Science.gov

Sample records for 153sm important radionuclides

  1. Dosimetric evaluation of 153Sm-EDTMP, 177Lu-EDTMP and 166Ho-EDTMP for systemic radiation therapy: Influence of type and energy of radiation and half-life of radionuclides

    NASA Astrophysics Data System (ADS)

    Ranjbar, Hassan; Ghannadi-Maragheh, Mohammad; Bahrami-Samani, Ali; Beiki, Davood

    2015-03-01

    In radiopharmaceutical therapy, delivered doses to critical organs must be below a certain threshold therefore internal radiation dosimetry of radiopharmaceuticals is essential. Advantages and disadvantages of radionuclides with different characteristics were evaluated for selection of appropriate radionuclide. The Monte Carlo MCNPX simulation program was used to obtain radial dose and cumulative dose of 153Sm, 177Lu and 166Ho used in radiotherapy of bone metastases. A cylindrical geometry with constant density materials was supposed for simulation of femur bone. The radius of bone marrow, bone, and surrounding soft tissue was considered 0.6 cm, 1.3 cm and 4 cm, respectively. It was assumed that the radionuclides were uniformly distributed throughout the tumor. "continuous energy spectrum" of beta particle was used instead of mean beta energy. Our simulations show that absorbed dose in target organ (bone) is greater than other organs and 166Ho gives a higher dose to the critical organ of bone marrow than either 153Sm or 177Lu. Absorbed dose versus time demonstrate faster dose delivery for the short half-life radionuclides (153Sm and 166Ho). These results are in good agreement with clinical observations which show a pain relief within 1 week after intravenous administration of 153Sm-EDTMP, whereas it occurs within 2 week in the case of 177Lu-EDTMP. According to the results, combination of different radionuclides with different characteristics such as 153Sm-EDTMP and 177Lu-EDTMP could be more advantageous to patients with painful bone metastasis.

  2. [Radioprotection and environmental pollution by the use of the radionuclides 89Sr, 186Re, and 153Sm for pain palliation in metastatic bone diseases. Related calculations].

    PubMed

    Sbonias, Evangelos

    2005-01-01

    Due to the fact that the existing commercial analgesic drugs are not able to reduce effectively the pain caused by the metastatic bone disease, the use of radiopharmaceuticals with avidity to selectively localize in the metastatic skeletal sites, such as strondium-89 chloride (89Sr-Cl2), rhenium-186-hydroxy ethylene diphosphonate (186Re-HEDP), and samarium-153-ethylene diamine tetramethylene (153Sm-EDTMP), is widely accepted. However this medical application may be dangerous for the occupied personnel and more for general public, if radioactive waste is not properly disposed. In the following article we try to estimate the degree and the significance of that risk. For that reason we discuss the physical properties of these radionuclides and their distribution in the body of the patient. We conclude that 89Sr is not harmful for the physician, the attending personnel or those who live with the patient, because it radiates beta-radiation, while its gamma-radiation is negligeable. The radionuclides 186Re and 153Sm besides beta-radiation, also emit a perceptible amount of gamma-radiation. It has been shown that the exposure to gamma-radiation from these radionuclides of the physician, the attending personnel or those who live with the patient is very low as compared to the internationally accepted radioprotection limits. However the environmental contamination per treatment by either of these three radionuclides is not negligeable in comparison to the national and international accepted limits. Patients that are not in good clinical condition may pose an additional contamination danger to those attending them. For limiting radiocontamination, the annual number of treatments by the above three previous radionuclides, should be considered according to the ALARA principle in relation with the correct handling of these patients, and also considering the fundamentals of radioprotection. PMID:16142246

  3. Radionuclide Treatment with 153Sm-EDTMP is Effective for the Palliation of Bone Pain in the Context of Extensive Bone Marrow Metastases: A Case Report

    PubMed Central

    Kairemo, Kalevi; Rasulova, Nigora; Suslaviciute, Justina; Alanko, Tuomo

    2014-01-01

    Radionuclide therapy is widely used as an effective modality in the management of bone pain. The main indication for this treatment is symptomatic bone metastases, confirmed by bone scintigraphy. We present a case of small cell lung cancer (SCLC) stage T4N2M1b, with a good metabolic response to systemic therapy and radiotherapy of the primary tumor and locoregional disease, which became metabolically less active and remarkably smaller in size (reduction to 1/6 of the original volume). In spite of the good overall response, the patient developed a syndrome with severe bone pain and had progression in the bone marrow metastases, confirmed by 18F-FDG PET/CT. The patient received 153Sm-EDTMP treatment with a good clinical response. However, in the whole body bone scan with the therapeutic dose, there was no visual evidence of bone metastasis. Retrospectively, by drawing the region of interest, it was possible to identify one metastatic site. The possible mechanisms of the efficacy of this treatment modality, in this specific setting, are also discussed. PMID:27408870

  4. Monte Carlo characterization of biocompatible beta-emitting 90Y glass seed incorporated with the radionuclide 153Sm as a SPECT marker for brachytherapy applications.

    PubMed

    Hadadi, Asghar; Sadeghi, Mahdi; Sardari, Dariush; Khanchi, Alireza; Shirazi, Alireza

    2013-01-01

    A glass seed consisting of the β--emitting radionuclide 90Y incorporated with radionuclide 153Sm as SPECT marker is proposed for potential application in brachytherapy in order to reduce the undesirable dose to healthy adjacent organs. The aim of this work is to determine the dosimetric characteristics, as suggested in the AAPM TG-60/TG-149 reports, for this seed using Monte Carlo simulation. Monte Carlo codes MCNP5, EGSnrc, and FLUKA were used to calculate the absorbed dose distribution around the seed. Dosimetric parameters, such as reference absorbed dose rate, radial dose function, and one-dimensional (1D) and two-dimensional (2D) anisotropy functions, were obtained. The computational results from these three codes are in agreement within 5.4% difference on average. The absorbed dose rate at the reference point was estimated to be 5.01 cGy h-1 μCi-1 and self absorption of YAS glass seed amounted to 30.51%. The results showed that, with thermal neutron bombardment of 5 hours in a typical flux, sufficient activity for applications in brachytherapy may be achieved. With a 5 mCi initial activity, the total dose of a YAS glass seed was estimated to be 1.38 Gy at 1.0 cm from the seed center. Comparing with gamma emitting seeds, the 90Y seed could reduce undesirable doses to adjacent organs, because of the rapid dose falloff of beta ray. Because of the high R90 value of 5.5 mm, fewer number of 90Y seeds will be required for an interstitial brachytherapy treatment using permanent implant, in comparison with other beta-emitting seeds. The results would be helpful in the development of the radioactive implants using 90Y glass seeds for the brachytherapy treatment. PMID:24036862

  5. Precision electron-gamma spectroscopic data from the beta decay of 153Sm

    NASA Astrophysics Data System (ADS)

    Deepa, S.; Rani Rao, Dwaraka; Venkataramaniah, K.

    2016-02-01

    The decay of 153Sm was studied with a HPGe detector and a Si(Li) detector based electron transporter. Forty four gamma transitions belonging to sixteen excited levels in the daughter nucleus 153Eu were analyzed for their energies, emission intensities, conversion electron intensities and conversion coefficients. These values have resulted in the determination of precise beta emission intensities to the levels in 153Eu and in the construction of an internally consistent decay scheme. The present study will add to the decay data available on this radionuclide for reliable dose estimations for medical applications.

  6. Monte Carlo calculated TG-60 dosimetry parameters for the {beta}{sup -} emitter {sup 153}Sm brachytherapy source

    SciTech Connect

    Sadeghi, Mahdi; Taghdiri, Fatemeh; Hamed Hosseini, S.; Tenreiro, Claudio

    2010-10-15

    Purpose: The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for {beta} sources. Radioactive biocompatible and biodegradable {sup 153}Sm glass seed without encapsulation is a {beta}{sup -} emitter radionuclide with a short half-life and delivers a high dose rate to the tumor in the millimeter range. This study presents the results of Monte Carlo calculations of the dosimetric parameters for the {sup 153}Sm brachytherapy source. Methods: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate two-dimensional dose distributions around the source. The dosimetric parameters of AAPM TG-60 recommendations including the reference dose rate, the radial dose function, the anisotropy function, and the one-dimensional anisotropy function were obtained. Results: The dose rate value at the reference point was estimated to be 9.21{+-}0.6 cGy h{sup -1} {mu}Ci{sup -1}. Due to the low energy beta emitted from {sup 153}Sm sources, the dose fall-off profile is sharper than the other beta emitter sources. The calculated dosimetric parameters in this study are compared to several beta and photon emitting seeds. Conclusions: The results show the advantage of the {sup 153}Sm source in comparison with the other sources because of the rapid dose fall-off of beta ray and high dose rate at the short distances of the seed. The results would be helpful in the development of the radioactive implants using {sup 153}Sm seeds for the brachytherapy treatment.

  7. Organ doses from hepatic radioembolization with 90Y, 153Sm, 166Ho and 177Lu: A Monte Carlo simulation study using Geant4

    NASA Astrophysics Data System (ADS)

    Hashikin, N. A. A.; Yeong, C. H.; Guatelli, S.; Abdullah, B. J. J.; Ng, K. H.; Malaroda, A.; Rosenfeld, A. B.; Perkins, A. C.

    2016-03-01

    90Y-radioembolization is a palliative treatment for liver cancer. 90Y decays via beta emission, making imaging difficult due to absence of gamma radiation. Since post-procedure imaging is crucial, several theranostic radionuclides have been explored as alternatives. However, exposures to gamma radiation throughout the treatment caused concern for the organs near the liver. Geant4 Monte Carlo simulation using MIRD Pamphlet 5 reference phantom was carried out. A spherical tumour with 4.3cm radius was modelled within the liver. 1.82GBq of 90Y sources were isotropically distributed within the tumour, with no extrahepatic shunting. The simulation was repeated with 153Sm, 166Ho and 177Lu. The estimated tumour doses for all radionuclides were 262.9Gy. Tumour dose equivalent to 1.82GBq 90Y can be achieved with 8.32, 5.83, and 4.44GBq for 153Sm, 166Ho and 177Lu, respectively. Normal liver doses by the other radionuclides were lower than 90Y, hence beneficial for normal tissue sparing. The organ doses from 153Sm and 177Lu were relatively higher due to higher gamma energy, but were still well below 1Gy. 166Ho, 177Lu and 153Sm offer useful gamma emission for post-procedure imaging. They show potential as 90Y substitutes, delivering comparable tumour doses, lower normal liver doses and other organs doses far below the tolerance limit.

  8. 142-Sm - a suitable positron emitter for uptake monitoring in 153-Sm EDTMP therapy

    SciTech Connect

    Beyer, G.J.; Donath, A.; Morel, C.

    1996-05-01

    The positron emitting isotopes {sup 86}Y and 83Sr are favoured candidates for monitoring the individual nuclide uptake in bone metastases with PET when {sup 90}Y or {sup 89}Sr are used in the therapy. It therefore seemed to be logical to propose the short-lived positron emitter {sup 142}Sm to perform the in vivo dosimetry in case cf {sup 153}Sm EDTMP therapy. {sup 142}Sm (72 min, 50 % positron branching) forms the 40 sec {sup 142}Pm with 95% positron decay rate. Three aspects will be discussed in the paper: the production of several GBq of the {sup 142}Sm in the required high quality, systematic studies of the biokinetic behaviour of radio-lanthanides with EDTMP as ligand and first dynamic PET studies using rabbits as animal model. Spallation reaction of 1 GeV protons interacting with a 100/g/cm{sup 2} Ta target in combination with an on line isotope separation process was used for the production of the radionuclides. The on line isotope separator facility ISOLDE at CERN provides excellent possibilities to produce {sup 142}Sm in multi GBq quantities, isotopically clean and carrier free. All other radio-lanthanides used in the study were produced at the ISOLDE facility as well. Using a number of long-lived radio-lanthanides we studied systematically the biokinetics of the lanthanides at different EDTMP concentrations and established clear relationships between biokinetics, EDTMP concentration and the ionic radius of the radioisotope used.

  9. Development of (153) Sm-folate-polyethyleneimine-conjugated chitosan nanoparticles for targeted therapy.

    PubMed

    Mollarazi, Esmail; Jalilian, Amir R; Johari-Daha, Fariba; Atyabi, Fatemeh

    2015-06-30

    The aim of this study was to develop biocompatible, water-soluble (153) Sm-labeled chitosan nanoparticles (NPs) containing folate and polyethyleneimine functionalities i.e. chitosan-graft-PEI-folate (CHI-DTPA-g-PEI-FA), suitable for targeted therapy. The physicochemical properties of the obtained NPs were characterized by dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy for surface morphology; and (1) H-NMR, FT-IR analyses for molecular dispersity of folate in the NPs. NPs were spherical with mean diameter below 250 nm, polydispersity of below 0.15, and positive zeta potential values. The NP complex ((153) Sm-CHI-DTPA-g-PEI-FA) was stable at 25 °C (6-8 h, >90% radiochemical purity, instant thin layer chromatography (ITLC)). Binding studies using fluorescent NPs for internalization also demonstrated significant uptake in MCF-7 cells. MCF-7 cell internalization was significantly greater for 4T1. In blocking studies, both MCF-7 and 4T1 cell lines demonstrated specific folate receptor (FR) binding (decreasing 45%). In vivo biodistribution studies indicated major excretion of NPs metabolites and/or free (153) Sm through the kidneys. The preliminary imaging studies in 4T1 tumor-bearing mice showed minor uptake up to 96 h. The present folic acid that functionalized chitosan NP is a candidate material for folate receptor therapy. PMID:26036233

  10. Using the 154 Sm(p,d) reaction to extend the level scheme of 153 Sm to the continuum region

    NASA Astrophysics Data System (ADS)

    Wilson, Emma; Beausang, Cornelius; Humby, Peter; Simon, Anna; Ross, Timothy; Hughes, Richard; Burke, James; Casperson, Robert; Koglin, Johnathon; Ota, Shuya; Allmond, James; McCleskey, Matthew; McCleskey, Ellen; Saastamoinen, Antti; Chyzh, Roman; Gell, Kristen; Tarlow, Tom; Vyas, Gargi; Starlite Collaboration

    2015-04-01

    Following an experiment performed at the Cyclotron Institute of Texas A&M University, the level scheme of 153 Sm is in the process of being extended. A beam of protons accelerated to 25 MeV impinged on an isotopically enriched 154 Sm target, inducing a (p,d) reaction, thereby producing energetically excited 153 Sm reaction products. The resulting γ-rays and deuterons were detected by the STARLiTe array, which consists of six Compton-suppressed HPGe gamma-ray detectors, and a ΔE-E Si telescope for charged particle identification. In the ongoing analysis of these data, the identification of new γ-rays has been possible. The deuteron spectrum will be used to identify high-lying continuum states, and angular momentum transfer values will be assigned using angular distributions and comparison with DWBA calculations. This work was partly supported by the US DofE under Grant Numbers DE-NA0001801, DE-FG02-05ER41379(UofR); DE-AC52-07NTJKTG(LLNL).

  11. (153)Sm(3+) and (111)In(3+) DTPA derivatives with high hepatic specificity: in vivo and in vitro studies.

    PubMed

    Prata, M I M; Santos, A C; Neves, M; Geraldes, C F G C; de Lima, J J P

    2002-07-25

    Two DTPA derivatives, a mono-amide derivative containing an iodinated synthon, DTPA-IOPsp (L(1)) and the ligand DTPA(BOM)(3) (BOM=benzyloxymethyl) (L(2)), radiolabelled with (153)Sm(3+) and (111)In(3+), were studied as potential hepatospecific gamma scintigraphic agents. In vivo studies with Wistar rats show that the main excretory pathway for all the chelates studied is the hepatobiliary system. The complexes of L(2) show even greater hepatobiliary specificity than L(1), perhaps as a consequence of longer blood circulation times due to their strong affinity towards HSA. The (153)Sm(3+) chelates are also more hepatospecific than the corresponding (111)In(3+) chelates. The La(3+) and In(3+) chelates of L(1) and L(2) show some structural and dynamic differences in aqueous solution, as studied by (1)H NMR spectroscopy. While only two nona-coordinated isomers were observed for the La(3+) complexes with both ligands, its number is much larger in the In(3+) complexes, with both octa- and hepta-coordinated species (with unbound side arms), as well as structural isomers for each coordination number. PMID:12121790

  12. Exposure of personnel and public due to using 153Sm-labelled EDTMP-Quadramet® in nuclear medicine procedures.

    PubMed

    Wrzesień, Małgorzata; Napolska, Katarzyna; Olszewski, Jerzy

    2016-03-01

    The main aim of this study was to highlight the problems of personnel exposure when administering (153)Sm-labelled ethylene diamine tetramethylene phosphonate-Quadramet(®) to patients and especially to evaluate hand exposure of the personnel. The exposure levels of patients' families and the people who takes care of the patients treated by Quadramet(®) were also estimated. Thermoluminescent detectors were used to measure the doses. The doses received during the injection of the Quadramet(®) by the nursing staff have been determined at the level of 1/150 dose limit for the skin. Exposure of members of the patient's family staying 1.5 m away from the patient being treated with Quadramet(®) has been estimated to be 0.40 mGy. PMID:26041475

  13. Treatment efficacy of 153Sm-EDTMP for painful bone metastasis

    PubMed Central

    Ayati, Narjess; Aryana, Kamran; Jalilian, Amir; Hoseinnejad, Toktam; Samani, Ali Bahrami; Ayati, Zahra; Shariati, Farzane; Zakavi, S. Rasoul

    2013-01-01

    Introduction: Involvement of the skeleton can cause an excruciating pain in two-thirds of terminal patients with a history of malignancy. Due to several limitations of other therapies, such as analgesics, bisphosphonates, chemotherapy, hormonal therapy and external beam radiotherapy; bone-seeking radiopharmaceuticals have an important role in palliation of pain from bone metastases. Although these kinds of therapies have many advantages including the ability to treat multiple sites of tumoral involvement simultaneously, no significant confliction with other treatments, ease of administration and the potential to be used repetitively; in Iran using of this modality is not widely practiced. In this study we evaluated the clinical usefulness of Sm-153 lexidronamfor pain management of bone metastases. Methods: 28 patients (14 males and 14 females) aged 38-77 years with a history of painful bone metastases caused by different cancers, not responding to conventional treatments were included in the study. All patients had a recent whole body bone scan indicating multiple bone metastases. 1 mCi/Kg Sm-153 lexidronam was injected intravenously to the patients. Whole body scintigraphy was done 3 or 18 hours post injection. Pain relief and quality of life have been evaluated by analog pain scale and Karnofsky index every week, respectively. Also, all patients were evaluated for hematological toxicity every two weeks. Active follow ups were performed. Results: 43% of patients showed the presence of the flare phenomenon during the first three days after Sm injection with a mean duration of 2.2 days. The pain relief began between 2 and 16 days post injection and the duration of pain palliation was in the range of 4 to 32 weeks (mean±SD=15.22±7.8). 64.3% of patients showed complete relief of pain and 21.4% achieved partial response to therapy. (Over all response to therapy was 85.7%). The lowest amount of peripheral blood cells was detected in the fourth week for RBCs and in the

  14. 4.4 Physical Properties of the Most Important Radionuclides

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.4 Physical Properties of the Most Important Radionuclides' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

  15. Cross-sections for populating excited states in 150-153Sm via the (p,d) and (p,t) reactions

    NASA Astrophysics Data System (ADS)

    Humby, P.; Simon, A.; Beausang, C. W.; Gell, K.; Tarlow, T.; Vyas, G.; Ross, T. J.; Hughes, R. O.; Burke, J. T.; Casperson, R. J.; Koglin, J.; Ota, S.; Allmond, J. M.; McCleskey, M.; McCleskey, E.; Saastamoinen, A.; Chyzh, R.; Dag, M.

    2014-09-01

    Light ion transfer reactions were used to populate low/medium spin states in 150-154Sm via the (p,p' γ), (p,d γ) and (p,t γ) reactions. The 25 MeV proton beam, with an average current of 1 nA, was provided by the K-150 Cyclotron at the Cyclotron Institute of Texas A&M University. The outgoing charged particles and coincident gamma-rays were detected using the STARLiTeR arrays. STARs (Silicon Telescope Array for Reaction studies), a highly segmented ΔE-E silicon telescope, provides particle identification as well as the energies, times and angular distributions of the protons, deuterons and tritons in the exit channels. LiTeR (Livermore Texas Richmond array), an array of six BGO shielded HPGe clover detectors, records the energy, time and angular distribution of the coincident gamma rays, providing excellent selectivity of the states of interest. Preliminary results for the cross-sections for direct population of states in 150-153Sm will be presented. Light ion transfer reactions were used to populate low/medium spin states in 150-154Sm via the (p,p' γ), (p,d γ) and (p,t γ) reactions. The 25 MeV proton beam, with an average current of 1 nA, was provided by the K-150 Cyclotron at the Cyclotron Institute of Texas A&M University. The outgoing charged particles and coincident gamma-rays were detected using the STARLiTeR arrays. STARs (Silicon Telescope Array for Reaction studies), a highly segmented ΔE-E silicon telescope, provides particle identification as well as the energies, times and angular distributions of the protons, deuterons and tritons in the exit channels. LiTeR (Livermore Texas Richmond array), an array of six BGO shielded HPGe clover detectors, records the energy, time and angular distribution of the coincident gamma rays, providing excellent selectivity of the states of interest. Preliminary results for the cross-sections for direct population of states in 150-153Sm will be presented. This work was partly supported by the US Department of Energy

  16. Selected radionuclides important to low-level radioactive waste management

    SciTech Connect

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

  17. Thermal neutron capture cross sections for the 152Sm(n,γ) 153Sm and 154Sm(n,γ) 155Sm reactions at 0.0536 eV energy

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Chowdhury, M. H.; Hossain, S. M.; Latif, Sk. A.; Islam, M. A.; Hafiz, M. A.; Mubin, S. H.; Zakaria, A. K. M.; Yunus, S. M.; Azharul Islam, S. M.

    2008-11-01

    The neutron capture cross sections for the 152Sm(n,γ) 153Sm and 154Sm(n,γ) 155Sm reactions at 0.0536 eV neutron energy were measured using an activation technique based on the TRIGA Mark-II research reactor, relative to the reference reaction 197Au(n,γ) 198Au. The activity was measured nondestructively using gamma-ray spectroscopy. Our measured values at this neutron energy are the first ones and are compared with 1/ v based evaluated cross sections reported in the ENDF/B-VII and JENDL-3.3 libraries. The measured value for the 152Sm(n,γ) 153Sm reaction is 0.28% lower than JENDL-3.3 and 0.48% higher than ENDF/B-VII. Our value for the production of 155Sm is about 3% and 2.3% higher than the evaluated value with ENDF/B-VII and JENDL-3.3 at 0.0536 eV, respectively.

  18. Radionuclides in domestic and imported foods in the United States, 1987-1992.

    PubMed

    Cunningham, W C; Anderson, D L; Baratta, E J

    1994-01-01

    Findings from the U.S. Food and Drug Administration's Radionuclides in Foods program are summarized for foods collected between October 1, 1986, and September 30, 1992. Concentrations of radionuclide activity in the Total Diet Study and reactor-survey foods were in Range 1 or low in Range II of the surveillance and control recommendations of the Federal Radiation Council; no control actions were suggested. Dietary intake of 90Sr continued the general decline observed since 1961. Approximately 2600 test portions of imported foods were analyzed for contamination associated with the Chernobyl nuclear accident. Concentrations of radionuclide activity were below limits of detection for the vast majority of the imported food test portions but were above the levels of concern for 23 portions. Since 1986, the fraction of imported food test portions having measurable amounts of contamination has steadily declined, as have the average concentrations of radionuclide activity; however, contamination is still occasionally found. Continued monitoring of both domestic and imported foods is planned. PMID:7819751

  19. Radionuclide contents in food products from domestic and imported sources in Nigeria.

    PubMed

    Jibiri, N N; Okusanya, A A

    2008-09-01

    Samples of some domestic and imported food products of nutritive importance to both the child population and the adult population in Nigeria were collected and analysed in order to determine their radionuclide contents. The samples were collected from open markets in major commercial cities in the country. Gamma-ray spectrometry was employed in the determination of the radionuclide contents in the products. The gamma-ray peaks observed with reliable regularity in all the samples analysed belong to naturally occurring radionuclides, namely (226)Ra, (228)Th and (40)K. The activity concentrations of these radionuclides in both the domestic and imported products were observed to be not significantly different. Essentially radioactive elements such as (137)Cs were not detected in any of the samples. The non-detection of (137)Cs in the imported products may be attributed to the suitably modified agricultural practices and countermeasures being employed to reduce caesium uptake by plants after the Chernobyl nuclear reactor accident. It seems unlikely that the elemental concentrations in the food products analysed will contribute significantly to public health risks in the country, as the cumulative ingestion effective dose values from (226)Ra and (228)Th were found to be low. Although (40)K has the highest activity concentrations in all the samples analysed, it is usually under homeostatic control in the body, and hence the concentrations are irrelevant to possible contamination in the food products analysed. PMID:18714136

  20. Radionuclides in domestic and imported foods in the United States, 1983-1986

    SciTech Connect

    Cunningham, W.C.; Stroube, W.B. Jr.; Baratta, E.J.

    1989-01-01

    Findings in the Food and Drug Administration's Radionuclides in Foods program are summarized for samples collected between October 1, 1982, and September 30, 1986. All radionuclide findings for Total Diet and reactor samples were either in Action Range I or low in Range II of the surveillance and control recommendations given by the Federal Radiation Council. The only long-range trend noted was a continuation of the general decline in dietary intake of /sup 90/Sr since 1961. Imported food samples were analyzed for contamination after the Chernobyl nuclear accident. The findings for imported foods indicate that the surveillance efforts successfully targeted contaminated foods, and that contamination levels were below levels of concern for all but one oregano and 3 cheese samples.

  1. Vesicorectal fistula detected on direct radionuclide cystography--importance of fecal matter imaging.

    PubMed

    Aghaei, Atena; Sadeghi, Ramin; Saeedi, Parisa

    2014-01-01

    We report an 11 year old male patient with the history of imperforate anus, which was repaired surgically 4 years ago. He has been complaining of intermittent passing of urine into the rectum recently. The vesicorectal fistula in this patient was proven by imaging of the fecal matter post direct radionuclide cystography study. Our case showed that nuclear medicine imaging can be extended to unanimated objects such as patients' excrements or fluids with important diagnostic yields. PMID:24610652

  2. A New Methodology for Characterization of Environmentally Important Radionuclide Species Via Surface-Enhanced Raman Scattering (SERS)

    SciTech Connect

    Dai, Sheng; Bao, Li-Li; Mahurin, Shannon; Gu, Baohua

    2004-03-31

    Selective and sensitive detection and characterization of radionuclide contaminants in subsurface environments is essential to safely and to cost-effectively locate, treat, isolate or destroy contaminants encountered in DOE's environmental cleanup activity. Currently, techniques for monitoring and characterizing radionuclides rely primarily on liquid scintillation counting, ICP-MS and some limited use of the spectrofluorimetry based on fluorescence of radionuclide species under laser or UV excitation. These techniques require chemical handling, e.g., the use of complexing media, scintillation cocktails and phosphoric acids, in order to enhance signals. Furthermore, only fluorescent radionuclides (U22O+, Cm(III) and Am(III)) can be detected by the last technique. Many environmentally-important radionuclides such as plutonium, neptunium and technetium species have no strong fluorescence signals and, therefore, can not be characterized via fluorescence spectroscopy. The research presented serves to replace existing radionuclide-detection techniques through the development of a novel surface enhanced Raman scattering (SERS) spectroscopy to selectively and sensitively monitor and characterize the chemical speciation of radionuclides at trace levels. The SERS technique permits both of these measurements to be made simultaneously and results in significant improvement over current methods in reducing time of analysis, cost and sample manipulation.

  3. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    SciTech Connect

    Leggett, Richard Wayne; Eckerman, Keith F; Manger, Ryan P

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  4. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets

    NASA Astrophysics Data System (ADS)

    Dant, James T.; Richardson, Richard B.; Nie, Linda H.

    2013-05-01

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient

  5. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  6. Radionuclide trap

    DOEpatents

    McGuire, Joseph C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  7. Radionuclide cisternogram

    MedlinePlus

    ... please enable JavaScript. A radionuclide cisternogram is a nuclear scan test. It is used to diagnose problems ... damage. The amount of radiation used during the nuclear scan is very small. Almost all of the ...

  8. Radionuclide cisternogram

    MedlinePlus

    A radionuclide cisternogram is a nuclear scan test. It is used to diagnose problems with the flow of spinal fluid. ... a lumbar puncture include pain at the injection site, bleeding, and ... used during the nuclear scan is very small. Almost all of the ...

  9. Short-term Fallout Radionuclide Ratios and Mass Balance Identify New Suspended Sediments of Channel Origin and Importance of Catchment Flowpath

    NASA Astrophysics Data System (ADS)

    Karwan, Diana; Pizzuto, James; Aalto, Rolf; Marquard, Julia; Aufdenkampe, Anthony; Harpold, Adrian; Benthem, Adam; Skalak, Katherine; Levia, Delphis; Siegert, Courtney

    2016-04-01

    Fallout radionuclides and their ratios, such as beryllium-7 (7Be) and lead-210 (210Pb), are used to determine suspended sediment source and age in catchments. The ratio of beryllium-7 to lead-210 (7Be/210Pb) on suspended sediment has been used to estimate the fraction of "new" sediment in suspension. In the application of this model, "new" suspended sediment is often assumed to originate from recent landscape surface erosion that is delivered to the stream network. Fallout radionuclide deposition can vary across watersheds and on an event basis in a single watershed due to factors such as storm type, atmospheric height, and storm origin. In the White Clay Creek watershed within the mid-Atlantic USA, single-event deposition of 7Be varies from 15 - 177 Bq m-2 and 210Pb varies from 0 - 10 Bq m-2. 7Be/210Pb ratios vary from 7.9 to 17 within event precipitation and from 0.8 to 12.8 on suspended sediment. "New" sediment varies from 6 - 100% over the course of these events. 7Be mass balance during events shows that the majority of 7Be is retained within the catchment and not exported on suspended sediment. During summer thunderstorms, less than 1% of 7Be deposited on the watershed exits the stream channel. By comparing this flux with the direct channel interception of 7Be deposition in precipitation and throughfall we can determine the minimum amount of 7Be leaving the watershed that could occur in the absence of surface erosion. For example in summer thunderstorms, the entirety of the 7Be exiting the watershed on suspended sediment is less than the total activity deposited on the channel in direct precipitation. Channel-intercepted fallout radionuclides can exit the catchment by multiple mechanisms including the tagging of subaerial fluvial deposits with event precipitation; hence "new" suspended sediment originates from within the channel rather than from surface erosion. During extreme events, such as Hurricane Irene, less of the suspended sediment has been newly

  10. Use of the GEANT4 Monte Carlo to determine three-dimensional dose factors for radionuclide dosimetry

    NASA Astrophysics Data System (ADS)

    Amato, Ernesto; Italiano, Antonio; Minutoli, Fabio; Baldari, Sergio

    2013-04-01

    The voxel-level dosimetry is the most simple and common approach to internal dosimetry of nonuniform distributions of activity within the human body. Aim of this work was to obtain the dose "S" factors (mGy/MBqs) at the voxel level for eight beta and beta-gamma emitting radionuclides commonly used in nuclear medicine diagnostic and therapeutic procedures. We developed a Monte Carlo simulation in GEANT4 of a region of soft tissue as defined by the ICRP, divided into 11×11×11 cubic voxels, 3 mm in side. The simulation used the parameterizations of the electromagnetic interaction optimized for low energy (EEDL, EPDL). The decay of each radionuclide (32P, 90Y, 99mTc, 177Lu, 131I, 153Sm, 186Re, 188Re) were simulated homogeneously distributed within the central voxel (0,0,0), and the energy deposited in the surrounding voxels was mediated on the 8 octants of the three dimensional space, for reasons of symmetry. The results obtained were compared with those available in the literature. While the iodine deviations remain within 16%, for phosphorus, a pure beta emitter, the agreement is very good for self-dose (0,0,0) and good for the dose to first neighbors, while differences are observed ranging from -60% to +100% for voxels far distant from the source. The existence of significant differences in the percentage calculation of the voxel S factors, especially for pure beta emitters such as 32P or 90Y, has already been highlighted by other authors. These data can usefully extend the dosimetric approach based on the voxel to other radionuclides not covered in the available literature.

  11. Radionuclide bone imaging

    SciTech Connect

    Bassett, L.W.; Gold, R.H.; Webber, M.M.

    1981-12-01

    Radionuclide bone imaging of the skeleton, now well established as the most important diagnostic procedure in detecting bone metastases, is also a reliable method for the evaluation of the progression or regression of metastatic bone disease. The article concentrates on the technetium-99m agents and the value of these agents in the widespread application of low-dose radioisotope scanning in such bone diseases as metastasis, osteomyelitis, trauma, osteonecrosis, and other abnormal skeletal conditions.

  12. Anthropogenic radionuclides in the environment

    SciTech Connect

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  13. Radionuclide injury to the lung.

    PubMed Central

    Dagle, G E; Sanders, C L

    1984-01-01

    Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequency observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. PMID:6376095

  14. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  15. Radionuclide bone imaging and densitometry

    SciTech Connect

    Mettler, F.A.

    1988-01-01

    This book contains 13 selections. Some of the titles are: Radionuclides and the Normal Bone Scan; The Radionuclide Bone Scan in Malignant Disease; Pediatric Applications of Radionuclide Bone Imaging; The Radionuclide Bone Scan in Arthritis and Metabolic and Miscellaneous Disorders; and Soft Tissue Activity on the Radionuclide Bone Scan.

  16. Significant Radionuclides Determination

    SciTech Connect

    Jo A. Ziegler

    2001-07-31

    The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

  17. Radionuclides in haematology

    SciTech Connect

    Lewis, S.M.; Bayly, R.J.

    1986-01-01

    This book contains the following chapters: Some prerequisites to the use of radionuclides in haematology; Instrumentation and counting techniques; In vitro techniques; Cell labelling; Protein labelling; Autoradiography; Imaging and quantitative scanning; Whole body counting; Absorption and excretion studies; Blood volume studies; Plasma clearance studies; and Radionuclide blood cell survival studies.

  18. The medical management of unintentional radionuclide intakes.

    PubMed

    Breitenstein, B D

    2003-01-01

    As a general medical problem, radionuclide intakes that may cause significant health effects are uncommon events. In preparing to manage a radionuclide accident, planning is the key. The medical aspects of such an accident are only one part of the management, and a professional team approach is required. Specific priorities and sequencing are necessary in medically managing a radionuclide intake. As soon as is reasonably practical, promptly remove the victim(s) from further radionuclide, radiation field, or chemical exposure. Life and limb-saving medical aid takes precedence over ionising radiation concerns in nearly all cases. Next are the prevention and/or minimisation of internal intake of radionuclides and evaluation and control of external radionuclide contamination, followed by institution of treatment to minimise the retained radionuclide. Communication with the accident victim, and his or her family, and public affairs/media issues are important. Finally, follow-up treatment for internal intakes that may cause delayed health effects is given. PMID:14527016

  19. Radionuclides in US coals

    SciTech Connect

    Bisselle, C. A.; Brown, R. D.

    1984-03-01

    The current state of knowledge with respect to radionuclide concentrations in US coals is discussed. Emphasis is placed on the levels of uranium in coal (and lignite) which are considered to represent a concern resulting from coal combustion; areas of the US where such levels have been found; and possible origins of high radionuclide levels in coal. The report reviews relevant studies and presents new data derived from a computerized search of radionuclide content in about 4000 coal samples collected throughout the coterminous US. 103 references, 5 figures, 5 tables.

  20. Radionuclides in Diagnosis.

    ERIC Educational Resources Information Center

    Williams, E. D.

    1989-01-01

    Discussed is a radionuclide imaging technique, including the gamma camera, image analysis computer, radiopharmaceuticals, and positron emission tomography. Several pictures showing the use of this technique are presented. (YP)

  1. Radionuclide Behavior in Containments.

    Energy Science and Technology Software Center (ESTSC)

    2000-02-14

    MATADOR analyzes the transport and deposition of radionuclides as vapor or aerosol through Light Water Reactor (LWR) containments during severe accidents and calculates environmental release fractions of radionuclides as a function of time. It is intended for use in system risk studies. The principal output is information on the timing and magnitude of radionuclide releases to the environment as a result of severely degraded core accidents. MATADOR considers the transport of radionuclides through the containmentmore » and their removal by natural deposition and the operation of engineered safety systems such as sprays. Input data on the source term from the primary system, the containment geometry, and thermal-hydraulic conditions are required.« less

  2. Soil contamination with radionuclides and potential remediation.

    PubMed

    Zhu, Y G; Shaw, G

    2000-07-01

    Soils contaminated with radionuclides, particularly 137Cs and 90Sr, pose a long-term radiation hazard to human health through exposure via the foodchain and other pathways. Remediation of radionuclide-contaminated soils has become increasingly important. Removal of the contaminated surface soil (often up to 40 cm) or immobilization of radionuclides in soils by applying mineral and chemical amendments are physically difficult and not likely cost-effective in practicality. Reducing plant uptake of radionuclides, especially 137CS and 90Sr by competitive cations contained in chemical fertilizers has the general advantage in large scale, low-level contamination incidents on arable land, and has been widely practiced in central and Western Europe after the Chernobyl accident. Phytoextraction of radionuclides by specific plant species from contaminated sites has rapidly stimulated interest among industrialists as well as academics, and is considered to be a promising bio-remediation method. This paper examines the existing remediation approaches and discusses phytoextraction of radionuclides from contaminated soils in detail. PMID:10819188

  3. Method and apparatus for separating radionuclides from non-radionuclides

    DOEpatents

    Harp, Richard J.

    1990-01-01

    In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.

  4. Microbiological Transformations of Radionuclides in the Subsurface

    SciTech Connect

    Marshall, Matthew J.; Beliaev, Alex S.; Fredrickson, Jim K.

    2010-01-04

    Microorganisms are ubiquitous in subsurface environments although their populations sizes and metabolic activities can vary considerably depending on energy and nutrient inputs. As a result of their metabolic activities and the chemical properties of their cell surfaces and the exopolymers they produce, microorganisms can directly or indirectly facilitate the biotransformation of radionuclides, thus altering their solubility and overall fate and transport in the environment. Although biosorption to cell surfaces and exopolymers can be an important factor modifying the solubility of some radionuclides under specific conditions, oxidation state is often considered the single most important factor controlling their speciation and, therefore, environmental behavior.

  5. Radioimmunotherapy with alpha-particle emitting radionuclides.

    PubMed

    Zalutsky, M R; Pozzi, O R

    2004-12-01

    An important consideration in the development of effective strategies for radioimmunotherapy is the nature of the radiation emitted by the radionuclide. Radionuclides decaying by the emission of alpha-particles offer the possibility of matching the cell specific reactivity of monoclonal antibodies with radiation with a range of only a few cell diameters. Furthermore, alpha-particles have important biological advantages compared with external beam radiation and beta-particles including a higher biological effectiveness, which is nearly independent of oxygen concentration, dose rate and cell cycle position. In this review, the clinical settings most likely to benefit from alpha-particle radioimmunotherapy will be discussed. The current status of preclinical and clinical research with antibodies labeled with 3 promising alpha-particle emitting radionuclides - (213)Bi, (225)Ac, and (211)At - also will be summarized. PMID:15640792

  6. Natural Radionuclide Activity Concentrations In Spas Of Argentina

    SciTech Connect

    Gnoni, G.; Czerniczyniec, M.; Canoba, A.; Palacios, M.

    2008-08-07

    Geothermal waters have been used on a large scale for bathing, drinking and medical purposes. These waters can contain natural radionuclides that may increase the exposure to people. In this work the most important natural radionuclide activity concentrations in different thermal spas of Argentina were measured to characterize waters and to evaluate the exposure of workers and members of the public.

  7. Initial Radionuclide Inventories

    SciTech Connect

    Miller, H

    2005-07-12

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as

  8. Initial Radionuclide Inventories

    SciTech Connect

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as

  9. Radionuclide studies in impotence

    SciTech Connect

    Hilson, A.J.; Lewis, C.A. )

    1991-04-01

    Impotence may be of physiological origin with causes including vascular or neurological pathology. Alternatively, it may be of psychogenic origin. Clinicians can distinguish between psychological and organic impotence by observing nocturnal penile tumescence. Non-radionuclide investigations for organic impotence include penile plethysmography or pulse Doppler analysis for arterial supply, cavernosometry for venous drainage, and biothesiometry or evoked potentials for neurological pathology. Radionuclide studies are primarily based on the use of technetium 99m-pertechnetate, 99mTc-red blood cells, or xenon 133 to study the blood flow, with or without pharmacological intervention, commonly papaverine. 26 references.

  10. Transuranic radionuclides dispersed into the aquatic environment, a bibliography

    SciTech Connect

    Noshkin, V.E.; Stoker, A.C.; Wong, Kai M.

    1994-04-01

    The purpose of this project was to compile a bibliography of references containing environmental transuranic radionuclide data. Our intent was to identify those parameters affecting transuranic radionuclide transport that may be generic and those that may be dependent on chemical form and/or environmental conditions (i.e., site specific) in terrestrial, aquatic and atmospheric environments An understanding of the unique characteristics and similarities between source terms and environmental conditions relative to transuranic radionuclide transport and cycling will provide the ability to assess and predict the long term impact on man and the environment. An additional goal of our literature review, was to extract the ranges of environmental transuranic radionuclide data from the identified references for inclusion in a data base. Related to source term, these ranges of data can be used to calculate the dose to man from the radionuclides, and to perform uncertainty analyses on these dose assessments. On the basis of our reviews, we have arbitrarily outlined five general source terms. These are fallout, fuel cycle waste, accidents, disposal sites and resuspension. Resuspension of the transuranic radionuclides is a unique source term, in that the radionuclides can originate from any of the other source terms. If these transuranic radionuclides become resuspended into the air, they then become important as a source of inhaled radionuclides.

  11. Transuranic radionuclides from resuspension in the environment, a bibliography

    SciTech Connect

    Stoker, A.C.; Shinn, J.H.; Noshkin, V.E.

    1994-04-01

    The purpose of this project was to compile a bibliography of references containing environmental transuranic radionuclide data. Our intent was to identify those parameters affecting transuranic radionuclide transport that may be generic and those that may be dependent on chemical form and/or environmental conditions. An understanding of the unique characteristics and similarities between source terms and environmental conditions relative to transuranic radionuclide transport and cycling will provide the ability to assess and predict the long term impact on man and the environment. An additional goal of our literature review, was to extract the ranges of environmental transuranic radionuclide data from the identified references for inclusion in a data base. Related to source term, these ranges of data can be used to calculate the dose to man from the radionuclides, and to perform uncertainty analyses on these dose assessments. On the basis of our reviews, we have arbitrarily outlined five general source terms. These are fallout, fuel cycle waste, accidents, disposal sites and resuspension. Resuspension of the transuranic radionuclides is an unique source term, in that the radionuclides can originate from any of the other source terms. If these transuranic radionuclides become resuspended into the air, they then become important as a source of inhaled radionuclides. This bibliography is a compilation of the references containing studies of plutonium and americium in the environment as a result of resuspension.

  12. Radionuclide concentrations in white sturgeon from the Columbia River

    SciTech Connect

    Dauble, D.D.; Price, K.R.; Poston, T.M.

    1992-09-01

    Although radioactive releases from the US Department of Energy`s Hanford Site have been monitored in the environment since the reactors began operating in 1945, recent information regarding historical releases of radionuclides has led to renewed interest in estimating human exposure to radionuclides at Hanford. Knowledge of the fate of radionuclides in some fish species may be important because of the potential for food-chain transfer to humans. White sturgeon (Acipenser transmontanus) were selected for study because they are long-lived, reside year-round in the Hanford Reach, are benthic, and are an important commercial and sport species in the Columbia River. They also have a greater potential for accumulating persistent radionuclides than shorter-lived species with pelagic and/or anadromous life histories. The purpose of our study was to summarize data on historical concentrations of industrial radionuclides in white sturgeon and to collect additional data on current body burdens in the Columbia River.

  13. Radionuclide concentrations in white sturgeon from the Columbia River

    SciTech Connect

    Dauble, D.D.; Price, K.R.; Poston, T.M.

    1992-09-01

    Although radioactive releases from the US Department of Energy's Hanford Site have been monitored in the environment since the reactors began operating in 1945, recent information regarding historical releases of radionuclides has led to renewed interest in estimating human exposure to radionuclides at Hanford. Knowledge of the fate of radionuclides in some fish species may be important because of the potential for food-chain transfer to humans. White sturgeon (Acipenser transmontanus) were selected for study because they are long-lived, reside year-round in the Hanford Reach, are benthic, and are an important commercial and sport species in the Columbia River. They also have a greater potential for accumulating persistent radionuclides than shorter-lived species with pelagic and/or anadromous life histories. The purpose of our study was to summarize data on historical concentrations of industrial radionuclides in white sturgeon and to collect additional data on current body burdens in the Columbia River.

  14. Gallbladder radionuclide scan

    MedlinePlus

    ... please enable JavaScript. Gallbladder radionuclide scan is a test that uses radioactive material to check gallbladder function. It is also used to look for bile duct blockage or leak. How the Test is Performed The health care provider will inject ...

  15. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  16. 68Ga-PSMA PET/CT Imaging and 153Sm-EDTMP Bone Pain Palliation Therapy.

    PubMed

    Sasikumar, Arun; Joy, Ajith; Nanabala, Raviteja; Pillai, M R A; Thomas, Boben

    2016-07-01

    Ga-labeled prostate-specific membrane antigen (PSMA) is a potential tool in the imaging of recurrent prostate cancer. Ga-PSMA imaging is also useful for radiotherapy planning and in targeted therapy with Lu-PSMA. A few case reports regarding the use of Ga-PSMA in nonprostate cancer malignancies are also reported. We describe the use of Ga-PSMA imaging before Sm-EDTMP bone pain palliation therapy in a 58-year-old hormone refractory prostate cancer patient with extensive bone metastases. PMID:27055142

  17. Osteoid osteoma: radionuclide diagnosis

    SciTech Connect

    Helms, C.A.; Hattner, R.S.; Vogler, J.B. III

    1984-06-01

    The double-density sign, seen on radionuclide bone scans, is described for diagnosing osteoid osteomas and for localizing the nidus. Its use in differentiating the nidus of an osteoid osteoma from osteomyelitis is also described. The utility of computed tomography in localization of the nidus is also illustrated. The double-density sign was helpful in diagnosing seven cases of surgically confirmed osteoid osteoma.

  18. Mobility of chelated radionuclides in engineered concrete barriers

    SciTech Connect

    Dicke, C.A.; Smith, R.W.

    1993-12-31

    Concrete is a major component in many low-level radioactive waste (LLW) disposal facilities. The use of concrete is widespread because of its physical and structural properties and because it provides geochemical control on metal and radionuclide releases. Organic compounds are often disposed with radionuclides in LLW disposal facilities. Interactions between radionuclides and chelating agents must be evaluated to estimate mobility of radionuclides in concrete vaults. This paper quantifies the effects of two common organic components [citric acid and ethylenediaminetetraacetic acid (EDTA)] on radionuclide mobility in concrete barriers by using equilibrium geochemical calculations. Equilibrium speciation calculations indicate that some radionuclides are chelated in groundwater (pH 7) but are destabilized in the highly alkaline (pH 13) concrete pore fluids. Radionuclides complexed by by EDTA and citrate are replaced by calcium in the concrete pore fluids. In addition, the citrate nuclide complex reacts to form uncomplexed citrate in concrete pore fluids. The chemical performance of concrete LLW disposal facilities should not be compromised by small amounts of chelating agents disposed with some radionuclides. However, EDTA may form significant nickel and cobalt complexes above the pH important in the long-term service life of concrete barriers.

  19. A limiting factor for the progress of radionuclide-based cancer diagnostics and therapy--availability of suitable radionuclides.

    PubMed

    Tolmachev, Vladimir; Carlsson, Jörgen; Lundqvist, Hans

    2004-01-01

    Advances in diagnostics and targeted radionuclide therapy of haematological and neuroendocrine tumours have raised hope for improved radionuclide therapy of other forms of disseminated tumours. New molecular target structures are characterized and this stimulates the efforts to develop new radiolabelled targeting agents. There is also improved understanding of factors of importance for choice of appropriate radionuclides. The choice is determined by physical, chemical, biological, and economic factors, such as a character of emitted radiation, physical half-life, labelling chemistry, chemical stability of the label, intracellular retention time, and fate of radiocatabolites and availability of the radionuclide. There is actually limited availability of suitable radionuclides and this is a limiting factor for further progress in the field and this is the focus in this article. The probably most promising therapeutic radionuclide, 211At, requires regional production and distribution centres with dedicated cyclotrons. Such centres are, with a few exceptions in the world, lacking today. They can be designed to also produce beta- and Augeremitters of therapeutic interest. Furthermore, emerging satellite PET scanners will in the near future demand long-lived positron emitters for diagnostics with macromolecular radiopharmaceuticals, and these can also be produced at such centres. To secure continued development and to meet the foreseen requirements for radionuclide availability from the medical community it is necessary to establish specialized cyclotron centres for radionuclide production. PMID:15244250

  20. Understanding Radionuclide Interactions with Layered Materials

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  1. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  2. Radionuclide transport coupled with bentonite extrusion in a saturated fracture system

    NASA Astrophysics Data System (ADS)

    Borrelli, Robert Angelo

    The study in this dissertation focuses on the characterization of radionuclide migration in a water saturated fracture. The near field of a high level radioactive waste repository contains the engineered barrier system, which provides manufactured components designed to limit radionuclide releases to the environment. A major component in this system involves the utilization of bentonite as a buffer to protect the degraded waste package and limit release of radionuclides into intersecting fractures that pose possible pathways for transport to the environment. A model is derived for radionuclide migration through this fracture. The model incorporates the features of bentonite: extrusion into the fracture, sorption, and the effect of bentonite swelling on groundwater flow. The resulting derivation of this model is a coupled system of differential equations. The differential equation describing the mass conservation of radionuclides is coupled to the equation system for bentonite extrusion. The models are coupled through the parameters in the radionuclide transport model, which are dependent on the spatial distribution of solid material in the domain. Numerical evaluations of the solution to this radionuclide transport model were conducted for neptunium, a weakly sorbing radionuclide and americium, a strongly sorbing radionuclide. Results were presented in terms normalized spatial distribution of radionuclide concentration in the fluid phase and normalized radionuclide release rate in the fluid phase. Major findings of the study conducted for this dissertation are provided. (1) Bentonite extrusion affects fluid phase advection resulting in groundwater flow countercurrent to the direction of extrusion to the direction of radionuclide migration. (2) The sorption distribution coefficient is the most important parameter affecting radionuclide behavior in this system for this model. (3) Simulations of the model for americium, a highly sorbing radionuclide, indicate that

  3. Radionuclide Sensors for Water Monitoring

    SciTech Connect

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2005-09-01

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest.

  4. Mass Spectrometric Radionuclide Analyses

    SciTech Connect

    Wacker, John F.; Eiden, Greg C.; Lehn, Scott A.

    2006-02-01

    Measurement of ionized atoms by mass spectrometry is an alternative to radiation detection for measuring radioactive isotopes. These systems are large and complex; they require trained operators and extensive maintenance. They began as research systems but have been developed commercially for measuring amounts of radioactive isotopes and their atom ratios to other isotopes. Several types of mass spectrometer systems are in use. This chapter covers the basics of mass spectrometry and surveys the application of these instruments for radionuclide detection and discusses the circumstances under which use of mass spectrometers is advantageous, the type of mass spectrometer used for each purpose, and the conditions of sample preparation, introduction and analysis.

  5. Radionuclide transfer to fruit in the IAEA TRS 364 Revision.

    PubMed

    Carini, Franca

    2009-09-01

    Information on the transfer of radionuclides to fruits was almost absent in the former TRS 364 "Handbook of parameter values for the prediction of radionuclide transfer in temperate environments". The revision of the Handbook, carried out under the IAEA Programme on Environmental Modelling for RAdiation Safety (EMRAS), takes into account the information generated in the years following the Chernobyl accident and the knowledge produced under the IAEA BIOMASS (Biosphere Modelling and Assessment) Programme in the years 1997-2000. This paper describes the most important processes concerning the behaviour of radionuclides in fruits reported in the IAEA TRS 364 Revision and provides recommendations for research and modelling. PMID:19027202

  6. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    SciTech Connect

    Fallahpoor, M; Abbasi, M; Sen, A; Parach, A; Kalantari, F

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  7. Scientific Analysis Cover Sheet for Radionuclide Screening

    SciTech Connect

    G. Ragan

    2002-08-09

    The waste forms under consideration for disposal in the proposed repository at Yucca Mountain contain scores of radionuclides (Attachments V and VI). It would be impractical and highly inefficient to model all of these radionuclides in a total system performance assessment (TSPA). Thus, the purpose of this radionuclide screening analysis is to remove from further consideration (screen out) radionuclides that are unlikely to significantly contribute to radiation dose to the public from the proposed nuclear waste repository at Yucca Mountain. The remaining nuclides (those screened in) are recommended for consideration in TSPA modeling for license application. This analysis also covers radionuclides that are not screened in based on dose, but need to be included in TSPA modeling for other reasons. For example, U.S. Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission (NRC) regulations require consideration of the combined activity of Ra-226 and Ra-228 in groundwater (40 CFR 197.30, 10 CFR 63.331). Also, Cm-245, Pu-241, and U-235 decay indirectly to potentially important radionuclides, and are not identified by the screening analysis as important. The radionuclide screening analysis separately considers two different postclosure time periods: the 10,000-y regulatory period for the proposed repository at Yucca Mountain and the period after 10,000 y up to 1 million y after emplacement. The incremental effect of extending the screening for the regulatory period to 20,000 y is also addressed. Four release scenarios are considered: (1) the nominal scenario, which entails long-term degradation of disposal containers and waste forms, (2) a human-intrusion scenario, (3) an intrusive igneous event, and (4) an eruptive igneous event. Because the first three scenarios require groundwater transport, they are called groundwater scenarios below. The screening analysis considers the following waste forms: spent boiling water reactor (BWR) fuel, spent

  8. Monitoring release of disposable radionuclides in the Kara sea: Bioaccumulation of long-lived radionuclides in echinoderms and molluscs

    SciTech Connect

    Fisher, N.S.

    1994-01-01

    The objective of the present proposal is to continue and extend our research on the trophic transfer of important radionuclides in benthic fauna of the Kara Sea. This project is assessing the extent to which select species of seastars, brittle stars, and clams typical of the Kara Sea concentrate and retain a variety of long-lived radionuclides known to be (or suspected to be) present in the disposed wastes in the Russian Arctic. The rates and routes of uptake and depuration of isotopes in the same or in closely related species are being quantified so that endemic benthic organisms can be assessed as potential bioindicators of released radionuclides in Arctic waters.

  9. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  10. Illicit Trafficking of Natural Radionuclides

    SciTech Connect

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  11. Radionuclides in nephrology

    SciTech Connect

    Lausanne, A.B.D.

    1987-01-01

    In 47 expert contributions, this volume provides a summary of the latest research on radionuclides in nephro-urology together with current and new clinical applications especially in renovascular hypertension, kidney transplantation, and metabolic and urological diseases. In addition, attention is given to aspects of basic renal physiology and function and possible applications of nuclear magnetic resonance and spectroscopy in nephro-urology. New testing procedures which promise to improve diagnosis, and new radiopharmaceuticals are described. The reports are divided into eight sections, the first of which features studies on the renin-angiotensin system, cisplatin, atrial natriuretic factor and determining plasma oxalate. Four papers describe a number of new radiopharmaceuticals which have the potential to replace hippuran. In the third section, radionuclide methods for the measurement of renal function parameters are discussed. The book then focuses on the potential role of captopril in the improved diagnosis of renovascular hypertension. Applications of nuclear magnetic resonance and spectroscopy are demonstrated in the diagnosis of acute pyelonephritis, kidney assessment after lithotripsy, kidney evaluation prior to transplantation, and in monitoring renal ischemia during hypotension.

  12. Labeling of monoclonal antibodies with radionuclides

    SciTech Connect

    Bhargava, K.K.; Acharya, S.A. )

    1989-07-01

    Antibodies, specifically monoclonal antibodies, are potentially very useful and powerful carriers of therapeutic agents to target tissues and diagnostic agents. The loading or charging of antibodies with agents, especially radiotracers, is reviewed here. The choice of radioisotope for immunodetection and/or immunotherapy is based on its availability, half-life, nature of the radiation emitted, and the metabolic pathways of the radionuclide in the body. Most important of all are the derivatization techniques available for labeling the antibody with the given radionuclide. Isotopes of iodine and divalent metal ions are the most commonly used radionuclides. Antibodies labeled with iodine at tyrosine residues are metabolized rapidly in vivo. This leads to the incorporation of metabolized radioactive iodine into various tissues, mainly the thyroid gland and stomach, and to the accumulation of high levels of circulating iodine in the blood, which masks tumor uptake considerably. To overcome these limitations, the use of iodohippurate as an iodine-anchoring molecule to the protein should be considered. When divalent or multivalent metal ions are used as the preferred radionuclide, bifunctional chelating reagents such as EDTA or DTPA are first coupled to the protein or antibody. These chelating molecules are attached to the protein by formation of an isopeptide linkage between the carboxylate of the chelating reagent and the amino group of the protein. Several procedures are available to generate the isopeptide linkage. When the anchoring of the chelating agent through isopeptide linkage results in the inactivation of the antibody, periodate oxidation of the carbohydrate moiety of the antibody, followed by reductive coupling of chelator, could be considered as an alternative. There is still a need for better, simpler, and more direct methods for labeling antibodies with radionuclides. 78 references.

  13. Targeted radionuclide therapy--an overview.

    PubMed

    Dash, Ashutosh; Knapp, F F Russ; Pillai, M R A

    2013-09-01

    Radionuclide therapy (RNT) based on the concept of delivering cytotoxic levels of radiation to disease sites is one of the rapidly growing fields of nuclear medicine. Unlike conventional external beam therapy, RNT targets diseases at the cellular level rather than on a gross anatomical level. This concept is a blend of a tracer moiety that mediates a site specific accumulation followed by induction of cytotoxicity with the short-range biological effectiveness of particulate radiations. Knowledge of the biochemical reactions taking place at cellular levels has stimulated the development of sophisticated molecular carriers, catalyzing a shift towards using more specific targeting radiolabelled agents. There is also improved understanding of factors of importance for choice of appropriate radionuclides based on availability, the types of emissions, linear energy transfer (LET), and physical half-life. This article discusses the applications of radionuclide therapy for treatment of cancer as well as other diseases. The primary objective of this review is to provide an overview on the role of radionuclide therapy in the treatment of different diseases such as polycythaemia, thyroid malignancies, metastatic bone pain, radiation synovectomy, hepatocellular carcinoma (HCC), neuroendocrine tumors (NETs), non-Hodgkin's lymphoma (NHL) and others. In addition, recent developments on the systematic approach in designing treatment regimens as well as recent progress, challenges and future perspectives are discussed. An examination of the progress of radionuclide therapy indicates that although a rapid stride has been made for treating hematological tumors, the development for treating solid tumors has, so far, been limited. However, the emergence of novel tumor-specific targeting agents coupled with successful characterization of new target structures would be expected to pave the way for future treatment for such tumors. PMID:24059327

  14. Radionuclide-labeled nanostructures for In Vivo imaging of cancer

    NASA Astrophysics Data System (ADS)

    Rhim, Won-Kyu; Kim, Minho; Hartman, Kevin L.; Kang, Keon Wook; Nam, Jwa-Min

    2015-05-01

    Molecular imaging plays an important role in the non-invasive diagnosis and the guiding or monitoring of disease treatment. Different imaging modalities have been developed, and each method possesses unique strengths. While a variety of molecules have been used previously in nuclear imaging, the exceptional properties of nanostructures in recent research enable the deployment of accurate and efficient diagnostic agents using radionuclide-nanostructures. This review focuses on the radionuclide labeling strategies of various nanostructures and their applications for multimodality tumor imaging.

  15. Reactor-Produced Medical Radionuclides

    SciTech Connect

    Mirzadeh, Saed; Mausner, Leonard; Garland, Marc A

    2011-01-01

    The therapeutic use of radionuclides in nuclear medicine, oncology and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by beta emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chapter is concluded by providing a number of examples encompassing the various possible reaction routes for production of a number of medical radionuclides in a reactor.

  16. Dynamics and transformations of radionuclides in soils and ecosystem health

    SciTech Connect

    Fellows, Robert J. ); Ainsworth, Calvin C. ); Driver, Crystal J. ); Cataldo, Dominic A. )

    1998-12-01

    The chemical behavior of radionuclides can vary widely in soil and sediment environments. Equally important, for a given radionuclide the physico-chemical properties of the solids and aqueous phase can greatly influence a radionuclides behavior. Radionuclides can conceivably occur in soils as soluble-free, inorganic-soluble-complexed, organic-soluble, complexed, adsorbed, precipitated, coprecipitated, or solid structural species. While it is clear that an assessment of a radionuclide?s soil chemistry and potential shifts in speciation will yield a considerable understanding of its behavior in the natural environment, it does not directly translate to bioavailability or its impact on ecosystems health. The soil chemical factors have to be linked to food chain considerations and other ecological parameters that directly tie to an analysis of ecosystem health. In general, the movement of radionuclides from lower to higher trophic levels diminishes with each trophic level in both aqua tic and terrestrial systems. In some cases, transfer is limited because of low absorption/assimilation by successive trophic organisms (Pu, U); for other radionuclides (Tc, H) assimilation may be high but rapid metabolic turnover and low retention greatly reduce tissue concentrations available to predator species. Still others are chemical analogs of essential elements whose concentrations are maintained under strict metabolic control in tissues (Cs) or are stored in tissues seldom consumed by other organisms (Sr storage in exoskeleton, shells, and bone). Therefore, the organisms that receive the greatest ingestion exposures are those in lower trophic positions or are in higher trophic levels but within simple, short food chains. Food source, behavior, and habitat influence the accumulation of radionuclides in animals.

  17. Radionuclides in the evaluation of urinary obstruction

    SciTech Connect

    Scharf, S.C.; Blaufox, M.D.

    1982-07-01

    Radionuclide renography and renal scanning techniques are ideally suited to the initial and follow-up evaluation of patients with obstructive uropathy. While other modalities are superior in their ability to provide anatomic information, the radionuclide study yields functional information for each kidney without the necessity to resort to invasive studies. In addition, the Nuclear Medicine study is well suited to the evaluation of obstruction where serial studies often are required because of a lower radiation burden compared to urography. This lower radiation dose is especially important in obstruction because of the recurrent nature of several kinds of obstructive uropathy and because of the high incidence in the pediatric age group. The ability to control urine flow rate during the procedure through dehydration or administration of diuretics is an additional benefit. Increasing availability of computerization of nuclear medicine procedures as well as interest in studies employing physiologic intervention (including the diuresis renogram) have assured an important place for radionuclide studies in the evaluation of patients with urinary obstruction.

  18. Radionuclide transport and retardation in tuff

    SciTech Connect

    Vine, E.N.; Bayhurst, B.P.; Daniels, W.R.; DeVilliers, S.J.; Erdal, B.R.; Lawrence, F.O.; Wolfsberg, K.

    1980-12-31

    Batch measurements provide an understanding of which experimental variables are important. For example, sorption ratios vary little with particle size (and surface area); however, groundwater composition and rock composition are quite important. A general correlation has been identified between mineralogy (major phases) and degree of sorption for strontium, cesium, and barium. Although these are approximate, a more detailed analysis may be possible as more samples are studied and the data base increased. Data from crushed tuff columns indicate that, except in simple cases where sorption coefficients are relatively low, and ion-exchange equilibria not only exist but are the dominant mechanism for removal of radioisotopes from solution, the simple relation between the sorption ratio R/sub d/ (or K/sub d/) and the relative velocity of radionuclides with respect to groundwater velocity may be insufficient to permit accurate modeling of the retardation of radionuclides. Additional work on whole core columns and larger blocks of intact material is required to better understand radionuclide sorption and transport through rock.

  19. Radionuclide synovectomy – essentials for rheumatologists

    PubMed Central

    Felis-Giemza, Anna; Kobylecka, Małgorzata

    2016-01-01

    Radionuclide synovectomy is a minimally invasive method of treating persistent joint inflammation. It involves intra-articular injection of radioactive colloids which induce necrosis and fibrosis of hypertrophic synovial membrane. The most common indication for radiosynovectomy is rheumatoid arthritis, although patients with seronegative spondyloarthropathies, unclassified arthritis, haemophilic arthropathy and other less common arthropathies can also benefit from this method. Radiosynovectomy is safe, well tolerated and efficacious. About 70–80% of patients respond well to the therapy. However, the therapeutic effects are considerably worse in patients with co-existent osteoarthritis and advanced joint degeneration. Despite its advantages, radionuclide synovectomy is not performed as often as it could be, so greater knowledge and understanding of this method are needed. The authors present the most important facts about radiosynovectomy that may help rheumatologists in their daily clinical practice. PMID:27504020

  20. Radionuclide Imaging Applications in Cardiomyopathies and Heart Failure.

    PubMed

    Harinstein, Matthew E; Soman, Prem

    2016-03-01

    Multiple epidemiological factors including population aging and improved survival after acute coronary syndromes have contributed to a heart failure (HF) prevalence in the USA in epidemic proportions. In the absence of transplantation, HF remains a progressive disease with poor prognosis. The structural and functional abnormalities of the myocardium in HF can be assessed by various radionuclide imaging techniques. Radionuclide imaging may be uniquely suited to address several important clinical questions in HF such as identifying etiology and guiding the selection of patients for coronary revascularization. Newer approaches such as autonomic innervation imaging, phase analysis for synchrony assessment, and other molecular imaging techniques continue to expand the applications of radionuclide imaging in HF. In this manuscript, we review established and evolving applications of radionuclide imaging for the diagnosis, risk stratification, and management of HF. PMID:26841785

  1. Gas: A Neglected Phase in Remediation of Metals and Radionuclides

    SciTech Connect

    Denham, Miles E.; Looney, Brian B

    2005-09-28

    The gas phase is generally ignored in remediation of metals and radionuclides because it is assumed that there is no efficient way to exploit it. In the literal sense, all remediations involve the gas phase because this phase is linked to the liquid and solid phases by vapor pressure and thermodynamic relationships. Remediation methods that specifically use the gas phase as a central feature have primarily targeted volatile organic contaminants, not metals and radionuclides. Unlike many organic contaminants, the vapor pressure and Henry's Law constants of metals and radionuclides are not generally conducive to direct air stripping of dissolved contaminants. Nevertheless, the gas phase can play an important role in remediation of inorganic contaminants and provide opportunities for efficient, cost effective remediation. The objective here is to explore ways in which manipulation of the gas phase can be used to facilitate remediation of metals and radionuclides.

  2. Investigation of the generation of several long-lived radionuclides of importance in fusion reactor technology: Report on a Coordinated Research Program sponsored by the International Atomic Energy Agency

    SciTech Connect

    Smith, D.L.; Pashchenko, A.B.

    1994-05-01

    The IAEA initiated a Coordinated Research Program (CRP) in 1988 to obtain reliable information for 16 long-lived activation reactions of special importance to fusion reactor technology: {sup 27}Al (n, 2n){sup 26}Al, {sup 63}Cu(n,p){sup 63}Ni, {sup 94}Mo(n,p) {sup 94}Nb, {sup 109}Ag(n,2n){sup 108m}Ag, {sup 179}Hf(n,2n) {sup 178m2}Hf, {sup 182}W(n,n{sup `}a){sup 178m2}Hf, {sup 151}Eu(n,2n) {sup 150}gEu, {sup 153}Eu(n,2n){sup 152+m2}Eu, {sup 159}Tb(n, 2n){sup 158}Tb, {sup 158}Dy(n,p){sup 158}Tb, {sup 193}Ir(n,2n) {sup 192m2}Ir, {sup 187}Re(n,2n){sup 186m}Re, {sup 62}Ni(n{gamma}) {sup 63}Ni, {sup 98}Mo(n,{gamma}){sup 99}Mo({beta}-){sup 99}Tc, {sup 165}Ho(n,{gamma}) {sup 166m}Ho and {sup 191}Ir(n,{gamma}){sup 192m2}Ir. this paper documents progress achieved from the start of the program through mid- 1993.

  3. Radionuclide therapy for arthritic knees

    SciTech Connect

    Doepel, L.K.

    1985-02-08

    A new radionuclide therapeutic approach for rheumatoid arthritis of the knee is described. This therapy combines a short-lived radionuclide with a carrier whose physical and chemical characteristics aid retention of the radioactive particles within the joint. Joining a radionuclide to a particulate carrier had not been explored previously as a potential method for inhibiting radiation leakage. The treatment couples the rare earth element dysprosium 165 to ferric hydroxide in macroaggregate form (size range: 3 to 10 ..mu..m). After the relatively inert iron complex penetrates the synovium, it causes cell death. Macrophages and phagocytes clear away the cellular debris, essentially eliminating the synovium.

  4. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  5. FOREWORD: Special issue on radionuclide metrology

    NASA Astrophysics Data System (ADS)

    Simpson, Bruce; Judge, Steven

    2007-08-01

    This special issue of Metrologia on radionuclide metrology is the first of a trilogy on the subject of ionizing radiation measurement, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The idea was first proposed at the 2003 series of CCRI Section meetings, with the general aim of showcasing the relevance and importance of metrology in ionizing radiation to a broader metrological audience. After the 2005 meeting of Section II (measurement of radionuclides), the radioactivity aspect of the project began to move forward in earnest. A working group was set up with the brief that the special issue should be of use by experienced metrologists as an overview of the 'state of the art' to compare progress and scientific content with those in other fields of metrology, as a resource for new metrologists joining the field and as a guide for users of radioactivity to explain how traceability to the international measurement system may be achieved. Since mankind first became aware of the existence of radioactivity just over a century ago (due to its discovery by Becquerel and further work by the Curies), much has been learnt and understood in the interim period. The field of radionuclide metrology that developed subsequently is broad-based and encompasses, amongst others, nuclear physics (experimental and theory), chemistry, mathematics, mathematical statistics, uncertainty analysis and advanced computing for data analysis, simulation and modelling. To determine the activity of radionuclides accurately requires elements of all of these subjects. In more recent decades the focus has been on the practical applications of radioactivity in industry and the health field in particular. In addition, low-level environmental radioactivity monitoring has taken on ever greater importance in the nuclear power era. These developments have required new detection instrumentation and techniques on an ongoing basis to ensure

  6. Drift-Scale Radionuclide Transport

    SciTech Connect

    J. Houseworth

    2004-09-22

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the

  7. (Radiological assessments of radionuclide releases)

    SciTech Connect

    Hoffman, F.O.

    1990-12-28

    As a consequence of the Chernobyl accident, data have been obtained throughout the Northern Hemisphere on the concentrations of radionuclides in air, vegetation, soil, water, and foodstuffs that could be important means of human exposure. At the IAEA's invitation, the traveler reviewed recently published data and handbook summaries. The traveler evaluated the need for revising the default values recommended in Chapter 5, Terrestrial and Aquatic Food Chain Transport,'' of IAEA Safety Series No. 57. All attempts at revision were made to keep the mathematical complexity of the models to a minimum without substantial underestimation of dose to critical population subgroups. The traveler also served as chairman of the Multiple Pathways Working Group of the Coordinated Research Program on VAMP. This group has been established to test predictions of models assessing multiple exposure pathways potentially leading to human exposure to {sup 137}Cs. Testing is carried out for major components of assessment models that predict deposition, environmental transport, food chain bioaccumulation, and subsequent uptake and retention in the human body and dose due to exposure to external gamma radiation.

  8. Radionuclide scintigraphy of bacterial nephritis

    SciTech Connect

    Conway, J.J.; Weiss, S.C.; Shkolnik, A.; Yogev, R.; Firlit, C.; Traisman, E.S.

    1984-01-01

    Pyelonephritis is a leading cause of renal failure and is expected to cost as much as three billion dollars in 1984. The diagnosis of urinary tract infection is usually not difficult. However, localization of the infection within the renal parenchyma as opposed to the collecting system is much more difficult. Flank pain, fever, bacteiuria and evidence of parenchymal involvement by intravenous urography may be absent or unrecognized particularly in the infant. Ultrasound and Nuclear Medicine are advocated as better methods to define parenchymal involvement. Such definition is important in the consideration of treatment since parenchymal involvement of the kidney carries a much more ominous potential outcome than infection restricted to within the collecting system. 38 children with a clinical diagnosis of urinary tract infection were studied. 26 of the patients demonstrated abnormal renal parenchymal findings with Gallium-67 Citrate or Tc-99m Glucoheptonate scintigraphy. Intravenous urography was notably ineffective with only 5 of the 20 interpreted as abnormal due to parenchymal disease or decreased function. 11 were entirely normal while only 5 demonstrated scars or hydronephrosis. Only 10 of 17 patients demonstrated intranvesicoureteral reflux on x-ray or nuclear cystography. Ultrasound depicted 6 of 20 patients as having parenchymal abnormalities. Seven were normal. Nonspecific findings such as dilitation of the renal pelvis or renal enlargement was noted in 11 of the 20 patients. Radionuclide Scintigraphy is the most efficacious modality to detect since acute bacterial nephritis.

  9. Solubility limits on radionuclide dissolution

    SciTech Connect

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  10. Radionuclide evaluation of lung trauma.

    PubMed

    Lull, R J; Tatum, J L; Sugerman, H J; Hartshorne, M F; Boll, D A; Kaplan, K A

    1983-07-01

    Nuclear medicine imaging procedures can play a significant role in evaluating the pulmonary complications that are seen in trauma patients. A quantitative method for measuring increased pulmonary capillary permeability that uses Tc-99m HSA allows early diagnosis of acute respiratory distress syndrome (ARDS) and accurately differentiates this condition from pneumonia or cardiogenic pulmonary edema. This technique may be of great value in following the response to therapy. The use of 133Xe to diagnose inhalation injury remains an important diagnostic tool, particularly at hospitals with specialized burn units. Regional decreases in ventilation-perfusion images reliably localize aspirated foreign bodies. Radionuclide techniques that are used to demonstrate gastropulmonary aspiration remain controversial and require further clinical evaluation. Pulmonary perfusion imaging, although nonspecific, may provide the earliest clue for correct diagnosis of fat embolism, air embolism, contusion, or laceration. Furthermore, the possibility of perfusion abnormality due to these uncommon conditions must be remembered whenever trauma patients are evaluated for pulmonary thromboembolism with scintigraphy. Occasionally, liver or spleen scintigraphy may be the most appropriate procedure when penetrating chest trauma also involves these subdiaphragmatic organs. PMID:6226097

  11. Video instrumentation for radionuclide angiocardiography.

    NASA Technical Reports Server (NTRS)

    Kriss, J. P.

    1973-01-01

    Two types of videoscintiscopes for performing radioisotopic angiocardiography with a scintillation camera are described, and use of these instruments in performing clinical studies is illustrated. Radionuclide angiocardiography is a simple, quick and accurate procedure recommended as a screening test for patients with a variety of congenital and acquired cardiovascular lesions. When performed in conjunction with coronary arterial catheterization, dynamic radionuclide angiography may provide useful information about regional myocardial perfusion. Quantitative capabilities greatly enhance the potential of this diagnostic tool.

  12. Radionuclide salivary gland imaging

    SciTech Connect

    Mishkin, F.S.

    1981-10-01

    Salivary gland imaging with 99mTc as pertechnetate provides functional information concerning trapping and excretion of the parotid and submandibular glands. Anatomic information gained often adds little to clinical evaluation. On the other hand, functional information may detect subclinical involvement, which correlates well with biopsy of the minor labial salivary glands. Salivary gland abnormalities in systemic disease such as sarcoidosis, rheumatoid arthritis, lupus erythematosus, and other collagenvascular disorders may be detected before they result in the clinical manifestaions of Sjoegren's syndrome. Such glands, after initially demonstrating increased trapping in the acute phase, tend to have decreased trapping and failure to discharge pertechnetate in response to an appropriate physiologic stimulus. Increased uptake of gallium-67 citrate often accompanies these findings. Inflammatory parotitis can be suspected when increased perfusion is evident on radionuclide angiography with any agent. The ability of the salivary gland image to detect and categorize mass lesions, which result in focal areas of diminished activity such as tumors, cysts, and most other masses, is disappointing, while its ability to detect and categorize Warthin's tumor, which concentrates pertechnetate, is much more valuable, although not specific.

  13. Radionuclide transport in fractured granite interface zones

    NASA Astrophysics Data System (ADS)

    Hu, Q. H.; Möri, A.

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study migration paths of radionuclides in fractured granite. In this work, a micro-scale mapping technique was applied by interfacing laser ablation sampling with inductively coupled plasma-mass spectrometry (LA-ICP-MS) to detect the small scale (micron-range) distribution of actinides in the interface zones between fractures and the granitic rock matrix. Long-lived 234U, 235U, and 237Np were detected in flow channels, as well as in the diffusion accessible rock matrix, using the sensitive, feature-based mapping of the LA-ICP-MS technique. The retarded actinides are mainly located at the fracture walls and in the fine grained fracture filling material as well as within the immediately adjacent wallrock. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. Actinides studied in this work did not penetrate into the mylonite side as much as into the granite matrix, most likely due to the lower porosity, the enhanced sorption capacity and the disturbed diffusion paths of the mylonite region itself. Overall, the maximum penetration depth detected with this technique for 237Np and uranium isotopes over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modelling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results.

  14. Radionuclides' Content Speciation and Fingerprinting of Nigerian Tin Mining Tailings

    NASA Astrophysics Data System (ADS)

    Olise, F. S.; Oladejo, O. F.; Owoade, O. K.; Almeida, S. M.; Ho, M. D.; Olaniyi, H. B.

    2012-04-01

    Sediment and process-waste samples rich in cassiterite, monazite and zircon, which are of industrial interest, were analysed for the natural series radionuclides, 232Th and 238U and the non-series radionuclide, 40K using instrumental neutron activation analysis (INAA) technique. The natural radionuclides' radioactivity in the samples from the tin-rich areas of Jos, Nigeria was determined using K0-INAA. The obtained results have a high degree of reliability judging from the techniqués accuracy, precision and its non-dependence on secular equilibrium and density correction problems inherent in gamma spectrometry as well as rigorous contamination-prone sample preparation requirements of other methods. Radionuclides speciation and ratios, giving radionuclide fingerprinting of the tin mining tailings is reported. The measured radionuclides activity levels are several orders of magnitude higher than UNSCEAR reference values, revealing the pollution potential of the tin mining and process activities on the surrounding areas, vis-à-vis heavy particulate matter load, leaching into various water channels and direct exposure to gamma rays emitted from the houses and facilities built from the generated wastes. The observed activity levels reflects possible worst scenario situation and the data would not only be of use to the government in its remediation plan for the study area but will also serve as important information for the nuclear science and technology programme about to be embarked upon. Methods of checking exposure have also been suggested.

  15. Methods for determining radionuclide retardation factors: status report

    SciTech Connect

    Relyea, J.F.; Serne, R.J.; Rai, D.

    1980-04-01

    This report identifies a number of mechanisms that retard radionuclide migration, and describes the static and dynamic methods that are used to study such retardation phenomena. Both static and dynamic methods are needed for reliable safety assessments of underground nuclear-waste repositories. This report also evaluates the extent to which the two methods may be used to diagnose radionuclide migration through various types of geologic media, among them unconsolidated, crushed, intact, and fractured rocks. Adsorption is one mechanism that can control radionuclide concentrations in solution and therefore impede radionuclide migration. Other mechanisms that control a solution's radionuclide concentration and radionuclide migration are precipitation of hydroxides and oxides, oxidation-reduction reactions, and the formation of minerals that might include the radionuclide as a structural element. The retardation mechanisms mentioned above are controlled by such factors as surface area, cation exchange capacity, solution pH, chemical composition of the rock and of the solution, oxidation-reduction potential, and radionuclide concentration. Rocks and ground waters used in determining retardation factors should represent the expected equilibrium conditions in the geologic system under investigation. Static test methods can be used to rapidly screen the effects of the factors mentioned above. Dynamic (or column) testing, is needed to assess the effects of hydrodynamics and the interaction of hydrodynamics with the other important parameters. This paper proposes both a standard method for conducting batch Kd determinations, and a standard format for organizing and reporting data. Dynamic testing methods are not presently developed to the point that a standard methodology can be proposed. Normal procedures are outlined for column experimentation and the data that are needed to analyze a column experiment are identified.

  16. Relationships between tumor size and curablity for uniformly targeted therapy with beta-emitting radionuclides

    SciTech Connect

    O`Donoghue, J.A.; Bardies, M.; Wheldon, T.E. |

    1995-10-01

    Targeted radionuclide therapy is a new form of radiotherapy that differs in some important respects from external beam irradiation. One of the most important differences is due to the finite range of ionizing beta particles emitted as a result of radionuclide disintegration. The effects of particle range have important implications for the curability of tumors. We used a mathematical model to examine tumor curability and its relationship to tumor size for 22 beta-emitting radionuclides that may have therapeutic potential. The model assumed a uniform distribution of radionuclide throughout. For targeted radionuclide therapy, the relationship between tumor curability and tumor size is different from that for conventional external beam radiotherapy. With targeted radionuclides, there is an optimal tumor size for cure. Tumors smaller than the optimal size are less vulnerable to irradiation from radionuclides because a substantial proportion of the disintegration energy escapes and is deposited outside the tumor volume. We found an optimal tumor size for radiocurability by each of the 22 radionuclides considered. Optimal cure diameters range from less than 1 mm for short-range emitters such as {sup 199}Au and {sup 33}P to several centimeters for long-range emitters such as {sup 90}Y and {sup 188}Re. The energy emitted per disintegration may be used to predict optimal cure size for uniform distributions of radionuclide. 17 refs., 8 figs., 3 tabs.

  17. Radionuclide Sensors for Water Monitoring

    SciTech Connect

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2003-06-01

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particles in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

  18. Anthropogenic radionuclides in atmospheric air over Switzerland during the last few decades.

    PubMed

    Alvarado, J A Corcho; Steinmann, P; Estier, S; Bochud, F; Haldimann, M; Froidevaux, P

    2014-01-01

    The atmospheric nuclear testing in the 1950s and early 1960s and the burn-up of the SNAP-9A satellite led to large injections of radionuclides into the stratosphere. It is generally accepted that current levels of plutonium and caesium radionuclides in the stratosphere are negligible. Here we show that those radionuclides are present in the stratosphere at higher levels than in the troposphere. The lower content in the troposphere reveals that dry and wet deposition efficiently removes radionuclides within a period of a few weeks to months. Since the stratosphere is thermally stratified and separated from the troposphere by the tropopause, radioactive aerosols remain longer. We estimate a mean residence time for plutonium and caesium radionuclides in the stratosphere of 2.5-5 years. Our results also reveal that strong volcanic eruptions like Eyjafjallajökull in 2010 have an important role in redistributing anthropogenic radionuclides from the stratosphere to the troposphere. PMID:24398434

  19. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.; Cordova, Elsa A.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  20. Inverse problem in radionuclide transport

    SciTech Connect

    Yu, C.

    1988-01-01

    The disposal of radioactive waste must comply with the performance objectives set forth in 10 CFR 61 for low-level waste (LLW) and 10 CFR 60 for high-level waste (HLW). To determine probable compliance, the proposed disposal system can be modeled to predict its performance. One of the difficulties encountered in such a study is modeling the migration of radionuclides through a complex geologic medium for the long term. Although many radionuclide transport models exist in the literature, the accuracy of the model prediction is highly dependent on the model parameters used. The problem of using known parameters in a radionuclide transport model to predict radionuclide concentrations is a direct problem (DP); whereas the reverse of DP, i.e., the parameter identification problem of determining model parameters from known radionuclide concentrations, is called the inverse problem (IP). In this study, a procedure to solve IP is tested, using the regression technique. Several nonlinear regression programs are examined, and the best one is recommended. 13 refs., 1 tab.

  1. Radionuclide detection devices and associated methods

    SciTech Connect

    Mann, Nicholas R.; Lister, Tedd E.; Tranter, Troy J.

    2011-03-08

    Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.

  2. Radionuclides in Chesapeake Bay sediments

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    Natural and manmade gamma-ray emitting radionuclides were measured in Chesapeake Bay sediments taken near the Calvert Cliffs Nuclear Power Plant site. Samples represented several water depths, at six locations, for five dates encompassing a complete seasonal cycle. Radionuclide contents of dry sediments ranged as follows: Tl-208, 40 to 400 pCi/kg; Bi-214, 200 to 800 pCi/kg; K, 0.04 to 2.1 percent; Cs-137 5 to 1900 pCi/kg; Ru106, 40 to 1000 pCikg Co60, 1 to 27 pCi/kg. In general, radionuclide contents were positively correlated with each other and negatively correlated with sediment grain size.

  3. Radionuclide migration studies on tonalite

    SciTech Connect

    Hoelttae, P.; Siitari-Kauppi, M.; Hakanen, M.; Hautojaervi, A.

    1993-12-31

    Migration of water, chloride, sodium, and calcium in tonalite was studied, using dynamic column and static through-diffusion methods. Autoradiography of rocks impregnated with {sup 14}C-methylmethacrylate was introduced in order to determine the spatial porosity distribution, as well as to identify and visualize the migration pathways of non-sorbing radionuclides in tonalite matrix as the mm-cm scale. The migration routes of sorbing radionuclides and the sorptive minerals in tonalite were determined by autoradiographic methods, using {sup 45}Ca as a tracer. Transport of radionuclides was interpreted, using models for hydrodynamic dispersion with diffusion into the rock matrix. In tonalite, porous minerals were distributed homogeneously in matrix and, therefore, retardation capacity of the rock matrix was found to be high.

  4. Radionuclide Imaging of Cardiovascular Infection.

    PubMed

    Ahmed, Fozia Zahir; James, Jackie; Memmott, Matthew J; Arumugam, Parthiban

    2016-02-01

    Owing to expanding clinical indications, cardiac implantable electronic devices (CIEDs) are being increasingly used. Despite improved surgical techniques and the use of prophylactic antimicrobial therapy, the rate of CIED-related infection is also increasing. Infection is a potentially serious complication, with clinical manifestations ranging from surgical site infection and local symptoms in the region of the generator pocket to fulminant endocarditis. The utility of radionuclide imaging as a stand-alone noninvasive diagnostic imaging test in patients with suspected endocarditis has been less frequently examined. This article summarizes the recent advances in radionuclide imaging for evaluation of patients with suspected cardiovascular infections. PMID:26590786

  5. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, Suresh C.; Fawwaz, Rashid A.; Richards, Powell

    1985-01-01

    Lymphocytes labelled with .beta.-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  6. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Richards, P.

    1983-05-03

    Lymphocytes labelled with ..beta..-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  7. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  8. Radionuclide Sensors for Subsurface Water Monitoring

    SciTech Connect

    Timothy DeVol

    2006-06-30

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitoed in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media.

  9. Radionuclide analyses of urine samples: results of an intercomparison

    NASA Astrophysics Data System (ADS)

    Dalheimer, A. R.; Beyer, D.; Günther, E. W.; Henrichs, K.

    1996-02-01

    The measurement of radioactivity concentrations in urine samples is an important tool for monitoring possible radionuclide intakes by occupationally exposed workers, especially for radionuclides emitting alpha or beta radiation. Quality assurance requires systematic intercomparisons involving all laboratories responsible for these measurements. Such analyses were performed by the German—Swiss Radiation Protection Association. The main purpose of these measurements was the specification of criteria for the acceptance of laboratories by radiation protection authorities. This contribution presents some measurement results of Th-nat, 90Sr, and 241Am in urine and discusses the implications for internal dosimetry.

  10. Tumor Immunotargeting Using Innovative Radionuclides

    PubMed Central

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  11. RADIONUCLIDE RISK COEFFICIENT UNCERTAINTY REPORT

    EPA Science Inventory

    EPA has published excess cancer risk coefficients for the US population in Federal Guidance Report 13 (FGR 13). FGR 13 gives separate risk coefficients for food ingestion, water ingestion, inhalation, and external exposure for each of over 800 radionuclides. Some information on...

  12. RADIONUCLIDE SENSORS FOR WATER MONITORING

    EPA Science Inventory

    We propose a research program directed toward developing novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. In order to meet the requirements for isotope specific detection at ultra-low re...

  13. Natural radionuclide accumulation by raindrops

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Martin, Inacio; Shkevov, Rumen; Alves, Mauro

    2016-07-01

    The laboratory of environmental radiation of ITA (São José dos Campos, 23°11'11″S, 45°52'43″W, 650 MAMSL) performs simultaneous monitoring of a natural radiation background and meteorological parameters. A time resolution of up to 1 minute allows a detailed comparison of changes in meteorological parameters with those of a concentration of ambient radon progenies in the atmosphere. Results of a study of variation of a fallout of radon progenies ^{214}Pb and ^{214}Bi concomitanting rainfalls are present. The radionuclide fallout rate is reconstructed from the observed gamma rate through a simulation of the first kind Volterra integral equation with difference kernel, determined by ratio of precipitating rates of 214Pb and 214Bi and their decay half times. An original straightforward step-by-step procedure was used for the numerical solution of the equation. The radionuclide concentration in the rainwater is calculated as a ratio of the reconstructed fallout to the measured rainfall. It was observed that the radionuclide fallout rate increases as the rainfall one in approximately power 0.6, i.e. the same as the mean raindrop volume. The concentration thereafter decreases as the rainfall rate in power 0.4. A numerical simulation of the process of accumulation of the radionuclides during diffusion and coalescence drop growth and aerosol scavenging during a passage from a cloud to the ground was performed. The results of the simulations agree with the experimental data.

  14. Tumor immunotargeting using innovative radionuclides.

    PubMed

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  15. TECHNOLOGIES FOR RADON AND RADIONUCLIDE REMOVAL

    EPA Science Inventory

    This paper provides a summary of the technologies that are currently being used to remove radionuclides from drinking water. The radionuclides that are featured are the radionuclides currently regulated by EPA; radium, radon and uranium. Tehnologies effective for removal of eac...

  16. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, R.L.; Perkins, R.W.; Rieck, H.G.; Wogman, N.A.

    1984-09-12

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  17. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, Ronald L.; Perkins, Richard W.; Rieck, Henry G.; Wogman, Ned A.

    1986-01-01

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  18. Distribution of artificial radionuclides in lacustrine sediments in China.

    PubMed

    Wu, Fengchang; Zheng, Jian; Liao, Haiqing; Yamada, Masatoshi

    2011-07-01

    Establishing accurate historical records of the distribution, inventory and source of artificial radionuclides in the environment is important for environmental monitoring and radiological health protection due to their potential toxicity, and is also useful for identification and risk assessment of possible future environmental inputs of radionuclides from nuclear weapons tests and accidental release from the nuclear fuel reprocessing facilities or nuclear power reactors. A sector-field inductively coupled plasma mass spectrometer was used to study the recent sedimentation of Pu isotopes in 11 lakes in China. The distribution of (137)Cs was investigated using the conventional radiometric analytical methods. Based on the isotopic compositions of Pu and the activity ratio of (137)Cs/(239+240)Pu, the sources of artificial radionuclides were identified. The potential applications of Pu isotopes for sediment dating and for regional and global environmental change studies were discussed. PMID:21498412

  19. Recent research involving the transfer of radionuclides to milk

    SciTech Connect

    Ward, G.M.

    1989-01-01

    The radionuclides in milk, which result from exposure of dairy cows to radioactive fallout, are a major factor in assessment of internal radiation of humans. To evaluate the radionuclide intake of people from fallout-contaminated milk requires information about feed sources and milk distribution. Pasture intake and the shelf-life of milk are important factors in the case of a short-lived radionuclide like /sup 131/I. Large-scale human radiation assessment studies are underway, all of which consider the dairy food chain as a critical component. These include retrospective studies of fallout from nuclear weapons testing at the Nevada site in the 1950s and the impact of the Chernobyl accident on April 26, 1986.

  20. Peptide receptor radionuclide therapy: an overview.

    PubMed

    Dash, Ashutosh; Chakraborty, Sudipta; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F Russ

    2015-03-01

    Peptide receptor radionuclide therapy (PRRT) is a site-directed targeted therapeutic strategy that specifically uses radiolabeled peptides as biological targeting vectors designed to deliver cytotoxic levels of radiation dose to cancer cells, which overexpress specific receptors. Interest in PRRT has steadily grown because of the advantages of targeting cellular receptors in vivo with high sensitivity as well as specificity and treatment at the molecular level. Recent advances in molecular biology have not only stimulated advances in PRRT in a sustainable manner but have also pushed the field significantly forward to several unexplored possibilities. Recent decades have witnessed unprecedented endeavors for developing radiolabeled receptor-binding somatostatin analogs for the treatment of neuroendocrine tumors, which have played an important role in the evolution of PRRT and paved the way for the development of other receptor-targeting peptides. Several peptides targeting a variety of receptors have been identified, demonstrating their potential to catalyze breakthroughs in PRRT. In this review, the authors discuss several of these peptides and their analogs with regard to their applications and potential in radionuclide therapy. The advancement in the availability of combinatorial peptide libraries for peptide designing and screening provides the capability of regulating immunogenicity and chemical manipulability. Moreover, the availability of a wide range of bifunctional chelating agents opens up the scope of convenient radiolabeling. For these reasons, it would be possible to envision a future where the scope of PRRT can be tailored for patient-specific application. While PRRT lies at the interface between many disciplines, this technology is inextricably linked to the availability of the therapeutic radionuclides of required quality and activity levels and hence their production is also reviewed. PMID:25710506

  1. Radionuclides in the Great Lakes basin.

    PubMed Central

    Ahier, B A; Tracy, B L

    1995-01-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  2. Radionuclides in the Great Lakes basin.

    PubMed

    Ahier, B A; Tracy, B L

    1995-12-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  3. Identification of CSF fistulas by radionuclide counting

    SciTech Connect

    Yamamoto, Y.; Kunishio, K.; Sunami, N.; Yamamoto, Y.; Satoh, T.; Suga, M.; Asari, S. )

    1990-07-01

    A radionuclide counting method, performed with the patient prone and the neck flexed, was used successfully to diagnose CSF rhinorrhea in two patients. A normal radionuclide ratio (radionuclide counts in pledget/radionuclide counts in 1-ml blood sample) was obtained in 11 normal control subjects. Significance was determined to be a ratio greater than 0.37. Use of radionuclide counting method of determining CSF rhinorrhea is recommended when other methods have failed to locate a site of leakage or when posttraumatic meningitis suggests subclinical CSF rhinorrhea.

  4. Radionuclide complexation in xylem exudates of plants

    SciTech Connect

    Cataldo, D.A.; McFadden, D.M.; Garland, T.R.; Wildung, R.E.

    1985-04-01

    The plant xylem is the primary avenue for transport of nutrient and pollutant elements from the roots of aerial portions of the plant. It is proposed that the transport of reactive or hydrolyzable ions is facilitated by the formation of stable/soluble complexes with organic metabolites. The xylem exudates of soybean (Glycine max cv. Williams) were characterized as to their inorganic and organic components, complexation patterns for radionuclides, both in vivo and in vitro, and for class fractions of exudates using thin-layer electrophoresis. The radionuclides Pu-238 and Fe-59 were found primarily as organic acid complexes, while Ni-63 and Cd-109 were associated primarily with components of the amono acid fraction. Technetium-99 was found to be uncomplexed and transported as the pertechnetate ion. It was not possible to duplicate fully complexes formed in vivo by back reaction with whole exudates or class fractions, indicating the possible importance of plant induction processes, reaction kinetics and/or the formation of mixed ligand complexes. 28 refs., 4 figs.

  5. Natural radionuclide analysis in chattarpur area of southeastern coastal area of Odisha, India

    NASA Astrophysics Data System (ADS)

    Rautela, Bhagwat; Gusain, Gurupad; Yadav, Manjulata; Sahoo, Sarat; Tokonami, Shinji; Ramola, Rakesh

    2013-08-01

    The energy released in a spontaneous decay process of natural radionuclides is the main source of the total radiation dose to human beings. Natural radionuclides are widely distributed in soil, rocks, air, and groundwater. In present investigation, the analysis of terrestrial radionuclides such as 226Ra, 232Th, and 40K in soil and sand of Chattarpur area of southeastern coast of Odisha has been carried out using NaI(Tl) gamma ray detector. The higher activity concentrations of naturally occurring radionuclides have been reported from the study area. The gamma radiationdose originating from the terrestrial radionuclides was found to vary from 95 to 1813 nGy/h with an average of 700 nGy/h. This study is important to generate a baseline data of radiation exposure in the area. Health hazard effects due to natural radiation exposure are discussed in details.

  6. Radionuclide therapy of adrenal tumors.

    PubMed

    Carrasquillo, Jorge A; Pandit-Taskar, Neeta; Chen, Clara C

    2012-10-01

    Adrenal tumors arising from chromaffin cells will often accumulate radiolabeled metaiodobenzylguanidine (MIBG) and thus are amenable to therapy with I-131 MIBG. More recently, therapy studies have targeted the somatostatin receptors using Lu-177 or Y-90 radiolabeled somatostatin analogs. Because pheochromocytoma (PHEO)/paraganglioma (PGL) and neuroblastoma (NB), which often arise from the adrenals, express these receptors, clinical trials have been performed with these reagents. We will review the experience using radionuclide therapy for targeting PHEO/PGL and NBs. PMID:22718415

  7. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  8. Reliability of Current Biokinetic and Dosimetric Models for Radionuclides: A Pilot Study

    SciTech Connect

    Leggett, Richard Wayne; Eckerman, Keith F; Meck, Robert A.

    2008-10-01

    studied radionuclides. (4) The biokinetics of a radionuclide in the human body typically represents the greatest source of uncertainty or variability in dose per unit intake. (5) Characterization of uncertainty in dose per unit exposure is generally a more straightforward problem for external exposure than for intake of a radionuclide. (6) For many radionuclides the most important outcome of a large-scale critical evaluation of databases and biokinetic models for radionuclides is expected to be the improvement of current models. Many of the current models do not fully or accurately reflect available radiobiological or physiological information, either because the models are outdated or because they were based on selective or uncritical use of data or inadequate model structures. In such cases the models should be replaced with physiologically realistic models that incorporate a wider spectrum of information.

  9. Fracture occurrence from radionuclides in the skeleton

    SciTech Connect

    Lloyd, R.D.; Taylor, G.N.; Miller, S.C.

    2000-06-01

    Because skeletal fractures were an important finding among persons contaminated with {sup 226}Ra, experience with fractures among dogs in the colony was summarized to determine the projected significance for persons contaminated with bone-seeking radionuclides. Comparison by Fisher's Exact Test of lifetime fracture occurrence in the skeletons of beagles injected as young adults suggested that for animals given {sup 226}Ra, {sup 228}Ra, {sup 228}Th, or {sup 239}Pu citrate, there was probably an excess over controls in fractures of the ribs, leg bones, spinous processes, and pelvis (os coxae) plus the mandible for dogs given {sup 226}Ra and the scapulae for dogs given {sup 228}Ra or 228 Th. Regression analysis indicated that significantly elevated fracture occurrence was especially notable at the higher radiation doses, at about 50 Gy average skeletal dose for {sup 239}Pu, 140 Gy for {sup 226}Ra, about 40 Gy for {sup 228}Ra, and more than 15 Gy for {sup 228}Th. The average number of fractures per dog was significantly elevated over that noted in controls for the highest radiation doses of {sup 239}Pu and {sup 226}Ra and for the higher doses of {sup 228}Ra and {sup 228}Th. For those dogs given {sup 90}Sr citrate, there was virtually no important difference from control beagles not given radionuclides, even at group mean cumulative skeletal radiation doses up to 101 Gy. Because of a large proportion of dogs with fractures that died with bone malignancy (even at dosage levels lower than those exhibiting an excess average number of fractures per dog), they conclude that fracture would not be an important endpoint at lower levels of plutonium contamination in humans such as would be expected to occur from occupational or environmental exposure.

  10. Radionuclide behavior in the environment

    SciTech Connect

    Tveten, U. )

    1991-09-01

    The purpose of this report is to document the results of the following task: Review for quality and consistency the available data on measurements of initial ground contamination of Chernobyl radionuclides in various parts of Norway and subsequent concentrations of these radionuclides in various environmental media as functions of time. Utilize the data obtained to verify the existing models, or to improve them, for describing radionuclide behavior in the environment. Some of the processes standard were: migration into soil; weathering; resuspension; food-chain contamination; and loss or reconcentration by run-off. The task performed within this contract has been to use post-Chernobyl data from Norway to verify or find areas for possible improvement in the chronic exposure pathway models utilized in MACCS. Work has consisted mainly of collecting and evaluating post-Chernobyl information from Norway or other countries when relevant; but has also included experimental work performed specifically for the current task. In most connections the data available show the models and data in MACCS to be appropriate. A few areas where the data indicate that the MACCS approach is faulty or inadequate are, however, pointed out in the report. These should be examined carefully, and appropriate modifications should eventually be made. 14 refs., 12 figs., 22 tabs.

  11. Which radionuclide, carrier molecule and clinical indication for alpha-immunotherapy?

    PubMed

    Guerard, F; Barbet, J; Chatal, J F; Kraeber-Bodere, F; Cherel, M; Haddad, F

    2015-06-01

    Beta-emitting radionuclides are not able to kill isolated tumor cells disseminated in the body, even if a high density of radiolabeled molecules can be targeted at the surface of these cells because the vast majority of emitted electrons deliver their energy outside the targeted cells. Alpha-particle emitting radionuclides may overcome this limitation. It is thus of primary importance to test and validate the radionuclide of choice, the most appropriate carrier molecule and the most promising clinical indication. Four α-particle emitting radionuclides have been or are clinically tested in phase I studies namely 213Bi, 225Ac, 212Pb and 211At. Clinical safety has been documented and encouraging efficacy has been shown for some of them (213Bi and 211At). 211At has been the most studied and could be the most promising radionuclide but 225Ac and 212Pb are also of potential great interest. Any carrier molecule that has been labeled with β-emitting radionuclides could be labeled with alpha particle-emitting radionuclide using, for some of them, the same chelating agents. However, the physical half-life of the radionuclide should match the biological half-life of the radioconjugate or its catabolites. Finally everybody agrees, based on the quite short range of alpha particles, on the fact that the clinical indications for alpha-immunotherapy should be limited to the situation of disseminated minimal residual diseases made of small clusters of malignant cells or isolated tumor cells. PMID:25752501

  12. Radionuclide daughter inventory generator code: DIG

    SciTech Connect

    Fields, D.E.; Sharp, R.D.

    1985-09-01

    The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes daughter radionuclides that should be considered in these subsequent processes or for inclusion in a pollutant source term. Output of the DIG code also summarizes radionuclide decay constants. The DIG code was developed specifically to assist the user of the PRESTO-II methodology and code in preparing data sets and accounting for possible daughter ingrowth in wastes buried in shallow-land disposal areas. The DIG code is also useful in preparing data sets for the PRESTO-EPA code. Daughter ingrowth in buried radionuclides and in radionuclides that have been leached from the wastes and are undergoing hydrologic transport are considered, and the quantities of daughter radionuclide are calculated. Radionuclide decay constants generated by DIG and included in the DIG output are required in the PRESTO-II code input data set. The DIG accesses some subroutines written for use with the CRRIS system and accesses files containing radionuclide data compiled by D.C. Kocher. 11 refs.

  13. Systemic targeted radionuclide therapy: Potential new areas

    SciTech Connect

    Wong, Jeffrey Y.C. . E-mail: jwong@coh.org

    2006-10-01

    Radiation oncology is entering an exciting new era with therapies being delivered in a targeted fashion through an increasing number of novel approaches. External beam radiotherapy now integrates functional and anatomic tumor imaging to guide delivery of conformal radiation to the tumor target. Systemic targeted radionuclide therapy (STaRT) adds an important new dimension by making available to Radiation oncologist biologically targeted radiation therapy. Impressive clinical results with antibody-targeted radiotherapy, leading to the Food and Drug Administration's approval of two anti-CD20 radiolabeled antibodies, highlight the potential of STaRT. Optimization strategies will further improve the efficacy of STaRT by improving delivery systems, modifying the tumor microenvironment to increase targeted dose, and maximizing dose effect. Ultimately, the greatest potential for STaRT will not be as monotherapy, but as therapy integrated into established multimodality regimens and used as adjuvant or consolidative therapy in patients with minimal or micrometastatic disease.

  14. Comparisons of activity measurements with radionuclide calibrators.

    PubMed

    Oropesa, P; Hernández, A T; Serra, R; Martínez, E; Varela, C

    2003-01-01

    The correct administration to a patient of the prescribed activity of a radiopharmaceutical is an important factor to ensure the confidence in the diagnosis or the therapeutic efficiency, while at the same time keeping the unnecessary human exposure as low as possible. Comparisons of activity measurements for 131I, 201Tl and 99mTc with radionuclide calibrators were organized the first time in Cuba during 2002 with the aim of obtaining information about the quality of administration of radiopharmaceuticals. Ten Cuban nuclear medicine departments and the laboratories involved in the production of these kinds of compounds participated in the comparison runs. The results presented in this paper facilitated the identification of several problems and initiated corrective actions. In addition, they indicate the necessity of establishing Quality Systems in nuclear medicine in Cuba. PMID:14622940

  15. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.

  16. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  17. Reuse of Material Containing Natural Radionuclides - 12444

    SciTech Connect

    Metlyaev, E.G.; Novikova, N.J.

    2012-07-01

    Disposal of and use of wastes containing natural radioactive material (NORM) or technologically enhanced natural radioactive material (TENORM) with excessive natural background as a building material is very important in the supervision body activity. At the present time, the residents of Octyabrsky village are under resettlement. This village is located just near the Priargunsky mining and chemical combine (Ltd. 'PPGHO'), one of the oldest uranium mines in our country. The vacated wooden houses in the village are demolished and partly used as a building material. To address the issue of potential radiation hazard of the wooden beams originating from demolition of houses in Octyabrsky village, the contents of the natural radionuclides (K-40, Th-232, Ra-226, U- 238) are being determined in samples of the wooden beams of houses. The NORM contents in the wooden house samples are higher, on average, than their content in the reference sample of the fresh wood shavings, but the range of values is rather large. According to the classification of waste containing the natural radionuclides, its evaluation is based on the effective specific activity. At the effective specific activity lower 1.5 kBq/kg and gamma dose rate lower 70 μR/h, the material is not considered as waste and can be used in building by 1 - 3 classes depending upon A{sub eff} value. At 1.5 kBq/kg < A{sub eff} ≤ 4 kBq/kg (4 class), the wooden beams might be used for the purpose of the industrial building, if sum of ratios between the radionuclide specific activity and its specific activity of minimum significance is lower than unit. The material classified as the waste containing the natural radionuclides has A{sub eff} higher 1.5 kBq /kg, and its usage for the purpose of house-building and road construction is forbidden. As for the ash classification and its future usage, such usage is unreasonable, because, according to the provided material, more than 50% of ash samples are considered as radioactive

  18. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  19. Targeted Radionuclide Therapy of Human Tumors

    PubMed Central

    Gudkov, Sergey V.; Shilyagina, Natalya Yu.; Vodeneev, Vladimir A.; Zvyagin, Andrei V.

    2015-01-01

    Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed. PMID:26729091

  20. Chemical speciation of radionuclides migrating in groundwaters

    SciTech Connect

    Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S.; Cooper, E.; Hartwig, P.; Killey, R.

    1994-04-01

    In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., {sup 60}Co and {sup 106}Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters.

  1. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  2. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  3. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  4. Radionuclide transfer to fruit in the IAEA TRS No. 472

    NASA Astrophysics Data System (ADS)

    Carini, F.; Pellizzoni, M.; Giosuè, S.

    2012-04-01

    This paper describes the approach taken to present the information on fruits in the IAEA report TRS No. 472, supported by the IAEA-TECDOC-1616, which describes the key transfer processes, concepts and conceptual models regarded as important for dose assessment, as well as relevant parameters for modelling radionuclide transfer in fruits. Information relate to fruit plants grown in agricultural ecosystems of temperate regions. The relative significance of each pathway after release of radionuclides depends upon the radionuclide, the kind of crop, the stage of plant development and the season at time of deposition. Fruit intended as a component of the human diet is borne by plants that are heterogeneous in habits, and morphological and physiological traits. Information on radionuclides in fruit systems has therefore been rationalised by characterising plants in three groups: woody trees, shrubs, and herbaceous plants. Parameter values have been collected from open literature, conference proceedings, institutional reports, books and international databases. Data on root uptake are reported as transfer factor values related to fresh weight, being consumption data for fruits usually given in fresh weight.

  5. Therapy for incorporated radionuclides: scope and need

    SciTech Connect

    Smith, V.H.

    1981-03-01

    In the United States the recent termination of funding for research on therapy for incorporated radionuclides has virtually halted progress on improved or new agents and procedures for removing radioactivity from the body. Research was eliminated, but is still needed on new removal agents, improved delivery system, in vitro test systems, and the toxicology of treatments. For many radionuclides, no adequate therapy exists. The relationship between radionuclide removal and reduction in cancer risk is still unanswered. Without proper research support, needed improvements in the treatment for incorporated radionuclides in the US are uncertain.

  6. Ion binding compounds, radionuclide complexes, methods of making radionuclide complexes, methods of extracting radionuclides, and methods of delivering radionuclides to target locations

    DOEpatents

    Chen, Xiaoyuan; Wai, Chien M.; Fisher, Darrell R.

    2000-01-01

    The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.

  7. Acute gangrenous cholecystitis: radionuclide diagnosis

    SciTech Connect

    Brachman, M.B.; Tanasescu, D.E.; Ramanna, L.; Waxman, A.D.

    1984-04-01

    Radionuclide hepatobiliary imaging with Tc-99m IDA is a useful procedure for the diagnosis of acute cholecystitis. Visualization of the gallbladder essentially rules out acute cholecystitis. Nonvisualization suggest acute cholecystitis but may also be associated with chronic gallbladder disease or other conditions. The authors recently observed five patients in whom a rim of increased parenchymal liver activity was seen adjacent to the gallbladder fossa. All five patients had acute gangrenous cholecystitis. The rim of increased activity appears to be a useful secondary sign of acute cholecystitis.

  8. Patient selection for personalized peptide receptor radionuclide therapy using Ga-68 somatostatin receptor PET/CT.

    PubMed

    Kulkarni, Harshad R; Baum, Richard P

    2014-01-01

    Neuroendocrine tumors are malignant solid tumors originating from neuroendocrine cells dispersed throughout the body. Differentiated neuroendocrine tumors overexpress somatostatin receptors (SSTRs), which enable the diagnosis using radiolabeled somatostatin analogues. Internalization and retention within the tumor cell are important for peptide receptor radionuclide therapy using the same peptide. The use of the same DOTA-peptide for SSTR PET/CT using (68)Ga and for peptide receptor radionuclide therapy using therapeutic radionuclides like (177)Lu and (90)Y offers a unique theranostic advantage. PMID:25029937

  9. Radionuclides and the birds at Ravenglass.

    PubMed

    Lowe, V P

    1991-01-01

    Since 1983, concern has been expressed about the apparent decline in numbers of birds in the Ravenglass estuary in west Cumbria, particularly of the black-headed gull colony on the Drigg dunes, and suggestions have been made that this decline might be due to excessive radiation in the birds' food and their general environment. Twelve species of marine invertebrates from Ravenglass, most of them known to be important foods for birds, were analysed, and further samples were taken from sites along the west Cumbrian coast. None of these samples showed excessive contamination with any of the radionuclides analysed. Analysis of a sample of bird carcasses from the areas showed oystercatchers (Haematopus ostralegus) and shelduck (Tadorna tadorna) to have some of the highest concentrations of (137)Cs in their tissues; yet their breeding success and populations were not affected. Black-headed gulls, on the other hand, were found to be feeding mainly inland, and were the least contaminated with radionuclides of all the birds at Ravenglass, yet this species and its breeding success were in decline. Calculations of the total dose equivalent rate to the whole body of the most contaminated black-headed gull amounted to 9.8 x 10(-4) mSvh(-1) (approximately equal to 8.4 x 10(-4) mGy h(-1), whole body absorbed dose rate), and the background exposure dose was of the order of 8.3 x 10(-4) mGy h(-1). As a minimum chronic dose of 1000 mGy day(-1) has been found necessary to retard growth of nestling birds, and 9600 mGy over 20 days of incubation to cause the death of 50% of embryos in black-headed gulls' eggs, the concentrations of radionuclides in the foods, body tissues and general environment were at least three orders of magnitude too low to have had any effect. The more likely cause of the desertion of the gullery was the combination of an uncontrolled fox population, the severest outbreak of myxomatosis amongst the rabbits since 1954 and the driest May-July period on record, all

  10. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    SciTech Connect

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs.

  11. Hysterosalpingo-radionuclide scintigraphy (HERS)

    SciTech Connect

    Iturralde, M.; Venter, P.F.

    1981-10-01

    A radionuclide procedure, hysterosalpingo-radionuclide scintigraphy (HERS), was designed to evaluate the migration of a particulate radioactive tracer from the vagina to the peritoneal cavity and ovaries as well as to image and functionally outline the patency of the pathways between these two extremes of the female reproductive system. Technetium-99m human albumin microspheres (99mTc-HAM) were deposited in the posterior fornices of patients who were divided into two specific groups. Group I consisted of patients who were to undergo different elective gynecologic operations, in which besides obtaining sequential images, radioactivity levels were measured in the removed organs and tissues. Group II consisted of patients referred by the Infertility Clinic for evaluation of their reproductive system pathways patency. In this latter group, HERS was compared with contrast hysterosalpingography (HSG) and peritoneoscopy (PCP). The results obtained from measurements of radioactivity levels on the removed surgical specimens and comparison with other conventional gynecologic diagnostic procedures provide accurate evidence of the migration of 99mTc-HAM from the vagina, through the uterus and tubes, to the peritoneal cavity and ovaries, and show that HERS is a simple noninvasive method for functionally imaging and assessing the patency of the female reproductive system pathways.

  12. Hydrogeological interpretation of natural radionuclide contents in Austrian groundwaters

    NASA Astrophysics Data System (ADS)

    Schubert, Gerhard; Berka, Rudolf; Hörhan, Thomas; Katzlberger, Christian; Landstetter, Claudia; Philippitsch, Rudolf

    2010-05-01

    The Austrian Agency for Health and Food Safety (AGES) stores comprehensive data sets of radionuclide contents in Austrian groundwater. There are several analyses concerning Rn-222, Ra-226, gross alpha and gross beta as well as selected analyses of Ra-228, Pb-210, Po-210, Uranium and U-234/U-238. In a current project financed by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, AGES and the Geological Survey of Austria (GBA) are evaluating these data sets with regard to the geological backgrounds. Several similar studies based on groundwater monitoring have been made in the USA (for instance by Focazio, M.J., Szabo, Z., Kraemer, T.F., Mullin, A.H., Barringer, T.H., De Paul, V.T. (2001): Occurrence of selected radionuclides in groundwater used for drinking water in the United States: a reconnaissance survey, 1998. U.S. Geological Survey Water-Resources Investigations Report 00-4273). The geological background for the radionuclide contents of groundwater will be derived from geological maps in combination with existing Thorium and Uranium analyses of the country rocks and stream-sediments and from airborne radiometric maps. Airborne radiometric data could contribute to identify potential radionuclide hot spot areas as only airborne radiometric mapping could provide countrywide Thorium and Uranium data coverage in high resolution. The project will also focus on the habit of the sampled wells and springs and the hydrological situation during the sampling as these factors can have an important influence on the Radon content of the sampled groundwater (Schubert, G., Alletsgruber, I., Finger, F., Gasser, V., Hobiger, G. and Lettner, H. (2010): Radon im Grundwasser des Mühlviertels (Oberösterreich) Grundwasser. - Springer (in print). Based on the project results an overview map (1:500,000) concerning the radionuclide potential should be produced. The first version should be available in February 2011.

  13. Radionuclide Transport in Fracture-Granite Interface Zones

    SciTech Connect

    Hu, Q; Mori, A

    2007-09-12

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-based mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.

  14. Evaluation of radionuclide geochemical information for Department of Energy candidate high-level waste repositories

    SciTech Connect

    Kelmers, A.D.; Seeley, F.G.; Arnold, W.D.; Meyer, R.E.; Smith, F.J.; Jacobs, G.K.; Lee, S.Y.

    1984-01-01

    The experimental work to date has investigated the behavior of technetium, neptunium, and uranium since these may be among the more important key radionuclides. Batch contact methodology under experimental conditions representative of the repository far field are being conducted in order to determine the sorption isotherm and apparent concentration limit. Some column chromatographic experiments are being carried out to explore sorption/desorption disequilibrium and the effects of multiple species or forms of radionuclides.

  15. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  16. EVALUATION OF RADIONUCLIDE ACCUMULATION IN SOIL DUE TO LONG-TERM IRRIGATION

    SciTech Connect

    De Wesley Wu

    2006-04-16

    Radionuclide accumulation in soil due to long-term irrigation is an important part of the model for predicting radiation dose in a long period of time. The model usually assumes an equilibrium condition in soil with a constant irrigation rate, so that radionuclide concentration in soil does not change with time and can be analytically solved. This method is currently being used for the dose assessment in the Yucca Mountain project, which requires evaluating radiation dose for a period of 10,000 years. There are several issues associated with the method: (1) time required for the equilibrium condition, (2) validity of constant irrigation rate, (3) agricultural land use for a long period of time, and (4) variation of a radionuclide concentration in water. These issues are evaluated using a numerical method with a simple model built in the GoldSim software. Some key radionuclides, Tc-99, Np-237, Pu-239, and Am-241 are selected as representative radionuclides. The results indicate that the equilibrium model is acceptable except for a radionuclide that requires long time to accumulate in soil and that its concentration in water changes dramatically with time (i.e. a sharp peak). Then the calculated dose for that radionuclide could be overestimated using the current equilibrium method.

  17. Detecting low levels of radionuclides in fluids

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    2000-01-01

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  18. Sensors and Automated Analyzers for Radionuclides

    SciTech Connect

    Grate, Jay W.; Egorov, Oleg B.

    2003-03-27

    The production of nuclear weapons materials has generated large quantities of nuclear waste and significant environmental contamination. We have developed new, rapid, automated methods for determination of radionuclides using sequential injection methodologies to automate extraction chromatographic separations, with on-line flow-through scintillation counting for real time detection. This work has progressed in two main areas: radionuclide sensors for water monitoring and automated radiochemical analyzers for monitoring nuclear waste processing operations. Radionuclide sensors have been developed that collect and concentrate radionuclides in preconcentrating minicolumns with dual functionality: chemical selectivity for radionuclide capture and scintillation for signal output. These sensors can detect pertechnetate to below regulatory levels and have been engineered into a prototype for field testing. A fully automated process monitor has been developed for total technetium in nuclear waste streams. This instrument performs sample acidification, speciation adjustment, separation and detection in fifteen minutes or less.

  19. Analysis of fission and activation radionuclides produced by a uranium-fueled nuclear detonation and identification of the top dose-producing radionuclides.

    PubMed

    Kraus, Terry; Foster, Kevin

    2014-08-01

    The radiological assessment of the nuclear fallout (i.e., fission and neutron-activation radionuclides) from a nuclear detonation is complicated by the large number of fallout radionuclides. This paper provides the initial isotopic source term inventory of the fallout from a uranium-fueled nuclear detonation and identifies the significant and insignificant radiological dose producing radionuclides over 11 dose integration time periods (time phases) of interest. A primary goal of this work is to produce a set of consistent, time phase-dependent lists of the top dose-producing radionuclides that can be used to prepare radiological assessment calculations and data products (e.g., maps of areas that exceed protective action guidelines) in support of public and worker protection decisions. The ranked lists of top dose-producing radionuclides enable assessors to perform atmospheric dispersion modeling and radiological dose assessment modeling more quickly by using relatively short lists of radionuclides without significantly compromising the accuracy of the modeling and the dose projections. This paper also provides a superset-list of the top dose-producing fallout radionuclides from a uranium-fueled nuclear detonation that can be used to perform radiological assessments over any desired time phase. Furthermore, this paper provides information that may be useful to monitoring and sampling and laboratory analysis personnel to help understand which radionuclides are of primary concern. Finally, this paper may be useful to public protection decision makers because it shows the importance of quickly initiating public protection actions to minimize the radiological dose from fallout. PMID:24978286

  20. Radionuclide Transport in Tuff and Carbonate Fractures from Yucca Flat, Nevada Test Site

    SciTech Connect

    Zavarin, M; Johnson, M R; Roberts, S K; Pletcher, R; Rose, T P; Kersting, A B; Eaton, G; Hu, Q; Ramon, E; Walensky, J; Zhao, P

    2006-02-01

    In the Yucca Flat basin of the Nevada Test Site (NTS), 747 shaft and tunnel nuclear detonations were conducted primarily within the tuff confining unit (TCU) or the overlying alluvium. The TCU in the Yucca Flat basin is hypothesized to reduce radionuclide migration to the regional carbonate aquifer (lower carbonate aquifer) due to its wide-spread aerial extent and chemical reactivity. However, shortcuts through the TCU by way of fractures may provide a migration path for radionuclides to the lower carbonate aquifer (LCA). It is, therefore, imperative to understand how radionuclides migrate or are retarded in TCU fractures. Furthermore, understanding the migration behavior of radionuclides once they reach the fractured LCA is important for predicting contaminant transport within the regional aquifer. The work presented in this report includes: (1) information on the radionuclide reactive transport through Yucca Flat TCU fractures (likely to be the primary conduit to the LCA), (2) information on the reactive transport of radionuclides through LCA fractures and (3) data needed to calibrate the fracture flow conceptualization of predictive models. The predictive models are used to define the extent of contamination for the Underground Test Area (UGTA) project. Because of the complex nature of reactive transport in fractures, a stepwise approach to identifying mechanisms controlling radionuclide transport was used. In the first set of TCU experiments, radionuclide transport through simple synthetic parallel-plate fractured tuff cores was examined. In the second, naturally fractured TCU cores were used. For the fractured LCA experiments, both parallel-plate and rough-walled fracture transport experiments were conducted to evaluate how fracture topography affects radionuclide transport. Tuff cores were prepared from archived UE-7az and UE-7ba core obtained from the USGS core library, Mercury, Nevada. Carbonate cores were prepared from archived ER-6-1 core, also obtained

  1. Cosmogenic radionuclides in stone meteorites

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    This document presents the techniques and compilation of results of cosmogenic Al-26 measurements at Goddard Space Flight Center on 91 samples of 76 stone meteorites. Short-lived radionuclides, including Na-22, Sc-46, Mn-54, and Co-60, were measured in 13 of these meteorites. About one-third of these data has not previously been published. The results are discussed briefly in terms of (1) depletion of Al-26 and natural potassium due to weathering, (2) possible exposure of several chondrites to an unusually high cosmic-ray flux, (3) comparison of Al-26, Na-22, Sc-46, and Mn5-54 in chondrites with the spallation Ne-22/Ne-21 ratio as a shielding indicator, and (4) comparison of (Al-26)-(Ne-22)/Ne-21 data for achondrite classes with the chondrite trend.

  2. Transverse section radionuclide scanning system

    DOEpatents

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  3. Targeted Radionuclide Therapy of Melanoma.

    PubMed

    Norain, Abdullah; Dadachova, Ekaterina

    2016-05-01

    An estimated 60,000 individuals in the United States and 132,000 worldwide are yearly diagnosed with melanoma. Until recently, treatment options for patients with stages III-IV metastatic disease were limited and offered marginal, if any, improvement in overall survival. The situation changed with the introduction of B-RAF inhibitors and anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed cell death protein 1 immunotherapies into the clinical practice. With only some patients responding well to the immune therapies and with very serious side effects and high costs of immunotherapy, there is still room for other approaches for the treatment of metastatic melanoma. Targeted radionuclide therapy of melanoma could be divided into the domains of radioimmunotherapy (RIT), radiolabeled peptides, and radiolabeled small molecules. RIT of melanoma is currently experiencing a renaissance with the clinical trials of alpha-emitter (213)Bi-labeled and beta-emitter (188)Rhenium-labeled monoclonal antibodies in patients with metastatic melanoma producing encouraging results. The investigation of the mechanism of efficacy of melanoma RIT points at killing of melanoma stem cells by RIT and involvement of immune system such as complement-dependent cytotoxicity. The domain of radiolabeled peptides for targeted melanoma therapy has been preclinical so far, with work concentrated on radiolabeled peptide analogues of melanocyte-stimulating hormone receptor and on melanin-binding peptides. The field of radiolabeled small molecule produced radioiodinated benzamides that cross the cellular membrane and bind to the intracellular melanin. The recent clinical trial demonstrated measurable antitumor effects and no acute or midterm toxicities. We are hopeful that the targeted radionuclide therapy of metastatic melanoma would become a clinical reality as a stand-alone therapy or in combination with the immunotherapies such as anti-PD1 programmed cell death protein 1 monoclonal antibodies

  4. Criteria for the selection of radionuclides for tumor radioimmunotherapy

    SciTech Connect

    Srivastava, S.C.; Mausner, L.F.; Mease, R.C.

    1991-01-01

    The potential of utilizing monoclonal antibodies as carriers of radionuclides for the selective destruction of tumors (radioimmunotherapy, RIT) has stimulated much research activity. From dosimetric and other considerations, the choice of radiolabel is an important factor that needs to be optimized for maximum effectiveness of RIT. This paper reviews and assesses a number of present and future radionuclides that are particularly suitable for RIT based on the various physical, chemical, and biological considerations. Intermediate to high-energy beta emitters' (with and without gamma photons in their emission) are emphasized since they possess a number of advantages over alpha and Auger emitters. Factors relating to the production and availability of candidate radiometals as well as their stable chemical attachment to monoclonal antibodies are discussed. 34 refs., 4 tabs.

  5. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals.

    PubMed

    Bhattacharyya, Sibaprasad; Dixit, Manish

    2011-06-21

    Metallic radionuclides are the mainstay of both diagnostic and therapeutic radiopharmaceuticals. Therapeutic nuclear medicine is less advanced but has tremendous potential if the radionuclide is accurately targeted. Great interest exists in the field of inorganic chemistry for developing target specific radiopharmaceuticals based on radiometals for non-invasive disease detection and cancer radiotherapy. This perspective will focus on the nuclear properties of a few important radiometals and their recent applications to developing radiopharmaceuticals for imaging and therapy. Other topics for discussion will include imaging techniques, radiotherapy, analytical techniques, and radiation safety. The ultimate goal of this perspective is to introduce inorganic chemists to the field of nuclear medicine and radiopharmaceutical development, where many applications of fundamental inorganic chemistry can be found. PMID:21541393

  6. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals†

    PubMed Central

    Dixit, Manish

    2013-01-01

    Metallic radionuclides are the mainstay of both diagnostic and therapeutic radiopharmaceuticals. Therapeutic nuclear medicine is less advanced but has tremendous potential if the radionuclide is accurately targeted. Great interest exists in the field of inorganic chemistry for developing target specific radiopharmaceuticals based on radiometals for non-invasive disease detection and cancer radiotherapy. This perspective will focus on the nuclear properties of a few important radiometals and their recent applications to developing radiopharmaceuticals for imaging and therapy. Other topics for discussion will include imaging techniques, radiotherapy, analytical techniques, and radiation safety. The ultimate goal of this perspective is to introduce inorganic chemists to the field of nuclear medicine and radiopharmaceutical development, where many applications of fundamental inorganic chemistry can be found. PMID:21541393

  7. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals†

    PubMed Central

    Cai, Zhengxin; Anderson, Carolyn J.

    2014-01-01

    The development of chelating agents for copper radionuclides in positron emission tomography radiopharmaceuticals has been a highly active and important area of study in recent years. The rapid evolution of chelators has resulted in highly specific copper chelators that can be readily conjugated to biomolecules and efficiently radiolabeled to form stable complexes in vivo. Chelators are not only designed for conjugation to monovalent biomolecules but also for incorporation into multivalent targeting ligands such as theranostic nanoparticles. These advancements have strengthened the role of copper radionuclides in the fields of nuclear medicine and molecular imaging. This review emphasizes developments of new copper chelators that have most greatly advanced the field of copper-based radiopharmaceuticals over the past 5 years. PMID:24347474

  8. Superiority of radionuclide over oximetric measurement of left to right shunts.

    PubMed Central

    Baker, E J; Ellam, S V; Lorber, A; Jones, O D; Tynan, M J; Maisey, M N

    1985-01-01

    In 100 children with suspected left to right shunts the ratio of pulmonary to systemic flow was measured both by oximetry and first pass radionuclide angiography. The pulmonary time activity curve from the radionuclide study was analysed by the method of gamma variate fits. There was strong correlation between the two techniques; weaker correlation was found when the shunt was at atrial rather than ventricular level. This difference can be explained only by problems with the oximetric rather than the radionuclide technique. Although there are important limitations to the radionuclide method, it is the more precise and less invasive of the two and is to be preferred when the accurate measurement of left to right shunts is required. PMID:3994867

  9. Natural radionuclides in ground waters and cores

    SciTech Connect

    Laul, J.C.; Smith, M.R.; Maiti, T.C.

    1988-01-01

    Investigations of natural radionuclides of uranium and thorium decay series in site-specific ground waters and cores (water/rock interaction) can provide information on the expected migration behavior of their radioactive waste and analog radionuclides in the unlikely event of radioactive releases from a repository. These data in ground waters can provide in situ retardation and sorption/desorption parameters for transport models and their associated kinetics (residence time). These data in cores can also provide information on migration or leaching up to a period of about one million years. Finally, the natural radionuclide data can provide baseline information for future monitoring of possible radioactive waste releases. The natural radionuclides of interest are {sup 238}U, {sup 234}Th, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 222}Rn, {sup 210}Pb, {sup 210}Bi, {sup 210}Po, {sup 232}Th, {sup 228}Ra, {sup 228}Th, and {sup 224}Ra. The half-lives of the daughter radionuclides range from 3 days to 2.5 x 10{sup 5} yr. The data discussed are for low ionic strength ground waters from the Hanford (basalt) site and briny ground waters (high ionic strength) and cores from the Deaf Smith salt site. Similar applications of the natural radionuclide data can be extended to the Nevada Tuff repository site and subseabed disposal site. The concentrations of uranium, thorium, radium, lead, and polonium radionuclides are generally very low in ground waters. However, significant differences in disequilibrium exist between basalt and briny ground waters.

  10. 2010 LANL radionuclide air emissions report /

    SciTech Connect

    Fuehne, David P.

    2011-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  11. 2009 LANL radionuclide air emissions report

    SciTech Connect

    Fuehne, David P.

    2010-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2009. This report meets the reporting requirements established in the regulations.

  12. 2008 LANL radionuclide air emissions report

    SciTech Connect

    Fuehne, David P.

    2009-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2008. This report meets the reporting requirements established in the regulations.

  13. Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples.

    PubMed

    Hou, Xiaolin; Roos, Per

    2008-02-11

    The radiometric methods, alpha (alpha)-, beta (beta)-, gamma (gamma)-spectrometry, and mass spectrometric methods, inductively coupled plasma mass spectrometry, accelerator mass spectrometry, thermal ionization mass spectrometry, resonance ionization mass spectrometry, secondary ion mass spectrometry, and glow discharge mass spectrometry are reviewed for the determination of radionuclides. These methods are critically compared for the determination of long-lived radionuclides important for radiation protection, decommissioning of nuclear facilities, repository of nuclear waste, tracer application in the environmental and biological researches, these radionuclides include (3)H, (14)C, (36)Cl, (41)Ca, (59,63)Ni, (89,90)Sr, (99)Tc, (129)I, (135,137)Cs, (210)Pb, (226,228)Ra, (237)Np, (241)Am, and isotopes of thorium, uranium and plutonium. The application of on-line methods (flow injection/sequential injection) for separation of radionuclides and automated determination of radionuclides is also discussed. PMID:18215644

  14. System and method for assaying a radionuclide

    DOEpatents

    Cadieux, James R; King, III, George S; Fugate, Glenn A

    2014-12-23

    A system for assaying a radionuclide includes a liquid scintillation detector, an analyzer connected to the liquid scintillation detector, and a delay circuit connected to the analyzer. A gamma detector and a multi-channel analyzer are connected to the delay circuit and the gamma detector. The multi-channel analyzer produces a signal reflective of the radionuclide in the sample. A method for assaying a radionuclide includes selecting a sample, detecting alpha or beta emissions from the sample with a liquid scintillation detector, producing a first signal reflective of the alpha or beta emissions, and delaying the first signal a predetermined time. The method further includes detecting gamma emissions from the sample, producing a second signal reflective of the gamma emissions, and combining the delayed first signal with the second signal to produce a third signal reflective of the radionuclide.

  15. Dosimetry and Case Studies for Selected Radionuclides

    SciTech Connect

    Leggett, Richard Wayne

    2009-01-01

    This is a comprehensive review and analysis of biokinetic and dosimetric information for those radionuclides most likely to be involved in accidental exposures to workers or members of the public or used in radiological terrorism.

  16. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  17. Calibration of radionuclide calibrators in Canadian hospitals

    SciTech Connect

    Santry, D.C.

    1986-01-01

    The major user of radioactive isotopes in Canada is the medical profession. Because of this a program has been initiated at the National Research Council of Canada (NRCC) to assist the nuclear medicine community to determine more accurately, the rather large amounts of radioactive materials administered to patients either for therapeutic or medical diagnostics. Since radiation exposure to the human body has deleterious effects, it is important for the patient that the correct amount of radioactive material is administered to minimize the induction of a fatal cancer at a later time. Hospitals in many other countries have a legal requirement to have their instruments routinely calibrated and have previously entered into intercomparisons with other hospitals or their national standards laboratories. In Canada, hospitals and clinics can participate on a voluntary basis to have the proper operation of measuring devices (radionuclide calibrators in particular) examined through intercomparisons. The program looks primarily at laboratory performance. This includes not only the instrument's performance but the performance of the individual doing the procedure and the technical procedure or method employed. In an effort to provide personal assistance to those having problems, it is essential that the comparisons should be pertinent to the daily work of the laboratory and that the most capable technologist not be selected to carry out the assay.

  18. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  19. Alchemy with short-lived radionuclides

    SciTech Connect

    Rubio, F.F.; Finn, R.D.; Gilson, A.J.

    1981-04-01

    A variety of short-lived radionuclides are produced and subsequently incorporated into radiopharmaceutical compounds in the radionuclide production program currently being conducted at the Cyclotron Facility of Mount Sinai Medical Center. The recovery of high specific activity oxygen-15 labelled water prepared by means of an inexpensive system operating in conjunction with an on-line radiogas target routinely utilized for oxygen-15 labelled carbon dioxide studies is currently receiving particular attention.

  20. Radionuclides in an underground environment

    SciTech Connect

    Thompson, J.L.

    1996-08-01

    In the 100 years since Becquerel recognized radioactivity, mankind has been very successful in producing large amounts of radioactive materials. We have been less successful in reaching a consensus on how to dispose of the billions of curies of fission products and transuranics resulting from nuclear weapons testing, electrical power generation, medical research, and a variety of other human endeavors. Many countries, including the United States, favor underground burial as a means of disposing of radioactive wastes. There are, however, serious questions about how such buried wastes may behave in the underground environment and particularly how they might eventually contaminate water, air and soil resources on which we are dependent. This paper describes research done in the United States in the state of Nevada on the behavior of radioactive materials placed underground. During the last thirty years, a series of ``experiments`` conducted for other purposes (testing of nuclear weapons) have resulted in a wide variety of fission products and actinides being injected in rock strata both above and below the water table. Variables which seem to control the movement of these radionuclides include the physical form (occlusion versus surface deposition), the chemical oxidation state, sorption by mineral phases of the host rock, and the hydrologic properties of the medium. The information gained from these studies should be relevant to planning for remediation of nuclear facilities elsewhere in the world and for long-term storage of nuclear wastes.

  1. Radionuclide angiocardiography in the diagnosis of congenital heart disorders

    SciTech Connect

    Jones, R.H.; Austin, E.H.; Peter, C.A.; Sabiston, D.C. Jr.

    1981-06-01

    Radionuclide angiocardiography provides a noninvasive assessment of cardiac function and blood flow through the heart and lungs. During the past three years, this procedure has been used at the Duke University Medical Center for evaluation of 343 patients with congenital heart disorders. A review of this experience shows tat the resulting data were frequently useful in the surgical management of these patients. In patients with abnormal blood flow patterns, noninvasive imaging of blood flow was useful before and after operative correction. Radionuclide measurements of left-to-right intracardiac shunts were sufficiently accurate for use in the initial evaluation of patients with murmurs and to document the absence of shunt after operative closure of intracardiac septal defects. Moreover, measurements of right-to-left cardiac shunts were of benefit in the management of children with cyanotic heart disease. Measurements of left ventricular function obtained during rest and exercise were most useful in patients with origin of the left coronary artery from the pulmonary artery and in patients with congenital valvular insufficiency. This experience demonstrates that radionuclide angiocardiography provides important measurements of central hemodynamics and cardiac function which are useful in the management of patients with congenital heart disorders.

  2. Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site

    SciTech Connect

    Kaplan, D.I.; Seme, R.J.; Piepkho, M.G.

    1995-03-01

    The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner.

  3. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California.

    PubMed

    Madigan, Daniel J; Baumann, Zofia; Fisher, Nicholas S

    2012-06-12

    The Fukushima Dai-ichi release of radionuclides into ocean waters caused significant local and global concern regarding the spread of radioactive material. We report unequivocal evidence that Pacific bluefin tuna, Thunnus orientalis, transported Fukushima-derived radionuclides across the entire North Pacific Ocean. We measured γ-emitting radionuclides in California-caught tunas and found (134)Cs (4.0 ± 1.4 Bq kg(-1)) and elevated (137)Cs (6.3 ± 1.5 Bq kg(-1)) in 15 Pacific bluefin tuna sampled in August 2011. We found no (134)Cs and background concentrations (~1 Bq kg(-1)) of (137)Cs in pre-Fukushima bluefin and post-Fukushima yellowfin tunas, ruling out elevated radiocesium uptake before 2011 or in California waters post-Fukushima. These findings indicate that Pacific bluefin tuna can rapidly transport radionuclides from a point source in Japan to distant ecoregions and demonstrate the importance of migratory animals as transport vectors of radionuclides. Other large, highly migratory marine animals make extensive use of waters around Japan, and these animals may also be transport vectors of Fukushima-derived radionuclides to distant regions of the North and South Pacific Oceans. These results reveal tools to trace migration origin (using the presence of (134)Cs) and potentially migration timing (using (134)Cs:(137)Cs ratios) in highly migratory marine species in the Pacific Ocean. PMID:22645346

  4. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California

    PubMed Central

    Madigan, Daniel J.; Baumann, Zofia; Fisher, Nicholas S.

    2012-01-01

    The Fukushima Dai-ichi release of radionuclides into ocean waters caused significant local and global concern regarding the spread of radioactive material. We report unequivocal evidence that Pacific bluefin tuna, Thunnus orientalis, transported Fukushima-derived radionuclides across the entire North Pacific Ocean. We measured γ-emitting radionuclides in California-caught tunas and found 134Cs (4.0 ± 1.4 Bq kg−1) and elevated 137Cs (6.3 ± 1.5 Bq kg−1) in 15 Pacific bluefin tuna sampled in August 2011. We found no 134Cs and background concentrations (∼1 Bq kg−1) of 137Cs in pre-Fukushima bluefin and post-Fukushima yellowfin tunas, ruling out elevated radiocesium uptake before 2011 or in California waters post-Fukushima. These findings indicate that Pacific bluefin tuna can rapidly transport radionuclides from a point source in Japan to distant ecoregions and demonstrate the importance of migratory animals as transport vectors of radionuclides. Other large, highly migratory marine animals make extensive use of waters around Japan, and these animals may also be transport vectors of Fukushima-derived radionuclides to distant regions of the North and South Pacific Oceans. These results reveal tools to trace migration origin (using the presence of 134Cs) and potentially migration timing (using 134Cs:137Cs ratios) in highly migratory marine species in the Pacific Ocean. PMID:22645346

  5. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr

    SciTech Connect

    Apel, William; Peyton, Brent; Gerlach, Robin; Lee, Brady

    2006-06-01

    Predicting the potential migration of metals and radionuclides from waste pits and trenches will require understanding the effects of carbon and electron flow through these environments. Important aspects of this flow include the physiological activity of cellulolytic and non-cellulolytic fermentative microbial populations, as well as the subsequent activity of metal and radionuclide reducing bacteria. The activity of subsurface fermentative microbial populations is significantly understudied even though these organisms can affect contaminant migration by at least two mechanisms. In the first mechanism, products of the fermentation process can act as chelators for metals and radionuclides increasing their transport through underlying geological media. The second mechanism is the reduction and immobilization of metals and radionuclides since some fermentative bacteria have been shown to directly reduce metals and radionuclides, while their fermentation products can provide carbon and energy for respiratory metal reducing bacteria that can also reduce oxidized metals and radionuclides.

  6. Reconsidering Current Decorporation Strategies after Incorporation of Radionuclides.

    PubMed

    Rump, A; Stricklin, D; Lamkowski, A; Eder, S; Abend, M; Port, M

    2016-08-01

    In the case of a nuclear accident or a terrorist attack by a "dirty bomb," there is a risk of external and internal contamination with radionuclides in addition to external irradiation. Internal irradiation as a consequence of radionuclide incorporation is associated with a higher risk of stochastic radiation effects (e.g., tumors). Decorporation treatment will enhance the elimination of radionuclides and reduce the committed effective dose as a metric of stochastic health effects. Although treatment efficacy is better when started early, beginning the therapy without knowing the committed effective dose may unnecessarily expose the patient to the side effects of the medication. The question is: Delay the therapy to wait for the results of internal dosimetry or start the therapy promptly on spec? To prove insight into this question, a selective review of the literature was conducted. The importance of the initiation time of treatment in the efficacy of decorporation treatment can be explained with pharmacokinetic laws and first order processes determining the disposition of xenobiotics in the organism. Nevertheless, there is no internationally accepted standard on when to start a decorporation therapy (exception: iodide). The "precautionary approach," emphasizing the importance of the committed effective dose for the indication of treatment, is competing with the "urgent approach" advocating the administration of medication "a priori" within several hours. A review of the literature actually indicates that the most important drugs used for decorporation are well tolerated with few adverse effects. In consideration of the higher efficacy and the low side-effects of a short-term treatment, initiating decorporation therapy as soon as possible after internal contamination, even before the committed effective dose has been assessed, appears to be a reasonable approach. The decision of continuation or discontinuation of the therapy should be taken after internal

  7. Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia.

    PubMed

    Rakić, Milana; Karaman, Maja; Forkapić, Sofija; Hansman, Jan; Kebert, Marko; Bikit, Kristina; Mrdja, Dušan

    2014-10-01

    Edible and medicinal macrofungi used in human diet represent not only important sources of nutritive elements but toxic substances as well (heavy metals and radionuclides). Radioactivity levels of four radionuclides ((40)K, (137)Cs, (226)Ra, (228)Ra) were determined in the basidiomata (fruiting bodies of a Basidiomycetes) of six lignicolous (Fomitopsis pinicola, Ganoderma applanatum, Hericium clathroides, Megacollybia platyphylla, Pluteus cervinus, Trametes gibbosa) and three mycorrhizal (Boletus luridus, Boletus sp. 1, Boletus sp. 2) species as well as their soil (wood) substrates by gamma spectrometry (high-resolution high-purity germanium (HPGe) detector). The aim was to investigate their ability for radionuclide absorption according to transfer factors (from soil and wood), to predict potential bioindicator species as well as species with potential risk for human use. Samples were taken during years 2011 and 2012, at two sites in forest ecosystem of Tara Mountain (Serbia). Observed concentration ranges per dry weight were as follows: 29-3,020 Bq/kg ((40)K), 21.9-735 Bq/kg ((137)Cs), 3-39 Bq/kg ((226)Ra), and 2.0-18 Bq/kg ((228)Ra). Obtained results indicate that the type of basidiome (fleshy/tough), most likely due to a different metabolic rate, has a very important role in radionuclide accumulation. The highest activity concentrations of all analyzed radionuclides were found in species with fleshy basidiomata--P. cervinus, H. clathroides, M. platyphylla, and Boletus species. A species-specific influence on radionuclide uptake was more prominent comparing to habitat differences and the role of fungal trophic mode. No significant variations were observed regarding radionuclide activity among the same fungal species from different sampling sites. PMID:24801292

  8. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    SciTech Connect

    Welch, M.J.

    2012-02-16

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{sup 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the

  9. Radionuclides identified at a US Customs Service site

    SciTech Connect

    Johnson, M.W.; Bounds, J.A.; Steadman, P.A.

    1997-05-01

    The movement of radionuclides through the U.S. Customs Service port of entry at Blaine, Washington, has been studied using a high-resolution gamma-ray spectrometer and an automated data logging system. Data covering about 10 weeks of operation were obtained and analyzed. The data-acquisition system and the site of the measurement are described. Results are reported and interpreted in light of the known traffic of radioisotopes produced at the Canadian TRIUMF facility and imported into the United States for use in radiopharmaceuticals.

  10. Radionuclide Mobility at the Nevada Test Site

    SciTech Connect

    Hu, Q; Smith, D; Rose, T; Glascoe, L; Steefel, C; Zavarin, M

    2003-11-13

    Underground nuclear tests conducted at the Nevada Test Site (NTS) are characterized by abundant fission product and actinide source terms. Included are {sup 99}Tc and other soluble radionuclides ({sup 3}H, {sup 14}C, {sup 36}Cl, {sup 85}Kr, and {sup 129}I), which are presumably mobile in groundwater and potentially toxic to down-gradient receptors. NTS provides the Office of Civilian Radioactive Waste Management (OCRWM) with an analog of the release of these radionuclides from a nuclear waste repository in the absence of engineered barriers. The investigation described in this report synthesizes a substantial body of data collected on the identity and distribution of soluble radionuclides at field scales over distances of hundreds of meters, for durations up to 40 years, and under hydrogeologic conditions very similar to the proposed geological repository at Yucca Mountain. This body of data is complemented by laboratory transport studies and a synthesis of recent modeling investigations from the NTS, with an emphasis on the ongoing Yucca Mountain Program (YMP) efforts. Overall, understanding the controls of radionuclide mobility associated with these nuclear tests will provide insight into the repository's future performance as well as bounds and calibrations for the numerical predictions of long-term radionuclide releases and migration.

  11. Radionuclide Retention in Concrete Waste Forms

    SciTech Connect

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  12. Radionuclide Retention in Concrete Wasteforms - FY13

    SciTech Connect

    Snyder, Michelle MV; Golovich, Elizabeth C.; Wellman, Dawn M.; Crum, Jarrod V.; Lapierre, Robert; Dage, Denomy C.; Parker, Kent E.; Cordova, Elsa A.

    2013-10-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of low-level waste and mixed low-level waste, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  13. Idaho radionuclide exposure study: Literature review

    SciTech Connect

    Baker, E.G.; Freeman, H.D.; Hartley, J.N.

    1987-10-01

    Phosphate ores contain elevated levels of natural radioactivity, some of which is released to the environment during processing or use of solid byproducts. The effect of radionuclides from Idaho phosphate processing operations on the local communities has been the subject of much research and study. The literature is reviewed in this report. Two primary radionuclide pathways to the environment have been studied in detail: (1) airborne release of volatile radionuclides, primarily /sup 210/Po, from calciner stacks at the two elemental phosphorus plants; and (2) use of byproduct slag as an aggregate for construction in Soda Springs and Pocatello. Despite the research, there is still no clear understanding of the population dose from radionuclide emissions, effluents, and solid wastes from phosphate processing plants. Two other potential radionuclide pathways to the environment have been identified: radon exhalation from phosphogypsum and ore piles and contamination of surface and ground waters. Recommendations on further study needed to develop a data base for a complete risk assssment are given in the report.

  14. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  15. SALTSTONE AND RADIONUCLIDE INTERACTIONS: RADIONUCLIDE SORPTION AND DESORPTION, AND SALTSTONE REDUCTION CAPACITY

    SciTech Connect

    Kaplan, D; Kimberly Roberts, K; Steven Serkiz, S; Matthew Siegfried, M

    2008-10-30

    The overall objective of this study was to measure a number of key input parameters quantifying geochemical processes in the subsurface environment of the Savannah River Site's (SRS's) Saltstone Facility. For the first time, sorption (K{sub d}) values of numerous radionuclides were measured with Saltstone and Vault 2 concrete. Particular attention was directed at understanding how Tc adsorbs and desorbs from these cementitious materials with the intent to demonstrate that desorption occurs at a much slower rate than adsorption, thus permitting the use of kinetic terms instead of (or along with) the steady state K{sub d} term. Another very important parameter measured was the reduction capacity of these materials. This parameter is used to estimate the duration that the Saltstone facility remains in a reduced chemical state, a condition that maintains several otherwise mobile radionuclides in an immobile form. Key findings of this study follow. K{sub d} values for Am, Cd, Ce, Co, Cs, Hg, I, Np, Pa, Pu, Se, Sn, Tc, U, and Y for Saltstone and Vault 2 concrete were measured under oxidized and reduced conditions. Precipitation of several of the higher valence state radionuclides was observed. There was little evidence that the Vault 2 and Saltstone K{sub d} values differed from previous SRS K{sub d} values measured with reducing grout (Kaplan and Coates 2007). These values also supported a previous finding that K{sub d} values of slag-containing cementitious materials, tend to be greater for cations and about the same for anions, than regular cementitious materials without slag. Based on these new findings, it was suggested that all previous reducing concrete K{sub d} values be used in future PAs, except Np(V) and Pu(IV) K{sub d} values, which should be increased, and I values, which should be slightly decreased in all three stages of concrete aging. The reduction capacity of Saltstone, consisting of 23 wt-% blast furnace slag, was 821.8 microequivalents per gram

  16. Effects of radionuclide decay on waste glass behavior: A critical review

    SciTech Connect

    Wronkiewicz, D.J.

    1993-12-01

    This paper is an extension of a chapter in an earlier report [1] that provides an updated review on the status of radiation damage problems in nuclear waste glasses. This report will focus on radiation effects on vitrified borosilicate nuclear waste glasses under conditions expected in the proposed Yucca mountain repository. Radiation effects on high-level waste glasses and their surrounding repository environment are important considerations for radionuclide immobilization because of the potential to alter the glass stability and thereby influence the radionuclide retentive properties of this waste form. The influence of radionuclide decay on vitrified nuclear waste may be manifested by several changes, including volume, stored energy, structure, microstructure, mechanical properties, and phase separation. Radiation may also affect the composition of aqueous fluids and atmospheric gases in relatively close proximity to the waste form. What is important to the radionuclide retentive properties of the repository is how these radiation effects collectively or individually influence the durability and radionuclide release from the glass in the event of liquid water contact.

  17. Therapeutic radionuclides: Making the right choice

    SciTech Connect

    Srivastava, S.C.

    1996-08-01

    Recently, there has been a resurgence of interest in nuclear medicine therapeutic procedures. Using unsealed sources for therapy is not a new concept; it has been around since the beginnings of nuclear medicine. Treatment of thyroid disorders with radioiodine is a classic example. The availability of radionuclides with suitable therapeutic properties for specific applications, as well as methods for their selective targeting to diseased tissue have, however, remained the main obstacles for therapy to assume a more widespread role in nuclear medicine. Nonetheless, a number of new techniques that have recently emerged, (e.g., tumor therapy with radiolabeled monoclonal antibodies, treatment of metastatic bone pain, etc.) appear to have provided a substantial impetus to research on production of new therapeutic radionuclides. Although there are a number of new therapeutic approaches requiring specific radionuclides, only selected broad areas will be used as examples in this article.

  18. Diffusion of Radionuclides in Concrete and Soil

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Recknagle, Kurtis P.; Clayton, Libby N.; Wood, Marcus I.

    2012-04-25

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.

  19. State of radionuclides in natural waters

    SciTech Connect

    Kulmatov, R.A.; Rakhmatov, U.; Kist, A.A.; Volkov, A.A.

    1987-03-01

    This work is devoted to a study of the kinetics of attainment of equilibrium between various forms of the radionuclide mercury-203 and to an evaluation of the part played by isotope exchange in this process. The radionuclide mercury-203 was added without a carrier to natural waters of the Syr-Dar'ya and Amu-Dar'ya Rivers and the Aral Sea in the cationic form (3). In order to determine the time of attainment of equilibrium between the forms of the radionuclide mercury-203 and the stable nuclide analogs, they used the methods of sorption on L-36 glass, AV-17 anion-exchanger, KU-2 cation-exchanger, extraction with chloroform plus isobutyl alcohol, and filtration.

  20. Peptide receptor radionuclide therapy of neuroendocrine tumours.

    PubMed

    Brabander, Tessa; Teunissen, Jaap J M; Van Eijck, Casper H J; Franssen, Gaston J H; Feelders, Richard A; de Herder, Wouter W; Kwekkeboom, Dik J

    2016-01-01

    In the past decades, the number of neuroendocrine tumours that are detected is increasing. A relative new and promising therapy for patients with metastasised or inoperable disease is peptide receptor radionuclide therapy (PRRT). This therapy involves an infusion of somatostatin analogues linked to radionuclides like Yttrium-90 or Lutetium-177. Objective response rates are reported in 15-35%. Response rates may vary between type of tumour and radionuclide. Besides the objective response rate, overall survival and progression free survival increase significantly. Also, the quality of life improves as well. Serious side-affects are rare. PRRT is usually well tolerated, also in patients with extensive metastasised disease. Recent studies combined PRRT with other types of therapies. Unfortunately no randomised trials comparing these strategies are available. In the future, more research is needed to evaluate the best therapy combinations or sequence of therapies. PMID:26971847

  1. 2014 LANL Radionuclide Air Emissions Report

    SciTech Connect

    Fuehne, David Patrick

    2015-07-21

    This report describes the emissions of airborne radionuclides from operations at Los Alamos National Laboratory (LANL) for calendar year 2014, and the resulting off-site dose from these emissions. This document fulfills the requirements established by the National Emissions Standards for Hazardous Air Pollutants in 40 CFR 61, Subpart H – Emissions of Radionuclides other than Radon from Department of Energy Facilities, commonly referred to as the Radionuclide NESHAP or Rad-NESHAP. Compliance with this regulation and preparation of this document is the responsibility of LANL’s RadNESHAP compliance program, which is part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being submitted to the U.S. Environmental Protection Agency (EPA) Region 6.

  2. Peptide-targeted radionuclide therapy for melanoma.

    PubMed

    Miao, Yubin; Quinn, Thomas P

    2008-09-01

    Melanocortin-1 receptor (MC1-R) and melanin are two attractive melanoma-specific targets for peptide-targeted radionuclide therapy for melanoma. Radiolabeled peptides targeting MC1-R/melanin can selectively and specifically target cytotoxic radiation generated from therapeutic radionuclides to melanoma cells for cell killing, while sparing the normal tissues and organs. This review highlights the recent advances of peptide-targeted radionuclide therapy of melanoma targeting MC1-R and melanin. The promising therapeutic efficacies of 188Re-(Arg(11))CCMSH (188Re-[Cys(3,4,10), D-Phe(7),Arg(11)]-alpha-MSH(3-13)), 177Lu- and 212Pb-labeled DOTA-Re(Arg(11))CCMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[ReO-(Cys(3,4,10), D-Phe(7), Arg(11))]-alpha-MSH(3-13)) and 188Re-HYNIC-4B4 (188Re-hydrazinonicotinamide-Tyr-Glu-Arg-Lys-Phe-Trp-His-Gly-Arg-His) in preclinical melanoma-bearing models demonstrate an optimistic outlook for peptide-targeted radionuclide therapy for melanoma. Peptide-targeted radionuclide therapy for melanoma will likely contribute in an adjuvant setting, once the primary tumor has been surgically removed, to treat metastatic deposits and for treatment of end-stage disease. The lack of effective treatments for metastatic melanoma and end-stage disease underscores the necessity to develop and implement new treatment strategies, such as peptide-targeted radionuclide therapy. PMID:18387816

  3. Data Authentication Demonstration for Radionuclide Stations

    SciTech Connect

    Harris, Mark; Herrington, Pres; Miley, Harry; Ellis, J. Edward; McKinnon, David; St. Pierre, Devon

    1999-08-03

    Data authentication is required for certification of sensor stations in the International Monitoring System (IMS). Authentication capability has been previously demonstrated for continuous waveform stations (seismic and infrasound). This paper addresses data surety for the radionuclide stations in the IMS, in particular the Radionuclide Aerosol Sampler/Analyzer (RASA) system developed by Pacific Northwest National Laboratory (PNNL). Radionuclide stations communicate data by electronic mail using formats defined in IMS 1.0, Formats and Protocols for Messages. An open message authentication standard exists, called S/MIME (Secure/Multipurpose Internet Mail Extensions), which has been proposed for use with all IMS radionuclide station message communications. This standard specifies adding a digital signature and public key certificate as a MIME attachment to the e-mail message. It is advantageous because it allows authentication to be added to all IMS 1.0 messages in a standard format and is commercially supported in e-mail software. For command and control, the RASA system uses a networked Graphical User Interface (GUI) based upon Common Object Request Broker Architecture (CORBA) communications, which requires special authentication procedures. The authors have modified the RASA system to meet CTBTO authentication guidelines, using a FORTEZZA card for authentication functions. They demonstrated signing radionuclide data messages at the RASA, then sending, receiving, and verifying the messages at a data center. They demonstrated authenticating command messages and responses from the data center GUI to the RASA. Also, the particular authentication system command to change the private/public key pair and retrieve the new public key was demonstrated. This work shows that data surety meeting IMS guidelines may be immediately applied to IMS radionuclide systems.

  4. Tracing Fukushima Radionuclides in the Northern Hemisphere -An Overview

    NASA Astrophysics Data System (ADS)

    Thakur, Punam; Ballard, Sally; Nelson, Roger

    2013-04-01

    hemisphere. Although the releases from the Fukushima NPP were pronounced, due to significant dilution of the radioactivity in the atmosphere as it was transported across the globe, the concentrations of radionuclides measured outside Japan were extremely low. The activities of I-131, Cs-134, and Cs-137 in air were estimated to have diluted by a factor of 105 to 108 during trans-Pacific transport. This paper will present a compilation of the radionuclide concentrations measured across the northern hemisphere by various national and international monitoring networks. It will focus on the most prevalent cesium and iodine isotopes, but other secondary isotopes will be discussed. Spatial and Temporal patterns and differences will be contrasted. The effects from this global radionuclide dispersal are reported and discussed. The activity ratios of ^131I/^137Cs and ^134Cs/^137Cs measured at several locations are evaluated to gain an insight into the fuel burn-up, the inventory of radionuclides in the reactor and thus on the isotopic signature of the accident. It is important to note that all of the radiation levels detected across the northern hemisphere have been very low and are well below any level of public and environmental concern.

  5. External accumulation of radionuclide in hepatic hydrothorax

    SciTech Connect

    Albin, R.J.; Johnston, G.S.

    1989-05-01

    Hepatic hydrothorax is a complication in approximately 5% of patients with cirrhosis. Ascites is almost always present and helps to suggest the correct diagnosis. However, when ascites is absent, radionuclide imaging has proven to be helpful in establishing that the pleural effusion originated from ascitic fluid. When pleural fluid is rapidly removed, such as by thoracostomy tube drainage, the radioisotope may accumulate outside the thorax and produce a negative scan of the chest. When the radionuclide scan is nondiagnostic and the pleural space is being rapidly drained, the pleural fluid collecting system should always be imaged before rejecting a diagnosis of hepatic hydrothorax.

  6. Radionuclide imaging of the urinary tract

    SciTech Connect

    Velchik, M.G.

    1985-11-01

    This article describes the role of nuclear medicine in the evaluation of the genitourinary tract. The technical aspects of radionuclide imaging (radiopharmaceuticals, radiation dosimetry, instrumentation, and method) are briefly presented, and each of the indications for renal scintigraphy--including the evaluation of differential renal function, hypertension, obstruction, renal transplants, masses, trauma, congenital anomalies, vesicoureteral reflux, and infection--are discussed. The relative advantages and disadvantages of radionuclide imaging with respect to alternative radiographic examinations (such as intravenous urography, ultrasonography, CT, angiography, and magnetic resonance imaging) are emphasized wherever applicable. 136 references.

  7. Radionuclide scanning in children with rhabdomyosarcoma

    SciTech Connect

    Weinblatt, M.E.; Miller, J.H.

    1981-01-01

    Radionuclide scintigraphy was performed in 46 children with rhabdomyosarcoma. Of the 63 radiologically confirmed sites of bone disease, 76% were detected by /sup 99m/Tc-labeled phosphate uptake. All 15 sites of hepatic involvement and eight of the nine cranial sites of disease exhibited isotope accumulation. Gallium 67 scans showed 57% of the 43 proven sites of disease, including four previously unsuspected areas. Twelve false-positive sites were obtained with gallium. Radionuclide scanning is a valuable aid in the diagnostic evaluation and management of childhood rhabdomyosarcoma.

  8. [Radionuclide therapy for cancer--what's new?].

    PubMed

    Hanna, Mäenpää; Mikko, Tenhunen

    2012-01-01

    Radionuclide therapy is radiation therapy, the effect of which is based on radiation damage in cancer cells. The most common radionuclide therapy for cancer is radioiodine therapy for thyroid cancer. Two new forms of treatment have recently been initiated in Finland: 177lutetium octreotate therapy for neuroendocrine tumors, pheochromocytoma and paraganglioma as well as radioembolization (selective internal radiation therapy, SIRT) with 90yttrium-coated resin beads against liver metastases. Still in experimental use, 223radium chloride is a drug prolonging survival in prostate cancer that has metastasized to bone. The treatments require special knowledge and collaboration between several units. PMID:23210283

  9. On the lognormality of radionuclide deposition.

    PubMed

    Grubich, Andry

    2015-05-01

    The influence of the variation of soil density and the uncertainty of activity measurements on the statistical distribution of radionuclide concentrations on a site is considered. It is demonstrated that the influence of these factors adequately explains the observed deviation of radionuclide empirical probability distribution functions (empirical PDFs) from lognormal. In all probability lognormality of activity density distributions is the consequence of the atmospheric fallout process, as observed for deposition from Chernobyl and Fukushima. The results obtained are in no way specific to radioactive contaminants, and are consequently applicable for depositions of non-radioactive pollutants as well. PMID:25725453

  10. Past and present levels of some radionuclides in fish from Bikini and Enewetak atolls

    SciTech Connect

    Noshkin, V.E.; Robison, W.L.; Brunk, J.L.

    1997-07-01

    Bikini and Enewetak were the sites in the Northern Marshall Islands that were used by the United States as testing grounds for nuclear devices between 1946 and 1958. The testing produced close-in fallout debris that was contaminated with different radionuclides and which entered the aquatic environment. The contaminated lagoon sediments became a reservoir and source term of manmade radionuclides for the resident marine organisms. This report contains a summary of all the available data on the concentrations of {sup 137}Cs {sup 60}Co and {sup 217}Bi in flesh samples of reef and pelagic fish collected from Bikini and Enewetak Atolls between 1964 and 1995. The selection of these three radionuclides for discussion is based on the fact that these are the only radionuclides that have been routinely detected by gamma spectrometry in flesh samples from all fish for the last 20 y. Flesh from fish is an important source of food in the Marshallese diet. These radionuclides along with the transuranic radionuclides and {sup 90}Sr contribute most of the small radiological dose from ingesting marine foods. Some basic relationships among concentrations in different tissues and organs are discussed. The reef fish can be used as indicator species because their body burden is derived from feeding, over a lifetime, within a relatively small contaminated area of the lagoon. Therefore, the emphasis of this report is to use this extensive and unique concentration data base to describe the effective half lives and cycling for the radionuclides in the marine environments during the 31-y period between 1964 and 1995. 26 refs., 4 figs., 5 tabs.

  11. Modeling of radionuclide releases from the geological repository for RBMK-1500 spent nuclear fuel in crystalline rocks in Lithuania

    SciTech Connect

    Poskas, Povilas; Brazauskaite, Asta

    2007-07-01

    During 2002-2005 the assessment of possibilities for disposal of spent nuclear fuel (SNF) in Lithuania was performed with support of Swedish experts. Potential geological formations for disposal of SNF were selected, disposal concept was developed, reference disposal site was defined and preliminary generic safety assessment was performed. Performing safety assessment the analysis of radionuclides migration from the repository as well as their impact to human and environment were also very important issues. In this paper results on the analysis of the radionuclide releases from the reference geological repository site for RBMK-1500 SNF in crystalline rocks in Lithuania are presented. For radionuclide migration in the near field region of the repository integrated finite difference method and the concept of compartments were used. For radionuclide migration in the far field the discrete channel network concept was used. The assessment of radionuclide migration in the near and far field region was performed using computer codes AMRER4.5 and CHAN3D. The results of analysis show that most of safety relevant radionuclides of RBMK-1500 SNF are effectively retarded in the near field region. The exposure due to possible release of the radionuclides from the crystalline rocks would be dominated by 1291 firstly while after approx. 250 thousand years {sup 226}Ra is dominating already. (authors)

  12. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  13. Assessment of Radionuclides in the Savannah River Site Environment Summary

    SciTech Connect

    Carlton, W.H.

    1999-01-26

    This document summarizes the impact of radionuclide releases from Savannah River Site (SRS) facilities from 1954 through 1996. The radionuclides reported here are those whose release resulted in the highest dose to people living near SRS.

  14. Preferential Radionuclide Transport in a Tuff with Altered Zones: Micro-scale Mapping

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Liu, X.; Zuo, R.

    2009-12-01

    Understanding radionuclide transport in fractured rock is important for performance assessment of proposed radioactive waste disposal sites. We performed laboratory tests to study water imbibition and radionuclide transport into initially dry tuff by contacting one end of a sample with water containing a mixture of tracers (Re, 99Tc, Sr, Cs, 235U, 237Np, and 242Pu). The tuff sample, collected from Yucca Mountain, Nevada, is a cube 1-cm on each side and has a 1-mm thick altered gray zone embedded within the tuff matrix. Such gray zones are observed to be adjacent to lithophysae and fractures, are primarily quartz and tridymite, and have different hydraulic and chemical properties from the rock matrix. Capillary-driven imbibition transports tracer chemicals away from the imbibing face, causing separation of non-sorbing and sorbing tracers in tuff. Using a micro-scale profiling technique of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), we directly mapped the distribution of radionuclides along the altered zone (as well as transverse to the unaltered matrix). We found that the altered zone shows higher permeability, and less retardation of sorbing radionuclides, than the unaltered matrix, leading to preferential transport along the altered zone. Transverse profiling of the unaltered matrix indicated only limited penetration of strongly sorbing radionuclides, such as Pu.

  15. Radionuclide distributions and sorption behavior in the Susquehanna--Chesapeake Bay System

    SciTech Connect

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; McLean, R.I.; Domotor, S.L.

    1989-01-01

    Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout /sup 137/Cs; reactor-released /sup 137/Cs, /sup 134/Cs, /sup 65/Zn, /sup 60/Co, and /sup 58/Co; and naturally occurring /sup 7/Be and /sup 210/Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioning among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs.

  16. Natural analogue studies of the role of colloids, natural organics and microorganisms on radionuclide transport

    SciTech Connect

    McCarthy, J.F.

    1994-10-01

    Colloids may be important as a geochemical transport mechanism for radionuclides at geological repositories if they are (1) present in the groundwater, (2) stable with respect to both colloidal and chemical stabilities, (3) capable of adsorbing radionuclides, especially if the sorption is irreversible, and (4) mobile in the subsurface. The available evidence from natural analogue and other field studies relevant to these issues is reviewed, as is the potential role of mobile microorganisms ({open_quotes}biocolloids{close_quotes}) on radionuclide migration. Studies have demonstrated that colloids are ubiquitous in groundwater, although colloid concentrations in deep, geochemically stable systems may be too low to affect radionuclide transport. However, even low colloid populations cannot be dismissed as a potential concern because colloids appear to be stable, and many radionuclides that adsorb to colloids are not readily desorbed over long periods. Field studies offer somewhat equivocal evidence concerning colloid mobility and cannot prove or disprove the significance of colloid transport in the far-field environment. Additional research is needed at new sites to properly represent a repository far-field. Performance assessment would benefit from natural analogue studies to examine colloid behavior at sites encompassing a suite of probable groundwater chemistries and that mimic the types of formations selected for radioactive waste repositories.

  17. PROGRESS REPORT. RADIONUCLIDE SENSORS FOR WATER MONITORING

    EPA Science Inventory

    The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors a...

  18. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    SciTech Connect

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  19. Distribution of radionuclides in Dardanelle Reservoir sediments.

    PubMed

    Forgy, J R; Epperson, C E; Swindle, D L

    1984-02-01

    Natural and reactor-discharged gamma-ray emitting radionuclides were measured in Dardanelle Reservoir surface sediments taken near the Arkansas Nuclear One Power Plant site. Samples represented several water depths and particle sizes, at 33 locations, in a field survey conducted in early September 1980. Radionuclide contents of dry sediments ranged as follows: natural radioactivity (40K as well as uranium and thorium decay products) 661-1210 Bq/kg; and reactor discharged radioactivity (137Cs, 134Cs, 60Co,, 58Co, 54Mn), no detectable activity to 237 Bq/kg. In general, radionuclide contents were positively correlated with decreasing sediment particle size. The average external whole-body and skin doses from all measurable reactor-discharged radionuclides were calculated according to the mathematical formula for determining external dose from sediment given by the U.S. Nuclear Regulatory Commission (NRC). Inside the discharge embayment near the reactor discharge canal, the doses were 1.7 X 10(-3) mSv/yr to the whole body and 2.0 X 10(-3) mSv/yr to the skin. Outside this area, the doses were 0.15 X 10(-3) and 0.18 X 10(-3) mSv/yr to the whole body and skin, respectively. PMID:6693264

  20. REMOVAL OF RADIONUCLIDES BY ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetics promises to be an innovative treatment process for in-situ treatment of soils and groundwater contaminated with heavy metals and radionuclides. Electrokinetics refers to the movement of ionic liquids and charged particles relative to one another under the action ...

  1. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual radionuclide applicator system. 892.5650... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5650 Manual radionuclide applicator system. (a) Identification. A manual radionuclide applicator system is a manually operated...

  2. Radionuclide sources and radioactive decay figures pertinent to the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Heeb, C.M.

    1991-03-01

    The origin and radioactive decay schemes of radionuclides currently expected to be the major contributors to potential radiation doses that populations might have received as a result of nuclear operations at the Hanford Site since 1944 are identified and illustrated in this report. The reactions considered include actinide neutron capture and decay sequences, fission product decays, and neutron activation reactions. It is important to note that the radioactive half-life of a given nuclide does not, by itself, fully determine the significance of a given radionuclide as a potential source term. This report does not address environmental transport mechanisms, behavior in the environment, or radiological dose impact of any of the radionuclides shown. 1 ref., 10 figs.

  3. Lixiviation of natural radionuclides and heavy metals in tropical soils amended with phosphogypsum.

    PubMed

    Nisti, M B; Saueia, C R; Malheiro, L H; Groppo, G H; Mazzilli, B P

    2015-06-01

    The main phosphate industries in Brazil are responsible for the annual production of 5.5 million tons of a residue (phosphogypsum), which is stored in stacks. The presence of radionuclides and metals puts restrictions on the use of phosphogypsum in agriculture. To assure a safe utilization, it is important to estimate the lixiviation of the radionuclides ((238)U, (226)Ra, (210)Pb, (210)Po, (232)Th and (228)Ra) and metals (As, Cd, Cr, Ni, Se, Hg and Pb) present in phosphogypsum. For this purpose, an experiment was carried out, in which columns filled with sandy and clay Brazilian typical soils mixed with phosphogypsum were percolated with water, to achieve a mild extraction of these elements. The results obtained for the concentration of the radionuclides and metals in the leachate were low; giving evidence that, even when these elements are present in the phosphogypsum, they do not contribute to an enhancement of their content in water. PMID:25841114

  4. Phase chemistry and radionuclide retention from simulated tank sludges

    SciTech Connect

    KRUMHANSL,JAMES L.; LIU,J.; ARTHUR,SARA E.; HUTCHERSON,SHEILA K.; QIAN,MORRIS; ANDERSON,HOWARD L.

    2000-05-19

    Decommissioning high level nuclear waste tanks will leave small amounts of residual sludge clinging to the walls and floor of the structures. The permissible amount of material left in the tanks depends on the radionuclide release characteristics of the sludge. At present, no systematic process exists for assessing how much of the remaining inventory will migrate, and which radioisotopes will remain relatively fixed. Working with actual sludges is both dangerous and prohibitively expensive. Consequently, methods were developed for preparing sludge simulants and doping them with nonradioactive surrogates for several radionuclides and RCRA metals of concern in actual sludges. The phase chemistry of these mixes was found to be a reasonable match for the main phases in actual sludges. Preliminary surrogate release characteristics for these sludges were assessed by lowering the ionic strength and pH of the sludges in the manner that would occur if normal groundwater gained access to a decommissioned tank. Most of the Se, Cs and Tc in the sludges will be released into the first pulse of groundwater passing through the sludge. A significant fraction of the other surrogates will be retained indefinitely by the sludges. This prolonged sequestration results from a combination coprecipitated and sorbed into or onto relatively insoluble phases such as apatite, hydrous oxides of Fe, Al, Bi and rare earth oxides and phosphates. The coprecipitated fraction cannot be released until the host phase dissolves or recrystallizes. The sorbed fraction can be released by ion exchange processes as the pore fluid chemistry changes. However, these releases can be predicted based on a knowledge of the fluid composition and the surface chemistry of the solids. In this regard, the behavior of the hydrous iron oxide component of most sludges will probably play a dominant role for many cationic radionuclides while the hydrous aluminum oxides may be more important in governing anion releases.

  5. Natural radionuclide concentrations in two phosphate ores of east Algeria.

    PubMed

    Lakehal, Ch; Ramdhane, M; Boucenna, A

    2010-05-01

    Ore is considered as an important source of many elements such as the iron, phosphorus, and uranium. Concerning the natural radionuclides, their concentrations vary from an ore to other depending on the chemical composition of each site. In this work, two phosphate ores found in East of Algeria have been chosen to assess the activity concentration of natural radionuclides represented mainly by three natural radioactive series (238)U, (235)U and (232)Th, and the primordial radionuclide (40)K where they were determined using ultra-low background, high-resolution gamma-ray spectroscopy. The measured activity concentrations of radioactive series ranged from 6.2 +/- 0.4 to 733 +/- 33 Bq.kg(-1) for the (232)Th series, from 249 +/- 16 to 547 +/- 39 Bq.kg(-1) for the (238)U series, around 24.2 +/- 2.5 Bq.kg(-1) for the (235)U series, and from 1.4 +/- 0.2 to 6.7 +/- 0.7 Bq.kg(-1) for (40)K. To assess exposure to gamma radiation in the two ores, from specific activities of (232)Th, (40)K and (226)Ra, three indexes were determined: Radium equivalent (Ra(eq)), external and internal hazard indexes (H(ex) and H(in)), their values ranged from 831 +/- 8 to 1298 +/- 14 Bq.kg(-1) for Ra(eq), from 2.2 +/- 0.4 to 3.5 +/- 0.7 Bq.kg(-1) for H(ex), and from 4.2 +/- 0.7 to 4.5 +/- 0.7 Bq.kg(-1) for H(in). PMID:20303630

  6. Sorption of radionuclides at tracer level on mineral colloids

    SciTech Connect

    Hadem, N.; Fourest, B.; Guillaumont, R.

    1995-12-01

    Transport of radionuclides by colloids through the geosphere is an important issue in exercises aimed to assess the safety of an underground radwaste repository sited in a water saturated zone. The first problems to deal with are the characterization of the colloids and their capabilities to sorb, at trace level and even at tracer level, radionuclides. This study investigates the relationships between the sorption of short lived {sup 137}Cs{sup +}, {sup 223}Ra{sup 2+}, {sup 227}Th and {sup 131}I{sup -} and the zeta potential, {zeta}-potential, of well identified colloids, as a function of pH (2 to 11), ionic strength, I (10{sup -3} to 1 M), and colloid concentration (up to 2000 ppm). {xi}-potential is the essential parameter to be considered since it reflects both the stability and the surface charge of the colloid. SiO{sub 2}, TiO{sub 2}, A1{sub 2}O{sub 3} and Th{sub 3}(PO{sub 4}){sub 4} colloids have been chosen as `model colloids`. They are not really found in natural media, but are representative of particles with isoelectric points (i.e.p.) ranging between pH 2 to 9. In some cases the effect of the concentration of the elements has been studied as well, to check saturation effects (Cs and I from 10{sup -11} to 10{sup -2}M). Experimental data show that the distribution of radionuclides between the two phases considered depends mainly on zeta potential, but also on other identified factors.

  7. Application of MINERVA Monte Carlo simulations to targeted radionuclide therapy.

    PubMed

    Descalle, Marie-Anne; Hartmann Siantar, Christine L; Dauffy, Lucile; Nigg, David W; Wemple, Charles A; Yuan, Aina; DeNardo, Gerald L

    2003-02-01

    Recent clinical results have demonstrated the promise of targeted radionuclide therapy for advanced cancer. As the success of this emerging form of radiation therapy grows, accurate treatment planning and radiation dose simulations are likely to become increasingly important. To address this need, we have initiated the development of a new, Monte Carlo transport-based treatment planning system for molecular targeted radiation therapy as part of the MINERVA system. The goal of the MINERVA dose calculation system is to provide 3-D Monte Carlo simulation-based dosimetry for radiation therapy, focusing on experimental and emerging applications. For molecular targeted radionuclide therapy applications, MINERVA calculates patient-specific radiation dose estimates using computed tomography to describe the patient anatomy, combined with a user-defined 3-D radiation source. This paper describes the validation of the 3-D Monte Carlo transport methods to be used in MINERVA for molecular targeted radionuclide dosimetry. It reports comparisons of MINERVA dose simulations with published absorbed fraction data for distributed, monoenergetic photon and electron sources, and for radioisotope photon emission. MINERVA simulations are generally within 2% of EGS4 results and 10% of MCNP results, but differ by up to 40% from the recommendations given in MIRD Pamphlets 3 and 8 for identical medium composition and density. For several representative source and target organs in the abdomen and thorax, specific absorbed fractions calculated with the MINERVA system are generally within 5% of those published in the revised MIRD Pamphlet 5 for 100 keV photons. However, results differ by up to 23% for the adrenal glands, the smallest of our target organs. Finally, we show examples of Monte Carlo simulations in a patient-like geometry for a source of uniform activity located in the kidney. PMID:12667310

  8. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

  9. 2006 LANL Radionuclide Air Emissions Report

    SciTech Connect

    David P. Fuehne

    2007-06-30

    This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

  10. Anthropogenic radionuclides in the atmosphere observed at Tsukuba: characteristics of the radionuclides derived from Fukushima.

    PubMed

    Doi, Taeko; Masumoto, Kazuyoshi; Toyoda, Akihiro; Tanaka, Atsushi; Shibata, Yasuyuki; Hirose, Katsumi

    2013-08-01

    During a serious accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), a huge quantity of radionuclides was released into the atmosphere and ocean. We measured anthropogenic radionuclides in surface air at Tsukuba, about 170 km from the FDNPP. On March 15, 2011, we detected the radioactivity released from the Fukushima accident in air samples at Tsukuba. The major radionuclides that we observed were radioiodine ((131)I, (132)I, (133)I) and radiocesium ((134)Cs, (136)Cs, (137)Cs). This radioiodine consisted of gaseous and particulate forms; the percentage of particulate (131)I in the total (131)I ranged from 0 to 86%. The percentage of the particulate (131)I to the total (131)I increased on the arrival of the plumes from major emissions of the FDNPP. After activities of the radionuclides attained the maximum on March 15, 2011, the FDNPP-derived radionuclides decreased rapidly in surface air. The activity median aerodynamic diameter of (131)I-bearing particles was 0.7 μm, while those of (134)Cs- and (137)Cs-bearing particles were larger than 1 μm. Large variations of ratios of (131)I/(137)Cs, (132)Te/(137)Cs, and (99)Mo ((99m)Tc)/(137)Cs (all involving different elements) suggest that the behaviors of these radionuclides in the atmosphere, including the processes of their emission, differed each other. PMID:23542231

  11. Review of Russian-language studies on radionuclide behaviour in agricultural animals: part 4. Transfer to poultry.

    PubMed

    Fesenko, S; Howard, B J; Isamov, N; Beresford, N A; Barnett, C L; Sanzharova, N; Voigt, G

    2009-10-01

    Data on radionuclide transfer to domestic chickens and ducks obtained from research performed in the former Soviet Union were reviewed to provide transfer coefficient values (Ff) to poultry and edible egg contents. The majority of the data are from experiments with (90)Sr and (137)Cs, reflecting the importance of these radionuclides after global fallout and major radiation accidents. Data for (3)H, (54)Mn, (59)Fe, (60)Co, (22)Na (65)Zn, (131)I and U are also given. The values derived have been compared with those in the current IAEA Handbook of parameter values for the prediction of radionuclide transfer in temperate environments (TRS 364) and the recent revision which incorporates the values from this paper. The Russian-language data give improved estimates for many radionuclides and the revised handbook is now based on the better quality data given for chronic administration. PMID:19632750

  12. Fe-Mn substance in ocean as reason of regulation radionuclide pollution

    NASA Astrophysics Data System (ADS)

    Asavin, Alex; Martynov, Konstantin; Konstantinova, Lia

    2013-04-01

    Distribution of radionuclide in marine sediments as yet little studied [Choppin & Wong 1998]. The work mainly focused on effects of nuclear test fallout. In the works are examined isotopes of Pu - 238; Th - 232; U -234;238; Pu - 239,240,241; Am - 241; Np - 237; Cm -244 [Holm 1995]. It has been shown that seems to accumulate radionuclides in marine sediments. In particular, the importance attached to carbonate complexes (corals, etc.). But questions about the possibility of re-mobilization of radionuclide, forms their concentration, their participation in global geochemical cycles in the ocean, remain open. We believe a major factor controlling the distribution of heavy metals is the formation of ocean ferromanganese crusts and nodules hydrogenic at the bottom of the ocean and seamounts. It is likely that the process of formation of Fe-manganese hydrogenic can play a major role in the control of radioactive contamination in the oceanic sediment. At least for the U number of works on the subject [Sherman et al. 2008]. The high sensitivity of the Fe-manganese crust is known to the isotopic composition of lead [Loranger & Zayed 1994, Collen et al 2011]. Recent work [Wilkins etal 2006, Renshaw etal 2009] show a large role; Fe (III)-and Mn (IV)-reducing organisms that anaerobic bacteria in oxidation and therefore changes in mobility systems U and Pu. So much interest is data for sorption of radionuclide on hydroxides Fe and Mn. Unfortunately we are not aware of works on the subject. We have therefore taken their own experimental studies on sorption of radionuclide on natural Fe-Mn crusts (sample from Magellan seamount Pacific ocean) [Martynov et al 2012]. The results showed high sorption ability of material crusts for fixation of radionuclides: U-233, Np-237, Pu-238, Am-241. For all radionuclide experiment absorption has been reached already in the first hour it was 96.0% of total substance radionuclide absorbed from the solution, and after the first day it was reached

  13. Targeted Radionuclide Therapy: Practical Applications and Future Prospects

    PubMed Central

    Zukotynski, Katherine; Jadvar, Hossein; Capala, Jacek; Fahey, Frederic

    2016-01-01

    In recent years, there has been a proliferation in the development of targeted radionuclide cancer therapy. It is now possible to use baseline clinical and imaging assessments to determine the most effective therapy and to tailor this therapy during the course of treatment based on radiation dosimetry and tumor response. Although this personalized approach to medicine has the advantage of maximizing therapeutic effect while limiting toxicity, it can be challenging to implement and expensive. Further, in order to use targeted radionuclide therapy effectively, there is a need for multidisciplinary awareness, education, and collaboration across the scientific, industrial, and medical communities. Even more important, there is a growing understanding that combining radiopharmaceuticals with conventional treatment such as chemotherapy and external beam radiotherapy may limit patient morbidity while improving survival. Developments in radiopharmaceuticals as biomarkers capable of predicting therapeutic response and targeting disease are playing a central role in medical research. Adoption of a practical approach to manufacturing and delivering radiopharmaceuticals, assessing patient eligibility, optimizing post-therapy follow-up, and addressing reimbursement issues will be essential for their success. PMID:27226737

  14. Calculation of distribution coefficients for radionuclides in soils and sediments

    SciTech Connect

    Puigdomenech, I.; Bergstroem, U.

    1995-01-01

    The turnover of radionuclides in parts of the biosphere is usually modeled by use of a sorption distribution coefficient, K{sub d}. Its value has a large influence on calculated concentrations of long-lived radionuclides found in reservoirs, which are important for doses to humans. Sorption is due to several processes and a variety of physical and chemical interactions. In the commonly used K{sub d}-methodology. however, these processes were usually not considered explicitly. Additionally, many K{sub d} values were obtained from laboratory experiments from the geosphere, the conditions of which differ from those prevailing in the biosphere. The main objective of this work was to extend the knowledge about the theoretical background for calculation of K{sub d} values. To achieve this objective, theoretical models for ion exchange and surface complexation were adapted to simulation under biospheric conditions. Elements studied were Cs, Ra, Np, U, and Pu. The results show that a triple-layer surface complexation model may be used to estimate K{sub d} values for actinides as functions of some chemical parameters, such as pH and the redox potential (E{sub H}). An area of application is performance assessment of radioactive waste repositories. 59 refs., 7 figs., 3 tabs.

  15. Calculation of distribution coefficients for Radionuclides in soils and sediments

    SciTech Connect

    Puigdomenech, I.; Bergstrom, U.

    1995-10-01

    The turnover of radionuclides in parts of the biosphere is usually modeled by use of a sorption distribution coefficient, K{sub a}. Its value has a large influence on calculated concentrations of long-lived radionuclides found in reservoirs, which are important for doses to humans. Sorption is due to several processes and a variety of physical and chemical interactions (e.g., surface complexation and ion exchange). In the commonly used K{sub d}-methodology, however, these processes were usually not considered explicitly. Additionally, many K{sub d} values were obtained from laboratory experiments or from the geosphere, the conditions of which differ from those prevailing in the biosphere. The main objective of this work was to extend the knowledge about the theoretical background for calculation of K{sub d} values. To achieve this objective, theoretical models for ion exchange and surface complexation were adapted to simulation under biospheric conditions. Elements studied were Cs, Ra, Np, U and Pu. The results show that a triple-layer surface complexation model may be used to estimate K{sub d} values for actinides as functions of some chemical parameters, such as pH and the redox potential (E{sub H}). An area of application is performance assessment of radioactive waste repositories.

  16. Uptake by plants of radionuclides from FUSRAP waste materials

    SciTech Connect

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  17. Radionuclide demonstration of intrapulmonary shunting in cirrhosis

    SciTech Connect

    Bank, E.R.; Thrall, J.H.; Dantzker, D.R.

    1983-05-01

    The association of hepatic cirrhosis and severe arterial hypoxemia has been well described. Although alterations in ventilatory function may partially account for the hypoxemia, the principal mechanism is thought to be a microangiopathic change in the pulmonary vasculature resulting in intrapulmonary arteriovenous shunting with resultant systemic desaturation. Whole-body radionuclide scans with technetium-99m macroaggregated albumin labeling have been diagnostic of right-to-left shunting by their demonstration of tracer accumulation within the extrapulmonary circulation. A case of severe pulmonary arteriovenous shunting in an alcoholic patient in whom hepatic disease had not been of apparent clinical significance before radionuclide scanning is reported. He did not have cuntaeous angiomata as have all other patients with alcoholic cirrhosis and hypoxemia.

  18. Radionuclide demonstration of intrapulmonary shunting in cirrhosis

    SciTech Connect

    Bank, E.R.; Thrall, J.H.; Dantzker, D.R.

    1983-05-01

    The association of hepatic cirrhosis and severe arterial hypoxemia has been well described. Although alterations in ventilatory function may partially account for the hypoxemia, the principal mechanism is thought to be a microangiopathic change in the pulmonary arteriovenous shunting with resultant systemic desaturation. Whole-body radionuclide scans with technetium-99m macroaggrregated albumin (/sup 99m/Tc MAA) labeling have been diagnostic of right-to-left shunting by their demonstration of tracer accumulation within the extrapulmonary circulation. A case of severe pulmonary arteriovenous shunting in an alcoholic patient in whom hepatic disease had not been of apparent clinical significance before radionuclide scanning is reported. He did not have cutaneous angiomata as have all other patients with alcoholic cirrhosis and hypoxemia.

  19. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  20. Methods and systems for detection of radionuclides

    DOEpatents

    Coates, Jr., John T.; DeVol, Timothy A.

    2010-05-25

    Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location.

  1. Air kerma rate constants for radionuclides.

    PubMed

    Wasserman, H; Groenewald, W

    1988-01-01

    Conversion to SI units requires that the exposure rate constant which was usually quoted in R.h-1.mCi-1.cm2 be replaced by the air kerma rate constant with units m2.Gy.Bq-1.s-1. The conversion factor is derived and air kerma rate constants for 30 radionuclides used in nuclear medicine and brachytherapy are listed. A table for calculation of air kerma rates for other radionuclides is also given. To calculate absorbed dose to tissue, the air kerma rate has to be multiplied by approximately 1.1. A dose equivalent rate constant is thus listed which allows direct calculation of dose equivalent rate to soft tissue without resorting to exposure rate constants tabulated in the special units R.m2.mCi-1.h-1 which should no longer be used. PMID:3208786

  2. Skin dose from radionuclide contamination on clothing

    SciTech Connect

    Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.

    1997-06-01

    Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by proper weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.

  3. A dynamic model for evaluating radionuclide distribution in forests from nuclear accidents.

    PubMed

    Schell, W R; Linkov, I; Myttenaere, C; Morel, B

    1996-03-01

    The Chernobyl Nuclear Power Plant accident in 1986 caused radionuclide contamination in most countries in Eastern and Western Europe. A prime example is Belarus where 23% of the total land area received chronic levels; about 1.5 x 10(6) ha of forested lands were contaminated with 40--190 kBq m-2 and 2.5 x 10(4) ha received greater than 1,480 kBq m-2 of 137Cs and other long-lived radionuclides such as 90Sr and 239,240Pu. Since the radiological dose to the forest ecosystem will tend to accumulate over long time periods (decades to centuries), we need to determine what countermeasures can be taken to limit this dose so that the affected regions can, once again, safely provide habitat and natural forest products. To address some of these problems, our initial objective is to formulate a generic model, FORESTPATH, which describes the major kinetic processes and pathways of radionuclide movement in forests and natural ecosystems and which can be used to predict future radionuclide concentrations. The model calculates the time-dependent radionuclide concentrations in different compartments of the forest ecosystem based on the information available on residence half-times in two forest types: coniferous and deciduous. The results show that the model reproduces well the radionuclide cycling pattern found in the literature for deciduous and coniferous forests. Variability analysis was used to access the relative importance of specific parameter values in the generic model performance. The FORESTPASTH model can be easily adjusted for site-specific applications. PMID:8609024

  4. A dynamic model for evaluating radionuclide distribution in forests from nuclear accidents

    SciTech Connect

    Schell, W.R.; Linkov, I.; Myttenaere, C.

    1996-03-01

    The Chernobyl Nuclear Power Plant accident in 1986 caused radionuclide contamination in most countries in Eastern and Western Europe. A prime example is Belarus where 23% of the total land area received chronic levels; about 1.5 X 10{sup 6} ha of forested lands were contaminated with 40-190 kBq m{sup -2} and 2.5 X 10{sup 4} ha received greater than 1,480 kBq m{sup -2} of {sup 137}Cs and other long-lived radionuclides such as {sup 90}Sr and {sup 239,240}Pu. Since the radiological dose to the forest ecosystem will tend to accumulate over long time periods (decades to centuries), we need to determine what countermeasures can be taken to limit this dose so that the affected regions can, once again, safely provide habitat and natural forest products. To address some of these problems, our initial objective is to formulate a generic model, FORESTPATH, which describes the major kinetic processes and pathways of radionuclide movement in forests and natural ecosystems and which can be used to predict future radionuclide concentrations. The model calculates the time-dependent radionuclide concentrations in different compartments of the forest ecosystem based on the information available on residence half-times in two forest types: coniferous and deciduous. The results show that the model reproduces well the radionuclide cycling pattern found in the literature for deciduous and coniferous forests. Variability analysis was used to access the relative importance of specific parameter values in the generic model performance. The FORESTPASTH model can be easily adjusted for site-specific applications. 92 refs., 5 figs., 6 tabs.

  5. Radionuclide transfer from feed to camel milk.

    PubMed

    Al-Masri, M S; Al-Hamwi, A; Amin, Y; Safieh, M B; Zarkawi, M; Soukouti, A; Dayyoub, R; Voigt, G; Fesenko, S

    2014-06-01

    The transfer of (137)Cs, (85)Sr, (131)I, (210)Po, (210)Pb and (238)U from feed to camel's milk was investigated in a pilot experiment with three lactating camels. For a period of 60 days, the animals were fed on spiked feed containing the studied radionuclides. They were subsequently returned to a contamination-free diet and monitored for another 90 days. The activity concentrations of (137)Cs, (85)Sr and (131)I in milk decreased with time and reached background levels after 20 days. Equilibrium transfer coefficients and biological half-lives were estimated and transfer coefficients were calculated as (8.1 ± 3.6) × 10(-4), (4.4 ± 1.6) × 10(-2), (7.8 ± 3.9) × 10(-4), (2.7 ± 3.5) × 10(-4), (1.8 ± 1.5) × 10(-4) and (7.0 ± 3.6) × 10(-3) d L(-1) for (85)Sr, (131)I, (137)Cs, (210)Po, (210)Pb and (238)U, respectively. The biological half-lives were estimated to be 6.4, 4.2, 8.9, and 53.3 days for (85)Sr, (131)I, (137)Cs, and (238)U, respectively. Estimates of the half-lives were based on a one component model: it was found that the half-life values measured for artificial radionuclides were slightly shorter than those for natural radionuclides. The data obtained in the study are the first published experimental data on radionuclide transfer to camel milk. PMID:24508949

  6. Sedimentation rate determination by radionuclides mass balances

    NASA Astrophysics Data System (ADS)

    Cazala, C.; Reyss, J. L.; Decossas, J. L.; Royer, A.

    2003-04-01

    In the past, uranium mining activity took place in the area around Limoges, France. Even nowadays, this activity results in an increase in the input and availability of radionuclides in aquifer reservoirs, making of this area a suitable site to better understand the behaviour of radionuclides in the surficial environment. Water was sampled monthly over the entire year 2001 in a brook that collects mine water and in a lake fed by this brook. Samples were filtered through 0.45μm filters to remove particles. Activities of 238U, 226Ra, 210Pb, 228Th and 228Ra were measured on particulate (>0.45μm), dissolved (<0.45μm) and total (unfiltered) fractions by gamma spectrometry in the well of a high efficiency, low background, germanium detector settled in an underground laboratory, protected from cosmic rays by 1700 m of rocks (LSM, CNRS-CEA, French Alps). Activities measured in particulate and dissolved fractions were summed and compared to the one measured in unfiltered water to test the filtration yield. No significant loss or contamination were detected. In the brook water, 70% of 238U, 60% of 226Ra and 80% of 210Pb are associated with particles. Activities associated with particles decrease drastically along with the velocity of current when the stream enters the lake. An annual mass balance of radionuclides carried by particles from the stream to the lake was used to determine the sedimentation rate in the lake. The flux of particles deduced from mass balance calculations based on five isotopes corresponds to the thickness of sediment accumulated since the creation of this artificial lake (that is, 1976). This study emphasises the usefulness of radionuclides as tracers for environmental investigations.

  7. Radionuclide Air Emission Report for 2008

    SciTech Connect

    Wahl, Linnea

    2009-05-21

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2008, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources include more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2008 is 5.2 x 10{sup -3} mrem/yr (5.2 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.1 x 10{sup -1} person-rem (1.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2008.

  8. Radionuclide Air Emission Report for 2009

    SciTech Connect

    Wahl, Linnea

    2010-06-01

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the EPA radioactive air emission regulations in 40CFR61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2009, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources included more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2009 is 7.0 x 10{sup -3} mrem/yr (7.0 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.5 x 10{sup -1} person-rem (1.5 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2009.

  9. Radionuclide Air Emission Report for 2007

    SciTech Connect

    Wahl, Linnea; Wahl, Linnea

    2008-06-13

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). The EPA regulates radionuclide emissions that may be released from stacks or vents on buildings where radionuclide production or use is authorized or that may be emitted as diffuse sources. In 2007, all Berkeley Lab sources were minor stack or building emissions sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]), there were no diffuse emissions, and there were no unplanned emissions. Emissions from minor sources either were measured by sampling or monitoring or were calculated based on quantities received for use or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, Version 3.0, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2007 is 1.2 x 10{sup -2} mrem/yr (1.2 x 10{sup -4} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) EPA dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 3.1 x 10{sup -1} person-rem (3.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2007.

  10. Radionuclide bone scintigraphy in pediatric orthopedics

    SciTech Connect

    Conway, J.J.

    1986-12-01

    Radionuclide bone scintigraphy is highly sensitive and specific for diagnosing the musculoskeletal disorders of childhood. Conditions such as neonatal osteomyelitis, septic arthritis, diskitis of childhood, Legg-Calve-Perthes disease, the osteochondroses, the toddler's fracture, sports injuries, spondylolysis, myositis ossificians, and reflex sympathetic dystrophy are readily defined. High-quality state-of-the-art scintigraphy is essential in infants and young children. 64 references.