

  20. Use of Polycarbonate Vacuum Vessels in High-Temperature Fusion-Plasma Research

    SciTech Connect

    B. Berlinger, A. Brooks, H. Feder, J. Gumbas, T. Franckowiak and S.A. Cohen

    2012-09-27

    Magnetic fusion energy (MFE) research requires ultrahigh-vacuum (UHV) conditions, primarily to reduce plasma contamination by impurities. For radiofrequency (RF)-heated plasmas, a great benefit may accrue from a non-conducting vacuum vessel, allowing external RF antennas which avoids the complications and cost of internal antennas and high-voltage high-current feedthroughs. In this paper we describe these and other criteria, e.g., safety, availability, design flexibility, structural integrity, access, outgassing, transparency, and fabrication techniques that led to the selection and use of 25.4-cm OD, 1.6-cm wall polycarbonate pipe as the main vacuum vessel for an MFE research device whose plasmas are expected to reach keV energies for durations exceeding 0.1 s

  1. Holographic Ricci dark energy as running vacuum

    NASA Astrophysics Data System (ADS)

    George, Paxy; Mathew, Titus K.

    2016-04-01

    Holographic Ricci dark energy (DE) that has been proposed ago has faced problems of future singularity. In the present work, we consider the Ricci DE with an additive constant in its density as running vacuum energy. We have analytically solved the Friedmann equations and also the role played by the general conservation law followed by the cosmic components together. We have shown that the running vacuum energy status of the Ricci DE helps to remove the possible future singularity in the model. The additive constant in the density of the running vacuum played an important role, such that, without that, the model predicts either eternal deceleration or eternal acceleration. But along with the additive constant, equivalent to a cosmological constant, the model predicts a late time acceleration in the expansion of the universe, and in the far future of the evolution it tends to de Sitter universe.

  2. Vacuum Outgassing of High Density Polyethylene

    SciTech Connect

    Dinh, L N; Sze, J; Schildbach, M A; Chinn, S C; Maxwell, R S; Raboin, P; McLean II, W

    2008-08-11

    A combination of thermogravimetric analysis (TGA) and temperature programmed decomposition (TPD) was employed to identify the outgassing species, the total amount of outgassing, and the outgassing kinetics of high density polyethylene (HDPE) in a vacuum environment. The isoconversional kinetic analysis was then used to analyze the outgassing kinetics and to predict the long-term outgassing of HDPE in vacuum applications at ambient temperature. H{sub 2}O and C{sub n}H{sub x} with n as high as 9 and x centering around 2n are the major outgassing species from solid HDPE, but the quantities evolved can be significantly reduced by vacuum baking at 368 K for a few hours prior to device assembly.

  3. Sequestering the standard model vacuum energy.

    PubMed

    Kaloper, Nemanja; Padilla, Antonio

    2014-03-01

    We propose a very simple reformulation of general relativity, which completely sequesters from gravity all of the vacuum energy from a matter sector, including all loop corrections and renders all contributions from phase transitions automatically small. The idea is to make the dimensional parameters in the matter sector functionals of the 4-volume element of the Universe. For them to be nonzero, the Universe should be finite in spacetime. If this matter is the standard model of particle physics, our mechanism prevents any of its vacuum energy, classical or quantum, from sourcing the curvature of the Universe. The mechanism is consistent with the large hierarchy between the Planck scale, electroweak scale, and curvature scale, and early Universe cosmology, including inflation. Consequences of our proposal are that the vacuum curvature of an old and large universe is not zero, but very small, that w(DE) ≃ -1 is a transient, and that the Universe will collapse in the future. PMID:24655240

  4. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Gies, Holger; Reuter, Maria; Zepf, Matt

    2015-10-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

  5. Topological vacuum bubbles by anyon braiding

    PubMed Central

    Han, Cheolhee; Park, Jinhong; Gefen, Yuval; Sim, H.-S.

    2016-01-01

    According to a basic rule of fermionic and bosonic many-body physics, known as the linked cluster theorem, physical observables are not affected by vacuum bubbles, which represent virtual particles created from vacuum and self-annihilating without interacting with real particles. Here we show that this conventional knowledge must be revised for anyons, quasiparticles that obey fractional exchange statistics intermediate between fermions and bosons. We find that a certain class of vacuum bubbles of Abelian anyons does affect physical observables. They represent virtually excited anyons that wind around real anyonic excitations. These topological bubbles result in a temperature-dependent phase shift of Fabry–Perot interference patterns in the fractional quantum Hall regime accessible in current experiments, thus providing a tool for direct and unambiguous observation of elusive fractional statistics. PMID:27030442

  6. Giant vacuum forces via transmission lines

    PubMed Central

    Shahmoon, Ephraim; Mazets, Igor; Kurizki, Gershon

    2014-01-01

    Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry and in emerging technologies involving, e.g., microelectromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension, we find a much stronger and longer-range interaction than in free space. This enhancement may have profound implications on many-particle and bulk systems and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line. PMID:25002503

  7. Magnetic susceptibility of the QCD vacuum

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Chul; Musakhanov, M.; Siddikov, M.

    2005-02-01

    We investigate the magnetic susceptibility of the QCD vacuum, based on the instanton vacuum. Starting from the instanton liquid model for the instanton vacuum, we derive the light-quark partition function Z [ V, T,mˆ ] in the presence of the current quark mass mˆ as well as the external Abelian vector and tensor fields. We calculate a two-point correlation function relevant for the magnetic susceptibility and derive it beyond the chiral limit. We obtain for the different flavors the following magnetic susceptibility: χu, d< i ψu,d†ψu,d > 0 ∼ 40- 45MeV, while χs0 ≃ 6- 10MeV with the quark condensate < iψ† ψ > 0.

  8. A Road Map to Extreme High Vacuum

    SciTech Connect

    Myneni, Ganapati Rao

    2007-06-20

    Ultimate pressure of a well-designed vacuum system very much depends on pretreatments, processing and the procedures [1,2]. Until now much attention has been paid in minimizing hydrogen outgassing from the chamber material. However, procedures and processing deserves further scrutiny than hitherto given so far. For reducing the gas load, high sensitivity helium leak detection techniques with sensitivities better than 1× 10-12 Torr l/sec need to be used. Effects that are induced by vacuum instrumentation need to be reduced in order to obtain accurate pressure measurements. This presentation will discuss: clean assembly procedures, metal sponges for cryosorption pumping of hydrogen to extreme high vacuum, low cost surface diffusion barriers for reducing the hydrogen gas load, cascade pumping, sensitive helium leak detection techniques and the use of modified extractor and residual gas analyzers. Further, alternative back up pumping systems based on active NEG’s [3] for turbo molecular pumps will be presented.

  9. Topological vacuum bubbles by anyon braiding

    NASA Astrophysics Data System (ADS)

    Han, Cheolhee; Park, Jinhong; Gefen, Yuval; Sim, H.-S.

    2016-03-01

    According to a basic rule of fermionic and bosonic many-body physics, known as the linked cluster theorem, physical observables are not affected by vacuum bubbles, which represent virtual particles created from vacuum and self-annihilating without interacting with real particles. Here we show that this conventional knowledge must be revised for anyons, quasiparticles that obey fractional exchange statistics intermediate between fermions and bosons. We find that a certain class of vacuum bubbles of Abelian anyons does affect physical observables. They represent virtually excited anyons that wind around real anyonic excitations. These topological bubbles result in a temperature-dependent phase shift of Fabry-Perot interference patterns in the fractional quantum Hall regime accessible in current experiments, thus providing a tool for direct and unambiguous observation of elusive fractional statistics.

  10. Thermodynamical aspects of running vacuum models

    NASA Astrophysics Data System (ADS)

    Lima, J. A. S.; Basilakos, Spyros; Solà, Joan

    2016-04-01

    The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is Λ (H) ∝ H^{n+2}, is discussed in detail. Specifically, by assuming that the ultrarelativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density ρ _r ∝ T4, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we find that the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late-time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts the same correct value of the present day entropy, S0 ˜ 10^{87}-10^{88} (in natural units), independently of the initial conditions. In addition, by assuming Gibbons-Hawking temperature as an initial condition, we find that the ratio between the late-time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, ρ _{Λ 0}/ρ _{Λ I} ˜ 10^{-123}. Such results are independent on the power n and suggests that the observed Universe may evolve smoothly between two extreme, unstable, non-singular de Sitter phases.

  11. Proceedings of the 14th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Technological areas covered include aviation propulsion, aerodynamic devices, and crew safety; space vehicle propulsion, guidance and control; spacecraft deployment, positioning, and pointing; spacecraft bearings, gimbals, and lubricants; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activity on the space shuttle orbiter are also described.

  12. Proceedings of the 14th Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Several software related topics are presented. Topics covered include studies and experiment at the Software Engineering Laboratory at the Goddard Space Flight Center, predicting project success from the Software Project Management Process, software environments, testing in a reuse environment, domain directed reuse, and classification tree analysis using the Amadeus measurement and empirical analysis.

  13. Modelling Spatial Modes of Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Lanning, R. Nicholas; Xiao, Zhihao; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy; Dowling, Jonathan P.

    2016-05-01

    We develop a fully quantum model to describe the spatial mode properties of squeezed light generated as a laser beam propagates through a Rb vapor cell. Our results show that a Gaussian pump beam can generate a collection of higher order Laguerre-Gaussian squeezed vacuum modes, each carrying a particular squeeze parameter and squeeze angle. We show that a proper sorting of modes could lead to improved noise suppression and thus make this method of squeezed light generation very useful for precision metrology and quantum memory applications. Additionally, we model a multi-pass beam configuration and show that this can lead to a further improvement of vacuum squeezing.

  14. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  15. Quantum Vacuum Photon Modes and Superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Dellieu, Louis; Deparis, Olivier; Muller, Jérôme; Sarrazin, Michaël

    2015-01-01

    Nanostructures are commonly used for developing superhydrophobic surfaces. However, available wetting theoretical models ignore the effect of vacuum photon-mode alteration on van der Waals forces and thus on hydrophobicity. Using first-principles calculations, we show that superhydrophibicity of nanostructured surfaces is dramatically enhanced by vacuum photon-mode tuning. As a case study, wetting contact angles of a water droplet above a polyethylene nanostructured surface are obtained from the interaction potential energy calculated as a function of the droplet-surface separation distance. This new approach could pave the way for the design of novel superhydrophobic coatings.

  16. Very high-vacuum heat treatment facility

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Moody, M. V.; Richard, J.-P.

    1987-01-01

    A vacuum heat treatment facility, with hot zone dimensions of 12 x 19 x 19 cm, has been designed and constructed at a cost substantially below that of a commercial unit. The design incorporates efficient water cooling and a resistive heating element. A vacuum pressure of 1.5 x 10 to the -8th torr at room temperature has been obtained after baking. The temperature limit is approximately 1900 C. This limit results from the choice of niobium as the hot zone material.

  17. Measurement of vacuum; 1950-2003

    NASA Astrophysics Data System (ADS)

    Redhead, P. A.

    2003-09-01

    The major developments in the measurement of vacuum since the Bayard-Alpert gauge was invented in 1950 are reviewed; the American Vacuum Society was started three years later in 1953. These developments include (a) the improvement in understanding the processes causing limitations of the lowest measurable pressures (both total and partial), (b) the development of gauges, residual gas analyzers, and optical methods of pressure measurement to reduce these limitations, (c) the introduction of room-temperature electron sources (Spindt cathodes) to replace thermionic cathodes, and (d) the development of the spinning rotor gauge as a secondary standard.

  18. The fate of the Higgs vacuum

    NASA Astrophysics Data System (ADS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G.

    2016-06-01

    We have recently suggested that tiny black holes can act as nucleation seeds for the decay of the metastable Higgs vacuum. Previous results applied only to the nucleation of thin-wall bubbles, and covered a very small region of parameter space. This paper considers bubbles of arbitrary profile and reaches the same conclusion: black holes seed rapid vacuum decay. Seeded and unseeded nucleation rates are compared, and the gravitational back reaction of the bubbles is taken into account. The evolution of the bubble interior is described for the unseeded nucleation. Results are presented for the renormalisation group improved Standard Model Higgs potential, and a simple effective model representing new physics.

  19. Evaluation of Dry, Rough Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Hunter, Brian

    2006-01-01

    This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer

  20. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  1. Fine-needle aspiration by vacuum tubes.

    PubMed

    Holmquist, N D

    1989-07-01

    Fine-needle aspiration of subcutaneous masses, accepted in many parts of Europe and the Americas as a routine diagnostic technique, employs a syringe holder to facilitate the creation of a vacuum to withdraw cells. This investigation demonstrates that a vacuum tube used in venipuncture can be used to supply the negative pressure to suck cells into the needle. This apparatus is more readily available than a syringe holder in hospitals and clinics, and particularly provides the operator with a more dexterous approach to the mass because the fingers holding the needle can be much closer to the mass being immobilized by the other hand. PMID:2750713

  2. Vacuum energy of a spherical plasma shell

    SciTech Connect

    Bordag, M.; Khusnutdinov, N.

    2008-04-15

    We consider the vacuum energy of the electromagnetic field interacting with a spherical plasma shell together with a model for the classical motion of the shell. We calculate the heat kernel coefficients, especially that for the TM mode, and carry out the renormalization by redefining the parameters of the classical model. It turns out that this is possible and results in a model which, in the limit of the plasma shell becoming an ideal conductor, reproduces the vacuum energy found by Boyer in 1968.

  3. Remote vacuum compaction of compressible hazardous waste

    SciTech Connect

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1996-12-31

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  4. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  5. Vacuum Head Checks Foam/Substrate Bonds

    NASA Technical Reports Server (NTRS)

    Lloyd, James F.

    1989-01-01

    Electromechanical inspection system quickly gives measurements indicating adhesion, or lack thereof, between rigid polyurethane foam and aluminum substrate. Does not damage inspected article, easy to operate, and used to perform "go/no-go" evaluations or as supplement to conventional destructive pull-plug testing. Applies vacuum to small area of foam panel and measures distance through which foam pulled into vacuum. Probe head applied to specimen and evacuated through hose to controller/monitor unit. Digital voltmeter in unit reads deflection of LVDT probe head.

  6. MEANS AND METHOD FOR PRODUCING A VACUUM

    DOEpatents

    Otavka, M.A.

    1960-08-01

    A new method is given for starting the operation of evapor-ion vacuum pumps. Ordinarily this type of pump is started by inducing an electric field with the vacuum chamber; however, by placing such an electric field in the chamber at the outset, a glow discharge may be initiated which is harmful to the pump. The procedure consists of using a negative electric field during which time only gettering action takes place; subsequently when the field reverses after a sufficient reduction of the number of gaseous particles in the chamber both gettering and ionizing takes place.

  7. SSC dipole vacuum vessel support placement analysis

    SciTech Connect

    Nicol, T.H.

    1987-08-01

    Early (superconducting super collider) SSC dipole model magnets were supported at five points along their length by feet welded to the vacuum vessel. The cold mass was supported at the same five points. The number of supports was determined such that the maximum cold mass deflection between supports was limited to 0.010 inches as specified in the first version of the SSC Design Criteria. The spacing between supports was determined to minimize the sag of the cold mass, given five supports. This paper analyzes the deflection of the cold mass and vacuum vessel as a result of these supports. 4 refs. (LSP)

  8. Manifestly Local Theory of Vacuum Energy Sequestering.

    PubMed

    Kaloper, Nemanja; Padilla, Antonio; Stefanyszyn, David; Zahariade, George

    2016-02-01

    We present a manifestly local, diffeomorphism invariant, and locally Poincaré invariant formulation of vacuum energy sequestering. In this theory, quantum vacuum energy generated by matter loops is canceled by auxiliary fields. The auxiliary fields decouple from gravity almost completely. Their only residual effect is an a priori arbitrary, finite contribution to the curvature of the background geometry, which is radiatively stable. Its value is to be determined by a measurement, like the finite part of any radiatively stable UV-sensitive quantity in quantum field theory. PMID:26894700

  9. LTC vacuum blasting maching (concrete): Baseline report: Greenbook (Chapter)

    SciTech Connect

    1997-07-31

    The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjuction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration.

  10. Lightweight Vacuum Jacket for Cryogenic Insulation. Volume 1

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility of producing a lightweight vacuum jacket using state-of-the-art technology and materials was examined. Design and analytical studies were made on a full-scale, orbital maneuvering system fuel tank. Preliminary design details were made for the tank assembly, including an optimized vacuum jacket and multilayer insulation system. A half-scale LH2 test model was designed and fabricated, and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of .000001 atmosphere ml of helium per second was measured, approximately 1500 hours of vacuum pressure were sustained, and 29 vacuum-pressure cycles were experienced prior to failure.

  11. Electron spin control of optically levitated nanodiamonds in vacuum.

    PubMed

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics. PMID:27432560

  12. Burning and graphitization of optically levitated nanodiamonds in vacuum

    NASA Astrophysics Data System (ADS)

    Rahman, A. T. M. A.; Frangeskou, A. C.; Kim, M. S.; Bose, S.; Morley, G. W.; Barker, P. F.

    2016-02-01

    A nitrogen-vacancy (NV-) centre in a nanodiamond, levitated in high vacuum, has recently been proposed as a probe for demonstrating mesoscopic centre-of-mass superpositions and for testing quantum gravity. Here, we study the behaviour of optically levitated nanodiamonds containing NV- centres at sub-atmospheric pressures and show that while they burn in air, this can be prevented by replacing the air with nitrogen. However, in nitrogen the nanodiamonds graphitize below ≈10 mB. Exploiting the Brownian motion of a levitated nanodiamond, we extract its internal temperature (Ti) and find that it would be detrimental to the NV- centre’s spin coherence time. These values of Ti make it clear that the diamond is not melting, contradicting a recent suggestion. Additionally, using the measured damping rate of a levitated nanoparticle at a given pressure, we propose a new way of determining its size.

  13. Burning and graphitization of optically levitated nanodiamonds in vacuum

    PubMed Central

    Rahman, A. T. M. A.; Frangeskou, A. C.; Kim, M. S.; Bose, S.; Morley, G. W.; Barker, P. F.

    2016-01-01

    A nitrogen-vacancy (NV−) centre in a nanodiamond, levitated in high vacuum, has recently been proposed as a probe for demonstrating mesoscopic centre-of-mass superpositions and for testing quantum gravity. Here, we study the behaviour of optically levitated nanodiamonds containing NV− centres at sub-atmospheric pressures and show that while they burn in air, this can be prevented by replacing the air with nitrogen. However, in nitrogen the nanodiamonds graphitize below ≈10 mB. Exploiting the Brownian motion of a levitated nanodiamond, we extract its internal temperature (Ti) and find that it would be detrimental to the NV− centre’s spin coherence time. These values of Ti make it clear that the diamond is not melting, contradicting a recent suggestion. Additionally, using the measured damping rate of a levitated nanoparticle at a given pressure, we propose a new way of determining its size. PMID:26898172

  14. Electron spin control of optically levitated nanodiamonds in vacuum

    PubMed Central

    Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin–optomechanical system for studying macroscopic quantum mechanics. PMID:27432560

  15. Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes

    PubMed Central

    Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

    2015-01-01

    Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

  16. Burning and graphitization of optically levitated nanodiamonds in vacuum.

    PubMed

    Rahman, A T M A; Frangeskou, A C; Kim, M S; Bose, S; Morley, G W; Barker, P F

    2016-01-01

    A nitrogen-vacancy (NV(-)) centre in a nanodiamond, levitated in high vacuum, has recently been proposed as a probe for demonstrating mesoscopic centre-of-mass superpositions and for testing quantum gravity. Here, we study the behaviour of optically levitated nanodiamonds containing NV(-) centres at sub-atmospheric pressures and show that while they burn in air, this can be prevented by replacing the air with nitrogen. However, in nitrogen the nanodiamonds graphitize below ≈10 mB. Exploiting the Brownian motion of a levitated nanodiamond, we extract its internal temperature (T(i)) and find that it would be detrimental to the NV(-) centre's spin coherence time. These values of T(i) make it clear that the diamond is not melting, contradicting a recent suggestion. Additionally, using the measured damping rate of a levitated nanoparticle at a given pressure, we propose a new way of determining its size. PMID:26898172

  17. DYNAVAC: a transient-vacuum-network analysis code

    SciTech Connect

    Deis, G.A.

    1980-07-08

    This report discusses the structure and use of the program DYNAVAC, a new transient-vacuum-network analysis code implemented on the NMFECC CDC-7600 computer. DYNAVAC solves for the transient pressures in a network of up to twenty lumped volumes, interconnected in any configuration by specified conductances. Each volume can have an internal gas source, a pumping speed, and any initial pressure. The gas-source rates can vary with time in any piecewise-linear manner, and up to twenty different time variations can be included in a single problem. In addition, the pumping speed in each volume can vary with the total gas pumped in the volume, thus simulating the saturation of surface pumping. This report is intended to be both a general description and a user's manual for DYNAVAC.

  18. Glow discharge conditioning of the PDX vacuum vessel

    SciTech Connect

    Dylla, H.F.; Cohen, S.A.; Rossnagel, S.M.; McCracken, G.M.; Staib, P.

    1980-03-01

    A glow discharge technique has been developed and applied to the conditioning of the large (38 m/sup 3/) Poloidal Divertor Experiment (PDX) vacuum vessel. The discharge parameters and working gas (H/sub 2/) were chosen to maximize C and O removal and minimize metal sputtering. The glow discharge was produced by biasing one or two internal anodes at 400 V to sustain a discharge current of 2 to 4 A per anode. Purified H/sub 2/ at a pressure of 3 x 10/sup -2/ torr was flowed through PDX at approx. 10 t-l/s. The effectiveness of the glow discharge conditioning was monitored by measuring impurity gas (CH/sub 4/, C/sub 2/H/sub 4/, and CO) exhaust rates by mass spectrometry and C and O surface removal rates by in-situ AES and XPS.

  19. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  20. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  1. Vacuum energy and the cosmological constant

    NASA Astrophysics Data System (ADS)

    Bass, Steven D.

    2015-06-01

    The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus Large Hadron Collider (LHC) results might hint at critical phenomena near the Planck scale.

  2. Vacuum Pyrolysis and Related ISRU Techniques

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Pomeroy, Brian R.; Banks, Ian S.; Benz, Alexis

    2007-01-01

    A number of ISRU-related techniques have been developed at NASA Goddard Space Flight Center. The focus of the team has been on development of the vacuum pyrolysis technique for the production of oxygen from the lunar regolith. However, a number of related techniques have also been developed, including solar concentration, solar heating of regolith, resistive heating of regolith, sintering, regolith boiling, process modeling, parts manufacturing, and instrumentation development. An initial prototype system was developed to vaporize regolith simulants using a approx. l square meter Fresnel lens. This system was successfully used to vaporize quantities of approx. lg, and both mass spectroscopy of the gasses produced and Scanning Electron Microscopy (SEM) of the slag were done to show that oxygen was produced. Subsequent tests have demonstrated the use of a larger system With a 3.8m diameter reflective mirror to vaporize the regolith. These results and modeling of the vacuum pyrolysis reaction have indicated that the vaporization of the oxides in the regolith will occur at lower temperature for stronger vacuums. The chemical modeling was validated by testing of a resistive heating system that vaporized quantities of approx. 10g of MLS-1A. This system was also used to demonstrate the sintering of regolith simulants at reduced temperatures in high vacuum. This reduction in the required temperature prompted the development of a small-scale resistive heating system for application as a scientific instrument as well as a proof-of principle experiment for oxygen production.

  3. Vacuum plasma coatings for turbine blades

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.

    1985-01-01

    Turbine blades, vacuum plasma spray coated with NiCrAlY, CoCrAlY or NiCrAlY/Cr2O3, were evaluated and rated superior to standard space shuttle main engine (SSME) coated blades. Ratings were based primarily on 25 thermal cycles in the MSFC Burner Rig Tester, cycling between 1700 F (gaseous H2) and -423 F (liquid H2). These tests showed no spalling on blades with improved vacuum plasma coatings, while standard blades spalled. Thermal barrier coatings of ZrO2, while superior to standard coatings, lacked the overall performance desired. Fatigue and tensile specimens, machined from MAR-M-246(Hf) test bars identical to the blades were vacuum plasma spray coated, diffusion bond treated, and tested to qualify the vacuum plasma spray process for flight hardware testing and application. While NiCrAlY/Cr2O3 offers significant improvement over standard coatings in durability and thermal protection, studies continue with an objective to develop coatings offering even greater improvements.

  4. Pros and cons of vacuum pressure impregnation

    NASA Astrophysics Data System (ADS)

    Wright, T.

    1981-12-01

    The advantages and disadvantages of using a vacuum pressure impregnation process in the application of insulating varnishes to high voltage electric coils are discussed. The process has the advantages of providing a void free system with high dielectric strength, mechanical resilience, chemical and moisture resistance, and good thermal capabilities. The disadvantages of high cost and large tank size requirements are noted.

  5. Vacuum Baking To Remove Volatile Materials

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.

    1985-01-01

    Outgassing reduced in some but not all nonmetallic materials. Eleven polymeric materials tested by determining outgassing species as temperature of conditioned and unconditioned materials raised to 300 degrees C. Conditioning process consisted of vacuum bake for 24 hours at 80 degrees C in addition to usual cure. Baking did not change residual gas percentage of water molecules.

  6. A High Vacuum High Speed Ion Pump

    DOE R&D Accomplishments Database

    Foster, J. S. Jr.; Lawrence, E. O.; Lofgren, E. J.

    1952-08-27

    A vacuum pump based on the properties of a magnetically collimated electric discharge is described. It has a speed in the range 3000 to 7000 liters a second and a base pressure in the order of 10{sup -6} mm. (auth)

  7. A polarizer for the vacuum ultraviolet.

    PubMed

    Steinrnetz, D L; Phillips, W G; Wirick, M; Forbes, F F

    1967-06-01

    The construction and optical properties of a MgF(2) double Rochon prism are described. The prism is useful as a polarizer or analyzer in the vacuum uv wavelengths longer than 1300 A. Measurements of MgF(2) transmission and of polarizer angular beam deviation from 1150 AS to 2900 A are presented. PMID:20062113

  8. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) There must be means, in addition to the normal pressure relief, to automatically relieve the pressure in... flammable vapors or fluids must meet the requirements of § 29.1183 if they are in a designated fire zone. (c) Other vacuum air system components in designated fire zones must be at least fire resistant....

  9. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) There must be means, in addition to the normal pressure relief, to automatically relieve the pressure in... flammable vapors or fluids must meet the requirements of § 29.1183 if they are in a designated fire zone. (c) Other vacuum air system components in designated fire zones must be at least fire resistant....

  10. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) There must be means, in addition to the normal pressure relief, to automatically relieve the pressure in... flammable vapors or fluids must meet the requirements of § 29.1183 if they are in a designated fire zone. (c) Other vacuum air system components in designated fire zones must be at least fire resistant....

  11. The vacuum interaction of magnetic strings

    SciTech Connect

    Bordag, M. )

    1991-03-01

    The author investigates the interaction of two parallel magnetic strings which is due to the perturbation of the vacuum state of a scalar massive field. The Green function with one string is studied in detail and the influence of the second string is found in perturbation theory. The Casimir is expressed in terms of Bessel functions.

  12. Computer design and analysis of vacuum systems

    SciTech Connect

    Santeler, D.J.

    1987-07-01

    A computer program has been developed for an IBM compatible personal computer to assist in the design and analysis of vacuum systems. The program has a selection of 12 major schematics with several thousand minor variants incorporating diffusion, turbomolecular, cryogenic, ion, mechanical, and sorption pumps as well as circular tubes, bends, valves, traps, and purge gas connections. The gas throughput versus the inlet pressure of the pump is presented on a log--log graphical display. The conductance of each series component is sequentially added to the graph to obtain the net system behavior Q/sub (//sub P//sub )/. The component conductances may be calculated either from the inlet area and the transmission probability or from the tube length and the diameter. The gas-flow calculations are valid for orifices, short tubes, and long tubes throughout the entire pressure range from molecular through viscous to choked and nonchoked exit flows. The roughing-pump and high-vacuum-pump characteristic curves are numerically integrated to provide a graphical presentation of the system pumpdown. Outgassing data for different materials is then combined to produce a graph of the net system ''outgassing pressure.'' Computer routines are provided for differentiating a real pumpdown curve for system analysis. The computer program is included with the American Vacuum Society course, ''Advanced Vacuum System Design and Analysis,'' or it may be purchased from Process Applications, Inc.

  13. Vacuum test fixture improves leakage rate measurements

    NASA Technical Reports Server (NTRS)

    Maier, H.; Marx, H.

    1966-01-01

    Cylindrical chamber, consisting of two matching halves, forms a vacuum test fixture for measuring leakage rates of individual connections, brazed joints, and entrance ports used in closed fluid flow line systems. Once the chamber has been sufficiently evacuated, atmospheric pressure holds the two halves together.

  14. Vacuum leak detector features higher sensitivity

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.

    1970-01-01

    Technique for measuring partial pressures utilizes extremely large resonance scattering cross section of xenon at 1471 angstroms to scatter light in a vacuum cell. Output signal of ultraviolet-sensitive photodetector is proportional to the partial pressure and to the rate of inleakage of xenon probe gas.

  15. True random numbers from amplified quantum vacuum.

    PubMed

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices. PMID:21997077

  16. Pressure regulator with plastic vacuum fitting

    SciTech Connect

    Robinson, B.S.

    1994-01-04

    The vacuum control port at the control chamber of a fuel pressure regulator is an injection molded plastic member that can be formed with an angle. A flange is provided as a seating surface for an annular seal ring. The member extends into a tube formed in the regulator control chamber and is secured thereto. 3 figs.

  17. Thick tellurium target preparation by vacuum deposition

    NASA Astrophysics Data System (ADS)

    Stolarz, Anna

    1999-12-01

    Tellurium targets of thickness up to 6.5 mg/cm 2 on carbon backings were prepared by vacuum deposition. The influence of the crucible dimension, treatment of the backing foil by glow discharge and substrate cooling on the Te sticking efficiency was studied in order to achieve the best yield.

  18. Various unique vacuum holders. [For glassblowing

    SciTech Connect

    Gregar, J.S.

    1992-01-01

    Glassblowers use vacuum holding devices to support a flat plate in the glassflowing lathe to seal onto the end of, or inside of, a glass cylinder. Glassblowing blowhose swivels tend to leak; a rotating union from the hydraulics industry is better. Various graphite holder designs are described.

  19. Vacuum handling system for powdered samples.

    NASA Technical Reports Server (NTRS)

    Birkebak, R. C.; Cremers, C. J.; Lyons, W. E.

    1971-01-01

    A sample system for handling powdered material under vacuum conditions is described. The system features linear motion of up to 0.25 m and the means for complete isolation of the sample and sample system from external apparatus. The system was designed for the measurement of thermophysical properties of lunar material from Apollo missions under thoroughest possible prevention of contamination.

  20. Design of the EBIS vacuum system

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.

    2011-03-28

    At Brookhaven National Laboratory the Electron Beam Ion Source (EBIS) is presently being commissioned. The EBIS will be a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC). The new preinjector has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium. The background pressure in the ionization region of the EBIS required to be low enough that it does not produce a significant number of ions from background gas. The pressure in the regions of the electron gun and electron collector can be higher than in the ionization region provided there is efficient vacuum separation between the sections. For injection the ions must be accelerated to 100KV by pulsing the EBIS platform. All associated equipment including the vacuum equipment on the platform is at a 100KV potential. The vacuum system design and the vacuum controls for the EBIS platform and transport system will be presented as well as the interface with the Booster Ring which has a pressure 10-11 Torr.

  1. Composite drying with simultaneous vacuum and toggling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying is an important mechanical operation in the leather making process. Leather acquires its final texture, consistency and flexibility in the drying operation. Vacuum drying offers fast water removal at a low temperature, which is particularly advantageous to heat-vulnerable chrome-free leathe...

  2. Vacuum photoelectronic devices for measuring pulsed radiation

    NASA Astrophysics Data System (ADS)

    Berkovskii, A. G.; Veretennikov, A. I.; Kozlov, O. V.

    The design of these devices is discussed, and data are presented on their characteristics. These vacuum photoelectronic devices comprise photocells, photomultipliers, and electrooptical transducers designed for measuring pulsed radiation of nanosecond and subnanosecond duration. The fluctuation characteristics of the devices are examined, and their use in detectors of pulsed luminous and ionizing radiation is considered.

  3. Vacuum statistics and stability in axionic landscapes

    NASA Astrophysics Data System (ADS)

    Masoumi, Ali; Vilenkin, Alexander

    2016-03-01

    We investigate vacuum statistics and stability in random axionic landscapes. For this purpose we developed an algorithm for a quick evaluation of the tunneling action, which in most cases is accurate within 10%. We find that stability of a vacuum is strongly correlated with its energy density, with lifetime rapidly growing as the energy density is decreased. On the other hand, the probability P(B) for a vacuum to have a tunneling action B greater than a given value declines as a slow power law in B. This is in sharp contrast with the studies of random quartic potentials, which found a fast exponential decline of P(B). Our results suggest that the total number of relatively stable vacua (say, with B>100) grows exponentially with the number of fields N and can get extremely large for Ngtrsim 100. The problem with this kind of model is that the stable vacua are concentrated near the absolute minimum of the potential, so the observed value of the cosmological constant cannot be explained without fine-tuning. To address this difficulty, we consider a modification of the model, where the axions acquire a quadratic mass term, due to their mixing with 4-form fields. This results in a larger landscape with a much broader distribution of vacuum energies. The number of relatively stable vacua in such models can still be extremely large.

  4. Atomic Oscillator Strengths in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Nave, Gillian; Sansonetti, Craig J.; Szabo, Csilla I.

    2006-01-01

    We have developed techniques to measure branching fractions in the vacuum ultraviolet using diffraction grating spectroscopy and phosphor image plates as detectors. These techniques have been used to measure branching fractions in Fe II that give prominent emission lines in astrophysical objects.

  5. Friction, wear, and lubrication in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1971-01-01

    A review of studies and observations on the friction, wear, and lubrication behavior of materials in a vacuum environment is presented. The factors that determine and influence friction and wear are discussed. They include topographical, physical, mechanical, and the chemical nature of the surface. The effects of bulk properties such as deformation characteristics, fracture behavior, and structure are included.

  6. Nonlinear quantum electrodynamics in vacuum and plasmas

    SciTech Connect

    Brodin, Gert; Lundin, Joakim; Marklund, Mattias

    2010-12-14

    We consider high field physics due to quantum electrodynamics, in particular those that can be studied in the next generation of laser facilities. Effective field theories based on the Euler-Heisenberg Lagrangian are briefly reviewed, and examples involving plasma- and vacuum physics are given.

  7. SNS Vacuum Instrumentation and Control System

    SciTech Connect

    J. Y. Tang; L. A. Smart; H. C. Hseuh; P. S. Marroquin; L. R. Dalesio; S. A. Lewis; C. A. Lionberger; K. Kishiyama; D. P. Gurd; M. Hechler; W. Schneider

    2001-11-01

    The Spallation Neutron Source (SNS) vacuum instrumentation and control systems are being designed at Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), Thomas Jefferson National Accelerator facility (TJNAF) and Los Alamos National Laboratory (LANL). Each participating lab is responsible for a different section of the machine: LBNL for the Front-End section, LANL for the warm LINAC section, TJNAF for the cold LINAC section and BNL for the Ring and transfer line sections. The vacuum instrumentation and control systems are scheduled to be installed and be in operation at Oak Ridge National Laboratory in 2004 or 2005. Although the requirements vary for different sections of the machine, a collaborative effort has been made to standardize vacuum instrumentation components and the global control system interfaces. This paper summarizes the design of each sub-section of vacuum instrumentation and control system and discusses SNS standards for Ion Pump and Gauge controllers, Programmable Logic Controller (PLC) interfaces, Ladder Logic programming and the SNS global control system interfaces.

  8. Implementation of Vacuum Region in NIMROD

    NASA Astrophysics Data System (ADS)

    Kruger, Scott; Sovinec, Carl

    1999-11-01

    MHD stability limits in experiments depend on the presence of a vacuum region and on the location of a (geometrically-complicated) conducting wall. Unlike linear codes where one can use Green's functions to predict the response of a fixed plasma-vacuum boundary, the implementation of a vacuum region in a nonlinear initial-value code with a moving plasma-vacuum boundary presents many challenges. We review these challenges and present a practical model for the vaccum region for initial-value codes. We discuss the implementation of this model in the NIMROD code, which was programmed using a finite-element method in order to handle the complicated geometry of modern experiments, and the benchmarking of the NIMROD code to linear analytic results [1] and to the GATO [2] code. Plans to extend this work to nonlinear regimes and to compare with previous nonlinear results [3] will be discussed. ------- [1] V.D. Shafranov, Soviet Physics Technical Physics 15 (1970) 175 [2] L.C. Bernard et.al, Comp. Phys. Comm. 24 (1981) 377 [3] A. Y Aydemir, et al., Bull. Am. Phys. Soc., 43, 1747 (1998).

  9. Vacuum Flushing of Sewer Solids (Slides)

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  10. 242-A evaporator vacuum condenser system

    SciTech Connect

    Smith, V.A.

    1994-09-28

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation.

  11. Nearly Seamless Vacuum-Insulated Boxes

    NASA Technical Reports Server (NTRS)

    Stepanian, Christopher J.; Ou, Danny; Hu, Xiangjun

    2010-01-01

    A design concept, and a fabrication process that would implement the design concept, have been proposed for nearly seamless vacuum-insulated boxes that could be the main structural components of a variety of controlled-temperature containers, including common household refrigerators and insulating containers for shipping foods. In a typical case, a vacuum-insulated box would be shaped like a rectangular parallelepiped conventional refrigerator box having five fully closed sides and a hinged door on the sixth side. Although it is possible to construct the five-closed-side portion of the box as an assembly of five unitary vacuum-insulated panels, it is not desirable to do so because the relatively high thermal conductances of the seams between the panels would contribute significant amounts of heat leakage, relative to the leakage through the panels themselves. In contrast, the proposal would make it possible to reduce heat leakage by constructing the five-closed-side portion of the box plus the stationary portion (if any) of the sixth side as a single, seamless unit; the only remaining seam would be the edge seal around the door. The basic cross-sectional configuration of each side of a vacuum-insulated box according to the proposal would be that of a conventional vacuum-insulated panel: a low-density, porous core material filling a partially evacuated space between face sheets. However, neither the face sheets nor the core would be conventional. The face sheets would be opposite sides of a vacuum bag. The core material would be a flexible polymer-modified silica aerogel of the type described in Silica/Polymer and Silica/Polymer/Fiber Composite Aero - gels (MSC-23736) in this issue of NASA Tech Briefs. As noted in that article, the stiffness of this core material against compression is greater than that of prior aerogels. This is an important advantage because it translates to greater retention of thickness and, hence, of insulation performance when pressure is

  12. PREFACE: MCWASP XIV: International Conference on Modelling of Casting, Welding and Advanced Solidification Processes

    NASA Astrophysics Data System (ADS)

    Yasuda, H.

    2015-06-01

    The current volume represents contributed papers of the proceedings of the 14th international conference on ''Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP XIV)'', Yumebutai International Conference Center, Awaji island, Hyogo, Japan on 21 - 26 June, 2016. The first conference of the series 'Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP)' was started up in 1980, and this is the 14th conference. The participants are more than 100 scientists from industry and academia, coming from 19 countries. In the conference, we have 5 invited, 70 oral and 31 poster presentations on different aspects of the modeling. The conference deals with various casting processes (Ingot / shape casting, continuous casting, direct chill casting and welding), fundamental phenomena (nucleation and growth, dendritic growth, eutectic growth, micro-, meso- and macrostructure formation and defect formation), coupling problems (electromagnetic interactions, application of ultrasonic wave), development of experimental / computational methods and so on. This volume presents the cutting-edge research in the modeling of casting, welding and solidification processes. I would like to thank MAGMA Giessereitechnologie GmbH, Germany and SCSK Corporation, Japan for supporting the publication of contributed papers. Hideyuki Yasuda Conference Chairman Department of Materials Science and Engineering, Kyoto University Japan

  13. Recent advances in vacuum arc ion sources

    SciTech Connect

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Oks, E.M.

    1995-07-01

    Intense beams of metal ions can be formed from a vacuum arc ion source. Broadbeam extraction is convenient, and the time-averaged ion beam current delivered downstream can readily be in the tens of milliamperes range. The vacuum arc ion source has for these reasons found good application for metallurgical surface modification--it provides relatively simple and inexpensive access to high dose metal ion implantation. Several important source developments have been demonstrated recently, including very broad beam operation, macroparticle removal, charge state enhancement, and formation of gaseous beams. The authors have made a very broad beam source embodiment with beam formation electrodes 50 cm in diameter, producing a beam of width {approximately}35 cm for a nominal beam area of {approximately}1,000 cm{sup 2}, and a pulsed Ti beam current of about 7 A was formed at a mean ion energy of {approximately}100 keV. Separately, they`ve developed high efficiency macroparticle-removing magnetic filters and incorporated such a filter into a vacuum arc ion source so as to form macroparticle-free ion beams. Jointly with researchers at the High Current Electronics Institute at Tomsk, Russia, and the Gesellschaft fuer Schwerionenforschung at Darmstadt, Germany, they`ve developed a compact technique for increasing the charge states of ions produced in the vacuum arc plasma and thus providing a simple means of increasing the ion energy at fixed extractor voltage. Finally, operation with mixed metal and gaseous ion species has been demonstrated. Here, they briefly review the operation of vacuum marc ion sources and the typical beam and implantation parameters that can be obtained, and describe these source advances and their bearing on metal ion implantation applications.

  14. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  15. Machine tests slow-speed sliding friction in high vacuum

    NASA Technical Reports Server (NTRS)

    Skyrus, J.; Wilkinson, C.

    1967-01-01

    Testing machine that operates without any lubrication of the machine elements within the vacuum chamber measures static friction and sliding friction at very low speeds. Moving parts are held to a minimum to simplify operation in the vacuum chamber.

  16. DC photogun vacuum characterization through photocathode lifetime studies

    SciTech Connect

    Marcy Stutzman; Joseph Grames; Matt Poelker; Kenneth Surles-Law; Philip Adderley

    2007-07-02

    Excellent vacuum is essential for long photocathode lifetimes in DC high voltage photoelectron guns. Vacuum Research at Thomas Jefferson National Accelerator Facility has focused on characterizing the existing vacuum systems at the CEBAF polarized photoinjector and on quantifying improvements for new systems. Vacuum chamber preprocessing, full activation of NEG pumps and NEG coating the chamber walls should improve the vacuum within the electron gun, however, pressure measurement is difficult at pressures approaching the extreme-high-vacuum (XHV) region and extractor gauge readings are not significantly different between the improved and original systems. The ultimate test of vacuum in a DC high voltage photogun is the photocathode lifetime, which is limited by the ionization and back-bombardment of residual gasses. Discussion will include our new load-locked gun design as well as lifetime measurements in both our operational and new photo-guns, and the correlations between measured vacuum and lifetimes will be investigated.

  17. Structure and decay in the QED vacuum

    NASA Astrophysics Data System (ADS)

    Labun, Lance Andrew

    This thesis is a guide to a selection of the author's published work that connect and contribute to understanding the vacuum of quantum electrodynamics in strong, prescribed electromagnetic fields. This theme is elaborated over the course of two chapters: The first chapter sets the context, defining the relevant objects and conditions of the study and reviewing established knowledge upon which this study builds. The second chapter organizes and explains important results appearing in the published work. The papers 1. (Labun and Rafelski, 2009) "Vacuum Decay Time in Strong External Fields" 2. (Labun and Rafelski, 2010a) "Dark Energy Simulacrum in Nonlinear Electrodynamics" 3. (Labun and Rafelski, 2010b) "QED Energy-Momentum Trace as a Force in Astrophysics" 4. (Labun and Rafelski, 2010c) "Strong Field Physics: Probing Critical Acceleration and Inertia with Laser Pulses and Quark-Gluon Plasma" 5. (Labun and Rafelski, 2010d) "Vacuum Structure and Dark Energy" 6. (Labun and Rafelski, 2011) "Spectra of Particles from Laser-Induced Vacuum Decay" are presented in their published format as appendices. Related literature is cited throughout the body where it directly supports the content of this overview; more extensive references are found within the attached papers. This study begins with the first non-perturbative result in quantum electrodynamics, a result obtained by Heisenberg and Euler (1936) for the energy of a zero-particle state in a prescribed, long-wavelength electromagnetic field. The resulting Euler-Heisenberg effective potential generates a nonlinear theory of electromagnetism and exhibits the ability of the electrical fields to decay into electron-positron pairs. Context for phenomena arising from the Euler-Heisenberg effective potential is established by considering the energy-momentum tensor of a general nonlinear electromagnetic theory. The mass of a field configuration is defined, and I discuss two of its consequences pertinent to efforts to observe

  18. Vacuum energy in the bag model

    NASA Astrophysics Data System (ADS)

    Candelas, P.

    1986-04-01

    The vacuum energy of the Yang-Mills field is examined for the conditions of the bag model. The dominance of high-frequency effects results in a vacuum energy that decomposes naturally into a volume energy, a surface energy, and higher shape energies. These quantities are identified with the parameters of the bag model. The imposition of confining boundary conditions for all frequencies is shown to be inconsistent since this would result in the bag constant and certain of the shape tensions being infinite. The manner in which the boundary conditions should be relaxed at high frequency is discussed. The most naive procedure for relaxing the boundary conditions, which is to apply confining conditions only on modes of frequency less than some cutoff frequency, results in a negative bag constant and surface tension and would render the vacuum unstable against the spontaneous breaking of Poincaré invariance. Consideration of the manner by which the interacting electromagnetic field avoids a similar instability suggests that a more realistic way to relax the boundary conditions on the bag surface is to endow the vacuum exterior to the bag with a frequency-dependent dielectric constant and magnetic permeability. In this picture the stability of the vacuum is restored, the surface tension is finite and positive, and the bag constant is zero at least to lowest order in the coupling. It is pointed out that the fermion contributions to the bag constant and the surface tension may relate to the spontaneous breaking of chiral invariance. The aim throughout is to examine the bag model, as it relates to vacuum energy, strictly in its own terms with an emphasis on questions of principle. All too often is heard the alibi that since the theory itself is only approximate, the mathematics need be no better. In truth the opposite follows. Granted that the model represents but a part of nature, we are to find what such an ideal picture implies, a result strictly derived serves to test

  19. 92. VIEW OF PRECIPITATION AREA FROM SOUTHWEST. VACUUM CLARIFIER TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. VIEW OF PRECIPITATION AREA FROM SOUTHWEST. VACUUM CLARIFIER TANK No. 1 AT LOWER LEFT, UNDER LAUNDER FEED TO GOLD TANK No. 2, AND VACUUM CLARIFIER TANK No. 2, AT MIDRIGHT. VACUUM RECEIVER TANK ON UPPER LEFT. PIPE TO TOP CENTER OF TANK TAKES OUTFLOW FROM CLARIFIER LEAVES. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  20. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....