Science.gov

Sample records for 150kw cw power

  1. Moderate-power cw fibre lasers

    SciTech Connect

    Kurkov, Andrei S; Dianov, Evgenii M

    2004-10-31

    A review of the development and investigation of moderate-power (10{sup -1}-10{sup 2} W) cw fibre lasers is presented. The properties of optical fibres doped with rare-earth ions and methods for fabricating double-clad fibres are considered. The methods for fabrication of fibre Bragg gratings used as selective reflectors are discussed and the grating properties are analysed. The main pump schemes for double-clad fibre lasers are described. The properties of fibre lasers doped with neodymium, ytterbium, erbium, thulium, and holmium ions are also considered. The principles of fabrication of Raman converters of laser radiation based on optical fibres of different compositions are discussed and the main results of their studies are presented. It is concluded that fibre lasers described in the review can produce moderate-power radiation at any wavelength in the spectral range from 0.9 to 2 {mu}m. (review)

  2. Cascaded combiners for a high power CW fiber laser

    NASA Astrophysics Data System (ADS)

    Tan, Qirui; Ge, Tingwu; Zhang, Xuexia; Wang, Zhiyong

    2016-02-01

    We report cascaded combiners for a high power continuous wave (CW) fiber laser in this paper. The cascaded combiners are fabricated with an improved lateral splicing process. During the fusing process, there is no stress or tension between the pump fiber and the double-cladding fiber. Thus, the parameters of the combiner are better than those that have been reported. The coupling efficiency is 98.5%, and the signal insertion loss is 1%. The coupling efficiency of the cascaded combiners is 97.5%. The pump lights are individually coupled into the double-cladding fiber via five combiners. The thermal effects cannot cause damage to the combiners and the cascaded combiners can operate stably in high power CW fiber lasers. We also develop a high power CW fiber laser that generates a maximum 780 W of CW signal power at 1080 nm with 71% optical-to-optical conversion efficiency. The fiber laser is pumped via five intra-cavity cascaded combiners and five extra-cavity cascaded combiners with a maximum pump power of 1096 W and a pump wavelength of 975 nm.

  3. PROSPECTS FOR A VERY HIGH POWER CW SRF LINAC

    SciTech Connect

    Robert Rimmer

    2010-06-01

    Steady development in SRF accelerator technology combined with the success of large scale installations such as CEBAF at Jefferson Laboratory and the SNS Linac at ORNL gives credibility to the concept of very high average power CW machines for light sources or Proton drivers. Such machines would be powerful tools for discovery science in themselves but could also pave the way to reliable cost effective drivers for such applications as neutrino factories, an energy-frontier muon collider, nuclear waste transmutation or accelerator driven subcritical reactors for energy production. In contrast to machines such as ILC that need maximum accelerating gradient, the challenges in these machines are mainly in efficiency, reliability, beam stability, beam loss and of course cost. In this paper the present state of the art is briefly reviewed and options for a multi-GeV, multi-MW CW linac are discussed.

  4. Low power cw-laser signatures on human skin

    SciTech Connect

    Lihachev, A; Lesinsh, J; Jakovels, D; Spigulis, J

    2011-01-24

    Impact of cw laser radiation on autofluorescence features of human skin is studied. Two methods of autofluorescence detection are applied: the spectral method with the use of a fibreoptic probe and spectrometer for determining the autofluorescence recovery kinetics at a fixed skin area of {approx}12 mm{sup 2}, and the multispectral visualisation method with the use of a multispectral imaging camera for visualising long-term autofluorescence changes in a skin area of {approx}4 cm{sup 2}. The autofluorescence recovery kinetics after preliminary laser irradiation is determined. Skin autofluorescence images with visible long-term changes - 'signatures' of low power laser treatment are acquired. (application of lasers and laser-optical methods in life sciences)

  5. Passively cooled diode lasers in the cw power range of 120 to 200W

    NASA Astrophysics Data System (ADS)

    Lorenzen, Dirk; Meusel, Jens; Schröder, Dominic; Hennig, Petra

    2008-02-01

    Improvements of laser diode bar efficiency and mounting technology have boosted output powers of passively cooled diode lasers beyond the 100W cw limit. After an introduction about reliablity statements and reliability assessment, the performance increase by technology improvements is documented in current-step failure discrimination tests. Electro-optical parameters of improved diode lasers are subsequently presented in detail as well as the results of lifetime tests at different powers and in different operation modes - steady-state and repetitive/intermittent ("hard pulse") cw operation.

  6. Development of a high average power, CW, MM-wave FEL

    SciTech Connect

    Ramian, G.

    1995-12-31

    Important operational attributes of FELs remain to be demonstrated including high average power and single-frequency, extremely narrow-linewidth lasing. An FEL specifically designed to achieve these goals for scientific research applications is currently under construction. Its most salient feature is operation in a continuous-wave (CW) mode with an electrostatically generated, high-current, recirculating, DC electron beam.

  7. Characterization of High-power Quasi-cw Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  8. A High-Power RF-Focusing CW Electron LINAC.

    NASA Astrophysics Data System (ADS)

    Sobenin, N. P.; Kostin, D. V.; Shvedunov, V. I.; Trower, W. P.

    1997-05-01

    Using a biperiodic accelerating structure with rectangular cavities in a high-power Continuous Wave electron LINear ACcelerator simplifies accelerator construction and reduces beam losses. By optimizing the beam aperture and coupling slots, we have obtained high focusing gradients, shunt impedances (N.P. Sobenin, V.N. Kandurin, A.I. Karev, V.N. Melekhin, V.I. Shvedunov, and W.P. Trower, in Proc. 1995 Particle Accelerator Conf., L. Gennari ed. (IEEE, Piscataway,1996) v. 3, p. 1827.), and couplings (around 20 percent). By successively rotating six rectangular accelerating cavity sections through 90^o about the beam axis and separating the sections by axially symmetric cavities which serve as drift spaces, we obtain focusing similar to that of a quadrupole magnets system. We find that a 500 mA beam accelerated from 2 to 10 MeV in a 4 m structure suffers negligible beam losses. A similar axially symmetric structure without external focusing begins losing substantial beam at around 100 mA.

  9. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  10. A low-power CMOS trans-impedance amplifier for FM/cw ladar imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Zhao, Yi-qiang; Sheng, Yun; Zhao, Hong-liang; Yu, Hai-xia

    2013-09-01

    A scannerless ladar imaging system based on a unique frequency modulation/continuous wave (FM/cw) technique is able to entirely capture the target environment, using a focal plane array to construct a 3D picture of the target. This paper presents a low power trans-impedance amplifier (TIA) designed and implemented by 0.18 μm CMOS technology, which is used in the FM/cw imaging ladar with a 64×64 metal-semiconductor-metal(MSM) self-mixing detector array. The input stage of the operational amplifier (op amp) in TIA is realized with folded cascade structure to achieve large open loop gain and low offset. The simulation and test results of TIA with MSM detectors indicate that the single-end trans-impedance gain is beyond 100 kΩ, and the -3 dB bandwidth of Op Amp is beyond 60 MHz. The input common mode voltage ranges from 0.2 V to 1.5 V, and the power dissipation is reduced to 1.8 mW with a supply voltage of 3.3 V. The performance test results show that the TIA is a candidate for preamplifier of the read-out integrated circuit (ROIC) in the FM/cw scannerless ladar imaging system.

  11. Two-photon excitation in living cells induced by low-power cw laser beams

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Krasieva, Tatiana B.; Liu, Yagang; Berns, Michael W.; Tromberg, Bruce J.

    1996-05-01

    We demonstrate multi-photon excitation in optically-trapped living cells. Intracellular non- resonant two-photon excitation of endogenous and exogenous chromophores was induced by CW near infrared (NIR) trapping beams of 105 mW power. In the case of fluorescent chromophores, detection of NIR-excited visible fluorescence was achieved by imaging and spectroscopy methods. Trap-induced, two-photon excited fluorescence was employed as a novel diagnostic method to monitor intracellular redox state and cell vitality of single motile spermatozoa and Chinese hamster ovary cells. We found, that nonlinear absorption of NIR photons < 800 nm may lead to oxidative stress and severe cell damage. Biological response was amplified in multimode CW lasers due to longitudinal mode-beating and partial mode- locking. As a result, we recommend the use of longwavelength-NIR, single-frequency traps (`optical tweezers') for micromanipulation of vital cells.

  12. New Class of CW High-Power Diode-Pumped Alkali Lasers (DPALs)

    SciTech Connect

    Krupke, W F; Beach, R J; Kanz, V K; Payne, S A; Early, J T

    2004-03-23

    The new class of diode-pumped alkali vapor lasers (DPALs) offers high efficiency cw laser radiation at near-infrared wavelengths: cesium 895 nm, rubidium 795 nm, and potassium 770 nm. The working physical principles of DPALs will be presented. Initial 795 nm Rb and 895 nm Cs laser experiments performed using a titanium sapphire laser as a surrogate pump source demonstrated DPAL slope power conversion efficiencies in the 50-70% range, in excellent agreement with device models utilizing only literature spectroscopic and kinetic data. Using these benchmarked models for Rb and Cs, optimized DPALs with optical-optical efficiencies >60%, and electrical efficiencies of 25-30% are projected. DPAL device architectures for near-diffraction-limited power scaling into the high kilowatt power regime from a single aperture will be described. DPAL wavelengths of operation offer ideal matches to silicon and gallium arsenide based photovoltaic power conversion cells for efficient power beaming.

  13. High Power Laser Cutting of Fiber Reinforced Thermoplastic Polymers with cw- and Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    Schneider, F.; Wolf, N.; Petring, D.

    Glass fiber and carbon fiber reinforced polymers with thermoplastic matrix enable high volume production with short cycle times. Cutting and trimming operations in these production chains require the use of high average laser power for an efficient cutting speed, but employment of high laser power runs the risk to induce a wide heat affected zone (HAZ). This paper deals with investigations with cw and ns-pulsed CO2-laser radiation in the kilowatt range in single-pass and multiple-pass processes. Using multi-pass processing at high processing speeds of 100 m/min and above a reduced heat affected zone in the range of 100 μm to 200 μm could be achieved by the ns-pulsed radiation. With cw radiation at the same average power of 1 kW however, the HAZ was 300-400 μm. Also employing ns-pulses in the kW-range average power leads to heat accumulation in the material. Small HAZ were obtained with sufficient break times between subsequent passes.

  14. Simple design for singlemode high power CW fiber laser using multimode high NA fiber

    NASA Astrophysics Data System (ADS)

    Morasse, Bertrand; Chatigny, Stéphane; Desrosiers, Cynthia; Gagnon, Éric; Lapointe, Marc-André; de Sandro, Jean-Philippe

    2009-02-01

    A large number of high power CW fiber lasers described in the literature use large mode area (LMA) double cladding fibers. These fibers have large core and low core numerical aperture (NA) to limit the number of supported modes and are typically operated under coiling to eliminate higher order modes. We describe here multimode (MM) high NA ytterbium doped fibers used in single mode output high power laser/amplifier configuration. Efficient single mode amplification is realized in the multimode doped fiber by matching the fundamental mode of the doped fiber to the LP01 mode of the fiber Bragg grating (FBG) and by selecting the upper V-number value that limits the overlap of the LP01 to the higher order modes. We show that negligible mode coupling is realized in the doped fiber, which ensures a stable power output over external perturbation without the use of tapers. Fundamental mode operation is maintained at all time without coiling through the use of FBG written in a single mode fiber. We show that such fiber is inherently more photosensitive and easier to splice than LMA fiber. We demonstrate an efficient 75W singlemode CW fiber laser using this configuration and predict that the power scaling to the kW level can be achieved, the design being more practical and resistant to photodarkening compared to conventional low NA LMA fiber.

  15. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2000-11-21

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  16. Solar power satellite 50 kW VKS-7773 cw klystron evaluation

    NASA Technical Reports Server (NTRS)

    Larue, A. D.

    1977-01-01

    A test program for evaluating the electrical characteristics of a cw, 50 kW power output klystron at 2.45 GHz is described. The tube tested was an 8-cavity klystron, the VKS-7773 which had been in storage for seven years. Tests included preliminary testing of the tube, cold tests of microwave components, tests of the electromagnet, and first and second hot tests of the tube. During the second hot test, the tuner in the fifth cavity went down to air, preventing any further testing. Cause of failure is not known, and recommendations are to repair and modify the tube, then proceed with testing as before to meet program objectives.

  17. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  18. RF power upgrade at the superconducting 1.3 GHz CW LINAC "ELBE" with solid state amplifiers

    NASA Astrophysics Data System (ADS)

    Büttig, Hartmut; Arnold, A.; Büchner, A.; Justus, M.; Kuntsch, M.; Lehnert, U.; Michel, P.; Schurig, R.; Staats, G.; Teichert, J.

    2013-03-01

    The RF power for the superconducting 1.3 GHz CW LINAC "ELBE" has been doubled from less than 10 kW to 20 kW per cavity. In January 2012 the four 10 kW klystrons used to drive the four superconducting cavities of the LINAC have been replaced by pairs of 10 kW solid state power amplifiers (SSPA). ELBE is now worldwide the first 1.3 GHz CW LINAC equipped with solid state RF power amplifiers. This technical note details on this project.

  19. Development of a powerful continuously tunable mid-infrared cw PPLN OPO for trace gas detection

    NASA Astrophysics Data System (ADS)

    van Herpen, Maarten; te Lintel Hekkert, Sacco; Bisson, Scott E.; Harren, Frans J. M.

    2002-08-01

    A new Optical Parametric Oscillator for the mid infrared wavelength region of 3-3.8 micrometer is developed with an idler output power of more than 1 Watt. The OPO is pumped with a 10 Watt, cw, Nd:YAG Laser and consists of a bowtie ring cavity (FSR 320 MHz) resonating at the signal wavelength. The wavelength is controlled with a fan-out PPLN crystal and a low finesse intracavity Fabry-Perot. The idler output could be tuned over more than 24 Ghz modehop-free, by tuning the pump laser and keep the OPO cavity fixed. Mode hop tuning over 100 Ghz could be obtained changing the length of the intracavity Fabry-Perot. This high power OPO is combined with photoacoustic spectroscopy in order to develop a sensitive trace gas detector for LifeScience applications.

  20. The Rhodotron, a new high-energy, high-power, CW electron accelerator

    NASA Astrophysics Data System (ADS)

    Jongen, Y.; Abs, M.; Capdevila, J. M.; Defrise, D.; Genin, F.; NGuyen, A.

    1994-05-01

    Over the last years, a new kind of industrial electron accelerator has been conjointly developed by the French Atomic Energy Agency (CEA) and IBA (Ion Beam Applications) in Belgium. This accelerator, called the Rhodotron, is a recirculating accelerator, operated in CW. It uses low frequencies (metric waves), that make possible the generation of continuous high-energy high-power beams. The construction of the first industrial model of the Rhodotron began in January 1992. It is a 10 MeV, 100 kW beam power unit, with an additional beam exit at 5 MeV. A target is also being developed in order to allow an efficient conversion of the electrons into X-rays. The different subsystems of this machine are now being assembled and tested. The first beam tests are scheduled for the autumn of 1993. A complete report presenting the state of development of this prototype is included in this paper.

  1. Analysis of oscillation characteristics and optimal conditions for high power operation of Gyrotron FU CW GIII

    SciTech Connect

    Tatematsu, Y. Yamaguchi, Y.; Kawase, T.; Ichioka, R.; Ogawa, I.; Saito, T.; Idehara, T.

    2014-08-15

    The oscillation characteristics of Gyrotron FU CW GIII and its wave frequency and output power dependences on the magnetic field strength, the gun coil current, and the anode voltage were investigated experimentally. The experimental results were analyzed theoretically using a self-consistent code that included the electron properties in the cavity, corresponding to the actual operating conditions in the experiments. As a result, it was found that the variation in frequency with the magnetic field strength was related to an axial profile change in the electromagnetic wave in the cavity. In addition, the optimal condition that gives the maximum output power was found to be determined by the pitch factor rather than by the electron beam radius under the given operating conditions.

  2. High-power CW tunable solid state dye lasers: from the visible to UV

    NASA Astrophysics Data System (ADS)

    Bornemann, R.; Thiel, E.; Haring Bolívar, P.

    2012-06-01

    We describe a high power CW solid-state dye laser setup. With perylene orange in PMMA as gain medium an output power up to 800 mW at 576 nm and a tuning range between 565 and 595 nm is reached. The laser output shows good long time power stability. The durability can be adjusted by variation of the pump power. A feedback loop controls the laser output. At a setpoint of e.g. 100 mW, the laser output can be provided for more than eight hours with a low noise level (RMS < 10%). The spectral width of the laser emission is less than 3 GHz and can be tuned over more than 30 nm. A circular mode-profile is achieved with M2 < 1.4 [1]. Via intra-cavity second harmonic generation more than 1 mW of 290 nm UV-radiation is achieved. As nonlinear element a 7 mm BBO (Beta-Barium Borate) crystal is used. The UV laser radiation can be tuned over 10 nm. The theoretical limit of UV output is estimated to 3.5 mW. To our knowledge we present the first tunable CW polymer UV laser. While the output stability at the fundamental wavelength is reasonably good, in the UV region a significant enhancement of the noise level is observed. In addition to this the long time stability is reduced to few minutes. The limitation is mainly given by the photo-decomposition of the organic dye molecules.

  3. Highly efficient high power CW and Q-switched Ho:YLF laser

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, J.

    2015-06-01

    An efficient operation of a Ho:YLF laser pumped by a Tm-doped fibre laser is reported. The research in a continuous-wave (CW) operation was done for two crystals of the same 0.5 at.%Ho dopant concentration and with different lengths (3×3×30 mm3 and 3×3×50 mm3). For an output coupling transmission of 20% and a crystal length of 50 mm, the maximum CWoutput power of 38.9 W for 81.4 W of incident pump power, corresponding to the slope efficiency of 52.3% and optical-to-optical conversion efficiency of 47.8% (determined with respect to the incident pump power) was achieved. The highest opti- cal-to-optical conversion efficiency of 70.2% with respect to the absorbed pump power was obtained. The influence of a heat-sink cooling water temperature on theCWlaser performance was studied. For a Q-switched operation the pulse repe- tition frequency (PRF) was changed from 2 to 10 kHz. The maximum average output power of 34.1 W at the PRF of 10 kHz was obtained for a 50 mm holmium crystal length. For 2 kHz PRF and 71.9 W of incident pump power, pulse energies of 13.7 mJ with a 21 ns FWHM pulse width corresponding to 652 kW peak power were recorded.

  4. High-power efficient cw and pulsed lasers based on bulk Yb : KYW crystals with end diode pumping

    SciTech Connect

    Kim, G H; Yang, G H; Lee, D S; Kulik, Alexander V; Sall', E G; Chizhov, S A; Yashin, V E; Kang, U

    2012-04-30

    End-diode-pumped lasers based on one and two Yb : KYW crystals operating in cw and Q-switched regimes, as well as in the regime of mode-locking, are studied. The single-crystal laser generated stable ultrashort (shorter than 100 fs) laser pulses at wavelengths of 1035 and 1043 nm with an average power exceeding 1 W. The average output power of the two-crystal laser exceeded 18 W in the cw regime and 16 W in the Q-switched regime with a slope efficiency exceeding 30%.

  5. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    NASA Astrophysics Data System (ADS)

    Kaushik, Meenu; Joshi, L. M.

    2016-03-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  6. Production of High Intracavity UV Power From a CW Laser Source

    NASA Technical Reports Server (NTRS)

    David, R. T.; Chyba, T. H.; Keppel, C. E.; Gaskell, D.; Ent, R.

    1998-01-01

    The goal of this research project is to create a prototype high power CW source of ultraviolet (UV) photons for photon-electron scattering at the Thomas Jefferson National Accelerator Facility (TJNAF), Hall B. The facility will use optical resonant cavities to produce a high photon flux. The technical approach will be to frequency-double the 514.5 mn light from an Argon-Ion Laser to create 0.1 to 1.0 watt in the UV. The produced UV power will be stored in a resonant cavity to generate an high intracavity UV power of 102 to 103 watts. The specific aim of this project is to first design and construct the low-Q doubling cavity and lock it to the Argon-Ion wavelength. Secondly, the existing 514.5 nm high-Q build-up cavity and its locking electronics will be modified to create high intracavity UV power. The entire system will then be characterized and evaluated for possible beam line use.

  7. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    SciTech Connect

    Andreeva, E V; Il'chenko, S N; Kostin, Yu O; Yakubovich, S D

    2014-10-29

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  8. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power

    NASA Astrophysics Data System (ADS)

    Gapontsev, Valentin; Avdokhin, Alexey; Kadwani, Pankaj; Samartsev, Igor; Platonov, Nikolai; Yagodkin, Roman

    2014-02-01

    We report a single-mode (SM) green laser based on single-pass frequency doubling of a linearly-polarized narrowlinewidth Yb fiber laser in LBO crystal, and configured to operate in a range of regimes from continuous-wave (CW) to high-repetition-rate quasi-continuous-wave (QCW). Adjusting the duty cycle, we maintained high second harmonic generation (SHG) efficiency for various output powers. Average powers of over 550W in QCW and over 350W in CW regimes were obtained with the wall-plug efficiency up to 15%, opening the possibility to creating new class of simple, compact and efficient single-mode green lasers with output power up to 1kW and above. The same approach could also be used to create high-power lasers operating at other wavelengths in ultraviolet and visible spectral ranges.

  9. The design and performance of CW and pulsed power couplers—A review

    NASA Astrophysics Data System (ADS)

    Garvey, T.

    2006-07-01

    The design of input power couplers represents one of the most important challenges of accelerators that use super-conducting RF technology. These devices must fulfill several functions while being subject to mechanical, electromagnetic, vacuum and cryogenic constraints. The rapidly increasing number of projects, planned or under construction, which propose to use super-conducting cavities has prompted developments in power couplers for both CW and pulsed applications. Amongst the projects for which couplers have been, or are being, developed one finds VUV and X-ray free electron lasers (based on self-amplified spontaneous emission), spallation neutron sources (SNS), energy recovery linacs, and high energy colliders. We will review the design requirements and performances obtained for several of these couplers. Particular attention will be paid to the couplers which have been used on the TESLA Test Facility at DESY, the variations of this coupler which are under consideration for future synchrotron light sources and the coupler chosen for use on the SNS.

  10. TTF3 power coupler thermal analysis for LCLS-II CW operation

    SciTech Connect

    Xiao, L.; Adolphsen, C.; Li, Z.; Nantista, C.; Raubenheimer, T.; Solyak, N.; Gonin, I.

    2015-05-13

    The TESLA 9-cell SRF cavity design has been adopted for use in the LCLS-II SRF Linac. Its TTF3 coaxial fundamental power coupler (FPC), optimized for pulsed operation in European XFEL and ILC, requires modest changes to make it suitable for LCLS-II continuous-wave (CW) operation. For LCLS-II it must handle up to 7 kW of power, fully reflected, with the maximum temperature around 450 K, the coupler bake temperature. In order to improve TTF3 FPC cooling, an increased copper plating thickness will be used on the inner conductor of the ‘warm’ section of the coupler. Also, the antenna will be shortened to achieve higher cavity Qext values. Fully 3D FPC thermal analysis has been performed using the SLAC-developed parallel finite element code suite ACE3P, which includes electromagnetic codes and an integrated electromagnetic, thermal and mechanical multi-physics code. In this paper, we present TTF3 FPC thermal analysis simulation results obtained using ACE3P as well as a comparison with measurement results.

  11. Normal conducting RF cavity of high current photoinjector for high power CW FEL.

    SciTech Connect

    Kurennoy, S.; Schrage, D. L.; Wood R. L.; Schultheiss, T.; Rathke, J.; Christina, V.; Young, L. M.

    2004-01-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell {pi}-mode 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With the electric field gradients of 7, 7, and 5 MV/m in the three cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and 7 mm-mrad transverse rms emittance. Electromagnetic modeling was used extensively to optimize ridge-loaded tapered waveguides and RF couplers, which led to a new improved coupler-iris design. The results, combined with a thermal/stress analysis, show that the challenging problem of cavity cooling can be successfully solved. A demo 100-mA (at 35-MHz bunch-repetition rate) photoinjector is being manufactured. The design is scalable to higher power levels by increasing the bunch repetition rate, and provides a path to a MW-class amplifier FEL. The cavity design and details of RF coupler modeling are presented.

  12. Normal-conducting RF cavity of high current photoinjector for high power CW FEL.

    SciTech Connect

    Kurennoy, S.; Schrage, D. L.; Wood R. L.; Schultheiss, T.; Rathke, J.; Young, L. M.

    2004-01-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell, {pi}-mode, 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With the electric field gradients of 7.7, and 5 MV/m in the three cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and the transverse rms emittance 7 mm-mrad. Electromagnetic modeling was used extensively to optimize ridge-loaded tapered waveguides and RF couplers, which led to a new, improved coupler iris design. The results, combined with a thermal and stress analysis, show that the challenging problem of cavity cooling can be successfully solved. The manufacturing of a demo 100-mA (at 35 MHz bunch repetition rate) photoinjector is underway. The design is scalable to higher power levels by increasing the electron bunch repetition rate, and provides a path to a MW-class amplifier FEL. This paper presents the cavity design and details of RF coupler modeling.

  13. Development of a Compact sub-THz Gyrotron FU CW CI for Application to High Power THz Technologies

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Mudiganti, Jagadish C.; Agusu, La; Kanemaki, Tomohiro; Ogawa, Isamu; Fujiwara, Toshimichi; Matsuki, Yoh; Ueda, Keisuke

    2012-07-01

    For application of high frequency gyrotron to high power THz technology, Gyrotron FU CW series is being developed in FIR FU. Gyrotron FU CW CI is developed as one of sub-THz gyrotrons included in the series. The advantage of the gyrotron is compactness using a compact superconducting magnet and compact power supply system, which makes the accesses of the gyrotron to applied large-scale devices easier and extends the applications of gyrotron to wider fields. The designed frequency and cavity mode are 394.5 GHz and TE26 mode for application to the 600 MHz DNP-NMR spectroscopy. As the operation results, the frequency and the output power were 394.03 GHz and around 30 W, respectively, which are available for the application to the 600 MHz DNP-NMR measurement. In addition, this gyrotron can operate at many other frequencies and cavity modes for application to high power THz technologies in wide fields. In this paper, the design and the operation results including long pulse or CW mode are presented.

  14. New High Power CW Test Facilities For ITER ICRH Components Testing

    NASA Astrophysics Data System (ADS)

    Bernard, J. M.; Lombard, G.; Argouarch, A.; Chaix, J. P.; Fejoz, P.; Garibaldi, P.; Hatchressian, J. C.; Lebourg, P.; Martinez, A.; Mollard, P.; Mouyon, D.; Mougeolle, G.; Pagano, M.; Thouvenin, D.; Volpe, D.; Volpe, R.; Vulliez, K.

    2011-12-01

    First CW test bed, devoted for Ion Cyclotron Resonance Heating (ICRH), has been built at CEA Cadarache. It has been designed for testing the ICRH antenna sub assemblies under ITER relevant conditions (vacuum, cooling and RF). This paper presents a technical overview of these facilities and discusses their future operations in the framework of the ITER ICRH European R&D program.

  15. High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser.

    PubMed

    Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria

    2010-11-22

    We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods. PMID:21164825

  16. A real-time method for monitoring the three-dimensional extent of high power cw laser beams

    NASA Astrophysics Data System (ADS)

    Boyd, I. W.

    1983-06-01

    A simple and very accurate method is presented that allows not only one section of a cw laser beam to be studied in real-time but the full three-dimensional extent of its mode profile. The use of a ball-bearing to controllably defocus extremely high beam power densities in two planes is a novel approach which has been successfully used for beam measurements applied to laser-induced oxidation, and laser annealing of silicon. Although specifically applied to the infra-red regime, this technique may be extended to the study of visible radiation by using the appropriate detectors.

  17. Narrowband cw injection seeded high power femtosecond double-pass optical parametric generator at 43 MHz: Gain and noise dynamics.

    PubMed

    Linnenbank, Heiko; Steinle, Tobias; Giessen, Harald

    2016-08-22

    We demonstrate narrowband cw injection seeding of a femtosecond double-pass optical parametric generator at 43 MHz repetition rate with a simple, low power external cavity diode laser. Up to 2.5 W of near-IR radiation (1.5 - 1.66 µm) as well as 800 mW of tunable mid-IR radiation (2.75 - 3.15 µm) with pulse durations below 300 fs are generated with a remarkable pulse-to-pulse and long term power stability. Compared to conventional, vacuum noise seeded optical parametric generators, the presented frequency conversion scheme does not only exhibit superior gain and noise dynamics, but also a high degree of flexibility upon control parameters such as pump power, seed power, or spectral position of the seed. PMID:27557233

  18. High-power cw laser bars of the 750 - 790-nm wavelength range

    SciTech Connect

    Degtyareva, N S; Kondakov, S A; Mikayelyan, G T; Gorlachuk, P V; Ladugin, M A; Marmalyuk, Aleksandr A; Ryaboshtan, Yu L; Yarotskaya, I V

    2013-06-30

    We have developed the effective design of semiconductor heterostructures, which allow one to fabricate cw laser diodes emitting in the 750 - 790-nm spectral range. The optimal conditions for fabrication of GaAsP/AlGaInP/GaAs heterostructures by MOCVD have been determined. It is shown that the use of quantum wells with a precisely defined quantity mismatch reduces the threshold current density and increases the external differential efficiency. The results of studies of characteristics of diode laser bars fabricated from these heterostructures are presented. (lasers)

  19. High-power CW and long-pulse lasers in the green wavelength regime for copper welding

    NASA Astrophysics Data System (ADS)

    Pricking, Sebastian; Huber, Rudolf; Klausmann, Konrad; Kaiser, Elke; Stolzenburg, Christian; Killi, Alexander

    2016-03-01

    We report on industrial high-power lasers in the green wavelength regime. By means of a thin disk oscillator and a resonator-internal nonlinear crystal for second harmonic generation we are able to extract up to 8 kW pulse power in the few-millisecond range at a wavelength of 515 nm with a duty cycle of 10%. Careful shaping and stabilization of the polarization and spectral properties leads to a high optical-to-optical efficiency larger than 55%. The beam parameter product is designed and measured to be below 5 mm·mrad which allows the transport by a fiber with a 100 μm core diameter. The fiber and beam guidance optics are adapted to the green wavelength, enabling low transmission losses and stable operation. Application tests show that this laser is perfectly suited for copper welding due to the superior absorption of the green wavelength compared to IR, which allows us to produce weld spots with an unprecedented reproducibility in diameter and welding depth. With an optimized set of parameters we could achieve a splatter-free welding process of copper, which is crucial for welding electronic components. Furthermore, the surface condition does not influence the welding process when the green wavelength is used, which allows to skip any expensive preprocessing steps like tin-coating. With minor changes we could operate the laser in cw mode and achieved up to 1.7 kW of cw power at 515 nm with a beam parameter product of 2.5 mm·mrad. These parameters make the laser perfectly suitable for additional applications such as selective laser melting of copper.

  20. Experimental test of a supercritical helium heat exchanger dedicated to EUROTRANS 150 kW CW power coupler

    NASA Astrophysics Data System (ADS)

    Souli, M.; Fouaidy, M.; Hammoudi, N.

    2010-05-01

    The coaxial power coupler needed for beta = 0.65 superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the proton beam. The estimated RF losses on the power coupler outer conductor in standing wave mode operation are 46 W. To remove these heat loads, a full scale copper coil heat exchanger brazed around the outer conductor was designed and tested using supercritical helium at T = 6 K as a coolant. Our main objective was to minimise the heat loads to cold extremity of SRF cavity maintained at 2 K or 4.2 K. A dedicated test facility named SUPERCRYLOOP was developed and successfully operated in order to measure the performance of the cold heat exchanger. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryomodule. After a short introduction, a brief discussion about the problem of power coupler cooling systems in different machines is made. After that, we describe the experimental set-up and test apparatus. Then, a heat exchanger thermal model will be developed with FEM code COSMOS/M to estimate the different heat transfer coefficients by comparison between numerical simulation results and experimental data in order to validate the design. Finally, thermo-hydraulic behavior of supercritical helium has been investigated as function of different parameters (inlet pressure, flow rate, heat loads).

  1. Frequency Stabilization of High-Power 3.3 μm CW Laser with a Frequency Comb System

    NASA Astrophysics Data System (ADS)

    Kuma, Susumu; Momose, Takamasa

    2010-06-01

    %TEXT OF YOUR ABSTRACT The development of optical frequency combs has enabled a broad range of lasers to be stabilized. In this study, we have developed a system to stabilize high-power CW mid-infrared (MIR) radiation at 3.3 μm using a NIR-VIS frequency comb. The mid-infrared radiation at 3.3 μm were generated as an idler of a CW OPO laser pumped by a 1.064 μm fibre laser. To stabilize the MIR radiation with a frequency comb system in 450 nm to 1.25 μm range, the pump frequency at 1.064 μm and the sum frequency of the MIR radiation and the pump radiation were locked simultaneously to the comb laser. The sum frequency of the MIR and pump radiations was generated in a PPLN crystal. With this technique, we have successfully obtained a width of better than 50 kHz at 3.3 μm with a power of more than 1 W. The stability is currently limited by the response of the PZT in an OPO cavity. Further improvement is underway. The stabilized MIR radiation at 3.3 μm can be used as a source for ultra-high-resolution spectroscopy of vibration-rotation transitions of molecules. Especially, it may be used to decrease the frequency uncertainty of the ν_3 F_2(2) component of the P(7) transition of CH_4, which is one of the optical frequency standards recommended by CIPM. Another application of frequency stabilized MIR radiation is to build-up MIR radiation in a cavity for optical manipulation and trapping of cold molecules we have proposed in New. J. Phys. 11. 055023 (2009).

  2. High-power CW diode-laser-array-pumped solid-state lasers and efficient nonlinear optical frequency

    NASA Astrophysics Data System (ADS)

    Shine, Robert J.; Byer, Robert L.

    1994-01-01

    During the interim period of this bridging contract, we have continued to work on the development of high-power cw diode-laser-array-pumped solid-state lasers. Towards that end, we have built lower power lasers in order to test individual components needed for the high-power laser, specifically we have built a 1 watt ring laser and a 5 watt slab laser. The 1 watt laser was used to study the injection locking process while assembling all the necessary electronics. We have demonstrated that it is possible to injection lock a diode-pumped laser using a single piezo-mounted mirror due to the lower intrinsic laser noise compared to an arc-lamp-pumped system. This allows us to optimize the injection locking servo loop and build a more stable locking system. The 5 watt laser was used as a test bed to find a practical way to mount the slab laser while minimizing the losses that occur at the total internal reflection (TIR) points in the slab. After trying many different means of protecting the TIR surfaces, we found that a new product from DuPont, Teflon AF 1600, has all the properties needed to provide a low loss protective coating. Using this material, the laser had a cavity loss of below 2%, which allowed for efficient operation of the laser in a side-pumped design. This laser produced 5 watts of output power with a slope efficiency near 20%.

  3. CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs

    NASA Astrophysics Data System (ADS)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2015-10-01

    An analysis of radiation, kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The gas flow conservation equations are coupled to the equations for DPAL kinetics and to the Beer-Lambert equations for pump and laser beams propagation. The DPAL kinetic processes in the Cs/CH4 (K/He) gas mixtures considered involve the three low energy levels, (1) n2S1/2, (2) n2P3/2 and (3) n2P1/2 (where n=4,6 for K and Cs, respectively), three excited alkali states and two alkali ionic states. Using the CFD model, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped CW and pulsed Cs and K DPALs. The DPAL power and medium temperature were calculated as a function of pump power and pump pulse duration. The CFD model results were compared to experimental results of Cs and K DPALs.

  4. High average power quasi-CW single-mode green and UV fiber lasers

    NASA Astrophysics Data System (ADS)

    Avdokhin, Alexey; Gapontsev, Valentin; Kadwani, Pankaj; Vaupel, Andreas; Samartsev, Igor; Platonov, Nicholai; Yusim, Alex; Myasnikov, Daniil

    2015-02-01

    Kilowatt-level narrow-linewidth SM ytterbium fiber laser operating in high-repetition-rate QCW regime was used to obtain 700 W average power at 532 nm with single-mode beam quality and wall-plug efficiency of over 23 %. To the best of our knowledge, this is ~60 % higher power than previously reported for single-mode green lasers based on other platforms, and also is ~30 % increase comparing to the previous result obtained by our group on the base of similar fiber laser platform. We have also experimentally proved that the same type of fiber laser can be used for generating of world-record levels of power at other wavelengths of visible and UV spectral ranges by employing cascaded non-linear frequency conversion. Thus, utilizing frequency tripling in 2 LBO crystals, we achieved over 160 W average power of nearly single-mode UV light at 355 nm with THG efficiency of more than 25 %. As far as we know, this is the highest output power ever reported for UV laser with nearly diffraction limited beam quality. We also conducted some preliminary experiments to demonstrate suitability of our approach for generating longer wavelengths of the visible spectrum. By pre-shifting fundamental emission wavelength in fiber Raman converter, followed by frequency doubling in NCPM LBO, we obtained average powers of 36 W at 589 nm and 27 W at 615 nm. These proof-of-concept experiments were performed with low-power pump laser and were not fully optimized with respect to frequency conversion. Our analysis indicates that employing kW-level QCW ytterbium laser with optimized SRS and SHG converters we can achieve hundreds of Watts of average power in red and orange color with single-mode beam quality.

  5. Characteristics and reliability of high power multi-mode InGaAs strained quantum well single emitters with CW output powers of over 5W

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Mason, Maribeth; Moss, Steven C.

    2006-02-01

    High-power multi-mode broad area InGaAs strained quantum well (QW) single emitters (λ ~ 920-980nm) have been mainly used for industrial applications. Recently, these broad area lasers with CW output powers >5W have also found applications in communications as pump lasers for Er-Yb co-doped fiber amplifiers. This application requires very demanding characteristics including higher reliability than industrial applications. In contrast to 980nm single mode InGaAs strained QW lasers that are widely employed in both terrestrial and submarine applications, the fact that multimode lasers have never been used in optical communications necessitates careful study of these lasers. We report investigations of performance characteristics, reliability, and failure modes of high-power multi-mode single emitters. The lasers studied were broad area strained InGaAs-GaAs single QW lasers grown either by MOCVD or MBE. Typical apertures were around 100μm wide and cavity lengths were <=4.2mm. AR-HR coated laser diode chips were mounted on carriers with junction down configuration to reduce thermal impedance. Laser thresholds were <=453mA at RT. At 6A injection current typical CW output powers were over 5W at 25°C with wall-plug efficiency of ~60%. Characteristics measured included thermal impedance and optical beam profiles that are critical in understanding performance and reliability. Automatic current control burn-in tests with different stress conditions were performed and log (I)-V characteristics were measured at RT to correlate degradation in optical output power and an increase in trap density estimated from the 2κ•T term in bulk recombination current. We also report initial analysis of lifetest results and failure modes from these lasers.

  6. Power conversion efficiency of semiconductor injection lasers and laser arrays in CW operation

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1985-01-01

    The problem of optimizing power conversion efficiency of semiconductor lasers and laser arrays and minimizing efficiency degradation due to temperature effects is treated. A method for calculating this efficiency is described and some calculated results are presented and discussed. Under some conditions, a small increase in the thermal resistance of the device can result in a large reduction of its efficiency. Temperature effects are important in high-power semiconductor laser, and in particular in laser arrays, where low thermal resistance heat sinking may be crucial to the device operation.

  7. Fission-activated laser as primary power for CW laser propulsion

    SciTech Connect

    Monroe, D.K.

    1994-12-31

    Recent advances in the development of reactor-pumped lasers (RPL`s) have stimulated renewed interest in the concept of laser-powered propulsion. This paper surveys a number of laser propulsion concepts and identifies the one that is most promising from the standpoint of practicality. It is proposed that a ground-based FALCON (Fission-Activated Laser CONcept) RPL can provide primary power for this launch vehicle design. The laser-vehicle system could launch small payloads into low-earth orbit (LEO) with high repetition rates and at low costs per kilogram. For the favored design, thruster efficiencies are currently estimated to be about 500%, with 800% being seen as a potentially realizable goal after further design refinements. Laser launch system simulations indicate that, with a buy-in laser power of 10 MW, it will be possible to obtain specific impulses in the range of 600 to 800 seconds and payload-to-power ratios of 1 to 3 kg/MW.

  8. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  9. Fission-activated laser as primary power for CW laser propulsion

    SciTech Connect

    Monroe, D.K.

    1993-12-31

    Recent advances in the development of reactor-pumped lasers (RPL`s) have stimulated renewed interest in the concept of laser-powered propulsion. This paper surveys a number of laser propulsion concepts and identifies the one that is most promising from the standpoint of practicality. It is proposed that a ground-based FALCON (Fission-Activated Laser CONcept) RPL can provide primary for this launch vehicle design. The laser-vehicle system could launch small payloads into low-earth orbit (LEO) with high repetition rates and at low costs per kilogram. For the favored design, thruster efficiencies are currently estimated to be about 50%, with 80% being seen as a potentially realizable goal after further design refinements. Laser launch system simulations indicate that with a buy-in laser power of 10 MW, it will be possible to obtain specific impulses in the range of 600 to 800 seconds and payload-to-power ratios of 1 to 3 kg/MW.

  10. Numerical calculations of a high power CW CO2 gas-dynamic laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif; Al-Mutaib, Kheir

    2008-03-01

    Numerical solution of gas-dynamic laser equations in a gas mixture CO2:N2:H2O was carried out, using five-temperature-model (one translational and four vibrational temperatures) by a computational program written in FORTRAN. The spatial distributions of population inversion, gain and temperatures of the gas flow, in addition to the laser intensity and power extraction were studied inside the cavity, for certain initial conditions like pressure (p0=20 atm), temperature (T0= 1500 K), ratio of gases in the laser mixture (CO2:N2:H2O ≡ 10:85:5).

  11. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  12. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST

    NASA Astrophysics Data System (ADS)

    Hillairet, Julien; Mollard, Patrick; Zhao, Yanping; Bernard, Jean-Michel; Song, Yuntao; Argouarch, Arnaud; Berger-By, Gilles; Charabot, Nicolas; Chen, Gen; Chen, Zhaoxi; Colas, Laurent; Delaplanche, Jean-Marc; Dumortier, Pierre; Durodié, Frédéric; Ekedahl, Annika; Fedorczak, Nicolas; Ferlay, Fabien; Goniche, Marc; Hatchressian, Jean-Claude; Helou, Walid; Jacquot, Jonathan; Joffrin, Emmanuel; Litaudon, Xavier; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Patterlini, Jean-Claude; Prou, Marc; Verger, Jean-Marc; Volpe, Robert; Vulliez, Karl; Wang, Yongsheng; Winkler, Konstantin; Yang, Qingxi; Yuan, Shuai

    2015-12-01

    The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the Vr/Vf and SHAD systems.

  13. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST

    SciTech Connect

    Hillairet, Julien Mollard, Patrick; Bernard, Jean-Michel; Argouarch, Arnaud; Berger-By, Gilles; Charabot, Nicolas; Colas, Laurent; Delaplanche, Jean-Marc; Ekedahl, Annika; Fedorczak, Nicolas; Ferlay, Fabien; Goniche, Marc; Hatchressian, Jean-Claude; Helou, Walid; Jacquot, Jonathan; Joffrin, Emmanuel; Litaudon, Xavier; Lombard, Gilles; Magne, Roland; Patterlini, Jean-Claude; and others

    2015-12-10

    The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the V{sub r}/V{sub f} and SHAD systems.

  14. High average power CW FELs (Free Electron Laser) for application to plasma heating: Designs and experiments

    SciTech Connect

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X. . Lab. for Plasma Research); Freund, H.P. )

    1989-01-01

    A short period wiggler (period {approximately} 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam ( body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation.

  15. High output power of differently cut Nd:MgO:LiTaO3 CW lasers

    NASA Astrophysics Data System (ADS)

    Sun, D. H.; Liu, S. D.; Wang, D. Z.; Sang, Y. H.; Kang, X. L.; Liu, H.; Bi, Y.; Yan, B. X.; He, J. L.; Wang, J. Y.

    2013-04-01

    A high-quality Nd3+ and Mg2+ co-doped LiTaO3 (Nd:MgO:LT) crystal was grown by the Czochralski method. The polarized absorption spectra and fluorescence spectra were studied, and the absorption cross section was calculated by Judd-Ofelt (J-O) theory. The laser performance with different sample cuts of the crystal was investigated for the first time, and it was found that Nd:MgO:LT crystal with different cutting directions (a and c) exhibits different laser properties. By optimizing a partial reflectivity mirror in the laser experimental setting, a high continuous wave output power of 3.58 W was obtained at 1092 and 1076 nm with an optical-to-optical conversion efficiency of 22.78% and slope efficiency of 26.06%. The results indicate that Nd:MgO:LT crystal is a promising candidate for the manufacture of Nd3+ doped periodically poled MgO:LiTaO3 crystal (Nd:PPMgOLT), which should have considerable applications in self-frequency doubling and optical parametric oscillation laser devices.

  16. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL.

    PubMed

    Ma, Yufei; Lewicki, Rafał; Razeghi, Manijeh; Tittel, Frank K

    2013-01-14

    An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor platform was demonstrated for detection of carbon monoxide (CO) and nitrous oxide (N2O). This sensor used a state-of-the art 4.61 μm high power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at 10°C as the excitation source. For the R(6) CO absorption line, located at 2169.2 cm(-1), a minimum detection limit (MDL) of 1.5 parts per billion by volume (ppbv) at atmospheric pressure was achieved with a 1 sec acquisition time and the addition of 2.6% water vapor concentration in the analyzed gas mixture. For the N2O detection, a MDL of 23 ppbv was obtained at an optimum gas pressure of 100 Torr and with the same water vapor content of 2.6%. In both cases the presence of water vapor increases the detected CO and N2O QEPAS signal levels as a result of enhancing the vibrational-translational relaxation rate of both target gases. Allan deviation analyses were performed to investigate the long term performance of the CO and N2O QEPAS sensor systems. For the optimum data acquisition time of 500 sec a MDL of 340 pptv and 4 ppbv was obtained for CO and N2O detection, respectively. To demonstrate reliable and robust operation of the QEPAS sensor a continuous monitoring of atmospheric CO and N2O concentration levels for a period of 5 hours were performed. PMID:23388995

  17. Continuously Frequency Tunable High Power Sub-THz Radiation Source—Gyrotron FU CW VI for 600 MHz DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Kosuga, Kosuke; Agusu, La; Ikeda, Ryosuke; Ogawa, Isamu; Saito, Teruo; Matsuki, Yoh; Ueda, Keisuke; Fujiwara, Toshimichi

    2010-07-01

    A high frequency gyrotron with a 15 T superconducting magnet named Gyrotron FU CW VI has achieved continuous frequency tuning through the relatively wide range of 1.5 GHz near 400 GHz. The operation is at the fundamental cyclotron resonance of the TE06 cavity mode with many higher order axial modes. The output power measured at the end of the circular waveguide system ranges from 10 to 50 watts at the low acceleration voltage of 12 kV for beam electrons. The beam current is also low. It is around 250 mA. This gyrotron is designed as a demountable radiation source for the 600 MHz DNP-NMR spectroscopy. The design and operation results of the gyrotron FU CW VI are presented.

  18. High-power ({gt}0.9 W cw) diffraction-limited semiconductor laser based on a fiber Bragg grating external cavity

    SciTech Connect

    Cornwell, D.M. , Jr.; Thomas, H.J.

    1997-02-01

    We have developed a high-power ({gt}0.9 W cw) diffraction-limited semiconductor laser based on a tapered semiconductor optical amplifier using a fiber Bragg grating in an external cavity configuration. Frequency-selective feedback from the fiber grating is injected into the amplifier via direct butt coupling through a single mode fiber, resulting in a spectrally stable and narrow ({lt}0.3 nm) high-power laser for solid-state laser pumping, laser remote sensing, and optical communications. {copyright} {ital 1997 American Institute of Physics.}

  19. High-power CW and passively Q-switched laser operation of Yb:GdCa4O(BO3)3 crystal

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowen; Wang, Lisha; Liu, Junhai; Guo, Yunfeng; Han, Wenjuan; Xu, Honghao; Yu, Haohai; Zhang, Huaijin

    2016-05-01

    We demonstrate efficient high-power CW and passively Q-switched operations of Yb:GdCa4O(BO3)3 lasers. An output power of 18.2 W is generated at 1031.5 nm in CW mode, with optical-to-optical and slope efficiencies being respectively 55% and 70%, with respect to incident pump power. In passively Q-switched operation with a Cr4+:YAG crystal as saturable absorber, a maximum average output power of 15.6 W is produced at a pulse repetition rate of 91 kHz, with an optical-to-optical efficiency of 44%. Low-repetition-rate Q-switched action is also realized, generating an average output power of 4.2 W at 5.7 kHz, the resulting pulse energy and duration are 737 μJ and 3.6 ns, leading to a peak power amounting to 205 kW.

  20. CW laser light condensation.

    PubMed

    Zhurahov, Michael; Bekker, Alexander; Levit, Boris; Weill, Rafi; Fischer, Baruch

    2016-03-21

    We present a first experimental demonstration of classical CW laser light condensation (LC) in the frequency (mode) domain that verifies its prediction (Fischer and Weill, Opt. Express20, 26704 (2012)). LC is based on weighting the modes in a noisy environment in a loss-gain measure compared to an energy (frequency) scale in Bose-Einstein condensation (BEC). It is characterized by a sharp transition from multi- to single-mode oscillation, occurring when the spectral-filtering (loss-trap) has near the lowest-loss mode ("ground-state") a power-law dependence with an exponent smaller than 1. An important meaning of the many-mode LC system stems from its relation to lasing and photon-BEC. PMID:27136845

  1. Scaling c-w electron-beam-pumped rare gas lasers to ultrahigh average power. Final report, 16 May-15 Nov 90

    SciTech Connect

    Not Available

    1991-04-11

    The overall objective of this program is to demonstrate the feasibility of efficiently scaling Ar:Xe lasers to ultra-high average power levels for strategic defense applications. The contractor has experimentally verified that the Ar:Xe laser system, which operates at near-IR wavelengths (1.73 micrometers), can achieve laser efficiencies of 4% with electron beam pumping at pump power densities as low as 10 watts/cc. This new efficient electron beam pumping regime promises cost-effective scaling of Ar:Xe laser systems to multi-megawatt average power levels while maintaining high electrical efficiency (4-6%) and near-diffraction-limited beam quality. In the Phase II effort, detailed experiments will be performed on an electron beam pumped Ar:Xe laser with a closed cycle flow loop at pump power densities of 10-20 W/cc. The objective of these experiments is to validate methods for correction and control of the optical distortions resulting from experiments is to validate methods for correction and control of the optical distortions resulting from CW pumping. Control of thermal distortions will be achieved by optimally contouring the spatial profile of electron beam power deposition in the active volume. With the optimal deposition profile, higher order optical distortions will be negligible and a diffraction limited beam will be obtained after tilt and focus corrections are made. These corrections can be made by a simple local loop by an adaptive optics system in the beam train.

  2. Free electron laser with small period wiggler and sheet electron beam: A study of the feasibility of operation at 300 GHz with 1 MW CW output power

    SciTech Connect

    Booske, J.H.; Granatstein, V.L.; Antonsen, T.M. Jr.; Destler, W.W.; Finn, J.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Radack, D.; Rodgers, J.

    1988-01-01

    The use of a small period wiggler (/ell//sub ..omega../ < 1 cm) together with a sheet electron beam has been proposed as a low cost source of power for electron cyclotron resonance heating (ECRH) in magnetic fusion plasmas. Other potential applications include space-based radar systems. We have experimentally demonstrated stable propagation of a sheet beam (18 A. 1 mm /times/ 20 mm) through a ten-period wiggler electromagnet with peak field of 1.2 kG. Calculation of microwave wall heating and pressurized water cooling have also been carried out, and indicate the feasibility of operating a near-millimeter, sheet beam FEL with an output power of 1 MW CW (corresponding to power density into the walls of 2 kW/cm/sup 2/). Based on these encouraging results, a proof-of-principle experiment is being assembled, and is aimed at demonstrating FEL operating at 120 GHz with 300 kW output power in 1 ..mu..s pulses: electron energy would be 410 keV. Preliminary design of a 300 GHz 1 MW FEL with an untapered wiggler is also presented. 10 refs., 5 figs., 3 tabs.

  3. CW laser pumped emerald laser

    SciTech Connect

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  4. 2 MW CW RF load for gyrotrons

    SciTech Connect

    Lawrence Ives, R.; Marsden, David; Mizuhara, Max; Collins, George; Neilson, Jeff; Borchard, Philipp

    2011-07-01

    Final design and assembly are in progress for a 2MW CW RF load for gyrotrons. Such loads are required for testing high power gyrotrons for electron cyclotron heating of fusion plasmas. The research is building on experience with a 1 MW load to increase the power capability, reduce backscattered RF power, and improve the mechanical design. (author)

  5. Design and Construction of a 500 kW CW, 400 MHz Klystron to be used as RF Power Source for LHC/RF Component Tests

    NASA Astrophysics Data System (ADS)

    Frischholz, H.; Fowkes, W. R.; Pearson, C.

    1997-05-01

    A 500 kW CW klystron operating at 400 MHz was jointly developed and constructed by CERN and SLAC for use as a high power source at CERN for testing LHC/RF components such as circulators, RF absorbers and superconducting cavities with their input couplers. The design is a modification of the 353 MHz SLAC PEP-I klystron which resulted in lower engineering costs as well as reduced development and construction time. More than 80% of the original PEP-I tube parts could be incorporated in the LHC test klystron. The physical length between cathode plane and upper pole plate was kept unchanged so that a PEP-I tube focusing frame, available at CERN, could be re-used. With the aid of the klystron simulation codes JPNDISK and CONDOR, the design of the LHC tube was accomplished, which resulted in a tube with noticeably higher efficiency than its predecessor, the PEP-I klystron. The integrated cavities were redesigned by using SUPERFISH and the output coupling circuit, which also required redesigning, was done with the aid of MAFIA. Details of the tube development and test results are presented. Finally the set-up of the LHC/RF test stand and the features of its auxiliary high-power RF equipment, such as circulator and absorber, are described.

  6. Calorimetric output power measurements on a CW 20 kW 7.16 GHz microwave transmitter

    NASA Technical Reports Server (NTRS)

    Perez, Raul M.; Conroy, Bruce L.

    1991-01-01

    A calorimetric measurement technique developed for NASA's Deep Space Network (DSN) transmitters that does not require data on the coolant's thermal parameters is described. Calibration of the measurement system is achieved by measuring the DC input power to the klystron and relating coolant temperature increases to this known power dissipation. Agreement between calorimetric and electrical measurements of total system power was good, the difference being less than 2 percent. The operation of the system was not greatly affected by the composition of the coolant, which was varied from pure water to 40 percent ethylene glycol by mass. Good accuracy was also shown at output power levels, which varied over a 3.6:1 range.

  7. A convenient high power high efficiency blue cw single frequency laser by IR diode laser doubling with PPKTP

    NASA Astrophysics Data System (ADS)

    Danekar, Koustubh; Khademian, Ali; Hassan Rezaeian, Nima; Shiner, David

    2010-03-01

    We report on high efficiency resonant doubling to 486nm using periodically poled KTP. A stable blue power of 680 ± 5 mW was obtained using the 840 mW output power of a FBG stabilized PM fiber coupled IR semiconductor laser. This gives an overall conversion efficiency of 80% for generating blue. To obtain this result, all losses in the system were carefully studied and minimized. Using a similar cavity design replacing PPKTP with CLBO we are additionally investigating a second doubling stage for efficient UV generation to 243nm.

  8. All-solid-state cw frequency-doubling Nd:YLiF4/LBO blue laser with 4.33 W output power at 454 nm under in-band diode pumping at 880 nm.

    PubMed

    Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing

    2010-07-20

    We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF. PMID:20648194

  9. Design and Construction of a 500 KW CW, 400 MHZ Klystron To Be Used As RF Power Source For LHC/RF Component Tests

    SciTech Connect

    Pearson, Chris

    2003-05-05

    A 500 kW cw klystron operating at 400 MHz was developed and constructed jointly by CERN and SLAC for use as a high-power source at CERN for testing LHC/RF components such as circulators, RF absorbers and superconducting cavities with their input couplers. The design is a modification of the 353 MHz SLAC PEP-I klystron. More than 80% of the original PEP-I tube parts could thus be incorporated in the LHC test klystron which resulted in lower engineering costs as well as reduced development and construction time. The physical length between cathode plane and upper pole plate was kept unchanged so that a PEP-I tube focusing solenoid, available at CERN, could be re-used. With the aid of the klystron simulation codes JPNDISK and CONDOR, the design of the LHC tube was accomplished, which resulted in a tube with noticeably higher efficiency than its predecessor, the PEP-I klystron. The integrated cavities were redesigned using SUPERFISH and the output coupling circuit, which also required redesigning, was done with the aid of MAFIA. Details of the tube development and test results are presented.

  10. PRODUCTION OF HIGH-POWER CW UV BY RESONANT FREQUENCY QUADRUPLING OF A ND:YLF LASER.

    SciTech Connect

    KUCZEWSKI,A.J.

    1999-01-28

    We have constructed a single ring to resonantly double an 18 watt Nd:YLF mode-locked laser and re-double the stored green to produce over 4 watts of power in the ultra-violet (UV). This laser is used to produce a beam of 470 MeV gamma-rays by Compton backscattering the laser beam from 2.8 GeV electrons stored in a synchrotron. Achieving high luminosity of the colliding beams requires very good mode quality and beam stability at the intersection point 22 meters from the laser. The ring consists of six mirrors, with two 25 cm radius of curvature mirrors enclosing each nonlinear crystal. The drive laser is a lamp pumped Nd:YLF with a 50 ps bunch length at 76 MHz. A pointing stabilizer servo has been constructed as part of the infrared (IR) mode matching telescope. The IR to green conversion is accomplished in a 15 mm long non-critically phased matched LB0 crystal located at a 40 micron waist, with an IR conversion efficiency of 70%. A stable, nearly diffraction limited W beam of up to 4.2 watts is generated in a BBO crystal in the green storage ring. The output power is relatively independent of the efficiency of the LB0 and BBO crystals. This fact makes it possible to reduce the amount of non-TEM{sub 00} modes created by walk-off of the UV by using relatively thin BBO crystals. At present, however, the lower bound on the BBO thickness is limited by the loss of conversion efficiency at high power.

  11. Production of high-power CW UV by resonant frequency quadrupling of a Nd:YLF laser

    SciTech Connect

    Kuczewski, A.J.; Thorn, C.E.; Matone, G.; Giordano, G.

    1999-06-01

    The authors have constructed a single ring to resonantly double an 18 watt Nd:YLF mode-locked laser and re-double the stored green to produce over 4 watts of power in the ultra-violet (UV). This laser is used to produce a beam of 470 MeV gamma-rays by Compton backscattering the laser beam from 2.8 GeV electrons stored in a synchrotron. Achieving high luminosity of the colliding beams requires very good mode quality and beam stability at the intersection point 22 meters from the laser. The ring consists of six mirrors, with two 25 cm radius of curvature mirrors enclosing each nonlinear crystal. The drive laser is a lamp-pumped Nd:YLF with a 50 ps bunch length at 76 MHz. A pointing stabilizer servo has been constructed as part of the infrared (IR) mode matching telescope. The IR to green conversion is accomplished in a 15 mm long non-critically phased matched LBO crystal located at a 40 micron waist, with an IR conversion efficiency of 70%. A stable, nearly diffraction limited UV beam of up to 4.2 watts is generated in a BBO crystal in the green storage ring. The output power is relatively independent of the efficiency of the LBO and BBO crystals. This fact makes it possible to reduce the amount of non-TEM{sub 00} modes created by walk-off of the UV by using relatively thin BBO crystals. At present, however, the lower bound on the BBO thickness is limited by the loss of conversion efficiency at high power.

  12. Generation of 14  W at 589  nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal.

    PubMed

    Surin, A A; Borisenko, T E; Larin, S V

    2016-06-01

    We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels. PMID:27244435

  13. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    PubMed Central

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  14. Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kittell, Aaron W.; Hyde, James S.

    2015-06-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10-3 to 10-7 s in a manner that is analogous to saturation transfer spectroscopy.

  15. Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy.

    PubMed

    Kittell, Aaron W; Hyde, James S

    2015-06-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10(-3) to 10(-7) s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  16. CW silver ion laser with electron beam excitation

    NASA Astrophysics Data System (ADS)

    Wernsman, B.; Prabhuram, T.; Lewis, K.; Gonzalez, F.; Villagran, M.

    1988-08-01

    A CW laser power of 140 mW was obtained in the 840.39-nm transition of Ag II by electron-beam excitation. The electron-beam excited metal-vapor ion laser is capable of operating using metals with high vaporization temperatures, and is of interest for generation of CW coherent radiation in the 220-260-nm spectral region.

  17. CW-pulsed laser

    SciTech Connect

    Wert, J. C.

    1981-09-01

    An apparatus for generating a spatially coherent laser beam having both CW and pulsed modes is disclosed. The modes are generated in differing volumetric regions of a single gain medium excited by a continuous energy pump. The CW portion of the output beam passes from the gain medium through a partially transmissive output coupling. The pulsed modes in the output beam are created in the respective region of the gain medium when transition materials from a selected group are stimulated to undergo an abrupt change between their reflective and transmissive states. Either cavity dumped or Q-switched configurations can be created by selective and patterned location of the transition materials at the ends of the gain medium. Symmetric organization of the volumetric regions within the gain medium allows temporal superposition of the two modes while maintaining spatial distinctiveness within the laser beam generated.

  18. NBS-LASL cw microtron

    SciTech Connect

    Penner, S.; Cutler, R.I.; Debenham, D.H.

    1980-01-01

    The NBS-LASL racetrack microtron (RIM) is a joint research project of the National Bureau of Standards and the Los Alamos Scientific Laboratory. The project goals are to determine the feasibility of, and develop the necessary technology for building high-energy, high-current, continuous-beam (cw) electron accelerators using beam recirculation and room-temperature rf accelerating structures. To achieve these goals, a demonstration accelerator will be designed, constructed, and tested. Parameters of the demonstration RIM are: injection energy - 5 MEV; energy gain per pass -12 MeV; number of passes - 15; final beam energy - 185 MeV; maximum current 550 ..mu..A. One 450 kW cw klystron operating at 2380 MHz will supply rf power to both the injector linac and the main accelerating section of the RTM. The disk and washer standing wave rf structure being developed at LASL will be used. SUPERFISH calculations indicate that an effective shunt impedance (ZT) of about 100 M..cap omega../m can be obtained. Thus, rf power dissipation of 25 kW/m results in an energy gain of more than 1.5 MeV/m. Accelerators of this type should be attractive for many applications. At beam energies above about 50 MeV, an RTM should be considerably cheaper to build and operate than a conventional pulsed rf linac of the same maximum energy and time-average beam power. In addition, the RTM provides superior beam quality and a continuous beam which is essential for nuclear physics experiments requiring time-coincidence measurements between emitted particles.

  19. A 100 MV cryomodule for CW operation

    SciTech Connect

    Charles Reece

    2005-07-10

    A cryomodule designed for high-gradient CW operation has been built at Jefferson Lab. The Renascence cryomodule is the final prototype of a design for use in the 12 GeV CEBAF upgrade. The module uses eight 7-cell 1497 MHz cavities to be individually powered by 13 kW klystrons. Specifications call for providing >109 MV CW with < 250 W of dynamic heat at 2.07 K. The module incorporates a new generation of tuners and higher power input waveguides. A mixture of the new HG and LL cavity shapes are used. A new high thermal conductivity RF feedthrough has been developed and used on the 32 HOM coupler probes of Renascence. The cryomodule assembly is complete. Testing is to begin late June. Design features and initial test data will be presented.

  20. High efficiency cw laser-pumped tunable alexandrite laser

    SciTech Connect

    Lai, S.T.; Shand, M.L.

    1983-10-01

    High efficiency cw alexandrite laser operation has been achieved. With longitudinal pumping by a krypton laser in a nearly concentric cavity, a 51% output power slope efficiency has been measured. Including the transmission at the input coupler mirror, a quantum yield of 85% has been attained above threshold. Tunability from 726 to 802 nm has also been demonstrated. The low loss and good thermal properties make alexandrite ideal for cw laser operation.

  1. 50W CW output power and 12mJ pulses from a quasi-2-level Yb:YAG ceramic rod laser end-pumped at the 969nm zero-phonon line

    NASA Astrophysics Data System (ADS)

    Fries, Christian; Weitz, Marco; Theobald, Christian; v. Löwis of Menar, Patric; Bartschke, Jürgen; L'huillier, Johannes A.

    2015-02-01

    With the advent of high power and narrow bandwidth 969 nm pump diodes, direct pumping into the upper laser level of Yb:YAG and hence quasi-2-level lasers became possible. Pumping directly into the emitting level leads to higher quantum efficiency and reduction of non-radiative decay. Consequently, thermal load, thermal lensing and risk of fracture are reduced significantly. Moreover pump saturation and thermal population of uninvolved energy-levels in ground and excited states are benefical for a homogenous distribution of the pump beam as well as the reduction of reabsorption loss compared to 3-level systems, which allows for high-power DPSS lasers. Beside continuous-wave (cw) operation, nanosecond pulses with a repetition rate between 1 and 5 kHz are an attractive alternative to flashlamp-pumped systems (10-100 Hz) in various measurement applications that require higher data acquisition rates because of new faster detectors. Based on measurements of the absorption and a detailed numerical model for pump beam distribution, including beam propagation and saturation factors, power-scaling of a ceramic rod Yb:YAG oscillator was possible. Finally a cw output power of 50 W with 33 % pump efficiency at 1030 nm has been demonstrated (M2 < 1.2). Nanosecond pulses have been produced by cavity-dumping of this system. The cavity-dumped setup allowed for 3-10 ns pulses with a pulse energy of 12.5 mJ at 1 kHz (M2 < 1.1). In order to achieve these results a systematic experimental and numerical investigation on gain dynamics and the identification of different stable operating regimes has been carried out.

  2. 3 μm CW lasers for myringotomy and microsurgery.

    PubMed

    Linden, Kurt J; Pfeffer, Christian P; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S

    2013-03-01

    This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899. PMID:24382990

  3. Phonological and Phonetic Asymmetries of Cw Combinations

    ERIC Educational Resources Information Center

    Suh, Yunju

    2009-01-01

    This thesis investigates the relationship between the phonological distribution of Cw combinations, and the acoustic/perceptual distinctiveness between syllables with plain C onsets and with Cw combination onsets. Distributional asymmetries of Cw combinations discussed in this thesis include the avoidance of Cw combinations in the labial consonant…

  4. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm.

    PubMed

    Gün, Teoman; Metz, Philip; Huber, Günter

    2011-03-15

    We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time. PMID:21403756

  5. Diode-pumped CW molecular lasers

    NASA Astrophysics Data System (ADS)

    Wellegehausen, B.; Luhs, W.

    2016-05-01

    First continuous laser oscillation on many lines in the range of 533-635 nm on different transitions of Na2 and Te2 molecules has been obtained, optically pumped with common cw blue emitting InGaN diode lasers operating around 445 and 460 nm. Spectral narrowing of the diode laser is achieved with a beamsplitter and grating setup, allowing use of more than 50 % of the diode power. Operation conditions and properties of the laser systems are presented, and perspectives for the realization of compact low cost molecular lasers are discussed.

  6. On the measurement of wind speeds in tornadoes with a portable CW/FM-CW Doppler radar

    SciTech Connect

    Bluestein, H.B. . School of Meteorology); Unruh, W.P. )

    1991-01-01

    Both the formation mechanism and structure of tornadoes are not yet well understood. The Doppler radar is probably the best remote-sensing instrument at present for determining the wind field in tornadoes. Although much has been learned about the non-supercell tornado from relatively close range using Doppler radars at fixed sites, close-range measurements in supercell tornadoes are relatively few. Doppler radar can increase significantly the number of high-resolution, sub-cloud base measurements of both the tornado vortex and its parent vortex in supercells, with simultaneous visual documentation. The design details and operation of the CW/FM-CW Doppler radar developed at the Los Alamos National Laboratory and used by storm-intercept teams at the Univ. of Oklahoma are described elsewhere. The radar transmits 1 W at 3 cm, and can be switched back and forth between CW and FM-CW modes. In the FM-CW mode the sweep repetition frequency is 15.575 kHz and the sweep width 1.9 MHz; the corresponding maximum unambiguous range and velocity, and range resolution are 5 km, {plus minus} 115 m s{sup {minus}1}, and 78 m respectively. The bistatic antennas, which have half-power beamwidths of 5{degree}, are easily pointed wit the aid of a boresighted VCR. FM-CW Data are recorded on the VCR, while voice documentation is recorded on the audio tape; video is recorded on another VCR. The radar and antennas are easily mounted on a tripod, and can be set up by three people in a minute or two. The purpose of this paper is to describe the signal processing techniques used to determine the Doppler spectrum in the FM-CW mode and a method of its interpretation in real time, and to present data gathered in a tornadic storm in 1990. 15 refs., 7 figs.

  7. cw passive mode locking of a Ti:sapphire laser

    SciTech Connect

    Sarukura, N.; Ishida, Y.; Nakano, H.; Yamamoto, Y. )

    1990-02-26

    cw passive mode locking of a Ti:sapphire laser is achieved with 1,1{prime}-dietyl-2,2{prime}-dicarbocyanine iodide as the saturable absorber dye, using a 5 {mu}m thin dye jet flow. The pulse width is 4.0 ps, which is almost the transform-limited pulse for the observed spectrum width. The output power is {similar to}50 mW, when it is pumped by a 5 W cw Ar laser, while the tuning range is 745--755 nm.

  8. First experiments with gasdynamic ion source in CW mode.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Vodopyanov, A; Tarvainen, O

    2016-02-01

    A new type of ECR ion source-a gasdynamic ECR ion source-has been recently developed at the Institute of Applied Physics. The main advantages of such device are extremely high ion beam current with a current density up to 600-700 emA/cm(2) in combination with low emittance, i.e., normalized RMS emittance below 0.1 π mm mrad. Previous investigations were carried out in pulsed operation with 37.5 or 75 GHz gyrotron radiation with power up to 100 kW at SMIS 37 experimental facility. The present work demonstrates the first experience of operating the gasdynamic ECR ion source in CW mode. A test bench of SMIS 24 facility has been developed at IAP RAS. 24 GHz radiation of CW gyrotron was used for plasma heating in a magnetic trap with simple mirror configuration. Initial studies of plasma parameters were performed. Ion beams with pulsed and CW high voltage were successfully extracted from the CW discharge. Obtained experimental results demonstrate that all advantages of the gasdynamic source can be realized also in CW operation. PMID:26931933

  9. First experiments with gasdynamic ion source in CW mode

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Vodopyanov, A.; Tarvainen, O.

    2016-02-01

    A new type of ECR ion source—a gasdynamic ECR ion source—has been recently developed at the Institute of Applied Physics. The main advantages of such device are extremely high ion beam current with a current density up to 600-700 emA/cm2 in combination with low emittance, i.e., normalized RMS emittance below 0.1 π mm mrad. Previous investigations were carried out in pulsed operation with 37.5 or 75 GHz gyrotron radiation with power up to 100 kW at SMIS 37 experimental facility. The present work demonstrates the first experience of operating the gasdynamic ECR ion source in CW mode. A test bench of SMIS 24 facility has been developed at IAP RAS. 24 GHz radiation of CW gyrotron was used for plasma heating in a magnetic trap with simple mirror configuration. Initial studies of plasma parameters were performed. Ion beams with pulsed and CW high voltage were successfully extracted from the CW discharge. Obtained experimental results demonstrate that all advantages of the gasdynamic source can be realized also in CW operation.

  10. CW operation of an intracavity pumped molecular submillimeter-wave laser

    NASA Technical Reports Server (NTRS)

    Koepf, G. A.

    1977-01-01

    The 373-micron line of CH3CN was operated in a CW mode in an arrangement where the submillimeter (SMM)-wave laser is placed inside the resonator of the CO2 pump laser. 1 mW of CW output power was obtained; this is five times the power of a comparable SMM-wave laser in the common extracavity arrangement. In a pulsed mode, a peak power of 46 mW was measured.

  11. Novel beam delivery fibers for delivering flat-top beams with controlled BPP for high power CW and pulsed laser applications

    NASA Astrophysics Data System (ADS)

    Jollivet, C.; Farley, K.; Conroy, M.; Abramczyk, J.; Belke, S.; Becker, F.; Tankala, K.

    2016-03-01

    Single-mode (SM) kW-class fiber lasers are the tools of choice for material processing applications such as sheet metal cutting and welding. However, application requirements include a flat-top intensity profile and specific beam parameter product (BPP). Here, Nufern introduces a novel specialty fiber technology capable of converting a SM laser beam into a flat-top beam suited for these applications. The performances are demonstrated using a specialty fiber with 100 μm pure silica core, 0.22 NA surrounded by a 120 μm fluorine-doped layer and a 360 μm pure silica cladding, which was designed to match the conventional beam delivery fibers. A SM fiber laser operating at a wavelength of 1.07 μm and terminated with a large-mode area (LMA) fiber with 20 μm core and 0.06 NA was directly coupled in the core of the flat-top specialty fiber using conventional splicing technique. The output beam profile and BPP were characterized first with a low-power source and confirmed using a 2 kW laser and we report a beam transformation from a SM beam into a flat-top intensity profile beam with a 3.8 mm*mrad BPP. This is, to the best of our knowledge, the first successful beam transformation from SM to MM flat-top with controlled BPP in a single fiber integrated in a multi-kW all-fiber system architecture.

  12. CW ultrasonic bolt tensioning monitor

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1977-01-01

    A CW ultrasonic device is described for measuring frequency shifts of the peak of a mechanical resonance in a body. One application of the device is measuring the strain in a bolt, and other applications such as measuring the thickness of a body, measuring the depth of a flaw in a body, measuring the elongation of a body, and measuring changes in velocity of sound in a body. The body is connected, by means of a CW transducer, to electrical circuit means including a narrow band RF amplifier to form a closed loop feedback marginal oscillator that frequency locks the device to the peak of a mechanical resonance in the body. When the frequency of this peak changes, because of a physical change in the body, the frequency of the oscillator changes. The device includes an automatic frequency resonant peak tracker that produces a voltage that is related to a change in frequency of the oscillator. This voltage is applied to the RF amplifier to change the center of its frequency band to include the frequency of the peak and is a measure of the frequency shift.

  13. Nonlinear optical properties of methyl red under CW irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Ye, Qing; Wang, Chen; Wang, Jin; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo

    2015-12-01

    Organic materials have wide potential application in nonlinear optical devices. The nonlinear optical (NLO) properties of methyl red (MR) doped polymethyl methacrylate (MR-PMMA) are investigated under CW laser irradiation at 473 nm, 532 nm and 632.8 nm, respectively. By combining Kramers-Kronig (K-K) relation and CW Z-scan technique, the effective refractive index n2 and the change of refractive index Δn are obtained under different scanning speed at 473 nm and 532 nm. Δn is positive at 473 nm, while Δn is negative at 532 nm. The experimental result is consistent with that of K-K relation. With the scanning speed decreasing, the NLO properties of MR-PMMA are enhanced. With different laser powers at 632.8 nm, MR-PMMA has only nonlinear absorption rather than nonlinear refraction. Meanwhile, the sample is investigated under pulse laser irradiation at 532 nm. Through the comparison of results of CW Z-scan and pulse Z-scan, the influence of the cumulative thermal effect on NLO properties of material is investigated. The results indicate that, under CW irradiation near the absorption peak wavelength, the cumulative thermal effect has great influence to the NLO properties of MR-PMMA.

  14. Modeling of cw OIL energy performance based on similarity criteria

    NASA Astrophysics Data System (ADS)

    Mezhenin, Andrey V.; Pichugin, Sergey Y.; Azyazov, Valeriy N.

    2012-01-01

    A simplified two-level generation model predicts that power extraction from an cw oxygen-iodine laser (OIL) with stable resonator depends on three similarity criteria. Criterion τd is the ratio of the residence time of active medium in the resonator to the O2(1Δ) reduction time at the infinitely large intraresonator intensity. Criterion Π is small-signal gain to the threshold ratio. Criterion Λ is the relaxation to excitation rate ratio for the electronically excited iodine atoms I(2P1/2). Effective power extraction from a cw OIL is achieved when the values of the similarity criteria are located in the intervals: τd=5-8, Π=3-8 and Λ<=0.01.

  15. Design of 250-MW CW RF system for APT

    SciTech Connect

    Rees, D.

    1997-09-01

    The design for the RF systems for the APT (Accelerator Production of Tritium) proton linac will be presented. The linac produces a continuous beam power of 130 MW at 1300 MeV with the installed capability to produce up to a 170 MW beam at 1700 MeV. The linac is comprised of a 350 MHz RFQ to 7 MeV followed in sequence by a 700 MHz coupled-cavity drift tube linac, coupled-cavity linac, and superconducting (SC) linac to 1700 MeV. At the 1700 MeV, 100 mA level the linac requires 213 MW of continuous-wave (CW) RF power. This power will be supplied by klystrons with a nominal output power of 1.0 MW. 237 kystrons are required with all but three of these klystrons operating at 700 MHz. The klystron count includes redundancy provisions that will be described which allow the RF systems to meet an operational availability in excess of 95 percent. The approach to achieve this redundancy will be presented for both the normal conducting (NC) and SC accelerators. Because of the large amount of CW RF power required for the APT linac, efficiency is very important to minimize operating cost. Operation and the RF system design, including in-progress advanced technology developments which improve efficiency, will be discussed. RF system performance will also be predicted. Because of the simultaneous pressures to increase RF system reliability, reduce tunnel envelope, and minimize RF system cost, the design of the RF vacuum windows has become an important issue. The power from a klystron will be divided into four equal parts to minimize the stress on the RF vacuum windows. Even with this reduction, the RF power level at the window is at the upper boundary of the power levels employed at other CW accelerator facilities. The design of a 350 MHz, coaxial vacuum window will be presented as well as test results and high power conditioning profiles. The transmission of 950 kW, CW, power through this window has been demonstrated with only minimal high power conditioning.

  16. 219.3 W CW diode-side-pumped 1123 nm Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Bo, Y.; Xu, Y. T.; Yang, F.; Wang, Z. C.; Wang, B. S.; Xu, J. L.; Gao, H. W.; Peng, Q. J.; Cui, D. F.; Xu, Z. Y.

    2010-07-01

    We demonstrate a high power continuous wave (CW) diode-side-pumped Nd:YAG laser operating at 1123 nm with a plano-plano configuration. By means of precise coating, a single 1123 nm wavelength is achieved. Under the pump power of 1080 W, an output power of 219.3 W is obtained, which corresponds to an optical-optical conversion efficiency of 20.3%. To the best of our knowledge, this is the highest output power for CW 1123 nm laser based on Nd:YAG crystal.

  17. 93.7 W 1112 nm diode-side-pumped CW Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Wang, Z. C.; Xu, Y. T.; Yang, F.; Wang, B. S.; Gao, H. W.; Bo, Y.; Peng, Q. J.; Cui, D. F.; Xu, Z. Y.

    2010-07-01

    We demonstrate a high power continuous wave (CW) infrared laser operated at 1112 nm from a diode side-pumped Nd:YAG crystal with a plano-plano symmetrical resonator. By inserting an etalon, an output power of as high as 93.7 W at 1112 nm was obtained at the pump power of 570 W with conversion efficiency of 16.4%. The beam quality factor of M2 was measured to be about 17. The wavelength tunable performance of the etalon was also analyzed. To the best of our knowledge, it is the highest output power at 1112 nm CW laser based on Nd:YAG crystal.

  18. High efficiency CW green-pumped alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, J. W.; Brown, D. C.

    2006-02-01

    High power, CW and pulsed alexandrite lasers were produced by pumping the laser rod with a high quality diode pumped 532 nm laser sources. This pumping architecture provides stable performance with output power > 1.4 W at 767nm in the free running mode and 0.78W at 1000 Hz. An output of 80 mW at 375.5 nm was achieved at 500 Hz. This approach holds promise for the production of a scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  19. Cavitation induced by CW lasers in absorbing liquids

    NASA Astrophysics Data System (ADS)

    Ramirez-San-Juan, J. C.; Rodriguez-Aboytes, E.; Martínez-Canton, A. E.; Baldovino-Pantaleon, O.; Torres-Hurtado, S.; Robledo-Martinez, A.; Korneev, N.; Ramos-Garcia, R.

    2010-02-01

    Novel results are presented on thermocavitation in highly absorbing solutions using CW low power laser (λ=975 nm). Due to the large absorption coefficient (135 cm-1) at the laser wavelength, penetration length is only ~74μm inside the liquid and asymmetric bubbles are generated near the beam's entrance wall. We report the temporal dynamic of the cavitation bubble, which is much shorter than previously reported. We found that the amplitude of the shock wave decreases exponentially with the beam power. As shown in this work, thermocavitation is a phenomenon that has a great application potential in areas such as ultrasonic waves generation and controlled tissue ablation for use in lithotripsy.

  20. Argonne CW Linac (ACWL) -- Legacy from SDI and opportunities for the future

    SciTech Connect

    McMichael, G.E.; Yule, T.J.

    1994-08-01

    The former Strategic Defense Initiative Organization (SDIO) invested significant resources over a 6-year period to develop and build an accelerator to demonstrate the launching of a cw beam with characteristics suitable for a space-based Neutral Particle Beam (NPD) system. This accelerator, the CWDD (Continuous Wave Deuterium Demonstrator) accelerator, was designed to accelerate 80 mA cw of D{sup {minus}} to 7.5 MeV. A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding from the Department of Defense ended in October 1993. Existing assets have been turned over to Argonne. Assets include a fully functional 200 kV cw D{sup {minus}} injector, a cw RFQ that has been tuned, leak checked and aligned, beam lines and a high-power beam stop, all installed in a shielded vault with appropriate safety and interlock systems. In addition, there are two high power (1 MW) cw rf amplifiers and all the ancillary power, cooling and control systems required for a high-power accelerator system. The SDI mission required that the CWDD accelerator structures operate at cryogenic temperatures (26 K), a requirement that placed severe limitations on operating period (CWDD would have provided 20 seconds of cw beam every 90 minutes). However, the accelerator structures were designed for full-power rf operation with water cooling and ACWL (Argonne Continuous Wave Linac), the new name for CWDD in its water-cooled, positive-ion configuration, will be able to operate continuously. Project status and achievements will be reviewed. Preliminary design of a proton conversion for the RFQ, and other proposals for turning ACWL into a testbed for cw-linac engineering, will be discussed.

  1. Argonne CW Linac (ACWL)—legacy from SDI and opportunities for the future

    NASA Astrophysics Data System (ADS)

    McMichael, G. E.; Yule, T. J.

    1995-09-01

    The former Strategic Defense Initiative Organization (SDIO) invested significant resources over a 6-year period to develop and build an accelerator to demonstrate the launching of a cw beam with characteristics suitable for a space-based Neutral Particle Beam (NPB) system. This accelerator, the CWDD (Continuous Wave Deuterium Demonstrator) accelerator, was designed to accelerate 80 mA cw of D- to 7.5 MeV. A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding from the Department of Defense ended in October 1993. Existing assets have been turned over to Argonne. Assets include a fully functional 200 kV cw D- injector, a cw RFQ that has been tuned, leak checked and aligned, beam lines and a high-power beam stop, all installed in a shielded vault with appropriate safety and interlock systems. In addition, there are two high power (1 MW) cw rf amplifiers and all the ancillary power, cooling and control systems required for a high-power accelerator system. The SDI mission required that the CWDD accelerator structures operate at cryogenic temperatures (26K), a requirement that placed severe limitations on operating period (CWDD would have provided 20 seconds of cw beam every 90 minutes). However, the accelerator structures were designed for full-power rf operation with water cooling and ACWL (Argonne Continuous Wave Linac), the new name for CWDD in its water-cooled, positive-ion configuration, will be able to operate continuously. Project status and achievements will be reviewed. Preliminary design of a proton conversion for the RFQ, and other proposals for turning ACWL into a testbed for cw-linac engineering, will be discussed.

  2. Design considerations in achieving 1 MW CW operation with a whispering-gallery-mode gyrotron

    SciTech Connect

    Felch, K.; Feinstein, J.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Pirkle, D.; Zitelli, L. )

    1989-09-01

    Varian is developing high-power, CW gyrotrons at frequencies in the range 100 GHz to 150 GHz, for use in electron cyclotron heating applications. Early test vehicles have utilized a TE{sub 15,2,1} interaction cavity, have achieved short-pulse power levels of 820 kW and average power levels of 80 kW at 140 GHz. Present tests are aimed at reaching 400 kW under CW operating conditions and up to 1 MW for short pulse durations. Work is also underway on modifications to the present design that will enable power levels of up to 1 MW CW to be achieved. 7 refs., 2 figs.

  3. A portable CW/FM-CW Doppler radar for local investigation of severe storms

    SciTech Connect

    Unruh, W.P.; Wolf, M.A.; Bluestein, H.B.

    1988-01-01

    During the 1987 spring storm season we used a portable 1-W X-band CW Doppler radar to probe a tornado, a funnel cloud, and a wall cloud in Oklahoma and Texas. This same device was used during the spring storm season in 1988 to probe a wall cloud in Texas. The radar was battery powered and highly portable, and thus convenient to deploy from our chase vehicle. The device separated the receding and approaching Doppler velocities in real time and, while the radar was being used, it allowed convenient stereo data recording for later spectral analysis and operator monitoring of the Doppler signals in stereo headphones. This aural monitoring, coupled with the ease with which an operator can be trained to recognize the nature of the signals heard, made the radar very easy to operate reliably and significantly enhanced the quality of the data being recorded. At the end of the 1988 spring season, the radar was modified to include FM-CW ranging and processing. These modifications were based on a unique combination of video recording and FM chirp generation, which incorporated a video camera and recorder as an integral part of the radar. After modification, the radar retains its convenient portability and the operational advantage of being able to listen to the Doppler signals directly. The original mechanical design was unaffected by these additions. During the summer of 1988, this modified device was used at the Langmuir Laboratory at Socorro, New Mexico in an attempt to measure vertical convective flow in a thunderstorm. 2 refs., 2 figs.

  4. A portable CW/FM-CW Doppler radar for local investigation of severe storms

    NASA Astrophysics Data System (ADS)

    Unruh, Wesley P.; Wolf, Michael A.; Bluestein, Howard B.

    During the 1987 spring storm season we used a portable 1-W X-band CW Doppler radar to probe a tornado, a funnel cloud, and a wall cloud in Oklahoma and Texas. This same device was used during the spring storm season in 1988 to probe a wall cloud in Texas. The radar was battery powered and highly portable, and thus convenient to deploy from our chase vehicle. The device separated the receding and approaching Doppler velocities in real time and, while the radar was being used, it allowed convenient stereo data recording for later spectral analysis and operator monitoring of the Doppler signals in stereo headphones. This aural monitoring, coupled with the ease with which an operator can be trained to recognize the nature of the signals heard, made the radar very easy to operate reliably and significantly enhanced the quality of the data being recorded. At the end of the 1988 spring season, the radar was modified to include FM-CW ranging and processing. These modifications were based on a unique combination of video recording and FM chirp generation, which incorporated a video camera and recorder as an integral part of the radar. After modification, the radar retains its convenient portability and the operational advantage of being able to listen to the Doppler signals directly. The original mechanical design was unaffected by these additions. During the summer of 1988, this modified device was used at the Langmuir Laboratory at Socorro, New Mexico in an attempt to measure vertical convective flow in a thunderstorm.

  5. JLab CW Cryomodules for 4th Generation Light Sources

    SciTech Connect

    Rimmer, Robert; Bundy, Richard; Cheng, Guangfeng; Ciovati, Gianluigi; Clemens, William; Daly, Edward; Henry, James; Hicks, William; Kneisel, Peter; Manning, Stephen; Manus, Robert; Marhauser, Frank; Preble, Joseph; Reece, Charles; Smith, Karl; Stirbet, Mircea; Turlington, Larry; Wang, Haipeng; Wilson, Katherine

    2008-01-23

    Fourth generation light sources hold the prospect of unprecedented brightness and optical beam quality for a wide range of scientific applications. Many of the proposed new facilities will rely on large superconducting radio frequency (SRF) based linacs to provide high energy, low emittance CW electron beams. For high average power applications there is a growing acceptance of energy recovery linac (ERL) technology as the way to support large recirculating currents with modest RF power requirements. CW SRF and high current ERLs are two core competencies at Jefferson Lab. JLab has designed and built a number of CW cryomodules of several different types starting with the original CEBAF design, with variations for higher current in the two generations of JLab’s free-electron laser (FEL), through two intermediate prototypes to the final high-performance module for the 12 GeV upgrade. Each of these represent fully engineered and tested configurations with a variety of specifications that could be considered for possible use in fourth generation light sources. Furthermore JLab has been actively pursuing advanced concepts for highcurrent high-efficiency cryomodules for next generation ERL based FEL’s. These existing and proposed designs span the range from about 1mA single-pass to over 100 mA energy recovered current capability. Specialized configurations also exist for high-current non-energy recovered sections such as the injector region where very high RF power is required. We discuss the performance parameters of these existing and proposed designs and their suitability to different classes of fourth generation light sources.

  6. Quasi-CW Laser Diode Bar Life Tests

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.

    1997-01-01

    NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.

  7. GEM: ANL 4-GeV CW electron microtron design

    SciTech Connect

    Kustom, R.L.

    1983-01-01

    A six-sided hexagonal microtron has been chosen as the accelerator to generate the beams required to pursue a national research program at a CW 4 GeV electron laboratory. This option has the advantage of superior beam quality, low capital and operating cost, and promise of furnishing beams of several electron energies simultaneously. Only moderate rf power is required because of the basic feature of all microtron designs, recirculation of the electron beam through the same rf accelerating section many times. The hexatron design has the additional feature of compatibility with an existing accelerator complex at Argonne which is currently unoccupied and available.

  8. CW CO2 Laser Induced Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Pola, Joseph

    1989-05-01

    CW CO2 laser driven reactions between sulfur hexafluoride and carbon oxide, carbon suboxide, carbonyl sulfide and carbon disulfide proceed at subatmospheric pressures and yield fluorinated carbon compounds and sulfur tetrafluoride. CW CO2 laser driven reactions of organic compounds in the presence of energy-conveying sulfur hexafluoride show reaction course different from that normally observed due to elimination of reactor hot surface effects. The examples concern the decomposition of polychlorohydrocarbons, 2-nitropropane, tert.-butylamine, allyl chloride, spirohexane, isobornyl acetate and the oxidation of haloolefins. CW CO2 laser induced fragmentation of 1-methyl-l-silacyclobutanes and 4-silaspiro(3.4)octane in the presence of sulfur hexafluoride is an effective way for preparation and deposition of stable organosilicon polymers.

  9. Design of a Ka Band 35 kW CW Low-Voltage Harmonic Gyrotron

    NASA Astrophysics Data System (ADS)

    Geng, Zhi-Hui; Liu, Pu-Kun; Su, Yi Nong; Xu, Shou Xi; Xue, Qian Zhong

    2010-01-01

    In this paper, a continuous wave (CW) low-voltage second harmonic gyrotron with the conventional cavity has been preliminarily designed and evaluated with self-consistent nonlinear simulation code and the particle-in-cell code CHIPIC. The simulation results of the two codes are shown to be in agreement basically. The 35 kW CW output power of the designed harmonic gyrotron driven by a 25 kV 5.0A electron beam from a magnetron injection gun (MIG) is obtained. The maximum output power and the electronic efficiency of the gyrotron is about 35 kW and 30% respectively.

  10. Diode pumped CW and passively Q-switched Nd:LGGG laser at 1062 nm

    NASA Astrophysics Data System (ADS)

    Yang, H.; Jia, Z. T.; Zhang, B. T.; He, J. L.; Liu, S. D.; Yang, Y.; Tao, X. T.

    2012-05-01

    We report a Nd:LGGG laser at 1062 nm in the operations of the continuous-wave (CW) and passively Q-switching. The maximum CW output power of 5.62 W was obtained, corresponding to an optical-to-optical conversion efficiency of 49.0% and slope efficiency of 55.9%. By using Cr4+:YAG with initial transmission of 94% as the saturable absorber, for the first time, we got the maximum passively Q-switched output power of 1.21 W, accompanied with a highest pulse repetition rate of 27.1 kHz and a shortest pulse width of 9.1 ns.

  11. Cw operation of the FMIT RFQ accelerator

    SciTech Connect

    Cornelius, W.D.

    1985-01-01

    Recently, we have achieved reliable cw operation of the Fusion Materials Irradiation Test (FMIT) radio-frequency quadrupole (RFQ) accelerator. In addition to the operational experiences in achieving this status, some of the modifications of the vacuum system, cooling system, and rf structure are discussed. Preliminary beam-characterization results are presented. 10 refs., 8 figs.

  12. CW arc-lamp-pumped alexandrite lasers

    SciTech Connect

    Samelson, H.; Walling, J.C.; Wernikowski, T.; Harter, D.J.

    1988-06-01

    The performance characteristics of arc-lamp- (Xe and Hg) pumped, CW alexandrite lasers are described in detail. The modes of operation considered are free running, tuned, and repetitively Q-switched. The experimental arrangement and apparatus are also outlined. The experimental results are discussed in terms of a steady-state model, and the areas of agreement and difficulty are pointed out.

  13. A CW Gunn Diode Switching Element.

    ERIC Educational Resources Information Center

    Hurtado, Marco; Rosenbaum, Fred J.

    As part of a study of the application of communication satellites to educational development, certain technical aspects of such a system were examined. A current controlled bistable switching element using a CW Gunn diode is reported on here. With modest circuits switching rates of the order of 10 MHz have been obtained. Switching is initiated by…

  14. Noise amplitude measurements of single-mode CW lasers at radio frequencies

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Hillard, M. E., Jr.

    1992-01-01

    This letter presents the results of noise measurements for a variety of single-longitudinal-mode CW lasers (Ar/+/, standing-wave-dye, and ring-dye) that are commercially available. A quantitative comparison of the total output power fluctuations detected over the 7-300 MHz region (3 dB points) is presented.

  15. 25. C.W. Todd and E.A. Rand, May 1902 'OUTLINE,' SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. C.W. Todd and E.A. Rand, May 1902 'OUTLINE,' SHOWING END AND SIDE ELEVATIONS OF THE 4,000-VOLT, ATB-TYPE GENERATORS (4 AND 5) - Washington Water Power Company Monroe Street Plant, Units 4 & 5, South Bank Spokane River, below Monroe Street Bridge, Spokane, Spokane County, WA

  16. The experimental study of a CW 1080 nm multi-point pump fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Ge, Tingwu; Ding, Xing; Tan, Qirui; Wang, Zhiyong

    2016-07-01

    In this paper, we report on a CW 1080 nm fiber laser cascaded-pumped by a CW 975 nm diode laser. The fiber used in the experiment has a core diameter of 20 μm (NA  =  0.06), inner clad of 400 μm (NA  =  0.46), and an absorption coefficient of about 1.26 dB m‑1 at 975 nm. An output power of 780 W with an optical conversion efficiency of 71% has been achieved at a pump light of 1.1 kW. To the best of our knowledge, this is the first time that a 1080 nm CW fiber laser has used a cascaded-pump coupler.

  17. Development of voids in pulsed and CW- driven reactive plasmas with large nanoparticle density

    NASA Astrophysics Data System (ADS)

    Stefanović, I.; Sikimić, B.; Aschinger, A.; Berndt, J.; Kovačević, E.; Winter, J.

    2015-09-01

    This contribution deals with the nanoparticle distribution inside of plasma with large nanoparticle density. In particular, the formation of voids i.e. dust-free regions in pulsed and CW discharge regime is analyzed. The discharge was ignited in a mixture of argon and acetylene in the conditions favorable for nanoparticles’ formation and growth. The temporal evolution of the spatial distribution of nanoparticles during their growth is studied experimentally by means of a laser light scattering technique. The experimental results show that the void expands much faster in the case of pulsed plasma than in the CW plasma operated for the same gas mixture and at the same (average) input power. In the CW plasma, we observed a rapid expansion of the void after some tens of minutes, whereas the corresponding process in the pulsed plasma occurred after some tens of seconds.

  18. The 1.083 micron tunable CW semiconductor laser

    NASA Technical Reports Server (NTRS)

    Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng

    1991-01-01

    A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).

  19. Concepts for the JLab Ampere-Class CW Cryomodule

    SciTech Connect

    R. Rimmer; E.F. Daly; W.R. Hicks; J. Henry; J. Preble; M. Stirbet; H. Wang; K.M. Wilson; G. Wu

    2005-05-01

    We describe the concepts and developments underway at JLab as part of the program to develop a new CW cryomodule capable of transporting ampere-level beam currents in a compact FEL. Requirements include real-estate gradient of at least 10 MV/m and very strong HOM damping to push BBU thresholds up by two or more orders of magnitude compared to existing designs. Cavity shape, HOM damping, power couplers, tuners etc. are being designed and optimized for this application. Cavity considerations include a large iris for beam halo, low-RF losses, HOM frequencies and Q's, low peak surface fields, field flatness and microphonics. Module considerations include high packing factor, low static heat leak, image current heating of beam-line components, cost and maintainability. This module is being developed for the next generation ERL based high power FELs but may be useful for other applications such as electron cooling, electron-ion colliders, industrial processing etc.

  20. Parametric four-wave mixing using a single cw laser.

    PubMed

    Brekke, E; Alderson, L

    2013-06-15

    Four-wave mixing can be used to generate coherent output beams, with frequencies difficult to acquire in commercial lasers. Here, a single narrow external cavity diode laser locked to the two photon 5s-5d transition in rubidium is combined with a tapered amplifier system to produce a high power cw beam at 778 nm and used to generate coherent light at 420 nm through parametric four-wave mixing. This process is analyzed in terms of the intensity and frequency of the incoming beam as well as the atomic density of the sample. The efficiency of the process is currently limited when on resonance due to the absorption of the 420 nm beam, and modifications should allow a significant increase in output power. PMID:23939005

  1. Optimizing Frequency-Modulated CW EDMR in silicon

    NASA Astrophysics Data System (ADS)

    Zhu, Lihuang; van Schooten, Kipp; Ramanathan, Chandrasekhar

    Electrically detected magnetic resonance (EDMR) is a powerful method of probing dopant and defect spin states in semiconductor devices. Moreover, at the single dopant level, these spin states are heavily investigated as potential qubit systems, though facile electronic access to single dopants is exceedingly difficult. We therefore characterize detection sensitivities of frequency-modulated CW-EDMR of phosphorus donors in silicon Si:P using a home-built 2.5 GHz system (~80 mT) at 5 K. An arbitrary waveform generator controls the frequency modulation, allowing us to optimize the signal to noise ratio (SNR) of both the dangling bond and phosphorus donor signals against multiple experimental parameters, such as modulation amplitude and modulation frequency. The optimal range of frequency modulation parameters is constrained by the relaxation time of the phosphorous electron at 5 K, resulting in the same sensitivity limit as field modulated CW-EDMR, but offers some technical advantages; e.g. reducing the relative contribution of magnetic field induced currents and eliminating the need for field modulation coils. We further characterize the EDMR SNR in Si:P as a function of optical excitation energy by using a narrow line laser, tunable across donor exciton and band gap states.

  2. Installation of a cw radiofrequency quadrupole accelerator at Los Alamos National Laboratory

    SciTech Connect

    Schneider, J.D.; Bolme, J.; Brown, V.

    1994-09-01

    Chalk River Laboratories (CRL) has had a long history of cw proton beam development for production of intense neutron sources and fissile fuel breeders. In 1986 CRL and Los Alamos National Laboratory (LANL) entered into a collaborative effort to establish a base technologies program for the development of a cw radiofrequency quadrupole (RFQ). The initial cw RFQ design had 50-keV proton injection energy with 600-keV output energy. The 75-mA design current at 600-keV beam energy was obtained in 1990. Subsequently, the RFQ output energy was increased to 1250 keV by replacing the RFQ vanes, still maintaining the 75-m A design current. A new 250-kW cw klystrode rf power source at 267-MHz was installed at CRL. By April of 1993, 55-mA proton beams had been accelerated to 1250 keV. Concurrent developments were taking place on proton source development and on 50-keV low-energy beam transport (LEBT) systems. Development of a dc, high-proton fraction ({ge} 70%) microwave ion source led to utilization of a single-solenoid RFQ direct injection scheme. It was decided to continue this cw RFQ demonstration project at Los Alamos when the CRL project was terminated in April 1993. The LANL goals are to find the current limit of the 1250-keV RFQ, better understand the beam transport properties through the single-solenoid focusing LEBT, continue the application of the cw klystrode tube technology to accelerators, and develop a two-solenoid LEBT which could be the front end of an Accelerator-Driven Transmutation Technologies (ADTT) linear accelerator.

  3. CW laser generated ultrasound techniques for microstructure material properties evaluation

    NASA Astrophysics Data System (ADS)

    Thursby, Graham; Culshaw, Brian; Pierce, Gareth; Cleary, Alison; McKee, Campbell; Veres, Istvan

    2009-03-01

    Mechanical properties of materials may be obtained from the inversion of ultrasonic Lamb wave dispersion curves. In order to do this broadband excitation and detection of ultrasound is required. As sample size and, in particular, thickness, are reduced to those of microstructures, ultrasound frequencies in the range of the gigahertz region will be required. We look at two possible cw laser excitation techniques which, having far lower peak powers than the more frequently used Q-switched lasers, therefore give a negligible risk of damaging the sample through ablation. In the first method the modulation frequency of a sinusoidally modulated laser is swept over the required range. In the second, the laser is modulated with a series of square pulses whose timing is given by a PRBS (pseudo random binary sequence) in the form of a modified m-sequence.

  4. 1 kW cw Yb-fiber-amplifier with <0.5GHz linewidth and near-diffraction limited beam-quality for coherent combining application

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Lu, Wei; Akbulut, Mehmetcan; McIntosh, Bruce; Verdun, Horacio; Gupta, Shantanu

    2011-02-01

    In this paper, we present results on a master-oscillator Yb-doped fiber amplifier with 1 kW cw output power (at 1064nm), and near-diffraction limited beam quality (M2<1.4), with internal quantum efficiency >83%. The final amplifier stage uses a very high Yb-doped 35-um core LMA fiber, using a new process recipe that virtually eliminates photo-darkening. As a result, high efficiency, SBS-free operation to 1 kW cw power level is obtained, with a phase modulation bandwidth of only 450MHz, well below other reported results. To enable single-frequency cw power scaling to kW levels, we investigate LMA fiber waveguide designs exploiting gain-discrimination, using partially Yb-doped LMA fiber cores, with various diameters up to 80-um. SBS-free, singlefrequency (few kHz) operation is demonstrated up to 0.9kW cw power. At the lower cw powers (<200W) neardiffraction limited beam-quality is obtained, but is observed to deteriorate at higher cw powers. We discuss potential causes, and present a detailed simulation model of kW large-core fiber-amplifiers, that includes all guided modes, fiber bend, transverse spatial hole burning, gain-tailoring, mode-scattering, SBS nonlinearity, and various thermal effects. This model shows good agreement with the observed single-frequency power scaling and beam-quality characteristics.

  5. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2006-01-01

    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.

  6. Design of a 1-MW CW 8.5 GHz transmitter for planetary RADAR

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J.; Bhanji, Alaudin M.

    1990-01-01

    A proposed conceptual design for increasing the output power of an existing X-band planetary radar transmitter from 365 kW to 1 MW CW is discussed. The paper covers the basic transmitter system requirements as dictated by the specifications for the radar. The characteristics and expected performance of the high-power klystrons are considered and the transmitter power amplifier system is discussed. Also included in the discussion is the design of the exiter system. Two alternative feed systems for delivering the 1-MW CW signal to the antenna system are described. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology to meet system requirements is given and possible areas of difficulty are summarized.

  7. CW single transverse mode all-fiber Tm3+-doped silica fiber laser

    NASA Astrophysics Data System (ADS)

    Song, E. Z.; Li, W. H.; You, L.

    2012-04-01

    The CW 25.6 W output power with a slope efficiency of 30.6% respected to the pump power from a CW single transverse mode all-fiber Tm3+-doped Silica Fiber Laser is reported. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm fiber. The reflective FBG and Tm3+-doped fiber end Fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high output power, but the spectrum width is less than 2 nm at 1.94 μm. We estimate the beam quality to be M 2 = 2.39, clearly indicating nearly diffraction-limited beam propagation.

  8. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    PubMed

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz. PMID:26698762

  9. Investigation of RF excited CW CO2 waveguide lasers

    NASA Technical Reports Server (NTRS)

    Hochuli, U.

    1984-01-01

    The RF excited 2 to 3W CW CO2 waveguide lasers with lifetimes of the order of 10(4) to 2.10(4) hours were produced. This was achieved with CO and N2 bearing gas mixtures and with internal as well as external discharge electrodes. It is noted that these tests were conducted with unstabilized lasers which drift around in their signatures. The average power output was reduced to about one half of the highest peak power output in the signature. One of the lasers, no. 1.1, still shows 60% of its original output power after it was cycled on and off every 10 minutes for more than 50,000 times. The starting voltage and driving point impedance of the RF excited gas discharge structure for different gas pressures and mixtures were measured. These data will serve as a basis for the matching and starting network optimization. The second laser body was frit and indium sealed. To our a vacuum leak between the bore and electrode holes was noted. The leak seems to be due to a defect or crack in the BeO body.

  10. HIGH AVERAGE CURRENT LOW EMITTANCE BEAM EMPLOYING CW NORMAL CONDUCTING GUN.

    SciTech Connect

    CHANG,X.; BEN-ZVI, I.; KEWISCH, J.; PAI, C.

    2007-06-25

    CW normal conducting guns usually do not achieve very high field gradient and waste much RF power at high field gradient compared to superconducting cavities. But they have less trapped modes and wakefields compared to the superconducting cavities due to their low Q. The external bucking coil can also be applied very close to the cathode to improve the beam quality. By using a low frequency gun with a recessed cathode and a carefully designed beam line we can get a high average current and a high quality beam with acceptable RF power loss on the cavity wall. This paper shows that the CW normal conducting gun can be a backup solution for those projects which need high peak and average current, low emittance electron beams such as the Relativistic Heavy Ion Collider (RHIC) e-cooling project and Energy Recovery Linac (Em) project.

  11. Development of a 9.3 micrometer CW LIDAR for the study of atmospheric aerosol

    NASA Technical Reports Server (NTRS)

    Whiteside, B. N.; Schotland, R. M.

    1993-01-01

    This report provides a brief summary of the basic requirements to obtain coherent or heterodyne mixing of the optical radiation backscattered by atmospheric aerosols with that from a fixed frequency source. The continuous wave (CW) mode of operation for a coherent lidar is reviewed along with the associated lidar transfer equation. A complete optical design of the three major subsystems of a CW, coherent lidar is given. Lens design software is implemented to model and optimize receiver performance. Techniques for the opto-mechanical assembly and some of the critical tolerances of the coherent lidar are provided along with preliminary tests of the subsystems. Included in these tests is a comparison of the experimental and the theoretical average power signal-to-noise ratio. The analog to digital software used to evaluate the power spectrum of the backscattered signal is presented in the Appendix of this report.

  12. A High-Gradient CW R Photo-Cathode Electron Gun for High Current Injectors

    SciTech Connect

    Robert Rimmer

    2005-05-01

    The paper describes the analysis and preliminary design of a high-gradient photo-cathode RF gun optimized for high current CW operation. The gun cell shape is optimized to provide maximum acceleration for the newly emitted beam while minimizing wall losses in the structure. The design is intended for use in future high-current high-power CW FELs but the shape optimization for low wall losses may be advantageous for other applications such as XFELs or Linear Colliders using high peak power low duty factor guns where pulse heating is a limitation. The concept allows for DC bias on the photocathode in order to repel ions and improve cathode lifetime.

  13. CW, single-frequency 229nm laser source for Cd-cooling by harmonic conversion

    NASA Astrophysics Data System (ADS)

    Kaneda, Yushi; Yarborough, J. M.; Merzlyak, Yevgeny

    2015-02-01

    More than 200mW of CW 229nm for Cd atom cooling application was generated by the 4th harmonic of a single frequency optically pumped semiconductor laser using a 10-mm long, Brewster-cut BBO crystal in an external cavity. With 650mW of 458nm input, 216mW of 229nm power was observed. Conversion efficiency from 458nm to 229nm was more than 33%.

  14. Investigation of in-vivo skin autofluorescence lifetimes under long-term cw optical excitation

    SciTech Connect

    Lihachev, A; Ferulova, I; Vasiljeva, K; Spigulis, J

    2014-08-31

    The main results obtained during the last five years in the field of laser-excited in-vivo human skin photobleaching effects are presented. The main achievements and results obtained, as well as methods and experimental devices are briefly described. In addition, the impact of long-term 405-nm cw low-power laser excitation on the skin autofluorescence lifetime is experimentally investigated. (laser biophotonics)

  15. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (<20 mW) CW diode lasers.

    PubMed

    Aggarwal, Roshan L; Farrar, Lewis W; Greeneltch, Nathan G; Van Duyne, Richard P; Polla, Dennis L

    2013-02-01

    The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm(-1) SERS mode. A value of 9.6 ± 1.7×10(-14) W was determined for the resonant component of the SECARS signal using 17.8 mW of 784.9 nm pump laser power and 7.1 mW of 895.5 nm Stokes laser power; the pump and Stokes lasers were polarized parallel to each other but perpendicular to the grooves of the diffraction grating in the spectrometer. The measured value of resonant component of the SECARS signal is in agreement with the calculated value of 9.3×10(-14) W using the measured value of 8.7 ± 0.5 cm(-1) for the SERS linewidth Γ (full width at half-maximum) and the value of 5.7 ± 1.4×10(-7) for the product of the Raman cross section σSERS and the surface concentration Ns of the benzenethiol SAM. The xxxx component of the resonant part of the third-order nonlinear optical susceptibility |3 χxxxx((3)R)| for the 1574 cm(-1) SERS mode has been determined to be 4.3 ± 1.1×10(-5) cm·g(-1)·s(2). The SERS enhancement factor for the 1574 cm(-1) mode was determined to be 3.6 ± 0.9×10(7) using the value of 1.8×10(15) molecules/cm(2) for Ns. PMID:23622430

  16. Lasers: Cw and Q-switched Nd:NaLa(MoO4)2 laser noncritical to the temperature drift of the diode pump laser wavelength

    NASA Astrophysics Data System (ADS)

    Ushakov, S. N.; Romanyuk, V. A.; Ryabochkina, P. A.; Shestakova, I. A.; Lis, Denis A.; Subbotin, Kirill A.; Shestakov, A. V.; Zharikov, Evgeny V.

    2010-08-01

    Lasing in Nd:NaLa(MoO4)2 crystals is obtained without stabilisation of the diode pump wavelength. A dependence of the cw laser power (at a wavelength of 1059 nm) on the pump diode temperature is found within a range of 10—458C. It is shown that the variations in the diode temperature within this region change the lasing efficiency no more than by 30%. In the passive Q-switching regime, the experiments were performed under both pulsed and cw pumping. Upon pulsed pumping, the laser energy was 16 μJ at the output pulse duration of 11 ns. The laser wavelength was 1059 nm, as well as in the case of cw operation. Upon cw pumping with a power of 1.5 W, laser pulses were obtained with an energy of 15 μJ.

  17. Flight, orientation, and homing abilities of honeybees following exposure to 2. 45-GHz CW microwaves

    SciTech Connect

    Gary, N.E.; Westerdahl, B.B.

    1981-01-01

    Foraging-experienced honeybees retained normal flight, orientation, and memory functions after 30 minutes' exposure to 2.45-GHz CW microwaves at power densities from 3 to 50 mW/cm2. These experiments were conducted at power densities approximating and exceeding those that would be present above receiving antennas of the proposed solar power satellite (SPS) energy transmission system and for a duration exceeding that which honeybees living outside a rectenna might be expected to spend within the rectenna on individual foraging trips. There was no evidence that airborne invertebrates would be significantly affected during transient passage through microwaves associated with SPS ground-based microwave receiving stations.

  18. First 200 kW CW operation of a 60 GHz gyrotron

    SciTech Connect

    Jory, H.; Bier, R.; Evans, S.; Felch, K.; Fox, L.; Huey, H.; Shively, J.; Spang, S.

    1983-01-01

    The gyrotron is a microwave tube which employs the electron cyclotron maser interaction to produce high power output at millimeter wavelengths. It has important and growing applications for heating of plasmas in controlled thermonuclear fusion experiments. The Varian 60 GHz gyrotron has recently generated microwave power in excess of 200 kW during CW operation, wth excellent dynamic range and operating stability. This is the highest average power ever produced by a microwave tube in the millimeter wave region. A description of the gyrotron design and test results are presented.

  19. Design and Operation of a 100 kW CW X-band Klystron for Spacecraft Communications

    NASA Technical Reports Server (NTRS)

    Balkcum, Adam; Mizuhara, Al; Stockwell, Brad; Begum, Rasheda; Cox, Lydia; Forrest, Scott; Perrin, Mark; Zitelli, Lou; Hoppe, Dan; Britcliffe, Mike; Vodonos, Yakov; Liou, R. Roland; Stone, Ernest

    2012-01-01

    A 7.19 GHz klystron producing 100 kW CW of output power over 90 MHz of bandwidth has been designed and three klystrons manufactured for use in a new JPL/NASA transmitter for spacecraft communications. The klystron was fully characterized including its phase pushing figures.

  20. Upgrade and validation on plasma of the Tore Supra CW LHCD generator

    SciTech Connect

    Delpech, L.; Achard, J.; Armitano, A.; Berger-By, G.; Bertrand, E.; Bouquey, F.; Chaix, J. P.; Corbel, E.; Crest, I.; Ekedahl, A.; Faisse, F.; Fejoz, P.; Garibaldi, P.; Goletto, C.; Lebourg, P.; Leroux, F.; Lombard, G.; Magne, R.; Martinez, A.; Moreau, M.

    2011-12-23

    A one year-long major upgrade of the 3.7 GHz Lower Hybrid Current Drive (LHCD) generator for the Tore Supra (TS) tokamak has been performed. It consisted in installing a first series of eight Thales Electron Devices (TED) 700 kW CW klystrons, new CW components and auxiliaries, and in modifying the transmitter control and protection software. Modifications and calibration of the sensors and the RF subsystems were completed as well. Finally, the RF power available in the generator has been increased by 35% and the pulse duration could reach 1000 s. A complete validation and optimization of the klystrons have been performed in 2010 on matched load before the generator could enter into operation. The eight klystrons connected with the Full Active Multijunction (FAM) antenna delivered 3.5 MW/50s in December 2010. The upgrade of the generator and the steps to validate the modifications are described.

  1. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene

    PubMed Central

    Okhrimchuk, Andrey G.; Obraztsov, Petr A.

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678

  2. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    PubMed

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer. PMID:26052678

  3. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber.

    PubMed

    Westergaard, Philip G; Lassen, Mikael; Petersen, Jan C

    2015-06-15

    We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (< 50 kHz) 1064 nm continuous-wave (CW) fiber laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ∼ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10(-4) cm(-1). The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths. PMID:26193604

  4. CW high intensity non-scaling FFAG proton drivers

    SciTech Connect

    Johnstone, C.; Berz, M.; Makino, K.; Snopok, P.; /IIT, Chicago

    2011-04-01

    Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider). These high-intensity GeV-range proton drivers are particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient, or FFAG, is an attractive alternative to the cyclotron. Its strong focusing optics are expected to mitigate space charge effects, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron. This paper reports on these new advances in FFAG accelerator technology and references advanced modeling tools for fixed-field accelerators developed for and unique to the code COSY INFINITY.

  5. Performance of three-crystal 1800 watt CW Nd:YAG laser

    SciTech Connect

    Jellison, J.L.; Keicher, D.M.; Fuerschbach, P.W.

    1990-01-01

    The goal of this project was to develop a laser system that would combine some of the favorable characteristics of the two most commonly used lasers for seam welding of heat sensitive assemblies. A multirod (3) symmetrical resonator CW Nd:YAG laser has been developed that is rated at 1800 watts output power. By utilizing the symmetrical resonator design, beam characteristics are not significantly compromised compared to that of single rod systems. The laser is capable of producing acceptable welds in aluminum and copper alloys and also has sufficient power to produce welds in steels and nickel base alloys at high welding speeds. 4 refs., 5 figs. 1 tab.

  6. CW 100 kW radio frequency-free-electron laser design at 10 microns

    NASA Astrophysics Data System (ADS)

    Parazzoli, Claudio G.; Rodenburg, Robert E.; Romero, Jacob B.; Adamski, John L.; Pistoresi, Denis J.; Shoffstall, Donald R.; Quimby, David C.

    1991-12-01

    The authors describe the 100 kW continuous-wave (CW) radio frequency free-electron laser at 10 microns to be built at Boeing Defense and Space Group in collaboration with Los Alamos National Laboratory. The authors discuss the criteria which led to the selection of the operating point. The authors outline the single-accelerator master-oscillator power-amplifier concept. This approach and the wavelength were chosen on the basis of maximum cost-effectiveness, including utilization of existing hardware, reasonable technical risk, and potential for future applications. The major experimental goals for the average power laser experiment (APLE) program are discussed, and the expected performance is considered.

  7. RF status of superconducting module development suitable for CW operation: ELBE cryostats

    NASA Astrophysics Data System (ADS)

    Teichert, J.; Büchner, A.; Büttig, H.; Gabriel, F.; Michel, P.; Möller, K.; Lehnert, U.; Schneider, Ch.; Stephan, J.; Winter, A.

    2006-02-01

    For the ELBE electron linear accelerator a superconducting accelerating module was developed and is now in routine operation. The cryostat contains two TESLA cavities (1.3 GHz) and is designed for continuous-wave (CW) operation with an accelerating gradient of 10 MV/m and a maximum average beam current of 1 mA. For the RF power two 10 kW klystrons are used. Special tuners, power couplers, low-level RF control, cryogenic control systems and safety systems were developed. Engineering design, operation parameters and experience with the module are discussed.

  8. Spatio-temporal generation regimes in quasi-CW Raman fiber lasers.

    PubMed

    Tarasov, Nikita; Sugavanam, Srikanth; Churkin, Dmitry

    2015-09-21

    We present experimental measurements of intensity spatio-temporal dynamics in quasi-CW Raman fiber laser. Depending on the power, the laser operates in different spatio-temporal regimes varying from partial mode-locking near the generation threshold to almost stochastic radiation and a generation of short-lived pulses at high power. The transitions between the generation regimes are evident in intensity spatio-temporal dynamics. Two-dimensional auto-correlation functions provide an additional insight into temporal and spatial properties of the observed regimes. PMID:26406625

  9. Design of a multistage depressed collector system for 1 MW CW gyrotrons. Part 2: System consideration

    SciTech Connect

    Ives, R.L.; Mizuhara, M.; Schumacher, R.; Neilson, J. ); Singh, A.; Granatstein, V.L. . Inst. for Plasma Research); Gaudreau, M.; Casey, J.A. )

    1999-04-01

    Part 2 describes the basic mechanical design of the two-stage collector, including the thermal performance. The design should be applicable to Gaussian mode gyrotrons over a very broad frequency range at power levels up to one megawatt CW. Part 2 also describes an innovative regenerative power supply system that utilizes highly efficient, solid state, switching technology that provides high reliability and significantly reduced cost over conventional technology. An advanced computer control system that will provide user-friendly gyrotron operation and allow modes of operation not possible with manual operation is also being developed.

  10. Ring-Down Spectroscopy for Characterizing a CW Raman Laser

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2007-01-01

    .A relatively simple technique for characterizing an all-resonant intracavity continuous-wave (CW) solid-state Raman laser involves the use of ring-down spectroscopy. As used here, characterizing signifies determining such parameters as threshold pump power, Raman gain, conversion efficiency, and quality factors (Q values) of the pump and Stokes cavity modes. Heretofore, in order to characterize resonant-cavity-based Raman lasers, it has usually been necessary to manipulate the frequencies and power levels of pump lasers and, in each case, to take several sets of measurements. In cases involving ultra-high-Q resonators, it also has been desirable to lock pump lasers to resonator modes to ensure the quality of measurement data. Simpler techniques could be useful. In the present ring-down spectroscopic technique, one infers the parameters of interest from the decay of the laser out of its steady state. This technique does not require changing the power or frequency of the pump laser or locking the pump laser to the resonator mode. The technique is based on a theoretical analysis of what happens when the pump laser is abruptly switched off after the Raman generation reaches the steady state. The analysis starts with differential equations for the evolution of the amplitudes of the pump and Stokes electric fields, leading to solutions for the power levels of the pump and Stokes fields as functions of time and of the aforementioned parameters. Among other things, these solutions show how the ring-down time depends, to some extent, on the electromagnetic energy accumulated in the cavity. The solutions are readily converted to relatively simple equations for the parameters as functions of quantities that can be determined from measurements of the time-dependent power levels. For example, the steady-state intracavity conversion efficiency is given by G1/G2 1 and the threshold power is given by Pin(G2/G1)2, where Pin is the steady-state input pump power immediately prior to

  11. Improvements in a calorimeter for high-power CW lasers

    NASA Technical Reports Server (NTRS)

    Chamberlain, G. E.; Simpson, P. A.; Smith, R. L.

    1978-01-01

    A technique for improving the measurement certainty with the BB series (Smith et al., 1972) of electrically calibrated calorimeters used in high-energy lasers is described. The technique is based on monitoring the energy which is backscattered from the meter and monitoring the overspill radiation impinging on the calorimeter at the entrance aperture. The design and performance of a second generation BB meter is discussed and compared to that of the original device in terms of number of electrical calibrations, the residual standard deviation of electrical calibration, the calibration constant for laser energy, the correcting factor for systematics, inaccuracy, imprecision, and uncertainty.

  12. High-power CW laser using hydrogen-fluorine reaction

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.

    1975-01-01

    Continuous-wave laser has been proposed based on reaction of hydrogen and fluorine. Hydrogen is produced by dissociation of hydrazine, which can be stored as liquid in light containers at room temperature.

  13. Design for a compact CW atom laser

    NASA Astrophysics Data System (ADS)

    Power, Erik; Raithel, Georg

    2011-05-01

    We present a design for a compact continuous-wave atom laser on a chip. A 2D spiral-shaped quadrupole guide is formed by two 0.5 mm × 0.5 mm wires carrying 5 A each embedded in a Si wafer; a 1.5 mm × 0.5 mm wire on the bottom layer carries -10 A, producing a horizontal B-field that pushes the guiding channel center above the chip surface. The center-to-center separation between the top wires is varied from 1.6 mm at the start of the guide to 1 mm at the end, decreasing the guide height from ~ 500 μm to ~ 25 μm above the surface as the atoms travel the 70 cm-long guide. The magnetic gradient of the guiding channel gradually increases from ~ 100 G /cm to ~ 930 G /cm . These features result in continuous surface adsorption evaporative cooling and progressive magnetic compression. Spin flip losses are mitigated by a solenoid sewn around the guide to produce a longitudinal B-field. 87Rb atoms are gravitationally loaded into the guide. A far off-resonant light shift barrier at the end of the guide traps the atoms and allows formation of a BEC. Tuning the barrier height to create a non-zero tunneling rate equal to the loading rate completes the implementation of a CW atom laser. Two options for atom interferometry are implemented on the first-generation chip (matter-wave Fabry-Perot interferometer and guide-based Mach-Zehnder interferometer). Current construction status and challenges will be discussed, along with preliminary results.

  14. 2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm

    NASA Astrophysics Data System (ADS)

    Fang, Qiang; Shi, Wei; Qin, Yuguo; Meng, Xiangjie; Zhang, Qihang

    2014-10-01

    We demonstrate a monolithic continuous wave (CW) fiber laser source at 1080 nm, producing 2.5 kW average laser power with near diffraction-limited beam quality (M2 < 1.3). The laser consists of a CW fiber laser oscillator and one double cladding (DC) fiber amplifier in the master oscillator-power amplifier (MOPA) configuration. The optical-to-optical conversion efficiency of the entire laser system with respect to the launched pump power is ~77.9%.

  15. CW and Q-switched performance of a diode end-pumped Yb:YAG laser. Revision 1

    SciTech Connect

    Bibeau, C.; Beach, R.; Ebbers, C.; Emanuel, M.; Skidmore, J.

    1997-02-19

    Using an end-pumped technology developed at LLNL we have demonstrated a Yb:YAG laser capable of delivering up to 434 W of CW power and 226 W of Q-switched power. In addition, we have frequency doubled the output to 515 nm using a dual crystal scheme to produce 76 W at 10 kHz in a 30 ns pulse length.

  16. Particle-in-Cell (PIC) simulation of CW industrial heating magnetron.

    PubMed

    Andreev, Andrey D; Hendricks, Kyle J

    2010-01-01

    Modern CW industrial heating magnetrons are capable for producing as high as 300 kW of continuous-wave microwave power at frequencies around 900 MHz and are sold commercially [Wynn et al., 2004]. However, to utilize these magnetrons in some specific research and scientific applications being of interest for the Air Force, the necessary adaptation and redesign are required. It means that the detailed knowledge of principles of their operation and full understanding of how the changes of the design parameters affect their operational characteristics are necessary. We have developed and tested computer model of a 10-vane high-power strapped magnetron, which geometrical dimensions and design parameters are close to those of the California Tube Laboratory's commercially produced CWM-75/100L tube. The computer model is built by using the 3-D Improved Concurrent Electromagnetic Particle-in-Cell (ICEPIC) code. Simulations of the strapped magnetron operation are performed and the following operational characteristics are obtained during the simulation: frequency and mode of magnetron oscillations, output microwave power and efficiency of magnetron operation, anode current and anode-cathode voltage dynamics. The developed computer model of a non-relativistic high-power strapped magnetron may be used by the industrial magnetron community for designing following generations of the CW industrial heating high-power magnetrons. PMID:21721323

  17. Tunable cw blue, green, orange and red upconversion fiber lasers at room temperature

    SciTech Connect

    Xie, Ping; Gosnell, T.R.

    1994-10-01

    The authors report tunable cw laser actions at 491-493nm, 517-540nm, 605-622nm and 635-637nm in Pr{sup 3+}/Yb{sup 3+} doped ZBLAN optical fibers. A tunable Ti:Al{sub 2}O{sub 3} laser was used as the pump source to simulate diode laser pumping. With 60 nW launched power, the excitation wavelength of the lasers was in the range of 780nm to 880nm. 300mW Output power has been achieved at 635nm with 760mW launched power at 860nm. With the pump wavelength at 860nm, the authors have also demonstrated stimulated emissions of 45mW at 615 nm with 430mW launched power, 20mW at 520 and 4mW at 493nm with 200mW launched power.

  18. Simple laboratory methods for quantitative IR measurements of CW agents

    NASA Astrophysics Data System (ADS)

    Puckrin, Eldon; Thériault, Jean-Marc; Lavoie, Hugo; Dubé, Denis; Lepage, Carmela J.; Petryk, Michael

    2005-11-01

    A simple method is presented for quantitatively measuring the absorbance of chemical warfare (CW) agents and their simulants in the vapour phase. The technique is based on a standard lab-bench FTIR spectrometer, 10-cm gas cell, a high accuracy Baratron pressure manometer, vacuum pump and simple stainless-steel hardware components. The results of this measurement technique are demonstrated for sarin (GB) and soman (GD). A second technique is also introduced for the passive IR detection of CW agents in an open- air path located in a fumehood. Using a modified open-cell with a pathlength of 45 cm, open-air passive infrared measurements have been obtained for simulants and several classical CW agents. Detection, identification and quantification results based on passive infrared measurements are presented for GB and the CW agent simulant, DMMP, using the CATSI sensor which has been developed by DRDC Valcartier. The open-cell technique represents a relatively simple and feasible method for examining the detection capability of passive sensors, such as CATSI, for CW agents.

  19. Design considerations for a 100 kW c-w, 140 GHz gyrotron oscillator

    SciTech Connect

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Spang, S.

    1984-01-01

    A gyrotron oscillator capable of generating 100 kW of c-w power is currently under development at Varian. The tube is being designed for operation in the TE/sup 0//sub 031/ cavity mode with the electron beam located at the second radial electric field maximum in the cavity. The electron beam will be produced by a magnetron injection gun and the 56 kG magnetic field required for 140 GHz operation will be provided by a superconducting magnet. Initial design calculations for the important elements of the tube are reported and the various technology issues of the tube design are discussed.

  20. Problems in the development of autonomous mobile laser systems based on a cw chemical DF laser

    SciTech Connect

    Aleksandrov, B P; Bashkin, A S; Beznozdrev, V N; Parfen'ev, M V; Pirogov, N A; Semenov, S N

    2003-01-31

    The problems involved in designing autonomous mobile laser systems based on high-power cw chemical DF lasers, whose mass and size parameters would make it possible to install them on various vehicles, are discussed. The need for mobility of such lasers necessitates special attention to be paid to the quest for ways and means of reducing the mass and size of the main laser systems. The optimisation of the parameters of such lasers is studied for various methods of scaling their systems. A complex approach to analysis of the optical scheme of the laser system is developed. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  1. Strategies for minimizing emittance growth in high charge CW FEL injectors

    SciTech Connect

    Liu, H.

    1995-12-31

    This paper is concerned with the best strategies for designing low emittance, high charge CW FEL injectors. This issue has become more and more critical as today`s interest in FELs is toward UV wavelength high average power operation. The challenge of obtaining the smallest possible emittance is discussed from both the practical point of view and the beam physics point of view. Various mechanisms responsible for beam emittance growth are addressed in detail. Finally, the design of a high charge injector test stand at CEBAF is chosen to help illustrate the design strategies and emittance growth mechanisms discussed in this paper.

  2. Explosive vaporization of metallic sodium microparticles by CW resonant laser radiation.

    PubMed

    Atutov, S N; Baldini, W; Biancalana, V; Calabrese, R; Guidi, V; Mai, B; Mariotti, E; Mazzocca, G; Moi, L; Pod'yachev, S P; Tomassetti, L

    2001-11-19

    Explosive vaporization of metallic Na microparticles stimulated by resonant cw laser radiation has been observed in a glass cell. Vaporization occurs at low laser-power density. The effect consists in the generation of optically thick and sharply localized Na vapor clouds propagating in the cell against the laser beam. The effect is explained by laser excitation of Na atoms, which collide onto the surface of the microparticles and transfer their internal energy. This causes other atoms to be vaporized and to continue the avalanche process. PMID:11736344

  3. Simulation of a two-frequency cw chemical HF-HBr laser

    SciTech Connect

    Aleksandrov, B P; Katorgin, B I; Stepanov, A A

    2008-10-31

    An autonomous cw chemical HF-HBr laser emitting simultaneously at {approx}2.7 {mu}m (HF molecules) and {approx}4.2 {mu}m (HBr molecules) is studied numerically by using complete Navier-Stokes equations. It is shown that the output power of the HBr laser per unit area of the nozzle array can achieve {approx}20 W cm{sup -2} for the laser region length {approx}20 cm. The relation between the radiation intensities emitted by HF and HBr molecules is controlled by diluting the secondary fuel by bromine. (lasers)

  4. Feasibility and conceptual design of a C.W. positron source at CEBAF

    SciTech Connect

    Golge, Serkan

    2010-08-01

    A feasibility study of a CW positron source for the 12 GeV upgrade at Jefferson Lab (JLAB) is provided. The proposed ≥ 100 nA Continuous Wave (CW) positron source at JLAB has several unique and challenging characteristics: high current incident electron beam at 126 MeV with a high beam power (up to a MW); CW e- beam and CW e+ production. The multiple scattering is a dominant process when creating e+ in a target, which results a large phase space area of the emitted positrons. An admittance study was done at CEBAF to find the maximum phase space area, which is tolerated in the machine. The measured geometrical transverse admittance (A) were Ax =10 and Ay = 5 mm∙mrad at the injector. Energy spread measurement was also done at the ARC1. The fractional spread limit in the ARC1 was measured as δ = 3×10-3 at 653 MeV. By using the optimized results and the CEBAF parameters, three positron injector configurations are proposed; Combined Function Magnet, Two-Dipole and Microtron Dipole configurations. With the assumptions made, by using 126 MeV Ⓧ10 mA e- beam impinging on a 2 mm W target with a 100 μm spot size, we can get up to 3 μA useful e+ current at the North Linac connection. One of the biggest challenges is the target design, which the deposited power is about 60 kW. ILC designs project power deposition up to 13 kW, which would allow the creation of a e+ beam of up to 650 nA otherwise. The results of analytic and monte carlo simulations of the positron production, capture and acceleration are presented. For the target design, a review is presented of solutions for the high power production target. Portions of this dissertation work have been published in two conference proceedings.

  5. Saturation by Noise and CW Signals in SIS Mixers

    NASA Astrophysics Data System (ADS)

    Kerr, A. R.

    2002-03-01

    In ALMA Memo 321, Plambeck points out that saturation (gain compression) is likely to be a significant factor limiting the calibration accuracy of ALMA observations. In this paper, saturation by broadband noise and CW signals is analyzed for representative SIS receivers operating at different frequencies. Many SIS mixers in current use are expected to exhibit a significant degree of gain compression when connected to a room-temperature source. Previous analyses of saturation in SIS mixers have applied only to CW signals. To analyze saturation by noise, the statistics of the output voltage are derived from those of the input signal. A single constant, applicable to all SIS mixers, is determined experimentally by fitting the predicted CW gain compression curve to measured data.

  6. Conceptual design of a 1-MW CW X-band transmitter for planetary radar

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Conroy, B. L.; Freiley, A. J.

    1990-01-01

    A proposed conceptual design to increase the output power of an existing X-band planetary radar transmitter used for planetary radar exploration from 365 kW to 1 MW CW is presented. The basic transmitter system requirements as dictated by the specifications for the radar are covered. The characteristics and expected performance of the high-power klystrons are considered, and the transmitter power amplifier system is discussed. Also included is the design of all of the associated high-power microwave components, the feed system, and the phase-stable exciter. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology needed to meet system requirements is given and possible areas of difficulty are summarized.

  7. Conceptual design of a 1-MW CW X-band transmitter for planetary radar

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Conroy, B. L.; Freiley, A. J.

    1988-01-01

    A proposed conceptual design to increase the output power of an existing X-band radar transmitter used for planetary radar exploration from 365 kW to 1 MW CW is presented. The basic transmitter system requirements as dictated by the specifications for the radar are covered. The characteristics and expected performance of the high-power klystrons are considered, and the transmitter power amplifier system is described. Also included is the design of all of the associated high-power microwave components, the feed system, and the phase-stable exciter. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology needed to meet system requirements is given and possible areas of difficulty are summarized.

  8. Diode-pumped CW and passively Q-switched lasers of Nd:GdLuAG mixed garnet at 1123 nm

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Liu, Zhaojun; Zhang, Sasa; Xia, Jinbao; Zhang, Yanmin; Guan, Chen

    2016-03-01

    Diode-pumped CW and passively Q-switched lasers of Nd:GdLuAG mixed garnet at 1123 nm were demonstrated. The maximum average output power of CW operation was 4.13 W. For Q-switched operation, the average output power was 800 mW, the corresponding single pulse energy was 133.8 μJ. The Nd:GdLuAG laser emitting at 1123 nm was obtained for the first time to the best of our knowledge, which proves that the Nd:GdLuAG mixed garnet has a better ability of energy storage than Nd:YAG in 1123 nm oscillation.

  9. Time Shifted PN Codes for CW Lidar, Radar, and Sonar

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor); Prasad, Narasimha S. (Inventor); Harrison, Fenton W. (Inventor); Flood, Michael A. (Inventor)

    2013-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  10. SRF cavities for CW option of Project X Linac

    SciTech Connect

    Solyak, N.; Gonin, I.; Khabiboulline, T.; Lunin, A.; Perunov, N.; Yakovlev, V.; /Fermilab

    2009-09-01

    Alternative option of Project X is based on the CW SC 2GeV Linac with the average current 1mA. Possible option of the CW Linac considered in the paper includes low energy part consisted of a few families SC Spoke cavities (from 2.5 MeV to 466 MeV) and high energy part consisted of 2 types of elliptical cavities (v/c=0.81 and v/c=1). Requirements and designed parameters of cavities are considered.

  11. The halogen atom/metal trimer CW laser-engineering concept overview

    NASA Astrophysics Data System (ADS)

    Emanuel, G.; Jacobs, T. A.

    1992-07-01

    A halogen atom/metal vapor laser is discussed in terms of CW power and performance. Fluorine and sodium represent surrogates for the halogen and metal species; other combinations are possible. Since lasing may occur from a variety of excited electronic states, operation is expected to be broadly dispersed over the visible and near UV wavelength regions. The device is a low pressure, supersonic mixing laser that resembles the HF/DF CW laser, e.g., separate plenums are utilized for the fluorine and sodium vapors, and each plenum feeds a nozzle array. Sodium trimer formation begins in the nozzle and continues inside the laser cavity. The design of this nozzle is particularly important; the concept of controlled condensation is introduced. Downstream of the nozzle bank, the two vapor streams mix and the F-Na3 reaction pumps several electronically excited states that have gain in the blue-green region. Estimates are given for power per unit mass flow rate and power per unit nozzle bank cross-sectional area.

  12. Toward improved software security training using a cyber warfare opposing force (CW OPFOR): the knowledge base design

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.

    2005-03-01

    "Train the way you will fight" has been a guiding principle for military training and has served the warfighter well as evidenced by numerous successful operations over the last decade. This need for realistic training for all combatants has been recognized and proven by the warfighter and continues to guide military training. However, to date, this key training principle has not been applied fully in the arena of cyberwarfare due to the lack of realistic, cost effective, reasonable, and formidable cyberwarfare opponents. Recent technological advances, improvements in the capability of computer-generated forces (CGFs) to emulate human behavior, and current results in research in information assurance and software protection, coupled with increasing dependence upon information superiority, indicate that the cyberbattlespace will be a key aspect of future conflict and that it is time to address the cyberwarfare training shortfall. To address the need for a cyberwarfare training and defensive testing capability, we propose research and development to yield a prototype computerized, semi-autonomous (SAF) red team capability. We term this capability the Cyber Warfare Opposing Force (CW OPFOR). There are several technologies that are now mature enough to enable, for the first time, the development of this powerful, effective, high fidelity CW OPFOR. These include improved knowledge about cyberwarfare attack and defense, improved techniques for assembling CGFs, improved techniques for capturing and expressing knowledge, software technologies that permit effective rapid prototyping to be effectively used on large projects, and the capability for effective hybrid reasoning systems. Our development approach for the CW OPFOR lays out several phases in order to address these requirements in an orderly manner and to enable us to test the capabilities of the CW OPFOR and exploit them as they are developed. We have completed the first phase of the research project, which

  13. GaAs single-drift flat-profile IMPATT diodes for CW operation at D band

    NASA Technical Reports Server (NTRS)

    Eisele, H.; Haddad, G. I.

    1992-01-01

    Single-drift flat-profile GaAs IMPATT diodes were designed for CW operation in the 140 GHz range. The diodes were fabricated from MBE grown material, mounted on diamond heatsinks, and tested in a radial line full height waveguide cavity. An RF output power of 15 mW with a corresponding DC to RF conversion efficiency of 1.5 percent was obtained at 135.3 GHz.

  14. Investigations of atmospheric dynamics using a CW Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Rao, G. L.

    1974-01-01

    A three-dimensional CW Doppler sounding system currently under operation at the NASA-Marshall Space Flight Center, Alabama is described. The properties of the neutral atmosphere are discussed along with the theory of Doppler sounding technique. Methods of data analyses used to investigate the dynamical phenomena at the ionospheric heights are presented and suggestions for future investigations provided.

  15. Applications of KHZ-CW Lidar in Ecological Entomology

    NASA Astrophysics Data System (ADS)

    Malmqvist, Elin; Brydegaard, Mikkel

    2016-06-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  16. CW-FIT: Group Contingency Effects across the Day

    ERIC Educational Resources Information Center

    Wills, Howard P.; Iwaszuk, Wendy M.; Kamps, Debra; Shumate, Emily

    2014-01-01

    This study explored the effects of a group-contingency intervention on student behavior across academic instructional periods. Research suggests group contingencies are evidence-based practices, yet calls for investigation to determine the best conditions and groups suited for this type of intervention. CW-FIT (Class-Wide Function-related…

  17. Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

    SciTech Connect

    Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Fisk, Sally; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, John; Kortze, J.; Legg, Robert; Li, Rui; Marchlik, Matthew; Moore, Steven W.; Neil, George; Powers, Thomas; Sexton, Daniel; Shin, Ilkyoung; Shinn, Michelle D.; Tennant, Christopher; Terzic, Balsa; Walker, Richard; Williams, Gwyn P.; Wilson, G.; Zhang, Shukui

    2010-08-01

    We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.

  18. Atmospheric turbulence remote sensing by cw and pulsed CO2 Doppler lidars

    NASA Astrophysics Data System (ADS)

    Kurochkin, Nikolay N.; Gordienko, Vyacheslav M.; Priezzhev, Alexander V.; Poutivski, Iouri Y.

    1994-12-01

    The theoretical basis for wind velocity field parameters' measurements using CW Doppler Lidars (DL) is outlined. The instant power spectrum of photocurrent is shown to be histogram of velocity projection field with a weight depending on Dl's parameters. A non-destructive long-range method is presented for measuring the structure constant of the wind velocity field. The essence of the method is (the constancy of the backscatter coefficient is assumed): the average square width of the DL photocurrent power spectrum is the averaged structure function of the wind velocity weighted with a function depending on the DL parameters, the measurement time and the average wind velocity. Consequently, it is proportional to velocity structure constant with a factor depending on the DL parameters, the measurement time, the average wind velocity, the internal and external scales of turbulence. At certain DL parameters and measurement time the factor is shown to be practically independent from the average wind velocity, the internal and external scales of turbulence, thus a priori estimate can be successfully used instead of their real values. The differences between structures of CW and pulsed DL signal are discussed. The described above method is applied for pulsed DL.

  19. Experimental atomic scale investigation of irradiation effects in CW 316SS and UFG-CW 316SS

    NASA Astrophysics Data System (ADS)

    Pareige, P.; Etienne, A.; Radiguet, B.

    2009-06-01

    Materials of the core internals of pressurized water reactor (austenitic stainless steels) are subject to neutron irradiation. To understand the ageing mechanisms associated with irradiation and propose life predictions of components or develop new materials, irradiation damage needs to be experimentally investigated. Atomic scale investigation of a neutron-irradiated CW316 SS with the laser pulsed atom probe gives a detailed description of the solute segregation in the austenitic grains. In order to understand the mechanism of solute segregation detected in the neutron-irradiated materials, ion irradiations were performed. These latest irradiations were realized on a CW 316SS as well as on a nanostructured CW 316SS. The study of irradiation effects in a nanograin material allows first, to easily analyse grain boundary segregation and second, to test the behaviour under irradiation of a new nanostructured material. The three aspects of this atomic scale investigation (neutron irradiation effect, model ion irradiation, new nanostructured CW 316 SS) are tackled in this paper.

  20. CW Energy Recovery Operation of XFELs

    SciTech Connect

    Jacek Sekutowicz; S. Bogacz; Dave Douglas; Peter Kneisel; Gwyn P. Wiliams; Massimo Ferrario; Luca Serafini; Ilan Ben-Zvi; James Rose; Triveni Srinivasan-Rao; Patrick Colestock; Wolf-Dietrich Moeller; Bernd Petersen; Dieter Proch; S. Simrock; James B. Rosenzweig

    2003-09-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: What will the next generation of the XFEL facilities look like ? Believing that super-conducting technology offers several advantages over room-temperature technology, such as high quality beams with highly populated bunches and the possibility of energy recovery or higher overall efficiency, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in machine design are needed, as compared to the present DESY XFEL, and what kind of R&D program is required over the next few years to arrive at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power. In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions.

  1. Noise analysis for near-field 3D FM-CW radar imaging systems

    NASA Astrophysics Data System (ADS)

    Sheen, David M.

    2015-05-01

    Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  2. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Optical strength of mirrors on fluorite substrates subjected to cw radiation from a chemical CO laser

    NASA Astrophysics Data System (ADS)

    Dudkin, V. A.; Rukhin, V. B.

    1994-02-01

    Optimisation of the energy characteristics of a chemical CO laser revealed damage to the optical resonator mirrors. Estimates indicated that when the power density of the incident cw laser radiation was 2-2.5 kW cm-2 the induced thermoelastic stresses could reach the damage threshold of mirrors on fluorite substrates.

  3. Characteristics of the evolution of a plasma generated by radiation from CW and repetitively pulsed CO2 lasers in different gases

    NASA Astrophysics Data System (ADS)

    Kanevskii, M. F.; Stepanova, M. A.

    1990-06-01

    The interaction between high-power CW and repetitively pulsed CO2 laser radiation and a low-threshold optical-breakdown plasma near a metal surface is investigated. The characteristics of the breakdown plasma are examined as functions of the experimental conditions. A qualitative analysis of the results obtained was performed using a simple one-dimensional model for laser combustion waves.

  4. Effects of packaging on the performances of high brightness 9xx nm CW mini-bar diode lasers

    NASA Astrophysics Data System (ADS)

    Li, Xiaoning; Wang, Jingwei; Feng, Feifei; Liu, Yalong; Yu, Dongshan; Zhang, Pu; Liu, Xingsheng

    2015-02-01

    9xx nm CW mini-bar diode lasers and stacks with high brightness and reliability are desired for pumping fiber lasers and direct fiber coupling applications. For the traditional cm-bar with 1mm-2mm cavity, it can provide CW output power up to 80W-100W and high reliability, whereas the brightness is relatively low. In comparison, mini-bar based diode lasers with 4mm cavity offer a superior performance balance between power, brightness, and reliability. However, the long cavity and large footprint of mini-bar diode laser renders its sensitivity towards thermal stress formed in packaging process, which directly affects the performances of high bright mini-bar diode lasers. In this work, the thermal stress correlating with package structure and packaging process are compared and analyzed. Based on the experiment and analysis results, an optimized package structure of CW 60W 976 nm mini-bar diode lasers is designed and developed which relieves thermal stress.

  5. Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Masuhara, Hiroshi; Sugiyama, Teruki; Yuyama, Ken-ichi; Usman, Anwar

    2015-02-01

    Laser trapping of molecular systems in solution is classified into three cases: JUST TRAPPING, EXTENDED TRAPPING, and NUCLEATION and GROWTH. The nucleation in amino acid solutions depends on where the 1064-nm CW trapping laser is focused, and crystallization and liquid-liquid phase separation are induced by laser trapping at the solution/air surface and the solution/glass interface, respectively. Laser trapping crystallization is achieved even in unsaturated solution, on which unique controls of crystallization are made possible. Crystal size is arbitrarily controlled by tuning laser power for a plate-like anhydrous crystal of l-phenylalanine. The α- or γ-crystal polymorph of glycine is selectively prepared by changing laser power and polarization. Further efficient trapping of nanoparticles and their following ejection induced by femtosecond laser pulses are introduced as unique trapping phenomena and finally future perspective is presented.

  6. Absorption line CW EPR using an amplitude modulated longitudinal field.

    PubMed

    Fedin, Matvey; Gromov, Igor; Schweiger, Arthur

    2004-11-01

    In standard continuous wave electron paramagnetic resonance (CW-EPR) experiments, the first derivative of absorption lines is detected. This type of a line shape is caused by the magnetic field modulation and is usually an undesired feature, since the sensitivity of CW-EPR drastically decreases with increasing linewidth. A new approach is introduced, which allows for the measurement of absorption line EPR spectra in systems with broad inhomogeneous lines. The method makes use of multiple-photon transitions that are induced in spin systems when a transverse microwave and a longitudinal radio frequency field are simultaneously applied. The absorption lines are obtained by using amplitude modulation of the radio frequency field and slight saturation of the spectral lines. The basics of the new approach are discussed and experimental examples are given. PMID:15504685

  7. Operation of a cw rf driven ion source with hydrogen and deuterium gas{sup a}

    SciTech Connect

    Melnychuk, S.T.; Debiak, T.W.; Sredniawski, J.J.

    1996-04-01

    We will describe the operation of a cw rf driven multicusp ion source designed for extraction of high current hydrogen and deuterium beams. The source is driven at 2 MHz by a 2.5 turn induction antenna immersed in the plasma. Bare stainless-steel and porcelain-coated Cu antennas have been used. The plasma load is matched to the rf generator by a variable tap {ital N}:1 transformer isolated to 46 kV, and an LC network on the secondary. With H{sub 2} gas the source can be operated at pressures between 5 and 60 mT with power reflection coefficients {lt}0.01. The extracted ion current density with a porcelain-coated antenna is approximately given by 35 mA/cm{sup 2}/kW with an 80 G dipole filter field for input powers from 3.5 to 6.6 kW. The current density remained constant for operation with a 6 and an 8 mm aperture. The source has been operated for 260 h at 3.6 kW with a single-porcelain-coated antenna. Mass spectrometer measurements of the extracted beam at this power show a species mix for H{sup +}:H{sup +}{sub 2}:H{sup +}{sub 3}:OH{sup +} of 0.49: 0.04: 0.42: 0.04. The calculated beam divergence using the IGUN code is compared with the measured divergence from an electrostatic sweep emittance scanner designed for high-power cw beam diagnostics. Phase space measurements at 40 kV and 23 mA beam current result in a normalized rms emittance of 0.09 {pi}mmmrad. {copyright} {ital 1996 American Institute of Physics.}

  8. Computationally efficient, rotational nonequilibrium CW chemical laser model

    SciTech Connect

    Sentman, L.H.; Rushmore, W.

    1981-10-01

    The essential fluid dynamic and kinetic phenomena required for a quantitative, computationally efficient, rotational nonequilibrium model of a CW HF chemical laser are identified. It is shown that, in addition to the pumping, collisional deactivation, and rotational relaxation reactions, F-atom wall recombination, the hot pumping reaction, and multiquantum deactivation reactions play a significant role in determining laser performance. Several problems with the HF kinetics package are identified. The effect of various parameters on run time is discussed.

  9. The eclipsing binary CW Eridani. [three-color photoelectric observation

    NASA Technical Reports Server (NTRS)

    Chen, K.-Y.

    1975-01-01

    Results of three-color photoelectric observations of CW Eridani are presented which were made with a 30-inch telescope over the three-year period from 1970 to 1973. The times of minima are computed, solutions of the light curves are obtained, and theoretical light curves are computed from the solutions. The period is determined to be 2.72837 days, and the orbital and photoelectric elements are derived from solutions based on the idealized Russell model.

  10. Low threshold CW Nc laser oscillator at 1060 nm study

    NASA Technical Reports Server (NTRS)

    Birnbaum, M.; Deshazer, L. G.

    1976-01-01

    A broad range of characteristics of neodymium/yag lasers were investigated. With Nd:YVO4 crystals, CW 1.06 mu lasers were operated with thresholds a factor of 2 lower than Nd:YAG and with greater slope efficiencies. Thus, the first step in the development of new oscillators suitable for application in high data rate laser communication systems which surpass the present performance of the Nd:YAG laser has been successfully demonstrated.

  11. Laser Photon Force Measurements using a CW Laser

    NASA Technical Reports Server (NTRS)

    Gray, Perry; Edwards, David L.; Carruth, M. Ralph, Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The photon force resulting from the non-damaging impact of laser derived photons on a metallic target was measured using a vacuum compatible microbalance. This experiment quantitatively verified that the force resulting from laser photons impacting a reflective surface is measurable and predictable. The photon wavelength is 1064 mn and the laser is a multi-mode 30OW Nd YAG continuous wave (CW) laser.

  12. Status of the Project-X CW Linac Design

    SciTech Connect

    Ostiguy, J-F.; Solyak, N.; Berrutti, P.; Carneiro, J.P.; Lebedev, V.; Nagaitsev, S.; Saini, A.; Stheynas, B.; Yakovlev, V.P.; /Fermilab

    2012-05-01

    Project-X is a proposed proton accelerator complex at Fermilab that would provide particle beams to support a diversified experimental program at the intensity frontier. As currently envisioned, the complex would employ a CW superconducting linac to accelerate a 1 mA average, 5 mA peak H{sup -} beam from 2.1 MeV to 3 GeV. A second superconducting linac, operating in pulsed mode would ultimately accelerate a small fraction of this beam up to 8 GeV. The CW linac is based on five families of resonators operating at three frequencies: half-wave (1 family at 162.5 MHz), spoke (2 families at 325 MHz) and elliptical (2 families at 650 MHz). Accelerating and focusing elements are assembled in cryomodules separated by short warm sections. A long open region ({approx} 15 m) allows beam extraction at 1 GeV in support of a nuclear experimental program. In this paper, we present the latest iteration of the CW linac baseline lattice. We also briefly compare it to an alternative where the 162.5 half-wave resonators are replaced with 325 MHz spoke resonators.

  13. Development program for a 200-kW, CW gyrotron. Quarterly report No. 5, July-September 1980

    SciTech Connect

    Tancredi, J.J.; Caplan, M.; Adler, E.A.; Sandoval, J.J.

    1980-01-01

    During this report period, the electrical design of the CW tube was completed. The mechanical design of a collector, capable of providing diagnostic data of the spent beam in S/N 1 was completed. Cold tests of variations of a scaled, X-band cavity were correlated with the calculated results of a cavity computer code. Parts for the magnetron injection gun were placed on order and gun tooling was designed. A subcontract was placed for a superconducting solenoid. A 3 MW power supply was dismantled, packaged and shipped from the Kwajalein Missile Range to storage at Hughes, for use in CW testing at a later date. During the latter part of this report period, a specific interim goal was imposed by ORNL, to provide for a demonstration of a 200 kW, 60 GHz gyrotron capable of 100 ms pulses, by December 31, 1981. The imposition of this interim goal has led to establishing a modified gyrotron design, based on a considerably smaller collector than that required for a CW tube.

  14. Effective Fluorescence Lifetime and Stimulated Emission Cross-Section of Nd/Cr:YAG Ceramics under CW Lamplight Pumping

    NASA Astrophysics Data System (ADS)

    Saiki, Taku; Motokoshi, Shinji; Imasaki, Kazuo; Fujioka, Kana; Fujita, Hisanori; Nakatsuka, Masahiro; Izawa, Yasukazu; Yamanaka, Chiyoe

    2008-10-01

    Remarkable improvements in the lifetime of the Nd upper level and in the effective stimulated emission cross-section of Nd/Cr:YAG ceramics have been theoretically and experimentally studied. Until recently, it had been thought that the long energy transition time from Cr ions to Nd ions of Nd/Cr:YAG adversely affects laser action, degrading optical-optical conversion efficiency under CW and flash lamp pumping. However, current research showed that high-efficiency energy transition has a positive effect on laser action. The effective lifetime is increased from 0.23 to 1.1 ms and the emission cross-section is effectively increased to three times for that of the conventional Nd:YAG. A small signal gain is significantly improved, and the saturation power density is reduced to 1/10 that of the Nd:YAG for the same pumping power density. A CW laser light generated in a laser diode (LD)-pumped 1064 nm Nd:YAG laser oscillator was amplified, and the measured output power was saturated. The output laser power calculated using theoretical saturation power density was consistent with the experimental results.

  15. A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report

    SciTech Connect

    R.Lawrece Ives; George Collins; David Marsden Michael Read; Edward Eisen; Takuchi Kamura, Philipp Borchard

    2012-11-28

    This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and test of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.

  16. High-resolution CW lidar altimetry using repeating intensity-modulated waveforms and Fourier transform reordering.

    PubMed

    Campbell, Joel F; Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Obland, Michael D

    2014-10-15

    An interpolation method is described for range measurements of high precision and altimetry using repeating intensity-modulated continuous wave (IM-CW) lidar waveforms, where the range is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. The computation of this processing is marginally greater than the correlation itself, as it only involves reordering of the correlation in the frequency domain, which makes it possible to implement this in a real time application. It is shown through theoretical arguments and flight-testing that this is a viable method for high-speed interpolated range measurements. Standard deviation is 0.75 m over water with only 350 mw of transmitted power at 2600 m. PMID:25361160

  17. Stable 1.25 watts CW far infrared laser radiation at the 119 micron methanol line

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Pickett, Herbert M.

    1987-01-01

    Far-infrared CW radiation of 1.25 watts has been obtained at the 119 micron methanol line with a CO2 pump power of 125 watts, and the maximum frequency fluctuation of the free running laser is measured to be less than + or - 100 kHz per hour. Reflecting optics have been used, when possible, to minimize CO2 degradation, and the frequency stability is ensured by cooling the input and output couplers. The input and output assemblies within the lasing medium are enclosed to minimize the external effects on the cavity length and to eliminate the mechanical instabilities associated with the use of bellows. The vibrational bottle-neck is broken by cooling the resonator wall to 5 deg and adding He as the buffer gas.

  18. 11-W CW 100-μm fiber-coupled 971-nm Al-free active region pump source

    NASA Astrophysics Data System (ADS)

    Larat, Christian; Auzanneau, Sophie-Charlotte; Calligaro, Michel; Parillaud, Olivier; Krakowski, Michel; Boulant, Benoit; Laugustin, Arnaud; Fillardet, Thierry

    2004-05-01

    Laser diodes at 980 nm have important applications in medicine (surgery, dentistry) and Telecoms for WDM, high bit rate networks (Er or Er/Yb doped fibre amplifiers). These applications need a high coupling efficiency of the source into a fibre. High brightness mini-bars with an emissive length of 2.7 mm have been recently developed. These devices consist of an array of aluminium free active region index guided tapered laser diodes with standard AR/HR coatings. We have improved the performances as a result of a new epitaxial layer and a new mini-bar design. We measure an optical output power of 25W at 40A under CW operation at 15°C. At 25°C and 33A, we obtain 20W CW and the far field along the slow axis has a Gaussian shape, with a low FWHM value of 3.5°. Along the fast axis, the far-field also has a Gaussian shape and a FWHM of 31,5°. To couple this tapered diode laser mini-bar into a 100μm diameter fibre (0.26 numerical aperture), we use a patented collective beam shaping technique for optical coupling. We obtain a coupled power of 11.2W under CW operation at 971 nm, 21°C with an emitted power from the mini-bar of 21.7W, resulting in a coupling efficiency of 52%. The conductively cooled mini-bar, all the optics and the optical fibre connector are assembled into a 82x62x23mm package. To our knowledge this is the highest reported power coupled into 100μm optical fibre from a single laser diode chip using a collective coupling scheme without any array of micro-optics.

  19. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412

  20. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.

    PubMed

    Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J

    2007-02-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412

  1. Ultraviolet photometry of the eclipsing variable CW Cephei

    NASA Technical Reports Server (NTRS)

    Sobieski, S.

    1972-01-01

    An extended series of photometric observations were made of the eclipsing variable CW Cephei using the Wisconsin instrument on OAO-2. Approximate elements which were derived based solely on the eclipse depths and shape of the secondary are in satisfactory agreement with those found using ground based observations. However, persistent asymmetries and anomalous light variations, all larger than the expected experimental error, were also found; subsequent ground-based observations show H sub alpha entirely in emission indicating the presence of an extended gaseous system surrounding one or both of the components. Consistent solutions utilizing all data at all wavelengths were not found.

  2. 1 W of 261 nm cw generation in a Pr 3+:LiYF 4 laser pumped by an optically pumped semiconductor laser at 479 nm

    NASA Astrophysics Data System (ADS)

    Ostroumov, Vasiliy; Seelert, Wolf

    2008-02-01

    The lack of blue pump sources for Pr-doped materials has been overcome with the recent progress in optically pumped semiconductor lasers (OPS) operating at 479 nm. The availability of reliable high power OPS pump lasers, makes Pr 3+-doped crystals ideal gain media for compact and efficient ultraviolet solid-state lasers with output power in the Watt range. We report on the scalability of a 522/261 nm Pr:YLF cw laser that is dual-end-pumped by two OPS lasers at 479 nm. At 9.6 W of incident pump power more than 4 W were obtained at 522 nm with a slope efficiency of 45%. Intracavity frequency doubling of 522 nm resulted in 1 Watt of cw UV output at 261 nm.

  3. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications.

    PubMed

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D

    2016-07-25

    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis. PMID:27464121

  4. RF system developments for CW and/or long pulse linacs

    SciTech Connect

    Lynch, M.

    1998-12-31

    High Power Proton Linacs are under development or proposed for development at Los Alamos and elsewhere. By current standards these linacs all require very large amounts of RF power. The Accelerator for Production of Tritium (APT) is a CW accelerator with an output current and energy of 100 mA and 1,700 MeV, respectively. The Spallation Neutron Source (SNS), in its ultimate configuration, is a pulsed accelerator with an average output power of 4 MW of beam. Other accelerators such as those that address transmutation and upgrades to LANSCE have similar requirements. For these high average power applications, the RF systems represent approximately half of the total cost of the linac and are thus key elements in the design and configuration of the accelerator. Los Alamos is fortunate to be actively working on both APT and SNS. For these programs the author is pursuing a number of component developments which are aimed at one or more of the key issues for large RF systems: technical performance, capital cost, reliability, and operating efficiency. This paper briefly describes some of the linac applications and then provides updates on the key RF developments being pursued.

  5. RF Simulation of the 187 MHz CW Photo-RF Gun Cavity at LBNL

    SciTech Connect

    Huang, Tong-Ming

    2008-12-01

    A 187 MHz normal conducting Photo-RF gun cavity is designed for the next generation light sources. The cavity is capable of operating in CW mode. As high as 750 kV gap voltage can be achieved with a 20 MV/m acceleration gradient. The original cavity optimization is conducted using Superfish code (2D) by Staples. 104 vacuum pumping slots are added and evenly spaced over the cavity equator in order to achieve better than 10-10-Tor of vacuum. Two loop couplers will be used to feed RF power into the cavity. 3D simulations are necessary to study effects from the vacuum pumping slots, couplers and possible multipactoring. The cavity geometry is optimized to minimize the power density and avoid multipactoring at operating field level. The vacuum slot dimensions are carefully chosen in consideration of both the vacuum conduction, local power density enhancement and the power attenuation at the getter pumps. This technical note gives a summary of 3D RF simulation results, multipactoring simulations (2D) and preliminary electromagnetic-thermal analysis using ANSYS code.

  6. Photometric analysis of the overcontact binary CW Cas

    SciTech Connect

    Wang, J. J.; Qian, S. B.; He, J. J.; Li, L. J.; Zhao, E. G.

    2014-11-01

    New CCD photometric observations of overcontact binary CW Cas were carried out in 2004 and 2011. In particular, the light curve obtained in 2004 shows a remarkable O'Connell effect. Compared with light curves in different observing seasons, variations were found. These variations can be explained by dark spot activities on the surface of at least one component. Using the Wilson-Devinney code with a spot model, we find that the photometric solutions confirm CW Cas is a shallow W-subtype overcontact binary with a spotted massive component. Our new determined times of minimum light together with the others published in the literature were analyzed to find a change of orbital period. From the O – C curves, the period of the system shows a cyclic period change (P {sub 3} = 69.9 yr, A {sub 3} = 0.03196 days) superposed on the linear increase. The cyclic variation, if explained as the light-travel time effect, reveals the presence of a tertiary companion.

  7. An Acoustic Demonstration Model for CW and Pulsed Spectrosocopy Experiments

    NASA Astrophysics Data System (ADS)

    Starck, Torben; Mäder, Heinrich; Trueman, Trevor; Jäger, Wolfgang

    2009-06-01

    High school and undergraduate students have often difficulties if new concepts are introduced in their physics or chemistry lectures. Lecture demonstrations and references to more familiar analogues can be of great help to the students in such situations. We have developed an experimental setup to demonstrate the principles of cw absorption and pulsed excitation - emission spectroscopies, using acoustical analogues. Our radiation source is a speaker and the detector is a microphone, both controlled by a computer sound card. The acoustical setup is housed in a plexiglas box, which serves as a resonator. It turns out that beer glasses are suitable samples; this also helps to keep the students interested! The instrument is controlled by a LabView program. In a cw experiment, the sound frequency is swept through a certain frequency range and the microphone response is recorded simultaneously as function of frequency. A background signal without sample is recorded, and background subtraction yields the beer glass spectrum. In a pulsed experiment, a short sound pulse is generated and the microphone is used to record the resulting emission signal of the beer glass. A Fourier transformation of the time domain signal gives then the spectrum. We will discuss the experimental setup and show videos of the experiments.

  8. Photometric Analysis of the Overcontact Binary CW Cas

    NASA Astrophysics Data System (ADS)

    Wang, J. J.; Qian, S. B.; He, J. J.; Li, L. J.; Zhao, E. G.

    2014-11-01

    New CCD photometric observations of overcontact binary CW Cas were carried out in 2004 and 2011. In particular, the light curve obtained in 2004 shows a remarkable O'Connell effect. Compared with light curves in different observing seasons, variations were found. These variations can be explained by dark spot activities on the surface of at least one component. Using the Wilson-Devinney code with a spot model, we find that the photometric solutions confirm CW Cas is a shallow W-subtype overcontact binary with a spotted massive component. Our new determined times of minimum light together with the others published in the literature were analyzed to find a change of orbital period. From the O - C curves, the period of the system shows a cyclic period change (P 3 = 69.9 yr, A 3 = 0.03196 days) superposed on the linear increase. The cyclic variation, if explained as the light-travel time effect, reveals the presence of a tertiary companion.

  9. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-851O network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  10. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  11. Temporal compression of cw diode-laser output into short pulses with cesium-vapor group-velocity dispersion.

    PubMed

    Choi, K; Menders, J; Ross, D; Korevaar, E

    1993-11-15

    Using a technique similar to chirped pulse compression, we have compressed the 50-mW cw output of a diode laser into pulses of greater than 500-mW peak power and less than 400-ps duration. By applying a small current modulation to the diode, we induced a small wavelength modulation in the vicinity of the 6s(1/2)-to-6p(3/2) cesium resonance transition at 852 nm. Group-velocity dispersion on propagation through a cesium vapor cell then led to pulse compression. We developed a simple model to make predictions of output pulse shapes by using different modulation waveforms. PMID:19829441

  12. Development of a 200 W CW high efficiency traveling wave tube at 12 GHz. [for use in communication technology satellites

    NASA Technical Reports Server (NTRS)

    Christensen, J. A.; Tammaru, I.

    1974-01-01

    The design, development, and test results are reported for an experimental PPM focused, traveling-wave tube that produces 235 watts of CW RF power over 85 MHz centered at 12.080 GHz. The tube uses a coupled cavity RF circuit with a velocity taper for greater than 30 percent basic efficiency. Overall efficiency of 51 percent is achieved by means of a nine stage depressed collector designed at NASA Lewis Research Center. This collector is cooled by direct radiation to deep space.

  13. Analysis of Aftercavity Interaction in European ITER Gyrotrons and in the Compact Sub-THz Gyrotron FU CW-CI

    NASA Astrophysics Data System (ADS)

    Dumbrajs, Olgierd; Idehara, Toshitaka

    2012-12-01

    Possibilities of arising of aftercavity interaction are analyzed in the ITER 170 GHz 2 MW coaxial cavity gyrotron and the 170 GHz 1 MW cylindrical cavity gyrotron, as well as in the compact 394.5 GHz low power gyrotron FU CW-CI. Also, the simulations for the gyrotron efficiency in the presence of aftercavity interaction are performed in the cold cavity approximation. Results of the analysis illustrate the subtle interplay between the geometry of the output taper and the profile of the magnetic field.

  14. Broadband near-to-shot-noise suppression of arbitrary cw-laser excess intensity noise in the gigahertz range.

    PubMed

    Michael, Ernest A; Pallanca, Laurent

    2015-04-01

    Broadband near-to-shot-noise suppression of the intensity noise from a continuous-wave (cw) fiber laser at 1550 nm is demonstrated at GHz-frequencies using feed-forward phase-matched destructive noise interference impressed onto the optical signal with a fiber electro-optic power modulator. The scheme is independent of the laser frequency and therefore is suitable for tunable lasers. It can be used with some modifications after an optical fiber-amplifier boosting a cw laser signal. A noise residual of down to 2 dB above the shot-noise was measured, which is about 2 dB below the prediction with a rigorous noise model. While the total laser noise can be removed, inclusive shot noise, because the latter is still 10 dB above the thermal noise, the power splitter introduces some partition noise above the shot level. In that case, a sub-shot-noise suppression scheme should be possible by replacing the photon anti-correlation of the power splitter by the co-correlation obtained from a paired photon or twin beam source. PMID:25831326

  15. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    NASA Astrophysics Data System (ADS)

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C. M.; Collins, D.; Dwinell, R. D.

    2005-03-01

    The VIA-301 Heatwave™ gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end [1]. This VIA-301 Heatwave™ gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave™ may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power, the

  16. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    SciTech Connect

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C.M.; Collins, D.; Dwinell, R.D.

    2005-03-15

    The VIA-301 Heatwave{sup TM} gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end].This VIA-301 Heatwave{sup TM} gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave{sup TM} may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power

  17. On multiple component detection in molecular plasmas using cw external-cavity quantum cascade infrared lasers

    NASA Astrophysics Data System (ADS)

    Lopatik, Dmitry; Lang, Norbert; Macherius, Uwe; Zimmermann, Henrik; Roepcke, Juergen

    2012-10-01

    Several cw external cavity quantum cascade lasers (EC-QCLs) have been tested as radiation sources for an absorption spectrometer focused on the analysis of molecular plasmas. Based on the wide spectral tunability of EC-QCLs multiple species detection is demonstrated in low pressure Ar/N2 MW plasmas containing CH4 as hydrocarbon precursor. Using the direct absorption technique the evolution of the concentrations of CH4, C2H2, HCN and H2O has been monitored depending on the discharge conditions (p= 0.5 mbar, f= 2.45 GHz) in a planar MW plasma reactor. The concentrations were found to be in the range of 10 ^11 -- 10 ^14 molecules cm-3. Based on the profiles of absorption lines the gas temperature Tg has been calculated in dependence on the discharge power. Changing the discharge power from 0.2 kW to 1 kW leads to an increase of Tg from 400 to 700 K. The typical spectral line width of the EC-QCLs under the study was about 30 MHz. Varying the power values of an EC-QCL for direct absorption measurements at low pressure conditions no saturation effects in determining the concentrations of CH4 and C2H2 could be found under the used conditions.

  18. CW light sources at the 589 nm sodium D2 line by sum-frequency mixing of diode pumped neodymium lasers

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Lu, J.; Xu, L. J.; Sun, G. C.; Zhao, Z. M.; Gao, X.; Lin, J. Q.

    2010-10-01

    We present a laser architecture to obtain continuous-wave (CW) light sources at the 589 nm sodium D2 line. A 808 nm diode-pumped a Nd:YLiF4 (Nd:YLF) crystal emitting at 1053 nm. A part of the pump power was then absorbed by the Nd:YLF crystal. The remaining was used to pump a Nd:YAG crystal emitting at 1338 nm. Intracavity sum-frequency mixing at 1053 and 1338 nm was then realized in a LiB3O5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 235 mW at 589 nm with a pump laser diode emitting 17.8 W at 808 nm.

  19. Control of soliton train transmission, storage, and clock recovery by cw light injection

    NASA Astrophysics Data System (ADS)

    Wabnitz, S.

    1996-12-01

    The Gordon-Haus time jitter and the soliton-soliton interactions in a soliton fiber loop memory or in a transmission link may be suppressed by the periodic injection of a weak cw control beam. In the case of a fiber ring cavity cw injection may also permit clock regeneration from a randomly modulated soliton train. .

  20. Operational experience with CW high gradient and high QL cryomodules

    SciTech Connect

    Hovater, J. Curt; Allison, Trent L.; Bachimanchi, Ramakrishna; Daly, Edward F.; Drury, Michael A.; Lahti, George E.; Mounts, Clyde I.; Nelson, Richard M.; Plawski, Tomasz E.

    2014-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of ten new 100 MV cryomodules (80 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. The RF system employs single cavity control using new digital LLRF controls and 13 kW klystrons. Recently, all of the new cryomodules and associated RF hardware and software have been commissioned and operated in the CEBAF accelerator. Electrons at linac currents up to 10 ?A have been successfully accelerated and used for nuclear physics experiments. This paper reports on the commissioning and operation of the cryomodules and RF system.

  1. The reliability of /AlGa/As CW laser diodes

    NASA Astrophysics Data System (ADS)

    Ettenberg, M.; Kressel, H.

    1980-02-01

    Major factors bearing on the reliability of (AlGa)As CW laser diodes are reviewed with attention given to the degradation modes of facet mirror damage, contact degradation, and internal damage. Detailed results are provided for the oxide-defined stripe-contact double-heterojunction lasers operated for more than 40,000 h with extrapolations indicating a median time to failure between 100,000 and 1,000,000. Facet damage and contact degradation appear to be under control, and internal damage remains the dominant failure mechanism. Most of the data deals with threshold current increase; however, shifts in far-field pattern and changes in laser modulation characteristics, including self-sustained oscillations, may affect laser performance in real systems.

  2. Characterization of a THz CW spectrometer pumped at 1550 nm

    NASA Astrophysics Data System (ADS)

    Yeo, Woon-Gi; Nahar, Niru K.

    2015-07-01

    We present an evaluation of a cost-effective THz CW spectrometer pumped at 1550 nm wavelengths with a fixed delay line. To study the spectral competence of the spectrometer, transmission data is obtained for various organic and inorganic samples. Spectral comparisons of the samples are presented by using THz time domain spectroscopy and vector network analyzer (VNA). Despite the capability of highly resolved transmission spectroscopy, our current system reveals the uncertainty in interferometric output data for phase analysis. Here, we identify the effect of fringing space of raw output data toward frequency resolution, phase analysis, and data acquisition time. We also propose the proper delay line setup for phase analysis for this type of spectrometers.

  3. Quasi-cw tissue transillumination at 1064 nm

    NASA Astrophysics Data System (ADS)

    Bernini, Umberto; Ramaglia, Antonio; Russo, Paolo

    1997-08-01

    An extended series of transillumination experiments has been performed in vitro on animal samples (bovine muscle, up to 30- mm-thick; chicken wing and quail femur, 12-mm-thick) and in vivo on the human hand (thickness, about 20 mm), using a pulsed light source (7 ns, about 10-4 J/pulse, 10 Hz rep rate) from a collimated (1.2 m) Nd:YAG laser beam (1064 nm). A PIN photodiode connected to a digital oscilloscope was used to measure the maximum intensity of the beam pulse transmitted through the sample (i.e., no temporal discrimination of the output signal was attempted) while it was scanned across the source/detector assembly. One dimensional scans were performed on bovine muscle samples in which thin metallic test objects were embedded, in order to study the spatial resolution of the technique (for bovine muscle at 1064 nm, absorption and reduced scattering coefficients are reported to be about 1 cm-1 and 3 cm-1, respectively). The measured spatial resolution was as good as 3.6 mm in 30 mm of tissue thickness. In the two-dimensional scans of the chicken and quail sample, fat and bone tissues can be easily seen with good resolution, whereas imaging of the middle finger of a human hand shows cartilaginoid and bone tissue with 1 - 2 mm resolution. Hence, this simple collimated quasi-cw technique gives significantly better results for tissue imaging than pure cw transillumination. Use of (pulsed) light above 1000 nm and a high energy content per pulse are supposed to explain the positive experimental findings.

  4. CW and passively Q-switched laser performance of Nd:Lu2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Di, Juqing; Zhang, Jian; Tang, Dingyuan; Xu, Jun

    2016-01-01

    We demonstrated an efficient and controllable dual-wavelength continuous-wave (CW) laser of Nd:Lu2SiO5 (Nd:LSO) crystal. The maximum output power was 3.02 W at wavelength of 1075 nm and 1079 nm, and with increasing of absorbed pump power, the ratio of 1079 nm laser rose. The slope efficiency of 65.6% and optical-to-optical conversion efficiency of 63.3% were obtained. The passively Q-switched laser properties of Nd:LSO were investigated for the first time. The shortest pulse, maximum pulse energy and peak power were 11.58 ns, 29.05 μJ and 2.34 kW, respectively.

  5. Low-cost 7 mW CW 355-nm diode-pumped intracavity frequency-tripled microchip laser

    NASA Astrophysics Data System (ADS)

    Aubert, Nicolas; Georges, Thierry; Chauzat, Corinne; Le Bras, Raymond; Féron, Patrice

    2006-02-01

    Low noise CW milliWatt scale UV lasers are needed for many analysis applications in the semiconductor and the biological fields. Intracavity tripling has been widely used to improve the UV output power of Q-switched or modelocked lasers, but no efficient diode-pumped CW UV laser was ever reported. One of the key to success is the use of a monolithic laser structure which both eliminates the birefringence interference issue and facilitates the single frequency operation. The monolithic structure is obtained by optically contacting crystals. It does not require any alignment, reduces the manufacturing cost and improves reliability. The optimization of the amplifying medium and doubling and tripling crystals involves as many parameters as pump absorption, thermal lens, cavity length, 1064 nm mode size, walk-off, acceptance angles, polarizations, phases... The interplay between these parameters will be discussed. Finally, several amplifying media (Nd:YAG and Nd:YVO 4), doubling crystals (KTP, KNbO 3, BBO, BiBO and LBO) and tripling crystals (BBO, BiBO, LBO) were tested. With a 2.4W 808 nm diode pump, several configurations have led to low noise 355 nm single frequency operation exceeding 5 mW. We believe that this power can still be improved.

  6. Flexible carbon micro-supercapacitors prepared by direct cw-laser writing

    NASA Astrophysics Data System (ADS)

    Cai, Jinguang; Watanabe, Akira

    2016-03-01

    Micro-/nano-scale power supply units with high energy and high power densities are critical components for the development of compact miniaturized portable electronic devices. Supercapacitors have attracted many research attentions due to their high power density, robust cycle performance, pollution-free operation, and maintenance-free features. Besides, the properties of small size, light weight, and flexibility are also required. On-chip microsupercapacitors (MSCs) have the potential acting as power supply units in portable devices, due to their simplified packaging processes and compatibility to the integrated circuits. However, the fabrication methods and materials should be cost-effective, scalable, and compatible to current electronic industry. Carbon materials own high specific surface areas, electrochemical stability, and high electrical conductivity, which are critical parameters for high-power supercapacitors. Moreover, the high mechanical tolerance makes them good candidates for flexible wearable devices. Therefore, MSCs based on carbon materials would satisfy the requirements of portable electronics. In this work, we demonstrated the fabrication of carbon MSCs by laser direct writing on commercial polyimide sheets in Ar with lowcost semiconductor cw-laser with a wavelength of 405nm. The obtained structures are macro-nanostructures comprising graphitized and amorphous carbon with relatively smooth surfaces and low resistance, in compared with the structures obtained by laser writing in air. As-prepared micro-supercapacitors show a high capacitance of about 14.9 mF/cm2 at a scanning rate of 10 mV/s, which is comparable to the reported highest capacitance of carbon-based supercapacitors fabricated by pulse-laser writing.

  7. Passively stabilized 215-W monolithic CW LMA-fiber laser with innovative transversal mode filter

    NASA Astrophysics Data System (ADS)

    Stutzki, Fabian; Jauregui, Cesar; Voigtländer, Christian; Thomas, Jens U.; Limpert, Jens; Nolte, Stefan; Tünnermann, Andreas

    2010-02-01

    We report on the development of a high power monolithic CW fiber oscillator with an output power of 215 W in a 20μm core diameter few-mode Large Mode Area fiber (LMA). The key parameters for stable operation are reviewed. With these optimizations the root mean square of the output power fluctuations can be reduced to less than 0.5 % on a timescale of 20 s, which represents an improvement of more than a factor 5 over a non-optimized fiber laser. With a real-time measurement of the mode content of the fiber laser it can be shown that the few-mode nature of LMA fibers is the main factor for the residual instability of our optimized fiber laser. The root of the problem is that Fiber Bragg Gratings (FBGs) written in multimode fibers exhibit a multi-peak reflexion spectrum in which each resonance corresponds to a different transversal mode. This reflectivity spectrum stimulates multimode laser operation, which results in power and pointing instabilities due to gain competition between the different transversal modes . To stabilize the temporal and spatial behavior of the laser output, we propose an innovative passive in-fiber transversal mode filter based on modified FBG-Fabry Perot structure. This structure provides different reflectivities to the different transversal modes according to the transversal distribution of their intensity profile. Furthermore, this structure can be completely written into the active fiber using fs-laser pulses. Moreover, this concept scales very well with the fiber core diameter, which implies that there is no performance loss in fibers with even larger cores. In consequence this structure is inherently power scalable and can, therefore, be used in kW-level fiber laser systems.

  8. Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Becker, Frank; Neumann, Benjamin; Winkelmann, Lutz; Belke, Steffen; Ruppik, Stefan; Hefter, Ulrich; Köhler, Bernd; Wolf, Paul; Biesenbach, Jens

    2013-02-01

    High power Yb doped fiber laser sources are beside CO2- and disk lasers one of the working horses of industrial laser applications. Due to their inherently given robustness, scalability and high efficiency, fiber laser sources are best suited to fulfill the requirements of modern industrial laser applications in terms of power and beam quality. Pumping Yb doped single-mode fiber lasers at 976nm is very efficient. Thus, high power levels can be realized avoiding limiting nonlinear effects like SRS. However the absorption band of Yb doped glass around 976nm is very narrow. Therefore, one has to consider the wavelength shift of the diode lasers used for pumping. The output spectrum of passively cooled diode lasers is mainly defined by the applied current and by the heat sink temperature. Furthermore the overall emission line width of a high power pump source is dominated by the large number of needed diode laser emitters, each producing an individual spectrum. Even though it is possible to operate multi-kW cw single-mode fiber lasers with free running diode laser pumps, wavelength stabilizing techniques for diode lasers (e.g. volume holographic gratings, VHG) can be utilized in future fiber laser sources to increase the output power level while keeping the energy consumption constant. To clarify the benefits of wavelength stabilized diode lasers with integrated VHG for wavelength locking the performance of a dual side pumped fiber oscillator is discussed in this article. For comparison, different pumping configurations consisting of stabilized and free-running diode lasers are presented.

  9. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    SciTech Connect

    Kalvas, T.; Tarvainen, O.; Komppula, J.; Koivisto, H.; Tuunanen, J.; Potkins, D.; Stewart, T.; Dehnel, M. P.

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity needed at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.

  10. Picosecond Measurements with Mode-Locked CW Lasers.

    NASA Astrophysics Data System (ADS)

    Mosaad, Neamat Roushdy M.

    Available from UMI in association with The British Library. Requires signed TDF. The characteristics of output pulses from a synchronously and hybridly mode-locked CW Rhodamine 6G dye laser were studied in detail by both spectral and temporal measurements. In a synchronous system, the observed spectrum was found to change from deeply channelled to nearly smooth according to the position of the birefringent filter. The output pulses were nearly transform-limited and believed to have a single-sided exponential shape. Hybridly CW mode-locked dye laser was a more reliable source for generating broadly tunable subpicosecond pulses, compared to a synchronously mode-locked laser. With carefull adjustment of the dye laser and the saturable absorber concentration (DQOCI) mixed with R6G in a single dye jet stream, pulses as short as 0.21 ps have been obtained with a compression factor of 5. The observed spectrum showed asymmetric broadening at the long-wavelength side alone. The SHG autocorrelation traces showed broad wings with exponential-like shape. The time-bandwidth product for these pulses were about three to seven times larger than that for the transform-limited pulse with single-sided exponential shape. This suggest that the pulse is largely frequency-chirped which can consistently be explained by taking into account the nonlinear process of self-phase modulation due to optical Kerr effect in a mixed dye jet stream. The timing pulse jitter was reduced by a factor of 2.4 due to mode-locking stabilization. Optical pulse compression utilizing nonlinear propagation in single-mode fibres was studied. The propagation in the fibre broadens and chirps the pulse due to the combined action of group velocity dispersion and self-phase modulation. The channelled spectrum disappeared completely and a smooth Gaussian shape was observed with the same overall width. The pulse can then be compressed by passage through a suitable dispersive delay line. Short pulses were obtained with a

  11. CW 20 kW SAGE CO[sub 2] laser for industrial use. [Silent-discharge Assisted Glow discharge Excitation

    SciTech Connect

    Nagai, Haruhiko ); Hishii, Masao ); Tanaka, Masaaki; Myoi, Yasuhito; Yagi, Toshinori . Manufacturing Development Lab.); Wakata, Hitoshi . Central Research Lab.); Tabata, Norikazu . Industrial Electronics and Systems Lab.)

    1993-12-01

    A new type of high-power CW CO[sub 2] laser with power output of more than 20 kW is described. The laser consists of a discharge excitation system named SAGE (Silent-discharge (SD) Assisted Glow discharge Excitation) and a ZnSe or a KCl transmissive window to extract high quality beams with axisymmetric intensity profile from a confocal positive-branch unstable resonator. The SAGE is effective to form a uniformly distributed and stable discharge in a large-volume and high-pressure gas excitation medium. Together with appropriate high-pressure gas conditions leading to low dissociation rate of CO[sub 2] and with using the properly selected zeolite to adsorb water vapor in the laser chamber, the transmissive windows have enabled gas-sealed operations. Prior to the design of the 20-kW SAGE laser, small-scaled experiments of the SAGE and stress analyses of the window were studied. The structure of the 20-kW SAGE laser and its performance characteristics such as SD power, magnification factor of the unstable resonator and gas pressure dependences of the power output, long-term gas-sealed operation, and beam quality are described in detail. The maximum CW power of 26.5 kW with an efficiency of 16.5 percent is attained through the ZnSe window, and a 20.3 kW power output is extracted through the KCl window. A long-term gas-sealed operation at a CW power level of 20 kW is demonstrated during a period of 65 hours.

  12. Effect of a weak CW trigger on optical rogue waves in the femtosecond supercontinuum generation.

    PubMed

    Li, Qian; Duan, Xiaoqi

    2015-06-15

    We numerically study the characteristics of optical rogue waves in the femtosecond supercontinuum (SC) generation and use the CW triggering mechanism to control the SC generation. Detailed simulation results show for the first time that a weak CW trigger can manipulate the behaviors of optical rogue waves in the femtosecond SC regime. For the proposed CW triggering technique which requires only wavelength tuning and is a handy approach for the active control of SC, the resultant spectrum can be greatly broadened, and the noise properties of the SC can be significantly improved in terms of both of the coherence and intensity stability. PMID:26193609

  13. Adapting TESLA technology for future cw light sources using HoBiCaT.

    PubMed

    Kugeler, O; Neumann, A; Anders, W; Knobloch, J

    2010-07-01

    The HoBiCaT facility has been set up and operated at the Helmholtz-Zentrum-Berlin and BESSY since 2005. Its purpose is testing superconducting cavities in cw mode of operation and it was successfully demonstrated that TESLA pulsed technology can be used for cw mode of operation with only minor changes. Issues that were addressed comprise of elevated dynamic thermal losses in the cavity walls, necessary modifications in the cryogenics and the cavity processing, the optimum choice of operational parameters such as cavity temperature or bandwidth, the characterization of higher order modes in the cavity, and the usability of existing tuners and couplers for cw. PMID:20687747

  14. Adapting TESLA technology for future cw light sources using HoBiCaT

    NASA Astrophysics Data System (ADS)

    Kugeler, O.; Neumann, A.; Anders, W.; Knobloch, J.

    2010-07-01

    The HoBiCaT facility has been set up and operated at the Helmholtz-Zentrum-Berlin and BESSY since 2005. Its purpose is testing superconducting cavities in cw mode of operation and it was successfully demonstrated that TESLA pulsed technology can be used for cw mode of operation with only minor changes. Issues that were addressed comprise of elevated dynamic thermal losses in the cavity walls, necessary modifications in the cryogenics and the cavity processing, the optimum choice of operational parameters such as cavity temperature or bandwidth, the characterization of higher order modes in the cavity, and the usability of existing tuners and couplers for cw.

  15. Spectroscopic, thermal and cw dual-wavelength laser characteristics of Nd:LaF3 single crystal

    NASA Astrophysics Data System (ADS)

    Hong, Jiaqi; Zhang, Lianhan; Li, Jing; Wang, Zhaowei; He, Jingliang; Zhang, Peixiong; Wang, Yaqi; Hang, Yin

    2016-03-01

    A Nd-doped LaF3 crystal was grown by Czochralski method, and the rocking curves of (0 0 2) and (1 1 0) diffraction planes show good crystallinity quality of the as-grown crystal. Room-temperature fluorescence spectrum and transmittance spectrum of Nd:LaF3 crystal were investigated, both indicating probable dual-wavelength emissions at ∼1.04 μm and ∼1.06 μm. The thermal diffusivity and thermal conductivity of Nd:LaF3 crystal were detailed studied. Cw dual-wavelength laser operation of Nd:LaF3 single crystal at 1040 nm and around 1065 nm with LD pumping was demonstrated. A maximum output power of 302 mW was obtained with a slope efficiency of about 18.5% with respect to the pump power. The results of our study indicate the Nd:LaF3 crystal a promising laser crystal.

  16. Diode-Pumped Nd:CNGG-LBO CW sum-frequency mixing blue-green laser at 497 nm

    NASA Astrophysics Data System (ADS)

    Li, C. L.; Sun, G. C.; Yu, X.; Li, B. Z.; Zhao, M.; Wang, J. B.; Jin, G. Y.

    2011-06-01

    We report for the first time a continuous-wave (CW) blue-green laser emission by sum-frequency mixing in Nd:CNGG crystal. Using type-I critical phase-matching LBO crystal, a blue-green laser at 497 nm is obtained by 1061 and 935 nm intracavity sum-frequency mixing. The maximum laser output power of 232 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 232 mW, the output stability is better than 3.67%. The beam quality M 2 value is are about 1.26 and 1.38 in both horizontal and vertical dimensions respectively.

  17. Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber.

    PubMed

    Couny, F; Benabid, F; Light, P S

    2007-10-01

    We report on what is, to our knowledge, the first cw pumped Raman fiber-gas laser based on a hollow-core photonic crystal fiber filled with hydrogen. The high efficiency of the gas-laser interaction inside the fiber allows operation in a single-pass configuration. The transmitted spectrum exhibits 99.99% of the output light at the Stokes wavelength and a pump power threshold as low as 2.25 W. The study of the Stokes emission evolution with pressure shows that highly efficient Raman amplification is still possible even at atmospheric pressure. The addition of fiber Bragg gratings to the system, creating a cavity at the Stokes wavelength, reduces the Raman threshold power below 600 mW. PMID:17930673

  18. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.

    PubMed

    Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E

    2013-08-15

    We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system. PMID:24104637

  19. Proton Injector for CW-Mode Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sherman, Joseph D.; Swenson, Donald; Guy, Frank; Love, Cody; Starling, Joel; Willis, Carl

    2009-03-01

    Numerous applications exist for CW linear accelerators with final energies in the 0.5 to 4.0 MeV proton energy range. Typical proton current at the linac output energy is 20 mA. An important subsystem for the accelerator facility is a reliable dc mode proton injector. We present here design and laboratory results for a dc, 25-keV, 30-mA proton injector. The proton source is a 2.45-GHz microwave hydrogen ion source which operates with an 875-G axial magnetic field. Low emittance, high proton fraction (>85%), beams have been demonstrated from this source. The injector uses a novel dual-solenoid magnet for matching the injector beam into a radio frequency quadrupole (RFQ) linear accelerator. Recently, a dc ion-source development program has given up to 30 mA beam current. The dual solenoid is a compact and simple design utilizing tape-wound, edge-cooled coils. The low-energy beam transport design as well as 25-keV beam matching calculations to an RFQ will also be presented.

  20. CW/Pulsed H- ion beam generation with PKU Cs-free 2.45 GHz microwave driven ion source

    NASA Astrophysics Data System (ADS)

    Peng, S. X.; Ren, H. T.; Xu, Y.; Zhang, T.; Zhang, A. L.; Zhang, J. F.; Zhao, J.; Guo, Z. Y.; Chen, J. E.

    2015-04-01

    Circular accelerators used for positron emission tomography (PET, i.e. accelerator used for make radio isotopes) need several mA of CW H- ion beam for their routine operation. Other facilities, like Space Radio-Environment Simulate Assembly (SPRESA), require less than 10 mA pulsed mode H- beam. Caesium free negative hydrogen ion source is a good choice for those facilities because of its compact structure, easy operation and low cost. Up to now, there is no H- source able to produce very intense H- beams with important variation of the duty factor[1]. Recently, a new version of 2.45 GHz microwave H- ion source was designed at PKU, based on lessons learnt from the previous one. This non cesiated source is very compact thanks to its permanent magnet configuration. Special attention was paid on the design of the discharge chamber structure, electron dumping and extraction system. Source test to produce H- ion beams in pulsed and CW mode was carried out on PKU ion source test bench. In CW mode, a 10.8 mA/30keV H- beam with rms emittance about 0.16 π.mm.mrad has been obtained with only 500 W rf power. The power efficiency reaches 21 mA/kW. In pulsed mode with duty factor of 10% (100Hz/1ms), this compact source can easily deliver 20 mA H- ion beam at 35 keV with rms emittance about 0.2 π.mm.mrad when RF power is set at 2.2 kW (peak power). Several hour successive running operation in both modes and totaling more than 200 hours proves its high quality. The outside dimension of this new H- source body is ϕ116 mm × 124 mm, and the entire H- source infrastructure, including rf matching section, plasma chamber and extraction system, is ϕ310 × 180 mm. The high voltage region is limited with in a ϕ310 mm × 230 mm diagram. Details are given in this paper.

  1. Operation of a cw rf driven ion source with hydrogen and deuterium gas (abstract){sup a}

    SciTech Connect

    Melnychuk, S.T.; Debiak, T.W.; Sredniawski, J.J.

    1996-03-01

    We will describe the operation of a cw rf driven multicusp ion source designed for extraction of high current hydrogen and deuterium beams. The source is driven at 2 MHz by a 2.5 turn induction antenna immersed in the plasma. Bare stainless-steel and porcelain-coated Cu antennas have been used. The plasma load is matched to the rf generator by a variable tap {ital N}:1 transformer isolated to 46 kV, and an LC network on the secondary. With H{sub 2} gas the source can be operated at pressures between 5 and 60 mT with power reflection coefficients {lt}0.01. The extracted ion current density with a porcelain-coated antenna is approximately given by 35 mA/cm{sup 2}/kW with an 80 G dipole filter field for input powers from 3.5 to 6.6 kW. The current density remained constant for operation with a 6 and an 8 mm aperture. The source has been operated for 260 h at 3.6 kW with a single-porcelain-coated antenna. Mass spectrometer measurements of the extracted beam at this power show a species mix for H{sup +}:H{sup +}{sub 2}:H{sup +}{sub 3}:OH{sup +} of 0.49: 0.04: 0.42: 0.04. The calculated beam divergence using the IGUN code is compared with the measured divergence from an electrostatic sweep emittance scanner designed for high-power cw beam diagnostics. Phase space measurements at 40 kV and 23 mA beam current result in a normalized rms emittance of 0.09 {pi}mmmrad. {copyright} {ital 1996 American Institute of Physics.}

  2. CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation.

    PubMed

    Setoura, Kenji; Okada, Yudai; Hashimoto, Shuichi

    2014-12-28

    Pulsed-laser heating of colloidal noble-metal nanoparticles in an aqueous solution induces morphological changes such as size reduction. However, the technique suffers disadvantages through polydispersed products. Here, we show that continuous-wave (CW) laser heating of single gold nanoparticles is capable of generating particles of smaller diameters with superb control in terms of exposure time and intensity. We show, based on calculations of particle temperatures under illumination, that surface evaporation below the boiling point of bulk gold occurs, resulting in a gradual diameter decrease in air. In our experiment, a focused illumination of Au NPs through an objective lens of a microscope provided peak-power densities (10(6)-10(7) W cm(-2)) equivalent to that of a typical nanosecond laser. Nevertheless the heating rate under CW laser illumination is much lower than that under pulsed-laser illumination, resulting in better control over nanoparticle heating and related morphological changes. Furthermore, the single-particle study of such heating helps us to clarify the evolution of such changes to a given particle. PMID:25377431

  3. Transpupillary CW YAG laser coagulation. A comparison with argon green and krypton red lasers.

    PubMed

    Peyman, G A; Conway, M D; House, B

    1983-08-01

    The authors have developed a CW YAG laser for transpupillary coagulation. The effects of CW YAG coagulation on the retina, retinal vessels, and fovea were compared with those produced by the krypton red and argon green lasers. To produce threshold coagulative lesions in monkeys and rabbits, we needed five to ten times more energy with the CW YAG than with the krypton red or argon green lasers. Nerve fiber damage was observed only when coagulating retinal vessels with the argon green laser. At the parameters used, none of the lasers damaged the sensory retina of the fovea. The CW YAG may be used as a new mode of laser coagulation in the treatment of retinal diseases. PMID:6688868

  4. Draft Genome Sequences of Ralstonia pickettii Strains SSH4 and CW2, Isolated from Space Equipment.

    PubMed

    Monsieurs, Pieter; Mijnendonckx, Kristel; Provoost, Ann; Venkateswaran, Kasthuri; Ott, C Mark; Leys, Natalie; Van Houdt, Rob

    2014-01-01

    Ralstonia pickettii SSH4 and CW2 were isolated from space equipment. Here, we report their draft genome sequences with the aim of gaining insight into their potential to adapt to these environments. PMID:25189592

  5. Draft Genome Sequences of Ralstonia pickettii Strains SSH4 and CW2, Isolated from Space Equipment

    PubMed Central

    Monsieurs, Pieter; Mijnendonckx, Kristel; Provoost, Ann; Venkateswaran, Kasthuri; Ott, C. Mark; Leys, Natalie

    2014-01-01

    Ralstonia pickettii SSH4 and CW2 were isolated from space equipment. Here, we report their draft genome sequences with the aim of gaining insight into their potential to adapt to these environments. PMID:25189592

  6. An intra-cavity device with a discharge-drived CW DF chemical laser

    NASA Astrophysics Data System (ADS)

    Yan, Baozhu; Liu, Wenguang; Zhou, Qiong; Yuan, Shengfu; Lu, Qisheng

    2015-05-01

    The performance parameters of reflecting mirrors such as absorption coefficient or thermal distortion determine the beam quality of the output laser, so the quality of mirrors is one of the most important factors affecting the capability of the whole laser system. At the present time, there was obviously insufficient in test methods for the mirrors performance. The reflection coefficient, absorption coefficient and scattering coefficient of mirrors could be measured by a lot of test methods such as cavity ring-down method, photothermal deflection method, surface thermal lens method and laser calorimetry. But these methods could not test under high power density radiation. So the test data and results could not indicate the real performance in a real laser system exactly. Testing in a real laser system would be expensive and time consuming. Therefore, the test sequence and data would not be sufficient to analyze and realize the performance of mirrors. To examine the performance of mirrors under high power density radiation, the working principle of intra-cavity was introduced in this paper. Utilizing an output mirror with a low output coupling ratio, an intra-cavity could produce high-power density laser in the resonant cavity on the basis of a relatively small scale of gain medium, and the consumption and cost were very low relatively. Based on a discharge-drived CW DF chemical laser, an intra-cavity device was established. A laser beam of 3kw/cm2 was achieved in the resonant cavity. Two pieces of 22.5 degree mirrors and two pieces of 45 degree mirrors could be tested simultaneously. Absorption coefficient and thermal distortion were measured by calorimetry and Hartmann wavefront sensor respectively. This device was simple, convenient, low-maintenance, and could work for a long time. The test results would provide support for process improvement of mirrors.

  7. Millimeter wave, 25 kW CW gyrotrons using permanent-magnets

    SciTech Connect

    McDermott, D.B.; Luhmann, N.C. Jr.

    1996-12-31

    Two compact 25 kW cw, low magnetic field gyrotrons have been designed for use in Ka-Band and W-Band systems. Both 50 kV devices have been designed to minimize their size and weight by using a 4.5 kG Samarium cobalt permanent magnet. Their designs are presented. The 35 GHz gyrotron uses a 3 A MIG and operates at the third harmonic in the TE{sub 411} mode of a smooth-bore cylindrical cavity. For an output power of 25 kW, the predicted conversion efficiency is 25%, yielding an output efficiency of 17%. An ideal 33 kV single-stage depressed collector following a magnetic downtaper could increase the device efficiency to 50%. The 94 GHz gyrotron utilizes a Cusp gun and operates at the eight-harmonic in a sixteen-vane slotted cavity. The efficiency of the 95 GHz gyrotron is predicted to be 10%, which could also be boosted to {approximately} 50% with a depressed collector. Either device can be reconfigured as a tunable gyro-BWO. Mode competition will be controlled in both gyrotrons by slicing the cavities to interrupt the azimuthal wall currents of unwanted modes as utilized recently in the successful second-harmonic TE{sub 21} gyro-TWT amplifier experiment.

  8. JLab High-Current CW Cryomodules for ERL and FEL Applications

    SciTech Connect

    Robert Rimmer; Richard Bundy; Guangfeng Cheng; Gianluigi Ciovati; Edward Daly; Richard Getz; William Hicks; James Henry; Peter Kneisel; Stephen Manning; Robert Manus; Karl Smith; Mircea Stirbet; Larry Turlington; Lynn Vogel; Haipeng Wang; Katherine Wilson; Frank

    2007-06-25

    We describe the activities underway at JLab to develop new CW cryomodules capable of transporting up to Ampere-levels of beam currents for use in ERLs and FELs. Goals include an efficient cell shape, high packing factor for efficient real-estate gradient and very strong HOM damping to push BBU thresholds up by two or more orders of magnitude compared to existing designs. Cavity shape, HOM damping and ancillary components are optimized for this application. Designs are being developed for low-frequency (750 MHz), Ampere-class compact FELs and for high-frequency (1.5 GHz), 100 mA configurations. These designs and concepts can easily be scaled to other frequencies. We present the results of conceptual design studies, simulations and prototype measurements. These modules are being developed for the next generation ERL based high power FELs but may be useful for other applications such as high energy light sources, electron cooling, electron-ion colliders, industrial processing etc.

  9. Z-scan measurements of single walled carbon nanotube doped acetylenedicarboxylic acid polymer under CW laser

    NASA Astrophysics Data System (ADS)

    Zidan, M. D.; Allaf, A. W.; Allahham, A.; AL-Zier, A.

    2016-06-01

    Z-scan measurements of single walled carbon nanotube (SWCNT) doped with acetylenedicarboxylic acid (ADC) polymer are performed using a CW diode laser at 635 nm wavelength with 17 mW power. The nonlinear absorption coefficient (β), nonlinear refractive index (n2), the real and imaginary parts of the third-order nonlinear optical susceptibility (Re χ3), (Im χ3) of the investigated samples are calculated. It was found that the β values decrease with increase in on-axis input intensity I0. Also, these values are found to be proportional with sample concentrations. The excited-state absorption cross sections were calculated to be at σex=5.08×10-14 cm2 for the (SWCNT) and at 15.1×10-14 cm2 for the ADC polymer. It was found that the σex is larger than ground-state absorption cross sections, indicating that the reverse saturable absorption mechanism (RSA) is the dominating mechanism for the observed absorption nonlinearities.

  10. A CW superconducting linac as the proton driver for a medium baseline neutrino beam in China

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Hui; Tang, Jing-Yu

    2014-12-01

    In a long-term planning for neutrino experiments in China, a medium baseline neutrino beam is proposed which uses a continue wave (CW) superconducting linac of 15 MW in beam power as the proton driver. The linac will be based on the technologies which are under development by the China-ADS project, namely it is also composed of a 3.2 MeV normal conducting RFQ and five different types of superconducting cavities. However, the design philosophy is quite different from the China-ADS linac because of the much weaker requirement on reliability here. The nominal design energy and current are 1.5 GeV and 10 mA, respectively. The general considerations and preliminary results on the physics design will be presented here. In addition, the alternative designs such as 2.0 GeV and 2.5 GeV, which may be required by the general design, can be easily extended from the nominal one.

  11. Preliminary engineering design of a 57.5 MHz CW RFQ for the RIA Driver Linac.

    SciTech Connect

    Rathke, J. W.; Schultheiss, T. J.; Ostroumov, P. N.; Kolomiets, A. A.; Schrage, D. L.

    2002-09-20

    A Continuous Wave (CW) Radio Frequency Quadrupole (RFQ) accelerator is being designed for the Rare Isotope Accelerator (RIA) Driver Linac. This device is required to accelerate a wide variety of species as well as perform simultaneous acceleration of multiple charge states. As such, the structure must operate over a wide range of RF power dissipation from {approx}0.65 kW to 48 kW. The physics design of this pseudo split-coaxial RF structure has been established by ANL in collaboration with ITEP (Moscow) and the preliminary engineering design is under way at AES. The design addresses the requirements for efficient cooling throughout the structure, precise alignment, reliable RF contacts, and fine tuning capability. The favored approach employs furnace brazing for fabrication of details and complete RFQ segments. Six longitudinal segments are mechanically assembled to form the complete 4-meter RFQ structure. Other methods of fabrication and/or assembly such as electroforming remain under consideration. This paper will discuss the engineering design and the trade studies performed to arrive at the primary configuration.

  12. A 10-watt CW photodissociation laser with IODO perfluoro-tert-butane

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher; Venable, Demetrius D.

    1989-01-01

    NASA has been investigating the feasibility of direct solar-pumped laser systems for power beaming in space. Among the various gas, liquid, and solid laser systems being proposed as candidates for solar-pumped lasers, the iodine photodissociation gas laser has demonstrated its potential for space application. Of immediate attention is the determination of system requirements and the choice of lasants to improve the system efficiency. The development of an efficient iodine laser depends on the availability of a suitable iodide which has favorable laser kinetics, chemically reversibility, and solar energy utilization. Among the various alkyliodide lasants comparatively tested in a long-pulse system, perfluoro- tert-butyl iodide, T-C4F9I, was found to be the best. However, the operating conditions for the laser medium in a continuously pumped and continuous-flow iodine laser differ considerably from those in the pulsed regime. The results of the continuous wave (CW)) laser performance from t-C4F9I are reported. Perfluoro- n-propyl iodide, n-C3F7I is used for comparison because of its universal use in photodissociation iodine lasers.

  13. Experimental test of hole-coupled FEL resonator designs using a CW-HeNe laser

    SciTech Connect

    Leemans, W.P.; Wallace, E.W.; Xie, M.; Kim, K.J.

    1993-01-01

    We report on ongoing experiments and simulations which model the performance of hole-coupled resonators. We have previously studied a hole-coupled resonator which was well inside the stable region (stability parameter g = {minus}0.8). In the far field, good agreement between experiment and simulation was obtained for both the intracavity and outcoupled mode-profile. The present study involves a resonator with a stability parameter of {minus}0.987, identical to the stability parameter of the proposed Infrared Free Electron Laser (IRFEL) at Lawrence Berkeley Laboratory. The experiments were carried out with a frequency stabilized CW-HeNe laser beam at a wavelength of 632.8 nm. Both intracavity and outcoupled mode profiles and power levels were measured. The simulations were done using the code HOLD, which is based on the Fresnel approximation for the Huygens kernel. Within the experimental uncertainties, magnified due to the 1/(1+g) dependence of the mode characteristics on errors in measured resonator parameters, we have obtained fair agreement between experiment and simulation.

  14. Experimental test of hole-coupled FEL resonator designs using a CW-HeNe laser

    SciTech Connect

    Leemans, W.P.; Wallace, E.W.; Xie, M.; Kim, K.J.

    1993-01-01

    We report on ongoing experiments and simulations which model the performance of hole-coupled resonators. We have previously studied a hole-coupled resonator which was well inside the stable region (stability parameter g = [minus]0.8). In the far field, good agreement between experiment and simulation was obtained for both the intracavity and outcoupled mode-profile. The present study involves a resonator with a stability parameter of [minus]0.987, identical to the stability parameter of the proposed Infrared Free Electron Laser (IRFEL) at Lawrence Berkeley Laboratory. The experiments were carried out with a frequency stabilized CW-HeNe laser beam at a wavelength of 632.8 nm. Both intracavity and outcoupled mode profiles and power levels were measured. The simulations were done using the code HOLD, which is based on the Fresnel approximation for the Huygens kernel. Within the experimental uncertainties, magnified due to the 1/(1+g) dependence of the mode characteristics on errors in measured resonator parameters, we have obtained fair agreement between experiment and simulation.

  15. The beam commissioning of a CW high charge state heavy ion RFQ

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Lu, Y. R.; Yin, X. J.; Yang, Y. Q.; Gao, S. L.; Wang, Z.; He, Y.; Liu, G.; Zhang, X. H.; Yuan, Y. J.; Zhao, H. W.; Xia, J. W.; Chen, C. E.

    2015-09-01

    The SSC-LINAC project is launched at Institute of Modern Physics in China to develop one new linear accelerator (LINAC) injector for separated sector cyclotron (SSC). It includes a high charge state ion source, a CW RFQ and a DTL section, and is designed to accelerate ions up to 580 keV/u. Now the ion source and the RFQ cavity have been installed in the main hall and the beam commissioning has been carried out. Two kinds of ions have been tested, 16O5+ and 40Ar8+. The experiment result of 16O5+ is: the measured beam current is 180 μA at entrance of RFQ and 150 μA at exit of RFQ. The output energy of 16O5+ is 141.89 keV/u. The measured beam current is 210 μA at entrance of RFQ and 198 μA at exit of RFQ for 40Ar8+. The output energy of 40Ar8+ is 142.78 keV/u. The experiment results agree with the design parameters of RFQ very well. This paper presents: the design consideration of beam dynamics, RF and cooling structure design; measurement of the cold model; high power test of RFQ and beam commissioning result.

  16. Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 μm

    NASA Astrophysics Data System (ADS)

    Wu, Z. H.; Sun, D. L.; Wang, S. Z.; Luo, J. Q.; Li, X. L.; Huang, L.; Hu, A. L.; Tang, Y. Q.; Guo, Q.

    2013-05-01

    We demonstrated a 967 nm diode end-pumped Er:GSGG laser operated at 2.794 μm with spectral width 3.6 nm in the continuous wave (CW) mode. A maximum output power of 440 mW is obtained at an incident pumping power of 3.4 W, which corresponds to an optical-to-optical efficiency of 13% and slope efficiency of 13.2%. The results suggest that a short cavity and efficient cooling setup for the crystal help to improve laser performance.

  17. Attogram measurement of rare isotopes by CW resonance ionization mass spectrometry

    SciTech Connect

    Bushaw, B.A.

    1992-05-01

    Three-color double-resonance ionization mass spectrometry, using two single-frequency cw dye lasers and a cw carbon dioxide laser, has been applied to the detection of attogram quantities of rare radionuclides. {sup 210}Pb has been measured in human hair and brain tissue samples to assess indoor radon exposure. Measurements on {sup 90}Sr have shown overall isotopic selectivity of greater than 10{sup 9} despite unfavorable isotope shifts relative to the major stable isotope, {sup 88}Sr.

  18. Natural gas leaks detection by spatial-resolvable-CW-laser-based remote monitoring

    SciTech Connect

    Agishev, R.R.; Bajazitov, R.A.; Galeyev, M.M.; Ismagilow, Z.B.

    1996-12-31

    The opportunities of spatial-resolvable atmosphere monitoring and atmospheric pollutions remote chemical analysis based on the CW-laser radiants are investigated. A frequency-responsive processing peculiarities of atmosphere remote sensing signals are described. Application of the mentioned approach for the limited hydrocarbons remote detection and sensing is discussed. The requirements to the CW-LIDAR receiving and radiating systems parameters are formulated. The evaluations of the system sensitivity limit, measurement accuracy and accuracy increase ways are presented.

  19. Gyrotron FU CW VII for 300 MHz and 600 MHz DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Kosuga, Kosuke; Agusu, La; Ogawa, Isamu; Takahashi, Hiroki; Smith, Mark E.; Dupree, Ray

    2010-07-01

    Gyrotron FU CW VII, one of the FU CW Series Gyrotrons, has been designed, constructed and completed operational tests successfully in the Research Center for Development of Far Infrared Region, University of Fukui (FIR FU). The gyrotron operates at around 200 GHz for the fundamental cyclotron resonances and at around 400 GHz for the second harmonics. These radiation frequencies will be applied to 300 MHz and 600 MHz DNP enhanced NMR spectroscopy.

  20. Forensic Application of FM-CW and Pulse Radar

    SciTech Connect

    S. K. Koppenjan; R. S. Freeland; M. L. Miller; R. E. Yoder

    2003-01-01

    Ground-penetrating radar (GPR) technology has supplied vital assistance in criminal investigations. However, law enforcement personnel desire further developments such that the technology is rapidly deployable, and that it provides both a simple user interface and sophisticated target identification. To assist in the development of target identification algorithms, our efforts involve gathering background GPR data for the various site conditions and circumstances that often typify clandestine burials. For this study, forensic anthropologists established shallow-grave plots at The University of Tennessee Anthropological Research Facility (ARF) that are specific to GPR research. These plots contain donated human cadavers lying in various configurations and depths, surrounded by assorted construction material and backfill debris. We scanned the plots using two GPR technologies: (1) a multi-frequency synthetic-aperture FM-CW radar (200-700 MHz) (GPR-X) developed by the U.S. Department of Energy's (DOE) Special Technologies Laboratory (STL), Bechtel Nevada (Koppenjan et al., 2000), and (2) a commercial pulse radar (SIR-20) manufactured by Geophysical Survey Systems, Inc. (400 and 900 MHz)(GSSI). The sweep-frequency data show the large biological mass decomposing within the torso as encircled ''hot spots.'' The 400-MHz pulse radar exhibit major horizontal reflectors above the body, with shadow reflectors (horizontal multiples) occurring beneath the body at 60 cm depth. The 400-MHz antenna was able to discern the grave walls and folded tarp covering the lower body. Under these moist, clay-rich conditions, the 900-MHz antenna was able to penetrate slightly beyond 30 cm beneath the concrete layer. However, neither system was able to penetrate beyond a one meter depth in the moist, clay-rich soil (fine, mixed, thermic Typic Paleudalf). Example scans from each system are provided, along with a discussion of the survey protocol and general performance.

  1. Effects of coolant temperature and pump power on the power output of solar-pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Thompson, George A.; Yogev, Amnon; Reich, A.; Oron, Moshe

    1992-11-01

    The temperature dependence of solar-pumped solid state lasers of Nd:YAG and two types of Nd:Cr:GSGG was studied over the temperature range of +30 to -60 C in a quasi-CW mode. All lasers had higher output powers at -40 C. The Nd:Cr:GSGG laser with a chromium concentration of 2.5 at. pct produced 70 W of power at -40 C, quasi-CW. If extrapolated to true CW operation this is equivalent to 350 W. The temperature dependence of the laser performance is attributed to changes in both the stimulated emission cross section and the resonator configuration.

  2. Perfectly matched pulsed 2MHz RF network and CW 30MHz RF matching network for the J-PARC RF-driven H- ion source

    NASA Astrophysics Data System (ADS)

    Ueno, A.; Namekawa, Y.; Yamazaki, S.; Ohkoshi, K.; Koizumi, I.; Ikegami, K.; Takagi, A.; Oguri, H.

    2013-02-01

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) 2nd stage requirements of an H- ion beam current of 60mA within normalized emittances of 1.5πmmṡmrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of more than 50days, a cesiated RF-driven H- ion source using a internal-antenna developed at the Spallation Neutron Source (SNS) was developed. As similar as the SNS ion source, the 60kW pulsed 2MHz-RF and 200W CW 30MHz-RF systems are used in order to produce pulsed high-temperature 2MHz-RF plasma and CW low-temperature 30MHz-RF plasma. Each matching network for each system is composed of two vacuum variable condensers (VVCs). In order to supply pulsed 60kW-2MHz-RF power from the power supply (PS) on the ground level, a one-turn isolation transformer using FINEMET cores is installed between the PS and the J-PARC ion source. By comprehending the matching networks with the LTspice IV simulations and high- and low- power experiments and setting the parameters properly, the pulsed 2MHz-RF power up to 46 kW is successfully input to the hydrogen plasma without any misfire and with almost no reflected power.

  3. Analytical investigation of thermal stress in enamel and dentin under CW and pulse Er:YAG solid-state laser

    NASA Astrophysics Data System (ADS)

    Elahi, Parviz; Ebrahimi, Marjan

    2014-02-01

    The aim of this work is to evaluate thermal stress of Er:YAG laser radiation on enamel and dentin of the dental. The transient state heat conduction equation for pulse wave laser regime with energy of 100 mJ, 300 mJ and steady state heat conduction equation for CW regime with powers of 1 W, 5 W was solved analytically. Then, the thermally induced stress was investigated following the calculation of the temperature distribution. Using the thermo-mechanical characteristics of the dentin and the enamel, all components of stress were obtained. The thermal stress of Er:YAG laser radiation on the enamel and the dentin calculated in this work may be useful for clinical applications.

  4. Detailed Consideration of Experimental Results of Gyrotron FU CW II Developed as a Radiation Source for DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Agusu, La; Idehara, T.; Ogawa, I.; Saito, T.; Kanemaki, T.; Takahashi, H.; Fujiwara, T.

    2007-07-01

    A CW gyrotron for the sensitivity enhancement of NMR spectroscopy through dynamic nuclear polarization has been designed. The gyrotron operates at the second harmonic and frequency of 394.6 GHz with the main operating mode TE0,6. Operating conditions of other neighboring cavity modes such as TE2,6 at frequency of 392.6 GHz and TE2,3 at frequency of 200.7 GHz were also considered. The experimental conditions of the gyrotron at low and high voltages are simulated. The output power of 56 watts corresponds to the efficiency of 2 percent at low voltage operation and frequency of 394.6 GHz is expected.

  5. The Rhodotron, a new 10 MeV, 100 kW, cw metric wave electron accelerator

    NASA Astrophysics Data System (ADS)

    Jongen, Y.; Abs, M.; Genin, F.; Nguyen, A.; Capdevila, J. M.; Defrise, D.

    1993-06-01

    New applications for high energy, high current electron beam processing are continually expanding. Today, however, 10 MeV rf electron linacs are frequently limited to an average beam power of only 20 or 30 kW. To achieve higher beam power, CW operation and the use of lower frequencies are necessary. In the last years, the principle for a new kind of electron accelerator was developed by the Atomic Energy Agency (CEA) in France. This accelerator is based on the principle of recirculating a beam throughout a single coaxial cavity resonating in metric waves. A 3.3 MeV, 4 mA prototype has been built and successfully tested. The industrial accelerator developed by IBA in collaboration with the CEA is a 10 MeV, 100 kW beam power unit with an additional beam exit at 5 MeV. The cavity, made of copper-plated steel, will resonate at 107.5 MHz. A rf power of 100 kW is needed to produce an electric field allowing an energy gain of 1 MeV per crossing. In addition, 100 kW of power is needed for acceleration. The 200 kW output amplifier uses a 100 kW plate dissipation tetrode (TH 681 from Thomson-CSF) in a grounded grid configuration. In this paper, the design of the new model as well as the prototype manufacturing schedule are presented in more detail.

  6. Stationary Inverted Balmer and Lyman populations for a CW HI water-plasma laser

    NASA Astrophysics Data System (ADS)

    Mills, Randell L.

    2002-10-01

    Stationary inverted H Balmer and Lyman populations were observed from a low pressure water-vapor microwave discharge plasma. The ionization and population of excited atomic hydrogen levels was attributed to energy provided by a catalytic resonance energy transfer between hydrogen atoms and molecular oxygen formed in the water plasma. The catalysis mechanism was supported by the observation of O^2+ and H Balmer line broadening of 55 eV compared to 1 eV for hydrogen alone. The high hydrogen atom temperature with a relatively low electron temperature, Te = 2 eV, exhibited characteristics of cold recombining plasmas. These conditions of a water plasma favored an inverted population in the lower levels. Thus, the catalysis of atomic hydrogen may pump a cw HI laser. From our results, laser oscillations are may be possible from (i) n = 3, n = 4, n = 5, n = 6, n = 7, and n = 8 to n = 2, (ii) n = 4, n = 5, n = 6, and n = 7 to n = 3 and (iii) n = 5 and n = 6 to n = 4. Lines of the Balmer series of n = 5, and n = 6 to n = 2 and the Paschen series of n = 5 to n = 3 were of particular importance because of the potential to design blue and 1.3 micron infrared lasers, respectively, which are ideal for many communications and microelectronics applications. At a microwave input power of 9W/cm^3, a collisional radiative model showed that the hydrogen excited state population distribution was consistent with an n = 1arrow5,6 pumping power of an unprecedented 200W/cm^3. High power hydrogen gas lasers are anticipated at wavelengths, over a broad spectral range from far infrared to violet which may be miniaturized to micron dimensions. Such a hydrogen laser represents the first new atomic gas laser in over a decade, and it may prove to be the most efficient, versatile, and useful of all. A further application is the direct generation of electrical power using photovoltaic conversion of the spontaneous or stimulated water vapor plasma emission.

  7. Single dose toxicity study of IRDye 800CW in Sprague-Dawley rats

    NASA Astrophysics Data System (ADS)

    Marshall, Milton V.; Draney, Daniel; Sevick-Muraca, Eva M.; Olive, D. Michael

    2010-02-01

    Fluorophore-labeled contrast imaging agents are moving toward clinical use as aids in nodal staging and intraoperative resection of tumors. Near-infrared fluorophores with defined toxicity properties will be needed before these agents can be translated to the clinic. The near-infrared dye IRDye 800CW is frequently used in its N-hydroxysuccinamide (NHS) ester form for labeling these agents. Following conjugation or breakdown of a labeled ligand, excess NHS ester is converted to the carboxylate form. We report here the results of a preliminary toxicity study on IRDye 800CW carboxylate in preparation for its use as a labeling moiety for targeted contrast agents. Male and female Sprague Dawley rats were given a single intravenous or intradermal administration of IRDye 800CW carboxylate; indocyanine green was used as a comparative control. Following administration of varying doses of either the dyes or saline, animals were observed for up to fourteen days during which time, hematological, clinical chemistry, enzymological, and histological testing was performed on animal subgroups. Under the conditions tested, a single administration of IRDye 800CW carboxylate intravenously at dose levels of 1, 5 and 20 mg/kg or 20 mg/kg intradermally produced no pathological evidence of toxicity. A dose of 20 mg/kg was identified as the NOAEL (no observed adverse effect level) following IV or ID routes of administration of IRDye 800CW.

  8. CONTROL OF LASER RADIATION PARAMETERS. GENERATION OF ULTRASHORT PULSES: Passive mode locking in a cw dye laser with a rapidly relaxing absorber

    NASA Astrophysics Data System (ADS)

    Krindach, D. P.; Kur'yanov, A. A.; Novoderezhkin, V. I.

    1990-12-01

    Theoretical and experimental investigations were made of the characteristics of passive mode locking in a cw dye laser with a rapidly relaxing absorber. It was found that such a "fast" absorber was prone to fluctuations. This altered the limits and widened the mode-locking range in the direction of higher energy densities of the pulses, compared with a "slow" absorber of the DODCI type. This made it possible to generate pulses shorter than 100 fs with an average power of 30-50 mW.

  9. About possibilities of clearing near-Earth space from dangerous debris by a spaceborne laser system with an autonomous cw chemical HF laser

    SciTech Connect

    Avdeev, A V; Bashkin, A S; Katorgin, Boris I; Parfen'ev, M V

    2011-07-31

    The possibility of clearing hazardous near-Earth space debris using a spaceborne laser station with a large autonomous cw chemical HF laser is substantiated and the requirements to its characteristics (i.e., power and divergence of laser radiation, pulse duration in the repetitively pulsed regime, repetition rate and total time of laser action on space debris, necessary to remove them from the orbits of the protected spacecrafts) are determined. The possibility of launching the proposed spaceborne laser station to the orbit with the help of a 'Proton-M' carrier rocket is considered. (laser applications)

  10. CW-THz image contrast enhancement using wavelet transform and Retinex

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Min; Hu, Qi-fan; Huang, Ying-Xue; Liang, Hua-Wei

    2015-10-01

    To enhance continuous wave terahertz (CW-THz) scanning images contrast and denoising, a method based on wavelet transform and Retinex theory was proposed. In this paper, the factors affecting the quality of CW-THz images were analysed. Second, an approach of combination of the discrete wavelet transform (DWT) and a designed nonlinear function in wavelet domain for the purpose of contrast enhancing was applied. Then, we combine the Retinex algorithm for further contrast enhancement. To evaluate the effectiveness of the proposed method in qualitative and quantitative, it was compared with the adaptive histogram equalization method, the homomorphic filtering method and the SSR(Single-Scale-Retinex) method. Experimental results demonstrated that the presented algorithm can effectively enhance the contrast of CW-THZ image and obtain better visual effect.

  11. Highly efficient CW intracavity frequency-doubled Yb:YAG-LBO laser at 515 nm under 968 nm diode laser pumping

    NASA Astrophysics Data System (ADS)

    Sun, G. C.; Li, Y. D.; Zhao, M.; Chen, X. Y.; Wang, J. B.; Chen, G. B.

    2011-05-01

    We describe the output performances of the 1030 nm transition in Yb:YAG under in-band pumping with diode laser at the 968 nm wavelength. An end-pumped Yb:YAG crystal yielded 1.93 W of continuous-wave (CW) output power for 9.1 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 23.6%. Furthermore, 205 mW 515 nm green light was acquired by frequency doubling, resulting in an optical-to-optical efficiency with respect to the absorbed pump power of 2.7%. Comparative results obtained for the pump with diode laser at 940 nm are given in order to prove the advantages of the in-band pumping.

  12. A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C

    NASA Astrophysics Data System (ADS)

    Cao, D.; Peng, Q.; Du, S.; Xu, J.; Guo, Y.; Yang, J.; Bo, Y.; Zhang, J.; Cui, D.; Xu, Z.

    2011-04-01

    A water-cooled 785 nm diode-side-pumped high-power CW Tm:YAG laser system at 2 μm is reported. 200 W output power is achieved with cooling water running at 8°C. As far as we know, this is the highest output power for a diode-pumped all solid-state 2 μm Tm:YAG laser. The output corresponds to optical-to-optical conversion efficiency of 11.2%, with a slope efficiency of about 22.8%. To make the system structure simple, only deionized water is used as the coolant instead of alcohol- or glycol-water mixture or the liquid nitrogen in the reported high-power Tm rod laser experiments, which were performed at low temperature near the freezing point of water, or even below.

  13. 3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Peng, H.; Hou, W.; Peng, Q.; Geng, A.; Guo, L.; Cui, D.; Xu, Z.

    2006-05-01

    Efficient cw intracavity frequency doubling of a diode-end-pumped Nd:YAG laser operating on 4 F 3/2→4 I 9/2 transitions at 946 nm has been demonstrated. A symmetrical cavity with two composite laser rods was designed, which divides the pump power between the two composite laser rods, allowing for greater power scalability. A 30-mm-long LiB3O5 (LBO) crystal, cut for critical type I phase matching at 57 °C, was used for the intracavity frequency doubling of the laser. A maximum output power of 3.8 W in the blue spectral range at 473 nm has been achieved at 39 W of pump power. The beam quality M2 value is 2.3 in both horizontal and vertical dimensions.

  14. Effects of 2. 45 GHz CW microwave radiation on embryofetal development in mice

    SciTech Connect

    Nawrot, P.S.; McRee, D.I.; Staples, R.E.

    1981-12-01

    The embryofetal toxicity and teratogenicity of plane-wave 2.45 GHz continuous wave (CW) microwave radiation at different intensities were investigated in the CD-1 mouse. Mice were exposed on days 1-15 of gestation to an incident power density of 5 mW/cm2 (specific absorption rate of 6.7 mW/gm) and either on days 1-6 or 6-15 of gestation to 21 mW/cm2 (specific absorption rate of 28.14 mW/gm) or to 30 mW/cm2 (specific absorption rate of 40.2 mW/gm) for 8 hours daily. Exposure either on days 1-6 or 6-15 of gestation to a power density of 21 or 30 mW/cm2 caused an increase in colonic temperature of exposed dams of 1 degree C and 2.3 degrees C, respectively. To distinguish between ''thermal'' and ''nonthermal'' effects of 21 or 30 mW/cm2, groups of mice were also exposed to elevated ambient temperature to raise their body temperature to the level of those animals exposed to microwave. Ambient temperatures of 30 degrees C and 31 degrees C increased the deep colonic temperature to that obtained with the 21 and 30 mW/cm2 microwave exposure, respectively. The temperature-exposed mice were handled in exactly the same manner as the microwave-exposed mice. A significant reduction in maternal weight gain, either during treatment on days 1-6 or 6-15 of gestation was observed in females of all handled groups. Handling plus exposure to elevated ambient temperature (30 degrees C or 31 degrees C) during days 6-15 of gestation increased this reduction in maternal weight gain. A significant decrease in implantation sites per litter and reduction in fetal weight was noted in the group exposed to 30 mW/cm2 during days 1-6 of gestation. Exposure of mice to a power density of 30 mW/cm2 (days 6-15 of gestation) resulted in a slight, but significant increase in the percentage of malformed fetuses, predominantly with cleft palate, when compared to all other groups.

  15. Theoretical study of cw to short pulse conversion in an active cw-injected ring cavity with a Yb3+:YAG amplifier.

    PubMed

    Huang, Zhiyun; Bourdet, Gilbert L

    2007-05-10

    The short laser pulse generated from an active cw-injected ring cavity with Yb3+:YAG crystal, which is treated as the homogeneously broadened amplifier, is studied theoretically. Based on the derived results, the impacts of the amplifier length, the seeding laser intensity and frequency, the pump intensity, the efficiency of the acousto-optic modulator (AOM), and the frequency shift generated by the AOM on the performance of the laser pulse are analyzed. PMID:17446920

  16. Admittance Test and Conceptual Study of a CW Positron Source for CEBAF

    SciTech Connect

    Golge, Serkan; Hyde, Charles E.; Freyberger, Arne

    2009-09-02

    A conceptual study of a Continuous Wave (CW) positron production is presented in this paper. The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLAB) operates with a CW electron beam with a well-defined emittance, time structure and energy spread. Positrons created via bremsstrahlung photons in a high-Z target emerge with a large emittance compared to incoming electron beam. An admittance study has been performed at CEBAF to estimate the maximum beam phase space area that can be transported in the LINAC and in the Arcs. A positron source is described utilizing the CEBAF injector electron beam, and directly injecting the positrons into the CEBAF LINAC.

  17. Effect of CW YAG and argon green lasers on experimentally detached retinas.

    PubMed

    Peyman, G A; Conway, M D; House, B J

    1984-06-01

    We evaluated the effects of argon-green (514.5 nm) and CW neodymium YAG (1060 nm) wavelengths on experimentally detached retinas of primates. Neither laser produced damage to the sensory retina of the fovea. The argon green wavelength, which was absorbed by haemoglobin in the vessel or by extravasated red blood cells, created vasospasm and nerve fiber layer damage. The beam of the CW YAG was not absorbed by haemoglobin; therefore, no vasospasm could be produced on experimentally detached retinas. PMID:6547800

  18. Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor); Lin, Bing (Inventor); Nehrir, Amin R. (Inventor)

    2015-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  19. Effect of scanned quasi-cw CO2 laser irradiation on tissue thermal damage

    NASA Astrophysics Data System (ADS)

    Domankevitz, Yacov; Bua, Dominic; Chung, Jina; Hanel, Edward; Silver, Geoffrey; Nishioka, Norman S.

    1994-08-01

    Residual thermal damage produced by a scanned quasi cw CO2 laser was measured in pig skin. The effects of scan speed on thermal damage distribution for laser dwell times ranging between 1 and 150 msec were examined. Significantly larger thermal damage zones were produced along the crater wall for laser dwell times longer than 50 msec. Thermal damage along the crater base was constant independent of dwell time. The preliminary experimental results suggest that quasi cw CO2 can consistently produce less than 200 micrometers zones of thermal damage if laser parameters are carefully chosen.

  20. Nanoslit cavity plasmonic modes and built-in fields enhance the CW THz radiation in an unbiased antennaless photomixers array.

    PubMed

    Mohammad-Zamani, Mohammad Javad; Neshat, Mohammad; Moravvej-Farshi, Mohammad Kazem

    2016-01-15

    A new generation unbiased antennaless CW terahertz (THz) photomixer emitters array made of asymmetric metal-semiconductor-metal (MSM) gratings with a subwavelength pitch, operating in the optical near-field regime, is proposed. We take advantage of size effects in near-field optics and electrostatics to demonstrate the possibility of enhancing the THz power by 4 orders of magnitude, compared to a similar unbiased antennaless array of the same size that operates in the far-field regime. We show that, with the appropriate choice of grating parameters in such THz sources, the first plasmonic resonant cavity mode in the nanoslit between two adjacent MSMs can enhance the optical near-field absorption and, hence, the generation of photocarriers under the slit in the active medium. These photocarriers, on the other hand, are accelerated by the large built-in electric field sustained under the nanoslits by two dissimilar Schottky barriers to create the desired large THz power that is mainly radiated downward. The proposed structure can be tuned in a broadband frequency range of 0.1-3 THz, with output power increasing with frequency. PMID:26766729

  1. Quasi-CW diode-pumped self-starting adaptive laser with self-Q-switched output.

    PubMed

    Smith, G; Damzen, M J

    2007-05-14

    An investigation is made into a quasi-CW (QCW) diode-pumped holographic adaptive laser utilising an ultra high gain (approximately 10(4)) Nd:YVO(4) bounce amplifier. The laser produces pulses at 1064 nm with energy approximately 0.6 mJ, duration <3 ns and peak power approximately 200 kW, with high stability, via self-Q-switching effects due to the transient dynamics of the writing and replay of the gain hologram for each pump pulse. The system produces a near-diffraction-limited output with M(2)<1.3 and operates with a single longitudinal mode. In a further adaptive laser configuration, the output was amplified to obtain pulses of approximately 5.6 mJ energy, approximately 7 ns duration and approximately 1 MW peak power. The output spatial quality is also M(2)<1.3 with SLM operation. Up to 2.9 mJ pulse energy of frequency doubled green (532 nm) radiation is obtained, using an LBO crystal, representing approximately 61% conversion efficiency. This work shows that QCW diode-pumped self-adaptive holographic lasers can provide a useful source of high peak power, short duration pulses with excellent spatial quality and narrow linewidth spectrum. PMID:19546951

  2. Characteristics Of Flexible Fiber Cable For Transmission Of 1 kWatt CW YAG Laser Radiation For Cutting And Welding

    NASA Astrophysics Data System (ADS)

    Buchholz, Juergen; Okino, K.

    1989-03-01

    Since only a short time thin fiber cable, which can transmit high laser power, i.e. more than one kilowatt cw power, are on the market. To have a thin and at the same time powerful fiber has special advantages for material processing. It used to be a big problem to transfer laser radiation from the laser source over a long distance to the work piece. For material processing such as cutting or welding reproducable beam conditions at the focus point are necessary. By using mirrors for beam transportation, it is very normal that the stability at the focus point depends very much on the mechanical stability of the mirrors and on other factors influencing beam propagation. To avoid part of these problems sometimes the laser head was mounted on 1 or 2 axis of xy table, see fig. 1. A lot of work has been invested in the past years to optimize mirror systems for CO2 lasers, when sheet metal of larce format bad to be cut.

  3. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Characteristics of the evolution of a plasma formed by cw and pulse-periodic CO2 laser radiation in various gases

    NASA Astrophysics Data System (ADS)

    Kanevskiĭ, M. F.; Stepanova, M. A.

    1990-06-01

    An investigation was made of the interaction between high-power cw and pulse-periodic CO2 laser radiation and a low-threshold optical breakdown plasma near a metal surface. Characteristics of the breakdown plasma were studied as a function of the experimental conditions. A qualitative analysis was made of the results using a simple one-dimensional model for laser combustion waves.

  4. 250-kW CW klystron amplifier for planetary radar

    NASA Technical Reports Server (NTRS)

    Cormier, Reginald A.; Mizuhara, Albert

    1992-01-01

    The design, construction, and performance testing is described of two Varian klystrons, model VKX-7864A, which replaced the aging and less efficient VA-949J klystrons in the X band planetary radar transmitter on the Goldstone, CA, 70 meter antenna. The project was carried out jointly by the JPL and Varian Assoc. Output power was increased from 200 to 250 kW continuous wave per klystron, and full dc beam power is dissipated in the collector (it was not possible to operate the VA-949J klystrons without RF drive because of limited collector dissipation capability). Replacement were made with a minimum of transmitter modifciations. The planetary radar transmitter is now operating successfully with these two klystrons.

  5. EXPOSURE OF RATS TO 425-MHZ (CW) RADIOFREQUENCY RADIATION: EFFECTS ON LYMPHOCYTES

    EPA Science Inventory

    Four experiments were performed in which six pregnant rats were exposed from day 12 of pregnancy to parturition, for 4 hours a day in a temperature-controlled environment, to 425-MHz (CW) radiation, using a multimode rectangular strip transmission line. Four male pups born to eac...

  6. Proton beam studies with a 1.25 MeV, cw radio frequency quadrupole linac

    SciTech Connect

    Bolme, G.O.; Hardek, T.W.; Hansborough, L.D.

    1998-12-31

    A high-current, cw linear accelerator has been proposed as a spallation neutron source driver for tritium production. Key features of this accelerator are high current (100 mA), low emittance-growth beam propagation, cw operation, high efficiency, and minimal maintenance downtime. A 268 MHz, cw radio frequency quadrupole (RFQ) LINAC section and klystrode based rf system were obtained from the Chalk River Laboratories and were previously installed at LANL to support systems development and advanced studies in support of cw, proton accelerators. A variation of the Low Energy Demonstration Accelerator (LEDA) proton injector, modified to operate at 50 keV, was mated to the RFQ and was operated to support advance developments for the Accelerator Production of Tritium (APT) program. High current, proton beam studies were completed which focused on the details of injector-RFQ integration, development of beam diagnostics, development of operations procedures, and personnel and equipment safety systems integration. This development led to acceleration of up to 100 mA proton beam.

  7. CHRONIC EXPOSURE OF RATS TO 100-MHZ (CW) RADIOFREQUENCY RADIATION: ASSESSMENT OF BIOLOGICAL EFFECTS

    EPA Science Inventory

    A multidisciplinary approach was employed to assess the possible biological effects of chronic exposure of rats to 100-MHz continuous wave (CW) radiofrequency (RF) radiation. A group of 20 time-bred rats were exposed in a transverse electronmagnetic mode (TEM) transmission line t...

  8. The CW domain, a new histone recognition module in chromatin proteins.

    PubMed

    Hoppmann, Verena; Thorstensen, Tage; Kristiansen, Per Eugen; Veiseth, Silje Veie; Rahman, Mohummad Aminur; Finne, Kenneth; Aalen, Reidunn B; Aasland, Rein

    2011-05-18

    Post-translational modifications of the N-terminal histone tails, including lysine methylation, have key roles in regulation of chromatin and gene expression. A number of protein modules have been identified that recognize differentially modified histone tails and provide their proteins with the capacity to sense such modifications. Here, we identify the CW domain of plant and animal chromatin-related proteins as a novel module that recognizes different methylated states of lysine 4 on histone H3 (H3K4me). The solution structure of the CW domain of the Arabidopsis ASH1 HOMOLOG2 (ASHH2) histone methyltransferase provides insight into how different CW domains can distinguish different methylated histone tails. We provide evidence that ASHH2 is acting on H3K4me-marked genes, allowing for ASHH2-dependent H3K36 tri-methylation, which contributes to sustained expression of tissue-specific and developmentally regulated genes. This suggests that ASHH2 is a combined 'reader' and 'writer' of the histone code. We propose that different CW domains, dependent on their specificity for different H3K4 methylations, are important for epigenetic memory or participate in switching between permissive and repressive chromatin states. PMID:21522130

  9. Red-light-emitting laser diodes operating CW at room temperature

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  10. Topological Invariants and CW Complexes of Cartesian Product and Hexagonal Tiling Paces

    NASA Astrophysics Data System (ADS)

    Escudero, Juan García

    2011-09-01

    The cohomology of a class of cartesian product tiling spaces in N dimensions when the inflation factor is a Pisot-Vijayaraghavan unit is analyzed. A CW complex for an hexagonal tiling space is defined in terms of collared tiles for the study of its topological invariants.

  11. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOEpatents

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  12. Use of Self-Management with the CW-FIT Group Contingency Program

    ERIC Educational Resources Information Center

    Kamps, Debra; Conklin, Carl; Wills, Howard

    2015-01-01

    The purpose of the study was to determine the effects of self-management as a tier two enhancement to the group contingency intervention, Class-Wide Function-related Intervention Teams Program (CW-FIT). Two classrooms, first and fourth grade, and two students in each of the classrooms participated in the intervention. The group contingency…

  13. Characterization of IRDye 800CW chlorotoxin as a targeting agent for brain tumors.

    PubMed

    Kovar, Joy L; Curtis, Evan; Othman, Shadi F; Simpson, Melanie A; Olive, D Michael

    2013-09-15

    Primary brain tumors present significant challenges for surgical resection because of their location and the frequent occurrence of malignant projections extending beyond the primary tumor. Visualization of the tumor margins during surgery is critical for a favorable outcome. We report the use of IRDye 800CW chlorotoxin (CLTX) as a targeted imaging agent for brain tumors in a spontaneous mouse model of medulloblastoma, ND2:SmoA1. Specificity and functionality of the targeted agent were confirmed in cell-based assays. Tumors were detected by magnetic resonance imaging and IRDye 800CW CLTX administered to individual animals for optical imaging at 1-month increments. The integrity of the blood-brain barrier (BBB) was measured by Evan's Blue perfusion prior to sacrifice. Results show that IRDye 800CW CLTX specifically targeted tumor tissue. The extravasation of Evan's Blue was observed in all tumors, suggesting that the presence of the tumors can introduce alterations in the permeability of the BBB. Because increased vascular permeability was observed early in the disease model, larger dye-labeled imaging agents that exceed current BBB size restrictions may warrant renewed consideration as candidates for tumor detection and surgical resection. Our study provides data characterizing in vitro and in vivo use of IRDye 800CW CLTX as a broadly applicable tumor imaging agent. PMID:23711726

  14. Class-Wide Function-Related Intervention Teams "CW-FIT" Efficacy Trial Outcomes

    ERIC Educational Resources Information Center

    Kamps, Debra; Wills, Howard; Dawson-Bannister, Harriett; Heitzman-Powell, Linda; Kottwitz, Esther; Hansen, Blake; Fleming, Kandace

    2015-01-01

    The purpose of the study was to determine the efficacy of the Class-Wide Function-Related Intervention Teams (CW-FIT) program for improving students' on-task behavior, and increasing teacher recognition of appropriate behavior. The intervention is a group contingency classroom management program consisting of teaching and reinforcing appropriate…

  15. Harmonic generation in the free-electron laser. II. cw calculation for the linearly polarized wiggler

    SciTech Connect

    Al-Abawi, H.; Moore, G.T.; Scully, M.O.

    1982-01-01

    Harmonic generation in the free-electron laser offers a possible means to extend the wavelength range of the device towards high frequency. Numerical solutions to the basic equations describing this process are shown for cw operation using a linearly polarized wiggler. Higher harmonic emission becomes enhanced as the magnetic field is increased and as the energy spread in the electron beam is reduced.

  16. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  17. Applications of FM-CW laser radar to antenna contour mapping

    NASA Technical Reports Server (NTRS)

    Slotwinski, A. R.

    1989-01-01

    The FM-CW coherent laser radar concept, based on the FM radar principle which makes use of the coherence and lunability of injection laser diodes, is discussed. Laser radar precision/time tradeoffs, block diagrams, system performance, fiber optic system implantation, and receiver improvements are briefly described.

  18. Design studies of the output system of a 95 GHz, 100 kW, CW gyrotron

    SciTech Connect

    Vamshi Krishna, P.; Kartikeyan, M.V. E-mail: kartik@iitr.ernet.in; Thumm, M.

    2011-07-01

    This paper presents the design studies of the output system of a 95 GHz, 100 kW, CW gyrotron for ECRH7ECRIS applications. During this course, the design studies of an advanced dimpled-wall quasi optical launcher, non-linear taper and RF window will be carried out. (author)

  19. Record CW-brightness from a single 20% fill-factor 1-cm laser-diode bar at 20°C

    NASA Astrophysics Data System (ADS)

    Chin, A. K.; Knapczyk, M. T.; Jacob, J. H.; Eppich, H.; Lang, K. D.; Chin, R. H.; Dogan, M.

    2011-03-01

    A record, 250W, CW output-power has been achieved for a single, 1cm-wide, 3.5mm cavity-length, 20% fill-factor, 976nm, laser-diode bar operated at 20°C. The remarkable laser-bar performance was in part the result of a novel EPIC (Enhanced Performance Impingement Cooler) heat-sink with a thermal resistance of 0.16K/W. The superb thermal management resulted in record brightness for a laser bar, i.e. a slow-axis divergence of 10° (95% power containment angle) was achieved at 200W output-power. A coupling efficiency of ~74% into a 200μm core, 0.22NA fiber was achieved.

  20. 20.2W CW 2.118μm Ho:YAlO3 laser pumped by 1.915nm Tm-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Yu, Ting; Bai, Gang; Yang, Zhongguo; Chen, Weibiao

    2015-05-01

    We report on the continuous wave operation of a Ho:YAP laser pumped by an all-fiber Tm-doped fiber laser, the pump laser wavelength is 1.915μm and the output laser wavelength is 2.118μm. The all fiber Tm-doped fiber laser has 70W max output power with 200W pumped power, and the output laser wavelength is 1.915μm. And this laser is used as pump laser to a Ho:YAP laser system. 20.2W CW laser power is obtained from a 0.5 at % Ho3+-doped YAP crystal at 2118.4nm with slope efficiency of 72%.

  1. Antiviral Potential of a Novel Compound CW-33 against Enterovirus A71 via Inhibition of Viral 2A Protease.

    PubMed

    Wang, Ching-Ying; Huang, An-Cheng; Hour, Mann-Jen; Huang, Su-Hua; Kung, Szu-Hao; Chen, Chao-Hsien; Chen, I-Chieh; Chang, Yuan-Shiun; Lien, Jin-Cherng; Lin, Cheng-Wen

    2015-06-01

    Enterovirus A71 (EV-A71) in the Picornaviridae family causes hand-foot-and-mouth disease, aseptic meningitis, severe central nervous system disease, even death. EV-A71 2A protease cleaves Type I interferon (IFN)-α/β receptor 1 (IFNAR1) to block IFN-induced Jak/STAT signaling. This study investigated anti-EV-A7l activity and synergistic mechanism(s) of a novel furoquinoline alkaloid compound CW-33 alone and in combination with IFN-β Anti-EV-A71 activities of CW-33 alone and in combination with IFN-β were evaluated by inhibitory assays of virus-induced apoptosis, plaque formation, and virus yield. CW-33 showed antiviral activities with an IC50 of near 200 µM in EV-A71 plaque reduction and virus yield inhibition assays. While, anti-EV-A71 activities of CW-33 combined with 100 U/mL IFN-β exhibited a synergistic potency with an IC50 of approximate 1 µM in plaque reduction and virus yield inhibition assays. Molecular docking revealed CW-33 binding to EV-A71 2A protease active sites, correlating with an inhibitory effect of CW33 on in vitro enzymatic activity of recombinant 2A protease IC50 = 53.1 µM). Western blotting demonstrated CW-33 specifically inhibiting 2A protease-mediated cleavage of IFNAR1. CW-33 also recovered Type I IFN-induced Tyk2 and STAT1 phosphorylation as well as 2\\',5\\'-OAS upregulation in EV-A71 infected cells. The results demonstrated CW-33 inhibiting viral 2A protease activity to reduce Type I IFN antagonism of EV-A71. Therefore, CW-33 combined with a low-dose of Type I IFN could be applied in developing alternative approaches to treat EV-A71 infection. PMID:26090728

  2. Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory

    SciTech Connect

    Lenci,S.J.; Eisen, E. L.; Dickey, D. L.; Sainz, J. E.; Utay, P. F.; Zaltsman, A.; Lambiase, R.

    2009-05-04

    Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system.

  3. Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka

    2016-09-01

    A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.

  4. Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka

    2016-04-01

    A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.

  5. Heat transfer model for cw laser material processing

    SciTech Connect

    Mazumder, J.; Steen, W.M.

    1980-02-01

    A three-dimensional heat transfer model for laser material processing with a moving Gaussian heat source is developed using finite difference numerical techniques. In order to develop the model, the process is physically defined as follows: A laser beam, having a defined power distribution, strikes the surface of an opaque substrate of infinite length but finite width and depth moving with a uniform velocity in the positive x direction (along the length). The incident radiation is partly reflected and partly absorbed according to the value of the reflectivity. The reflectivity is considered to be zero at any surface point where the temperature exceeds the boiling point. This is because a ''keyhole'' is considered to have formed which will act as a black body. Some of the absorbed energy is lost by reradiation and convection from both the upper and lower surfaces while the rest is conducted into the substrate. That part of the incident radiant power which falls on a keyhole is considered to pass into the keyhole losing some power by absorption and reflection from the plasma within the keyhole as described by a Beer Lambert absorption coefficient. Matrix points within the keyhole are considered as part of the solid conduction network, but operating at fictitiously high temperatures. The convective heat transfer coefficient is enhanced to allow for a concentric gas jet on the upper surface as used for shielding in welding and surface treatment, but not cutting. The system is considered to be in a quasi-steady-state condition in that the thermal profile is considered steady relative to the position of the laser beam. The advantages of this method of calculation over others are discussed together with comparisons between the model predictions and experiments in laser welding, laser arc augmented welding, laser surface treatment, and laser glazing.

  6. 303.5 nm cw Pr:BYF-BBO laser emission under 447 nm all-solid-state Nd:GdVO4-BiBO blue laser pumping

    NASA Astrophysics Data System (ADS)

    Chen, X.; Shao, Y.; Yuan, J. L.; Zhang, D.; Wang, A. G.

    2013-06-01

    An all-solid-state blue laser-pumped Pr:BaY2F5 (Pr:BYF) laser at 607 nm has been demonstrated. With an incident 447 nm pump power of 1.04 W, the maximum orange output power was 337 mW. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a maximum UV power of 76 mW by using a β-BaB2O4 (BBO) nonlinear crystal. To the best of our knowledge, this is the first report on continuous-wave (cw) UV generation by an intracavity frequency doubling Pr:BYF laser.

  7. A preliminary study of extraction solvents for CW-agents and their decomposition products [3:1 (methylene chloride:isopropanol) vs. methylene chloride

    SciTech Connect

    Alcaraz, A.; Ward, R.L.; Hulsey, S.S.; Andresen, B.D.

    1994-09-15

    The major focus of this study was to explore the possibility of using different extraction solvents (or solvent combinations) to isolate CW agents and their degradation products from environmental and industrial samples. The general approach for extracting, e.g. water samples, required the use of a 3:1 (methylene chloride:isopropanol) extraction solvent. Although the 3:1 solvent extraction work-up methods provided excellent results in several Inter-laboratory Comparison Tests, the implementation of these methods for CW on-site analysis exercises was difficult (the methods require cumbersome equipment and are labor intensive). However, due to the time, power, and size restraints set forth by the Chemical Warfare Convention (CWC) for a CW on-site inspection, LLNL developed new sample work-up methods. The approach selected by LLNL incorporated solid phase extraction (SPE) techniques. It is evident from this preliminary study that new or previously used extraction solvents should be re-investigated. It was determined that care must be taken in handling the samples prior to NMR measurements. Also, it was determined that the four target compounds used in this study were extracted on average 18% higher with 3:1 (CH{sub 2}Cl{sub 2}: IPA) vs. CH{sub 2}Cl{sub 2}. However, additional target compounds need to be investigated using this extraction solvent to determine which classes of compounds are better extracted by the use of a 3:1 solvent system. This preliminary study clearly reveals that a mixed solvent system can yield better extraction efficiencies for mixture of compounds in aqueous samples.

  8. High-resolution random-modulation cw lidar.

    PubMed

    Ai, Xiao; Nock, Richard; Rarity, John G; Dahnoun, Naim

    2011-08-01

    A high-resolution random-modulation continuous wave lidar for surface detection using a semiconductor laser diode is presented. The laser diode is intensity modulated with the pseudorandom binary sequence. Its enhanced resolution is achieved via interpolation and a novel front-end analog technique, lowering the requirement of the analog-to-digital converter sampling rate and the associated circuitry. Its mathematical model is presented, including the derivation of the signal-to-noise ratio and the distance standard deviation. Analytical and experimental results demonstrate its capability to achieve distance accuracy of less than 2 cm within 2.6 ms acquisition time, over distances ranging from 1 to 12 m. The laser diode emits 1.4 mW of optical power at a wavelength of 635 nm. PMID:21833124

  9. Continuous-Wave Stimulated Raman Scattering (cwSRS) Microscopy

    PubMed Central

    Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2013-01-01

    Stimulated Raman scattering (SRS) microscopy is a powerful tool for chemically-sensitive non-invasive optical imaging. However, ultrafast laser sources, which are currently employed, are still expensive and require substantial maintenance to provide temporal overlap and spectral tuning. SRS imaging, which utilizes continuous-wave laser sources, has a major advantage, as it eliminates the cell damage due to exposure to the high-intensity light radiation, while substantially reducing the cost and complexity of the set-up. As a proof-of-principle, we demonstrate microscopic imaging of dimethyl sulfoxide using two independent, commonly used lasers, a diode-pumped, intracavity doubled 532-nm laser and a He-Ne laser operating at 632.8-nm PMID:24058269

  10. Parametric Four-Wave Mixing Using a Single cw Laser

    NASA Astrophysics Data System (ADS)

    Brekke, Erik; Herman, Emily; Alderson, Laura

    2014-05-01

    We present progress in using parametric four-wave mixing in a rubidium cell for the generation of coherent emission at 420 nm and 5.4 μm. A simple system using a single external cavity diode laser at 778 nm and a tapered amplifier supplies the needed optical beams. The efficiency is limited by absorption of the 420 nm beam, with single pass outputs of 40 μW. Optical pumping presents a possibility for increased output powers, but radiation trapping must be overcome at high densities. Several methods for increasing the effectiveness of the process are currently underway. The resulting beam at 420 nm presents an intriguing alternative method of exciting Rydberg states in Rubidium atoms.

  11. Quantitative cw Overhauser Dynamic Nuclear Polarization for the Analysis of Local Water Dynamics

    PubMed Central

    Franck, John M.; Pavlova, Anna; Scott, John A.; Han, Songi

    2013-01-01

    Liquid state Overhauser Effect Dynamic Nuclear Polarization (ODNP) has experienced a recent resurgence of interest. The ODNP technique described here relies on the double resonance of electron spin resonance (ESR) at the most common, i.e. X-band (~ 10 GHz), frequency and 1H nuclear magnetic resonance (NMR) at ~ 15 MHz. It requires only a standard continuous wave (cw) ESR spectrometer with an NMR probe inserted or built into an X-band cavity. Our focus lies on reviewing a new and powerful manifestation of ODNP as a high frequency NMR relaxometry tool that probes dipolar cross relaxation between the electron spins and the 1H nuclear spins at X-band frequencies. This technique selectively measures the translational mobility of water within a volume extending 0.5–1.5 nm outward from a nitroxide radical spin probe that is attached to a targeted site of a macromolecule. This method has been applied to study the dynamics of water that hydrates or permeates the surface or interior of proteins, polymers, and lipid membrane vesicles. We begin by reviewing the recent advances that have helped develop ODNP into a tool for mapping the dynamic landscape of hydration water with sub-nanometer locality. In order to bind this work coherently together, and to place it in the context of the extensive body of research in the field of NMR relaxometry, we then rephrase the analytical model and extend the description of the ODNP-derived NMR signal enhancements. This extended model highlights several aspects of ODNP data analysis, including the importance of considering all possible effects of microwave sample heating, the need to consider the error associated with various relaxation rates, and the unique ability of ODNP to probe the electron–1H cross-relaxation process, which is uniquely sensitive to fast (tens of ps) dynamical processes. By implementing the relevant corrections in a stepwise fashion, this paper draws a consensus result from previous ODNP procedures, and then shows

  12. Comparison of clinical features of HLA-Cw*0602-positive and -negative psoriasis patients in a Han Chinese population.

    PubMed

    Fan, Xing; Yang, Sen; Sun, Liang Dan; Liang, Yan Hua; Gao, Min; Zhang, Kai Yue; Huang, Wei; Zhang, XueJun

    2007-01-01

    HLA-Cw6 is strongly associated with psoriasis and has been suggested to be the PSORS1 gene that confers susceptibility to early-onset psoriasis. In this study of the clinical features of HLA-Cw*0602-positive and -negative psoriasis patients in a Han Chinese population, we typed HLA-C in a cohort of 679 patients and compared the two groups. Cw*0602-positive patients (n=345) had an earlier disease onset (p < 1 x 10(-5)), more severe disease (p < 1 x 10(-3)), higher frequency of guttate psoriasis (p < 1 x 10(-9)), more affected legs and trunk (p < 1 x 10(-5)), higher incidence of Köbner's phenomenon (p=0.005) and of trauma history (p=0.009). Cw*0602-negative patients (n= 334) had more palmoplantar pustulosis (p=0.004), nail changes (p=0.001) and scalp involvement (p=0.007). However, there was no statistically significant difference between the two groups regarding age, gender, incidence of plaque psoriasis, erythrodermic, inverse, psoriatic arthritis, and the precipitation factors stress and infection. The study showed that Cw*0602-positive patients had some obvious clinical differences from Cw*0602-negative patients in a Han Chinese population, which provides evidence for an HLA-Cw*0602-associated phenotype in psoriasis. PMID:17598037

  13. CW STED nanoscopy with a Ti:Sapphire oscillator

    NASA Astrophysics Data System (ADS)

    Liu, Yujia; Xie, Hao; Alonas, Eric; Santangelo, Philip J.; Jin, Dayong; Xi, Peng

    2012-12-01

    Fluorescence microscopy has become an essential tool to study biological molecules, pathways and events in living cells, tissues and animals. Meanwhile, the conventional optical microscopy is limited by the wavelength of the light. Even the most advanced confocal microscopy or multiphoton microscopy can only yield optical resolution approaching the diffraction limit of ~200 nm. This is still larger than many subcellular structures, which are too small to be resolved in detail. These limitations have driven the development of super-resolution optical imaging methodologies over the past decade. The stimulated emission depletion (STED) microscopy was the first and most direct approach to overcoming the diffraction limit for far-field nanoscopy. Typically, the excitation focus is overlapped by an intense doughnut-shaped spot to instantly de-excite markers from their fluorescent state to the ground state by stimulated emission. This effectively eliminates the periphery of the Point Spread Function (PSF), resulting in a narrower focal region, or super-resolution. Scanning a sharpened spot through the specimen renders images with sub-diffraction resolution. Multi-color STED imaging can present important structural and functional information for protein-protein interaction. In this work, we presented a dual color, synchronization-free STED stimulated emission depletion (STED) microscopy with a Ti:Sapphire oscillator. The excitation wavelengths were 532nm and 635nm, respectively. With pump power of 4.6 W and sample irradiance of 310 mW, we achieved super-resolution as high as 71 nm. We also imaged 200 nm nanospheres as well as all three cytoskeletal elements (microtubules, intermediate filaments, and actin filaments), clearly demonstrating the super-resolution resolving power over conventional diffraction limited imaging. It also allowed us to discover that, Dylight 650, exhibits improved performance over ATTO647N, a fluorophore frequently used in STED. Furthermore, we

  14. Compression mechanism of subpicosecond pulses by malachite green dye in passively mode-locked rhodamine 6G/DODCI CW dye lasers

    SciTech Connect

    Watanabe, A.; Hara, M.; Kobayashi, H.; Takemura, H.; Tanaka, S.

    1983-04-01

    The pulse width compression effect of a malachite green (MG) dye upon subpicosecond pulses has been experimentally investigated in a CW passively mode-locked rhodamine 6G/DODCI dye laser. The pulse width reduces as MG concentration increases, and reaches 0.34 ps at 1.5 X 10/sup -6/ M. By adding the MG dye, good mode locking is achieved in a rather wide pumping-power range. A computer simulation of pulse growth has also been carried out by using simple rate equations, in which the fast-recovery component of loss due to the MG dye is taken into account. The simulated results can explain some experimental results qualitatively such as pulse width compression and pumping-power restriction. The pulse width compression results essentially from the fast recovery of cavity loss caused by the MG dye.

  15. Photoconductivity of Er-doped InAs quantum dots embedded in strain-relaxed InGaAs layers with 1.5 µm cw and pulse excitation

    NASA Astrophysics Data System (ADS)

    Murakumo, Keisuke; Yamaoka, Yuya; Kumagai, Naoto; Kitada, Takahiro; Isu, Toshiro

    2016-04-01

    We fabricated a photoconductive antenna structure utilizing Er-doped InAs quantum dot layers embedded in strain-relaxed In0.35Ga0.65As layers on a GaAs substrate. Mesa-shaped electrodes for the antenna structure were formed by photolithography and wet etching in order to suppress its dark current. We measured the photocurrent with the excitation of ∼1.5 µm cw and femtosecond pulse lasers. Compared with the dark current, the photocurrent was clearly observed under both cw and pulse excitation conditions and almost linearly increased with increasing excitation power in a wide range of magnitudes from 10 W/cm2 to 10 MW/cm2 order.

  16. CW/Pulsed H{sup −} ion beam generation with PKU Cs-free 2.45 GHz microwave driven ion source

    SciTech Connect

    Peng, S. X. Ren, H. T.; Xu, Y.; Zhang, T.; Zhang, J. F.; Zhao, J.; Guo, Z. Y.; Zhang, A. L.; Chen, J. E.

    2015-04-08

    Circular accelerators used for positron emission tomography (PET, i.e. accelerator used for make radio isotopes) need several mA of CW H- ion beam for their routine operation. Other facilities, like Space Radio-Environment Simulate Assembly (SPRESA), require less than 10 mA pulsed mode H{sup −} beam. Caesium free negative hydrogen ion source is a good choice for those facilities because of its compact structure, easy operation and low cost. Up to now, there is no H{sup −} source able to produce very intense H{sup −} beams with important variation of the duty factor{sup [1]}. Recently, a new version of 2.45 GHz microwave H{sup −} ion source was designed at PKU, based on lessons learnt from the previous one. This non cesiated source is very compact thanks to its permanent magnet configuration. Special attention was paid on the design of the discharge chamber structure, electron dumping and extraction system. Source test to produce H{sup −} ion beams in pulsed and CW mode was carried out on PKU ion source test bench. In CW mode, a 10.8 mA/30keV H{sup −} beam with rms emittance about 0.16 π·mm·mrad has been obtained with only 500 W rf power. The power efficiency reaches 21 mA/kW. In pulsed mode with duty factor of 10% (100Hz/1ms), this compact source can easily deliver 20 mA H{sup −} ion beam at 35 keV with rms emittance about 0.2 π·mm·mrad when RF power is set at 2.2 kW (peak power). Several hour successive running operation in both modes and totaling more than 200 hours proves its high quality. The outside dimension of this new H{sup −} source body is ϕ116 mm × 124 mm, and the entire H{sup −} source infrastructure, including rf matching section, plasma chamber and extraction system, is ϕ310 × 180 mm. The high voltage region is limited with in a ϕ310 mm × 230 mm diagram. Details are given in this paper.

  17. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  18. Choosing dyes for cw-STED nanoscopy using self-assembled nanorulers.

    PubMed

    Beater, Susanne; Holzmeister, Phil; Pibiri, Enrico; Lalkens, Birka; Tinnefeld, Philip

    2014-04-21

    Superresolution microscopy is currently revolutionizing optical imaging. A key factor for getting images of highest quality is - besides a well-performing imaging system - the labeling of the sample. We compared the fluorescent dyes Abberior Star 488, Alexa 488, Chromeo 488 and Oregon Green 488 for use in continuous wave (cw-)STED microscopy in aqueous buffer and in a durable polymer matrix. To optimize comparability, we designed DNA origami standards labeled with the fluorescent dyes including a bead-like DNA origami with dyes focused on one spot and a DNA origami with two marks at a designed distance of ∼100 nm. Our data show that all dyes are well suited for cw-STED microscopy but that the optimal dye depends on the embedding medium. The precise comparison enabled by DNA origami nanorulers indicates that these structures have matured from the proof-of-concept to easily applicable tools in fluorescence microscopy. PMID:24599511

  19. 20 °C, 9 GHz CW-EPR saturation measurements of five selected Alberta coals

    NASA Astrophysics Data System (ADS)

    Kudynska, J.; Buckmaster, H. A.; Duczmal, T.

    1991-12-01

    This paper reports the first determination of the spin-lattice (T_1) and spin-spin (T_2) relaxation times at 20 °C for two subbituminous and three hv bituminous selected Alberta coals using 9 GHz CW-EPR saturation measurements. Argand diagrammatic techniques were used to verify that the lineshapes were Lorentzian since the deviation was less than 4%. Consequently, it was assumed that the CW-EPR spectral resonances could be approximated to homogeneously broadened lineshapes and saturation techniques could be used to determine these relaxation times. The T_1 and T_2 relaxation times are in good agreement with values reported in the literature using saturation measurements, but two orders of magnitude shorter than those obtained using ESE because coal EPR spectral resonances are the unresolved superposition of comparatively narrow homogeneous resonances.

  20. CW Interference Effects on High Data Rate Transmission Through the ACTS Wideband Channel

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ngo, Duc H.; Tran, Quang K.; Tran, Diepchi T.; Yu, John; Kachmar, Brian A.; Svoboda, James S.

    1996-01-01

    Satellite communications channels are susceptible to various sources of interference. Wideband channels have a proportionally greater probability of receiving interference than narrowband channels. NASA's Advanced Communications Technology Satellite (ACTS) includes a 900 MHz bandwidth hardlimiting transponder which has provided an opportunity for the study of interference effects of wideband channels. A series of interference tests using two independent ACTS ground terminals measured the effects of continuous-wave (CW) uplink interference on the bit-error rate of a 220 Mbps digitally modulated carrier. These results indicate the susceptibility of high data rate transmissions to CW interference and are compared to results obtained with a laboratory hardware-based system simulation and a computer simulation.

  1. Multilayer optical data storage by fluorescence modulation using a CW laser

    NASA Astrophysics Data System (ADS)

    Singer, Kenneth D.; Christenson, Cory W.; Saini, Anuj; Ryan, Christopher J.; Mirletz, Heather; Shiyanovskaya, Irina; Yin, Kezhen; Baer, Eric

    2015-08-01

    Optical data storage has been widely used in certain consumer applications owing to its passive and robust nature, but has failed to keep with larger industry data storage needs due to the lack of capacity. Many alternatives have been proposed and developed, such as 3D data storage using two-photon absorption that require complex and dangerous laser systems to localize the bits. In this paper, we present a method for localizing bits using a CW 405nm laser diode, in a multilayered polymer film. Data is stored by photobleaching a fluorescent dye, and the response of the material is nonlinear, despite the CW laser and absorption in the visible region. This is achieved using sub-μs pulses from the laser initiating a photothermal effect. This writing method, along with the inexpensive roll-to-roll method for making the disc, will allow for terabyte-scale optical discs using conventional commercial optics and lasers.

  2. High power continuous-wave Alexandrite laser with green pump

    NASA Astrophysics Data System (ADS)

    Ghanbari, Shirin; Major, Arkady

    2016-07-01

    We report on a continuous-wave (CW) Alexandrite (Cr:BeAl2O4) laser, pumped by a high power green source at 532 nm with a diffraction limited beam. An output power of 2.6 W at 755 nm, a slope efficiency of 26%, and wavelength tunability of 85 nm have been achieved using 11 W of green pump. To the best of our knowledge, this is the highest CW output power of a high brightness laser pumped Alexandrite laser reported to date. The results obtained in this experiment can lead to the development of a high power tunable CW and ultrafast sources of the near-infrared or ultraviolet radiation through frequency conversion.

  3. A novel CW yellow light generated by a diode-end-pumped intra-cavity frequency mixed Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Li, Bin; Yao, Jian Quan; Ding, Xin; Sheng, Quan; Yin, Sujia; Shi, Chunpeng; Li, Xue; Yu, Xuanyi; Sun, Bing

    2014-03-01

    We report an efficient continuous-wave (CW) yellow beam based on a Nd:YVO4 laser with a dual-wavelength wave plate, which is a full-wave plate at 1342 nm and a quarter-wave plate at 1064 nm. By inserting the dual-wavelength wave plate into the laser cavity and tuning the fast axis angle, based on the polarized property emission of Nd:YVO4, two simultaneous wavelengths of 1064 nm and 1342 nm were achieved. A LiB3O5 (LBO) crystal that is cut for critical type I phase matching at room temperature is used for summing frequency generation (SFG) of the laser. At an incident pump power of 5 W, a maximum CW output of 224 mW was obtained for a yellow laser with a wavelength of 593.5 nm and an optical-to-optical efficiency of 4.48%. To the best of our knowledge, this is the first time that a dual-wavelength wave plate has been used to realize a Nd:YVO4 yellow laser output.

  4. Room-temperature CW operation of a nitride-based vertical-cavity surface-emitting laser using thick GaInN quantum wells

    NASA Astrophysics Data System (ADS)

    Furuta, Takashi; Matsui, Kenjo; Horikawa, Kosuke; Ikeyama, Kazuki; Kozuka, Yugo; Yoshida, Shotaro; Akagi, Takanobu; Takeuchi, Tetsuya; Kamiyama, Satoshi; Iwaya, Motoaki; Akasaki, Isamu

    2016-05-01

    We demonstrated a room-temperature (RT) continuous-wave (CW) operation of a GaN-based vertical-cavity surface-emitting laser (VCSEL) using a thick GaInN quantum well (QW) active region and an AlInN/GaN distributed Bragg reflector. We first investigated the following two characteristics of a 6 nm GaInN 5 QWs active region in light-emitting diode (LED) structures. The light output power at a high current density (∼10 kA/cm2) from the 6 nm GaInN 5 QWs was the same or even higher than that from standard 3 nm 5 QWs. In addition, we found that hole injection into the farthest QW from a p-layer was sufficient. We then demonstrated a GaN-based VCSEL with the 6 nm 5 QWs, resulting in the optical confinement factor of 3.5%. The threshold current density under CW operation at RT was 7.5 kA/cm2 with a narrow (0.4 nm) emission spectrum of 413.5 nm peak wavelength.

  5. Enhanced Type-I Polarization-Entangled Photons Using CW-Diode Laser

    NASA Astrophysics Data System (ADS)

    Hegazi, Salem; Mansour, Mohy S.; El Nadi, Lotfia

    2013-03-01

    We used two type-I BBO crystals pumped by violet cw-diode laser of relatively wide bandwidth to produce entangled photons of considerable degree of purity. While diode laser serves the mobility and the low-cost of the entangled photons source, suitable temporal compensation is required in this case to recover the purity of the state. We studied also effect of tilting the two-crystal set on overlapping of the SPDC cones.

  6. Coherent quasi-CW 153-nm light source at high repetition rate

    NASA Astrophysics Data System (ADS)

    Nomura, Yutaka; Ito, Yoshiaki; Ozawa, Akira; Wang, Xiaoyang; Chen, Chuangtian; Shin, Shik; Watanabe, Shuntaro; Kobayashi, Yohei

    2012-02-01

    We present a quasi-cw laser in vacuum ultraviolet region at megahertz repetition rate. The narrowband pulses generated from an ytterbium-fiber laser system at 33 MHz repetition rate at the central wavelength of 1074 nm is frequency-converted by successive stages of LBO crystals and KBBF crystals. The generated radiation at 153 nm has the shortest wavelength achieved through phase-matched frequency conversion processes in nonlinear optical crystals to our knowledge.

  7. Simple analytical derivations of thermal lensing in longitudinally Q-CW pumped Yb:YAG.

    PubMed

    Bourdet, Gilbert L; Gouédard, Claude

    2010-08-01

    In this paper, we introduce analytical derivations for the thermal lensing of an end-pumped laser disk. These derivations are done for pump beam shapes from Gaussian to top hat, assuming that the thermal conductivity is either constant with the temperature or not. We give examples in two temperature regions, where the thermal conductivity exhibits T(-1) or T(-2) dependence. Numerical applications are given for a Q-CW pumped Yb:YAG disk laser. PMID:20676168

  8. Non-invasive optoacoustic temperature determination during retinal cw-laser treatments

    NASA Astrophysics Data System (ADS)

    Kandulla, Jochen; Elsner, Hanno; Sandeau, Julien; Birngruber, Reginald; Brinkmann, Ralf

    2006-02-01

    In almost all retinal laser treatments the therapeutic effect is initiated by a transient temperature increase. Due to differences in tissue properties and physiology like pigmentation and vascular blood flow an individually different temperature increase might occur with crucial effects on the therapeutic benefit of the treatment. In order to determine the individual retinal temperature increase during cw-laser irradiation in real-time we developed a non-invasive method based on optoacoustics. Simultaneously to the cw-laser irradiation (λ = 810 nm, P < 3 W, t = 60 s) pulses from a dye laser (λ = 500 nm, τ = 3.5 ns, Ε ~ 5 μJ) are applied concentrically to the cw-laser spot on the eyeground. The absorption of the pulses lead to a consequent heating and thermoelastic expansion of the tissue. This causes the emission of an ultrasonic pressure wave, which amplitude was found to be temperature dependent following in good approximation a 2 nd order polynomial. The pressure wave was measured by an ultrasonic transducer embedded in a contact lens placed on the cornea. The experiments were performed in-vivo on rabbits. Simultaneous measurements with a miniaturized thermocouple showed a similar slope with a maximum local deviation of 0.4 °C for a temperature increase of 5.5 °C. On two rabbits measurements pre and post mortem at the same location were performed. The temperature increase after 60 s was found to raise by 12.0 % and 66.7 % post mortem, respectively. These data were used to calculate the influence of heat convection by blood circulation using a numerical model based on two absorbing layers and assuming a constant perfusion rate for the choriocapillaris and the choroid. Overall the presented optoacoustic method seems feasible for a non-invasive real-time determination of cw-laser induced retinal temperature increases and might serve as a temperature based dosimetry control during retinal laser treatments.

  9. Resonance Ionization Mass Spectrometry (RIMS) with Pulsed and CW-Lasers on Plutonium

    NASA Astrophysics Data System (ADS)

    Kunz, P.; Huber, G.; Passler, G.; Trautmann, N.; Wendt, K.

    2005-04-01

    The detection of long-lived plutonium isotopes in ultra-trace amounts by resonance ionization mass spectrometry (RIMS) is a well-established routine method. Detection limits of 106 to 107 atoms and precise measurements of the isotopic composition have been achieved. In this work multi-step resonance ionization of plutonium atoms has been performed with tunable lasers having very different output intensities and spectral properties. In order to compare different ways for the resonance ionization of plutonium broadband pulsed dye and titanium:sapphire lasers as well as narrow-band cw-diode and titanium:sapphire lasers have been applied for a number of efficient excitation schemes. It has been shown, that for identical excitation schemes the optical isotope selectivity can be improved by using cw-lasers (bandwidths < 10 MHz) instead of pulsed lasers (bandwidths > 2 GHz). Pulsed and cw-laser systems have been used simultaneously for resonance ionization enabling direct comparisons of pulsed and continuous ionization processes. So far, a three-step, three-color laser excitation scheme has been proven to be most practical in terms of efficiency, selectivity and laser wavelengths. Alternatively a newly discovered three-step, two-color excitation scheme which includes a strong two-photon transition from an excited state into a high-lying autoionizing state yields similar ionization efficiencies. This two-photon transition was characterized with respect to saturation behavior and line width.

  10. Material characterization with top-hat cw laser induced photothermal techniques: A short review

    NASA Astrophysics Data System (ADS)

    Astrath, N. G. C.; Shen, J.; Baesso, M. L.; Astrath, F. B. G.; Malacarne, L. C.; Pedreira, P. R. B.; Bento, A. C.; Zhou, J.

    2010-03-01

    In this work, we present a short review of the recent development of the theoretical models for top-hat cw laser induced spectroscopies of thermal lens and thermal mirror. With the same probe and top-hat excitation lasers, an apparatus is set up to concurrently measure both thermal lens and thermal mirror effects of transparent samples. With the theoretical models and the experimental apparatus, not only optical and thermal properties are measured, but also the fluorescence quantum coefficient and the temperature coefficient of the optical path length of a fluorescent sample are simultaneously determined with no need of any reference sample. Mechanical properties also could be measured. Opaque samples are also studied using top-hat cw laser thermal mirror and top-hat photothermal deflection techniques to determine thermal properties (e.g., thermal conductivity and unit volume specific heat). This work shows that the combined top-hat cw laser photothermal techniques are useful for nondestructive evaluation of both transparent and opaque samples with a less expensive non-TEM00 Gaussian laser.

  11. Design of 57.5 MHz CW RFQ for medium energy heavy ion superconducting linac.

    SciTech Connect

    Ostroumov, P. N.; Kolomiets, A. A.; Kashinsky, D. A.; Minaev, S. A.; Pershin, V. I.; Tretyakova, T. E.; Yaramishev, S. G.; Physics; Inst. of Theoretical and Experimental Physics

    2002-06-01

    The nuclear science community considers the construction of the Rare Isotope Accelerator (RIA) facility as a top priority. The RIA includes a 1.4 GV superconducting linac for production of 400 kW cw heavy ion beams. The initial acceleration of heavy ions delivered from an electron cyclotron resonance ion source can be effectively performed by a 57.5 MHz 4-m long room temperature RFQ. The principal specifications of the RFQ are (i) formation of extremely low longitudinal emittance, (ii) stable operation over a wide range of voltage for acceleration of various ion species needed for RIA operation, and (iii) simultaneous acceleration of two-charge states of uranium ions. cw operation of an accelerating structure leads to a number of requirements for the resonators such as high shunt impedance, efficient water cooling of all parts of the resonant cavity, mechanical stability together with precise alignment, reliable rf contacts, a stable operating mode, and fine tuning of the resonant frequency during operation. To satisfy these requirements a new resonant structure has been developed. This paper discusses the beam dynamics and electrodynamics design of the RFQ cavity, as well as some aspects of the mechanical design of the low-frequency cw RFQ.

  12. Design of 57.5 MHz cw RFQ structure for the rare isotope accelerator facility.

    SciTech Connect

    Ostroumov, P. N.; Kolomiets, A. A.; Kashinsky, D. A.; Minaev, S. A.; Pershin, V. I.; Yaramishev, S. G.; Tretyakova, T. E.

    2002-01-29

    The Rare Isotope Accelerator (RIA) facility includes a driver linac for production of 400 kW CW heavy-ion beams. The initial acceleration of heavy-ions delivered from an ECR ion source can be effectively performed by a 57.5 MHz four-meter long RFQ. The principal specifications of the RFQ are: (1) formation of extremely low longitudinal emittance; (2) stable operation over a wide range of voltage for acceleration of various ion species needed for RIA operation; (3) simultaneous acceleration of two-charge states of uranium ions. CW operation of an accelerating structure leads to a number of requirements for the resonators such as high shunt impedance, efficient water cooling of all parts of the resonant cavity, mechanical stability together with precise alignment, reliable rf contacts, a stable operating mode and fine tuning of the resonant frequency during operation. To satisfy these requirements a new resonant structure has been developed. This paper discusses beam dynamics and electrodynamics design of the RFQ cavity, as well as, some aspects of the mechanical design of this low-frequency CW RFQ.

  13. Self-mixing detector candidates for an FM/cw ladar architecture

    NASA Astrophysics Data System (ADS)

    Ruff, William C.; Bruno, John D.; Kennerly, Stephen W.; Ritter, Ken; Shen, Paul H.; Stann, Barry L.; Stead, Michael R.; Sztankay, Zoltan G.; Tobin, Mary S.

    2000-09-01

    The U.S. Army Research Laboratory (ARL) is currently investigating unique self-mixing detectors for ladar systems. These detectors have the ability to internally detect and down-convert light signals that are amplitude modulated at ultra-high frequencies (UHF). ARL is also investigating a ladar architecture based on FM/cw radar principles, whereby the range information is contained in the low-frequency mixing product derived by mixing a reference UHF chirp with a detected, time-delayed UHF chirp. When inserted into the ARL FM/cw ladar architecture, the self-mixing detector eliminates the need for wide band transimpedance amplifiers in the ladar receiver because the UHF mixing is done internal to the detector, thereby reducing both the cost and complexity of the system and enhancing its range capability. This fits well with ARL's goal of developing low-cost, high-speed line array ladars for submunition applications and extremely low-cost, single pixel ladars for ranging applications. Several candidate detectors have been investigated for this application, with metal-semiconductor-metal (MSM) detectors showing the most promise. This paper discusses the requirements for a self-mixing detector, characterization measurements from several candidate detectors and experimental results from their insertion in a laboratory FM/cw ladar.

  14. Frequency comb generation by CW laser injection into a quantum-dot mode-locked laser.

    PubMed

    Pinkert, T J; Salumbides, E J; Tahvili, M S; Ubachs, W; Bente, E A J M; Eikema, K S E

    2012-09-10

    We report on frequency comb generation at 1.5 μm by injection of a CW laser in a hybridly mode-locked InAs/InP two-section quantum-dot laser (HMLQDL). The generated comb has > 60 modes spaced by ∼ 4.5 GHz and a -20 dBc width of > 100 GHz (23 modes) at > 30 dB signal to background ratio. Comb generation was observed with the CW laser (red) detuned more than 20 nm outside the HMLQDL spectrum, spanning a large part of the gain spectrum of the quantum dot material. It is shown that the generated comb is fully coherent with the injected CW laser and RF frequency used to drive the hybrid mode-locking. This method of comb generation is of interest for the creation of small and robust frequency combs for use in optical frequency metrology, high-frequency (> 100 GHz) RF generation and telecommunication applications. PMID:23037259

  15. Antiviral Activity of a Novel Compound CW-33 against Japanese Encephalitis Virus through Inhibiting Intracellular Calcium Overload.

    PubMed

    Huang, Su-Hua; Lien, Jin-Cherng; Chen, Chao-Jung; Liu, Yu-Ching; Wang, Ching-Ying; Ping, Chia-Fong; Lin, Yu-Fong; Huang, An-Cheng; Lin, Cheng-Wen

    2016-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has five genotypes (I, II, III, IV, and V). JEV genotype I circulates widely in some Asian countries. However, current JEV vaccines based on genotype III strains show low neutralizing capacities against genotype I variants. In addition, JE has no specific treatment, except a few supportive treatments. Compound CW-33, an intermediate synthesized derivative of furoquinolines, was investigated for its antiviral activities against JEV in this study. CW-33 exhibited the less cytotoxicity to Syrian baby hamster kidney (BHK-21) and human medulloblastoma (TE761) cells. CW-33 dose-dependently reduced the cytopathic effect and apoptosis of JEV-infected cells. Supernatant virus yield assay pinpointed CW-33 as having potential anti-JEV activity with IC50 values ranging from 12.7 to 38.5 μM. Time-of-addition assay with CW-33 indicated that simultaneous and post-treatment had no plaque reduction activity, but continuous and simultaneous treatments proved to have highly effective antiviral activity, with IC50 values of 32.7 and 48.5 μM, respectively. CW-33 significantly moderated JEV-triggered Ca(2+) overload, which correlated with the recovery of mitochondria membrane potential as well as the activation of Akt/mTOR and Jak/STAT1 signals in treated infected cells. Phosphopeptide profiling by LC-MS/MS revealed that CW-33 upregulated proteins from the enzyme modulator category, such as protein phosphatase inhibitor 2 (I-2), Rho GTPase-activating protein 35, ARF GTPase-activating protein GIT2, and putative 3-phosphoinositide-dependent protein kinase 2. These enzyme modulators identified were associated with the activation of Akt/mTOR and Jak/STAT1 signals. Meanwhile, I-2 treatment substantially inhibited the apoptosis of JEV-infected cells. The results demonstrated that CW-33 exhibited a significant potential in the development of anti-JEV agents. PMID:27563890

  16. More than 100 channel supercontinuum CW optical source with precise 25GHz spacing for 10Gbit/s DWDM systems

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Nan, Yinbo; Zhou, Xianwei

    2006-01-01

    We experimentally demonstrate the generation of supercontinuum (SC) with a 12.5GHz DFB/EAM ultrashort optical pulse broadened in the high nonlinear fiber (HNLF). Through longitudinal mode-carving of the SC spectrum, a novel multiwavelength continuous wave (CW) optical source with precise 25GHz channel spacing is realized. The bit error rate (BER) curve and eye diagram show that the multiwavelength CW optical source is promising for dense wavelength division multiplexing (DWDM) systems.

  17. Observations of tornadoes and wall clouds with a portable FM-CW Doppler radar: 1989--1990 results

    SciTech Connect

    Bluestein, H.B. . School of Meteorology); Unruh, W.P. )

    1990-01-01

    The purpose of this paper is to report on our progress using a portable, 1 W,FM (frequency modulated)-CW (continuous wave) Doppler radar developed at the Los Alamos National Laboratory (LANL), to make measurements of the wind field in tornadoes and wall clouds along with simultaneous visual documentation. Results using a CW version of the radar in 1987--1988 are given in Bluestein and Unruh (1989). 18 refs., 2 figs., 1 tab.

  18. Experimental characterization of a micro-hole drilling process with short micro-second pulses by a CW single-mode fiber laser

    NASA Astrophysics Data System (ADS)

    Tu, Jay; Paleocrassas, Alexander G.; Reeves, Nicholas; Rajule, Nilesh

    2014-04-01

    Laser ablation with pulse durations in a few microseconds is a viable solution for micro-hole drilling applications which require large material removal rate (MRR) with moderate hole quality. However, the body of work regarding short microsecond laser drilling/ablation is small. The objective of this paper is to experimentally characterize this short micro-second laser micro-hole drilling technique using a 300 W, CW, single-mode fiber laser. This CW fiber laser is controlled to produce modulated pulses from 1 μs to 8 μs and these modulated laser pulses have a unique profile which contains an initial spike with a peak power of 1500 W for 1 μs, followed by the steady state power of 300 W. Because of its excellent beam quality, the laser beam produced by this fiber laser can be focused to a small spot size of 10 μm to achieve very high power density up to 1.9 GW/cm2. With one single laser pulse at approximately 1 μs, a blind hole of 167 μm in depth and 23 μm in opening diameter can be created in a stainless substrate. The experimental characterization of this micro-hole drilling process includes laser control, laser beam characterization, hole formation, photodiode measurements of the vapor intensity, high-speed photography of vapor/plasma formation, and spectroscopic measurements of plasma. The results show that, due to very high irradiance of the fiber laser beam, the absorbed energy not only is sufficient to melt and vaporize the material, but also is able to dissociate vapor into intense plasma at temperatures over 16,000 K. The hole drilling mechanism by this short microsecond laser ablation is due to a combination of adiabatic evaporation and ejection of fine droplets.

  19. CW Performance of an InGaAs-GaAs-AlGaAs Laterally-Coupled Distributed Feedback (LC-DFB) Ridge Laser Diode

    NASA Technical Reports Server (NTRS)

    Martin, R. D.; Forouhar, S.; Keo, S.; Lang, R. J.; Hunsperger, R. G.; Tiberio, R. C.; Chapman, P. F.

    1995-01-01

    Single-mode distributed feedback (DFB) laser diodes typically require a two-step epitaxial growth or use of a corrugated substrate. We demonstrate InGaAs-GaAs-AlGaAs DFB lasers fabricated from a single epitaxial growth using lateral evanescent coupling of the optical field to a surface grating etehed along the sides of the ridge. A CW threshold current of 25 mA and external quantum efficiency of 0.48 mW/mA per facet were measured for a 1 mm cavity length device with anti-reflection coated facets. Single-mode output powers as high as 11 mW per facet at 935 nm wavelength were attained. A coupling coefficient of at least 5.8/cm was calculated from the subthreshold spectrum taking into account the 2% residual facet reflectivity.

  20. power loss in SSPX

    NASA Astrophysics Data System (ADS)

    Stewart, T. L.; Romero-Talamas, C. A.; McLean, H. S.; Correll, D. L.

    2007-11-01

    An absolute calibration has been performed on each of the seven chords of the Hα diagnostic [Z. Wang, G.A. Wurden, C.W Barnes, et al., Rev. Sci. Instrum. 72, 1059 (2001)] at SSPX. Simple models are used to estimate the total power lost to Hα radiation throughout experimental shots. Using these models, high energy shots (Te > 500 eV) are compared to low energy shots.

  1. Direct Detection of C_2H_2 in Air and Human Breath by Cw-Crds

    NASA Astrophysics Data System (ADS)

    Schmidt, Florian M.; Vaittinen, Olavi; Metsälä, Markus; Halonen, Lauri

    2010-06-01

    Continuous wave cavity ring-down spectroscopy (cw-CRDS) is an established cavity-enhanced absorption technique that can provide the necessary sensitivity, selectivity and fast acquisition time for many applications involving the detection of trace species. We present a simple but highly sensitive cw-CRDS spectrometer based on an external cavity diode laser operating in the near-infrared region. This instrument allows us to directly detect acetylene (C_2H_2) mixing ratios in air with a detection limit of 120 parts per trillion by volume (pptv) measuring on a C_2H_2 absorption line at 6565.620 cm-1. Acetylene is a combustion product that is routinely used in environmental monitoring as a marker for anthropogenic emissions. In a recent work, the spectrometer was employed to measure the level of acetylene in indoor and outdoor air in Helsinki. Continuous flow measurements with high time resolution (one minute) revealed strong fluctuations in the acetylene mixing ratio in outdoor air during daytime. Due to its non-invasive nature and fast response time, the analysis of exhaled breath for medical diagnostics is an excellent and straightforward alternative to methods using urine or blood samples. In an ongoing study, the cw-CRDS instrument is used to establish the baseline level of acetylene in the breath of the healthy population. An elevated amount of acetylene in breath could indicate exposure to combustion exhausts or other volatile organic compound (VOC) rich sources. The latest results of this investigation will be presented. F. M. Schmidt, O. Vaittinen, M. Metsälä, P. Kraus and L. Halonen, submitted for publication in Appl. Phys. B.

  2. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: solving a lineshape paradox.

    PubMed

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4x10(19) spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S=1/2, and centres with S=0 ground state and thermally accessible triple state S=1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and (13)C nuclei indicates that IOM* centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H approximately 1.5+/-0.5x10(-2) of the order of values existing in interstellar medium. PMID:18024197

  3. Optimum search strategy for randomly distributed CW transmitters. [for project SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1985-01-01

    The relative probability of detecting randomly distributed CW transmitters as a function of the fraction of the sky which is searched (in a fixed time interval) is given. It is shown that the probability of detecting such a class of transmitters with a given receiving system is a maximum if the entire sky is searched, provided that the receiving system is sufficiently sensitive to detect the nearest transmitter in the allocated time and that the integration time - bandwidth product in a specified direction is greater than 8.

  4. Note on the Optimum Search Strategy for Uniformly Distributed CW Transmitters. [implications for Project Seti

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1984-01-01

    The relative probability of detecting randomly distributed CW transmitters as a function of the fraction of the sky which is searched (in a fixed time) is given. It is shown that the probability of detecting such a class of transmitters with a given receiving system is a maximum if the entire sky is searched. The particular case of a search in which the number of directions searched is equal to the telescope gain and the integration time per beam element is equal to the reciprocal of the channel bandwidth is discussed.

  5. Broad-band chopper for a CW proton linac at Fermilab

    SciTech Connect

    Gianfelice-Wendt, E.; Lebedev, V.A.; Solyak, N.; Nagaitsev, S.; Sun, D.; /Fermilab

    2011-03-01

    The future Fermilab program in the high energy physics is based on a new facility called the Project X [1] to be built in the following decade. It is based on a 3 MW CW linear accelerator delivering the 3 GeV 1 mA H{sup -} beam to a few experiments simultaneously. Small fraction of this beam will be redirected for further acceleration to 8 GeV to be injected to the Recycler/Main Injector for a usage in a neutrino program and other synchrotron based high energy experiments. Requirements and technical limitations to the bunch-by-bunch chopper for the Fermilab Project X are discussed.

  6. Similarity criteria in calculations of the energy characteristics of a cw oxygen - iodine laser

    NASA Astrophysics Data System (ADS)

    Mezhenin, A. V.; Azyazov, V. N.

    2012-12-01

    The calculated and experimental data on the energy efficiency of a cw oxygen - iodine laser (OIL) are analysed based on two similarity criteria, namely, on the ratio of the residence time of the gas mixture in the resonator to the characteristic time of extraction of the energy stored in singlet oxygen td and on the gain-to-loss ratio Π. It is shown that the simplified two-level laser model satisfactorily predicts the output characteristics of OILs with a stable resonator at τd <= 7. Efficient energy extraction from the OIL active medium is achieved in the case of τd = 5 - 7, Π = 4 - 8.

  7. Similarity criteria in calculations of the energy characteristics of a cw oxygen - iodine laser

    SciTech Connect

    Mezhenin, A V; Azyazov, V N

    2012-12-31

    The calculated and experimental data on the energy efficiency of a cw oxygen - iodine laser (OIL) are analysed based on two similarity criteria, namely, on the ratio of the residence time of the gas mixture in the resonator to the characteristic time of extraction of the energy stored in singlet oxygen td and on the gain-to-loss ratio {Pi}. It is shown that the simplified two-level laser model satisfactorily predicts the output characteristics of OILs with a stable resonator at {tau}{sub d} {<=} 7. Efficient energy extraction from the OIL active medium is achieved in the case of {tau}{sub d} = 5 - 7, {Pi} = 4 - 8. (lasers)

  8. Clinical trials in near infrared fluorescence imaging with IRDye 800CW

    NASA Astrophysics Data System (ADS)

    Draney, Daniel R.

    2015-03-01

    A monofunctional, heptamethine dye, IRDye® 800CW, is being manufactured under GMP conditions for use in human clinical trials. When attached to a suitable targeting agent and paired with an appropriate camera system, the dye allows Near Infrared (NIR) fluorescence imaging of tumor tissue during surgery. The talk will describe the properties of the dye and give an overview of current and planned clinical trials in Europe and the USA. The dye is available in both the NHS ester and carboxylate forms for conjugation to targeting molecules. A GMP toxicology study of the dye was described in a previous publication.

  9. Spectroscopic binary orbits from ultraviolet radial velocities. X - CW Cephei (HD 218066)

    NASA Technical Reports Server (NTRS)

    Stickland, D. J.; Koch, R. H.; Pfeiffer, R. J.

    1992-01-01

    Observations of CW Cephei were carried out repeatedly in the course of three days in December 1991, using the high-resolution, short-wavelength spectrograph of IUE, with an additional spectrum taken on February 6, 1992. The paper presents a log of these observations, which represent the only high-resolution observations of this star in the archive. The observations have an advantage of Popper's (1974) optical observations that they do not stretch out over a significant part of the apsidal cycle and can thus be treated with the value of omega taken as fixed.

  10. First results from the Cornell high Q cw full linac cryo- module

    NASA Astrophysics Data System (ADS)

    Eichhorn, R.; Furuta, F.; He, Y.; Ge, M.; Hoffstaetter, G.; O'Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Liepe, M.; Markham, S.; Bullock, B.; Elmore, B.; Kaufman, J.; Conway, J.; Veshcherevich, V.

    2015-12-01

    Cornell University has finished building a 10 m long superconducting accelerator module as a prototype of the main linac of a proposed ERL facility. This module houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. In pushing the limits, a high quality factor of the cavities (2•1010) and high beam currents (100 mA accelerated plus 100 mA decelerated) were targeted. The design of the cryomodule and the results of components tested before assembly will be presented in this paper.

  11. Mode selection and resonator design studies of a 95 GHz, 100 kW, CW gyrotron

    SciTech Connect

    Vamshi Krishna, P.; Kartikeyan, M.V. E-mail: kartik@iitr.ernet.in; Thumm, M.

    2011-07-01

    In this paper, the mode selection procedure leading to the design and the cavity resonator design studies of a 95 GHz, 100 kW, CW Gyrotron will be presented, such a gyrotron will be used for specific ECRH/ECRIS applications. In this course all the suitable modes with design constraints within the limits of design goals are considered and finally the TE{sub 10.4} mode is chosen as the operating mode which is suitable for the design. Design constraints are carefully investigated, and starting currents are computed. (author)

  12. Visibility and aerosol measurement by diode-laser random-modulation CW lidar

    NASA Technical Reports Server (NTRS)

    Takeuchi, N.; Baba, H.; Sakurai, K.; Ueno, T.; Ishikawa, N.

    1986-01-01

    Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.

  13. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    SciTech Connect

    Hwang, I.H. . Dept. of Physics); Lee, J.H. . Langley Research Center)

    1991-09-01

    This paper reports on the efficiencies and threshold pump intensities of various solid-state laser materials that have been estimated to compare their performance characteristics as direct solar-pumped CW lasers. Among the laser materials evaluated in this research, alexandrite has the highest slope efficiency of about 12.6%; however, it does not seem to be practical for solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AMO) solar constants and its slope efficiency is about 12% when thermal deformation is completely prevented.

  14. High power singlemode edge-emitting master oscillator power amplifier

    NASA Technical Reports Server (NTRS)

    O'Brien, S.; Parke, R.; Welch, D. F.; Mehuys, D.; Scifres, D.

    1992-01-01

    An edge-emitting monolithically integrated master oscillator power amplifier (M-MOPA) has been fabricated by integrating a distributed Bragg reflector laser with a 500 microns long single mode amplifier. The M-MOPA contains a strained InGaAs quantum well in the active region and operates at about 981.5 nm in an edge-emitting fashion with maximum powers in excess of 175 mW. Single longitudinal and transverse mode operation is maintained to powers in excess of 110 mW CW.

  15. Continuous-wave and passively Q-switched laser performance of Nd:(LaxGd1-x)3Ga5O12 crystal at 1062 nm CW and PQS laser performance of Nd:LaGGG crystal at 1062 nm

    NASA Astrophysics Data System (ADS)

    Yang, H.; Fu, X.-W.; Jia, Z.-T.; He, J.-L.; Yang, X.-Q.; Zhang, B.-T.; Wang, R.-H.; Liu, X.-M.; Hou, J.; Lou, F.; Wang, Z.-W.; Yang, Y.

    2012-10-01

    The performance of diode-pumped continuous-wave (CW) and passively Q-switched (PQS) Nd:(LaxGd1-x)3Ga5O12 lasers at 1062 nm were demonstrated for the first time to our knowledge. The highest CW output power of 9.9 W was obtained, corresponding to an optical-to-optical efficiency of 42.9%. For the passive Q-switching operation, when the output coupler of Toc = 27% was adopted, the maximum output power of 3.97 W was obtained by a Cr4+:YAG saturable absorber with the initial transmission of T0 = 89.9%.While at T0 = 81.4% and Toc = 27%, the output power of 2.83 W, with pulse width of 7.4 ns and the repetition rate of 13.87 kHz, was obtained, corresponding to the maximum peak power of 27.6 kW and single pulse energy of 0.2 mJ, respectively.

  16. ALMA Data Suggest the Presence of Spiral Structure in the Inner Wind of CW Leo

    NASA Astrophysics Data System (ADS)

    Ward, H.; Leen, D.

    2015-12-01

    Evolved low-mass stars lose a significant fraction of their mass through stellar winds. While the overall morphology of the stellar wind structure during the asymptotic giant branch (AGB) phase is thought to be roughly spherically symmetric, the morphology changes dramatically during the post-AGB and planetary nebula phase, during which bipolar and multi-polar structures are often observed. We have observed the close-by carbon-rich AGB star CW Leo using ALMA (Cycle 0) in band 9 around 650 GHz. The channel maps and position-velocity diagram of the 13CO J=6-5 line show a complex structure. Using detailed 3D radiative transfer models, we show that the curved structure in the position velocity map of the 13CO J=6-5 line can be explained by a spiral structure in the inner wind of CW Leo, probably induced by a binary companion. From modelling the ALMA data, we deduce that the potential orbital axis for the binary system lies at a position angle of 10 to 20 degrees to the north-east and that the spiral structure is seen almost edge-on. We infer an orbital period of 55 yr and a binary separation of 25 au (or 8.2 stellar radii). We tentatively estimate that the companion is an unevolved low-mass main sequence star.

  17. Class-Wide Function-Related Intervention Teams “CW-FIT” Efficacy Trial Outcomes

    PubMed Central

    Kamps, Debra; Wills, Howard; Bannister, Harriett Dawson; Heitzman-Powell, Linda; Kottwitz, Esther; Hansen, Blake; Fleming, Kandace

    2015-01-01

    The purpose of the study was to determine the efficacy of the Class-wide Function-related Intervention Teams (CW-FIT) program for improving students’ on-task behavior, and increasing teacher recognition of appropriate behavior. The intervention is a group contingency classroom management program consisting of teaching and reinforcing appropriate behaviors (i.e., getting the teacher’s attention, following directions, and ignoring inappropriate behaviors of peers). Seventeen elementary schools, the majority in urban and culturally diverse communities, participated in a randomized trial with 86 teachers (classrooms) assigned to CW-FIT, and 73 teachers (classrooms) assigned to the comparison group. Class-wide student on-task behavior improved over baseline levels in the intervention classes. Teachers were able to implement the intervention with high fidelity overall, as observed in adherence to 96% of the fidelity criteria on average. Teacher praise and attention to appropriate behaviors increased, and reprimands decreased. These effects were replicated in new classrooms each of the 4 years of the study, and for all years combined. PMID:26279616

  18. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    PubMed

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. PMID:24968092

  19. MBE growth of active regions for electrically pumped, cw-operating GaSb-based VCSELs

    NASA Astrophysics Data System (ADS)

    Kashani-Shirazi, K.; Bachmann, A.; Boehm, G.; Ziegler, S.; Amann, M.-C.

    2009-03-01

    Electrically pumped, cw-operating, single-mode GaSb-based VCSELs are attractive light sources for trace-gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS) [A. Vicet, D.A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, Spectrochimica Acta Part A 58 (2002) 2405-2412]. Only recently, the first electrically pumped (EP) devices emitting at 2.325 μm in cw-mode at room temperature have been reported [A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, Electronics Letters 44(3) (2008) 202-203]. The fabrication of these devices employs the molecular beam epitaxy (MBE) growth of GaSb/AlAsSb-distributed Bragg mirrors, a multi-quantum-well active region made of AlGaAsSb/InGaAsSb and an InAsSb/GaSb-buried-tunnel junction. As VCSELs are usually driven under high injection rates, an optimum electrical design of active regions is essential for high-performance devices. In this paper we present an enhanced simulation of current flow in the active region under operation conditions. The calculation includes carrier transport by drift, diffusion and tunneling. We discuss different design criteria and material compositions for active regions. Active regions with various barrier materials were incorporated into edge emitter samples to evaluate their performance. Aluminum-containing barriers show better internal efficiency compared to active regions with GaSb as the barrier material.

  20. Workshops on Science Enabled by a Coherent, CW, Synchrotron X-ray Source, June 2011

    SciTech Connect

    Brock, Joel

    2012-01-03

    In June of 2011 we held six two-day workshops called "XDL-2011: Science at the Hard X-ray Diffraction Limit". The six workshops covered (1) Diffraction-based imaging techniques, (2) Biomolecular structure from non-crystalline materials, (3) Ultra-fast science, (4) High-pressure science, (5) Materials research with nano-beams and (6) X-ray photon correlation spectroscopy (XPCS), In each workshop, invited speaker from around the world presented examples of novel experiments that require a CW, diffraction-limited source. During the workshop, each invited speaker provided a one-page description of the experiment and an illustrative graphic. The experiments identified by the workshops demonstrate the broad and deep scientific case for a CW coherent synchrotron x-ray source. The next step is to perform detailed simulations of the best of these ideas to test them quantitatively and to guide detailed x-ray beam-line designs. These designs are the first step toward developing detailed facility designs and cost estimates.

  1. Study of effects of failure of beamline elements and their compensation in CW superconducting linac

    SciTech Connect

    Saini, A.; Ranjan, K.; Solyak, N.; Mishra, S.; Yakovlev, V.; /Fermilab

    2011-03-01

    Project-X is the proposed high intensity proton facility to be built at Fermilab, US. First stage of the Project-X consists of superconducting linac which will be operated in continuous wave (CW) mode to accelerate the beam from 2.5 MeV to 3 GeV. The operation at CW mode puts high tolerances on the beam line components, particularly on radiofrequency (RF) cavity. The failure of beam line elements at low energy is very critical as it results in mis-match of the beam with the following sections due to different beam parameters than designed parameter. It makes the beam unstable which causes emittance dilution, and ultimately results in beam losses. In worst case, it could affect the reliability of the machine and may lead to the shutdown of the Linac to replace the failed elements. Thus, it is important to study these effects and their compensation to get smooth beam propagation in linac. This paper describes the results of study performed for the failure of RF cavity & solenoid in SSR0 section.

  2. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation.

    PubMed

    Peng, S X; Zhang, A L; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment. PMID:26931924

  3. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation

    NASA Astrophysics Data System (ADS)

    Peng, S. X.; Zhang, A. L.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Chen, J. E.

    2016-02-01

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment.

  4. CW RF system of the Project-X accelerator front end

    SciTech Connect

    Khabiboulline, T.; Barbanotti, S.; Gonin, I.; Solyak, N.; Terechkine, I.; Yakovlev, V.; /Fermilab

    2010-09-01

    Front end of a CW linac of the Project X contains an H{sup -} source, an RFQ, a medium energy transport line with the beam chopper, and a SC low-beta linac that accelerates H{sup -} from 2.5 MeV to 160 MeV. SC Single Spoke Resonators (SSR) will be used in the linac, because Fermilab already successfully developed and tested a SSR for beta = 0.21. Two manufactured cavities achieve 2.5 times more than design accelerating gradients. One of these cavities completely dressed, e.g. welded to helium vessel with integrated slow and fast tuners, and tested in CW regime. Successful tests of beta = 0.21 SSR give us a confidence to use this type of cavity for low beta (0.117) and for high-beta (0.4) as well. Both types of these cavities are under development. In present report the basic constrains, parameters, electromagnetic and mechanical design for all the three SSR cavities, and first test results of beta = 0.21 SSR are presented.

  5. Study of Effects of Failure of Beamline Elements and its Compensation in CW Superconducting Linac

    SciTech Connect

    Ostiguy, J.-F.; Solyak, N.; Yakovlev, V.P.; Mishra, C.S.; Ranjan, K.; Saini, A.; /Delhi U.

    2012-05-01

    Project-X is a proposed high intensity proton facility to be built at Fermilab in United States. The first stage consists of a superconducting linac (SC) operating in continuous wave (CW) mode to accelerate a H{sup -} beam from 2.1 MeV to 3 GeV. Failure of any beamline element during operations induces a downstream mismatch of the beam which is especially severe when the failure occurs at low energy. A large mismatch causes emittance growth and ultimately results in beam losses. In a worst case scenario, the operability of the machine may be affected and long downtime may be needed to replace the failed element. To minimize possible downtime, the optics can be designed in a way that allows local retuning to make the machine operable. This paper presents studies performed to investigate retuning scenarios after failure of an accelerating cavity or a focusing magnet at critical locations in the Project-X CW superconducting linac.

  6. MO-H-19A-04: Multichannel CW Ultrasonic Thermometry for Imaging Therapeutic Dose Fields in Water

    SciTech Connect

    Tosh, R

    2014-06-15

    Purpose: To develop a scalable, multichannel ultrasonic thermometry system suitable for imaging clinical-beam dose distributions in a water phantom. Method: A small, glass-walled rectangular water phantom (15 cm × 20 cm × 30 cm) was filled with distilled water, and two ultrasonic transducers were placed on the outside, against opposing walls, approximately 5 cm below the water line, and were aligned to optimize transmission/reception of ultrasound between them. Two synchronized lock-in amplifiers were connected to the transducers to enable full-duplex operation of two separate ultrasonic frequency channels configured to transmit simultaneously through the same volume of water and thereby provide independent measurements of the temperature-dependent ultrasonic phase lag. Controlled heating of the water via immersed power resistors provided a means to study dependence of measured phase lag on temperature change for both channels; cross-correlation of the phase outputs enabled much smaller temperature fluctuations in the phantom to be used to ascertain the noise floor and achievable temperature resolution. Results: Temperature measurements from both channels, converted from phase measurements via polynomials available in the literature, exhibited the expected linear dependence of ultrasonic phase on temperature change (measured via calibrated thermistor probe). Cross-correlation analysis of phase fluctuations yielded rms noise estimates of approximately 1-2 microKelvin, comparable to that observed in standard water calorimeters. Conclusion: Phase-sensitive detection of cw ultrasound has been shown to provide temperature sensitivity needed for calorimetry of external treatment beams, and the present simple demonstration establishes that multiple channels may be run simultaneously without phase disturbances that currently affect time-of-flight techniques utilizing phase-detection. Immediate plans include doubling the number of sensors, to enable a simple tomographic

  7. HIGH POWER OPERATIONS AT THE LOW ENERGY DEMONSTRATION ACCELERATOR (LEDA)

    SciTech Connect

    M. DURAN; V. R. HARRIS

    2001-01-01

    Recently, the Low-Energy Demonstration Accelerator (LEDA) portion of the Accelerator Production of Tritium (APT) project reached its 100-mA, 8-hr continuous wave (CW) beam operation milestone. The LEDA accelerator is a prototype of the low-energy front-end of the linear accelerator (linac) that would have been used in an APT plant. LEDA consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW radio-frequency quadrupole (RFQ) with associated high-power and low-level RF systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam dump. Details of the LEDA design features will be discussed along with the operational health physics experiences that occurred during the LEDA commissioning phase.

  8. SPECIAL ISSUE DEVOTED TO THE 80TH ANNIVERSARY OF ACADEMICIAN N G BASOV'S BIRTH: Problems in the development of autonomous mobile laser systems based on a cw chemical DF laser

    NASA Astrophysics Data System (ADS)

    Aleksandrov, B. P.; Bashkin, A. S.; Beznozdrev, V. N.; Parfen'ev, M. V.; Pirogov, N. A.; Semenov, S. N.

    2003-01-01

    The problems involved in designing autonomous mobile laser systems based on high-power cw chemical DF lasers, whose mass and size parameters would make it possible to install them on various vehicles, are discussed. The need for mobility of such lasers necessitates special attention to be paid to the quest for ways and means of reducing the mass and size of the main laser systems. The optimisation of the parameters of such lasers is studied for various methods of scaling their systems. A complex approach to analysis of the optical scheme of the laser system is developed.

  9. Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents

    NASA Technical Reports Server (NTRS)

    Awtry, A. R.; Miller, J. H.

    2002-01-01

    The progress in the development of a sensor for the detection of trace air constituents to monitor spacecraft air quality is reported. A continuous-wave (cw), external-cavity tunable diode laser centered at 1.55 micrometers is used to pump an optical cavity absorption cell in cw-cavity ringdown spectroscopy (cw-CRDS). Preliminary results are presented that demonstrate the sensitivity, selectivity and reproducibility of this method. Detection limits of 2.0 ppm for CO, 2.5 ppm for CO2, 1.8 ppm for H2O, 19.4 ppb for NH3, 7.9 ppb for HCN and 4.0 ppb for C2H2 are calculated.

  10. High power infrared QCLs: advances and applications

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  11. Efficient heteronuclear decoupling in MAS solid-state NMR using non-rotor-synchronized rCW irradiation.

    PubMed

    Equbal, Asif; Paul, Subhradip; Mithu, Venus Singh; Madhu, P K; Nielsen, Niels Chr

    2014-09-01

    We present new non-rotor-synchronized variants of the recently introduced refocused continuous wave (rCW) heteronuclear decoupling method significantly improving the performance relative to the original rotor-synchronized variants. Under non-rotor-synchronized conditions the rCW decoupling sequences provide more efficient decoupling, are easier to setup, and prove more robust towards experimental parameters such as radio frequency (rf) field amplitude and spinning frequency. This is demonstrated through numerical simulations substantiated with experimental results under different sample spinning and rf field amplitude conditions for powder samples of U-(13)C-glycine and U-(13)C-L-histidine·HCl·H2O. PMID:25123538

  12. Inefficient assembly limits transport and cell surface expression of HLA-Cw4 molecules in C1R.

    PubMed

    Zemmour, J

    1996-12-01

    HLA-C antigens are expressed to the cell surface at roughly 10% the level of HLA-B or -A, and their serological definition remains persistently difficult. To characterize the factors limiting surface expression, the processes of assembly and intracellular transport of HLA-Cw4 molecules were investigated in the C1R cell line. When appropriate peptides were added to cultured cells or in cell lysates significant amounts of conformed HLA-C molecules that associate with beta 2-microglobulin (beta 2 m) are detected, but are indeed not sufficient to restore expression to the level observed for HLA-A or -B molecules. Furthermore, a precursor/product relationship exists between the free class I heavy chain and the mature conformation of HLA-Cw4 molecules. Thus, HLA-C assembly promotes the conversion of HC-10-reactive molecules (weakly-beta 2m-associated non-ligand associated free HC form) into the beta 2m-associated class I molecules recognized by W6/32. To further investigate the factors that regulate cell surface expression, intracellular transport of HLA-Cw4 was studied in pulse chase analysis. In contrast to some HLA-A and B, maturation of HLA-Cw4 heavy chains and their export to the medial and trans-Golgi compartments are quite inefficient. After 4 h of chase period, roughly half of the pulse-labeled HLA-Cw4 molecules have transited to the medial-Golgi and acquired complex oligosaccharides characteristic of mature form. In addition, treatment with gamma-interferon does not appear to improve maturation of HLA-Cw4 heavy chains, suggesting that increased supply of peptides does not influence intracellular transport. Moreover, only a small fraction in the pool of HLA-Cw4 molecules was subsequently transported through the trans-Golgi network, as indicated by their acquisition of sialic acids. Taken together these studies show that HLA-Cw4 molecules are inefficiently transported through the Golgi apparatus and presumably retained in the endoplasmic reticulum or cis

  13. Wide-bandwidth phase lock between a CW laser and a frequency comb based on a feed-forward configuration.

    PubMed

    Sala, T; Gatti, D; Gambetta, A; Coluccelli, N; Galzerano, G; Laporta, P; Marangoni, M

    2012-07-01

    Wide-bandwidth phase lock between the tooth of a frequency comb and a CW extended-cavity diode laser at 1.55 μm is achieved by the use of an acousto-optical frequency shifter in a feed-forward configuration. The coherence properties of the comb are efficiently transferred to the CW laser, whose linewidth is narrowed down to the ∼10 KHz comb level. A maximum control bandwidth of ∼0.6 MHz has been experimentally achieved, limited by the transit time of the acoustic wave inside the frequency shifter. PMID:22743465

  14. Noise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, H.; Lehmann, K. K.

    2009-02-01

    A model is presented for the effect of a finite extinction ratio of the light modulator used in continuous wave cavity ring-down spectroscopy (CW-CRDS) experiments. We present a simple analytical expression for the minimum isolation required to prevent a significant increase in the fluctuations of the cavity decay rate, which determine the sensitivity of the method. We also present systematic measurements of the signal to noise in CW-CRDS as a function of the effective isolation of the light modulator, and excellent agreement with the model is found.

  15. Reliable high-power diode lasers: thermo-mechanical fatigue aspects

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Gridish, Yaakov; Szafranek, Igor; Karni, Yoram

    2006-02-01

    High power water-cooled diode lasers are finding increasing demand in biomedical, cosmetic and industrial applications, where repetitive cw (continuous wave) and pulsed cw operation modes are required. When operating in such modes, the lasers experience numerous complete thermal cycles between "cold" heat sink temperature and the "hot" temperature typical of thermally equilibrated cw operation. It is clearly demonstrated that the main failure mechanism directly linked to repetitive cw operation is thermo-mechanical fatigue of the solder joints adjacent to the laser bars, especially when "soft" solders are used. Analyses of the bonding interfaces were carried out using scanning electron microscopy. It was observed that intermetallic compounds, formed already during the bonding process, lead to the solders fatigue both on the p- and n-side of the laser bar. Fatigue failure of solder joints in repetitive cw operation reduces useful lifetime of the stacks to hundreds hours, in comparison with more than 10,000 hours lifetime typically demonstrated in commonly adopted non-stop cw reliability testing programs. It is shown, that proper selection of package materials and solders, careful design of fatigue sensitive parts and burn-in screening in the hard pulse operation mode allow considerable increase of lifetime and reliability, without compromising the device efficiency, optical power density and compactness.

  16. 50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers.

    PubMed

    Taylor, Luke R; Feng, Yan; Calia, Domenico Bonaccini

    2010-04-12

    We demonstrate the cascaded coherent collinear combination of a seed-split triplet of 1178nm high-power narrow-band (sub-1.5MHz) SBS-suppressed CW Raman fibre amplifiers via nested free-space constructive quasi-Mach-Zehnder interferometry, after analysing the combination of the first two amplifiers in detail. Near-unity combination and cascaded-combination efficiencies are obtained at all power levels up to a maximum P(1178) > 60W. Frequency doubling of this cascaded-combined output in an external resonant cavity yields P(589) > 50W with peak conversion efficiency eta(589) ~85%. We observe no significant differences between the SHG of a single, combined pair or triplet of amplifiers. Although the system represents a successful power scalability demonstrator for fibre-based Na-D(2a)-tuned mesospheric laser-guide-star systems, we emphasise its inherent wavelength versatility and consider its spectroscopic and near-diffraction-limited qualities equally well suited to other applications. PMID:20588700

  17. Power scaling of high-power fiber lasers for micromachining and materials processing applications

    NASA Astrophysics Data System (ADS)

    Norman, Stephen; Zervas, Mikhail; Appleyard, Andrew; Skull, Paul; Walker, Duncan; Turner, Paul; Crowe, Ian

    2006-02-01

    Fiber-integrated high power fiber lasers (HPFLs) have demonstrated remarkable levels of parametric performance, efficiency, operational stability and reliability, and are consequently becoming the technology of choice for a diverse range of materials processing applications in the "micro-machining" domain. The design and functional flexibility of such HPFLs enables a broad operational window from continuous wave in the 100W+ power range, to modulated CW (to 50kHz prf and above), and to quasi-pulsed operation (kW/μs/mJ regime) from a single design of laser system. A long-term qualification program has been successfully completed to demonstrate the robustness and longevity of this family of fiber lasers. In this paper we report for the first time on the power-scaling extension of SPI's proprietary side-coupled cladding-pumped GTWave TM technology platform to output power levels in the multi-hundred watt domain. Fiber and system design aspects are discussed for increasing both average power and peak power for CW and quasi-pulsed operation respectively whilst maintaining near-diffraction limited beam quality and mitigating non-linear effects such as Stimulated Raman Scattering. Performance data are presented for the new family of laser products with >200W CW output power, M2 ~ 1.1 and modulation performance to 50kHz: Furthermore, the modular, flexible approach provided by GTWave TM side-pumped technology has been extended to demonstrate a two-stage MOPA operating at >400W.

  18. HLA-Cw Allele Frequency in Definite Meniere’s Disease Compared to Probable Meniere’s Disease and Healthy Controls in an Iranian Sample

    PubMed Central

    Dabiri, Sasan; Ghadimi, Fatemeh; Firouzifar, Mohammadreza; Yazdani, Nasrin; Mohammad-Amoli, Mahsa; Vakili, Varasteh; Mahvi, Zahra

    2016-01-01

    Introduction Several lines of evidence support the contribution of autoimmune mechanisms in the pathogenesis of Meniere’s disease. The aim of this study was determining the association between HLA-Cw Alleles in patients with definite Meniere’s disease and patients with probable Meniere’s disease and a control group. Materials and Methods: HLA-Cw genotyping was performed in 23 patients with definite Meniere’s disease, 24 with probable Meniere’s disease, and 91 healthy normal subjects, using sequence specific primers polymerase chain reaction technique. The statistical analysis was performed using stata 8 software. Results: There was a significant association between HLA-Cw*04 and HLA-Cw*16 in both definite and probable Meniere’s disease compared to normal healthy controls. We observed a significant difference in HLA-Cw*12 frequencies between patients with definite Meniere’s disease compared to patients with probable Meniere’s disease (P=0.04). The frequency of HLA-Cw*18 is significantly higher in healthy controls (P=0.002). Conclusion: Our findings support the rule of HLA-Cw Alleles in both definite and probable Meniere’s disease. In addition, differences in HLA-Cw*12 frequency in definite and probable Meniere’s disease in our study’s population might indicate distinct immune and inflammatory mechanisms involved in each condition. PMID:27602337

  19. Comprehensive numerical model for cw vertical-cavity surface-emitting lasers

    SciTech Connect

    Hadley, G.R.; Lear, K.L.; Warren, M.E.; Choquette, K.D.; Scott, J.W.; Corzine, S.W.

    1995-03-01

    The authors present a comprehensive numerical model for vertical-cavity surface-emitting lasers that includes all major processes effecting cw operation of axisymmetric devices. In particular, the model includes a description of the 2D transport of electrons and holes through the cladding layers to the quantum well(s), diffusion and recombination processes of these carriers within the wells, the 2D transport of heat throughout the device, and a multi-lateral-mode effective index optical model. The optical gain acquired by photons traversing the quantum wells is computed including the effects of strained band structure and quantum confinement. They employ the model to predict the behavior of higher-order lateral modes in proton-implanted devices, and to provide an understanding of index-guiding in devices fabricated using selective oxidation.

  20. He-Ne and CW CO2 laser long-path systems for gas detection

    NASA Technical Reports Server (NTRS)

    Grant, W. B.

    1986-01-01

    This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.

  1. Diffusion, convection, and solidification in cw-mode free electron laser nitrided titanium

    SciTech Connect

    Hoeche, Daniel; Mueller, Sven; Shinn, Michelle; Schaaf, Peter

    2009-04-15

    Titanium sheets were irradiated by free electron laser radiation in cw mode in pure nitrogen. Due to the interaction, nitrogen diffusion occurs and titanium nitride was synthesized in the tracks. Overlapping tracks have been utilized to create coatings in order to improve the tribological properties of the sheets. Caused by the local heating and the spatial dimension of the melt pool, convection effects were observed and related to the track properties. Stress, hardness, and nitrogen content were investigated with x-ray diffraction, nanoindention, and resonant nuclear reaction analysis. The measured results were correlated with the scan parameters, especially to the lateral track shift. Cross section micrographs were prepared and investigated by means of scanning electron microscopy. They show the solidification behavior, phase formation, and the nitrogen distribution. The experiments give an insight into the possibilities of materials processing using such a unique heat source.

  2. Analysis of a Four-Station Doppler Tracking Method Using a Simple CW Beacon

    NASA Technical Reports Server (NTRS)

    Fricke, Clifford L.; Watkins, Carl W. L.

    1961-01-01

    A Doppler tracking method is presented in which a very small, simple CW beacon transmitter is used with four Doppler receiving stations to obtain the position and velocity of a space research vehicle. The exact transmitter frequency need not be known, but an initial position is required, and Doppler frequencies must be measured with extreme accuracy. The errors in the system are analyzed and general formulas are derived for position and velocity errors. The proper location of receiving stations is discussed, a rule for avoiding infinite errors is given, and error charts for ideal station configurations are presented. The effect of the index of refraction is also investigated. The system is capable of determining transmitter position within 1,000 feet at a range of 200 miles.

  3. CW Room Temperature Re-Buncher for the Project X Front End

    SciTech Connect

    Romanov, Gennady; Awida, Mohamed H.; Chen, Meiyu; Gonin, Ivan V.; Kazakov, Sergey; Kostin, Roman; Lebedev, Valeri; Solyak, Nikolay; Yakovlev, Vyacheslav P.; /Fermilab

    2012-05-09

    At Fermilab there is a plan to construct the Project X Injector Experiment (PXIE) facility - a prototype of the front end of the Project X, a multi-MW proton source based on superconducting linac. The construction and successful operations of this facility will validate the concept for the Project X front end, thereby minimizing the primary technical risk element within the Project. The room temperature front end of the linac contains an ion source, an RFQ accelerator and a Medium Energy Beam Transport (MEBT) section comprising a high bandwidth bunch selective chopper. The MEBT length is about 10 m, so three re-bunching CW cavities are used to support the beam longitudinal dynamics. The paper reports a RF design of the re-bunchers along with preliminary beam dynamic and thermal analysis of the cavities.

  4. Analysis of stimulated Raman scattering in cw kW fiber oscillators

    NASA Astrophysics Data System (ADS)

    Schreiber, T.; Liem, A.; Freier, E.; Matzdorf, C.; Eberhardt, R.; Jauregui, C.; Limpert, J.; Tünnermann, A.

    2014-03-01

    In this paper the threshold for Stimulated Raman scattering (SRS) is analyzed experimentally and theoretically for monolithic LMA cq kW fiber oscillators. Four oscillators with different spectral widths of the low reflecting (LR) Fiber Bragg Gratings (FBG) (0.04 nm, 0.5 nm, 1.5 nm (FWHM) and without LR grating) were characterized. Experimental it was found that threshold of SRS depends on the spectral width of the out coupling FBGs, which is not yet understood completely. Attempts to describe such lasers by simulations are based on nonlinear Schrödinger equation supporting spectral broadening of cw-fiber laser, rate equation gain as well as broadband Raman gain. The experimental results and the simulations were compared and discussed.

  5. Dynamic phasing of multichannel cw laser radiation by means of a stochastic gradient algorithm

    SciTech Connect

    Volkov, V A; Volkov, M V; Garanin, S G; Dolgopolov, Yu V; Kopalkin, A V; Kulikov, S M; Starikov, F A; Sukharev, S A; Tyutin, S V; Khokhlov, S V; Chaparin, D A

    2013-09-30

    The phasing of a multichannel laser beam by means of an iterative stochastic parallel gradient (SPG) algorithm has been numerically and experimentally investigated. The operation of the SPG algorithm is simulated, the acceptable range of amplitudes of probe phase shifts is found, and the algorithm parameters at which the desired Strehl number can be obtained with a minimum number of iterations are determined. An experimental bench with phase modulators based on lithium niobate, which are controlled by a multichannel electronic unit with a real-time microcontroller, has been designed. Phasing of 16 cw laser beams at a system response bandwidth of 3.7 kHz and phase thermal distortions in a frequency band of about 10 Hz is experimentally demonstrated. The experimental data are in complete agreement with the calculation results. (control of laser radiation parameters)

  6. 94 GHz, 25 kW CW, Harmonic Complex-Cavity Gyrotron

    NASA Astrophysics Data System (ADS)

    McDermott, D. B.; Balkcum Luhmann, A. J., Jr.

    1997-11-01

    A low-voltage second-harmonic gyrotron has been designed and evaluated with a particle-tracing code and the PIC code MAGIC. The two codes are shown to be in excellent agreement when applied to a conventional fundamental-frequency gyrotron and also to the novel second-harmonic gyrotron. The 25 kW CW, 94 GHz gyrotron with a predicted conversion efficiency of 28.5% and device efficiency of 20% is driven by a 25 kV, 5 A, v_t/v_z=1.5, MIG electron beam with 15% axial velocity spread and employs a TE_021/TE_031 complex cavity for mode control. The compact 17 kG solenoid magnet utilizes the tremendous advances made in high-Tc superconducting technology. However, the 94 GHz prototype will be tested at low duty in pulse mode with a conventional low-Tc superconducting magnet that has been received and tested.

  7. Absolute Current Calibrations of 1muA CW Electron Beam

    SciTech Connect

    A. Freyberger, M.E. Bevins, A.R. Day, P. Degtiarenko, A. Saha, S. Slachtouski, R. Gilman

    2005-06-06

    The future experimental program at Jefferson Lab requires an absolute current calibration of a 1{mu}A CW electron beam to better than 1% accuracy. This paper presents the mechanical and electrical design of a Tungsten calorimeter that is being constructed to provide an accurate measurement of the deposited energy. The energy is determined by measuring the change in temperature after beam exposure. Knowledge of the beam energy then yields number of electrons stopped by the calorimeter during the exposure. Simulations show that the energy losses due to electromagnetic and hadronic losses are the dominant uncertainty. Details of the precision thermometry and calibration, mechanical design, thermal simulations and GEANT simulations will be presented.

  8. Absolute Current Calibration of 1$\\mu$A CW Electron Beam

    SciTech Connect

    Arne Freyberger; Mike Bevins; Anthony Day; Arunava Saha; Stephanie Slachtouski; Ronald Gilman; Pavel Degtiarenko

    2005-06-01

    The future experimental program at Jefferson Lab requires an absolute current calibration of a 1 {mu}A CW electron beam to better than 1% accuracy. This paper presents the mechanical and electrical design of a Tungsten calorimeter that is being constructed to provide an accurate measurement of the deposited energy. The energy is determined by measuring the change in temperature after beam exposure. Knowledge of the beam energy then yields number of electrons stopped by the calorimeter during the exposure. Simulations show that the energy lost due to electromagnetic and hadronic particle losses are the dominant uncertainty. Details of the precision thermometry and calibration, mechanical design, thermal simulations and simulations will be presented.

  9. Distributed Sensor Particles for Remote Fluorescence Detection of Trace Analytes: UXO/CW

    SciTech Connect

    SINGH, ANUP K.; GUPTA, ALOK; MULCHANDANI, ASHOK; CHEN, WILFRED; BHATIA, RIMPLE B.; SCHOENIGER, JOSEPH S.; ASHLEY, CAROL S.; BRINKER, C. JEFFREY; HANCE, BRADLEY G.; SCHMITT, RANDAL L.; JOHNSON, MARK S.; HARGIS JR., PHILIP J.; SIMONSON, ROBERT J.

    2001-11-01

    This report summarizes the development of sensor particles for remote detection of trace chemical analytes over broad areas, e.g residual trinitrotoluene from buried landmines or other unexploded ordnance (UXO). We also describe the potential of the sensor particle approach for the detection of chemical warfare (CW) agents. The primary goal of this work has been the development of sensor particles that incorporate sample preconcentration, analyte molecular recognition, chemical signal amplification, and fluorescence signal transduction within a ''grain of sand''. Two approaches for particle-based chemical-to-fluorescence signal transduction are described: (1) enzyme-amplified immunoassays using biocompatible inorganic encapsulants, and (2) oxidative quenching of a unique fluorescent polymer by TNT.

  10. Rapid detection of CW residues on soil using an ion trap SIMS

    SciTech Connect

    Groenewold, G.S.; Ingram, J.C.; Dahl, D.A.; Appelhans, A.D.; Delmore, J.E.

    1997-08-01

    Technology for the rapid detection and identification of chemical warfare (CW) residues on soil samples is being developed at the Idaho National Engineering and Environmental Laboratory (INEEL). The development effort is being undertaken because of a need for rapid and specific characterization for possibly contaminated soils samples, preferably in the field. Secondary ion mass spectrometry (SIMS) is being pursued for these applications because SIMS combines rapid, specific and sensitive surface analyses with the potential for small instrument size. This latter attribute suggests that field characterization using SIMS is possible, and this avenue is being supported by the Army at the INEEL. This paper describes ongoing development efforts focused on the development of small-scale, transportable SIMS instrumentation, and on the application of the technology to likely contamination scenarios.

  11. CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters.

    PubMed

    Edmund, J M; Andersen, C E; Marckmann, C J; Aznar, M C; Akselrod, M S; Bøtter-Jensen, L

    2006-01-01

    A new system for in vivo dosimetry during radiotherapy has been introduced. Luminescence signals from a small crystal of carbon-doped aluminium oxide (Al2O3:C) are transmitted through an optical fibre cable to an instrument that contains optical filters, a photomultiplier tube and a green (532 nm) laser. The prime output is continuous wave optically stimulated luminescence (CW-OSL) used for the measurement of the integrated dose. We demonstrate a measurement protocol with high reproducibility and improved linearity, which is suitable for clinical dosimetry. A crystal-specific minimum pre-dose is necessary for signal stabilisation. Simple background subtraction only partially removes the residual signal present at long integration times. Instead, the measurement protocol separates the decay curve into three individual components and only the fast and medium components were used. PMID:16990348

  12. The Cornell Main Linac Cryomodule: A Full Scale, High Q Accelerator Module for cw Application

    NASA Astrophysics Data System (ADS)

    Eichhorn, R.; Bullock, B.; Elmore, B.; Clasby, B.; Furuta, F.; He, Y.; Hoffstaetter, G.; Liepe, M.; O'Connell, T.; Conway, J.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V.

    Cornell University is in the process of building a 10 m long superconducting accelerator module as a prototype of the main linac of a proposed ERL facility. This module houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/BPM section. In pushing the limits, a high quality factor of the cavities (2•1010) and high beam currents (100 mA accelerated plus 100 mA decelerated) were targeted. We will review the design shortly and present the results of the components tested before the assembly. This includes data of the quality-factors of all 6 cavities that we produced and treated in-house, the HOM absorber performance measured with beam on a test set-up as well as testing of the couplers and the tuners.

  13. Regional and Global Atmospheric CO2 Measurements Using 1.57 Micron IM-CW Lidar

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Obland, Michael; Nehrir, Amin; Browell, Edward; Harrison, F. Wallace; Dobler, Jeremy; Campbell, Joel; Kooi, Susan; Meadows, Byron; Fan, Tai-Fang; Liu, Zhaoyan

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate, and knowledge of its distribution and variations influences predictions of the Earth's future climate. Accurate observations of atmospheric CO2 are also crucial to improving our understanding of CO2 sources, sinks and transports. To meet these science needs, NASA is developing technologies for the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, which is aimed at global CO2 observations. Meanwhile an airborne investigation of atmospheric CO2 distributions as part of the NASA Suborbital Atmospheric Carbon and Transport â€" America (ACT-America) mission will be conducted with lidar and in situ instrumentation over the central and eastern United States during all four seasons and under a wide range of meteorological conditions. In preparing for the ASCENDS mission, NASA Langley Research Center and Exelis Inc./Harris Corp. have jointly developed and demonstrated the capability of atmospheric CO2 column measurements with an intensity-modulated continuous-wave (IM-CW) lidar. Since 2005, a total of 14 flight campaigns have been conducted. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved, and the lidar CO2 measurements also agree well with in-situ observations. Significant atmospheric CO2 variations on various spatiotemporal scales have been observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200A-300 sq km over Iowa during a summer 2014 flight. Results from recent flight campaigns are presented in this paper. The ability to achieve the science objectives of the ASCENDS mission with an IM-CW lidar is also discussed in this paper, along with the plans for the ACT-America aircraft investigation that begins in the winter of 2016.

  14. Squid-based CW NMR system for measuring the magnetization of helium-3 films

    NASA Astrophysics Data System (ADS)

    White, Kevin Spencer

    This thesis describes the design and construction of a SQUID-based CW NMR system together with its application in a study of the two dimensional magnetism of 3He. 3He provides an exemplary system for the study of two-dimensional magnetism. Two-dimensional 3He films of varying coverages may be formed by plating 3He on relatively uniform two-dimensional substrates, such as GTA Grafoil and ZYX graphite substrates. At coverages above approximately 20 atoms/nm. 2 on these substrates, the second layer of 3He exhibits a strong ferromagnetic ordering tendency. The ferromagnetic ordering presents as a rapid onset of measured magnetization that becomes independent of the applied magnetic field as film temperatures approach 1 mK. Very low applied magnetic fields are used to probe the ferromagnetic ordering in order to minimize masking of the measured magnetization and to stay within the available bandwidth of the SQUID. Commensurate with the ferromagnetic ordering, the NMR linewidth increases dramatically at these coverages and temperatures. An increasing linewidth equates to a short decay time with respect to pulsed NMR probing of the two-dimensional 3He magnetization. The decay times at these coverages and temperatures become so short that they fall below the minimum recovery time necessary for a SQUID-based pulsed NMR system to recover from the relatively large tipping pulse and acquire meaningful data. To address this problem, we have designed a SQUID-based CW NMR system to leverage as much of an already-existing pulsed NMR system as possible but allow accurate measurement of the rapid onset of ferromagnetic ordering of the 3He films below the approximate 1 mK temperature limit of the pulsed NMR system.

  15. Defect - deformation theory of the formation of a nanoparticle ensemble with a bimodal size distributionon solids under cw laser irradiation

    SciTech Connect

    Emel'yanov, Vladimir I

    2011-08-31

    This paper presents a defect - deformation (DD) theory of the formation of a nanoparticle ensemble under cw laser irradiation. A formula is derived for a bimodal nanoparticle size distribution function expressed through a bimodal growth rate of laser-induced DD surface gratings. (nanostructures)

  16. On the possibility of simultaneous emission of an autonomous cw HF-DF chemical laser in two spectral ranges

    SciTech Connect

    Bashkin, A S; Gurov, L V; Katorgin, B I; Petrova, S N; Polinovsky, D V

    2008-05-31

    The efficiencies of different fuel compositions used in the combustion chamber of an autonomous cw chemical HF-DF laser for obtaining high specific energy parameters during simultaneous lasing in HF and DF molecules in two spectral ranges are theoretically analysed. It is shown that mirrors with the reflectance above 99% in these spectral ranges can be manufactured in principle. (lasers)

  17. The Effects of Class-Wide Function-Related Intervention Teams (CW-FIT) on Students' Prosocial Classroom Behaviors

    ERIC Educational Resources Information Center

    Conklin, Carl G.

    2010-01-01

    Students with challenging, disruptive behavior have difficulty learning in school and their behavior adversely impacts the learning of other students and the classroom teacher. Class-Wide Function-related Intervention Teams (CW-FIT) is a promising approach that teachers can use to prevent and reduce problem behavior and increase prosocial…

  18. All solid-state cw passively mode-locked Ti:sapphire laser using a colored glass filter

    SciTech Connect

    Sarukura, N.; Ishida, Y.; Yanagawa, T.; Nakano, H. )

    1990-07-16

    All solid-state cw passive mode locking of a Ti:sapphire laser is accomplished using a colored glass filter, instead of an organic dye, as a saturable absorber. The tuning range is remarkably wide (785--855 nm), and 2.7 ps pulses are obtained directly from the cavity.

  19. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  20. Nitroxide free radical clearance in the live rat monitored by radio-frequency CW-EPR and PEDRI

    NASA Astrophysics Data System (ADS)

    Alecci, Marcello; Seimenis, Ioannis; McCallum, Stephen J.; Lurie, David J.; Foster, Margaret A.

    1998-07-01

    The use of RF (100 to 300 MHz) PEDRI and CW-EPR techniques allows the in vivo study of large animals such as whole rats and rabbits. Recently a PEDRI instrument was modified to also allow CW-EPR spectroscopy with samples of similar size and under the same experimental conditions. In the present study, this CW-EPR and PEDRI apparatus was used to assess the feasibility of the detection of a pyrrolidine nitroxide free radical (2,2,5,5,-tetramethylpyrrolidine-1-oxyl-3-carboxylic acid, PCA) in the abdomen of rats. In particular, we have shown that after the PCA administration ( b.w.): (i) the PCA EPR linewidth does not show line broadening due to concentration effects; (ii) a similar PCA up-take phase is observed by EPR and PEDRI; and (iii) the PCA half-lives in the whole abdomen of rats measured with the CW-EPR (, , n = 10) and PEDRI (, , n = 4) techniques were not significantly different ( p>0.05). These results show, for the first time, that information about PCA pharmacokinetics obtained by CW-EPR is the same as that from PEDRI under the same experimental conditions.

  1. Tunable quasi-cw two-micron lasing in diode-pumped crystals of mixed Tm{sup 3+}-doped sodium - lanthanum - gadolinium molybdates and tungstates

    SciTech Connect

    Bol'shchikov, F A; Ryabochkina, P A; Zharikov, Evgeny V; Lis, Denis A; Subbotin, Kirill A; Zakharov, N G; Antipov, Oleg L

    2010-12-09

    Two-micron lasing is obtained for the first time on the {sup 3}F{sub 4} {yields} {sup 3}H{sub 6} transition of Tm{sup 3+} ions in diode-pumped crystals of mixed sodium - lanthanum - gadolinium tungstate Tm:NaLa{sub 1/2}Gd{sub 1/2}(WO{sub 4}){sub 2} (C{sub Tm} = 3.6 at %) (3.6Tm : NLGW) and molybdate Tm:NaLa{sub 1/3}Gd{sub 2/3}(MoO{sub 4}){sub 2} (C{sub Tm} = 4.8 at %) (4.8Tm : NLGM). For the 3.6Tm : NLGW crystal, the quasi-cw laser output power exceeded 200 mW and the slope efficiency (with respect to absorbed pump power) for the {pi}- and {sigma}-polarisations at wavelengths of 1908 and 1918 nm was 34% and 30%, respectively. The laser wavelength of this crystal was continuously tuned within the spectral range of 1860 - 1935 nm. For the 4.8Tm : NLGM crystal, the slope efficiency for the {pi}- and {sigma}-polarisations at wavelengths of 1910 and 1918 nm was 27% and 23%, respectively, and the laser wavelength was tunable within the spectral range of 1870 - 1950 nm. (lasers)

  2. Parametric Study On The CW Nd: YAG Laser Cutting Quality Of 1.25 mm Ultra Low Carbon Steel Sheets Using O2 Assist Gas

    SciTech Connect

    Salem, Hanadi G.; Abbas, Wafaa A.; Mansour, Mohy S.; Badr, Yehia A.

    2007-02-14

    There are many non-linear interaction factors responsible for the performance of the laser cutting process. Identification of the dominant factors that significantly affect the cut quality is important. In the current research, the gas pressure, laser power and scanning speed were selected as the cutting parameters. Effect of the cutting parameters on the cut quality was investigated, by monitoring the variation in hardness, oxide layer width and microstructural changes within the heat affected zone (HAZ). Results revealed that good quality cuts can be produced in ultra low carbon steel thin sheets, using CW Nd:YAG laser at a window of scanning speed ranging from 1100-1500 mm/min at a minimum heat input of 337watts under an assisting O2 gas pressure of 5 bar. Higher laser power resulted in either strengthening or softening in the HAZ surrounding the cut kerf. The oxide layer width is not affected by the energy density input but rather affected by the O2 gas pressure due to exothermal reaction.

  3. High power singlemode GaInAs lasers with distributed Bragg reflectors

    NASA Technical Reports Server (NTRS)

    O'Brien, S.; Parke, R.; Welch, D. F.; Mehuys, D.; Scifres, D.

    1992-01-01

    High power singlemode strained GaInAs lasers have been fabricated which use buried second order gratings as distributed Bragg reflectors. The lasers operate in an edge emitting fashion with CW powers in excess of 110 mW with single longitudinal and transverse mode operation at 971.9 nm up to 42 mW.

  4. Frequency of streptococcal upper respiratory tract infections and HLA-Cw*06 allele in 70 patients with guttate psoriasis from northern Poland

    PubMed Central

    Szczerkowska-Dobosz, Aneta; Rębała, Krzysztof; Wysocka, Joanna; Roszkiewicz, Jadwiga; Szczerkowska, Zofia; Placek, Waldemar

    2015-01-01

    Introduction The association of guttate psoriasis with a streptococcal throat infection and HLA-Cw*06 allele is well established in different populations. Nevertheless, only few studies on this form of disease have been performed in the Polish population. Aim To analyze the frequencies of streptococcal-induced guttate psoriasis and HLA-Cw*06 allele in 70 patients with guttate psoriasis originating from northern Poland. Material and methods Seventy patients with guttate psoriasis and 24 healthy volunteers were enrolled into the study. Both groups were sex- and age-matched. The evidence of streptococcal infection was based on the positive throat swabs and/or elevated ASO titers. The modified method, including PCR-SSP and PCR-RFLP, was applied to HLA-Cw*06 genotyping. Results HLA-Cw*06 allele was confirmed in 49 (70%) out of 70 patients, which is significantly higher than in the control population (30%) (p = 0.001). Evidence for streptococcal infection was found in 34 (48.5%) subjects with psoriasis. Twenty-seven of them (79%) carried HLA-Cw*06 allele. In 36 individuals in whom no evidence of streptococcal infection was found, 14 (39%) did not carry HLA-Cw*06 allele. Conclusions Our data confirm that HLA-Cw*06 is a major, but not imperative, genetic determinant for guttate psoriasis. PMID:26755910

  5. ARBRES: light-weight CW/FM SAR sensors for small UAVs.

    PubMed

    Aguasca, Albert; Acevo-Herrera, Rene; Broquetas, Antoni; Mallorqui, Jordi J; Fabregas, Xavier

    2013-01-01

    This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m) for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller). Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM) has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo) module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory. PMID:23467032

  6. Crude Oil Remote Sensing, Characterization and Cleaning with CW and Pulsed Lasers

    NASA Technical Reports Server (NTRS)

    Kukhtareva, Tatiana; Chirita, Arc; Gallegos, Sonia C.

    2014-01-01

    For detection, identification and characterization of crude oil we combine several optical methods of remote sensing of crude oil films and emulsions (coherent fringe projection illumination (CFP), holographic in-line interferometry (HILI), and laser induced fluorescence). These methods allow the three-dimensional characterization of oil spills, important for practical applications. Combined methods of CFP and HILI are described in the frame of coherent superposition of partial interference patterns. It is shown, that in addition to detection/identification laser illumination in the green-blue region can also degrade oil slicks. Different types of surfaces contaminated by oil spills are tested: oil on the water, oil on the flat solid surfaces and oil on the curved surfaces of pipes. For the detection and monitoring of the laser-induced oil degradation in pipes, coherent fiber bundles were used. Both continuous-wave (CW) and pulsed lasers are tested using pump-probe schemes. This finding suggests that properly structured laser clean-up can be an alternative environmentally-friendly method of decontamination, as compared to the currently used chemical methods that are dangerous to environment.

  7. Stepped-frequency CW radar for concealed weapon detection and through-the-wall surveillance

    NASA Astrophysics Data System (ADS)

    Hunt, Allen R.; Hogg, R. Douglas

    2002-08-01

    Both concealed weapons detection and through the wall surveillance are significant problems for both law enforcement and military personnel. While on the surface it would appear that these two problems are unrelated technologically, they do, in fact, share some common ground. A concealed weapon acts as resonant object, exhibiting electromagnetic resonance peaks at frequencies characteristic of the weapon's major dimensions. For handguns the frequency range of interest lies approximately between 450 MHz and 2 GHz. As it turns out, this is also a region over which many common building materials are largely transparent. As part of grant 97-IJ-CX-K013 from the National Institute of Justice, AKELA, Inc. has developed a stepped-frequency, CW radar that covers this frequency range. The radar is digitally synthesized and controlled and has a range resolution of approximately 4'. Digital waveform control gives the radar the ability to avoid interference with other electronic devices, to tailor data collection for signal processing requirements, and to change its sweep time in response to operational requirements. AKELA has developed a brassboard concealed weapons detector that uses this radar. A through the wall imaging system that uses the radar is currently in development under AFRL Contract F30602-00-C-0205.

  8. SARA South Observations and Analysis of the Solar Type, Totally Eclipsing, Shallow Contact Binary, CW Sculptoris

    NASA Astrophysics Data System (ADS)

    Samec, Ronald G.; Norris, Cody; Van Hamme, Walter V.; Faulkner, Danny R.; Hill, Robert L.

    2016-01-01

    CW Scl is a Solar Type (T1 ~ 6000K) solar type eclipsing binary. It was observed in October and November, 2014 at Cerro Tololo in remote mode with the 0.6-m SARA South reflector. Three times of minimum light were calculated from our present observations, two primary and one secondary eclipses:HJD Min I = 2456939.60799±0.0002, 2456976.62450±0.0002,HJD Min II = 2456940.57227±0.0006.In addition, six observations at minima were determined from archived All Sky Automated Survey Data:HJD Min I = 2452177.603, 2452466.793, 2454404.752,HJD Min II = 2453647.652, 2454669.843, 2455101.701.The following quadratic ephemerides was determined from all available times of minimum light:JD Hel Min I=2452940.67733±0.0003d + 0.3855865917±0.00031 X E+0.000000000114±0.000000000002 X E2A BVRcIc simultaneous Wilson-Devinney Program (W-D) solution reveals that the system has a mass ratio of ~0.39, and a component temperature difference of ~200 K. A Binary Maker fitted cool spot was eliminatedby WD Synthetic Light Curve Computations. The Roche Lobe fill-out is only 7/%. The inclination is ~86°. An eclipse duration of 19.5 minutes was determined for the primary eclipse. Additional and more detailedinformation is given in this report.

  9. "simplest Molecule" Clarifies Modern Physics I. Cw Laser Space-Time Frame Dynamics

    NASA Astrophysics Data System (ADS)

    Reimer, T. C.; Harter, W. G.

    2014-06-01

    Molecular spectroscopy makes very precise applications of quantum theory including GPS, BEC, and laser clocks. Now it can return the favor by shedding some light on modern physics mysteries by further unifying quantum theory and relativity. * We first ask, "What is the simplest molecule?" Hydrogen H2 is the simplest, stable molecule. Positronium is an electron-positron (e+e-)-pair. An even simpler "molecule" or "radical" is a photon-pair (γ, γ) that under certain conditions can create an (e+e-)-pair. * To help unravel relativistic and quantum mysteries consider CW laser beam pairs or TE-waveguides. Remarkably, their wave interference immediately gives Minkowski space-time coordinates and clearly relates eight kinds of space-time wave dilations or contractions to shifts in Doppler frequency or wavenumber. * Modern physics students may find this approach significantly simplifies and clarifies relativistic physics in space-time (x,ct) and inverse time-space (ω,ck). It resolves some mysteries surrounding super-constant c=299,792,458m/s by proving "Evenson's Axiom" named in honor of NIST metrologist Ken Evenson (1932-2002) whose spectroscopy established c to start a precision-renaissance in spectroscopy and GPS metrology. * The following Talk II applies this approach to relativistic quantum mechanics.

  10. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method.

    PubMed

    Martelli, Fabrizio; Zaccanti, Giovanni

    2007-01-22

    In spite of many progresses achieved both with theories and with experiments in studying light propagation through diffusive media, a reliable method for accurate measurements of the optical properties of diffusive media at NIR wavelengths is, in our opinion, still missing. It is therefore difficult to create a diffusive medium with well known optical properties to be used as a reference. In this paper we describe a method to calibrate the reduced scattering coefficient, mu'(s) , of a liquid diffusive medium and the absorption coefficient, mu(a), of an absorbing medium with a standard error smaller than 2% both on mu'(s) and on mu(a). The method is based on multidistance measurements of fluence into an infinite medium illuminated by a CW source. The optical properties are retrieved with simple inversion procedures (linear fits) exploiting the knowledge of the absorption coefficient of the liquid into which the diffuser and the absorber are dispersed. In this study Intralipid diluted in water has been used as diffusive medium and Indian ink as absorber. For a full characterization of these media measurements of collimated transmittance have also been carried out, from which the asymmetry factor of the scattering function of Intralipid and the single scattering albedo of Indian ink have been determined. PMID:19532267

  11. Study of LPE methods for growth of InGaAsP/InP CW lasers

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Hawrylo, F. Z.; Smith, R. T.; Levin, E. R.

    1980-01-01

    Two methods for liquid phase growth of InGaAsP/InP lasers were studied. Single phase growth, based on saturated melts and 5 C supercooling, was compared to two phase growth excess InP and 20 C nominal supercooling. Substrates cut on the (100) plane were used, and morphology in both cases was excellent and comparable to that obtainable in AlGaAs materials. A high degree of reproducibility was obtained in the materials grown by the two phased method, which is therefore presently preferred for the preparation of laser material. A refractive index step of 0.28 and an index n = 3.46 were obtained for In.81Ga.19As,5P5 lasing at 1.3 microns. Oxide-stripe lasers with typical room temperature cw threshold currents of 180 mA were obtained and some of them showed single mode behavior without lateral cavity modifications. COntinuous operation of 800 h at room temperature was obtained without noticeable degradation.

  12. Super-resolution technique for CW lidar using Fourier transform reordering and Richardson-Lucy deconvolution.

    PubMed

    Campbell, Joel F; Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Obland, Michael D

    2014-12-15

    An interpolation method is described for range measurements of high precision altimetry with repeating intensity modulated continuous wave (IM-CW) lidar waveforms using binary phase shift keying (BPSK), where the range profile is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. This is then enhanced further using Richardson-Lucy deconvolution to greatly enhance the resolution of the pulse. We show the sampling resolution and pulse width can be enhanced by about two orders of magnitude using the signal processing algorithms presented, thus breaking the fundamental resolution limit for BPSK modulation of a particular bandwidth and bit rate. We demonstrate the usefulness of this technique for determining cloud and tree canopy thicknesses far beyond this fundamental limit in a lidar not designed for this purpose. PMID:25503046

  13. ``Simplest Molecule'' Clarifies Modern Physics I. CW Laser Space-Time Frame Dynamics

    NASA Astrophysics Data System (ADS)

    Reimer, Tyle; Harter, William

    2015-05-01

    Molecular spectroscopy makes very precise applications of quantum theory including GPS, BEC, and laser clocks. Now it can return the favor by shedding some light on modern physics mysteries by further unifying quantum theory and relativity. We first ask, ``What is the simplest molecule?'' Hydrogen H2 is the simplest stable molecule. Positronium is an electron-positron (e+e-) -pair. An even simpler ``molecule'' or ``radical'' is a photon-pair (γ, γ) that under certain conditions can create an (e+e-) -pair. To help unravel relativistic and quantum mysteries consider CW laser beam pairs or TE-waveguides. Remarkably, their wave interference immediately gives Minkowski space-time coordinates and clearly relates eight kinds of space-time wave dilations or contractions to shifts in Doppler frequency or wavenumber. Modern physics students may find this approach significantly simplifies and clarifies relativistic physics in space-time (x,ct) and inverse time-space (ω,ck). It resolves some mysteries surrounding super-constant c = 299,792,458 m/s by proving ``Evenson's Axiom'' named in honor of NIST metrologist Ken Evenson (1932-2002) whose spectroscopy established c to start a precision renaissance in spectroscopy and GPS metrology.

  14. ARBRES: Light-Weight CW/FM SAR Sensors for Small UAVs

    PubMed Central

    Aguasca, Albert; Acevo-Herrera, Rene; Broquetas, Antoni; Mallorqui, Jordi J.; Fabregas, Xavier

    2013-01-01

    This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m) for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller). Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM) has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo) module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory. PMID:23467032

  15. Doppler-shift proton fraction measurement on a CW proton injector

    SciTech Connect

    Kamperschroer, J.H.; Sherman, J.D.; Zaugg, T.J.; Arvin, A.H.; Bolt, A.S.; Richards, M.C.

    1998-12-31

    A spectrometer/Optical Multi-channel Analyzer has been used to measure the proton fraction of the cw proton injector developed for the Accelerator Production of Tritium (APT) and the Low Energy Demonstration Accelerator (LEDA) at Los Alamos. This technique, pioneered by the Lawrence Berkeley National Laboratory (LBNL), was subsequently adopted by the international fusion community as the standard for determining the extracted ion fractions of neutral beam injectors. Proton fractions up to 95 {+-} 3% have been measured on the LEDA injector. These values are in good agreement with results obtained by magnetically sweeping the ion beam, collimated by a slit, across a Faraday cup. Since the velocity distribution of each beam species is measured, it also can be used to determine beam divergence. While divergence has not yet been ascertained due to the wide slit widths in use, non-Gaussian distributions have been observed during operation above the design-matched perveance. An additional feature is that the presence of extracted water ions can be observed. During ion source conditioning at 75 kV, an extracted water fraction > 30% was briefly observed.

  16. Optimal irradiance for sintering of inkjet-printed Ag electrodes with a 532nm CW laser

    NASA Astrophysics Data System (ADS)

    Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Hwang, Jun Young; Moon, Seung Jae

    2013-09-01

    Industrial solar cell fabrication generally adopts printing process to deposit the front electrodes, which needs additional heat treatment after printing to enhance electrical conductivity. As a heating method, laser irradiation draws attention not only because of its special selectivity, but also because of its intense heating to achieve high electric conductivity which is essential to reduce ohmic loss of solar cells. In this study, variation of electric conductivity was examined with laser irradiation having various beam intensity. 532 nm continuous wave (CW) laser was irradiated on inkjet-printed silver lines on glass substrate and electrical resistance was measured in situ during the irradiation. The results demonstrate that electric conductivity varies nonlinearly with laser intensity, having minimum specific resistance of 4.1 x 10-8 Ωm at 529 W/cm2 irradiation. The results is interesting because the specific resistance achieved by the present laser irradiation was about 1.8 times lower than the best value obtainable by oven heating, even though it was still higher by 2.5 times than that of bulk silver. It is also demonstrated that the irradiation time, needed to finish sintering process, decreases with laser intensity. The numerical simulation of laser heating showed that the optimal heating temperature could be as high as 300 oC for laser sintering, while it was limited to 250 oC for oven sintering. The nonlinear response of sintering with heating intensity was discussed, based on the results of FESEM images and XRD analysis.

  17. DANCING WITH THE ELECTRONS: TIME-DOMAIN AND CW IN VIVO EPR IMAGING

    PubMed Central

    Subramanian, Sankaran; Krishna, Murali C.

    2009-01-01

    The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI), is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T2* or T2 weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect) is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo. We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed ‘dancing with the (unpaired) electrons’, metaphorically speaking. PMID:22025900

  18. Quasi-cw inverse Raman spectroscopy of the ν1 fundamental of 13CH4

    NASA Astrophysics Data System (ADS)

    McDowell, Robin S.; Patterson, Chris W.; Owyoung, Adelbert

    1980-01-01

    A Doppler-limited Raman spectrum of the symmetric stretching fundamental (ν1) of 13CH4 has been recorded using high-sensitivity ''quasi-cw'' inverse Raman spectroscopy. The band is very different in appearance from ν1 of 12CH4, due mainly to a much smaller value of ΔB for the heavier species, which causes many of the transitions to overlap near the band origin. Line assignments have been made for J?11. The spectroscopic constants have been determined from the frequencies of 25 resolved transitions and a computer synthesis of the largely unresolved central region. The observed 12C-13C isotope shift, 1.04±0.02 cm-2, does not agree completely with predictions based on any available set of anharmonicity constants, but it does indicate that a simplified calculation based on a Dennison-type approximation for the anharmonicity constants of isotopic species is not valid. The large difference in ΔB between the two species is attributed to the effect of Coriolis interaction with the nearby combination level ν2+ν4.

  19. First light curve analyses of binary systems AO Aqr, CW Aqr and ASAS 012206-4924.7

    NASA Astrophysics Data System (ADS)

    Ulaş, B.; Ulusoy, C.

    2015-11-01

    Using the data from the public database of the All Sky Automated Survey (ASAS) we performed the very first light curve analyses of the three eclipsing binary systems AO Aqr, CW Aqr and ASAS 012206-4924.7. The physical parameters of the systems were determined by the PHOEBE (Prša and Zwitter, 2005) software. From an analysis of the ASAS data it was concluded that AO Aqr was found to be a contact binary system while CW Aqr and ASAS 012206-4924.7 were found to be near-contact and detached binaries, respectively. Finally, the locations of the components, corresponding to the estimated physical parameters, in the HR diagram were also discussed.

  20. Sensitivity and alternative operating point studies on a high charge CW FEL injector test stand at CEBAF

    SciTech Connect

    Liu, H.; Kehne, D.; Benson, S.

    1995-12-31

    A high charge CW FEL injector test stand is being built at CEBAF based on a 500 kV DC laser gun, a 1500 MHz room-temperature buncher, and a high-gradient ({approx}10 MV/m) CEBAF cryounit containing two 1500 MHz CEBAF SRF cavities. Space-charge-dominated beam dynamics simulations show that this injector should be an excellent high-brightness electron beam source for CW UV FELs if the nominal parameters assigned to each component of the system are experimentally achieved. Extensive sensitivity and alternative operating point studies have been conducted numerically to establish tolerances on the parameters of various injector system components. The consequences of degraded injector performance, due to failure to establish and/or maintain the nominal system design parameters, on the performance of the main accelerator and the FEL itself are discussed.

  1. An analysis of the AM Her-type variables CW 1103+254 and E 1405-451

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, D. T.; Meggitt, S. M. A.

    1985-10-01

    The authors present an analysis of flux and circular polarization observations of CW 1103+254 and E 1405-451 extending from the visual to the near-infrared spectral regions. The electron temperature of the emission region which gives rise to the polarized radiation in CW 1103+254 is estimated to be in the range 15 - 30 keV linking it closely with the accretion shock. Strong arguments are presented which indicate that the geometry of the polarized emission region in E 1405-451 is more likely to be penny shaped rather than pill box shaped. The ratio of height to diameter of the emission region is estimated to be of the order of 0.1.

  2. Backreflection-induced oscillations of the intensity of radiation emitted by a single-frequency cw dye ring laser

    SciTech Connect

    Kuehlke, D.; Schroeter, S.

    1982-05-01

    When a certain critical intensity is exceeded, backreflected signals produced by counterpropagating waves with a definite mutual phase shift give rise to oscillations of the intensity of the radiation emitted by a ring laser with a homogeneously broadened line. Measurements are reported of the critical reflection coefficient and of the dependence of the oscillation frequency on the intensity of backreflected signals in the case of a single-mode cw dye ring laser. The experimental results are in good agreement with theoretical predictions. It follows also from these results that a cw dye ring laser can be used as a tunable source of modulated light with a small band width, a depth of modulation of about 100%, and a modulation frequency variable from a few hundreds of kilohertz to approximately 20 MHz.

  3. Development of 1.6 micron CW modulation ground-based DIAL system for CO2 monitoring

    NASA Astrophysics Data System (ADS)

    Kameyama, Shumpei; Imaki, Masaharu; Hirano, Yoshihito; Ueno, Shinichi; Kawakami, Shuji; Nakajima, Masakatsu

    2008-12-01

    We have demonstrated the 1.6 micron CW modulation hard-target DIfferential Absorption Lidar (DIAL) system for CO2 sensing. In this system, ON and OFF wavelength laser lights are intensity modulated with CW modulation signal. Received lights of the two wavelengths from the hard-target are discriminated by modulation frequencies in electrical signal domain. Since the optical circuit is fiber-based, the system is compact, flexible, and reliable. It is shown that stable CO2 concentration measurement corresponding to 4 ppm(rms) can be realized in the measurement time of 32s. This measurement stability is better than those obtained by the conventional CO2 sensing DIAL systems in the same measurement time. And the diurnal change of the measured results is in good agreement with the ones measured by an in-situ CO2 meter.

  4. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  5. High-Temperature Monitoring of Refractory Wall Recession Using Frequency-Modulated Continuous-wave (FM-CW) Radar Techniques

    NASA Astrophysics Data System (ADS)

    Varghese, B.; DeConick, C.; Cartee, G.; Zoughi, R.; Velez, M.; Moore, R.

    2005-04-01

    Furnaces are among the most crucial components in the glass and metallurgical industry. Nowadays, furnaces are being operated at higher temperatures and for longer periods of time thus increasing the rate of wear on the furnace refractory lining. Consequently, there is a great need for a nondestructive tool that can accurately measure refractory wall thickness at high temperatures. In this paper the utility of a frequency-modulated continuous-wave (FM-CW) radar is investigated for this purpose.

  6. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  7. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  8. A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy.

    PubMed

    Coto Hernàndez, Ivàn; Peres, Chiara; Cella Zanacchi, Francesca; d'Amora, Marta; Christodoulou, Sotirios; Bianchini, Paolo; Diaspro, Alberto; Vicidomini, Giuseppe

    2014-06-01

    Stimulated emission depletion (STED) microscopy is a prominent approach of super-resolution optical microscopy, which allows cellular imaging with so far unprecedented unlimited spatial resolution. The introduction of time-gated detection in STED microscopy significantly reduces the (instantaneous) intensity required to obtain sub-diffraction spatial resolution. If the time-gating is combined with a STED beam operating in continuous wave (CW), a cheap and low labour demand implementation is obtained, the so called gated CW-STED microscope. However, time-gating also reduces the fluorescence signal which forms the image. Thereby, background sources such as fluorescence emission excited by the STED laser (anti-Stokes fluorescence) can reduce the effective resolution of the system. We propose a straightforward method for subtraction of anti-Stokes background. The method hinges on the uncorrelated nature of the anti-Stokes emission background with respect to the wanted fluorescence signal. The specific importance of the method towards the combination of two-photon-excitation with gated CW-STED microscopy is demonstrated. PMID:24639427

  9. CW and pulsed electrically detected magnetic resonance spectroscopy at 263GHz/12T on operating amorphous silicon solar cells.

    PubMed

    Akhtar, W; Schnegg, A; Veber, S; Meier, C; Fehr, M; Lips, K

    2015-08-01

    Here we describe a new high frequency/high field continuous wave and pulsed electrically detected magnetic resonance (CW EDMR and pEDMR) setup, operating at 263GHz and resonance fields between 0 and 12T. Spin dependent transport in illuminated hydrogenated amorphous silicon p-i-n solar cells at 5K and 90K was studied by in operando 263GHz CW and pEDMR alongside complementary X-band CW EDMR. Benefiting from the superior resolution at 263GHz, we were able to better resolve EDMR signals originating from spin dependent hopping and recombination processes. 5K EDMR spectra were found to be dominated by conduction and valence band tail states involved in spin dependent hopping, with additional contributions from triplet exciton states. 90K EDMR spectra could be assigned to spin pair recombination involving conduction band tail states and dangling bonds as the dominating spin dependent transport process, with additional contributions from valence band tail and triplet exciton states. PMID:26112328

  10. Influence of annealing on the linear and nonlinear optical properties of Mn doped ZnO thin films examined by z-scan technique in CW regime

    NASA Astrophysics Data System (ADS)

    Nagaraja, K. K.; Pramodini, S.; Poornesh, P.; Rao, Ashok; Nagaraja, H. S.

    2016-08-01

    We present the studies on the influence of annealing on the third-order nonlinear optical properties of RF magnetron sputtered manganese doped zinc oxide (MZO) thin films with different doping concentration. It is revealed that the incorporation of Mn into ZnO and annealing lead to prominent changes in the third order nonlinearity. Nonlinear optical measurements were carried out by employing the z-scan technique using a continuous wave (CW) Hesbnd Ne laser of 633 nm. The z-scan results reveal that the films exhibit self-defocusing thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) was found to be of the order of 10-3 esu and 10-2 esu for annealed MZO thin films at 200 °C and 400 °C respectively. The dependence of grain size on the observed nonlinearity was revealed by atomic force microscopy analysis. Optical limiting studies were carried out for a range of input power levels and an optical limiting of about ∼8 mW was observed indicating the possible application for photonic devices.

  11. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation.

    PubMed

    Reijerse, Edward; Lendzian, Friedhelm; Isaacson, Roger; Lubitz, Wolfgang

    2012-01-01

    We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE(011) cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ∼60%). The resonator accepts 3mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor (Q(L)) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ((1)H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the

  12. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation

    NASA Astrophysics Data System (ADS)

    Reijerse, Edward; Lendzian, Friedhelm; Isaacson, Roger; Lubitz, Wolfgang

    2012-01-01

    We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE 011 cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8 mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ˜60%). The resonator accepts 3 mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor ( Q L) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ( 1H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the

  13. High Power Lasing in the IR Upgrade FEL at Jefferson Lab

    SciTech Connect

    Stephen Vincent Benson; Kevin Beard; Chris Behre; George Herman Biallas; James Boyce; David Douglas; Fred Dylla; Richard Evans; Al Grippo; Joe Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; Lia Merminga; George Neil; Joe Preble; Michelle D. Shinn; Tim Siggins; Richard Walker; Gwyn Williams; Byung Yunn; Shukui Zhang

    2004-08-01

    We report on progress in commissioning the IR Upgrade facility at Jefferson Lab. Operation at high power has been demonstrated at 5.7 microns with over 8.5 kW of continuous power output, 10 kW for 1 second long pulses, and CW recirculated electron beam power of over 1.1 MW. We report on the features and limitations of the present design and report on the path to getting even higher powers.

  14. Flow lasers. [fluid mechanics of high power continuous output operations

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Russell, D. A.; Hertzberg, A.

    1975-01-01

    The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.

  15. High power-efficiency terahertz quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Yuan; Liu, Jun-Qi; Liu, Feng-Qi; Zhang, Jin-Chuan; Zhai, Shen-Qiang; Zhuo, Ning; Wang, Li-Jun; Liu, Shu-Man; Wang, Zhan-Guo

    2016-08-01

    We demonstrate continuous-wave (CW) high power-efficiency terahertz quantum cascade laser based on semi-insulating surface-plasmon waveguide with epitaxial-side down (Epi-down) mounting process. The performance of the device is analyzed in detail. The laser emits at a frequency of ∼ 3.27 THz and has a maximum CW operating temperature of ∼ 70 K. The peak output powers are 177 mW in pulsed mode and 149 mW in CW mode at 10 K for 130-μm-wide Epi-down mounted lasers. The record wall-plug efficiencies in direct measurement are 2.26% and 2.05% in pulsed and CW mode, respectively. Project supported by the National Basic Research Program of China (Grant Nos. 2014CB339803 and 2013CB632801), the Special-funded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2011YQ13001802-04), and the National Natural Science Foundation of China (Grant No. 61376051).

  16. Increased Risk of Psoriasis due to combined effect of HLA-Cw6 and LCE3 risk alleles in Indian population.

    PubMed

    Chandra, Aditi; Lahiri, Anirudhya; Senapati, Swapan; Basu, Baidehi; Ghosh, Saurabh; Mukhopadhyay, Indranil; Behra, Akhilesh; Sarkar, Somenath; Chatterjee, Gobinda; Chatterjee, Raghunath

    2016-01-01

    HLA-Cw6 is one of the most associated alleles in psoriasis. Recently, Late Cornified Envelop 3 (LCE3) genes were identified as a susceptibility factor for psoriasis. Some population showed epistatic interaction of LCE3 risk variants with HLA-Cw6, while some population failed to show any association. We determined the associations of a 32.2 kb deletion comprising LCE3C-3B genes and three SNPs (rs1886734, rs4112788; rs7516108) at the LCE3 gene cluster among the psoriasis patients in India. All three SNPs at the LCE3 gene cluster failed to show any association. In contrary, for patients with HLA-Cw6 allele, all three SNPs and the LCE3C-3B deletion showed significant associations. While, all five LCE3 genes were upregulated in psoriatic skin, only LCE3A showed significant overexpression with homozygous risk genotype compared to the non-risk genotype. LCE3B also showed significant overexpression in patients with HLA-Cw6 allele. Moreover, LCE3A showed significantly higher expression in patients bearing homozygous risk genotype in presence of HLA-Cw6 allele but not in those having non-risk genotype, demonstrating the combined effect of HLA-Cw6 allele and risk associated genotype near LCE3A gene. Integration of genetic and gene expression data thus allowed us to identify the actual disease variants at the LCE3 cluster among the psoriasis patients in India. PMID:27048876

  17. Increased Risk of Psoriasis due to combined effect of HLA-Cw6 and LCE3 risk alleles in Indian population

    PubMed Central

    Chandra, Aditi; Lahiri, Anirudhya; Senapati, Swapan; Basu, Baidehi; Ghosh, Saurabh; Mukhopadhyay, Indranil; Behra, Akhilesh; Sarkar, Somenath; Chatterjee, Gobinda; Chatterjee, Raghunath

    2016-01-01

    HLA-Cw6 is one of the most associated alleles in psoriasis. Recently, Late Cornified Envelop 3 (LCE3) genes were identified as a susceptibility factor for psoriasis. Some population showed epistatic interaction of LCE3 risk variants with HLA-Cw6, while some population failed to show any association. We determined the associations of a 32.2 kb deletion comprising LCE3C-3B genes and three SNPs (rs1886734, rs4112788; rs7516108) at the LCE3 gene cluster among the psoriasis patients in India. All three SNPs at the LCE3 gene cluster failed to show any association. In contrary, for patients with HLA-Cw6 allele, all three SNPs and the LCE3C-3B deletion showed significant associations. While, all five LCE3 genes were upregulated in psoriatic skin, only LCE3A showed significant overexpression with homozygous risk genotype compared to the non-risk genotype. LCE3B also showed significant overexpression in patients with HLA-Cw6 allele. Moreover, LCE3A showed significantly higher expression in patients bearing homozygous risk genotype in presence of HLA-Cw6 allele but not in those having non-risk genotype, demonstrating the combined effect of HLA-Cw6 allele and risk associated genotype near LCE3A gene. Integration of genetic and gene expression data thus allowed us to identify the actual disease variants at the LCE3 cluster among the psoriasis patients in India. PMID:27048876

  18. Broadband Frequency Comb and Cw-Laser Velocity Modulation Spectroscopy of ThF+

    NASA Astrophysics Data System (ADS)

    Gresh, Dan; Cossel, Kevin; Ye, Jun; Cornell, Eric

    2015-06-01

    An experimental search for the permanent electric dipole moment of the electron (eEDM) is currently being performed using the metastable ^3Δ_1 state in trapped HfF^+ ^(^). The use of ThF^+ could significantly increase the sensitivity due to the larger effective electric field and longer ^3Δ_1 state lifetime. Previous work by the Heaven group has identified several low-lying ThF^+ electronic states; however, the ground state could not be conclusively assigned. In addition, transitions to intermediate electronic states have not been identified, but they are necessary for state detection, manipulation, and readout in an eEDM experiment. To date we have acquired 3700 wn of densely-sampled ThF^+ spectra in the 695 - 1020 nm region with frequency comb and cw-laser velocity modulation spectroscopy. With high resolution, we have accurately fit more than 20 ThF^+ vibronic transitions, including electronic states spaced by the known X-a energy separation^b. We will report on the ThF^+ ground state assignment and its implications for an eEDM experiment. H. Loh, K. C. Cossel, M. C. Grau, K.-K. Ni, E. R. Meyer, J. L. Bohn, J. Ye, E. A. Cornell, Science 342, 1220 (2013). B. J. Barker, I. O. Antonov, M. C. Heaven, K. A. Peterson, J. Chem. Phys. 136, 104305 (2012). L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, E. A. Cornell, PRL 107, 093002 (2011). K.C. Cossel et. al., Chem. Phys. Lett. 546, 1 (2012).

  19. Pi 2 Pulsations observed at the FM-CW Radar and MAGDAS station

    NASA Astrophysics Data System (ADS)

    Ikeda, A.; Yumoto, K.; Uozumi, T.; Shinohara, M.; Nozaki, K.; Yoshikawa, A.; Bychkov, V.; Shevtsov, B.

    2009-12-01

    At the onset of magnetospheric substorms, Pi 2 pulsations occur globally in the magnetosphere with a period range from 40 to 150 seconds [e.g. Saito, 1968]. Pi 2 has been studied with arrays of magnetometers on the ground and with in-situ observation by satellites [e.g., Yumoto et al., 2001]. However, analysis of Pi 2 electric pulsations in the ionosphere is limited. In this study, we have focused on the phase relationship between the ionospheric Doppler velocity in the F-region detected by an FM-CW (Frequency Modulated Continuous Wave) radar and the magnetic Pi 2 pulsations observed by MAGDAS (the MAGnetic Data Acquisition System) [Yumoto and the MAGDAS Group, 2006 and 2007] at station PTK (Magnetic Latitude: 45.8 degree, Magnetic Longitude: 221.6 degree, L=2.05). During Sep., 2006 to Nov., 2007, we found about 100 Pi 2 events which (1) show high correlation coefficient between the Doppler Velocity (V) and magnetic H component (H), and (2) whose dominant frequency of V and H is the same in the local midnight sector (18-06 LT). The phase delay between V and H depends on LT and shows almost -90 degree in the local time sector of 21-06 LT By assuming that the V is owing to the eastward pulsation electric field (Ey), the phase relation of -90 degree can be explained by the radial standing wave, i.e., cavity mode oscillation suggested by Takahashi et al. [JGR, 2001]. On the other hand, Pi 2 pulsations may arise from a different mechanism in other local time sectors.

  20. Absolute calibration of optical power for PDT: report of AAPM TG140.

    PubMed

    Zhu, Timothy C; Bonnerup, Chris; Colussi, Valdir C; Dowell, Marla L; Finlay, Jarod C; Lilge, Lothar; Slowey, Thomas W; Sibata, Claudio

    2013-08-01

    This report is primarily concerned with methods for optical calibration of laser power for continuous wave (CW) light sources, predominantly used in photodynamic therapy (PDT). Light power calibration is very important for PDT, however, no clear standard has been established for the calibration procedure nor the requirements of power meters suitable for optical power calibration. The purposes of the report are to provide guidance for establishing calibration procedures for thermopile type power meters and establish calibration uncertainties for most commercially available detectors and readout assemblies. The authors have also provided a review of the use of various power meters for CW and pulsed optical sources, and provided recommended temporal frequencies for optical power meter calibrations and guidance for routine quality assurance procedure. PMID:23927297

  1. Meteorological effects on laser propagation for power transmission

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1982-01-01

    An examination of possible laser operating parameters for power transmission to earth from solar power satellites is presented, with particular attention paid to assuring optimal delivery at midlatitudes. The degradation of beam efficiency due to molecular scattering, molecular absorption, aerosol scattering, and aerosol absorption during beam propagation through the atmosphere can be alleviated by judicious choice of wavelength windows, elevating the receptor sites, using a vertical propagation path, or by hole boring, i.e., vaporizing the aerosol particles in the beam path. Analyses are given for the beam propagation through fog, haze, clouds, and snow using various transitions. Only weapons-quality lasers are seen as being capable of boring through clouds and aerosols, employing a CW beam with superimposed pulses at high power densities. It is concluded that further short wavelength transmission experiments be performed to demonstrate transmission feasibility with the CW/pulsed mode of beam propagation.

  2. Temperature measurements of a high-power microwave feedhorn window

    NASA Astrophysics Data System (ADS)

    Hoppe, Daniel J.; Perez, Raul M.; Glazer, Stuart D.

    1990-06-01

    Temperature measurements of a high-power microwave feedhorn window, obtained using an imaging IR radiometer during transmitter operation at 365 kW CW and 8.5 GHz, are discussed. The window under investigation was constructed of HTP-6, a high-thermal-performance material developed to shield the Space Shuttle Orbiter from the heat of reentry. The measurement technique is described, and experimental results are presented. The window performed adequately at 365 kW CW with a center temperature of 475 C. The tests verify that HTP-6 can be used as a window material or a support structure in high-power waveguides at power densities of 1.47 kW/sq cm for extended periods of time, with no change in its mechanical characteristics.

  3. High power Nd:YAG spinning disk laser.

    PubMed

    Ongstad, Andrew P; Guy, Matthew; Chavez, Joeseph R

    2016-01-11

    We report on a high power Nd:YAG spinning disk laser. The eight cm diameter disk generated 200 W CW output with 323 W of absorbed pump in a near diffraction-limited beam. The power conversion efficiency was 64%. The pulsed result, 5 ms pulses at 10 Hz PRF, was nearly identical to the CW result indicating good thermal management. Rotated at 1200-1800 RPM with He impingement cooling the disk temperature increased by only 17 °C reaching a maximum temperature of ~31 °C. The thermal dissipation per unit of output power was 0.61 watt of heat generated per watt of laser output, which is below the typical range of 0.8-1.1 for 808 nm diode pumped Nd:YAG lasers. PMID:26832242

  4. Diode-pumped CW frequency-doubled Nd:GSAG-LBO blue laser at 471 nm

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Jiang, H. L.; Ni, T. Y.; Zhang, T. Y.; Tao, Z. H.; Zeng, Y. H.

    2011-04-01

    We describe the output performances of the 942 nm 4F3/2 → 4I9/2 transition in Nd:GSAG under diode-laser pumping. An end-pumped Nd:GSAG crystal yielded 3.7 W of continuous-wave output power for 17.8 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 23.4%. Furthermore, with 17.8 W of diode pump power and the frequency-doubling crystal LiB3O5 (LBO), a maximum output power of 572 mW in the blue spectral range at 471 nm has been achieved, corresponding to an optical-to-optical conversion efficiency of 3.2%; the output power stability over 4 h is better than 4.1%.

  5. Characterizing fluorescent imaging properties of antibodies conjugated to IRDye800CW for use in imaging of head and neck cancer

    NASA Astrophysics Data System (ADS)

    Foster, Robert C.; Krell, Asher M.; Chung, Thomas K.; Warram, Jason M.; Zinn, Kurt R.; Rosenthal, Eben L.

    2014-03-01

    Introduction: Proteins conjugated to the near infrared (NIR) moieties for detection of head and neck cancers are being translated to the clinic. However, little is known about the fluorescent properties of IRDye800CW after conjugation to antibodies. We investigated factors that may alter the real-time observed fluorescence of antibody conjugated dye and the rate of fluorescent signal loss. Methods: Signal loss was examined using three FDA approved monoclonal antibodies conjugated to IRDye800CW (LICOR) over a period of 15 days. Temperature effects on fluorescence were examined for conjugated dye in both solution and a mouse tumor model. Samples were cooled to -20°C then warmed to predetermined temperatures up to 60°C with imaging performed using the PEARL Impulse (LI-COR) and LUNA (Novadaq) systems. Results: Short term fluorescent signal loss (< 1 hour) was linear, while long term loss (15 days) was exponential with significant increases in rate observed with light exposure and increased temperatures. Cooling of tumor tissue at -20°C was shown to significantly increase tumor fluorescence on both imaging modalities when compared to room temperature (p=0.008, p=0.019). Concurrently the ratio of tumor to background fluorescent signal (TBR) increased with decreasing temperature with statistically significant increases seen at -20°C and 4°C (p=0.0015, p=0.03). Conclusions: TBR is increased with decreasing sample temperature, suggesting that the clinical exam of fluorescently labeled tissues may be improved at cooler temperatures. Our results indicate that both the rate of signal loss and the change in fluorescence with temperature observed for IRDye800CW are independent of the conjugating antibody.

  6. High power, high frequency helix TWT's

    NASA Astrophysics Data System (ADS)

    Sloley, H. J.; Willard, J.; Paatz, S. R.; Keat, M. J.

    The design and performance characteristics of a 34-GHz pulse tube capable of 75 W peak power output at 30 percent duty cycle and a broadband CW tube are presented. Particular attention is given to the engineering problems encountered during the development of the tubes, including the suppression of backward wave oscillation, the design of electron guns for small-diameter high-current beams, and the thermal capability of small helix structures. The discussion also covers the effects of various design parameters and choice of engineering materials on the ultimate practical limit of power and gain at the operating frequencies. Measurements are presented for advanced experimental tubes.

  7. Solar powered blackbody-pumped lasers

    NASA Astrophysics Data System (ADS)

    Christiansen, Walter H.; Sirota, J. M.

    1991-02-01

    A concept for a solar-powered laser is presented which utilizes an intermediate blackbody cavity to provide a uniform optical pumping environment for the lasant, typically CO or CO2 or possibly a solid state laser medium. High power cw blackbody- pumped lasers with efficiencies on the order of 20 percent or more are feasible. The physical basis of this idea is reviewed. Small scale experiments using a high temperature oven as the optical pump have been carried out with gas laser mixtures. Detailed calculations showing a potential efficiency of 35 percent for blackbody pumped Nd:YAG system are discussed.

  8. Difference-frequency mixing in AgGaS(2) by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm.

    PubMed

    Simon, U; Tittel, F K; Goldberg, L

    1993-11-15

    As much as 47 microW of cw infrared radiation and 89 microW of pulsed infrared radiation, tunable near 4.3 microm, have been generated by mixing the outputs of a high-power tapered semiconductor amplifier at 858 nm (signal wave) and a Ti:Al(2)O(3) laser at 715 nm (pump wave) in AgGaS(2). The GaAlAs tapered traveling-wave amplifier delivered as much as 1.5 W of diffraction-limited cw power into the nonlinear crystal. Output powers, conversion efficiencies, and spectral characteristics of this novel midinfrared source are discussed. PMID:19829451

  9. An investigation of the thermal cycling damage of 25 vol. pct SiCw/alumina ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Armstrong, William D.; Taya, Minoru

    1989-01-01

    An investigation was made of the thermal cycling damage of a 25 vol pct SiC whisker/alumina (SiCw/Al2O3) composite. Thermal cycling tests were conducted by subjecting a composite specimen to two different fluidized beds. After thermal cycling the composite specimens were subjected to elastic modulus and effective fracture toughness measurements. The thermal cycled specimens were investigated with SEM and TEM studies. It was found that this composite has a relatively high resistance to thermal cycling.

  10. Repetitive Q-switching of a CW Nd:YAG laser using Cr{sup 4+}:YAG saturable absorbers

    SciTech Connect

    Shimony, Y.; Burshtein, Z.; Ben-Amar Baranga, A.; Kalisky, Y.; Strauss, M.

    1996-02-01

    Repetitive Q-switching of a CW pumped Nd:YAG laser using a Cr{sup 4+}:YAG saturable absorber was achieved for the first time, providing pulses 80--300 ns wide (FWHM) with repetition rates ranging between 2 and 29 kHz. Different ranges of repetition rates and pulse widths are obtained by using absorbers of different optical densities. Satisfactory quantitative description of the experimental results is obtained by a full numerical solution of the system rate equations according to the theory of Powell and Wolga. These equations involve the dynamics of the laser population inversion, the absorber state population, and the photon density in the laser cavity.

  11. External-cavity-controlled 32-MHz narrow-band cw GaA1As-diode lasers.

    PubMed

    Voumard, C

    1977-08-01

    By coupling a cw GaA1As-diode laser to an external resonator with Fabry-Perot etalons as dispersive elements, emission was reduced to a single-axial mode of 32-MHz width. The wavelength could be coarsely tuned over a spectral range of over 10 nm. Fine tuning over about 500 MHz was achieved by varying the external cavity length by less than lambda/3. At single-axial-mode operation, the commonly observed high- and low-frequency self-pulsing of the light output was found to disappear almost completely. PMID:19680331

  12. CW Laser Annealing of Polycrystalline Silicon on SiO2 and Effects of Successive Furnace Annealing

    NASA Astrophysics Data System (ADS)

    Kugimiya, Koichi; Fuse, Genshu; Inoue, Kaoru

    1982-01-01

    CW Ar laser annealing was carried out to reduce the resistivity of polycrystalline silicon implanted with light doses of 1× 1012-5× 1014B+/cm2. Laser annealing, actually laser melting, and successive furnace annealing effectively reduced the resistivity to almost that of single crystal silicon. TEM, OM and stress observations revealed that the reduction was due primarily to the grain growth of polycrystalline silicon and secondarily to stress relief, from 9× 109 dyne/cm2 to 5× 109 dyne/cm2, caused by annealing. Grain growth of up to about 3× 100 μm and bamboo-joint-like growth were observed.

  13. Experimental study of the dynamics of a ruby laser pumped by a CW argon-ion laser

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Lin, W. P.; Lawandy, N. M.

    1989-01-01

    A study of the dynamics of a ruby laser pumped by a CW argon-ion laser is presented. The ruby laser is predominantly stable but has two accessible unstable states. One state exhibits chaotic output, while the other results in regular self-pulsing. The conditions needed for instability are discussed and homodyne spectra and temporal maps of the phase-space attractors are obtained. In addition, a numerical simulation of nonlinear beam propagation in ruby is presented that shows that strong deviations from plane-wave behavior exist, and that transverse effects must be incorporated into theoretical models of the instability.

  14. Enhancement of the stability of a synchronously excited cw dye laser by insertion of a nonlinear absorber

    SciTech Connect

    Gafurov, K.G.; Krindach, D.P.; Nekhaenko, V.A.; Yakovlev, A.G.

    1985-06-01

    An experimental investigation was made of combined mode locking of a cw laser utilizing a mixture of rhodamine 6G (amplifier) and malachite green (absorber). The action of a saturable absorber shortened the output pulses to 700 fsec, widened the range of existence of the short pulses, and appreciably increased the lasing stability compared with synchronous excitation of pure rhodamine 6G. These characteristics of the radiation of a laser with combined mode locking were associated with the saturation dynamics of the gain and the absorption.

  15. Intracavity laser spectroscopy with a semiconductor disk laser-pumped cw Cr{sup 2+} : ZnSe laser

    SciTech Connect

    Kozlovsky, V I; Korostelin, Yu V; Podmar'kov, Yu P; Skasyrsky, Ya K; Frolov, M P; Okhotnikov, O G; Akimov, V A

    2013-09-30

    Absorption spectra of the air have been measured near 2.31 μm using intracavity laser spectroscopy with a semiconductor disk laser-pumped cw Cr{sup 2+} : ZnSe laser. It is shown that, at lasing times of at least 3 ms, the sensitivity of the laser to intracavity absorption increases. This allows one to reach an effective path length of 900 km and enables detection of weak lines with absorption coefficients down to 1 × 10{sup -9} cm{sup -1}. (laser spectroscopy)

  16. Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems

    SciTech Connect

    R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

    2012-11-09

    Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

  17. High power input coupler development for BEPCII 500 MHz superconducting cavity

    NASA Astrophysics Data System (ADS)

    Huang, Tongming; Pan, Weimin; Ma, Qiang; Wang, Guangwei; Dai, Xuwen; Zhang, Zhanjun; Furuya, T.; Mitsunobu, S.

    2010-11-01

    A high power input coupler for a 500 MHz superconducting cavity (SCC) of the upgrade project of Beijing Electron Positron Collider (BEPCII) has been developed in China. Several prototypes have been fabricated and tested successfully. A maximum of 420 kW continuous wave (CW) RF power in traveling wave (TW) mode was achieved in the high power test. The detailed design, fabrication and test of the coupler are described in this paper.

  18. High-power pump combiners for Tm-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Stachowiak, D.; Kaczmarek, P.; Abramski, K. M.

    2015-12-01

    In this paper our results of investigation on a pump power combiner in a configuration of 7×1 are presented. The performed combiner, with pump power of 80-85% transmission level, was successfully applied in a thulium doped fibre laser. The performed all-fibre laser setup reached a total CW output power of 6.42 W, achieving the efficiency on a 32.1% level.

  19. High power 2 {mu}m diode-pumped Tm:YAG laser

    SciTech Connect

    Beach, R.J.; Sutton, S.B.; Honea, E.C.; Skidmore, J.A.; Emanuel, M.A.

    1996-01-01

    Using a scaleable diode end-pumping technology developed at LLNL, we have demonstrated a compact Tm:YAG laser capable of generating more than 50 W of cw 2 {mu}m laser output power. The design and operational characteristics of this laser, which was built originally for use in assessing laser surgical techniques, are discussed.

  20. High power 2 {micro}m wing-pumped Tm{sup 3+}:YAG laser

    SciTech Connect

    Beach, R.J.; Sutton, S.B.; Honea, E.C.; Skidmore, J.A.; Emanuel, M.A.

    1996-01-01

    Using a scalable diode end-pumping technology developed at Lawrence Livermore National Laboratory the authors have demonstrated a compact Tm{sup 3+}:YAG laser capable of generating greater than 50 W of cw 2 {micro}m laser output power. The design and operational characteristics of this laser will be discussed.

  1. Diode-pumped continuous-wave and femtosecond Cr:LiCAF lasers with high average power in the near infrared, visible and near ultraviolet.

    PubMed

    Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred

    2015-04-01

    We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated. PMID:25968727

  2. High power and high temperature continuous-wave operation of distributed Bragg reflector quantum cascade lasers

    SciTech Connect

    Xie, Feng Caneau, Catherine G.; LeBlanc, Herve P.; Ho, Ming-tsung; Wang, Jie; Chaparala, Satish; Hughes, Lawrence C.; Zah, Chung-en

    2014-02-17

    High temperature continuous-wave (CW) operation of a distributed Bragg reflector (DBR) quantum cascade laser is demonstrated up to a heat sink temperature of 80 °C. A CW output power of 2 W and a single mode operation with side mode suppression ratio of 30 dB around wavelength of 4.48 μm were achieved at 20 °C. The maximum pulsed and CW wall-plug-efficiencies reached 14.7% and 10.3% at 20 °C, respectively. A large tuning range of 5 cm{sup −1} between mode hopping was observed and attributed to the thermal cross-talk from the gain section to the DBR section.

  3. High power and high temperature continuous-wave operation of distributed Bragg reflector quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Xie, Feng; Caneau, Catherine G.; LeBlanc, Herve P.; Ho, Ming-tsung; Wang, Jie; Chaparala, Satish; Hughes, Lawrence C.; Zah, Chung-en

    2014-02-01

    High temperature continuous-wave (CW) operation of a distributed Bragg reflector (DBR) quantum cascade laser is demonstrated up to a heat sink temperature of 80 °C. A CW output power of 2 W and a single mode operation with side mode suppression ratio of 30 dB around wavelength of 4.48 μm were achieved at 20 °C. The maximum pulsed and CW wall-plug-efficiencies reached 14.7% and 10.3% at 20 °C, respectively. A large tuning range of 5 cm-1 between mode hopping was observed and attributed to the thermal cross-talk from the gain section to the DBR section.

  4. Effect of cw-CO2 laser surface treatment on structure and properties of AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Iwaszko, Józef; Strzelecka, Monika

    2016-06-01

    In the study, samples of AZ91 magnesium alloy were subjected to a surface remelting treatment by means of a continuous wave (cw) CO2 laser. The scope of the investigation included both macro- and microstructural examination, hardness measurements, and wear resistance tests. The investigation has shown that remelting treatment leads to a strong refinement of structure in the surface layer and a more even distribution of phases. Fine α-phase dendrites have been observed to dominate in the remelting zone. The dendritic arm spacing in the laser treated surface was in the range of 1-2.5 μm. The structural changes triggered by remelting have contributed to an increase in the hardness and the wear resistance of AZ91 alloy. The microhardness of the remelted zone has increased to 71-93 HV0.05 for single-strip remelting and to 84-107 HV0.05 for multi-strip remelting in comparison with about ~60 HV0.05 for untreated alloy. The friction coefficient has decreased from 0.375 for material w/o treatment to 0.311 for remelted material. SEM investigations of samples after tribological tests have revealed the presence of parallel grooves proving the occurrence of microploughing and micro cutting of the material during the tribological testing. The results of the conducted investigation have indicated a beneficial influence of the cw-CO2 laser remelting treatment on the structure and properties of AZ91 alloy.

  5. Pulsed vs. CW low level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome)

    NASA Astrophysics Data System (ADS)

    Barolet, Daniel

    2012-03-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: Calcinosis, Raynaud's phenomenon, Esophageal dysfunction, Sclerodactyly, and Telangiectasias. The transforming growth factor beta (TGF-β) has been identified has a major player in the pathogenic process, while low level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940nm using microsecond domain pulsing and continuous wave mode (CW) on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks, using a sequential pulsing mode on one elbow, and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, and health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Significant functional and morphologic improvements were observed after LLLT, with best results seen with the pulsing mode. No significant adverse effects were noted. Two mechanisms of action may be at play. The 940nm wavelength provides inside-out heating possibly vasodilating capillaries which in turn increases catabolic processes leading to a reduction of in situ calcinosis. LLLT may also improve symptoms by triggering a cascade of cellular reactions, including the modulation of inflammatory mediators.

  6. Locations of radical species in black pepper seeds investigated by CW EPR and 9 GHz EPR imaging

    NASA Astrophysics Data System (ADS)

    Nakagawa, Kouichi; Epel, Boris

    2014-10-01

    In this study, noninvasive 9 GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9 GHz EPR imaging capabilities. The 9 GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2 mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe3+, and Mn2+ complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1 h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9 GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds.

  7. Night-side DP-2 type fluctuations observed by the FM-CW Radar and MAGDAS stations

    NASA Astrophysics Data System (ADS)

    Ikeda, A.; Yumoto, K.; Uozumi, T.; Abe, S.; Shinohara, M.; Nozaki, K.; Yoshikawa, A.; Bychkov, V.; Shevtsov, B.; Sugon, Q.; McNamara, D.

    2010-12-01

    DP-2 type fluctuations caused by IMF southward/northward variations have important information about how the solar wind effects are transferred into the magnetosphere, ionosphere, and on the ground. Since dayside ground magnetic field variations are significantly enhanced during DP-2 events, dayside DP-2 fluctuations have been investigated for many years. However night-side DP-2 variations are not yet investigated sufficiently. In this study, we examined night-side magnetic and electric field variations when DP-2 was observed in dayside. Ground data from MAGDAS/CPMN (MAGnetic Data Acqisition System and Circum-pan Pacific Magnetometer Network) stations were analyzed. We also investigated the association of DP-2 with the ionospheric electric fields obtained by the FM-CW (Frequency Modulated Continuous Wave) radar at PTK (M.Lat. = 45.8 degree, M.Lon.= 221.6 degree) and solar wind parameters from the ACE satellite. The amplitudes of night-side DP-2 on 11 Oct., 2008 became greater with increasing of the latitude of 210 MM stations. While there were no Pi 2 pulsations, and signatures of substorms were not detected with the DP 2. At the time, westward electric field was observed by the FM-CW radar in the night-side sector simultaneously with the positive variation of night-side ground magnetic fields. Therefore the night-side DP-2 magnetic fluctuation is found not to be caused by the ionospheric currents.

  8. Comparative study of CW, nanosecond- and femtosecond-pulsed laser microcutting of AZ31 magnesium alloy stents.

    PubMed

    Gökhan Demir, Ali; Previtali, Barbara

    2014-06-01

    Magnesium alloys constitute an interesting solution for cardiovascular stents due to their biocompatibility and biodegradability in human body. Laser microcutting is the industrially accepted method for stent manufacturing. However, the laser-material interaction should be well investigated to control the quality characteristics of the microcutting process that concern the surface roughness, chemical composition, and microstructure of the final device. Despite the recent developments in industrial laser systems, a universal laser source that can be manipulated flexibly in terms of process parameters is far from reality. Therefore, comparative studies are required to demonstrate processing capabilities. In particular, the laser pulse duration is a key factor determining the processing regime. This work approaches the laser microcutting of AZ31 Mg alloy from the perspective of a comparative study to evaluate the machining capabilities in continuous wave (CW), ns- and fs-pulsed regimes. Three industrial grade machining systems were compared to reach a benchmark in machining quality, productivity, and ease of postprocessing. The results confirmed that moving toward the ultrashort pulse domain the machining quality increases, but the need for postprocessing remains. The real advantage of ultrashort pulsed machining was the ease in postprocessing and maintaining geometrical integrity of the stent mesh after chemical etching. Resultantly, the overall production cycle time was shortest for fs-pulsed laser system, despite the fact that CW laser system provided highest cutting speed. PMID:24985208

  9. Irradiation creep of SA 304L and CW 316 stainless steels: Mechanical behaviour and microstructural aspects. Part I: Experimental results

    NASA Astrophysics Data System (ADS)

    Garnier, J.; Bréchet, Y.; Delnondedieu, M.; Pokor, C.; Dubuisson, P.; Renault, A.; Averty, X.; Massoud, J. P.

    2011-06-01

    Solution annealed 304L (SA 304L) and cold work 316 (CW 316) austenitic stainless steel irradiation creep behaviour have been studied thoroughly. Irradiations were carried out in fast breeder reactors BOR-60 (at 330 °C, up to 120 dpa) and EBR-II (at 375 °C, up to 10.5 dpa), and in the OSIRIS mixed spectrum reactor (at 330 °C, up to 9.8 dpa). After an incubation threshold, the irradiation creep of the austenitic stainless steels is linear in stress and in dose. Creep appears to be athermal in this temperature range. A significant difference in the behaviour is measured between the creep of SA 304L and CW 316. In order to study the anisotropy of loop population, which would be the signature of a possible stress induced preferential absorption (SIPA) mechanism for irradiation creep, special attention was given to the measurement of anisotropy of loop distribution between the four families. The anisotropy induced by an applied stress has been shown to be in the range of the statistical scatter in the situation where no stress is applied. TEM microstructural analyses performed on this sample show slight difference between the microstructure of specimens deformed under irradiation and the microstructure of specimens irradiated without stress under the same irradiation conditions.

  10. The Deep Space Network's X/X/Ka Feed: Modifications for 100 kW CW Uplink Operation

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J.; Khayatian, Behrouz; Sosnowski, John B.

    2010-01-01

    The Deep Space Network, which provides communication services for NASA's robotic missions, consists of a number of 34m beam waveguide antennas and conventional 70m dual-reflector antennas located around the globe, [1]. The 34m beam waveguide antennas employ a three-band feed covering the deep space uplink band near 7.2 GHz, and downlink bands at 8.45 and 32 GHz. Simultaneous uplink commanding at 25 kW CW and ultra low noise reception in both bands is supported along with monopulse tracking at 32 GHz, [2]. An existing uplink capability of 25 kW is also available on the 70m antennas using a more conventional X/X diplexing feed. In order to provide an equivalent uplink capability with the 34m antennas the X/X/Ka feed is currently being modified for 100 kW CW operation, [3]. Here we will discuss both the existing feed and the 100 kW modifications which are underway.

  11. 980-nm, 15-W cw laser diodes on F-mount-type heat sinks

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Krokhin, O. N.; Oleshchenko, V. A.; Pevtsov, V. F.; Popov, Yu M.; Cheshev, E. A.

    2015-12-01

    We have studied the key optical emission parameters of laser diodes (emission wavelength, 980 nm; stripe contact width, 95 μm) mounted directly on F- and C-mount-type copper heat sinks, without intermediate elements (submounts). When effectively cooled by a thermoelectric microcooler, the lasers on the F-mount operated stably at output powers up to 20 W. The lasers were tested for reliable operation at an output power of 15 W for 100 h, and no decrease in output power was detected to within measurement accuracy. The experimentally determined maximum total efficiency is 71.7% and the efficiency at a nominal output power of 15 W is 61%. We compare parameters of the laser diodes mounted on C- and F-mounts and discuss the advantages of the F-mounts.

  12. Emission parameters and thermal management of single high-power 980-nm laser diodes

    SciTech Connect

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A; Pevtsov, V F; Popov, Yu M; Cheshev, E A

    2014-02-28

    We report emission parameters of high-power cw 980-nm laser diodes (LDs) with a stripe contact width of 100 μm. On copper heat sinks of the C-mount type, a reliable output power of 10 W is obtained at a pump current of 10 A. Using a heat flow model derived from analysis of calculated and measured overall efficiencies at pump currents up to 20 A, we examine the possibility of raising the reliable power limit of a modified high-power LD mounted on heat sinks of the F-mount type using submounts with optimised geometric parameters and high thermal conductivity. The possibility of increasing the maximum reliable cw output power to 20 W with the use of similar laser crystals is discussed. (lasers)

  13. High-power 1550 nm tapered DBR lasers fabricated using soft UV-nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Viheriälä, Jukka; Aho, Antti T.; Mäkelä, Jaakko; Salmi, Joel; Virtanen, Heikki; Leinonen, Tomi; Dumitrescu, Mihail; Guina, Mircea

    2016-03-01

    Paper reports the DBR-RWG surface grating design, the fabrication process, and the output characteristics of tapered DBR laser diodes for the applications, like for example LIDAR and range finding, that require eye-safe high-power single-mode coherent light sources. The fabricated regrowth-free DBR AlGaInAs/InP lasers exhibited a CW output power as high as 560 mW in single-mode operation at room temperature. At maximum output power the SMSR was 38 dB, proving the excellent behavior of the surface gratings. The tapered section enabled scaling the maximum CW power at room temperature from 125 mW to 560 mW, by increasing its length from 0.5 mm to 4.0 mm. The paper discusses the limitations and performance variation associated to the power scaling by using the tapered section length as a scaling parameter.

  14. Development of far infrared attenuation to measure electron densities in cw pin discharge lasers

    NASA Technical Reports Server (NTRS)

    Babcock, R. V.

    1977-01-01

    A two beam attenuation technique was devised to measure electron densities 10 to the 9th power to 10 to the 11th power cm/3 resolved to 1 cm, in a near atmospheric COFFEE laser discharge, using 496 micrometer and 1,220 micrometer radiations from CH3F, optically pumped by a CO2 laser. A far infrared generator was developed which was suitable except for a periodic intensity variation in FIR output deriving from frequency variation of the pump radiation.

  15. Highly efficient 2  μm CW and Q-switched Tm3+:Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670  nm.

    PubMed

    Antipov, Oleg; Novikov, Anton; Larin, Sergey; Obronov, Ivan

    2016-05-15

    Highly efficient laser oscillations at 2 μm were investigated in Tm:Lu2O3 ceramics in-band pumped at 1670 nm by a Raman-shifted erbium fiber laser. Both 23 W CW and 15 W active Q-switched oscillations with 40 ns pulse duration and 15-30 kHz repetition rate were achieved in a high-quality beam. The evolution of two generated waves at 1966 and 2064 nm in dependence on pump power was studied. PMID:27176987

  16. Explosive boiling of Ge{sub 35}Sb{sub 10}S{sub 55} glass induced by a CW laser

    SciTech Connect

    Knotek, P.; Tichy, L.

    2013-09-01

    Graphical abstract: - Highlights: • Interaction of the CW 785 nm laser with chalcogenide GeSbS glass. • First demonstration of the explosive boiling induced by CW laser in glass. • Different processes as photo-induced oxidation, expansion, and viscosity-flow observed. • Applied diagnostics SEM, DHM, AFM, force spectroscopy, and micro-Raman spectroscopy. • Damage threshold determined at 1.2 × 10{sup 24}s{sup −1} cm{sup −3} of absorbed photons. - Abstract: The response of bulk Ge{sub 35}Sb{sub 10}S{sub 55} glass to illumination by a continuous wave (CW) laser, sub-band-gap photons, was studied specifically with an atomic force microscopy including a force spectroscopy, with a digital holographic microscopy and with a scanning electron microscopy. Depending on the number of photons absorbed, photo-expansion, photo-oxidation and explosive boiling were observed.

  17. HLA-B51 and haplotypic diversity of B-Cw associations: implications for matching in unrelated hematopoietic stem cell transplantation.

    PubMed

    Bettens, F; Nicoloso de Faveri, G; Tiercy, J-M

    2009-04-01

    In unrelated hematopoietic stem cell transplantation (HSCT), human leukocyte antigen (HLA)-C locus incompatibilities occur frequently and are associated with increased risk of posttransplant complications. Because HLA-B51 is associated with a high rate of Cw disparities, we performed a comprehensive four-digit typing analysis of 140 ABCDRB1 B51 genotypes proven by pedigree analysis and 311 unrelated donors selected for 75 B51-positive patients. In addition, 145 A1/Ax-B8/B51-DR3/DRx donors were HLA typed at a high-resolution level and tested for three microsatellite (Msat) polymorphisms located in the HLA class I and III regions. Based on these data sets, 182 different ABCDR haplotypes with 14 different B-Cw associations were detected. Rates of Cw mismatches were shown to be highly correlated with the ABDRB1 haplotypes. We have computed 21 B51 haplotypes that disclose a high probability of HLA-C allele matching and 30 haplotypes with a low (<25%) probability. The HLA-C allele frequency profiles were quite different in these two groups, with a more heterogeneous distribution in the low matching probability group. HLA-Cw*1502 was inversely correlated with the likelihood to identify a Cw-mismatched donor: it was present in 61% of the high vs 18% of the low probability group (P < 0.0001). The analysis of three Msats in the class I and III regions showed a higher allelic diversity in B51-positive haplotypes compared with the conserved A1-B8-DR3 haplotype. HLA-B51 haplotypes therefore exhibit a high diversity at the level of B-Cw associations and of non-HLA polymorphisms in the class I and III regions. Such heterogeneity negatively impacts on overall matching in HSCT. PMID:19317740

  18. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    NASA Technical Reports Server (NTRS)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  19. Detection of some stable species during the oxidation of methane by coupling a jet-stirred reactor (JSR) to cw-CRDS

    PubMed Central

    Bahrini, Chiheb; Herbinet, Olivier; Glaude, Pierre-Alexandre; Schoemaecker, Coralie; Fittschen, Christa; Battin-Leclerc, Frédérique

    2013-01-01

    We present the coupling of a jet-stirred reactor to detection by cw-CRDS in the near infrared and first results obtained during the oxidation of methane. The mixture is rapidly expanded from the jet-stirred reactor into a 80 cm-long cw-CRDS cell maintained at a the pressure around 1.33 kPa, thus freezing the reaction and decreasing pressure broadening of the absorption lines. Some stable species (CH4, H2O and CH2O) have been quantified through their well structured spectra around 1506 nm, while H2O2 and HO2 radicals could not be detected. PMID:23710075

  20. Detection of some stable species during the oxidation of methane by coupling a jet-stirred reactor (JSR) to cw-CRDS

    NASA Astrophysics Data System (ADS)

    Bahrini, Chiheb; Herbinet, Olivier; Glaude, Pierre-Alexandre; Schoemaecker, Coralie; Fittschen, Christa; Battin-Leclerc, Frédérique

    2012-05-01

    We present the coupling of a jet-stirred reactor to detection by cw-CRDS in the near infrared and first results obtained during the oxidation of methane. The mixture is rapidly expanded from the jet-stirred reactor into a 80 cm-long cw-CRDS cell maintained at a the pressure around 1.33 kPa, thus freezing the reaction and decreasing pressure broadening of the absorption lines. Some stable species (CH4, H2O and CH2O) have been quantified through their well structured spectra around 1506 nm, while H2O2 and HO2 radicals could not be detected.

  1. Detection of some stable species during the oxidation of methane by coupling a jet-stirred reactor (JSR) to cw-CRDS.

    PubMed

    Bahrini, Chiheb; Herbinet, Olivier; Glaude, Pierre-Alexandre; Schoemaecker, Coralie; Fittschen, Christa; Battin-Leclerc, Frédérique

    2012-05-01

    We present the coupling of a jet-stirred reactor to detection by cw-CRDS in the near infrared and first results obtained during the oxidation of methane. The mixture is rapidly expanded from the jet-stirred reactor into a 80 cm-long cw-CRDS cell maintained at a the pressure around 1.33 kPa, thus freezing the reaction and decreasing pressure broadening of the absorption lines. Some stable species (CH4, H2O and CH2O) have been quantified through their well structured spectra around 1506 nm, while H2O2 and HO2 radicals could not be detected. PMID:23710075

  2. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  3. Food foraging of honey bees in a microwave field (2. 45 GHz CW)

    SciTech Connect

    Gary, N.E.; Westerdahl, B.B.

    1982-02-15

    Honey bees were trained to fly 400 m from their colony to an indoor laboratory foraging arena exposed to 2.45 GHz continuous wave microwaves at 5 power densities (0, 5, 10, 20, and 40 mW/cm/sup 2/). Foraging behavior did not differ from controls foraging within an unexposed sham arena in (1) number of round trips completed during a 3-h exposure session, (2) round trip time between the colony and the foraging arena, and (3) the length of time required to navigate the illuminated foraging arena. This study indicates that honey bees would not be adversely affected by foraging within a similar microwave field that would exist in future receiving antennae for the proposed solar power satellite energy transmission system in which power levels are expected to range from 23 mW/cm/sup 2/ at the antenna center to 1 mW/cm/sup 2/ at the edge.

  4. Investigation of RF excited CW CO2 waveguide lasers local oscillator - RF excitation

    NASA Technical Reports Server (NTRS)

    Hochuli, U.

    1988-01-01

    A new local oscillator housing was built which seems to have improved laser life. Laser cooling was changed from internal water cooling to the more convenient thermal contact cooling. At the present time, a conclusion can not be made if the 20 percent reduction in power output is the result of poorer cooling or poorer grating alignment. The coupling-starting network was improved from 55 to about 90 percent. It can be adjusted by varying trimmers C sub 1 and C sub 2 to match RF power levels between 10 and 30 W. If the laser admittance changes greatly with laser life rematching will have to be achieved by remote control for space applications. The same holds true if the RF power level has to be changed with a maximum efficiency constraint.

  5. High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95-2.45 μm wavelength range

    NASA Astrophysics Data System (ADS)

    Vizbaras, K.; Dvinelis, E.; ŠimonytÄ--, I.; TrinkÅ«nas, A.; Greibus, M.; Songaila, R.; Žukauskas, T.; Kaušylas, M.; Vizbaras, A.

    2015-07-01

    We present high-power single-spatial mode electrically pumped GaSb-based superluminescent diodes (SLDs) operating in the 1.95 to 2.45 μm wavelength range in continuous-wave (CW). MBE grown GaSb-based heterostructures were fabricated into single-angled facet ridge-waveguide devices that demonstrate more than 40 mW CW output power at 2.05 μm, to >5 mW at 2.40 μm at room-temperature. We integrated these SLDs into an external cavity (Littrow configuration) as gain chips and achieved single-mode CW lasing with maximum output powers exceeding 18 mW. An extremely wide tuning range of 120 nm per chip with side-mode-suppression-ratios >25 dB was demonstrated while maintaining optical output power level above 3 mW across the entire tuning range.

  6. Beam-wave interaction analysis of a 42 GHz, 200 kW CW gyrotron

    SciTech Connect

    Ashutosh; Singh, Rupendra; Jain, P.K. E-mail: rupendrasingh04@gmail.com

    2011-07-01

    In this paper, the self-consistent large-signal formulation is used to study the beam-wave interaction mechanism in a gyrotron oscillator. The nonlinear interaction has been computed by solving the set of self-consistent nonlinear equations along the interaction length using numerical method. Consequently, the computation of energy, phase, output power, and efficiency of a gyrotron is made. The computed results were found to be matching with the published results. A 42 GHz, 200 kW output power gyrotron operating in TE{sub 03} mode is analysed using this analysis and results found meeting desired specifications. (author)

  7. High power solid state rf amplifier for proton accelerator

    SciTech Connect

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P. R.

    2008-01-15

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  8. Self-adjusting anode power supply for a gyrotron

    SciTech Connect

    Brand, G.F.; Fekete, P.W.; Hong, K. ); Idehara, T.; Tatsukawa, T. )

    1991-02-01

    Sydney University's tunable cw gyrotrons use a simplified power supply arrangement to provide the voltages on the gun electrodes. The cathode supply is conventional, but the anode voltage is provided by a single high-value resistor connected between the anode and ground. A small fraction of the electrons in the beam are reflected and the anode automatically finds an optimum operating potential. This arrangement is shown to have lower starting currents. Two advantages follow. It becomes easier to operate low-power gyrotrons with modest power supplies and it becomes easier to achieve higher frequencies by exciting harmonics of the electron cyclotron frequency.

  9. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.

  10. Simple digital system for tuning and long-term frequency stabilization of a CW Ti:Sapphire laser

    NASA Astrophysics Data System (ADS)

    Beterov, Ilya I.; Markovski, Asparuh G.; Kobtsev, Sergey M.; Yakshina, Elena A.; Entin, Vasily M.; Tretyakov, Denis B.; Baraulya, Vladimir I.; Ryabtsev, Igor I.

    2015-03-01

    We have implemented a simple digital system for long-term frequency stabilization and locking to an arbitrary wavelength of the single-frequency ring CW Ti:Sapphire laser. This system is built using two confocal Fabry-Pérot cavities, one of which is used to narrow the short-term linewidth of the laser and the other to improve the long-term stability of the laser frequency. The length of the second cavity is stabilized using the radiation from an external-cavity diode laser locked to an atomic transition. Our system is an improvement of a commercial Tekhnoscan laser lock. This system has been successfully used in our experiments on high-resolution laser spectroscopy of ultracold rubidium Rydberg atoms.

  11. A Family of L-band SRF Cavities for High Power Proton Driver Applications

    SciTech Connect

    Robert Rimmer, Frank Marhauser

    2009-05-01

    Recent global interest in high duty factor or CW superconducting linacs with high average beam power highlights the need for robust and reliable SRF structures capable of delivering high average RF power to the beam with moderate HOM damping, low interception of halo and good efficiency. Potential applications include proton or H- drivers for spallation neutron sources, neutrino physics, waste transmutation, subcritical reactors, and high-intensity high-energy physics experiments. We describe a family of SRF cavities with a range of Betas capable of transporting beam currents in excess of 10 mA CW with large irises for minimal interception of halo and HOM and power couplers capable of supporting high average power operation. Goals include an efficient cell shape, high packing factor for efficient real-estate gradient and strong HOM damping to ensure stable beam operation,

  12. Development of a high power 12GHz PPM focused traveling wave tube

    NASA Technical Reports Server (NTRS)

    Lewis, R.

    1975-01-01

    An analytical and experimental program to demonstrate the technical feasibility of a high efficiency coupled cavity traveling wave tube with periodic permanent magnetic focusing operating at 12.06 GHz, with 1 to 2 kilowatts CW power is described. Such a tube would ultimately be used for broadcasting power transmission from a satellite. The electron gun was designed to be demountable with a replaceable cathode, and the tube to be operable in a bakeable vacuum chamber with its collector replaced by a collector. Therefore, the high efficiency design was concerned with the slow wave structure only, utilizing velocity resynchronization. A special adapter was designed which incorporated an electromagnet refocusing section and a collector baseplate to facilitate testing the collector. CW output power of 1000 watts yielding 21.5% electronic efficiency was demonstrated, with a minimum output power of 525 watts across the specified 160 MHz bandwidth.

  13. Feasibility study and optimization of image tasking in the context of the European Union CAP CwRS

    NASA Astrophysics Data System (ADS)

    Vajsova, Blanka; Åstrand, Pär. Johan; Oddone, Axel; Ellis, George

    2012-09-01

    CwRS (Control with Remote Sensing) is a control method foreseen by the CAP (Common Agricultural Policy) of the European Union (EU) which is used to check if agriculture area-based subsidies are correctly granted to EU farmers. A series of Very High Resolution (VHR) and High Resolution (HR) satellite sensors participate in the acquisition program. Imagery is collected in specific multi-temporal, short time-windows and used for parcel area determination, for crop identification and for control of Good Agricultural and Environmental Conditions (GAECs). In the 2003 Campaign 37 VHR zones with an overall area of 12.500 km2 were checked with the CwRS technique; in the 2011 Campaign 426 VHR control zones were acquired covering an overall area of 242.000 km2, with a total expenditure of 7.1 M euro. This is an enormous increase due to the success of the methodology which needs pointing out. Of interest is also the increasing requirements put on the imagery quality (higher elevation angle, better resolution and better radiometry.). One of the crucial features requested by EU Member States (MS) is window length, for VHR this is usually quite short (6-8 weeks). A feasibility analysis for all zones is therefore done before each VHR Campaign starts to ensure a maximal statistical success rate. This paper describes the complexity of the technical and competitive feasibility assessment taking into account parameters such as satellite characteristics (revisit capacity, number of passes), zone size, shape and latitude; elevation angle, acquisition window length, programming priority level, weather forecast and competitive conflicting tasking. To increase the efficiency of the image acquisition a real local tasking with the use of a Direct Access Facility (DAF) can be compared to a tasking performed through an Imaging and Processing Facility (IPF). Both approaches allow the integration of last minute information into the collection plan and yield for instance better chances of

  14. Contrast enhancement and phase conjugation low-power optical signal in dynamic recording material based on bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Dukova, Tatjana V.; Vsevolodov, Nicolai N.

    1994-02-01

    Polymer films with fragments of the purple membranes containing protein bacteriorhodopsin (BR) have been used for the real-time optical information processing of low-power (several milliwatt) cw gas laser signals. The nonlinear recording media with BR have a potential in microscopic techniques for in-vivo diagnosis of the crystalline lens.

  15. Tapered lasers emitting at 650 nm with 1 W output power with nearly diffraction-limited beam quality.

    PubMed

    Adamiec, Pawel; Sumpf, Bernd; Rüdiger, Ingo; Fricke, Jörg; Hasler, Karl-Heinz; Ressel, Peter; Wenzel, Hans; Zorn, Martin; Erbert, Götz; Tränkle, Günther

    2009-08-15

    High-brightness tapered lasers emitting around 650 nm were developed. Devices 2 mm long with a200-microm-long straight section, 1800-microm-long tapered section, and 4 degrees taper angle reached 1 W output power in CW operation with a nearly diffraction-limited beam quality. PMID:19684814

  16. High-power fibre Raman lasers emitting in the 1.22-1.34-{mu}m range

    SciTech Connect

    Kurkov, Andrei S; Dianov, Evgenii M; Paramonov, Vladimir M; Medvedkov, O I; Vasil'ev, Sergei A; Bubnov, M M; Egorova, O N; Semenov, S L; Pershina, E V; Gur'yanov, A N; Laptev, A Yu; Khopin, V F; Umnikov, A A; Vechkanov, N I

    2000-09-30

    A set of diode-pumped fibre lasers producing a cw output of 4-7.5 W in the range from 1.05 to 1.15-{mu}m is realised on the basis of an ytterbium double-cladded fibre. The output of the ytterbium fibre laser was used to pump a Raman phosphor-silicate fibre converter, resulting in fibre lasers producing a cw output power of more than 3 W at 1.26 and 1.3-{mu}m. (lasers)

  17. The 250-kW CW klystron amplifier for planetary radar

    NASA Technical Reports Server (NTRS)

    Cormier, R.; Mizuhara, A.

    1992-01-01

    The design, construction, and performance testing is described of two Varian klystrons, model VKX-7864A, which replaced the aging and less efficient VA-949J klystrons in the X band planetary radar transmitter on the Goldstone, CA, 70 meter antenna. The project was carried out jointly by the JPL and Varian Assoc. Output power was increased from 200 to 250 kW continuous wave per klystron, and full dc beam power is dissipated in the collector (it was not possible to operate the VA-949J klystrons without RF drive because of limited collector dissipation capability). Replacements were made with a minimum of transmitter modifications. The planetary radar transmitter is now operating successfully with these two klystrons.

  18. A tunable corner-pumped Nd:YAG/YAG composite slab CW laser

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Gong, Ma-Li

    2012-10-01

    A corner-pumped Nd:YAG/YAG composite slab continuous-wave laser operating at 1064 nm, 1074 nm, 1112 nm, 1116 nm, and 1123 nm simultaneously and a laser that is tunable at these wavelengths are reported for the first time. The maximum output power of the five-wavelength laser is 5.66 W with an optical-to-optical conversion efficiency of 11.3%. After a birefringent filter is inserted in the cavity, the five wavelengths can be separated successfully by rotating the filter. The maximum output powers of the 1064 nm, 1074 nm, 1112 nm, 1116 nm, and 1123 nm lasers are 1.51 W, 1.3 W, 1.27 W, 0.86 W, and 0.72 W, respectively.

  19. 1 GeV CW nonscaling FFAG for ADS, and magnet parameters

    SciTech Connect

    Johnstone C.; Meot, F.; Snopok, P.; Weng, W.

    2012-05-20

    Multi-MW proton driver capability remains a challenging, critical technology for many core HEP programs, particularly the neutrino ones such as the Muon Collider and Neutrino factory, and for high-profile energy applications such as Accelerator Driven Subcritical Reactors (ADS) and Accelerator Transmutation of Waste for nuclear power and waste management. Work is focused almost exclusively on an SRF linac, as, to date, no re-circulating accelerator can attain the 10-20 MW capability necessary for the nuclear applications. Recently, the concept of isochronous orbits has been explored and developed for nonscaling FFAGs using powerful new methodologies in FFAG accelerator design. Work is progressing on a stable, high-intensity, 1 GeV isochronous FFAG. Initial specifications of novel magnets with the nonlinear radial fields required to support isochronous operation are also reported here.

  20. Achieving λ/10 Resolution CW STED Nanoscopy with a Ti:Sapphire Oscillator

    PubMed Central

    Liu, Yujia; Ding, Yichen; Alonas, Eric; Zhao, Wenli; Santangelo, Philip J.; Jin, Dayong; Piper, James A.; Teng, Junlin; Ren, Qiushi; Xi, Peng

    2012-01-01

    In this report, a Ti:Sapphire oscillator was utilized to realize synchronization-free stimulated emission depletion (STED) microscopy. With pump power of 4.6 W and sample irradiance of 310 mW, we achieved super-resolution as high as 71 nm. With synchronization-free STED, we imaged 200 nm nanospheres as well as all three cytoskeletal elements (microtubules, intermediate filaments, and actin filaments), clearly demonstrating the resolving power of synchronization-free STED over conventional diffraction limited imaging. It also allowed us to discover that, Dylight 650, exhibits improved performance over ATTO647N, a fluorophore frequently used in STED. Furthermore, we applied synchronization-free STED to image fluorescently-labeled intracellular viral RNA granules, which otherwise cannot be differentiated by confocal microscopy. Thanks to the widely available Ti:Sapphire oscillators in multiphoton imaging system, this work suggests easier access to setup super-resolution microscope via the synchronization-free STED. PMID:22761944