Science.gov

Sample records for 15degreec anaerobic wastewater

  1. Bioenergy from anaerobically treated wastewater

    SciTech Connect

    Richards, E.A.

    1981-01-01

    Breweries and other processing plants including dairy cooperatives, sugar plants, grain mills, gasohol plants, etc., produce wastewater containing complex organic matter, either in solution or as volatile suspended solids, which can be treated anaerobically to effectively reduce the pollutants by 85-95% and generate a CH4 containing gas. An example anaerobic plant to serve a 10 to the power of 6-bbl brewery is discussed.

  2. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    NASA Astrophysics Data System (ADS)

    Hassan, Siti Roshayu; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  3. Thermophilic anaerobic digestion of high strength wastewaters

    SciTech Connect

    Wiegant, W.M.; Claassen, J.A.; Lettinga, G.

    1985-09-01

    Investigations on the thermophilic anaerobic treatment of high-strength wastewaters (14-65 kg COD/mT) are presented. Vinasse, the wastewater of alcohol distilleries, was used as an example of such wastewaters. Semicontinuously fed digestion experiments at high retention times revealed that the effluent quality of digestion at 55C is comparable with that at 30C at similar loading rates. The amount of methane formed per kilogram of vinasse drops almost linearly with increasing vinasse concentrations. The treatment of vinasse was also investigated using upflow anaerobic sludge blanket (UASB) reactors.

  4. Treatment of slaughterhouse wastewaters using anaerobic filters.

    PubMed

    Martinez, Sandra Luz; Torretta, Vincenzo; Minguelac, Jésus Vázquez; Siñeriz, Faustino; Raboni, Massimo; Copelli, Sabrina; Rada, Elena Cristina; Ragazzi, Marco

    2014-01-01

    In this paper, a laboratory-scale experimentation allowed comparing the performances of two upflow anaerobic packed-bed filters filled with different packing materials and operating at mesophilic conditions (30 degreeC) for treating slaughterhouse wastewaters. Methane production was experimentally evaluated considering different volumetric organic loading rates as well as feeding overloading conditions. Although filter performances declined with loading rates higher than 6 kg CODin m-3 d-1 , the chemical oxygen demand (COD) removal efficiency remained always above 60%. The experimental results allowed for determining kinetic parameters for bacterial growth rate and methane production, following Monod and Chen-Hashimoto models, respectively. Results demonstrated that the reactors reached a cellular retention time significantly greater than the hydraulic retention time. The kinetic parameter values (Ks, l/max) revealed the low microorganisms' affinity for the substrate and confirmed the moderate biodegradability of slaughterhouse wastewater. The kinetic analysis also allowed the comparison of the filters performances with another anaerobic system and the assessment of the parameters useful for real-scale plant design. The system design, applied to a medium-sized Argentinean slaughterhouse, demonstrated to (i) be energetically self-sufficient and (ii) contribute to the plant's water heating requirements. PMID:24600871

  5. Denitrification in anaerobic lagoons used to treat swine wastewater.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic lagoons are commonly used for treatment of swine wastewater. Although these lagoons were once thought to be relatively simple; their physical, chemical, and biological processes are actually very complex. This study of anaerobic lagoons had twofold objectives: 1] quantify denitrification e...

  6. Neural fuzzy modeling of anaerobic biological wastewater treatment systems

    SciTech Connect

    Tay, J.H.; Zhang, X.

    1999-12-01

    Anaerobic biological wastewater treatment systems are difficult to model because their performance is complex and varies significantly with different reactor configurations, influent characteristics, and operational conditions. Instead of conventional kinetic modeling, advanced neural fuzzy technology was employed to develop a conceptual adaptive model for anaerobic treatment systems. The conceptual neural fuzzy model contains the robustness of fuzzy systems, the learning ability of neural networks, and can adapt to various situations. The conceptual model was used to simulate the daily performance of two high-rate anaerobic wastewater treatment systems with satisfactory results obtained.

  7. Microbial aggregates in anaerobic wastewater treatment.

    PubMed

    Kosaric, N; Blaszczyk, R

    1990-01-01

    The phenomenon aggregation of anaerobic bacteria gives an opportunity to speed up the digestion rate during methanogenesis. The aggregates are mainly composed of methanogenic bacteria which convert acetate and H2/CO2 into methane. Other bacteria are also included in the aggregates but their concentration is rather small. The aggregates may also be formed during acetogenesis or even hydrolysis but such aggregates are not stable and disrupt quickly when not fed. A two stage process seems to be suitable when high concentrated solid waste must be treated. Special conditions are necessary to promote aggregate formation from methanogenic bacteria but aggregates once formed are stable without feeding even for a few years. The structure, texture and activity of bacterial aggregates depend on several parameters: (1)--temperature and pH, (2)--wastewater composition and (3)--hydrodynamic conditions within the reactor. The common influence of all these parameters is still rather unknown but some recommendations may be given. Temperature and pH should be maintained in the range which is optimal for methanogenic bacteria e.g. a temperature between 32 and 50 degrees C and a value pH between 6.5 and 7.5. Wastewaters should contain soluble wastes and the specific loading rate should be around one kgCOD(kgVSS)-1 d-1. The concentration of the elements influences aggregate composition and probably structure and texture. At high calcium concentration a change in the colour of the granules has been observed. Research is necessary to investigate the influence of other elements and organic toxicants on maintenance of the aggregates. Hydrodynamic conditions seem to influence the stability of the granules over long time periods. At low liquid stream rates, aggregates may starve and lysis within the aggregates is possible which results in hollowing of aggregates and their floating. At high liquid stream rates the aggregates may be disrupted and washed out of the reactor as a flocculent

  8. A review of anaerobic treatment of saline wastewater.

    PubMed

    Xiao, Yeyuan; Roberts, Deborah J

    2010-01-01

    Large volumes of saline (> 2% w/v NaCl) wastewaters are discharged from many industries; e.g. seafood processing, textile dyeing, oil and gas production, tanneries and drinking water treatment processes. Although anaerobic treatment would be the most cost-effective and sustainable technology for the treatment of many of these saline wastewaters, the salinity is considered to be inhibitory to anaerobic biological treatment processes. The recent applications of salt-tolerant cultures for the treatment of wastewaters from seafood processing and ion-exchange processes suggest that biological systems can be used to treat salty wastewaters. Additionally, organisms capable of anaerobic degradation of contaminants in saline solutions have been observed in marine sediments and have been characterized during the last two decades. This manuscript provides a review of the recent research on anaerobic treatment of saline wastewater and bacterial consortia capable of the anaerobic degradation of pollutants in saline solutions, documenting that the biological treatment of saline wastewaters is promising. PMID:20662390

  9. Anaerobic treatment of municipal wastewater using the UASB-technology.

    PubMed

    Urban, I; Weichgrebe, D; Rosenwinkel, K-H

    2007-01-01

    The anaerobic treatment of municipal wastewater enables new applications for the reuse of wastewater. The effluent could be used for irrigation as the included nutrients are not affected by the treatment. Much more interesting now are renewable energies and the retrenchment of CO(2) emission. With the anaerobic treatment of municipal wastewater, not only can the CO(2) emission be reduced but "clean" energy supply can be gained by biogas. Most important for the sustainability of this process is the gathering of methane from the liquid effluent of the reactor, because the negative climate-relevant effect from the degassing methane is much higher than the positive effect from saving CO(2) emission. In this study, UASB reactors were used with a flocculent sludge blanket for the biodegradation of the carbon fraction in the wastewater with different temperatures and concentrations. It could be shown that the positive effect is much higher for municipal wastewater with high concentrations in hot climates. PMID:18048975

  10. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    PubMed Central

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. PMID:26887229

  11. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor.

    PubMed

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. PMID:26887229

  12. Anaerobic sequencing batch reactor treatment of coal conversion wastewaters

    SciTech Connect

    Ketchum, L.H. Jr.; Earley, J.P.; Shen, Yutao.

    1989-09-01

    The work proposed is a laboratory investigation of the AnSBR (Anaerobic Sequencing Batch Reactors) for treatment of a synthetic coal conversion wastewater. Two different strategies will be pursued. First, an AnSBR will be operated to simulate the Anaerobic Up-flow Sludge Blanket Reactor in an attempt to develop a readily settleable granular sludge. Second, operating strategies will be sought to optimize treatment, without attempting to develop settleable granular sludge. These systems will require development of more elaborate decanting mechanisms, probably including use of tube settler technology. We will use: (1) screening tests to identify compounds which are amenable to anaerobic degradation; (2) to determine those which are toxic or have an inhibitory effect; and (3) to identify the dilution required to achieve anaerobic degradation of the synthetic waste water; acclimation tests of organisms collected from different sources to the synthetic coal conversion wastewater; and Automatic Laboratory AnSBR studies. A 4-liter reactor will be operated to maintain a settleable granular anaerobic sludge when treating the synthetic coal conversion wastewater. 72 refs., 238 figs., 22 tabs.

  13. Treatment of melanoidin wastewater by anaerobic digestion and coagulation.

    PubMed

    Arimi, Milton M; Zhang, Yongjun; Götz, Gesine; Geißen, Sven-Uwe

    2015-01-01

    Melanoidins are dark-coloured recalcitrant pollutants found in many industrial wastewaters including coffee-manufacturing effluent, molasses distillery wastewater (MDWW) and other wastewater with molasses as the raw material. The wastewaters are mostly treated with anaerobic digestion after some dilution to minimize the inhibition effect. However, the dark colour and recalcitrant dissolved organic carbon (DOC) mainly caused by melanoidin are not effectively removed. The aim of this study was to investigate the removal of colour and remnant DOC by different coagulants from anaerobically digested MDWW. From the six coagulants tested, ferric chloride had the highest melanoidin (48%), colour (92.7%) and DOC (63.3%) removal at pH 5 and a dosage of 1.6 g/l. Both polymer and inorganic salt coagulants tested had optimal colour, melanoidin and DOC removal at acidic pH. The molecular size distribution of synthetic melanoidins by liquid chromatography-organic carbon detection indicated a preferential removal of high-molecular-weight melanoidins over low weight melanoidins by the coagulation. Further studies should focus on how to improve biodegradability of the treated effluent for it to be reused as dilution water for anaerobic digestion. PMID:25799161

  14. Anaerobic Digestion of Food Waste-recycling Wastewater

    NASA Astrophysics Data System (ADS)

    Han, Gyuseong; Shin, Seung Gu; Lim, Juntaek; Jo, Minho; Hwang, Seokhwan

    2010-11-01

    Food waste-recycling (FWR) wastewater was evaluated as feedstock for two-stage anaerobic digestion at different hydraulic retention times (HRTs). The FWR wastewater tested contained high concentrations of organic materials and had chemical oxygen demand (COD) >130 g/L and volatile solids (VS) >55 g/L. Two identical two-stage anaerobic digesters were operated to investigate the performance at six HRTs ranging from 10-25 days. In the acidogenic reactor, the total carbohydrate reduction efficiency and volatile fatty acid production dramatically decreased when acidogenic HRT was <2.5 days (i.e., total two-stage HRT = 15 days). High organic removal ratios of 75.5-85.9% for COD and 68.8-83.6% for VS were achieved throughout the two-stage process. Methane production rate of 1.7-3.6 L-gas/L-reactorṡd was observed. These results suggested that two-stage anaerobic process was successful at the laboratory scale with FWR wastewater as feedstock.

  15. Kinetics of anaerobic purification of industrial wastewater

    SciTech Connect

    Bolle, W.L.; van Breugel, J.; van Eybergen, G.C.; Kossen, N.W.F.; van Gils, W.

    1986-04-01

    As part of the development of an integral mathematical model describing the up-flow anaerobic sludges blanket (UASB) reactor, the kinetics of the conversion of organic wastes has to be known. The Mondod model is compared with the model proposed by Andrews, et al. Together with the assumption that the substrate for the anaerobic bacteria is formed by nonionized, volatile fatty acids, the Andrews model is able to describe substrate inhibition and reactor failure due to pH changes. From four batch experiments, with different concentrations of microorganisms, it could be concluded with a reliability of over 95% that the Monod model was inadequate and Andrews' model was adequate to describe the measurements. Standard statistical techniques like the X2 and the F-test were used for this purpose. From a parameter sensitivity analysis for the Andrews model it followed that the maximum specific growth rate Mu(A) max of the bacteria and the inhibition constant K, are the parameters which influance the systems most. Thus, these parameters were determined experimentally and most accurately. The other parameters were taken from literature. From a calculation of the Thiele modulus for the particles it follows that transport limitation of the substrate in the flocs is not significant. The efficiency Eta is 0.85 in the worst case. 11 references.

  16. Anaerobic treatment of a furfural-production wastewater

    SciTech Connect

    Wirtz, R.A.; Dague, R.R. . Dept. of Civil and Construction Engineering)

    1993-01-01

    The laboratory-scale treatment of a furfural-byproduct wastewater containing approximately 1.2% acetic acid was investigated using one fully-packed anaerobic filter and one partially-packed anaerobic upflow blanket filter operated at 35 C. Hydraulic retention times of 24 and 12 h were investigated, with organic loading rates ranging from 3 to 26 g COD/L/day. COD removal efficiencies in excess of 90% were observed for both reactors at organic loading up to 23 g/L/day. Experiments at both HRTs were conducted to determine the effect on performance of a two-week shut-down of the reactors. Results from the shut-down studies indicated that the fully-packed filter handled the shut-down periods more efficiently than did the blanket filter.

  17. Biomass selection for optimal anaerobic treatment of olive mill wastewater.

    PubMed

    Sabbah, I; Yazbak, A; Haj, J; Saliba, A; Basheer, S

    2005-01-01

    This research was conducted to identify the most efficient biomass out of five different types of biomass sources for anaerobic treatment of Olive Mill Wastewater (OMW). This study was first focused on examining the selected biomass in anaerobic batch systems with sodium acetate solutions (control study). Then, the different types of biomass were tested with raw OMW (water-diluted) and with pretreated OMW by coagulation-flocculation using Poly Aluminum Chloride (PACl) combined with hydrated lime (Ca(OH)2). Two types of biomass from wastewater treatment systems of a citrus juice producing company "PriGat" and from a citric acid manufacturing factory "Gadot", were found to be the most efficient sources of microorganisms to anaerobically treat both sodium acetate solution and OMW. Both types of biomass were examined under different concentration ranges (1-40 g l(-1)) of OMW in order to detect the maximal COD tolerance for the microorganisms. The results show that 70-85% of COD removal was reached using Gadot biomass after 8-10 days when the initial concentration of OMW was up to 5 g l(-1), while a similar removal efficiency was achieved using OMW of initial COD concentration of 10 g l(-1) in 2-4 days of contact time with the PriGat biomass. The physico-chemical pretreatment of OMW was found to enhance the anaerobic activity for the treatment of OMW with initial concentration of 20 g l(-1) using PriGat biomass. This finding is attributed to reducing the concentrations of polyphenols and other toxicants originally present in OMW upon the applied pretreatment process. PMID:15747599

  18. Treatment of winery wastewater with an anaerobic rotating biological contactor.

    PubMed

    Arnaud, Th

    2009-01-01

    Performances of an anaerobic rotating biological contactor (AnRBC) have been tested with winery wastewater. A 50 litres pilot has been used during a 4 month period. It was observed that the start-up took place in one month until the biofilm stabilized. Optimal performances were obtained with a COD removal close to 80%, with the following conditions: temperature of wastewater at 20 degrees C, volume load of 2 kg COD m(-3) d(-1), mass load of 0.3 kg COD kg MVS(-1) d(-1), surface load of 0.11 kg COD m(-2) d(-1). However, it is possible to enhance some experimental conditions to obtain better results, especially in increasing the total surface of the biodisk and in controlling temperature to the mesophilic optimal value (37 degrees C). In such conditions it is estimated that for 80% COD removal, volume load could approach 20 to 25 kg COD m(-3) d(-1). PMID:19633379

  19. Brewery wastewater treatment using anaerobic inverse fluidized bed reactors.

    PubMed

    Alvarado-Lassman, A; Rustrián, E; García-Alvarado, M A; Rodríguez-Jiménez, G C; Houbron, E

    2008-05-01

    Two anaerobic inverse fluidized bed reactors were utilized to evaluate organic matter removal from brewery wastewater, applying different OLR and testing two support materials. Hydrodynamic tests varying liquid flow and solid concentration were developed on the supports in order to establish operational conditions. A batch colonization stage was applied using 25% active volume of extendosphere and triturated polyethylene as support materials. The reactors were subsequently operated continuously with stepwise increments in organic loading rate until limiting conditions was reached. For the supports studied, IFBR technology was suitable for organic matter removal present in brewery wastewater with COD removal efficiencies greater than 90%. The reactor with triturated polyethylene support showed an excellent COD removal with OLR values up to 10 g COD/Ld, whereas the reactor with extendosphere support had an excellent hydrodynamic and biologic behavior working with OLR values up to 70 g COD/Ld. PMID:17716891

  20. Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters*

    PubMed Central

    Zhang, Lei; Zheng, Ping; Tang, Chong-jian; Jin, Ren-cun

    2008-01-01

    The concept of anaerobic ammonium oxidation (ANAMMOX) is presently of great interest. The functional bacteria belonging to the Planctomycete phylum and their metabolism are investigated by microbiologists. Meanwhile, the ANAMMOX is equally valuable in treatment of ammonium-rich wastewaters. Related processes including partial nitritation-ANAMMOX and completely autotrophic nitrogen removal over nitrite (CANON) have been developed, and lab-scale experiments proved that both processes were quite feasible in engineering with appropriate control. Successful full-scale practice in the Netherlands will accelerate application of the process in future. This review introduces the microbiology and more focuses on application of the ANAMMOX process. PMID:18500782

  1. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    PubMed

    Narihiro, Takashi; Kim, Na-Kyung; Mei, Ran; Nobu, Masaru K; Liu, Wen-Tso

    2015-01-01

    The anaerobic packed-bed (AP) and hybrid packed-bed (HP) reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG) and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95%) after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs). Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR) increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR. PMID:25748027

  2. Microbial Community Analysis of Anaerobic Reactors Treating Soft Drink Wastewater

    PubMed Central

    Narihiro, Takashi; Kim, Na-Kyung; Mei, Ran; Nobu, Masaru K.; Liu, Wen-Tso

    2015-01-01

    The anaerobic packed-bed (AP) and hybrid packed-bed (HP) reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG) and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95%) after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs). Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR) increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR. PMID:25748027

  3. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    PubMed

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated

  4. Biodegradability of wastewater and activated sludge organics in anaerobic digestion.

    PubMed

    Ikumi, D S; Harding, T H; Ekama, G A

    2014-06-01

    The investigation provides experimental evidence that the unbiodegradable particulate organics fractions of primary sludge and waste activated sludge calculated from activated sludge models remain essentially unbiodegradable in anaerobic digestion. This was tested by feeding the waste activated sludge (WAS) from three different laboratory activated sludge (AS) systems to three separate anaerobic digesters (AD). Two of the AS systems were Modified Ludzack - Ettinger (MLE) nitrification-denitrification (ND) systems and the third was a membrane University of Cape Town (UCT) ND and enhanced biological P removal system. One of the MLE systems and the UCT system were fed the same real settled wastewater. The other MLE system was fed raw wastewater which was made by adding a measured constant flux (gCOD/d) of macerated primary sludge (PS) to the real settled wastewater. This PS was also fed to a fourth AD and a blend of PS and WAS from settled wastewater MLE system was fed to a fifth AD. The five ADs were each operated at five different sludge ages (10-60d). From the measured performance results of the AS systems, the unbiodegradable particulate organic (UPO) COD fractions of the raw and settled wastewaters, the PS and the WAS from the three AS systems were calculated with AS models. These AS model based UPO fractions of the PS and WAS were compared with the UPO fractions calculated from the performance results of the ADs fed these sludges. For the PS, the UPO fraction calculated from the AS and AD models matched closely, i.e. 0.30 and 0.31. Provided the UPO of heterotrophic (OHO, fE_OHO) and phosphorus accumulating (PAO, fE_PAO) biomass were accepted to be those associated with the death regeneration model of organism "decay", the UPO of the WAS calculated from the AS and AD models also matched well - if the steady state AS model fE_OHO = 0.20 and fE_PAO = 0.25 values were used, then the UPO fraction of the WAS calculated from the AS models deviated significantly

  5. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure

    PubMed Central

    Lu, Meiqing; Niu, Xiaojun; Liu, Wei; Zhang, Jun; Wang, Jie; Yang, Jia; Wang, Wenqi; Yang, Zhiquan

    2016-01-01

    The effect of tetracycline (TC) antibiotic on biogas generation in anaerobic wastewater treatment was studied. A lab-scale Anaerobic Baffled Reactor (ABR) with three compartments was used. The reactor was operated with synthetic wastewater in the absence of TC and in the presence of 250 μg/L TC for 90 days, respectively. The removal rate of TC, volatile fatty acids (VFAs), biogas compositions (hydrogen (H2), methane (CH4), carbon dioxide (CO2)), and total biogas production in each compartment were monitored in the two operational conditions. Results showed that the removal rate of TC was 14.97–67.97% in the reactor. The presence of TC had a large negative effect on CH4 and CO2 generation, but appeared to have a positive effect on H2 production and VFAs accumulation. This response indicated that the methanogenesis process was sensitive to TC presence, but the acidogenesis process was insensitive. This suggested that the presence of TC had less influence on the degradation of organic matter but had a strong influence on biogas generation. Additionally, the decrease of CH4 and CO2 generation and the increase of H2 and VFAs accumulation suggest a promising strategy to help alleviate global warming and improve resource recovery in an environmentally friendly approach. PMID:27341657

  6. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure.

    PubMed

    Lu, Meiqing; Niu, Xiaojun; Liu, Wei; Zhang, Jun; Wang, Jie; Yang, Jia; Wang, Wenqi; Yang, Zhiquan

    2016-01-01

    The effect of tetracycline (TC) antibiotic on biogas generation in anaerobic wastewater treatment was studied. A lab-scale Anaerobic Baffled Reactor (ABR) with three compartments was used. The reactor was operated with synthetic wastewater in the absence of TC and in the presence of 250 μg/L TC for 90 days, respectively. The removal rate of TC, volatile fatty acids (VFAs), biogas compositions (hydrogen (H2), methane (CH4), carbon dioxide (CO2)), and total biogas production in each compartment were monitored in the two operational conditions. Results showed that the removal rate of TC was 14.97-67.97% in the reactor. The presence of TC had a large negative effect on CH4 and CO2 generation, but appeared to have a positive effect on H2 production and VFAs accumulation. This response indicated that the methanogenesis process was sensitive to TC presence, but the acidogenesis process was insensitive. This suggested that the presence of TC had less influence on the degradation of organic matter but had a strong influence on biogas generation. Additionally, the decrease of CH4 and CO2 generation and the increase of H2 and VFAs accumulation suggest a promising strategy to help alleviate global warming and improve resource recovery in an environmentally friendly approach. PMID:27341657

  7. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure

    NASA Astrophysics Data System (ADS)

    Lu, Meiqing; Niu, Xiaojun; Liu, Wei; Zhang, Jun; Wang, Jie; Yang, Jia; Wang, Wenqi; Yang, Zhiquan

    2016-06-01

    The effect of tetracycline (TC) antibiotic on biogas generation in anaerobic wastewater treatment was studied. A lab-scale Anaerobic Baffled Reactor (ABR) with three compartments was used. The reactor was operated with synthetic wastewater in the absence of TC and in the presence of 250 μg/L TC for 90 days, respectively. The removal rate of TC, volatile fatty acids (VFAs), biogas compositions (hydrogen (H2), methane (CH4), carbon dioxide (CO2)), and total biogas production in each compartment were monitored in the two operational conditions. Results showed that the removal rate of TC was 14.97–67.97% in the reactor. The presence of TC had a large negative effect on CH4 and CO2 generation, but appeared to have a positive effect on H2 production and VFAs accumulation. This response indicated that the methanogenesis process was sensitive to TC presence, but the acidogenesis process was insensitive. This suggested that the presence of TC had less influence on the degradation of organic matter but had a strong influence on biogas generation. Additionally, the decrease of CH4 and CO2 generation and the increase of H2 and VFAs accumulation suggest a promising strategy to help alleviate global warming and improve resource recovery in an environmentally friendly approach.

  8. Methanogenic community shift in anaerobic batch digesters treating swine wastewater.

    PubMed

    Kim, Woong; Lee, Seungyong; Shin, Seung Gu; Lee, Changsoo; Hwang, Kwanghyun; Hwang, Seokhwan

    2010-09-01

    Qualitative and quantitative molecular analysis techniques were used to determine associations between differences in methanogenic microbial communities and the efficiency of batch anaerobic digesters. Two bioreactors were initially seeded with anaerobic sludge originating from a local municipal wastewater treatment plant and then supplemented with swine wastewater. Differences were observed in the total amount of methane produced in the two bioreactors (7.9L/L, and 4.5L/L, respectively). To explain these differences, efforts were taken to characterize the microbial populations present using a PCR-based DGGE analysis with methanogenic primer and probe sets. The groups Methanomicrobiales (MMB), Methanobacteriales (MBT), and Methanosarcinales (MSL) were detected, but Methanococcales (MCC) was not detected. Following this qualitative assay, real-time PCR was used to investigate quantitative differences in the populations of these methanogenic orders. MMB was found to be the dominant order present and its abundance patterns were different in the two digesters. The population profiles of the other methanogenic groups also differed. Through redundancy analysis, correlations between the concentrations of the different microbes and chemical properties such as volatile fatty acids were calculated. Correlations between MBT and MSL populations and chemical properties were found to be consistent in both digesters, however, differences were observed in the correlations between MMB and propionate. These results suggest that interactions between populations of MMB and other methanogens affected the final methane yield, despite MMB remaining the dominant group overall. The exact details of why changes in the MMB community caused different profiles of methane production could not be ascertained. However, this research provides evidence that microbial behavior is important for regulating the performance of anaerobic processes. PMID:20692007

  9. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    PubMed

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  10. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters

    PubMed Central

    Smith, Bryan JK; Boothe, Melissa A; Fiddler, Brice A; Lozano, Tania M; Rahi, Russel K; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 × 107 copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 × 104 copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 × 107 copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile. PMID:26508873

  11. Anaerobic/aerobic treatment of selected azo dyes in wastewater

    SciTech Connect

    Seshadri, S.; Bishop, P.L. . Dept. of Civil and Environmental Engineering); Agha, A.M. . Faculty of Civil Engineering)

    1994-01-01

    Azo dyes represent the largest class of dyes in use today. Current environmental concern with these dyes revolves around the potential carcinogenic health risk presented by these dyes or their intermediate biodegradation products when exposed to microflora in the human digestive tract. These dyes may build up in the environment, since many wastewater treatment plants allow these dyes to pass through the system virtually untreated. The initial step in the degradation of these dyes is the cleavage of the Azo bond. This cleavage is often impossible under aerobic conditions, but has been readily demonstrated under anaerobic conditions. The focus of the study was to determine the feasibility of using an anaerobic fluidized-bed reactor to accomplish this cleavage. The effects of typical process variables such as hydraulic retention time (HRT), influent dye concentration levels, and degree of bed fluidization on removal efficiencies were also studied. The four dyes selected for this study were Acid-Orange 7, Acid-Orange 8, Acid-Orange 10, and Acid-Red 14. The effectiveness of using a bench-scale-activated sludge reactor as a sequenced second stage was also examined. Results indicate that nearly complete cleavage of the Azo bond is easily accomplished for each of the four dyes under hydraulic retention times of either 12 or 24 h. Initial results indicate, though, that aromatic amine by-products remain. The sequenced second stage was able to remove the remaining Chemical Oxygen Demand (COD) load to acceptable levels. Work is presently underway to determine the face of the anaerobic by-products in the aerobic second stage.

  12. Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation.

    PubMed

    Bornare, J B; Adhyapak, U S; Minde, G P; Kalyan Raman, V; Sapkal, V S; Sapkal, R S

    2015-01-01

    Compared with conventional wastewater treatment processes, membrane bioreactors (MBRs) offer several advantages including high biodegradation efficiency, excellent effluent quality and smaller footprint. However, it has some limitations on account of its energy intensive operation. In recent years, there has been growing interest in use of anaerobic membrane bioreactors (AnMBRs) due to their potential advantages over aerobic systems, which include low sludge production and energy generation in terms of biogas. The aim of this study was to evaluate the performance of a submerged AnMBR for the treatment of synthetic wastewater having 4,759 mg/l chemical oxygen demand (COD). The COD removal efficiency was over 95% during the performance evaluation study. Treated effluent with COD concentration of 231 mg/l was obtained for 25.5 hours hydraulic retention time. The obtained total organic carbon concentrations in feed and permeate were 1,812 mg/l and 89 mg/l, respectively. An average biogas generation and yield were 25.77 l/d and 0.36 m3/kg COD, respectively. Evolution of trans-membrane pressure (TMP) as a function of time was studied and an average TMP of 15 kPa was found suitable to achieve membrane flux of 12.17 l/(m2h). Almost weekly back-flow chemical cleaning of the membrane was found necessary to control TMP within the permissible limit of 20 kPa. PMID:26038930

  13. The anaerobic digestion of biologically and physicochemically pretreated oily wastewater.

    PubMed

    Peng, Liyu; Bao, Meidan; Wang, Qingfeng; Wang, Fangchao; Su, Haijia

    2014-01-01

    To enhance the degradation of oily wastewater and its biogas production, a biological-physicochemical pretreatment was introduced prior to the anaerobic digestion system. The digestion thereafter proceeded more efficiently due to the inoculation by oil degrading bacteria (Bacillus). A 2-stage pre-mixing is more effective than directly mixing. The effects on the methane production were also investigated by pre-treatment with ultrasonic (US) treatment, combined with citric acid (CA) addition. US pre-treatment was found to improve the initial methane production, and CA pre-treatment could maintain this improvement during the whole digestion stage. Pre-mixing Bacillus at 9 wt.% inoculation, combined with US for 10 min and a CA concentration of 500 mg/L provided the optimum conditions. The most effective enhancement of methane yield was 1100.46 ml/g VS, exceeding that of the control by 280%. The change of coenobium shape and fatty acid content further proved that such pretreatment of oily wastewater can facilitate digestion. PMID:24240183

  14. Treatment of winery wastewater by an anaerobic sequencing batch reactor.

    PubMed

    Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P

    2002-01-01

    Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued. PMID:12188548

  15. Mechanisms of Virus Adsorption Following Land Application of Anaerobically Treated Flushed Dairy Manure Wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soil adsorption mechanisms of viruses in untreated and anaerobically treated animal manure wastewater and groundwater was investigated. Batch adsorption studies were performed using cationic (hexadecyltrimethylammonium bromide, HTAB), anionic (sodium dodecyl sulfate, SDS), and nonionic (polyoxy...

  16. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion.

    PubMed

    Smith, Adam L; Stadler, Lauren B; Cao, Ling; Love, Nancy G; Raskin, Lutgarde; Skerlos, Steven J

    2014-05-20

    The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), conventional activated sludge with anaerobic digestion (CAS+AD), and an aerobic membrane bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater treatment under baseline assumptions at 15 °C, AnMBR recovered 49% more energy as biogas than HRAS+AD, the most energy positive conventional technology considered, but had significantly higher energy demands and environmental emissions. Global warming impacts associated with AnMBR were largely due to emissions of effluent dissolved methane. For high strength domestic wastewater treatment, AnMBR recovered 15% more net energy than HRAS+AD, and the environmental emissions gap between the two systems was reduced. Future developments of AnMBR technology in low energy fouling control, increased flux, and management of effluent methane emissions would make AnMBR competitive with HRAS+AD. Rapid advancements in AnMBR technology must continue to achieve its full economic and environmental potential as an energy recovery strategy for domestic wastewater. PMID:24742289

  17. Improvement of anaerobic digester performance by wastewater recirculation through an aerated membrane.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine wastewater from an anaerobic digester was recirculated through a silicone hose located in an external aeration chamber to determine its effect on wastewater malodorants and biogas composition. The silicone hose acted as a semipermeable membrane for the passage of small molecules. In the first...

  18. Wastewater polishing by a channelized macrophyte-dominated wetland and anaerobic digestion of the harvested phytomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Constructed wetlands (CW) offer a mechanism to meet regulatory standards for wastewater treatment while minimizing energy inputs. To optimize CW wastewater polishing activities and investigate integration of CW with energy production from anaerobic digestion we constructed a pair of three-tier ch...

  19. Feasibility of treating partially soluble wastewater in anaerobic sequencing batch biofilm reactor (ASBBR) with mechanical stirring.

    PubMed

    Pinho, Samantha Cristina; Ratusznei, Suzana Maria; Rodrigues, José Alberto Domingues; Foresti, Eugenio; Zaiat, Marcelo

    2005-03-01

    This work reports on the treatment of partially soluble wastewater in an anaerobic sequencing batch biofilm reactor, containing biomass immobilized on polyurethane matrices and stirred mechanically. The results showed that agitation provided optimal mixing and improved the overall organic matter consumption rates. The system showed to be feasible to enhance the treatment of partially soluble wastewaters. PMID:15491835

  20. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater.

    PubMed

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2013-03-15

    A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet microfiltration membranes was operated at psychrophilic temperature (15 °C) treating simulated and actual domestic wastewater (DWW). Chemical oxygen demand (COD) removal during simulated DWW operation averaged 92 ± 5% corresponding to an average permeate COD of 36 ± 21 mg/L. Dissolved methane in the permeate stream represented a substantial fraction (40-50%) of the total methane generated by the system due to methane solubility at psychrophilic temperatures and oversaturation relative to Henry's law. During actual DWW operation, COD removal averaged 69 ± 10%. The permeate COD and 5-day biochemical oxygen demand (BOD(5)) averaged 76 ± 10 mg/L and 24 ± 3 mg/L, respectively, indicating compliance with the U.S. EPA's standard for secondary effluent (30 mg/L BOD(5)). Membrane fouling was managed using biogas sparging and permeate backflushing and a flux greater than 7 LMH was maintained for 30 days. Comparative fouling experiments suggested that the combination of the two fouling control measures was more effective than either fouling prevention method alone. A UniFrac based comparison of bacterial and archaeal microbial communities in the AnMBR and three different inocula using pyrosequencing targeting 16S rRNA genes suggested that mesophilic inocula are suitable for seeding psychrophilic AnMBRs treating low strength wastewater. Overall, the research described relatively stable COD removal, acceptable flux, and the ability to seed a psychrophilic AnMBR with mesophilic inocula, indicating future potential for the technology in practice, particularly in cold and temperate climates where DWW temperatures are low during part of the year. PMID:23295067

  1. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  2. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters.

    PubMed

    Smith, Bryan Jk; Boothe, Melissa A; Fiddler, Brice A; Lozano, Tania M; Rahi, Russel K; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 × 10(7) copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 × 10(4) copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 × 10(7) copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile. PMID:26508873

  3. Anaerobic digestion challenge of raw olive mill wastewater.

    PubMed

    Sampaio, M A; Gonçalves, M R; Marques, I P

    2011-12-01

    Olive mill wastewater (OMW) was digested in its original composition (100% v/v) in an anaerobic hybrid. High concentrations (54-55 kg COD m(-3)), acid pH (5.0) and lack of alkalinity and nitrogen are some OMW adverse characteristics. Loads of 8 kg COD m(-3) d(-1) provided 3.7-3.8 m3 biogas m(-3) d(-1) (63-64% CH4) and 81-82% COD removal. An effluent with basic pH (8.1) and high alkalinity was obtained. A good performance was also observed with weekly load shocks (2.7-4.1, 8.4-10.4 kg COD m(-3) d(-1)) by introducing piggery effluent and OMW alternately. Biogas of 3.0-3.4 m3 m(-3) d(-1) (63-69% CH4) was reached. Developed biomass (350 days) was neither affected by raw OMW nor by organic shocks. Through the effluents complementarity concept, a stable process able of degrading the original OMW alone was obtained. Unlike what is referred, OMW is an energy resource through anaerobiosis without additional expenses to correct it or decrease its concentration/toxicity. PMID:21983408

  4. Simultaneous enzymatic hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry industry

    NASA Astrophysics Data System (ADS)

    Dors, Gisanara; Mendes, Adriano A.; Pereira, Ernandes B.; de Castro, Heizir F.; Furigo, Agenor

    2013-03-01

    Simultaneous enzymatic hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry industry with porcine pancreatic lipase at different concentrations (from 1.0 to 3.0 g L-1) were performed. The efficiency of the enzymatic pretreatment was measured by the Chemical Oxygen Demand (COD) removal and formation of methane. All samples pretreated with lipase showed a positive effect on the COD removal and formation of methane. After 30 days of anaerobic biodegradation the methane production varied from 569 ± 95 to 1,101 ± 10 mL for crude wastewater and pretreated at 3.0 g L-1 enzyme, respectively. COD removal of wastewater supplemented at different enzyme concentrations was found to be threefold higher than crude wastewater. The use of lipases seems to be a promising alternative for treating lipid-rich wastewaters such as those from the poultry industry.

  5. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    NASA Astrophysics Data System (ADS)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  6. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    SciTech Connect

    Sumantri, Indro; Purwanto,; Budiyono

    2015-12-29

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  7. A novel application of an anaerobic membrane process in wastewater treatment.

    PubMed

    You, H S; Tseng, C C; Peng, M J; Chang, S H; Chen, Y C; Peng, S H

    2005-01-01

    The applications of membrane processes in anaerobic biological wastewater treatment still have some limitations due to severe membrane scaling and fouling, although they have been proven to achieve superior COD removal and biomass retention. An innovative anaerobic membrane process for wastewater treatment was conducted to control the membrane scaling problems. The process comprises an anaerobic reactor, an aerobic reactor, and a membrane separation tank. Anaerobic sludge from a full-scale UASB reactor treating food wastewater was inoculated to anaerobic and aerobic reactor to purify synthetic wastewater consisting of glucose and sodium acetate. The anaerobic reactor was operated in a sludge bed type without three-phase separator. The aerobic reactor can eliminate residual organics from the anaerobic reactor effluent using facultative microorganisms. To provide solid-liquid separation, hollow fiber ultrafiltration module was submerged in the separation tank. The results clearly show that the anaerobic membrane process combined methanogenic and aerobic COD reduction is a stable system. No fatal scaling was found after two months of operation even without chemical cleaning for the membrane. It was also found that inorganic precipitates formed in the aerobic reactor were reduced due to CO2 stripping in aerobic reactor. Another important finding was that the inorganic precipitates were entrapped into facultative aerobes floc. The ash/SS ratio of aerobes floc increased from 0.17 to 0.55 after 50 days of operation, which confirms this phenomenon. Based on our investigation, the new process can control scaling effectively to extend the membrane application in anaerobic treatment. PMID:16003960

  8. Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system.

    PubMed

    Yoo, Rihye; Kim, Jeonghwan; McCarty, Perry L; Bae, Jaeho

    2012-09-01

    A laboratory-scale staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was used to treat a municipal wastewater primary-clarifier effluent. It was operated continuously for 192 days at 6-11 L/m(2)/h flux and trans-membrane pressure generally of 0.1 bar or less with no fouling control except the scouring effect of the fluidized granular activated carbon on membrane surfaces. With a total hydraulic retention time of 2.3h at 25°C, the average effluent chemical oxygen demand and biochemical oxygen demand concentrations of 25 and 7 mg/L yielded corresponding removals of 84% and 92%, respectively. Also, near complete removal of suspended solids was obtained. Biosolids production, representing 5% of the COD removed, equaled 0.049 g VSS/g BOD(5) removed, far less than the case with comparable aerobic processes. The electrical energy required for the operation of the SAF-MBR system, 0.047 kW h/m(3), could be more than satisfied by using the methane produced. PMID:22784964

  9. Spatial Variability of Anaerobic Processes and Wastewater pH in Force Mains.

    PubMed

    Rudelle, Elice Alice; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Jensen, Henriette Stokbro; Vollertsen, Jes

    2016-08-01

    The present study focuses on anaerobic organic matter transformation processes in force mains for the purpose of improving existing sewer process models. Wastewater samples were obtained at 100 m intervals from a 1 km long pilot scale force main and measured for several wastewater parameters. Transformation rates for selected parameters were calculated and their spatial variability analyzed. In terms of electron transfer, fermentation was the most significant process, resulting in a net volatile fatty acid formation of 0.83 mmol/L. Sulfate reduction resulted in a production of 0.73 mmol/L of inorganic sulfide. Methanogenesis was negligable in all experiments despite an anaerobic residence time of more than 30 hours. As a result of the anaerobic processes, the wastewater pH decreased by approximately one pH unit, resulting in a corresponding increase in the fraction of molecular hydrogen sulfide. A significant spatial variablilty was observed for the average transformation rates of all parameters. PMID:27456145

  10. Resource recovery and epidemiology of anaerobic wastewater treatment process in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Li, Ku-Yen; Hunt, Madelyn D.

    1995-01-01

    The results of work accomplished under two different areas: (1) Resource Recovery of an Anaerobic Wastewater Treatment process, and (2) Epidemiological Study of an Anaerobic Wastewater Treatment Process are documented. The first part of the work was to set up and test three anaerobic digesters and then run these three digesters with a NASA-simulated wastewater. The second part of the work was to use a multi-drug resistant strain of Salmonella choleraesuis as the indicator bacteria for the epidemiological study. Details of these two parts can be found in two master's theses and are described in Sections 3 and 4 of this report. Several important results condensed from these two parts are summarized in Section 2.

  11. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review.

    PubMed

    Barca, Cristian; Soric, Audrey; Ranava, David; Giudici-Orticoni, Marie-Thérèse; Ferrasse, Jean-Henry

    2015-06-01

    Dark fermentation is a bioprocess driven by anaerobic bacteria that can produce hydrogen (H2) from organic waste and wastewater. This review analyses a relevant number of recent studies that have investigated dark fermentative H2 production from wastewater using two different types of anaerobic biofilm reactors: anaerobic packed bed reactor (APBR) and anaerobic fluidized bed reactor (AFBR). The effect of various parameters, including temperature, pH, carrier material, inoculum pretreatment, hydraulic retention time, substrate type and concentration, on reactor performances was investigated by a critical discussion of the results published in the literature. Also, this review presents an in-depth study on the influence of the main operating parameters on the metabolic pathways. The aim of this review is to provide to researchers and practitioners in the field of H2 production key elements for the best operation of the reactors. Finally, some perspectives and technical challenges to improve H2 production were proposed. PMID:25746594

  12. Toxicity assessment of anaerobic digestion intermediates and antibiotics in pharmaceutical wastewater by luminescent bacterium.

    PubMed

    Ji, Jun-Yuan; Xing, Ya-Juan; Ma, Zi-Tao; Cai, Jing; Zheng, Ping; Lu, Hui-Feng

    2013-02-15

    In order to evaluate the effect of anaerobic digestion intermediates and antibiotics in pharmaceutical wastewaters on anaerobic digestion process, their acute toxicities were tested using the 15 min median inhibitory concentration (IC(50)) at pH 7.00 ± 0.05. The results showed that the IC(50) of ethanol, acetate, propionate and butyrate were 19.40, 20.71, 10.47 and 12.17 g L(-1) respectively, which suggested the toxicity descended in the order of propionate, butyrate, ethanol and acetate. The IC(50) of aureomycin, polymyxin and chloromycetin were 12.06, 6.24 and 429.90 mg L(-1) respectively, which indicated the toxicity descended in the order of polymyxin, aureomycin and chloromycetin. Using equitoxic ratio mixing method, the joint toxicities of five groups referred by A (four anaerobic digestion intermediates), B (four anaerobic digestion intermediates and aureomycin), C (four anaerobic digestion intermediates and polymyxin), D (four anaerobic digestion intermediates and chloromycetin) and E (four anaerobic digestion intermediates, aureomycin, polymyxin and chloromycetin) were investigated respectively. Their interactions were additive (A), synergistic (B), additive (C), synergistic (D) and synergistic (E). The investigation would lay a basis for the optimization of anaerobic biotechnology for pharmaceutical wastewater treatment. PMID:23334482

  13. Treatment of artificial soybean wastewater anaerobic effluent in a continuous aerobic-anaerobic coupled (CAAC) process with excess sludge reduction.

    PubMed

    Wang, Jun; Li, Xiaoxia; Fu, Weichao; Wu, Shihan; Li, Chun

    2012-12-01

    In this study, treatment of artificial soybean wastewater anaerobic effluent was studied in a continuous aerobic-anaerobic coupled (CAAC) process. The focus was on COD and nitrogen removal as well as excess sludge reduction. During the continuous operation without reflux, the COD removal efficiency was 96.5% at the optimal hydraulic retention time (HRT) 1.3 days. When HRT was shortened to 1.0 day, reflux from anaerobic zone to moving bed biofilm reactor (MBBR) was introduced. The removal efficiencies of COD and TN were 94.4% and 76.0% at the optimal reflux ratio 30%, respectively. The sludge yield coefficient of CAAC was 0.1738, the simultaneous removal of COD and nitrogen with in situ sludge reduction could be achieved in this CAAC process. The sludge reduction mechanism was discussed by soluble components variation along the water flow. PMID:23073101

  14. Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater.

    PubMed

    Yang, Libin; Tan, Xiaobo; Li, Deyi; Chu, Huaqiang; Zhou, Xuefei; Zhang, Yalei; Yu, Hong

    2015-04-01

    The cultivation of microalgae Chlorella pyrenoidosa (C. pyrenoidosa) using anaerobic digested starch wastewater (ADSW) and alcohol wastewater (AW) was evaluated in this study. Different proportions of mixed wastewater (AW/ADSW=0.176:1, 0.053:1, 0.026:1, v/v) and pure ADSW, AW were used for C. pyrenoidosa cultivation. The different proportions between ADSW and AW significantly influenced biomass growth, lipids production and pollutants removal. The best performance was achieved using mixed wastewater (AW/ADSW=0.053:1, v/v), leading to a maximal total biomass of 3.01±0.15 g/L (dry weight), lipids productivity of 127.71±6.31 mg/L/d and pollutants removal of COD=75.78±3.76%, TN=91.64±4.58% and TP=90.74±4.62%. PMID:25638404

  15. Anaerobic digestion of wastewater screenings for resource recovery and waste reduction

    NASA Astrophysics Data System (ADS)

    Wid, N.; Horan, N. J.

    2016-06-01

    Wastewater screenings are produced during the first stage of the wastewater treatment process and at present are disposed of to landfill. This material may not only cause operational failure to the treatment system, but also lead to environmental problems. In view of the high organic content of screenings, anaerobic digestion method may not only offer the potential for energy recovery, but also nutrient. In this study the, anaerobic batch digestion was performed at different dry solids concentrations of screenings to study the potential of biogas and phosphorus recovery. The tests demonstrated wastewater screenings were amenable to anaerobic digestion with methane yield was 355 m3/kg VS, which are comparable to the previous results. The digestate was high in P content and can be recovered up to 41%. This study also shows that anaerobic digestion was not only to turn this waste into useful resources, but also has a potential in reducing the organic content up to 31% for safe disposal. In this way the amount of wastewater screenings going to landfill is not only can be reduced, but also valuable products such as methane and phosphorus can also be recovered.

  16. Biohydrogen Production from Cheese Processing Wastewater by Anaerobic Fermentation Using Mixed Microbial Communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogen (H2) production from simulated cheese processing wastewater via anaerobic fermentation was conducted using mixed microbial communities under mesophilic conditions. In batch H2 fermentation experiments H2 yields of 8 and 10 mM/g-COD fed were achieved at food-to-microorganism (F/M) ratios of ...

  17. ANAEROBIC TREATMENT OF A SIMULATED HIGH-STRENGTH INDUSTRIAL WASTEWATER CONTAINING CHLOROPHENOLS

    EPA Science Inventory

    An anaerobic fluidized-bed granular activated carbon (GAC) reactor employing carbon replacement was evaluated for the treatment of a simulated high strength industrial wastewater containing inhibitory concentrations of chlorophenols. he reactor was fed 2000-5900 mg/L acetic acid,...

  18. ENZYME ADDITION TO THE ANAEROBIC DIGESTION OF MUNICIPAL WASTEWATER PRIMARY SLUDGE

    EPA Science Inventory

    The study evaluates the effects of enzyme augmentation on municipal wastewater (MWW) sludge anaerobic digestion. The primary objective was to examine the impact of using enzymes to enhance the degradation of the cellulosic and the oil- and grease-rich sludge fractions. The additi...

  19. Microbial community analysis of swine wastewater anaerobic lagoons by next-generation DNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic lagoons are a standard practice for the treatment of swine wastewater. This practice relies heavily on microbiological processes to reduce concentrated organic material and nutrients. Despite this reliance on microbiological processes, research has only recently begun to identify and enume...

  20. TREATMENT OF PCP CONTAINING WASTEWATER USING ANAEROBIC FLUIDIZED BED GAC BIOREACTORS

    EPA Science Inventory

    This study evaluates the use of two anaerobic fluidized-bed granular activated carbon (GAC) bioreactors for treating pentachlorophenol (PCP), one of the major toxic compounds found in wastewaters stemming primarily from wood preserving industries. he reactors are fed synthetic so...

  1. TREATMENT AND PCP CONTAINING WASTEWATER USING ANAEROBIC FLUIDIZED-BED GAC BIOREACTORS

    EPA Science Inventory

    This study evaluates the use of two anaerobic fluidized-bed granular activated carbon (GAC) bioreactors for treating pentachlorophenol (PCP), one of the major toxic compounds found in wastewaters stemming primarily from wood preserving industries. he reactors are fed synthetic so...

  2. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    SciTech Connect

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  3. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  4. Nitrification and denitrification gene abundances in swine wastewater anaerobic lagoons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although anaerobic lagoons are used globally for livestock waste treatment, their detailed microbial cycling of nitrogen is only beginning to become understood. Within this cycling, nitrification can be performed by organisms which produce the enzyme ammonia monooxygenase (AMO). For denitrification,...

  5. Selection of forward osmosis draw solutes for subsequent integration with anaerobic treatment to facilitate resource recovery from wastewater.

    PubMed

    Ansari, Ashley J; Hai, Faisal I; Guo, Wenshan; Ngo, Hao H; Price, William E; Nghiem, Long D

    2015-09-01

    Forward osmosis (FO) can be used to extract clean water and pre-concentrate municipal wastewater to make it amenable to anaerobic treatment. A protocol was developed to assess the suitability of FO draw solutes for pre-concentrating wastewater for potential integration with anaerobic treatment to facilitate resource recovery from wastewater. Draw solutes were evaluated in terms of their ability to induce osmotic pressure, water flux, and reverse solute flux. The compatibility of each draw solute with subsequent anaerobic treatment was assessed by biomethane potential analysis. The effect of each draw solute (at concentrations corresponding to the reverse solute flux at ten-fold pre-concentration of wastewater) on methane production was also evaluated. The results show that ionic organic draw solutes (e.g., sodium acetate) were most suitable for FO application and subsequent anaerobic treatment. On the other hand, the reverse solute flux of inorganic draw solutions could inhibit methane production from FO pre-concentrated wastewater. PMID:25978854

  6. Anaerobic treatment of cassava starch extraction wastewater using a horizontal flow filter with bamboo as support.

    PubMed

    Colin, X; Farinet, J-L; Rojas, O; Alazard, D

    2007-05-01

    Small-scale sour starch agroindustry in Colombia suffer from absence of water treatment. Although starch processing plants produce diluted wastewater, it is a source of pollution and cause environmental problems to the nearby rural population. A laboratory scale anaerobic horizontal flow filter packed with bamboo pieces was evaluated for the treatment of cassava starch extraction wastewater. The wastewater used in the experimentation was the draining water of the starch sedimentation basin. The reactor was operated for 6 months. It was inoculated with a semi-granular sludge from an anaerobic UASB reactor of a slaughterhouse. Maximum organic loading rate (OLR) applied was 11.8g COD/L d without dilution of the wastewater. At steady state and maximum OLR applied, 87% of the COD was removed and a gas productivity of 3.7L/L d was achieved. The average biogas yield was 0.36L/g COD removed. Methane content in the biogas was in the range of 69-81%. The total suspended solids (TSS) removed were 67%. The relative high lactic acid content did not negatively influence the performance of the reactor. No perturbation due to cyanide (3-5mg/L) was observed during the reactor operation. The results obtained indicated that the anaerobic horizontal flow filter could be used efficiently for the treatment of wastewater from Colombian starch processing small-scale agroindustry. PMID:16973355

  7. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor.

    PubMed

    Wang, Wei; Ma, Wencheng; Han, Hongjun; Li, Huiqiang; Yuan, Min

    2011-02-01

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35±2°C) reactor as a control, thermophilic anaerobic digestion (55±2°C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m(3) d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW. PMID:21112778

  8. Anaerobic digestion of alkaline bleaching wastewater from a kraft pulp and paper mill using UASB technique.

    PubMed

    Larsson, Madeleine; Truong, Xu-Bin; Björn, Annika; Ejlertsson, Jörgen; Bastviken, David; Svensson, Bo H; Karlsson, Anna

    2015-01-01

    Anaerobic digestion of alkaline kraft elemental chlorine-free bleaching wastewater in two mesophilic, lab-scale upflow anaerobic sludge bed reactors resulted in significantly higher biogas production (250±50 vs. 120±30 NmL g [Formula: see text]) and reduction of filtered total organic carbon (fTOC) (60±5 vs. 43±6%) for wastewater from processing of hardwood (HW) compared with softwood (SW). In all cases, the gas production was likely underestimated due to poor gas separation in the reactors. Despite changes in wastewater characteristics, a stable anaerobic process was maintained with hydraulic retention times (HRTs) between 7 and 14 h. Lowering the HRT (from 13.5 to 8.5 h) did not significantly affect the process, and the stable performance at 8.5 h leaves room for further decreases in HRT. The results show that this type of wastewater is suitable for a full-scale implementation, but the difference in methane potential between SW and HW is important to consider both regarding process dimensioning and biogas yield optimization. PMID:25441833

  9. [Anaerobic membrane bioreactors for treating agricultural and food processing wastewater at high strength].

    PubMed

    Wei, Yuan-Song; Yu, Da-Wei; Cao, Lei

    2014-04-01

    As the second largest amounts of COD discharged in 41 kinds of industrial wastewater, it is of great urgency for the agricultural and food processing industry to control water pollution and reduce pollutants. Generally the agricultural and food processing industrial wastewater with high strength COD of 8 000-30 000 mg x L(-1), is mainly treated with anaerobic and aerobic processes in series, but which exists some issues of long process, difficult maintenance and high operational costs. Through coupling anaerobic digestion and membrane separation together, anaerobic membrane bioreactor (AnMBR) has typical advantages of high COD removal efficiency (92%-99%), high COD organic loading rate [2.3-19.8 kg x (m3 x d)(-1)], little sludge discharged (SRT > 40 d) and low cost (HRT of 8-12 h). According to COD composition of high strength industrial wastewater, rate-limiting step of methanation could be either hydrolysis and acidification or methanogenesis. Compared with aerobic membrane bioreactor (MBR), membrane fouling of AnMBR is more complicated in characterization and more difficult in control. Measures for membrane fouling control of AnMBR are almost the same as those of MBR, including cross flow, air sparging and membrane relaxation. For meeting discharging standard of food processing wastewater with high strength, AnMBR is a promising technology with very short process, by enhancing COD removal efficiency, controlling membrane fouling and improving energy recovery. PMID:24946624

  10. CONTROL OF ODORS FROM ANAEROBIC LAGOONS TREATING FOOD PROCESSING WASTEWATERS

    EPA Science Inventory

    Anaerobic lagoons are used for the treatment of meat packing wastes in most areas of the country. They are a relatively low cost means of achieving BOD reduction. Although lagoon effluent is not suitable for stream discharge, it is amenable to further treatment or to land applica...

  11. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity.

    PubMed

    Shi, Xueqing; Lefebvre, Olivier; Ng, Kok Kwang; Ng, How Yong

    2014-02-01

    In this study, pharmaceutical wastewater with high total dissolved solids (TDSs) and chemical oxygen demand (COD) content was treated through a sequential anaerobic-aerobic treatment process. For the anaerobic process, an up-flow anaerobic sludge blanket (UASB) was applied, and a COD removal efficiency of 41.3±2.2% was achieved with an organic loading rate of 8.11±0.31gCOD/L/d and a hydraulic retention time of 48h. To evaluate the salinity effect on the anaerobic process, salts in the wastewater were removed by ion exchange resin, and adverse effect of salinity was observed with a TDS concentration above 14.92g/L. To improve the anaerobic effluent quality, the UASB effluent was further treated by a membrane bioreactor (MBR) and a sequencing batch reactor (SBR). Both the UASB+MBR and UASB+SBR systems achieved excellent organic removal efficiency, with respective COD removal of 94.7% and 91.8%. The UASB+MBR system showed better performance in both organic removal and nitrification. PMID:24355500

  12. Removal Of Heavy Metals From Electroplating Wastewater By Anaerobic Bacteria

    NASA Astrophysics Data System (ADS)

    Ma, Wanggang; Sun, Peide; Song, Yingqi; Zhang, Yi; Yin, Jun

    2010-11-01

    Biosorption of heavy metals from simulated wastewater and the raw electroplating wastewater with "BM (Biosorption of Metals) bacteria" were investigated in this study. The influence of initial pH, biosorbents dose, concentration of ions, contact time and temperature on biosorption capacity of Cr(VI) and Ni(II) were studied. The optimum pH for biosorption of Cr(VI) was found to be low, and the removal efficiency of Cr(VI) was 98.60% with "BM bacteria" at pH 2. The removal efficiency of Ni(II) was increased with increasing the pH, and was enhanced up to 115% compared with the wastewater without BM bacteria. In this experiment, the "BM bacteria" efficiently removed Cu(II), Ni(II), Cr(VI), Zn(II) and COD from the raw electroplating wastewater, and the removal efficiencies were 98.92%, 99.92%, 99.86%, 99.93% and 45.20% respectively.

  13. Energetic and biochemical valorization of cork boiling wastewater by anaerobic digestion

    PubMed Central

    2014-01-01

    Background In addition to energy benefits, anaerobic digestion offers other interesting advantages. The cork industry is of great environmental, economic and social significance in the western Mediterranean region, with Portugal being the world-leading producer and exporter. Cork boiling wastewater (CBW) is a toxic and recalcitrant organic effluent produced by this sector, which constitutes a serious environmental hazard. However, there is no documented research on anaerobic treatment/valorization performed with this effluent. The work presented here was developed with the aim to use the anaerobic digestion process to convert the CBW polluting organic load into an energy carrier gas and valuable molecules for industry. Results No lag phases were observed and a methane yield of 0.126 to 0.142 m3 kg-1 chemical oxygen demand (COD)added was registered in the mesophilic consortium experiments carried out in batch flasks at 37 ± 1°C. Anaerobic digestion can be advantageously connected to ultrafiltration or electrochemical processes, due to the following: 1) reduction of ellagic acid content and consequent decrease of CBW viscosity; and 2) increase in conductivity after the anaerobic process, avoiding the electrolyte application of the electrochemical process. The improvement of several CBW biochemical features shows that anaerobic digestion may provide additionally useful molecules. The rise in concentration of some of these compounds, belonging to the benzoic acid family (gallic, protocatechuic, vanillic and syringic acids), is responsible for the increase of antiradical activity of the phenolic fraction. Additionally, some enzymatic activity was also observed and while the laccase activity increased in the digested effluent by anaerobiosis, xylanase was formed in the process. Conclusions The multidisciplinary approach adopted allowed the valorization of CBW in terms of energy and valuable biomolecules. By exploiting the anaerobic digestion process potential, a

  14. Nutrient removal and microbial granulation in an anaerobic process treating inorganic and organic nitrogenous wastewater.

    PubMed

    Ahn, Y H; Kim, H C

    2004-01-01

    The sustainable anaerobic nitrogen removal and microbial granulation were investigated by using a laboratory anaerobic granular sludge bed reactor, treating synthetic (inorganic and organic) wastewater and piggery waste. From inorganic synthetic wastewater, lithoautotrophic ammonium oxidation to nitrite/nitrate was observed by an addition of hydroxylamine. Also, the results revealed that the Anammox intermediates (particularly, hydrazine) contents in the substrate would be one of the important parameters for success of the anaerobic nitrogen removal process. The results from organic synthetic wastewater show that if the Anammox organism were not great enough in the startup of the process, denitritation and anaerobic ammonification would be a process prior to the Anammox reaction. The anaerobic ammonium removal from the piggery waste was performed successfully, probably due to the Anammox intermediates contained in the substrate. This reactor shows a complex performance including the Anammox reaction and HAP crystallization, as well as having partial denitritation occurring simultaneously. From the activity test, the maximum specific N conversion rate was 0.1 g NH4-N/g VSS/day (0.77 g T-N/g VSS/day), indicating that potential denitritation is quite high. The NO2-N/NH4-N ratio to Anammox is 1.17. The colour of the biomass treating the piggery waste changed from black to dark red. It was also observed that the red-colored granular sludge had a diameter of 1-2 mm. The settleability assessment of the granular sludge revealed that the granular sludge had a good settleability even though it was worse than that of seed granular sludge. PMID:15537009

  15. Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor.

    PubMed

    Tan, Xiaobo; Chu, Huaqiang; Zhang, Yalei; Yang, Libin; Zhao, Fangchao; Zhou, Xuefei

    2014-10-01

    To explore the integration of microalgae cultivation and anaerobic processing for wastewater treatment, we utilized an airlift circulation photobioreactor and a dynamic membrane reactor for microalgae cultivation in combination with an upflow anaerobic sludge bed (UASB) reactor for starch processing wastewater (SPW) treatment. Chlorella pyrenoidosa completely adapted to the digested SPW without any chemical additives, and it grew normally under a wide temperature range in different seasons. C. pyrenoidosa was always the dominant microorganism in the photobioreactors although bacteria and some wild type microalgae were observed. Optimal biomass growth and pollutants removal was achieved at temperatures between 35 and 38°C in summer, removing 65.99% of COD, 83.06% of TN, 96.97% of TP and a biomass productivity of 0.37gL(-1)d(-1). Temperature fluctuation significantly influenced lipid contents and FAMEs compositions in biomass. The results demonstrate the successful integration of microalgae biomass production and anaerobic processing for wastewater treatment. PMID:25164347

  16. Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion

    SciTech Connect

    Hamdi, M. Universite de Provence, Marseille )

    1992-11-01

    The anaerobic biodegradability and toxicity of olive mill wastewaters (OMW) were studied in batch anaerobic digestion experiments. Anaerobic digestion of OMW or the supernatant of its centrifugation, the methane production was achieved at up to 5-15% (V/V) dilution corresponding to only 5-20 g/L COD. The washed suspended solids of OMW were toxic at up to 80 g/L COD; however, the kinetic of biodegradability of OMW or the supernatant was faster than for suspended solids, which are constituted mealy of cellulose and lignin. The darkly colored polyphenols induce the problem of biodegradation of OMW, whereas the long chain fatty acids (LCFA), tannins and simple phenolic compounds are responsible for its toxicity for methanogenic bacteria. 26 refs., 4 figs., 1 tab.

  17. Preliminary evaluation of biosolids characteristics for anaerobic membrane reactors treating municipal wastewaters.

    PubMed

    Dong, Qirong; Dagnew, Martha; Cumin, Jeff; Parker, Wayne

    2015-01-01

    This study assessed the characteristics of biosolids of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating municipal wastewater. The production of total solids (TS) and volatile solids (VS) was comparable to that reported for the extended aeration system at solids residence time (SRT) longer than 40 days. The yields of TS and VS were reduced as SRT increased from 40 to 100 days and increased with the addition of 26 mg/L of FeCl3. The AnMBR destroyed 60-82% of the VS loading in feed wastewater and hence it was concluded the biosolids met the requirements for vector attraction reduction for land application. The concentrations of volatile suspended solids and total suspended solids in the sludge were less than those reported after anaerobic digestion of conventional primary and secondary sludge mixtures, and hence dewatering of the waste stream may be required for some applications. The nutrient content in terms of total Kjeldahl nitrogen and total phosphorus was similar to that of anaerobically digested municipal sludges. The dewaterability of the biosolids was poorer than that reported for sludges from aerobic treatment and anaerobically digested sludges. Dewaterability was improved by addition of FeCl3 and reduced SRT. The biosolids met standards for land application with regards to the concentration of heavy metals but would need further treatment to meet Class B pathogen indicator criteria. PMID:26465317

  18. Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion.

    PubMed

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2006-06-01

    In this work, we investigated an integrated technology for the treatment of the recalcitrant contaminants of olive mill wastewaters (OMW), allowing water recovery and reuse for agricultural purposes. The method involves an electrochemical pre-treatment step of the wastewater using the electro-Fenton reaction followed by an anaerobic bio-treatment. The electro-Fenton process removed 65.8% of the total polyphenolic compounds and subsequently decreased the OMW toxicity from 100% to 66.9%, which resulted in improving the performance of the anaerobic digestion. A continuous lab-scale methanogenic reactor was operated at a loading rate of 10 g chemical oxygen demand (COD)l(-1) d(-1) without any apparent toxicity. Furthermore, in the combined process, a high overall reduction in COD, suspended solids, polyphenols and lipid content was achieved by the two successive stages. This result opens promising perspectives since its conception as a fast and cheap pre-treatment prior to conventional anaerobic post-treatment. The use of electro-coagulation as post-treatment technology completely detoxified the anaerobic effluent and removed its toxic compounds. PMID:16678883

  19. [Acute toxicity of antibiotics and anaerobic digestion intermediates in pharmaceutical wastewaters].

    PubMed

    Ji, Jun-Yuan; Xing, Ya-Juan; Zheng, Ping

    2012-12-01

    In order to determine the toxicity of antibiotics and anaerobic digestion intermediates on anaerobic treatment of pharmaceutical wastewaters containing antibiotics, the single and joint toxicities of some antibiotics and intermediates to Photobacterium phosphoreum were tested by using the 15-min half inhibitory concentration (15 min-IC50) at pH = 7.00 +/- 0.05. The results showed that the 15 min-IC50 of ethanol, acetate, propionate and butyrate were 19.40, 20.71, 10.47 and 12.17 g x L(-1), respectively, which indicated that the toxicity descended in the order of propionate, butyrate, ethanol and acetate. The 15 min-IC50 of Amoxicillin, Kanamycin, Lincomycin and Ciprofloxacin were 3.99, 5.11, 4.32 and 5.63 g x L(-1), respectively, so the toxicity descended in the order of Amoxicillin, Lincomycin, Kanamycin and Ciprofloxacin. Using equal effect mixing method, the joint toxicity of four anaerobic digestion intermediates, the four intermediates together with Amoxicillin, Ciprofloxacin, Kanamycin, Lincomycin individually and all together were investigated, which demonstrated that the first three interactions were additive and the last three were synergistic. The observations have laid a foundation for control and optimization of anaerobic biotechnology for pharmaceutical wastewater containing antibiotics. PMID:23379166

  20. Improvement of COD removal by controlling the substrate degradability during the anaerobic digestion of recalcitrant wastewater.

    PubMed

    Kawai, Minako; Nagao, Norio; Kawasaki, Nobuyuki; Imai, Akio; Toda, Tatsuki

    2016-10-01

    The recalcitrant landfill leachate was anaerobically digested at various mixing ratios with labile synthetic wastewater to evaluate the degradation properties of recalcitrant wastewater. The proportion of leachate to the digestion system was increased in three equal steps, starting from 0% to 100%, and later decreased back to 0% with the same steps. The chemical oxygen demand (COD) for organic carbon and other components were calculated by analyzing the COD and dissolved organic carbon (DOC), and the removal efficiencies of COD carbon and COD others were evaluated separately. The degradation properties of COD carbon and COD others shifted owing to changing of substrate degradability, and the removal efficiencies of COD carbon and COD others were improved after supplying 100% recalcitrant wastewater. The UV absorptive property and total organic carbon (TOC) of each molecular size using high performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with UVA and TOC detectors were also investigated, and the degradability of different molecular sizes was determined. Although the SEC system detected extracellular polymeric substances (EPS), which are produced by microbes in stressful environments, during early stages of the experiment, EPS were not detected after feeding 100% recalcitrant wastewater. These results suggest that the microbes had acclimatized to the recalcitrant wastewater degradation. The high removal rates of both COD carbon and COD others were sustained when the proportion of labile wastewater in the substrate was 33%, indicating that the effective removal of recalcitrant COD might be controlled by changing the substrate's degradability. PMID:27449962

  1. Selecting an indigenous microalgal strain for lipid production in anaerobically treated piggery wastewater.

    PubMed

    Marjakangas, Jatta M; Chen, Chun-Yen; Lakaniemi, Aino-Maija; Puhakka, Jaakko A; Whang, Liang-Ming; Chang, Jo-Shu

    2015-09-01

    The aim of this study was to select a potential microalgal strain for lipid production and to examine the suitability of anaerobically treated piggery wastewater as a nutrient source for production of lipid-rich biomass with the selected microalga. Biomass and lipid productivity of three microalgal strains (Chlorella sorokiniana CY1, Chlorella vulgaris CY5 and Chlamydomonas sp. JSC-04) were compared by using different media, nitrogen sources, and nitrogen concentrations. The highest lipid content and productivity (62.5 wt%, 162 mg/L/d) were obtained with C. vulgaris with BG-11 with 62 mg N/L. Secondly, C. vulgaris was cultivated in sterilized, diluted (1-20×), anaerobically treated piggery wastewater. Biomass production decreased and lipid content increased, when wastewater was more diluted. The highest lipid content of 54.7 wt% was obtained with 20× dilution, while the highest lipid productivity of 100.7 mg/L/d with 5× dilution. Piggery wastewater is a promising resource for mass production of oleaginous microalgal biomass. PMID:25746595

  2. Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent.

    PubMed

    Shin, Dong Yun; Cho, Hyun Uk; Utomo, Joseph Christian; Choi, Yun-Nam; Xu, Xu; Park, Jong Moon

    2015-05-01

    Microalgae, Scenedesmus bijuga, was cultivated in anaerobically digested food wastewater effluent (FWE) to treat the wastewater and produce biodiesel simultaneously. Three different mixing ratios with municipal wastewater were compared for finding out proper dilution ratio in biodiesel production. Of these, 1/20 diluted FWE showed the highest biomass production (1.49 g/L). Lipid content was highest in 1/10 diluted FWE (35.06%), and the lipid productivity showed maximum value in 1/20 diluted FWE (15.59 mg/L/d). Nutrient removal was also measured in the cultivation. FAME compositions were mainly composed of C16-C18 (Over 98.94%) in S. bijuga. In addition, quality of FAMEs was evaluated by Cetane Number (CN) and Bis-allylic Position Equivalent (BAPE). PMID:25466996

  3. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor.

    PubMed

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of 'fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10-17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids - SS, BOD, nitrogen - N and phosphorus - P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  4. Integrated anaerobic-aerobic fixed-film reactor for slaughterhouse wastewater treatment.

    PubMed

    Del Pozo, R; Diez, V

    2005-03-01

    An integrated anaerobic-aerobic fixed-film pilot-scale reactor with arranged media was fed during 166 days with slaughterhouse wastewater. Operation temperature was 25 degrees C and the anaerobic-aerobic volume ratio was decreased from 4:1 to 3:2 and finally to 2:3. Overall organic matter removal efficiencies of 93% were achieved for an average organic loading rate of 0.77 kg COD/m3 d, and nitrogen removal efficiencies of 67% were achieved for nitrogen loading rates of 0.084 kg N/m3 d. The high internal recirculation associated to the air-lift effect linked to the aeration of a part of the reactor section caused high mixing between the anaerobic and aerobic zones, so that most organic matter was removed aerobically. The nitrification process achieved an efficiency of 91% for nitrogen loads of 0.15 kg N/m3 d when the anaerobic-aerobic volume ratio was 2:3 and was limited by dissolved oxygen concentration below 3 mg/l. The influence of the heterotrophic biomass growing in the outer biofilm was checked. Denitrification only implied the 12-34% of the total nitrogen removal and was limited by dissolved oxygen concentration in the anaerobic zone above 0.5 mg/l caused by the mixing regime. Most removed nitrogen was employed in synthesis of heterotrophic bacteria. PMID:15766966

  5. Combined treatment of olive mill wastewater by Fenton's reagent and anaerobic biological process.

    PubMed

    Amor, Carlos; Lucas, Marco S; García, Juan; Dominguez, Joaquín R; De Heredia, J Beltrán; Peres, José A

    2015-01-01

    This work presents the application of Fenton's reagent process combined with anaerobic digestion to treat an olive mill wastewater (OMW). Firstly, OMW was pre-treated by chemical oxidation in a batch reactor with Fenton's reagent, using a fixed H2O2/COD ratio of 0.20, pH = 3.5 and a H2O2/Fe(2+) molar ratio of 15:1. This advanced oxidation treatment allowed reaching reductions of 17.6 and 82.5% of chemical oxygen demand (COD) and total polyphenols (TP), respectively. Secondly, OMW treatment by anaerobic digestion was performed using previously adapted microorganisms immobilized in Sepiolite. These biological tests were carried out varying the substrate concentration supplied to the reactor and COD conversions from 52 to 74% were obtained. Afterwards, Fenton's reagent followed by anaerobic digestion was applied to OMW treatment. This combined process presented a significant improvement on organic load removal, reaching COD degradations from 64 to 88%. Beyond the pollutant load removal, it was also monitored the yield of methane generated throughout anaerobic experiments. The methane produced ranged from 281 cm(3) to 322 cm(3) of CH4/g COD removed. Additionally, a methane generation kinetic study was performed using the Monod Model. The application of this model allowed observing a kinetic constant increase of the combined process (kFN = 0.036 h(-1)) when compared to the single anaerobic process (kF = 0.017 h(-1)). PMID:25560262

  6. Innovative anaerobic/upflow sludge blanket filtration bioreactor for phosphorus removal from wastewater.

    PubMed

    Khorsandi, H; Movahedyan, H; Bina, B; Farrokhzadeh, H

    2011-04-01

    Phosphorus is the key element to remove from aquatic environments to limit the growth of aquatic plants and algae and, thus, to control eutrophication. Because the upflow sludge blanket filtratio' (USBF) process, without addition of metal salts, entails low efficiency for phosphorus removal, we added an anaerobic reactor to the USBF bioreactor in order to promote the simultaneous removal of phosphorus and nitrogen from wastewater. The results revealed that the anaerobic/USBF bioreactor had a phosphorus removal efficiency up to 86%, with a sludge retention time (SRT) of 10 days, a hydraulic retention time (HRT) of 24 hours and an optimum COD/N/P ratio of 100/5/1. This ratio also improved the compaction quality of the sludge blanket in the USBF clarifier. The average specific phosphate uptake rate in the aerobic zone and the average specific phosphate release rate in the anaerobic reactor were 0.014 mg PO4-P removed/(g VSS x min) and 0.0525 mg PO4-P released/(g VSS x min), respectively. Secondary phosphorus release in the USBF clarifier was heightened with increasing HRT. Hence, the optimum total HRT can be selected between 16 and 24 hours based on effluent quality. Effluent phosphorus of about 1 mg/L was provided for wastewater with the COD/N/P ratio of 100/5/1 at the sludge age of 10 days and total HRT of 16 hours. This study illustrated that the anaerobic/USBF bioreactor at the optimum operational conditions can be an effective process for phosphorus removal from municipal wastewater. PMID:21877530

  7. Research on soybean protein wastewater treatment by the integrated two-phase anaerobic reactor

    PubMed Central

    Yu, Yaqin

    2015-01-01

    The start-up tests of treating soybean protein wastewater by the integrated two-phase anaerobic reactor were studied. The results showed that the soybean protein wastewater could be successfully processed around 30 days when running under the situation of dosing seed sludge with the influent of approximately 2000 mg/L and an HRT of 40 h. When the start-up was finished, the removal rate of COD by the reactor was about 80%. In the zone I, biogas mainly revealed carbon dioxide (CO2) and hydrogen (H2). Methane was the main component in the zone 2 which ranged from 53% to 59% with an average of 55%. The methane content in biogas increased from the zone I to II. It indicated that the methane-producing capacity of the anaerobic sludge increased. It was found that the uniquely designed two-phase integrated anaerobic reactor played a key role in treating soybean protein wastewater. The acidogenic fermentation bacteria dominated in the zone I, while methanogen became dominant in the zone II. It realized the relatively effective separation of hydrolysis acidification and methanogenesis process in the reactor, which was benefit to promote a more reasonable space distribution of the microbial communities in the reactor. There were some differences between the activities of the sludge in the two reaction zones of the integrated two-phase anaerobic reactor. The activity of protease was higher in the reaction zone I. And the coenzyme F420 in the reaction zone II was twice than that in the reaction zone I, which indicated that the activity of the methanogens was stronger in the reaction zone II. PMID:26288554

  8. Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion.

    PubMed

    Samaras, Vasilios G; Stasinakis, Athanasios S; Mamais, Daniel; Thomaidis, Nikolaos S; Lekkas, Themistokles D

    2013-01-15

    The concentrations of nine emerging contaminants, including pharmaceutically active compounds (PhACs) (ibuprofen, IBF; naproxen, NPX; diclofenac, DCF; ketoprofen, KFN) and endocrine disrupting chemicals (triclosan, TCS; bisphenol, BPA; nonylphenol, NP; nonylphenol monoethoxylate, NP1EO; nonylphenol diethoxylate, NP2EO), were determined in wastewater and sludge samples of two wastewater treatment plants (WWTPs) in Greece. Average concentrations in raw and treated wastewater ranged from 0.39 (KFN) to 12.52 μg L(-1) (NP) and from wastewater was bound to the particulate phase, while PhACs and BPA were mainly detected in the aqueous phase. Removal of target compounds during wastewater treatment ranged between 39% (DCF) and 100% (IBF). Except of DCF and BPA, similar removal efficiencies were observed in both WWTPs and no effect of WWTP's size and operational conditions was noticed. Use of mass balances showed that accumulation on sludge was a significant removal mechanism for NPs and TCS, while biodegradation/biotransformation was the major mechanism for the other compounds. Sampling of raw and digested sludge demonstrated that IBF and NPX are significantly removed (>80%) during anaerobic digestion, whereas removal of EDCs was lower, ranging up to 55% for NP1EO. PMID:23257325

  9. Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community.

    PubMed

    Seib, M D; Berg, K J; Zitomer, D H

    2016-09-01

    Sustainable municipal wastewater recovery scenarios highlight benefits of anaerobic membrane bioreactors (AnMBRs). However, influences of continuous seeding by influent wastewater and temperature on attached-growth AnMBRs are not well understood. In this study, four bench-scale AnMBR operated at 10 and 25°C were fed synthetic (SPE) and then real (PE) primary effluent municipal wastewater. Illumina sequencing revealed different bacterial communities in each AnMBR in response to temperature and bioreactor configuration, whereas differences were not observed in archaeal communities. Activity assays revealed hydrogenotrophic methanogenesis was the dominant methanogenic pathway at 10°C. The significant relative abundance of Methanosaeta at 10°C concomitant with low acetoclastic methanogenic activity may indicate possible Methanosaeta-Geobacter direct interspecies electron transfer. When AnMBR feed was changed to PE, continual seeding with wastewater microbiota caused AnMBR microbial communities to shift, becoming more similar to PE microbiota. Therefore, influent wastewater microbiota, temperature and reactor configuration influenced the AnMBR microbial community. PMID:27262719

  10. Combined Industrial Wastewater Treatment in Anaerobic Bioreactor Posttreated in Constructed Wetland

    PubMed Central

    Zeb, Bibi Saima; Mahmood, Qaisar; Jadoon, Saima; Pervez, Arshid; Irshad, Muhammad; Bilal, Muhammad; Bhatti, Zulfiqar Ahmad

    2013-01-01

    Constructed wetland (CW) with monoculture of Arundo donax L. was investigated for the posttreatment of anaerobic bioreactor (ABR) treating combined industrial wastewater. Different dilutions of combined industrial wastewater (20, 40, 60, and 80) and original wastewater were fed into the ABR and then posttreated by the laboratory scale CW. The respective removal efficiencies of COD, BOD, TSS, nitrates, and ammonia were 80%, 78–82%, 91.7%, 88–92%, and 100% for original industrial wastewater treated in ABR. ABR was efficient in the removal of Ni, Pb, and Cd with removal efficiencies in the order of Cd (2.7%) > Ni (79%) > Pb (85%). Posttreatment of the ABR treated effluent was carried out in lab scale CW containing A. donax L. CW was effective in the removal of COD and various heavy metals present in ABR effluents. The posttreatment in CW resulted in reducing the metal concentrations to 1.95 mg/L, 0 mg/L, and 0.004 mg/L for Ni, Pb, and Cd which were within the permissible water quality standards for industrial effluents. The treatment strategy was effective and sustainable for the treatment of combined industrial wastewater. PMID:24396832

  11. High-Rate Anaerobic Treatment of Wastewater at Low Temperatures

    PubMed Central

    Lettinga, Gatze; Rebac, Salih; Parshina, Sofia; Nozhevnikova, Alla; van Lier, Jules B.; Stams, Alfons J. M.

    1999-01-01

    Anaerobic treatment of a volatile fatty acid (VFA) mixture was investigated under psychrophilic (3 to 8°C) conditions in two laboratory-scale expanded granular sludge bed reactor stages in series. The reactor system was seeded with mesophilic methanogenic granular sludge and fed with a mixture of VFAs. Good removal of fatty acids was achieved in the two-stage system. Relative high levels of propionate were present in the effluent of the first stage, but propionate was efficiently removed in the second stage, where a low hydrogen partial pressure and a low acetate concentration were advantageous for propionate oxidation. The specific VFA-degrading activities of the sludge in each of the modules doubled during system operation for 150 days, indicating a good enrichment of methanogens and proton-reducing acetogenic bacteria at such low temperatures. The specific degradation rates of butyrate, propionate, and the VFA mixture amounted to 0.139, 0.110, and 0.214 g of chemical oxygen demand g of volatile suspended solids−1 day−1, respectively. The biomass which was obtained after 1.5 years still had a temperature optimum of between 30 and 40°C. PMID:10103270

  12. Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment.

    PubMed

    Ng, Kok Kwang; Shi, Xueqing; Ong, Say Leong; Ng, How Yong

    2016-01-01

    In this study, pharmaceutical wastewater with high salinity and total chemical oxygen demand (TCOD) was treated by an anaerobic membrane bioreactor (AnMBR) and an anaerobic bio-entrapped membrane reactor (AnBEMR). The microbial populations and communities were analyzed using the 454 pyrosequencing method. The hydraulic retention time (HRT), membrane flux and mean cell residence time (MCRT) were controlled at 30.6h, 6L/m(2)h and 100d, respectively. The results showed that the AnBEMR achieved higher TCOD removal efficiency and greater biogas production compared to the AnMBR. Through DNA pyrosequencing analysis, both the anaerobic MBRs showed similar dominant groups of bacteria and archaea. However, phylum Elusimicrobia of bacteria was only detected in the AnBEMR; the higher abundance of dominant archaeal genus Methanimicrococcus found in the AnBEMR could play an important role in degradation of the major organic pollutant (i.e., trimethylamine) present in the pharmaceutical wastewater. PMID:26577579

  13. Modeling simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater.

    PubMed

    Mendes, Carlos; Esquerre, Karla; Queiroz, Luciano Matos

    2016-07-15

    This paper presents a mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) to simulate the effects of nitrate concentration and hydraulic retention time (HRT) on the simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater. The model was calibrated using previously published experimental data obtained from anaerobic batch tests for different COD/ [Formula: see text] ratios. Model simulations were performed to predict the SCNR in a completely mixed reactor (CSTR) operating under mesophilic conditions (35 °C). Six different scenarios were evaluated to investigate the performance of the SCNR based on typical influent characteristics of domestic wastewater. The variables analyzed were chemical oxygen demand (COD) removal, nitrate concentration, methane production, nitrogen gas, volatile fatty acids (VFA) concentration, pH and percentage of COD used by the denitrifying and methanogenic microorganisms. The HRT was decreased stepwise from 15 to 4 h. The results indicate that Scenario (S5) with a COD/ [Formula: see text] ratio equal to 10 and an HRT equal to 15 h ensures the occurrence of the stable SCNR. Furthermore, the accumulation of denitrification intermediates and a significant reduction in the biogas production when the organic matter is limited was verified. PMID:27088208

  14. Assessing the treatment of acetaminophen-contaminated brewery wastewater by an anaerobic packed-bed reactor.

    PubMed

    Abdullah, Norhayati; Fulazzaky, Mohamad Ali; Yong, Ee Ling; Yuzir, Ali; Sallis, Paul

    2016-03-01

    The treatment of high-strength organic brewery wastewater with added acetaminophen (AAP) by an anaerobic digester was investigated. An anaerobic packed-bed reactor (APBR) was operated as a continuous process with an organic loading rate of 1.5-g COD per litre per day and a hydraulic retention time of three days. The results of steady-state analysis showed that the greatest APBR performances for removing COD and TOC were as high as 98 and 93%, respectively, even though the anaerobic digestibility after adding the different AAP concentrations of 5, 10 and 15 mg L(-1) into brewery wastewater can affect the efficiency of organic matter removal. The average CH4 production decreased from 81 to 72% is counterbalanced by the increased CO2 production from 11 to 20% before and after the injection of AAP, respectively. The empirical kinetic models for substrate utilisation and CH4 production were used to predict that, under unfavourable conditions, the performance of the APBR treatment process is able to remove COD with an efficiency of only 6.8%. PMID:26760229

  15. Effect of aerobic pretreatment with Aspergillus terreus on the anaerobic digestion of olive-mill wastewater.

    PubMed

    Borja, R; Alba, J; Garrido, S E; Martínez, L; García, M P; Monteoliva, M; Ramos-Cormenzana, A

    1995-10-01

    A kinetic study was carried out on the anaerobic digestion of olive-mill wastewater (OMW) and OMW that was previously fermented with Aspergillus terreus. The bioreactors used were batch fed and contained saponite as support for the mediating bacteria. The anaerobic digestion process followed first-order kinetics, from which the kinetic constant A was calculated using a non-linear regression. This kinetic parameter was influenced by the pretreatment carried out, and was 3.7 times higher for pretreated OMW than for untreated OMW. The anaerobic processing of pretreated OMW seemingly involved no inhibition phenomena as the biotoxicity and the total phenolic compound content (analysed by HPLC) were reduced by 71.2% and 77.9% respectively as a result of the pretreatment. Finally, the yield coefficient of methane production was 0.345 litres of methane (at standard temperature and pressure)/g of chemical oxygen demand, that is, 23% higher than that provided by untreated wastewater. PMID:7576261

  16. Comparative study on toxicity evaluation of anaerobically treated parboiled rice manufacturing wastewater through fish bioassay.

    PubMed

    Giri, Dipti Ramesh; Singh, Ekta; Satyanarayan, Shanta

    2016-01-01

    Short term aquatic bioassay has been developed into a useful tool in water quality management. These tests give information on comparative toxicity of several compounds. The objective of this study was to evaluate the acute toxicity of raw and anaerobically treated effluents of the parboiled rice manufacturing industry. The acute toxicity test was carried out by using the fish Lebistes reticulatus under laboratory conditions. LC50 values for 24, 48, 72 and 96 hours ranged between 4.6 and 7.0% for the raw parboiled rice manufacturing wastewater. Two anaerobic fixed film fixed bed reactors and two different media matrices, i.e. UV stabilized Biopac media and Fugino spirals, were used for the treatment of parboiled rice mill wastewater. Effluents from these two reactors depicted LC50 values in the range of 68-88% and 62-78% for Biopac and Fugino spiral packed reactors, respectively. From the results, it is evident that anaerobically treated effluents from Biopac packed reactor is marginally better than Fugino spiral packed reactor. Results subjected to statistical evaluation depicted regression coefficient of more than 0.9 indicating good correlation between the mortality and effluent concentration. PMID:27120636

  17. Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate.

    PubMed

    Bohutskyi, Pavlo; Liu, Kexin; Nasr, Laila Khaled; Byers, Natalie; Rosenberg, Julian N; Oyler, George A; Betenbaugh, Michael J; Bouwer, Edward J

    2015-07-01

    Eighteen microalgae, including two local isolates, were evaluated for their ability to grow and remove nutrients from unsterilized primary or secondary wastewater effluents as well as wastewater supplemented with nutrient-rich anaerobic digester centrate (ADC). Most of the tested species except several phylogenetically clustered Chlorella sorokiniana including local isolates and Scenedesmus strains were unable to grow efficiently. This may reflect the presence of certain genetic traits important for robust growth in the unsterilized wastewater. The maximum algal-specific growth rates and biomass density obtained in these bacterial-contaminated cultures were in the range of 0.8-1 day(-1) and 250-350 mg L(-1), respectively. ADC supplementation was especially helpful to biologically treated secondary effluent with its lower initial macronutrient and micronutrient content. As a result of algal growth, total nitrogen and orthophosphate levels were reduced by as much as 90 and 70 %, respectively. Biological assimilation was estimated to be the main mechanism of nitrogen removal in primary and secondary effluents with ammonia volatilization and bacterial nitrification-denitrification contributing for cultures supplemented with ADC. Assimilation by algae served as the principal mechanism of orthophosphate remediation in secondary wastewater cultures, while chemical precipitation appeared also to be important for orthophosphate removal in primary wastewater. Overall, cultivation of microalgae in primary and primary + 5 % ADC may be more favorable from an economical and sustainability perspective due to elimination of the costly and energy-intensive biological treatment step. These findings demonstrate that unsterilized wastewater and ADC can serve as critical nutrient sources for biomass generation and that robust microalgae can be potent players in wastewater phytoremediation. PMID:25947241

  18. An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater.

    PubMed

    Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

    2013-10-15

    Anaerobic up-flow fixed bed reactor and annular photocatalytic reactor were used to study the efficiency of integrated anaerobic digestion (AD) and ultraviolet (UV) photodegradation of real distillery effluent and raw molasses wastewater (MWW). It was found that UV photodegradation as a stand-alone technique achieved colour removal of 54% and 69% for the distillery and MWW, respectively, with a COD reduction of <20% and a negligible BOD reduction. On the other hand, AD as a single treatment technique was found to be effective in COD and BOD reduction with efficiencies of above 75% and 85%, respectively, for both wastewater samples. However, the AD achieved low colour removal efficiency, with an increase in colour intensity of 13% recorded when treating MWW while a colour removal of 51% was achieved for the distillery effluent. The application of UV photodegradation as a pre-treatment method to the AD process reduced the COD removal and biogas production efficiency. However, an integration in which UV photodegradation was employed as a post-treatment to the AD process achieved high COD removal of above 85% for both wastewater samples, and colour removal of 88% for the distillery effluent. Thus, photodegradation can be employed as a post-treatment technique to an AD system treating distillery effluent for complete removal of the biorecalcitrant and colour imparting compounds. PMID:23974530

  19. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    PubMed

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume. PMID:20390881

  20. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    PubMed

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation. PMID:25509405

  1. Biodegradation of 14C-dicofol in wastewater aerobic treatment and sludge anaerobic biodigestion.

    PubMed

    Oliveira, Jaime L da M; Silva, Denise P; Martins, Edir M; Langenbach, Tomaz; Dezotti, Marcia

    2012-01-01

    Organic micropollutants are often found in domestic and industrial effluents. Thus, it is important to learn their fate, the metabolites generated and their sorption during biological treatment processes. This work investigated the biodegradation of 14C-dicofol organochloride during wastewater aerobic treatment and sludge anaerobic biodigestion. The performance of these processes was evaluated by physical-chemical parameters. Radioactivity levels were monitored in both treatments, and residues of dicofol (DCF) and dichlorobenzophenone (DBP) were quantified by HPLC/UV. The efficiency of the aerobic and anaerobic processes was slightly reduced in the presence of DCF and DBP. After aerobic treatment, only 0.1% of DCF was mineralized, and 57% of radioactivity remained sorbed on biological sludge as DBP. After 18 days of anaerobiosis, only 3% of DCF and 5% of DBP were detected in the sludge. However, 70% of radioactivity remained in the sludge, probably as other metabolites. Dicofol was biodegraded in the investigated process, but not mineralized. PMID:22629645

  2. Kinetics of anaerobic digestion of soft drink wastewater in immobilized cell bioreactors.

    PubMed

    Borja, R; Banks, C J

    1994-07-01

    A kinetic study of the anaerobic digestion of soft drink wastewater was undertaken, using bioreactors containing various suspended supports (bentonite, zeolite, sepiolite, saponite and polyurethane foam), on to which the microorganisms effecting the purification were immobilized. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constants, K0, derived from the reactors with saponite and sepiolite (magnesium silicates) were approximately twice those from bentonite and zeolite (aluminium silicates) and almost five times higher than in the control reactor (without support); the polyurethane support showed an intermediate behaviour. The methanogenic activity increased linearly with COD load, with saponite and sepiolite supports showing the highest values. The average yield coefficient of methane was 325 cm3 CH4 STP g-1 COD and the percentage elimination of COD was 77.8%; these values were not significantly altered by the type of support used. PMID:7764995

  3. Anaerobic digestion and gasification coupling for wastewater sludge treatment and recovery.

    PubMed

    Lacroix, Nicolas; Rousse, Daniel R; Hausler, Robert

    2014-06-27

    Sewage sludge management is an energy intensive process. Anaerobic digestion contributes to energy efficiency improvement but is limited by the biological process. A review has been conducted prior to experimentation in order to evaluate the mass and energy balances on anaerobic digestion followed by gasification of digested sludge. The purpose was to improve energy recovery and reuse. Calculations were based on design parameters and tests that are conducted with the anaerobic digester of a local wastewater treatment plant and a small commercial gasification system. Results showed a very significant potential of energy recovery. More than 90% of the energy content from sludge was extracted. Also, approximately the same amount of energy would be transferred in both directions between the digester (biogas) and the gasifier (thermal energy). This extraction resulted in the same use of biogas as the reference scenario but final product was a totally dry biochar, which represented a fraction of the initial mass. Phosphorus was concentrated and significantly preserved. This analysis suggests that anaerobic digestion followed by dehydration, drying and gasification could be a promising and viable option for energy and nutrient recovery from municipal sludge in replacement of conventional paths. PMID:24972600

  4. The effect of managing nutrients in the performance of anaerobic digesters of municipal wastewater treatment plants.

    PubMed

    Demirer, Sibel Uludag; Taskin, Bilgin; Demirer, Goksel N; Duran, Metin

    2013-09-01

    Is it possible to create conditions in the anaerobic digesters to control nutrients without changing the performance of a reactor? This study investigates an answer for this question. To this purpose, anaerobic reactors are operated at high concentrations of Mg(2+) ion to harvest the nutrient ions (NH4 (+) and PO4 (3-)) in the form of struvite, that is, magnesium ammonium phosphate. The effects of this modification on the anaerobic digestion of sewage sludge were investigated in terms of chemical oxygen demand (COD) removal and cumulative CH4 production as well as the changes in the biological diversity. The results showed that approximately 50 % of the nutrients (NH4 (+) and PO4 (3-)) were removed regardless of the method adopted for the addition of Mg(2+) ion, slug or daily dosing. The numbers of Methanosaeta and Methanosarcina in the samples withdrawn prior to and after the addition of Mg(2+) did not show significant difference according to the results obtained from qPCR analyses. The research results showed that the addition of Mg(2+) into the anaerobic digesters in municipal wastewater treatment facilities may help to remove the nutrients from the effluent while recovering in their solid forms. PMID:23090053

  5. An integrated anaerobic--physico-chemical treatment concept for wool scouring wastewater.

    PubMed

    Peláez, H; Gutiérrez, S; Castro, G; Hernández, A; Viñas, M

    2001-01-01

    The strong flow wastewater from a wool scouring industry is treated by a combination of anaerobic digestion and physico-chemical postreatment. Based on previous laboratory results (Gutiérrez et al., 1999), three anaerobic baffled reactors (ABR) of 300 m3 each were built, processing 60% of the strong flow of a wool scouring mill for about two years. COD and grease removal in the anaerobic reactors were 47-50% and 50-55% respectively, with an organic load between 8.9 and 6.7 kg COD/m3 d. The effluent of the anaerobic reactors was assayed with additives in an industrial decanter centrifuge. As results of these assays, all the effluent of the three reactors was sent to the decanter centrifuge after dosing additives. Overall COD and grease removal of the integrated system were 87% and 93% respectively. Dosage of coagulation-flocculation additives was optimized in a continuous flocculation device. The proposed treatment is cheaper and easier to control than others alternatives with COD removal higher than 93%. PMID:11575099

  6. Performance of an Anaerobic Baffled Reactor (ABR) in treatment of cassava wastewater

    PubMed Central

    Ferraz, Fernanda M.; Bruni, Aline T.; Del Bianchi, Vanildo L.

    2009-01-01

    The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater, a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35ºC was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000 mg L-1 and it was evaluated the most appropriated hydraulic retention time (HRT) for the best performance on COD removal. The ABR was evaluated by analysis of COD (colorimetric method), pH, turbidity, total and volatile solids, alkalinity and acidity. Principal component analysis (PCA) was carried to better understand data obtained. The system showed buffering ability as acidity decreased along compartments while alkalinity and pH values were increased. There was particulate material retention and COD removal varied from 83 to 92% for HRT of 3.5 days. PMID:24031316

  7. An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet.

    PubMed

    Bernard, O; Chachuat, B; Hélias, A; Le Dantec, B; Sialve, B; Steyer, J-P; Lardon, L; Neveu, P; Lambert, S; Gallop, J; Dixon, M; Ratini, P; Quintabà, A; Frattesi, S; Lema, J M; Roca, E; Ruiz, G; Rodriguez, J; Franco, A; Vanrolleghem, P; Zaher, U; De Pauw, D J W; De Neve, K; Lievens, K; Dochaine, D; Schoefs, O; Fibrianto, H; Farina, R; Alcaraz Gonzalez, V; Gonzalez Alvarez, V; Lemaire, P; Martinez, J A; Esandi, F; Duclaud, O; Lavigne, J F

    2005-01-01

    The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem. PMID:16180464

  8. [Modeling and dynamic simulation of the multimode anaerobic/anoxic/aerobic wastewater treatment process].

    PubMed

    Zhou, Zhen; Wu, Zhi-Chao; Wang, Zhi-Wei; Du, Xing-Zhi; Jiang, Ling-Yan; Xing, Can

    2013-04-01

    Mathematical modeling is a useful tool for professional education, process development, design evaluation, operational optimization and automatic control of the wastewater treatment system, and has been extensively applied in numerous full-scale wastewater treatment plants. The ASM2d model was calibrated by the process data, and used to simulate 15 operational test runs of the multimode anaerobic/anoxic/aerobic (AAO) process. After calibration, the model was capable of simulating the sludge concentrations and effluent data in 15 test runs of the multimode AAO system. The dynamic simulation results showed an overall good agreement between the measured and simulated data, for both effluent data and sludge concentrations, with a good reproduction of dynamic processes in AO test runs. PMID:23798127

  9. Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor.

    PubMed

    Sumino, Tatsuo; Isaka, Kazuichi; Ikuta, Hajime; Saiki, Yuko; Yokota, Toyokazu

    2006-10-01

    The effects of C/N ratio and total organic carbon (TOC) loading on nitrogen removal through simultaneous nitrate reduction and anaerobic ammonium oxidation in a single reactor were examined. Granular sludge taken from a methane fermentation reactor was placed in an upflow reactor and supplied with synthetic wastewater containing nitrate at a C/N ratio of 1 to grow heterotrophic denitrifying bacteria. When nitrogen removal ratio reached 30%, anammox sludge attached to nonwoven-carrier was added into the same reactor and then ammonia was added to the synthetic wastewater. Nitrogen removal ratio was markedly increased to 80-94%. In this system, nitrogen removal ratio was affected by C/N ratio and TOC loading, not by the amount of granular sludge. A stable isotopic analysis using 15N-labeled nitrate showed that N2 gas was formed by anammox reaction. PMID:17116583

  10. Resource recovery and epidemiology of anaerobic wastewater treatment process in a controlled ecological life support system. Final report

    SciTech Connect

    Li, K.; Hunt, M.D.

    1995-02-01

    The results of work accomplished under two different areas: (1) Resource Recovery of an Anaerobic Wastewater Treatment process, and (2) Epidemiological Study of an Anaerobic Wastewater Treatment Process are documented. The first part of the work was to set up and test three anaerobic digesters and then run these three digesters with a NASA-simulated wastewater. The second part of the work was to use a multi-drug resistant strain of Salmonella choleraesuis as the indicator bacteria for the epidemiological study. Details of these two parts can be found in two master`s theses and are described in Sections 3 and 4 of this report. Several important results condensed from these two parts are summarized in Section 2.

  11. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    PubMed

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved. PMID:27003628

  12. Wastewater polishing by a channelized macrophyte-dominated wetland and anaerobic digestion of the harvested phytomass.

    PubMed

    Cohen, Michael F; Hare, Caden; Kozlowski, John; McCormick, Rachel S; Chen, Lily; Schneider, Linden; Parish, Meghan; Knight, Zane; Nelson, Timothy A; Grewell, Brenda J

    2013-01-01

    Constructed wetlands (CW) offer a mechanism to meet increasingly stringent regulatory standards for wastewater treatment while minimizing energy inputs. Additionally, harvested wetland phytomass subjected to anaerobic digestion can serve as a source of biogas methane. To investigate CW wastewater polishing activities and potential energy yield we constructed a pair of secondary wastewater-fed channelized CW modules designed to retain easily harvestable floating aquatic vegetation and maximize exposure of water to roots and sediment. Modules that were regularly harvested averaged a nitrate removal rate of 1.1 g N m(-2) d(-1); harvesting, sedimentation and gasification were responsible for 30.5%, 8.0% and 61.5% of the N losses, respectively. Selective harvesting of a module to maintain dominance of filamentous algae had no effect on nitrate removal rate but lowered productivity by one-half. The average monthly productivity for unselectively harvested modules was 9.3 ± 1.7 g dry wt. m(-2) d(-1) (±SE). Cessation of harvesting in one module resulted in a significant increase in nitrate removal rate and decrease in phosphate removal rate. Compared to the influent, the effluent of the harvested module had significantly lower levels of estrogenic activity, as determined by a quantitative PCR-based juvenile trout bioassay, and significantly lower densities of E. coli. In mixed vertical-flow reactors anaerobic co-digestion of equal dry weight proportions of harvested aquatic vegetation, wine yeast lees and dairy manure was greatly improved when the manure was replaced with the crude glycerol by-product of biodiesel production. Remaining solids were vermicomposted for use as a soil amendment. Our results indicate that incorporation of constructed wetlands into an integrated treatment system can simultaneously enhance the economic and energetic feasibility of wastewater and organic waste treatment processes. PMID:23245307

  13. Mathematical modeling of upflow anaerobic sludge blanket (UASB) reactor treating domestic wastewater.

    PubMed

    Elmitwalli, Tarek

    2013-01-01

    Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (COD(ss)) concentration is directly proportional to the influent COD(ss) concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient COD(ss) removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved COD(ss) removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (COD(t)) concentration and HRT. The influent COD(t) concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of COD(t) removal, as compared with optimization of COD(t) conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance. PMID:23128617

  14. Anaerobic treatment of army ammunition production wastewater containing perchlorate and RDX.

    PubMed

    Atikovic, Emina; Suidan, Makram T; Maloney, Stephen W

    2008-08-01

    Perchlorate is an oxidizer that has been routinely used in solid rocket motors by the Department of Defense and National Aeronautics and Space Administration. Royal Demolition Explosive (RDX) is a major component of military high explosives and is used in a wide variety of munitions. Perchlorate bearing wastewater typically results from production of solid rocket motors, while RDX is transferred to Army industrial wastewaters during load, assemble and pack operations for new munitions, and hot water or steam washout for disposal and deactivation of old munitions (commonly referred to as demilitarization, or simply demil). Biological degradation in Anaerobic Fluidized Bed Reactors (AFBR), has been shown to be an effective method for the removal of both perchlorate and RDX in contaminated wastewater. The focus of this study was to determine the effectiveness of removal of perchlorate and RDX, individually and when co-mingled, using ethanol as an electron donor under steady state conditions. Three AFBRs were used to assess the effectiveness of this process in treating the wastewater. The performance of the bioreactors was monitored relative to perchlorate, RDX, and chemical oxygen demand removal effectiveness. The experimental results demonstrated that the biodegradation of perchlorate and RDX was more effective in bioreactors receiving the single contaminant than in the bioreactor where both contaminants were fed. PMID:18586300

  15. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater

    PubMed Central

    Keating, Ciara; Chin, Jason P.; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J.; McGrath, John W.; O’Flaherty, Vincent

    2016-01-01

    We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4′, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m-3 d-1 and hydraulic retention times of 8–24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded

  16. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater.

    PubMed

    Keating, Ciara; Chin, Jason P; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J; McGrath, John W; O'Flaherty, Vincent

    2016-01-01

    We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4', 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m(-3) d(-1) and hydraulic retention times of 8-24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded

  17. Anaerobic transformations of wastewater organic matter and sulfide production--investigations in a pilot plant pressure sewer.

    PubMed

    Tanaka, N; Hvitved-Jacobsen, T

    2002-01-01

    Anaerobic transformations of wastewater organic matter and sulfide production rate were studied using a pilot plant pressure sewer (inner diameter: 102 mm, length: 47 m). Furthermore, a process model description including carbon and sulfur cycle was presented. Wastewater characterization based on oxygen utilization rate (OUR) measurement and VFA analysis was employed. Under anaerobic conditions, a net production of readily biodegradable substrate was observed, which fact is important for biological removal of nitrogen and phosphorus at subsequent wastewater treatment plants. Model parameters were determined on the basis of experimental findings. The model simulation of transformations of organic matter in sewers can be used as input to the model simulation and evaluation of the processes in wastewater treatment plants. The model is also useful to evaluate the problems in both sewers themselves and treatment plants caused by hydrogen sulfide. PMID:11902483

  18. Performance of methanogenic reactors in temperature phased two-stage anaerobic digestion of swine wastewater.

    PubMed

    Kim, Woong; Shin, Seung Gu; Cho, Kyungjin; Lee, Changsoo; Hwang, Seokhwan

    2012-12-01

    The present study investigated the shifts in the chemical profiles of a two-phase anaerobic digestion system in methanogenic and acidogenic reactors for the treatment of swine wastewater. Acidogenic and methanogenic digesters were used with overall HRTs ranging from 27 to 6 d. In the optimized thermophilic/acidogenic phase throughout the entire experimental period, VS was reduced by 13.8% (1.6%); however, COD hardly decreased because of the thermophilic hydrolysis of organic materials, such as carbohydrates, proteins, and lipids, without any significant consumption of volatile fatty acids. In the methanogenic/mesophilic phase, COD was reduced by 65.8 (1.1)% compared to a 47.4 (2.9)% reduction in VS reduction efficiency with the gradual increase in methane production during a methanogenic HRT between 25 and 10 d. A high protein degradation rate was observed in the optimized acidogenic phase, which is assumed to be due to the low content of carbohydrates in raw swine wastewater as well as the readily thermophilic hydrolysis of proteins. Two-phase systems of anaerobic digestion consisting of optimized thermophilic and mesophilic methanogenic digesters showed a stable performance with respect to VS reduction efficiency with OLRs less than 3 g VS/L·d, in other words, more than 10 days of methanogenic HRT in this study. PMID:23041140

  19. Determination of operating conditions in an anaerobic acid-phase reactor treating dairy wastewater

    SciTech Connect

    Kasapgil, B.; Ince, O.; Anderson, G.K.

    1996-11-01

    Anaerobic digestion of organic material is a multistep process. Two groups of bacteria, namely acidogenic and methanogenic bacteria, are responsible for the acidification and for the methane formation, respectively. The growth requirements of the two groups of bacteria are rather different. In order to create optimum conditions for the process, it was first proposed to separate the process into two phases. Operating variables applicable for the selection and enrichment of microbial populations in phased digesters include digester loading, hydraulic retention time (HRT), pH, temperature, reactor design, and operating mode. By proper manipulation of these operating parameters it is possible to prevent any significant growth of methane bacteria and at the same time achieve the required level of acidification in the first reactor. Further enrichment of two cultures is possible by biomass recycle around each phase. Since the 1970s, phase separation has been introduced into anaerobic digestion technology. However, data concerning the optimization of operating conditions in both acidogenic and methanogenic phase reactors are scarce. This study was therefore carried out for the purposes given below. These were: (1) to determine the best combination of pH and temperature within the ranges studied for the pre-acidification of dairy wastewater; (2) to determine the maximum acidogenic conversion from COD to VFAs, and (3) to determine the changes in the distribution of major VFAs being produced during the pre-acidification of dairy wastewater.

  20. High salinity in molasses wastewaters shifts anaerobic digestion to carboxylate production.

    PubMed

    De Vrieze, Jo; Coma, Marta; Debeuckelaere, Matthias; Van der Meeren, Paul; Rabaey, Korneel

    2016-07-01

    Biorefinery wastewaters are often treated by means of anaerobic digestion to produce biogas. Alternatively, these wastewaters can be fermented, leading to the formation of carboxylates. Here, we investigated how lab-scale upflow anaerobic sludge blanket reactors could be shifted to fermentation by changing organic loading rate, hydraulic retention time, pH, and salinity. A strong increase in volatile fatty acid concentration up to 40 g COD L(-1) was achieved through increasing salinity above 30 mS cm(-1), as well as a decrease in methane production by more than 90%, which could not be obtained by adjusting the other parameters, thus, indicating a clear shift from methane to carboxylate production. Microbial community analysis revealed a shift in bacterial community to lower evenness and richness values, following the increased salinity and VFA concentration during the fermentation process. A selective enrichment of the hydrogenotrophic Methanomicrobiales took place upon the shift to fermentation, despite a severe decrease in methane production. Particle size distribution revealed a strong degranulation of the sludge in the reactor, related to the high salinity, which resulted in a wash-out of the biomass. This research shows that salinity is a key parameter enabling a shift from methane to carboxylate production in a stable fermentation process. PMID:27110885

  1. Protocol for early detection and evaluation of inhibitory wastewater using combined aerobic respirometric and anaerobic batch techniques.

    PubMed

    Koh, Sock-Hoon; Ellis, Timothy G

    2005-01-01

    Faced with the task of treating significant volumes of complex industrial wastewaters, the biological components of municipal wastewater treatment plants are operating under the risk of toxic or inhibitory contaminants from the industrial effluents that may be detrimental to their operation. This might lead to undesirable effluent toxicity and/or result in permit violations. Therefore, there is a need for upset early warning systems that can protect full-scale plants from toxic or inhibitory constituents in the incoming wastewaters. This study focused on the development of a protocol for rapid detection of potentially toxic inhibitory or toxic wastewaters using combined aerobic respirometric and anaerobic batch techniques. Aerobic respirometers equipped with automated data acquisition systems were used as potential early warning devices. The inhibition effect on carbon and nitrogen oxidation was assessed. The degree of inhibition was evaluated as the concentration causing 50% reduction in microbial activity, which was estimated by an inhibition model. Anaerobic toxicity assays were also conducted to evaluate the inhibitory effects of the toxic compounds to anaerobic inocula obtained from a master culture reactor fed with ethanol. The developed protocol for early detection of toxicity was validated using wastewater samples from a biotechnology industry and a food processing industry, and pure chemicals such as furfural and phenol. Varying degrees of sensitivity were observed in the study when different groups of microorganisms, wastewater samples, and chemicals were tested. The comparison of aerobic and anaerobic inhibition suggested the importance of using both aerobic and anaerobic cultures to maximize the necessary sensitivity of the protocol. PMID:16381158

  2. Occurrence of trace organic contaminants in wastewater sludge and their removals by anaerobic digestion.

    PubMed

    Yang, Shufan; Hai, Faisal I; Price, William E; McDonald, James; Khan, Stuart J; Nghiem, Long D

    2016-06-01

    This study aims to evaluate the occurrence of trace organic contaminants (TrOCs) in wastewater sludge and their removal during anaerobic digestion. The significant occurrence of 18 TrOCs in primary sludge was observed. These TrOCs occurred predominantly in the solid phase. Some of these TrOCs (e.g. paracetamol, caffeine, ibuprofen and triclosan) were also found at high concentrations (>10,000ng/L) in the aqueous phase. The overall removal of TrOCs (from both the aqueous and solid phase) by anaerobic digestion was governed by their molecular structure (e.g. the presence/absence of electron withdrawing/donating functional groups). While an increase in sludge retention time (SRT) of the digester resulted in a small but clearly discernible increase in basic biological performance (e.g. volatile solids removal and biogas production), the impact of SRT on TrOC removal was negligible. The lack of SRT influence on TrOC removal suggests that TrOCs were not the main substrate for anaerobic digestion. PMID:26795886

  3. Biodegradation of linear alkylbenzene sulfonate in commercial laundry wastewater by an anaerobic fluidized bed reactor.

    PubMed

    Braga, Juliana K; Motteran, Fabrício; Macedo, Thaís Z; Sakamoto, Isabel K; Delforno, Tiago P; Okada, Dagoberto Y; Silva, Edson L; Varesche, Maria Bernadete A

    2015-01-01

    The biodegradation of linear alkylbenzene sulfonate (LAS) from commercial laundry wastewater was evaluated in an anaerobic fluidized bed reactor (FBR) fed with synthetic substrate (598 mg L(-1) to 723 mg L(-1) of organic matter) supplemented with 9.5±3.1 mg L(-1) to 27.9±9.6 mg L(-1) of LAS. The average chemical oxygen demand (COD) removal efficiency was 89% and the biodegradation of LAS was 57% during the 489 days of anaerobic FBR. Higher levels of volatile fatty acids (VFA) were observed in the effluent at the stage with the best LAS removal performance. Increasing the surfactant concentration did not increase the VFA production in the effluent. The predominant VFAs after the addition of LAS were as follows: isovaleric acid and valeric acid, followed by propionic acid, caproic acid and formic acid. The similarities of 64% and 45% to Archaea and Bacteria domains were observed in the samples taken in the operating period of anaerobic FBR fed with 23.6±10 mg L(-1) and 27.9±10 mg L(-1) of LAS. During the operation stages in the reactor, Gemmatimonas, Desulfobulbus and Zoogloea were determined as the most abundant genera related to surfactant degradation using 454-Pyrosequencing. PMID:26061208

  4. Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters.

    PubMed

    Dereli, Recep Kaan; Ersahin, Mustafa Evren; Ozgun, Hale; Ozturk, Izzet; Jeison, David; van der Zee, Frank; van Lier, Jules B

    2012-10-01

    This review presents a comprehensive summary on applications of anaerobic membrane bioreactor (AnMBR) technology for industrial wastewaters in view of different aspects including treatability and filterability. AnMBRs present an attractive option for the treatment of industrial wastewaters at extreme conditions, such as high salinity, high temperature, high suspended solids concentrations, and toxicity that hamper granulation and retention of biomass or reduce the biological activity. So far, most of the research has been conducted at laboratory scale; however, also a number of full-scale AnMBR systems is currently being operated worldwide. Membrane fouling, a multivariable process, is still a research quest that requires further investigation. In fact, membrane fouling and flux decline present the most important reasons that hamper the wide-spread application of full-scale reactors. This paper addresses a detailed assessment and discussion on treatability and filterability of industrial wastewaters in both lab- and full-scale AnMBR applications, the encountered problems and future opportunities. PMID:22749827

  5. A combined upflow anaerobic sludge bed and trickling biofilter process for the treatment of swine wastewater.

    PubMed

    Zhao, Bowei; Li, Jiangzheng; Buelna, Gerardo; Dubé, Rino; Le Bihan, Yann

    2016-05-01

    A combined upflow anaerobic sludge blanket (UASB)-trickling biofilter (TBF) process was constructed to treat swine wastewater, a typical high-strength organic wastewater with low carbon/nitrogen ratio and ammonia toxicity. The results showed that the UASB-TBF system can remarkably enhance the removal of pollutants in the swine wastewater. At an organic loading rate of 2.29 kg/m(3) d and hydraulic retention time of 48 h in the UASB, the chemical oxygen demand (COD), Suspended Solids and Total Kjeldahl Nitrogen removals of the combined process reached 83.6%, 84.1% and 41.2%, respectively. In the combined system the UASB served as a pretreatment process for COD removal while nitrification and denitrification occurred only in the TBF process. The TBF performed reasonably well at a surface hydraulic load as high as 0.12 m(3)/m(2) d. Since the ratio of influent COD to total mineral nitrogen was less than 3.23, it is reasonable to suggest that the wood chips in TBF can serve as a new carbon source for denitrification. PMID:26588487

  6. Two-phase anaerobic digestion within a solid waste/wastewater integrated management system

    SciTech Connect

    De Gioannis, G.; Diaz, L.F.; Muntoni, A. Pisanu, A.

    2008-07-01

    A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilic conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.

  7. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings. PMID:26829316

  8. Cultivation of Chlorella protothecoides in anaerobically treated brewery wastewater for cost-effective biodiesel production.

    PubMed

    Darpito, Cornelius; Shin, Won-Sub; Jeon, Seungjib; Lee, Hansol; Nam, Kibok; Kwon, Jong-Hee; Yang, Ji-Won

    2015-03-01

    The use of wastewater has been investigated to overcome the economic challenge involved with a production of microalgae-based biodiesel. In this study, to achieve economical biodiesel production along with effective wastewater treatment at the same time, anaerobically treated brewery wastewater (ABWW) was utilized as a low-cost nutrient source, in the cultivation of Chlorella protothecoides. About 96 and 90 % of total nitrogen and phosphorus in ABWW were removed, respectively, while C. protothecoides was accumulating 1.88 g L(-1) of biomass. The C. protothecoides grown in ABWW showed increases in cell size and cell aggregation, resulting in a near 80 % enhanced harvesting efficiency within 20 min, as compared with only 4 % in BG-11. In addition, the total fatty acid content of the C. protothecoides grown in ABWW increased by 1.84-fold (35.94 ± 1.54 % of its dry cell weight), relative to that of BG-11. PMID:25270406

  9. Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology.

    PubMed

    Moñino, P; Jiménez, E; Barat, R; Aguado, D; Seco, A; Ferrer, J

    2016-10-01

    Food waste was characterized for its potential use as substrate for anaerobic co-digestion in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater (WW). 90% of the particles had sizes under 0.5mm after grinding the food waste in a commercial food waste disposer. COD, nitrogen and phosphorus concentrations were 100, 2 and 20 times higher in food waste than their average concentrations in WW, but the relative flow contribution of both streams made COD the only pollutant that increased significantly when both substrates were mixed. As sulphate concentration in food waste was in the same range as WW, co-digestion of both substrates would increase the COD/SO4-S ratio and favour methanogenic activity in anaerobic treatments. The average methane potential of the food waste was 421±15mLCH4g(-1)VS, achieving 73% anaerobic biodegradability. The anaerobic co-digestion of food waste with WW is expected to increase methane production 2.9-fold. The settleable solids tests and the particle size distribution analyses confirmed that both treatment lines of a conventional WWTP (water and sludge lines) would be clearly impacted by the incorporation of food waste into its influent. Anaerobic processes are therefore preferred over their aerobic counterparts due to their ability to valorise the high COD content to produce biogas (a renewable energy) instead of increasing the energetic costs associated with the aeration process for aerobic COD oxidation. PMID:27436236

  10. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor.

    PubMed

    Hülsen, Tim; Barry, Edward M; Lu, Yang; Puyol, Daniel; Keller, Jürg; Batstone, Damien J

    2016-09-01

    A key future challenge of domestic wastewater treatment is nutrient recovery while still achieving acceptable discharge limits. Nutrient partitioning using purple phototrophic bacteria (PPB) has the potential to biologically concentrate nutrients through growth. This study evaluates the use of PPB in a continuous photo-anaerobic membrane bioreactor (PAnMBR) for simultaneous organics and nutrient removal from domestic wastewater. This process could continuously treat domestic wastewater to discharge limits (<50 mgCOD L(-1), 5 mgN L(-1), 1.0 mgP L(-1)). Approximately 6.4 ± 1.3 gNH4-N and 1.1 ± 0.2 gPO4-P for every 100 gSCOD were removed at a hydraulic retention time of 8-24 h and volumetric loading rates of 0.8-2.5 COD kg m(3) d(-1). Thus, a minimum of 200 mg L(-1) of ethanol (to provide soluble COD) was required to achieve these discharge limits. Microbial community through sequencing indicated dominance of >60% of PPB, though the PPB community was highly variable. The outcomes from the current work demonstrate the potential of PPB for continuous domestic (and possibly industrial) wastewater treatment and nutrient recovery. Technical challenges include the in situ COD supply in a continuous reactor system, as well as efficient light delivery. Addition of external (agricultural or fossil) derived organics is not financially nor environmentally justified, and carbon needs to be sourced internally from the biomass itself to enable this technology. Reduced energy consumption for lighting is technically feasible, and needs to be addressed as a key objective in scaleup. PMID:27232993

  11. Study on submerged anaerobic membrane bioreactor (SAMBR) treating high suspended solids raw tannery wastewater for biogas production.

    PubMed

    Umaiyakunjaram, R; Shanmugam, P

    2016-09-01

    This study deals with the treatment of high suspended solids raw tannery wastewater using flat sheet Submerged Anaerobic Membrane (0.4μm) Bioreactor (SAMBR) acclimatized with hypersaline anaerobic seed sludge for recovering biogas. The treatability of SAMBR achieved higher CODremoval efficiency (90%) and biogas yield (0.160L.g(-1) CODremoved) coincided with high r(2) values between permeate flux and TSS (0.95), biogas and COD removed (0.96). The acidification of hypersaline influent wastewater by biogas mixing with high CO2, achieved quadruplet benefit of gas liquid and solid separation, in-situ pH and NH3 control, in-situ CH4 enrichment, and prevention of membrane fouling. The initial high VFA became stable as time elapsed reveals the hydrolysing ability of particulate COD into soluble COD and into biogas, confirms the suitability of SAMBR for high suspended solids tannery wastewater. PMID:27309773

  12. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review.

    PubMed

    Smith, Adam L; Stadler, Lauren B; Love, Nancy G; Skerlos, Steven J; Raskin, Lutgarde

    2012-10-01

    Interest in increasing the sustainability of water management is leading to a reevaluation of domestic wastewater (DWW) treatment practices. A central goal is to reduce energy demands and environmental impacts while recovering resources. Anaerobic membrane bioreactors (AnMBRs) have the ability to produce a similar quality effluent to aerobic treatment, while generating useful energy and producing substantially less residuals. This review focuses on operational considerations that require further research to allow implementation of AnMBR DWW treatment. Specific topics include membrane fouling, the lower limits of hydraulic retention time and temperature allowing for adequate treatment, complications with methane recovery, and nutrient removal options. Based on the current literature, future research efforts should focus on increasing the likelihood of net energy recovery through advancements in fouling control and development of efficient methods for dissolved methane recovery. Furthermore, assessing the sustainability of AnMBR treatment requires establishment of a quantitative environmental and economic evaluation framework. PMID:22608937

  13. Anaerobic Digestion of Algae Biomass to Produce Energy during Wastewater Treatment.

    PubMed

    Peng, Shanshan; Colosi, Lisa M

    2016-01-01

    Water resource recovery facilities (WRRFs) are asked to improve both energy efficiency and nutrient removal efficacy. Integration of algaculture offers several potential synergies that could address these goals, including an opportunity to leverage anaerobic digestion at WRRFs. In this study, bench-scale experiments are used to measure methane yield during co-digestion of Scenedesmus dimorphus or mixed WRRF-grown algae with WRRF biosolids. The results indicate that normalized methane yield decreases with increasing algae content in a manner than can be reasonably well fit using linear regression (R(2) = 67%). It is thus possible to predict methane yield for any mixture of algae and biosolids based on the methane yield of the biosolids alone. Using revised methane yields, the energy return on investment of a typical WRRF increases from 0.53 (without algae) to 0.66 (with algae). Thus, algae-based wastewater treatment may hold promise for improving WRRF energy efficiency without compromising effluent quality. PMID:26803024

  14. TREATMENT OF METHANOLIC WASTEWATER BY ANAEROBIC DOWN-FLOW HANGING SPONGE (ANDHS) REACTOR AND UASB REACTOR

    NASA Astrophysics Data System (ADS)

    Sumino, Haruhiko; Wada, Keiji; Syutsubo, Kazuaki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi

    Anaerobic down-flow hanging sponge (AnDHS) reactor and UASB reactor were operated at 30℃ for over 400 days in order to investigate the process performance and the sludge characteristics of treating methanolic wastewater (2 gCOD/L). The settings OLR of AnDHS reactor and of UASB reactor were 5.0 -10.0 kgCOD/m3/d and 5.0 kgCOD/m3/d. The average of the COD removal demonstrated by both reactors were over 90% throughout the experiment. From the results of methane producing activities and the PCR-DGGE method, most methanol was directly converted to methane in both reactors. The conversion was carried out by different methanogens: one closely related to Methanomethylovorans hollandica in the AnDHS retainted sludge and the other closely related to Methanosarcinaceae and Metanosarciales in the UASB retainted sludge.

  15. Elemental copper nanoparticle toxicity to different trophic groups involved in anaerobic and anoxic wastewater treatment processes.

    PubMed

    Gonzalez-Estrella, Jorge; Puyol, Daniel; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A

    2015-04-15

    Elemental copper nanoparticles (Cu(0) NPs) are potentially inhibitory to the different key microbial trophic groups involved in biological wastewater treatment processes. Cu-based NPs are known to be toxic to methanogens at low concentrations. However, very little is known about the toxic effect of Cu(0) NPs on other microbial groups involved in either upper trophic levels of anaerobic digestion or anoxic nitrogen removal processes. This study evaluated the toxicity of Cu(0) NPs to glucose fermentation, syntrophic propionate oxidation and denitrification in shaken batch bioassays with soluble substrates. Batch experiments were also supplemented with CuCl2 to evaluate the inhibitory impact of soluble Cu(II) ions. Syntrophic propionate oxidation and glucose fermentation were the least and most inhibited processes with inhibition constant (Ki) values of 0.202 and 0.047 mM of added Cu(0) NPs, respectively. Further analyses revealed that the Ki values calculated as a function of the free soluble Cu concentration were <0.003 mM for every biological process tested and most of these Ki values were similar in order of magnitude regardless of whether the Cu source was CuCl2 or Cu(0) NPs. The results taken as a whole indicate that Cu(0) NPs are toxic to all the microbial processes studied. Therefore, Cu(0) NPs can potentially be an important inhibitor of anaerobic wastewater treatment processes that rely on these trophic groups. The evidence suggests that the inhibitory impact of Cu(0) NPs was mainly due to the release of toxic Cu(II) ions originating from the corrosion and dissolution of Cu(0) NPs. PMID:25634735

  16. Performance evaluation of a novel anaerobic-anoxic sludge blanket reactor for biological nutrient removal treating municipal wastewater.

    PubMed

    Díez-Montero, Rubén; De Florio, Loredana; González-Viar, Marta; Herrero, María; Tejero, Iñaki

    2016-06-01

    A novel anaerobic-anoxic sludge blanket reactor, AnoxAn, unifies the non-aerated zones of the biological nutrient removal treatment train in a single upflow reactor, aimed at achieving high compactness and efficiency. The environmental conditions are vertically divided up inside the reactor with the anaerobic zone at the bottom and the anoxic zone above. This contribution presents the performance evaluation of the novel reactor in the removal of organic matter and nutrients from municipal wastewater, coupled with an aerobic hybrid MBR. The overall system achieved total nitrogen and phosphorus removal with average efficiencies of 75% and 89%, respectively. Separate anoxic and anaerobic conditions were maintained in AnoxAn, allowing anaerobic phosphate release and nearly complete anoxic denitrification in the single reactor operating with an HRT of 4.2h. Biomass was retained in the reactor achieving TSS concentration up to 10gL(-1) and partial hydrolysis of influent particulate organic matter. PMID:26970922

  17. Microbial community structure associated with the high loading anaerobic codigestion of olive mill and abattoir wastewaters.

    PubMed

    Gannoun, Hana; Omri, Ilhem; Chouari, Rakia; Khelifi, Eltaief; Keskes, Sajiaa; Godon, Jean-Jacques; Hamdi, Moktar; Sghir, Abdelghani; Bouallagui, Hassib

    2016-02-01

    The effect of increasing the organic loading rates (OLRs) on the performance of the anaerobic codigestion of olive mill (OMW) and abattoir wastewaters (AW) was investigated under mesophilic and thermophilic conditions. The structure of the microbial community was also monitored. Increasing OLR to 9g of chemical oxygen demand (COD) L(-1)d(-1) affected significantly the biogas yield and microbial diversity at 35°C. However, at 55°C digester remained stable until OLR of 12g of CODL(-1)d(-1) with higher COD removal (80%) and biogas yield (0.52Lg(-1) COD removed). Significant differences in the bacterial communities were detected between mesophilic and thermophilic conditions. The dominant phyla detected in the digester at both phases were the Firmicutes, Actinobacteria, Bacteroidetes, Synergistetes and Spirochaete. However, Verrucomicrobia, Proteobacteria and the candidate division BRC1 were only detected at thermophilic conditions. The Methanobacteriales and the Thermoplasmales were found as a high predominant archaeal member in the anaerobic sludge. PMID:26687494

  18. Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae.

    PubMed

    Tommaso, Giovana; Chen, Wan-Ting; Li, Peng; Schideman, Lance; Zhang, Yuanhui

    2015-02-01

    This study examined the chemical characteristics and the anaerobic degradability of the aqueous product from hydrothermal liquefaction (HTL-ap) from the conversion of mixed-culture algal biomass grown in a wastewater treatment system. The effects of the HTL reaction times from 0 to 1.5 h, and reaction temperatures from 260 °C to 320 °C on the anaerobic degradability of the HTL-ap were quantified using biomethane potential assays. Comparing chemical oxygen demand data for HTL-ap from different operating conditions, indicated that organic matter may partition from organic phase to aqueous phase at 320 °C. Moderate lag phase and the highest cumulative methane production were observed when HTL-ap was obtained at 320 °C. The longest lag phase and the smallest production rate were observed in the process fed with HTL-ap obtained at 300 °C. Nevertheless, after overcoming adaptation issues, this HTL-ap led to the second highest accumulated specific methane production. Acetogenesis was identified as a possible rate-limiting pathway. PMID:25455086

  19. Anaerobic digestion of raw and thermally hydrolyzed wastewater solids under various operational conditions.

    PubMed

    Wilson, Christopher A; Tanneru, Charan T; Banjade, Sarita; Murthy, Sudhir N; Novak, John T

    2011-09-01

    In this study, high-solids anaerobic digestion of thermally pretreated wastewater solids (THD) was compared with conventional mesophilic anaerobic digestion (MAD). Operational conditions, such as pretreatment temperature (150 to 170 degrees C), solids retention time (15 to 20 days), and digestion temperature (37 to 42 degrees C), were varied for the seven THD systems operated. Volatile solids reduction (VSR) by THD ranged from 56 to 62%, compared with approximately 50% for MAD. Higher VSR contributed to 24 to 59% increased biogas production (m3/kg VSR-d) from THD relative to MAD. The high-solids conditions of the THD feed resulted in high total ammonia-nitrogen (proportional to solids loading) and total alkalinity concentrations in excess of 14 g/L as calcium carbonate (CaCO3). Increased pH in THD reactors caused 5 to 8 times more un-ionized ammonia to be present than in MAD, and this likely led to inhibition of aceticlastic methanogens, resulting in accumulation of residual volatile fatty acids between 2 and 6 g/L as acetic acid. The THD produced biosolids cake that possessed low organic sulfur-based biosolids odor and dewatered to between 33 and 39% total solids. Dual conditioning with cationic polymer and ferric chloride was shown to be an effective strategy for mitigating dissolved organic nitrogen and UV-quenching compounds in the return stream following centrifugal dewatering of THD biosolids. PMID:22073729

  20. Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater.

    PubMed

    Sklyar, Vladimir; Epov, Andrey; Gladchenko, Marina; Danilovich, Dmitrii; Kalyuzhnyi, Sergey

    2003-01-01

    A combined biologic and chemical treatment of high-strength (total chemical oxygen demand [CODtot] up to 20 g/L), strong nitrogenous (total N up to 1 g/L), and phosphoric (total P up to 0.4 g/L) starch industry wastewater was investigated at laboratory-scale level. As a principal step for COD elimination, upflow anaerobic sludge bed reactor performance was investigated at 30 degrees C. Under hydraulic retention times (HRTs) of about 1 d, when the organic loading rates were higher than 15 g of COD/(L.d), the CODtot removal varied between 77 and 93%, giving effluents with a COD/N ratio of 4-5:1, approaching the requirements of subsequent denitrification. The activated sludge reactor operating in aerobic-anoxic regime (HRT of about 4 d, duration of aerobic and anoxic phases of 30 min each) was able to remove up to 90% of total nitrogen and up to 64% of COD tot from the anaerobic effluents under 17-20 degrees C. The coagulation experiments with Fe(III) showed that 1.4 mg of resting hardly biodegradable COD and 0.5 mg of phosphate (as P) could be removed from the aerobic effluents by each milligram of iron added. PMID:12794298

  1. Kinetic study of anaerobic digestion of fruit-processing wastewater in immobilized-cell bioreactors.

    PubMed

    Borja, R; Banks, C J

    1994-08-01

    The kinetics of the anaerobic digestion of a fruit-processing wastewater [chemical oxygen demand (COD) = 5.1 g/l] were investigated. Laboratory experiments were carried out in bioreactors containing supports of different chemical composition and features, namely bentonite and zeolite (aluminum silicates), sepiolite and saponite (magnesium silicates) and polyurethane foam, to which the microorganisms responsible for the process adhered. The influence of the support medium on the kinetics was compared with a control digester with suspended biomass. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constant, K0, was determined for each of the experimental reactors. The average values obtained were: 0.080 h-1 (bentonite); 0.103 h-1 (zeolite); 0.180 h-1 (sepiolite); 0.198 h-1 (saponite); 0.131 h-1 (polyurethane); and 0.037 h-1 (control). The results indicate that the support used to immobilize the micro-organisms had a marked influence on the digestion process; the results were significant at the 95% confidence level. Methanogenic activity increased linearly with COD, with the saponite and sepiolite supports showing the highest values. The yield coefficient of methane was 270 ml of methane (under standard temperature and pressure conditions)/g of COD. The average elimination of COD was 89.5%. PMID:7917066

  2. Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent.

    PubMed

    Ruiz-Martinez, A; Martin Garcia, N; Romero, I; Seco, A; Ferrer, J

    2012-12-01

    This study investigated the removal of nitrogen and phosphorus from the effluent of a submerged anaerobic membrane bioreactor (SAnMBR) by means of a lab-scale photobioreactor in which algae biomass was cultured in a semi-continuous mode for a period of 42 days. Solids retention time was 2 days and a stable pH value in the system was maintained by adding CO(2). Nitrogen and phosphorus concentrations in the SAnMBR effluent fluctuated according to the operating performance of the bioreactor and the properties of its actual wastewater load. Despite these variations, the anaerobic effluent proved to be a suitable growth medium for microalgae (mean biomass productivity was 234 mg l(-1)d(-1)), achieving a nutrient removal efficiency of 67.2% for ammonium (NH(4)(+)-N) and 97.8% for phosphate (PO(4)(-3)-P). When conditions were optimum, excellent water quality with very low ammonium and phosphate concentrations was obtained. PMID:23073115

  3. Microalgae growth using high-strength wastewater followed by anaerobic co-digestion.

    PubMed

    Yuan, Xin; Wang, Meng; Park, Chul; Sahu, Ashish K; Ergas, Sarina J

    2012-05-01

    Integration of algal biofuel production to wastewater anaerobic digestion infrastructure has the potential to increase biogas production, decrease high and variable internal nitrogen loads, and improve sludge digestibility and dewaterability. In this research, two species of microalgae, Spirulina platensis and Chlorella sp., were grown on sludge centrate and a centrate and nitrified wastewater effluent mixture. Harvested algae were co-digested with waste activated sludge (WAS) at varying ratios. High-growth (6.8 g m(-2) x d(-1)), nitrogen (36.5 g m(-3) x d(-1)), and phosphorus (6.5 g m(-3) x d(-1)) uptake rates were achieved with Chlorella on centrate. No growth was observed with S. platensis under the same conditions; however, both organisms grew well on the centrate and effluent mixture. Co-digestion of algae with WAS improved volatile solids reduction. Although co-digestion with S. platensis improved biosolids dewaterability, Chlorella had a slight negative effect on dewaterability compared to WAS alone. The efficiency of energy conversion from photons to biogas generated from Chlorella was estimated at 1.4%. PMID:22852424

  4. Anaerobic membrane bioreactor treatment of synthetic municipal wastewater at ambient temperature.

    PubMed

    Ho, Jaeho; Sung, Shihwu

    2009-01-01

    The performance of a crossflow anaerobic membrane bioreactor (AnMBR) to treat synthetic municipal wastewater was investigated at different hydraulic retention times (HRTs). The AnMBR was operated at chemical oxygen demand (COD) loading rates of 1 to 2 kg COD/m3 x d for 280 days. The permeate COD concentration was always lower than 40 mg/L, and no noticeable volatile fatty acids were detected, regardless of HRT variations, while soluble COD (SCOD) was accumulated in the reactor with decreases in HRT. The particle size reduction was relatively lower than other studies reported, even after a long operation time resulting from the low operation crossflow velocity. Approximately 30% of COD was not available for methane recovery, irrespective of applied HRTs, as a result of the COD loss by dissolved methane, sulfate reduction, and untreated COD in the permeate. The fraction of methane recovered from the synthetic municipal wastewater decreased from 48 to 35%, with the decrease of HRT from 12 to 6 hours, as a result of the increase of mixed-liquor SCOD, which was rejected and accumulated in the AnMBR. Therefore, AnMBR operation with relatively long HRTs and SRTs may be favorable, to enhance methane recovery and reduce or eliminate sludge production. PMID:19860148

  5. Anaerobic wastewater treatment and membrane filtration: a one night stand or a sustainable relationship?

    PubMed

    Jeison, D; van Lier, J B

    2008-01-01

    Several anaerobic membrane bioreactors (AnMBR) were operated, under various conditions, applying different reactor configurations. Applicable fluxes were strongly determined by the physical properties of the sludge present in the reactors. Results show that particle size is a key determining factor for the attainable fluxes. Under thermophilic conditions, small sludge particle size was observed, resulting in low critical fluxes reaching 6-7 L/m2h for the submerged configuration and acidified substrate. In contrast, under mesophilic conditions critical fluxes of 20 L/m2h were obtained. The acidification level also showed a strong effect. Under thermophilic conditions, the presence of a significant fraction of non-acidified organic matter induced the growth of suspended acidogenic biomass that seriously affected the applicable fluxes, both in submerged and side-stream configurations. Under all conditions tested cake formation showed to be the limiting factor determining the applicable fluxes. Only low levels of irreversible fouling were observed. Due to technical and economical considerations, most interesting perspectives for the application of AnMBR are expected with the treatment of high-strength particulate wastewaters, and with extreme wastewaters characterised by high temperature, salinity, etc. PMID:18359991

  6. Anaerobic treatment of a simulated high-strength industrial wastewater containing chlorophenols

    SciTech Connect

    Flora, J.R.V.; Suidan, M.T.; Wuellner, A.M.; Boyer, T.K.

    1994-01-01

    An anaerobic fluidized-bed granular activated carbon (GAC) reactor employing carbon replacement was evaluated for the treatment of a simulated high strength industrial wastewater containing inhibitory concentrations of chlorophenols. The reactor was fed 2000-5900 mg/l acetic acid, 1000-3000 mg/l phenol, 1200 mg/l ortho-chlorophenol (2-CP), 600 mg/l 2,4-dichlorophenol (2,4-DCP), and 150 mg/l 2,4,6-trichlorophenol (2,4,6-TCP). The effects of varying the carbon replacement rate, the bulk operating pH, and the organic loading on reactor performance were investigated. The system was highly effective for treating the wastewater and an overall chemical oxygen demand (COD) removal greater than 98% was achieved. Carbon replacement resulting in a GAC solids mean retention time (SMRT) of 100 days was necessary to control the build-up of an inhibitory degradation by-product, para-chlorophenol (4-CP).

  7. Microalgal growth in municipal wastewater treated in an anaerobic moving bed biofilm reactor.

    PubMed

    Hultberg, Malin; Olsson, Lars-Erik; Birgersson, Göran; Gustafsson, Susanne; Sievertsson, Bertil

    2016-05-01

    Nutrient removal from the effluent of an anaerobic moving bed biofilm reactor (AnMBBR) treated with microalgae was evaluated. Algal treatment was highly efficient in removal of nutrients and discharge limits were met after 3days. Extending the cultivation time from 3 to 5days resulted in a large increase in biomass, from 233.3±49.3 to 530.0±72.1mgL(-1), despite nutrients in the water being exhausted after 3days (ammonium 0.04mgL(-1), orthophosphate <0.05mgL(-1)). Biomass productivity, lipid content and quality did not differ in microalgal biomass produced in wastewater sampled before the AnMBBR. The longer cultivation time resulted in a slight increase in total lipid concentration and a significant decrease in linolenic acid concentration in all treatments. Differences were observed in chemical oxygen demand, which decreased after algal treatment in wastewater sampled before the AnMBBR whereas it increased after algal treatment in the effluent from the AnMBBR. PMID:26868151

  8. Fractionation of heavy metals in sludge from anaerobic wastewater stabilization ponds in southern Spain

    SciTech Connect

    Alonso, E.

    2006-07-01

    The analysis of heavy metals is a very important task to assess the potential environmental and health risk associated with the sludge coming from wastewater treatment plants (WWTPs). However, it is necessary to apply sequential extraction techniques to obtain suitable information about their bioavailability or toxicity. In this paper, a sequential extraction scheme according to the Standard, Measurements and Testing Programme of the European Commission was applied to sludge samples collected from ten anaerobic wastewater stabilization ponds (WSPs) located in southern Spain. Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti and Zn were determined in the sludge extracts by inductively coupled plasma atomic emission spectrometry. In relation to current international legislation for the use of sludge for agricultural purposes, none of the metal concentrations exceeded maximum permitted levels. Overall, heavy metals were mainly associated with the two less-available fractions (34% oxidizable metal and 55% residual metal). Only Mn and Zn showed the highest share of the available (exchangeable and reducible) fractions (25-48%)

  9. Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater.

    PubMed

    Sui, Qianwen; Zhang, Junya; Chen, Meixue; Tong, Juan; Wang, Rui; Wei, Yuansong

    2016-06-01

    Swine farm and the adjacent farmland are hot spots of ARGs. However, few studies have investigated the on-site occurrence of ARGs distributed in the process of anaerobic digestion (AD) followed by land application of swine wastewater. Two typical swine farms, in southern and northern China respectively, with AD along with land application were explored on ARG distributions. ARGs were highly abundant in raw swine wastewater, AD effectively reduced the copy number of all detected ARGs (0.21-1.34 logs removal), but the relative abundance with different resistance mechanisms showed distinctive variation trends. The reduction efficiency of ARGs was improved by stable operational temperature and longer solid retention time (SRT) of AD. ARGs in soil characterized the contamination from the irrigation of the digested liquor. The total ARGs quantity in soil fell down by 1.66 logs in idle period of winter compared to application period of summer in the northern region, whereas the total amount was steady with whole-year application in south. Some persistent (sul1 and sul2) and elevated ARGs (tetG and ereA) in AD and land application need more attention. PMID:27038206

  10. Anaerobic hydrolysis of a municipal wastewater in a pilot-scale digester.

    PubMed

    Alvarez, J A; Zapico, C A; Gómez, M; Presas, J; Soto, M

    2003-01-01

    Raw domestic wastewater from the city of Santiago de Compostela (Northwest Spain) was fed into a pilot-scale hydrolytic up flow sludge bed (HUSB) digester with an active volume of 25.5 m3. The total influent chemical oxygen demand (COD) ranged from 360 to 470 mg/l, the influent SS varied from 190 to 370 mg/l, and the temperature was between 17 degrees and 20 degrees C. The organic load rate (OLR) applied increased step by step from 1.2 to 3.9 kgCOD/m3 x d, while the hydraulic retention time (HRT) decreased from 7.1 h to 2.9 h. A high suspended solids (SS) removal of about 82-85% from the influent was reached, most of which (81 to 88%) was eliminated by hydrolysis, while the rest remained in the purge stream. The total COD removal ranged from 46 to 59%. On the other hand, a high acidification of the COD remaining in the effluent was obtained, so the percent COD in the form of volatile fatty acids (VFA(COD)) with respect to total effluent COD was about 43% for the highest HRT applied, and about 27% for the lowest HRT. The soluble to total COD ratio (CODs/CODt) increased from 25-32% for the influent to 71-86% for the effluent. The results obtained confirm the viability and interest of direct anaerobic hydrolytic pre-treatment of domestic wastewater. PMID:12926692

  11. Increasing algal biofuel production using Nannocholropsis oculata cultivated with anaerobically and aerobically treated swine wastewater.

    PubMed

    Wu, Pei-Fen; Teng, Jui-Chin; Lin, Yun-Huin; Hwang, Sz-Chwun John

    2013-04-01

    For mass production of Nannocholropsis oculata, a cheap nutrition source such as swine wastewater is required. The use of a combination of anaerobically/aerobically treated swine wastewater (AnATSW) was compared to artificial 3×f/2 medium in terms of algal growth rate and oil content. For microalgae cultured in 0-50% (v/v) AnATSW, a biomass of 0.94-3.22 g L(-1) was reached in 5 days. For microalgae cultured in 3×f/2 medium with vitamins, the lipid productivity was 0.122 g L(-1) d(-1) although its oil content reached 48.9%. Culturing N. oculata in 0-50% AnATSW resulted in an optimal lipid productivity of 0.035-0.177 g L(-1) d(-1). Only vitamins improved algal production of more oxidatively stable compositions of unsaturated oils. These oils were similar to the chemical structure of rapeseed oil based on analysis of the bis-allylic-position-equivalent value (30.64-46.13) and the iodine value (90.5-117.46). These oils were similar to coal based on the calculated low-heating-value of 17.6-22.9 MJ/kg. PMID:23422305

  12. Biogas and biohydrogen production potential of high strength automobile industry wastewater during anaerobic degradation.

    PubMed

    Bajaj, Mini; Winter, Josef

    2013-10-15

    High strength automobile industry wastewater, collected from decanters (DECA) of the pre-treatment plant after oil, grease and sludge separation, was investigated for production of methane in the absence and presence of glucose or excess aerobic sludge (AS) from a lab scale suspension reactor as co-substrates. The highest methane production from DECA wastewater was 335.4 L CH4/kg CODsoluble removal which decreased in the presence of the co-substrates to 232.5 (with 2 g/L glucose) and to 179 (with 40% AS) L CH4/kg CODsoluble removal, respectively. Around 95% of total methane was produced within 5 days of incubation of DECA at 37 °C when no co-substrate was added. Addition of co-substrates did not improve biodegradation of DECA but overall methane production from DECA + co-substrates was increased due to co-substrate biodegradation. The anaerobic inoculum, capable of producing 2.4 mol of hydrogen/mol of glucose under zinc induced inhibitory conditions, was unable to produce hydrogen from DECA as substrate under the same conditions. PMID:23831674

  13. Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR).

    PubMed

    Galib, Mohamed; Elbeshbishy, Elsayed; Reid, Robertson; Hussain, Abid; Lee, Hyung-Sool

    2016-11-01

    An immersed-membrane anaerobic membrane bioreactor (AnMBR) achieved 88-95% of COD removal for meat-processing wastewater at organic loading rate (OLR) of 0.4-3.2 kgCOD m(-3) d(-1). Membrane flux was stable for low OLR (0.4 and 1.3 kgCOD m(-3) d(-1)), but irrecoverable fouling occurred at high OLR of 3.2 kgCOD m(-3) d(-1). Methane gas yield of 0.13-0.18 LCH4 g(-1)CODremoved was obtained, which accounted for 33-38% of input COD, the most significant electron sink. Dissolved methane was only 3.4-11% of input COD and consistently over-saturated at all OLR conditions. The least accumulation of dissolved methane (25 mg L(-1) and saturation index 1.3) was found for the highest OLR of 3.2 kgCOD m(-3) d(-1) where biogas production rate was the highest. Energy balances showed that AnMBR produced net energy benefit of 0.16-1.82 kWh m(-3), indicating the possibility of energy-positive food wastewater treatment using AnMBRs. PMID:27526085

  14. Performance evaluation of upflow anaerobic sludge blanket reactor process for dairy wastewater treatment.

    PubMed

    Elangovan, C; Sekar, A S S

    2015-11-01

    Investigation on dairy wastewater treatment was undertaken at ambient temperature in 11 l effective volume of laboratory--scale upflow anaerobic sludge blanket reactor receiving an average influent chemical oxygen demand of 2100 mg 1(-1) for 3 months of 24 hours, hydraulic retention time. The feeds of the synthetic dairy wastewater operated with HRT of 12 hrs, 16 hrs, 20 hrs and 24 hrs was equivalent to organic loading rates of 1.20 kg COD m(-3) d-7.20 kg COD m(-3) d, 0.9 kg COD m(-3) d-5.40 kg COD m(-3) d, 0.72 kg COD m(-3) d--4.32 kg COD m(-3) d and 0.60 kg COD m(-3) d-3.60 kg COD m(-3) d respectively. After steady state condition was reached, which took about 2 months, the effluent quality parameter were sampled and analysed to quantify treatment efficiencies. The following removal efficiency observed were 73-94.33% COD; 50.04- 56.66% total solids; 45.55-70.63% total dissolved solids; 66-86.67% total nitrogen and 72-94% total phosphorous. Maximum biogas production rate was 383 l kg(-1) COD removed with 260 l of methane gas. Estimation of biogas production was analysed using artificial neural network software model, and the results predicted coincided well with the experimental results. PMID:26688965

  15. Efficiency influence of exogenous betaine on anaerobic sequencing batch biofilm reactor treating high salinity mustard tuber wastewater.

    PubMed

    He, Qiang; Kong, Xiang-Juan; Chai, Hong-Xiang; Fan, Ming-Yu; Du, Jun

    2012-01-01

    When treating a composite mustard tuber wastewater with high concentrations of salt (about 20 g Cl(-) L(-1)) and organics (about 8000 mg L(-1) COD) by an anaerobic sequencing batch biofilm reactor (ASBBR) in winter, both high salinity and low temperature will inhibit the activity of anaerobic microorganisms and lead to low treatment efficiency. To solve this problem, betaine was added to the influent to improve the activity of the anaerobic sludge, and an experimental study was carried to investigate the influence of betaine on treating high salinity mustard tuber wastewater by the ASBBR. The results show that, when using anaerobic acclimated sludge in the ASBBR, and controlling biofilm density at 50% and water temperature at 8-12 degrees C, the treatment efficiency of the reactor could be improved by adding the betaine at different concentrations. The efficiency reached the highest when the optimal dosage ofbetaine was 0.5 mmol L(-1). The average effluent COD, after stable acclimation, was 4461 mg L(-1). Relative to ASBBR without adding betaine, the activity of the sludge increased significantly. Meanwhile, the dehydrogenase activity of anaerobic microorganisms and the COD removal efficiency were increased by 18.6% and 18.1%, respectively. PMID:22988630

  16. Treating dinitrotoluene in propellant wastewater using anaerobic fluidized-bed bioreactors containing granular activated carbon (GAC). Final report

    SciTech Connect

    Maloney, S.W.; May, E.R.; Suidan, M.T.; Berchtold, S.R.; Vanderloop, S.

    1995-03-01

    Production of single-base propellants for military use involves several steps in which dinitrotoluene (DNT) is transferred to wastewater. DNT is a listed hazardous material, and its presence in the wastewater causes noncompliance with National Pollutant Discharge Elimination System (NPDES) permits. Existing wastewater treatment processes have not been able to consistently control DNT in the effluent. The major source of DNT in propellant production also contains substantial amounts of ethanol and/or ether. An emerging technology, anaerobic fluidized-bed bioreactors containing granular activated carbon (GAC), is an excellent candidate for treatment of DNT at this point source because DNT is both adsorbable and slowly biodegradable, and the ethanol and ether provide a good substrate for co-metabolization. Bench scale anaerobic fluidized-bed reactors were tested using synthetic wastewater in a university laboratory, with excellent results. One reactor was then transported to Radford Army Ammunition Plant for direct testing on actual wastewater. Although the bioactivity in the reactor was unstable during widely varying ethanol and ether influent concentrations (primarily due to loss of pH control), the buffer capacity provided by the GAC was able to retain the DNT within the reactor, rather than discharging it to the effluent. The results are promising, and a demonstration of this technology is planned by the Army Environmental Center.

  17. Start-up of an anaerobic/oxic process for phosphorus removal at the Northwest Quadrant Wastewater Treatment Plant

    SciTech Connect

    Not Available

    1992-08-01

    This study investigated the suitability and effectiveness of a proprietary anaerobic/oxic (A/0) process to facilitate the biological removal of phosphorus from domestic wastewater. The study took place at the Northwest Quadrant Wastewater Treatment Plant in Hilton, New York, and was conducted in conjunction with the New York State Energy Research Development Authority (the Energy Authority) and the Monroe County Department of Pure Waters. The NWQWWTP concentration limit for total effluent phosphorus is 1.0 mg/l. Influent phosphorus concentrations usually vary from 4 to 5 mg/l at the plant.

  18. Comparison of methanogenic community structure and anaerobic process performance treating swine wastewater between pilot and optimized lab scale bioreactors.

    PubMed

    Kim, Woong; Cho, Kyungjin; Lee, Seungyong; Hwang, Seokhwan

    2013-10-01

    To investigate methanogenic community structure and process performance of anaerobic digestion treating swine wastewater at different scale, a pilot plant with 20 m(3) of effective working volume and lab scale methanogenic digester with 6L working volume were operated for 71 days and 6 turnover periods, respectively. During the steady state of anaerobic digestion, COD and VS removal efficiency in pilot plant were 65.3±3.2, 51.6±4.3%, respectively, which was similar to those in lab scale. However, calculated VFAs removal efficiency and methane yield were lower in pilot plant than in lab scale digester. Also, organics removal efficiencies, which consist of total carbohydrates, proteins, and lipids, were different between pilot and lab scale. These results were thought to be due to the ratio of carbohydrates to proteins in the raw swine wastewater. As a result of qualitative microbial analysis, Methanoculleus receptaculii, and Methanoculleus bourgensis, were commonly concerned with methane production. PMID:23489568

  19. Textile wastewater treatment in a bench-scale anaerobic-biofilm anoxic-aerobic membrane bioreactor combined with nanofiltration.

    PubMed

    Grilli, Selene; Piscitelli, Daniela; Mattioli, Davide; Casu, Stefania; Spagni, Alessandro

    2011-01-01

    This study evaluated the treatability of textile wastewaters in a bench-scale experimental system, comprising an anaerobic biofilter, an anoxic reactor and an aerobic membrane bioreactor (MBR). The MBR effluent was thereafter treated by a nanofiltration (NF) membrane. The proposed system was demonstrated to be effective in the treatment of the textile wastewater under the operating conditions applied in the study. The MBR system achieved a good COD (90-95%) removal; due to the presence of the anaerobic biofilter, also effective color removal was obtained (70%). The addition of the NF membrane allowed the further improvement in COD (50-80%), color (70-90%) and salt removal (60-70% as conductivity). In particular the NF treatment allowed the almost complete removal of the residual color and a reduction of the conductivity such as to achieve water quality suitable for reuse. PMID:21992723

  20. Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater.

    PubMed

    Joshi, Dev Raj; Zhang, Yu; Tian, Zhe; Gao, Yingxin; Yang, Min

    2016-09-01

    The combined anaerobic-aerobic biosystem is assumed to consume less energy for the treatment of high strength industrial wastewater. In this study, pollutant removal performance and microbial diversity were assessed in a long-term (over 300 days) bench-scale sequential anaerobic-aerobic bioreactor treating coking wastewater. Anaerobic treatment removed one third of the chemical oxygen demand (COD) and more than half of the phenols with hydraulic retention time (HRT) of 42 h, while the combined system with total HRT of 114 h removed 81.8, 85.6, 99.9, 98.2, and 85.4 % of COD, total organic carbon (TOC), total phenols, thiocyanate, and cyanide, respectively. Two-dimensional gas chromatography with time-of-flight mass spectrometry showed complete removal of phenol derivatives and nitrogenous heterocyclic compounds (NHCs) via the combined system, with the anaerobic process alone contributing 58.4 and 58.6 % removal on average, respectively. Microbial activity in the bioreactors was examined by 454 pyrosequencing of the bacterial, archaeal, and fungal communities. Proteobacteria (61.2-93.4 %), particularly Betaproteobacteria (34.4-70.1 %), was the dominant bacterial group. Ottowia (14.1-46.7 %), Soehngenia (3.0-8.2 %), and Corynebacterium (0.9-12.0 %), which are comprised of phenol-degrading and hydrolytic bacteria, were the most abundant genera in the anaerobic sludge, whereas Thiobacillus (6.6-43.6 %), Diaphorobacter (5.1-13.0 %), and Comamonas (0.2-11.1 %) were the major degraders of phenol, thiocyanate, and NHCs in the aerobic sludge. Despite the low density of fungi, phenol degrading oleaginous yeast Trichosporon was abundant in the aerobic sludge. This study demonstrated the feasibility and optimization of less energy intensive treatment and the potential association between abundant bacterial groups and biodegradation of key pollutants in coking wastewater. PMID:27221291

  1. Algaculture integration in conventional wastewater treatment plants: anaerobic digestion comparison of primary and secondary sludge with microalgae biomass.

    PubMed

    Mahdy, Ahmed; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina

    2015-05-01

    This study evaluated the feasibility of using microalgae biomass as feedstock for anaerobic digestion together with other biomasses (primary and secondary sludge) normally generated in WWTP. Raw microalgae biomass anaerobic biodegradability (33%) was higher than that of secondary sludge (23%). Thermal pretreatment enhanced 62% and 16% methane yield for Chlorellavulgaris and secondary sludge, respectively. When both substrates were codigested, methane yields remained low. On the other hand, primary sludge supported the highest anaerobic biodegradability (97%) and when combined with thermally pretreated C. vulgaris, methane yields were higher (13-17%) than the ones expected theoretically. Despite the high protein content of those substrates and the high nitrogen mineralization, no ammonia inhibition was detected. Thereby, this study showed that algae biomass is a potential cosubstrate for biogas production together with municipal wastewater sludge. PMID:25451781

  2. Anaerobic/aerobic treatment of a petrochemical wastewater from two aromatic transformation processes by fluidized bed reactors.

    PubMed

    Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana

    2012-01-01

    An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study. PMID:23109595

  3. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    PubMed

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater. PMID:24880609

  4. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    PubMed

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity. PMID:27593269

  5. Effect of reactor configuration on performance during anaerobic treatment of low strength wastewater.

    PubMed

    Das, Suprotim; Chaudhari, Sanjeev

    2015-01-01

    The efficiency of the up-flow anaerobic sludge blanket (UASB) reactor is quite low for the treatment of low strength wastewaters (LSWs) due to less biogas production leading to poor mixing. LSW may be treated efficiently by providing adequate mixing in the UASB reactor when gas production is low, and sufficient mixing can be achieved by modifying reactor geometry. Hence, modifying UASB reactor geometry for enhanced mixing and evaluating its performance for the treatment of LSWs would be a worthwhile effort. In the present study, UASB reactor configuration was modified by providing a vertical baffle along the height to promote mixing of reactor contents, and is termed as modified UASB (MUASB). The performance of an on-site pilot-scale MUASB reactor was evaluated for 375 days under ambient condition for the treatment of municipal sewage as LSW and compared with that of the conventional UASB and hybrid UASB (HUASB) reactors. The MUASB reactor showed better performance in terms of chemical oxygen demand (COD) removal efficiency as compared with UASB and HUASB reactors during this study. At 4 h hydraulic retention time, the total COD removal efficiency of UASB and HUASB reactors was 53.7% and 61%, respectively, which were much lower than the total COD removal efficiency of the MUASB reactor (72.7%). The better performance observed in the MUASB reactor is possibly due to improved mixing. Depth-wise analysis of reactor liquid showed that better mixing in the MUASB reactor enhances the contact of wastewater with biomass, which contributes to the improved treatment efficiency. It seems that MUASB holds promise for LSW treatment. PMID:25751650

  6. A model for methane production in anaerobic digestion of swine wastewater.

    PubMed

    Yang, Hongnan; Deng, Liangwei; Liu, Gangjin; Yang, Di; Liu, Yi; Chen, Ziai

    2016-10-01

    A study was conducted using a laboratory-scale anaerobic sequencing batch digester to investigate the quantitative influence of organic loading rates (OLRs) on the methane production rate during digestion of swine wastewater at temperatures between 15 °C and 35 °C. The volumetric production rate of methane (Rp) at different OLRs and temperatures was obtained. The maximum volumetric methane production rates (Rpmax) were 0.136, 0.796, 1.294, 1.527 and 1.952 LCH4 L(-1) d(-1) at corresponding organic loading rates of 1.2, 3.6, 5.6, 5.6 and 7.2 g volatile solids L(-1) d(-1), respectively, which occurred at 15, 20, 25, 30 and 35 °C, respectively. A new model was developed to describe the quantitative relationship between Rp and OLR. In addition to the maximum volumetric methane production rate (Rpmax) and the half-saturation constant (KLR) commonly used in previous models such as the modified Stover-Kincannon model and Deng model, the new model introduced a new index (KD) that denoted the speed of volumetric methane production rate approaching the maximum as a function of temperature. The new model more satisfactorily described the influence of OLR on the rate of methane production than other models as confirmed by higher determination coefficients (R(2)) (0.9717-0.9900) and lower bias between the experimental and predicted data in terms of the root mean square error and the Akaike Information Criterion. Data from other published research also validated the applicability and generality of the new kinetic model to different types of wastewater. PMID:27395030

  7. Coagulation and precipitation as post-treatment of anaerobically treated primary municipal wastewater.

    PubMed

    Diamadopoulos, Evan; Megalou, Konstantina; Georgiou, Maria; Gizgis, Nikolaos

    2007-02-01

    The main objective of this study was to investigate the feasibility of coagulation as a post-treatment method of anaerobically treated primary municipal wastewater. Both mesophilic and ambient (20 degrees C) temperature conditions were investigated in a laboratory-scale upflow anaerobic sludge bed (UASB) reactor. In addition, optimization of the coagulant, both in terms of type and dose, was performed. Finally, phosphorus removal by means of aluminum and iron coagulation and phosphorus and ammonia nitrogen removal by means of struvite precipitation were studied. Anaerobic treatment of primary effluent at low hydraulic retention times (less than 15 hours) resulted in mean chemical oxygen demand (COD) removals ranging from 50 to 70%, while, based on the filtered treated effluent, the mean removals increased to 65 to 80%. Alum coagulation of the UASB effluent gave suspended solids removals ranging from approximately 35 to 65%. Turbidity removal reached up to 80%. Remaining COD values after coagulation and settling were below 100 mg/L, while remaining total organic carbon (TOC) levels were below 50 mg/L. Filterable COD levels were generally below 60 mg/L, while filterable TOC levels were below 40 mg/L. All coagulants tested, including prepolymerized aluminum and iron coagulants, demonstrated similar efficiency compared with alum for the removal of suspended solids, COD, and TOC. Regarding struvite precipitation, optimal conditions for phosphorus and nitrogen removal were pH 10 and molar ratio of magnesium: ammonia-nitrogen: phosphate-phosphorus close to the stoichiometric ratio (1:1:1). During struvite precipitation, removal of suspended solids reached 40%, while turbidity removal reached values up to 80%. The removal of COD was approximately 30 to 35%; yet, when removal of organic matter was based on the treated filterable COD, the removal increased to approximately 65%. In addition, nitrogen was removed by approximately 70%, while phosphorus removal ranged between

  8. Applicability of one-stage partial nitritation and anammox in MBBR for anaerobically pre-treated municipal wastewater.

    PubMed

    Kouba, Vojtech; Widiayuningrum, P; Chovancova, L; Jenicek, P; Bartacek, J

    2016-07-01

    Energy consumption of municipal wastewater treatment plants can be reduced by the anaerobic pre-treatment of the main wastewater stream. After this pre-treatment, nitrogen can potentially be removed by partial nitritation and anammox (PN/A). Currently, the application of PN/A is limited to nitrogen-rich streams (>500 mg L(-1)) and temperatures 25-35 °C. But, anaerobically pretreated municipal wastewater is characterized by much lower nitrogen concentrations (20-100 mg L(-1)) and lower temperatures (10-25 °C). We operated PN/A under similar conditions: total ammonium nitrogen concentration 50 mg L(-1) and lab temperature (22 °C). PN/A was operated for 342 days in a 4 L moving bed biofilm reactor (MBBR). At 0.4 mg O2 L(-1), nitrogen removal rate 33 g N m(-3) day(-1) and 80 % total nitrogen removal efficiency was achieved. The capacity of the reactor was limited by low AOB activity. We observed significant anammox activity (40 g N m(-3) day(-1)) even at 12 °C, improving the applicability of PN/A for municipal wastewater treatment. PMID:27074838

  9. Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater.

    PubMed

    Chitapornpan, S; Chiemchaisri, C; Chiemchaisri, W; Honda, R; Yamamoto, K

    2013-08-01

    Purple non-sulfur bacteria (PNSB) were cultivated by food industry wastewater in the anaerobic membrane photo-bioreactor. Organic removal and biomass production and characteristics were accomplished via an explicit examination of the long term performance of the photo-bioreactor fed with real wastewater. With the support of infra-red light transmitting filter, PNSB could survive and maintain in the system even under the continual fluctuations of influent wastewater characteristics. The average BOD and COD removal efficiencies were found at the moderate range of 51% and 58%, respectively. Observed photosynthetic biomass yield was 0.6g dried solid/g BOD with crude protein content of 0.41 g/g dried solid. Denaturing gradient gel electrophoretic analysis (DGGE) and 16S rDNA sequencing revealed the presence of Rhodopseudomonas palustris and significant changes in the photosynthetic bacterial community within the system. PMID:23489563

  10. The anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions: a review.

    PubMed

    Reynaud, N; Buckley, C A

    2016-01-01

    A review concerning the anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions is presented. Existing studies indicate strong resilience of the reactor towards loading variations and shock-loads. The compartmentalisation of the ABR is a strongly stabilising factor with feed fluctuations being evened out across reactor chambers. Significant chemical oxygen demand (COD) reduction occurs almost exclusively in the first three chambers. The hydraulic rather than the organic loading rate is treatment limiting. Laboratory-scale studies show high treatment efficiencies of above 80% COD removal. It was found that most laboratory-scale studies do not factor in important aspects of field operation, such as diurnal fluctuations of feed characteristics, adequate start-up periods and periods of constant loading and optimised chamber outlet design, and never studied the effect of loading on sludge digestion. Performance data on full-scale ABR implementations, however, are extremely scarce, and existing studies are without exception affected by site-specific treatment-limiting factors hindering the extrapolation of generally valid conclusions. In view of a large-scale roll-out, communal ABRs are not sufficiently understood. Current challenges concerning the optimisation of reactor design require numerous well-monitored long-term full-scale reactor investigations. Existing ABR investigations yield encouraging results, supporting that the ABR may be one of the solutions answering the global call for low-maintenance, robust treatment systems. PMID:26877027

  11. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater.

    PubMed

    Yurtsever, Adem; Sahinkaya, Erkan; Aktaş, Özgür; Uçar, Deniz; Çınar, Özer; Wang, Zhiwei

    2015-09-01

    This study aims at comparatively evaluating anaerobic and aerobic MBRs for the treatment of azo-dye containing synthetic wastewater. Also, the filtration performances of AnMBR and AeMBR were compared under similar operating conditions. In both MBRs, high COD removal efficiencies were observed. Although almost complete color removal was observed in AnMBR, only partial (30-50%) color removal was achieved in AeMBR. AnMBR was successfully operated up to 9 L/(m(2)h) (LMH) and no chemical cleaning was required at 4.5 LMH for around 50 days. AeMBR was operated successfully up to 20 LMH. The filtration resistance of AnMBR was generally higher compared to AeMBR although reversible fouling rates were comparable. In both MBRs, offline chemical cleaning with NaOCl and sulfuric acid almost completely removed irreversible fouling and the resistances of chemically cleaned membranes were close to those of new membranes. PMID:26093251

  12. Anaerobic membrane bioreactor (AnMBR) for bamboo industry wastewater treatment.

    PubMed

    Wang, Wei; Yang, Qi; Zheng, Shuangshuang; Wu, Donglei

    2013-12-01

    Bamboo industry wastewater (BIWW) poses severe environmental problems because of its high organic matter content. In this study, anaerobic membrane bioreactor (AnMBR) was applied for BIWW treatment. During the start-up stage, the system presented an effective degradation with a final COD removal of 91%. Compared to the intermittent mode, a higher membrane rejection (45% COD, 60% NH3-N) was obtained when the system was operated continuously. N2 flushing was applied for membrane cleaning, and the cleaning efficiency was significantly influenced by the hydraulic retention time (HRT). While operated under HRT ≥ 5 d, membrane fouling could be effectively controlled. Scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis indicated the membrane top area suffered the most serious fouling. Gel permeation chromatography (GPC) and gas chromatography-mass spectrometry (GC-MS) analyses revealed most organic matter in BIWW was eliminated by AnMBR. However, benzene and fluoro derivatives were detected in the permeate as the by-products. PMID:24121371

  13. Two-stage anaerobic fluidized-bed membrane bioreactor treatment of settled domestic wastewater.

    PubMed

    Bae, J; Yoo, R; Lee, E; McCarty, P L

    2013-01-01

    A two-stage anaerobic fluidized-bed membrane bioreactor (SAF-MBR) system was applied for the treatment of primary-settled domestic wastewater that was further pre-treated by either 10 μm filtration or 1 mm screening. While the different pre-treatment options resulted in different influent qualities, the effluent qualities were quite similar. In both cases at a total hydraulic retention time of 2.3 h and 25 °C, chemical oxygen demand and biochemical oxygen demand (BOD5) removals were 84-91% and 92-94%, with effluent concentrations lower than 25 and 7 mg/L, respectively. With a membrane flux of 6-12 L/m(2)/h, trans-membrane pressure remained below 0.2 bar during 310 d of continuous operation without need for membrane chemical cleaning or backwashing. Biosolids production was estimated to be 0.028-0.049 g volatile suspended solids/g BOD5, which is far less than that with comparable aerobic processes. Electrical energy production from combined heat and power utilization of the total methane produced (gaseous and dissolved) was estimated to be more than sufficient for total system operation. PMID:23863433

  14. Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.

    PubMed

    Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S

    2016-01-01

    In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion. PMID:27438248

  15. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment

    PubMed Central

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-01-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration two to three times the equilibrium concentration predicted by Henry’s law. Illumina sequencing of 16S rRNA targeting Bacteria and Archaea and reverse transcription-quantitative polymerase chain reaction targeting the methyl coenzyme-M reductase (mcrA) gene in methanogens indicated that the membrane biofilm was enriched in highly active methanogens and syntrophic bacteria. Restoring fouled membranes to a transmembrane pressure (TMP) near zero by increasing biogas sparging did not disrupt the biofilm’s treatment performance, suggesting that microbes in the foulant layer were tightly adhered and did not significantly contribute to TMP. Dissolved methane oversaturation persisted without high TMP, implying that methanogenesis in the biofilm, rather than high TMP, was the primary driving force in methane oversaturation. The results describe an attractive operational strategy to improve treatment performance in low-temperature AnMBR by supporting syntrophy and methanogenesis in the membrane biofilm through controlled membrane fouling. PMID:26238293

  16. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    PubMed

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes. PMID:26676001

  17. Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor.

    PubMed

    Yoo, R H; Kim, J H; McCarty, P L; Bae, J H

    2014-01-01

    A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01-0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m(2)/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation. PMID:24647177

  18. Sustainable nitrogen removal by denitrifying anammox applied for anaerobic pre-treated potato wastewater.

    PubMed

    Mulder, A; Versprille, A I; van Braak, D

    2012-01-01

    The feasibility of sustainable nitrogen removal was investigated in a two stage biofilm configuration consisting of a MBBR (Moving Bed Biofilm Reactor) and a Deamox reactor (Biobed-EGSB). The MBBR is used for nitrification and the denitrifying ammonium oxidation (Deamox) is aimed at a nitrogen removal process in which part of the required nitrite for the typical anammox reaction originated from nitrate. Anaerobic pre-treated potato wastewater was supplied to a MBBR and Deamox reactor operated in series with a bypass flow of 30%. The MBBR showed stable nitrite production at ammonium-loading rates of 0.9-1.0 kg NH₄-N/m³ d with ammonium conversion rates of 0.80-0.85 kg NH₄-N/m³ d. The nitrogen-loading rate and conversion rate of the Deamox reactor were 1.6-1.8 and 1.6 kg N/m³ d. The maximum ammonium removal capacity in the Deamox reactor was 0.6 kg NH₄-N/m³ d. The removal efficiency of soluble total nitrogen reached 90%. The Deamox process performance was found to be negatively affected during decline of the operating temperature from 33 to 22 °C and by organic loading rates with a chemical oxygen demand (COD)/NO₂-N ratio >1. PMID:23109579

  19. Application of sugarcane bagasse for passive anaerobic biotreatment of sulphate rich wastewaters

    NASA Astrophysics Data System (ADS)

    Hussain, Ali; Qazi, Javed Iqbal

    2016-06-01

    Biological treatment of sulphate-rich wastewaters employing dissimilatory sulphate reducing bacteria as remedial agents is an attractive technique and has gained importance in the last few years. Industrial effluents enriched with sulphates are generally deficient in electron donors. And thus cannot be treated biologically without supplementation of carbon through an external source. For scalable operations, however, the carbon source must not be expensive. In this context, present study reports the efficiency of biological sulphate reduction using sugarcane bagasse as a cost-effective carbon source. An average 0.00391 ± 0.001 gL-1 day-1 (3.91 mgL-1 day-1) sulphate reduction was observed reaching maximally to 0.00466 ± 0.001 gL-1 day-1 (4.66 mgL-1 day-1) while employing Desulfovibrio fructosovorans-HAQ2 and Desulfovibrio piger-HAQ6 in a 60-day trial of anaerobic incubation using sugarcane bagasse as growth substrate. These findings will be helpful in developing economical bioremediation processes tending to operate for a longer period of time to reduce sulphate contents of contaminated waters.

  20. Automatic purification of animal wastewater by dual means of energy-retaining anaerobic fermentation and ultrafiltration

    SciTech Connect

    Kobayashi, Shigeki; Masuda, Yoshiko ); Etou, Yasushi )

    1993-11-01

    For the purpose of purifying animal wastewater and recovering energy during the operation, an automatic bench-scale unit was manufactured and operated. It consisted of three pieces of an anaerobic fermentation digester, a sedimentation tank and an ultrafiltration module. The digester was equipped with fixed bacteria beds(bioreactor) and tape heaters. The sedimentation tank was equipped with a heat exchanger, through which fresh slurry passed. During automatic operations the slurry samples were taken out before, during and after the operation, and turbidity and organic matter contents were analyzed. Comparing nylon mesh, chips of vinyl chloride pipe and crushed cement blocks, the crushed blocks were recognized best as a fixed bacteria bed. In the operating process, the supernatant fluid in the sedimentation tank was sent to the ultrafiltration module. After filtration a daily reverse cleansing was performed. All the operations worked according to the command programmed in the Controller PL40M III. The average removal rates of organic matters in the compound slurry by the dual operations were as follows: 76.6% T-S, 100.0% T-SS, 92.6% COD, 96.5% BOD, 86.8% NH[sub 4]-N, 69.0% T-N, and 98.8% T-P. The result of pre-heating fresh slurry by effluent from the digester was also evaluated. 14 refs., 4 figs., 6 tabs.

  1. Combined anaerobic-ozonation process for treatment of textile wastewater: removal of acute toxicity and mutagenicity.

    PubMed

    Punzi, Marisa; Nilsson, Filip; Anbalagan, Anbarasan; Svensson, Britt-Marie; Jönsson, Karin; Mattiasson, Bo; Jonstrup, Maria

    2015-07-15

    A novel set up composed of an anaerobic biofilm reactor followed by ozonation was used for treatment of artificial and real textile effluents containing azo dyes. The biological treatment efficiently removed chemical oxygen demand and color. Ozonation further reduced the organic content of the effluents and was very important for the degradation of aromatic compounds, as shown by the reduction of UV absorbance. The acute toxicity toward Vibrio fischeri and the shrimp Artemia salina increased after the biological treatment. No toxicity was detected after ozonation with the exception of the synthetic effluent containing the highest concentration, 1 g/l, of the azo dye Remazol Red. Both untreated and biologically treated textile effluents were found to have mutagenic effects. The mutagenicity increased even further after 1 min of ozonation. No mutagenicity was however detected in the effluents subjected to longer exposure to ozone. The results of this study suggest that the use of ozonation as short post-treatment after a biological process can be beneficial for the degradation of recalcitrant compounds and the removal of toxicity of textile wastewater. However, monitoring of toxicity and especially mutagenicity is crucial and should always be used to assess the success of a treatment strategy. PMID:25781375

  2. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment.

    PubMed

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-09-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration two to three times the equilibrium concentration predicted by Henry's law. Illumina sequencing of 16S rRNA targeting Bacteria and Archaea and reverse transcription-quantitative polymerase chain reaction targeting the methyl coenzyme-M reductase (mcrA) gene in methanogens indicated that the membrane biofilm was enriched in highly active methanogens and syntrophic bacteria. Restoring fouled membranes to a transmembrane pressure (TMP) near zero by increasing biogas sparging did not disrupt the biofilm's treatment performance, suggesting that microbes in the foulant layer were tightly adhered and did not significantly contribute to TMP. Dissolved methane oversaturation persisted without high TMP, implying that methanogenesis in the biofilm, rather than high TMP, was the primary driving force in methane oversaturation. The results describe an attractive operational strategy to improve treatment performance in low-temperature AnMBR by supporting syntrophy and methanogenesis in the membrane biofilm through controlled membrane fouling. PMID:26238293

  3. Pectinatus brassicae sp. nov., a Gram-negative, anaerobic bacterium isolated from salty wastewater.

    PubMed

    Zhang, Wen-wu; Fang, Ming-xu; Tan, Hai-qin; Zhang, Xin-qi; Wu, Min; Zhu, Xu-fen

    2012-09-01

    A novel Gram-negative, non-spore-forming, strictly anaerobic, heterotrophic bacterium, strain TY(T), was isolated from salty pickle wastewater. Cells were rod-shaped with comb-like flagella, slightly curved and very variable in length. Optimal growth occurred at 28 °C and pH 6.5. Cells were resistant to up to 50 g NaCl l(-1). Strain TY(T) produced acid from glycerol, sucrose, glucose, fructose and mannitol. The main fermentation products from glucose were acetic and propionic acids. Tests for acid phosphatase and naphthol-AS-BI-phosphohydrolase activities were positive. The major fatty acids were C(14 : 0) DMA (18.7 %), C(15 : 0) (15.4 %), anteiso-C(18 : 1) (15.2 %), C(11 : 0) (13.3 %) and summed feature 5 (C(17 : 1)ω7c and/or C(17 : 2)) (11.0 %). The DNA G+C content was 35.9 mol%. 16S rRNA gene sequence-based phylogenetic analysis indicated that strain TY(T) represented a novel species of the genus Pectinatus (sequence similarity to other members of the genus ranged from 93.2 to 94.8 %). Based on its phenotypic, genotypic and phylogenetic characteristics, strain TY(T) is proposed to represent a novel species, named Pectinatus brassicae sp. nov. (type strain TY(T) = JCM 17499(T) = DSM 24661(T)). PMID:22058316

  4. [Phosphorus removal characteristics by aerobic granules in normal molasses wastewater after anaerobic treatment].

    PubMed

    Wang, Shuo; Yu, Shui-Li; Shi, Wen-Xin; Bao, Rui-Ling; Yi, Xue-Song; Li, Jian-Zheng

    2012-04-01

    COD decreased obviously in normal molasses wastewater after anaerobic treatment, however, concentrations of nitrogen and phosphorus were still higher in the effluent which seriously damaged the ecological balance. In this study, aerobic granules cultivated in sequencing batch airlift reactor (SBAR) were carried out for treating the effluent; phosphorus removal processes and characteristics were discussed as well. The mean diameter of aerobic granules cultivated by multiple carbon sources (acetate, propionate and butyrate) was 1.7 mm. The average phosphorus removal efficiency was 90.9% and the level of phosphorus in effluent was only 1.3 mg x L(-1); TP released per COD consumed was 0.571 and the specific rate of TP released was 5.73 mg x (g x h)(-1). NO3(-) -N usage of phosphorus accumulating organisms (PAOs) improved during denitrifying process because the concentration of propionate and butyrate increased in multiple carbon sources which means the phosphorus uptake efficiency increased when per NO3(-) -N consumed. Phosphorus content represented a stronger correlation with magnesium, calcium and ferrum contents in aerobic granules and their extracellular polymeric substances (EPS), the phosphorus adsorption by EPS could enhance phosphorus removal. 61.9% of phosphorus accumulating organisms were denitrifying phosphorus accumulating organisms in aerobic granules and TP uptake per NO3(-) -N consumed was 1.14 which was higher than that of aerobic granules only cultivated by acetate. PMID:22724155

  5. A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater.

    PubMed

    Shin, Seung Gu; Han, Gyuseong; Lim, Juntaek; Lee, Changsoo; Hwang, Seokhwan

    2010-09-01

    Microbial community structures were assessed in a two-stage anaerobic digestion system treating food waste-recycling wastewater. The reactors were operated for 390 d at 10 different hydraulic retention times (HRTs) ranging from 25 to 4 d. Stable operation was achieved with the overall chemical oxygen demand (COD) removal efficiency of 73.0-85.9% at organic loading rate of up to 35.6 g COD/L·d. Performance of the acidogenic reactors, however, changed significantly during operation. This change coincided with transition of the bacterial community from one dominated by Aeriscardovia- and Lactobacillus amylovorus-related species to one dominated by Lactobacillus acetotolerans- and Lactobacillus kefiri-like organisms. In methanogenic reactors, the microbial community structures also changed at this stage along with the shift from Methanoculleus- to Methanosarcina-like organisms. This trend was confirmed by the non-metric multidimensional scaling joint plot of microbial shifts along with performance parameters. These results indicated that the overall process performance was relatively stable compared to the dynamic changes in the microbial structures and the acidogenic performance. PMID:20678786

  6. Sugar and volatile fatty acids dynamic during anaerobic treatment of olive mill wastewater.

    PubMed

    Fernandes, L R; Gomes, A C; Lopes, A; Albuquerque, A; Simões, R M

    2016-01-01

    Biogas production has been the main route used to exploit olive mill wastewater (OMW), after pretreatment and/or in combination with other effluents, but more recently the production of chemicals and biopolymers by biotechnological routes has deserved increasing attention by the scientific community. The present paper aims to explore the potential of fresh OMW as a source of volatile fatty acids (VFAs) and biogas. The time profile of VFAs production and the corresponding sugar consumption was followed by high-performance liquid chromatography, in batch anaerobic assays. The experimental results have revealed the very high potential of the OMW for the production of VFAs, mainly due to the high sugar concentration in the effluent (37.8 g/L) and its complete conversion into VFAs, in a time period of 2-3 days. The most abundant VFAs were acetic (48-50%), n-butanoic (12-27%), iso-pentanoic (12-14%) and propanoic (5-13%). The ratio of VFA containing even and odd carbon chains increased with the reduction in the initial chemical oxygen demand concentration of the samples used in the experiments. The conversion of the VFAs to biogas was inhibited at concentrations of 3.5 g/L of VFAs. PMID:26496487

  7. Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater.

    PubMed

    Kim, Kyoung-Yeol; Yang, Wulin; Ye, Yaoli; LaBarge, Nicole; Logan, Bruce E

    2016-05-01

    Anaerobic fluidized membrane bioreactors (AFMBRs) have been mainly developed as a post-treatment process to produce high quality effluent with very low energy consumption. The performance of an AFMBR was examined using the effluent from a microbial fuel cell (MFC) treating domestic wastewater, as a function of AFMBR hydraulic retention times (HRTs) and organic matter loading rates. The MFC-AFMBR achieved 89±3% removal of the chemical oxygen demand (COD), with an effluent of 36±6mg-COD/L over 112days operation. The AFMBR had very stable operation, with no significant changes in COD removal efficiencies, for HRTs ranging from 1.2 to 3.8h, although the effluent COD concentration increased with organic loading. Transmembrane pressure (TMP) was low, and could be maintained below 0.12bar through solids removal. This study proved that the AFMBR could be operated with a short HRT but a low COD loading rate was required to achieve low effluent COD. PMID:26921870

  8. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater.

    PubMed

    Luo, Le; He, Huijun; Yang, Chunping; Wen, Shan; Zeng, Guangming; Wu, Mengjie; Zhou, Zili; Lou, Wei

    2016-09-01

    Coelastrella sp. QY01, a microalgae species isolated from a local pond, was identified and used for the treatment of anaerobically and aerobically treated swine wastewater (AnATSW). Microalgal growth characteristics, nutrient removal and lipid accumulation of QY01 cultivated in the initial concentration of AnATSW ranged from 63 to 319mg NH3-N/L were examined. The specific growth rate of QY01 cultivated in cultures ranged from 0.269 to 0.325day(-1) with a biomass productivity from 42.77 to 57.46mgL(-1)day(-1). Removal rates for NH3-N, TP and inorganic carbon in AnATSW at the various nutrient concentrations ranged from 90% to 100%, from 90% to 100% and from 74% to 78%, respectively. The lipid content of QY01 ranged from 22.4% to 24.8%. The lipid productivity was positive correlation with the biomass productivity. 40% AnATSW was optimal for QY01 cultivation, in which nutrient removal and productivity of biomass and lipid were maximized. PMID:27236400

  9. Anaerobic digestion of wastewater from the fruit juice industry: experiments and modeling.

    PubMed

    Zerrouki, Souhaib; Rihani, Rachida; Bentahar, Fatiha; Belkacemi, Khaled

    2015-01-01

    Anaerobic digestion of wastewater from the fruit juice industry was carried out in a batch digester. To study the effect of the pH values as well as the nutrient medium on the fermentation process, different parameters were monitored under mesophilic temperature, such as cumulative biogas volume, chemical oxygen demand (COD), total sugar, and biomass growth. It was found that for all cases, the COD concentration decreased with time. The lowest value reached was obtained when the nutrient medium was added; it was about 110 g/L after 480 h. In such cases, the COD removal reached about 80%; the highest cumulative biogas volume of about 5,515.8 NmL was reached after 480 h testing; and the lowest value reached was about 2,862.3 NmL in the case of peach-substrate containing sodium sulfite. The addition of nutrient medium improved the cumulative biogas production as well as the COD abatement. Measurement of the biogas composition highlighted three gaseous components, namely, methane (56.52%), carbon dioxide (20.14%), and hydrogen sulfide (23.34%). The modified Gompertz equation and the first-order kinetic model were used to describe the cumulative biogas production and the organic matter removal, respectively. A good agreement was found between simulated and experimental data. PMID:26114280

  10. Application of sugarcane bagasse for passive anaerobic biotreatment of sulphate rich wastewaters

    NASA Astrophysics Data System (ADS)

    Hussain, Ali; Qazi, Javed Iqbal

    2014-09-01

    Biological treatment of sulphate-rich wastewaters employing dissimilatory sulphate reducing bacteria as remedial agents is an attractive technique and has gained importance in the last few years. Industrial effluents enriched with sulphates are generally deficient in electron donors. And thus cannot be treated biologically without supplementation of carbon through an external source. For scalable operations, however, the carbon source must not be expensive. In this context, present study reports the efficiency of biological sulphate reduction using sugarcane bagasse as a cost-effective carbon source. An average 0.00391 ± 0.001 gL-1 day-1 (3.91 mgL-1 day-1) sulphate reduction was observed reaching maximally to 0.00466 ± 0.001 gL-1 day-1 (4.66 mgL-1 day-1) while employing Desulfovibrio fructosovorans-HAQ2 and Desulfovibrio piger-HAQ6 in a 60-day trial of anaerobic incubation using sugarcane bagasse as growth substrate. These findings will be helpful in developing economical bioremediation processes tending to operate for a longer period of time to reduce sulphate contents of contaminated waters.

  11. Life cycle assessment of introducing an anaerobic digester in a municipal wastewater treatment plant in Spain.

    PubMed

    Blanco, David; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Anaerobic digestion (AD) is being established as a standard technology to recover some of the energy contained in the sludge in wastewater treatment plants (WWTPs) as biogas, allowing an economy in electricity and heating and a decrease in climate gas emission. The purpose of this study was to quantify the contributions to the total environmental impact of the plant using life cycle assessment methodology. In this work, data from real operation during 2012 of a municipal WWTP were utilized as the basis to determine the impact of including AD in the process. The climate change human health was the most important impact category when AD was included in the treatment (Scenario 1), especially due to fossil carbon dioxide emissions. Without AD (Scenario 2), increased emissions of greenhouse gases, mostly derived from the use of electricity, provoked a rise in the climate change categories. Biogas utilization was able to provide 47% of the energy required in the WWTP in Scenario 1. Results obtained make Scenario 1 the better environmental choice by far, mainly due to the use of the digested sludge as fertilizer. PMID:26901726

  12. Anaerobic Methyl tert-Butyl Ether-Degrading Microorganisms Identified in Wastewater Treatment Plant Samples by Stable Isotope Probing

    PubMed Central

    Sun, Weimin; Sun, Xiaoxu

    2012-01-01

    Anaerobic methyl tert-butyl ether (MTBE) degradation potential was investigated in samples from a range of sources. From these 22 experimental variations, only one source (from wastewater treatment plant samples) exhibited MTBE degradation. These microcosms were methanogenic and were subjected to DNA-based stable isotope probing (SIP) targeted to both bacteria and archaea to identify the putative MTBE degraders. For this purpose, DNA was extracted at two time points, subjected to ultracentrifugation, fractioning, and terminal restriction fragment length polymorphism (TRFLP). In addition, bacterial and archaeal 16S rRNA gene clone libraries were constructed. The SIP experiments indicated bacteria in the phyla Firmicutes (family Ruminococcaceae) and Alphaproteobacteria (genus Sphingopyxis) were the dominant MTBE degraders. Previous studies have suggested a role for Firmicutes in anaerobic MTBE degradation; however, the putative MTBE-degrading microorganism in the current study is a novel MTBE-degrading phylotype within this phylum. Two archaeal phylotypes (genera Methanosarcina and Methanocorpusculum) were also enriched in the heavy fractions, and these organisms may be responsible for minor amounts of MTBE degradation or for the uptake of metabolites released from the primary MTBE degraders. Currently, limited information exists on the microorganisms able to degrade MTBE under anaerobic conditions. This work represents the first application of DNA-based SIP to identify anaerobic MTBE-degrading microorganisms in laboratory microcosms and therefore provides a valuable set of data to definitively link identity with anaerobic MTBE degradation. PMID:22327600

  13. Investigation of Anaerobic Fluidized Bed Reactor/ Aerobic Moving Bed Bio Reactor (AFBR/MMBR) System for Treatment of Currant Wastewater

    PubMed Central

    JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein

    2013-01-01

    Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640

  14. Abundance and distribution of Macrolide-Lincosamide-Streptogramin resistance genes in an anaerobic-aerobic system treating spiramycin production wastewater.

    PubMed

    Liu, Miaomiao; Ding, Ran; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Zhang, Tong; Yang, Min

    2014-10-15

    The behaviors of the Macrolide-Lincosamide-Streptogramin (MLS) resistance genes were investigated in an anaerobic-aerobic pilot-scale system treating spiramycin (SPM) production wastewater. After screening fifteen typical MLS resistance genes with different mechanisms using conventional PCR, eight detected genes were determined by quantitative PCR, together with three mobile elements. Aerobic sludge in the pilot system exhibited a total relative abundance of MLS resistance genes (per 16S rRNA gene) 2.5 logs higher than those in control samples collected from sewage and inosine wastewater treatment systems (P < 0.05), implying the presence of SPM could induce the production of MLS resistance genes. However, the total relative gene abundance in anaerobic sludge (4.3 × 10(-1)) was lower than that in aerobic sludge (3.7 × 10(0)) despite of the higher SPM level in anaerobic reactor, showing the advantage of anaerobic treatment in reducing the production of MLS resistance genes. The rRNA methylase genes (erm(B), erm(F), erm(X)) were the most abundant in the aerobic sludge (5.3 × 10(-1)-1.7 × 10(0)), followed by esterase gene ere(A) (1.3 × 10(-1)) and phosphorylase gene mph(B) (5.7 × 10(-2)). In anaerobic sludge, erm(B), erm(F), ere(A), and msr(D) were the major ones (1.2 × 10(-2)-3.2 × 10(-1)). These MLS resistance genes (except for msr(D)) were positively correlated with Class 1 integron (r(2) = 0.74-0.93, P < 0.05), implying the significance of horizontal transfer in their proliferation. PMID:24973730

  15. Coupling of iron shavings into the anaerobic system for enhanced 2,4-dinitroanisole reduction in wastewater.

    PubMed

    Ou, Changjin; Shen, Jinyou; Zhang, Shuai; Mu, Yang; Han, Weiqing; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun

    2016-09-15

    Packing of iron powder into anaerobic system is attractive for enhancing removal of recalcitrant pollutants from wastewater, but is limited by various inherent drawbacks of iron powder, such as easy precipitation and poor mass transfer. To address the above issues, iron shavings were packed into an upflow anaerobic sludge blanket (UASB) for enhancing 2,4-dinitroanisole (DNAN) reduction in this study, with system stability and microbial biodiversity emphasized. The results showed that both DNAN reduction and 2,4-diaminoanisole (DAAN) formation could be notably improved in the iron shavings coupled UASB system. Moreover, the ability to resist environmental stress was also strengthened through the addition of iron shavings in the UASB reactor. Compared with a loose and rough surface of the sludge in the control UASB reactor, the sludge in the coupled system presented a compact, rigid and granular appearance under iron shavings simulation. Furthermore, high throughput sequencing analysis indicated that the diversity of microbial community in the iron shavings coupled UASB system was significantly higher than that of the control UASB reactor. Additionally, species related to DNAN reduction and methane production were enriched in the coupled system. The observed long-term stable performance highlights the full-scale application potential of iron shavings coupled anaerobic sludge process for the treatment of nitroaromatic compounds containing wastewater. PMID:27295620

  16. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor.

    PubMed

    Dutta, Kasturi; Lee, Ming-Yi; Lai, Webber Wei-Po; Lee, Chien Hsien; Lin, Angela Yu-Chen; Lin, Cheng-Fang; Lin, Jih-Gaw

    2014-08-01

    The aim of present study was to treat municipal wastewater in two-stage anaerobic fluidized membrane bioreactor (AFMBR) (anaerobic fluidized bed reactor (AFBR) followed by AFMBR) using granular activated carbon (GAC) as carrier medium in both stages. Approximately 95% COD removal efficiency could be obtained when the two-stage AFMBR was operated at total HRT of 5h (2h for AFBR and 3h for AFMBR) and influent COD concentration of 250mg/L. About 67% COD and 99% TSS removal efficiency could be achieved by the system treating the effluent from primary clarifier of municipal wastewater treatment plant, at HRT of 1.28h and OLR of 5.65kg COD/m(3)d. The system could also effectively remove twenty detected pharmaceuticals in raw wastewaters with removal efficiency in the range of 86-100% except for diclofenac (78%). No other membrane fouling control was required except scouring effect of GAC for flux of 16LMH. PMID:24745898

  17. Anaerobic on-site treatment of black water and dairy parlour wastewater in UASB-septic tanks at low temperatures.

    PubMed

    Luostarinen, Sari A; Rintala, Jukka A

    2005-01-01

    Anaerobic on-site treatment of synthetic black water (BW) and dairy parlour wastewater (DPWW) was studied in two-phased upflow anaerobic sludge blanket (UASB)-septic tanks at low temperatures (10-20 degrees C). At all temperatures, total chemical oxygen demand (COD(t)) removal was above 90% with BW and above 80% with DPWW and removal of total suspended solids (TSS) above 90% with both wastewaters. Moreover, dissolved COD (COD(dis)) removal was approx. 70% with both wastewaters indicating good biological activity of the sludges. With BW, a single-phased reactor was found sufficient for good COD removals, while with DPWW, a two-phased process was required. Temperature optimum of reactor sludges was still 35 degrees C after long (398d) operation. Most of the nutrients from BW were removed with TSS, while with DPWW nutrient removal was low. In conclusion, UASB-septic tank was found feasible for (pre)treatment of BW and DPWW at low temperatures. PMID:15644252

  18. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater.

    PubMed

    Ho, Jaeho; Sung, Shihwu

    2010-04-01

    Two laboratory-scale anaerobic membrane bioreactors, AnMBR 1 and AnMBR 2, were run in parallel at 25 and 15 degrees C, respectively. Total chemical oxygen demand (COD) removal efficiency was more than 95% and 85% for AnMBR 1 and 2, respectively. The COD removal of AnMBR 1 was mostly carried out biologically. However, the physical removal on the membrane surface compensated for the decreased biological removal rate in AnMBR 2. The membrane in AnMBR systems is likely not only to retain all biomass in the reactor, but also complement decreased biological removal efficiency at low temperature by rejecting soluble organics. Specific methanogenic activity (SMA) test was used to investigate the methanogenic activity profiles of suspended and attached sludge in AnMBRs treating synthetic municipal wastewater at 25 and 15 degrees C. The methanogenic activity was 51.8 ml CH(4)/g VSSd on day 1 and eventually increased 27% and reached 65.7 ml CH(4)/g VSSd on day 75 for AnMBR 1. However, the methanogenic activity of AnMBR 2 sludge was lower than that of AnMBR 1. The microbial activity of suspended sludge continuously increased, while that of attached sludge gradually decreased in this study. The methanogenic activity of attached sludge was far lower than that of suspended sludge. The role of attached sludge on the membrane in AnMBRs as a biofilm for biological organic removal was minimal compared to suspended sludge. PMID:20022745

  19. Treatment process and toxicities assessment of wastewater issued from anaerobic digestion of household wastes.

    PubMed

    Djelal, Hayet; Tahrani, Leyla; Fathallah, Salem; Cabrol, Audrey; Mansour, Hedi Ben

    2014-02-01

    Modern society grapples with large amounts of household waste. The anaerobic digestion of this waste offers a promising source for energy-rich biogas production but generates high toxic effluents that require treatment before reuse or disposal into the environment. This study aimed to investigate three techniques, namely coagulation/flocculation, electro-coagulation, and activated sludge, in terms of efficiency in the treatment of these effluents. It also aimed to assess their toxicity effects on the germination and growth of durum wheat Triticum aestivum L. seeds before and after 6 days of treatment. Activated sludge was most efficient in reducing chemical oxygen demand, turbidity, and conductivity (95.7 %, 15.8 %, and 37.5 %, respectively). The effluent treated with this technique induced a marked delay in germination (low mean time of germination) and a significant reduction in the percentages of seed germination and root and leaf growths. It was also noted to strongly induce lipid peroxidation in roots and leaves, which presumably explained the germination/growth inhibition of the wheat seeds. The effluent also induced marked lipid peroxidation effects and strongly inhibited the activities of butyrylcholinesterase in mice bone marrows. The effluent shows a high ability to inhibit the growth of three microalgae; these endpoints are useful tools to biomonitor the physico-chemical quality of this wastewater. Overall, while no significant alterations were observed in terms of animal and vegetable toxicities when the effluent was treated by coagulation/flocculation, activated sludge treatment proved efficient in reducing the toxicities induced by the untreated effluents. The results indicate that the application of this technique is promising with regards to attaining efficient, eco-friendly, and cost-effective strategies for the management and treatment of household waste. PMID:24072641

  20. Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition.

    PubMed

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Li, Kun

    2015-09-01

    A laboratory-scale external circulation anaerobic reactor (ECAR) was developed to treat actual coal gasification wastewater. The external circulation ratio (R) was selected as the main operating variable for analysis. From the results, with the hydraulic retention time of 50h, pH > 8.0 and R of 3, the COD, total phenols, volatile phenol and NH4(+)-N removal efficiencies were remarkably increased to 10 ± 2%, 22 ± 5%, 18 ± 1%, and -1 ± 2%, respectively. Besides, increasing R resulted in more transformation from bound extracellular polymeric substances (EPS) to free EPS in the liquid and the particle size distribution of anaerobic granular sludge accumulated in the middle size range of 1.0-2.5mm. Results showed the genus Saccharofermentans dominanted in the ECAR and the bacterial community shift was observed at different external circulation ratio, influencing the pollutants removal profoundly. PMID:26081627

  1. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater.

    PubMed

    Zhu, Liang; Jin, Jie; Lin, Haizhuan; Gao, Kaituo; Xu, Xiangyang

    2015-03-21

    The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200-7700 g m(-3) d(-1) and 6.0-70.0 g m(-3) d(-1), and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI-AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H2/CH4 production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion. PMID:25497029

  2. Start-up of a combined anaerobic/partial nitritation/anammox process for high-salt mustard wastewater treatment.

    PubMed

    Chen, You-Peng; Ma, Teng-Fei; Hu, Xiao; Fang, Fang; Shen, Yu; Yang, Ji-Xiang; Guo, Jin-Song; Bao, Zhen-Guo; Yan, Peng

    2015-01-01

    To treat high salinity wastewater from the mustard pickling industry, a combined anaerobic, partial nitritation (PN), and anammox process was employed using three connected reactors: an anaerobic sequencing batch biofilm reactor (ASBBR) for anaerobic treatment, a sequencing batch reactor (SBR) for PN, and an upflow anaerobic sludge blanket (UASB) for anammox. The start-up of the three individual reactors was investigated. Results showed that each reactor started up successfully, notwithstanding the stepwise increase of influent salinity to about 16.1 g NaCl/L. In the ASBBR, 89.7 % of chemical oxygen demand in the influent was removed and organic nitrogen was converted to ammonium (NH4 (+)-N). The SBR performed well with NO3 (-)-N concentration of 4.9 mg/L and ratio of NO2 (-)-N to NH4 (+)-N at the range of 1.0 to 1.3 in the effluent, which favored the anammox process. After the start-up of the UASB, the anammox process also showed stability and efficiency with a high total nitrogen removal efficiency of 86.2 % under high salinity of 12.0 g NaCl/L and nitrogen loading rate of 258 mg/(L · day). PMID:25240848

  3. The effect of enzymatic pre-hydrolysis of dairy wastewater on the granular and immobilized microbial community in anaerobic bioreactors.

    PubMed

    Cammarota, Magali C; Rosa, Daniela R; Duarte, Iolanda C S; Saavedra, Nora K; Varesche, Maria B A; Zaiat, Marcelo; Freire, Denise M G

    2013-01-01

    The effect of a lipase-rich enzyme preparation produced by the fungus Penicillium sp. on solid-state fermentation was evaluated in two anaerobic bioreactors (up-flow anaerobic sludge blanket (UASB) and horizontal-flow anaerobic immobilized biomass (HAIB)) treating dairy wastewater with 1200 mg oil and grease/L. The oil and grease hydrolysis step was carried out with 0.1% (w/v) of the solid enzymatic preparation at 30 degrees C for 24 h. This resulted in a final concentration of free acids eight times higher than the initial value. The bioreactors operated at 30 degrees C with hydraulic retention times of 12 h (HAIB) and 20 h (UASB) for a period of 430 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. There was, however, an increase in the effluent oil and grease concentration (from values as low as 17 mg/L to values above 150 mg/L in the UASB bioreactor, and from 38-242 mg/L in the HAIB bioreactor), and oil and grease accumulation in the biomass throughout the operational period (the oil and grease content reached 1.7 times that found in the inoculum of the UASB bioreactor). The HAIB bioreactor gave better results because the support for biomass immobilization acted as a filter, retaining oil and grease at the entry of the bioreactor. The molecular analysis of the Bacteria and Archaea domains revealed significant differences in the microbial profiles in experiments conducted with and without the pre-hydrolysis step. The differences observed in the overall parameters could be related to the microbial diversity of the anaerobic sludge. PMID:23530355

  4. Anaerobic degradation of purified terephthalic acid wastewater using a novel, rapid mass-transfer circulating fluidized bed.

    PubMed

    Feng, Yangyang; Lu, Beibei; Jiang, Yu; Chen, Yinwen; Shen, Shubao

    2012-01-01

    The anaerobic treatability of purified terephthalic acid (PTA) wastewater in a novel, rapid mass-transfer fluidized bed reactor using brick particles as porous carrier materials was investigated. The reactor operation was stable after a short 34 day start-up period, with chemical oxygen demand (COD) removal efficiency between 65 and 75%, terephthalate (TA) removal efficiency between 60% and 70%, and system organic loading rate (OLR) increasing from 7.37 to 18.52 kg COD/m(3) d. The results demonstrate that the reactor is very efficient, and requires a low hydraulic retention time (HRT) of 8 h to remove both TA and COD from the high-concentration PTA wastewater. The system also has high resistance capacity to varied OLR. PMID:22592469

  5. Bio-desulfurization and denitrification by anaerobic-anoxic process for the treatment of wastewater from flue gas washing.

    PubMed

    Song, Ziyu; Zhou, Xuemei; Li, Yuguang; Yang, Maohua; Xing, Jianmin

    2013-01-01

    For amine-based carbon dioxide capture, nitrogen oxides and sulfur oxides were the main pollutants that had a negative effect on the regeneration of solvent. Before carbon dioxide capture, the sulfur oxides in flue gas should be removed by the method of calcium salt, and then washed by alkaline solution to eliminate the residual nitrogen oxides and sulfur oxides. The washing wastewater containing sulfate and nitrate needs to be treated. In this study, a novel anaerobic-anoxic process was built up for the treatment of this washing wastewater. Nitrate was reduced to nitrogen by denitrifying bacteria. Sulfate was firstly reduced to sulfide by sulfate reducing bacteria, and then selectively oxidized to element sulfur by sulfide oxidizing bacteria. The treated liquid could be reused as absorption after the adjustment of pH value. The performances of this bioprocess were investigated under various pH values and S/N ratios. It was found that the optimal pH value of influent was 6.0, the percentages of denitrification and sulfate reducing could reach 90 and 89%, respectively. Seventy-six percent of sulfate was transformed into element sulfur. Nitrate significantly had a negative effect on sulfate reduction above 10 mM. As 20 mM nitrate, the sulfate reducing percentage would drop to 67%. These results showed that the anaerobic-anoxic process was feasible for the treatment of flue gas washing wastewater. It would be prospectively applied to other wastewater with the higher ratio of SO4(2-)/NO3(-). PMID:23656948

  6. Thermophilic treatment of acidified and partially acidified wastewater using an anaerobic submerged MBR: Factors affecting long-term operational flux.

    PubMed

    Jeison, D; van Lier, J B

    2007-09-01

    The long-term operation of two thermophilic anaerobic submerged membrane bioreactors (AnSMBRs) was studied using acidified and partially acidified synthetic wastewaters. In both reactors, cake formation was identified as the key factor governing critical flux. Even though cake formation was observed to be mostly reversible, particle deposition proceeds fast once the critical flux is exceeded. Very little irreversible fouling was observed during long-term operation, irrespective of the substrate. Critical flux values at the end of the reactors operation were 7 and 3L/m(2)h for the AnSMBRs fed with acidified and partially acidified wastewaters, respectively, at a gas superficial velocity of 70m/h. Small particle size was identified as the responsible parameter for the low observed critical flux values. The degree of wastewater acidification significantly affected the physical properties of the sludge, determining the attainable flux. Based on the fluxes observed in this research, the membrane costs would be in the range of 0.5euro/m(3) of treated wastewater. Gas sparging was ineffective in increasing the critical flux values. However, preliminary tests showed that cross-flow operation may be a feasible alternative to reduce particle deposition. PMID:17644148

  7. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater.

    PubMed

    Yu, Dawei; Liu, Jibao; Sui, Qianwen; Wei, Yuansong

    2016-03-01

    Control of organic loading rate (OLR) is essential for anaerobic digestion treating high COD wastewater, which would cause operation failure by overload or less efficiency by underload. A novel biogas-pH automation control strategy using the combined gas-liquor phase monitoring was developed for an anaerobic membrane bioreactor (AnMBR) treating high COD (27.53 g·L(-1)) starch wastewater. The biogas-pH strategy was proceeded with threshold between biogas production rate >98 Nml·h(-1) preventing overload and pH>7.4 preventing underload, which were determined by methane production kinetics and pH titration of methanogenesis slurry, respectively. The OLR and the effluent COD were doubled as 11.81 kgCOD·kgVSS(-1)·d(-1) and halved as 253.4 mg·L(-1), respectively, comparing with a constant OLR control strategy. Meanwhile COD removal rate, biogas yield and methane concentration were synchronously improved to 99.1%, 312 Nml·gCODin(-1) and 74%, respectively. Using the biogas-pH strategy, AnMBR formed a "pH self-regulation ternary buffer system" which seizes carbon dioxide and hence provides sufficient buffering capacity. PMID:26722804

  8. Treating wastewater with high oil and grease content using an Anaerobic Membrane Bioreactor (AnMBR). Filtration and cleaning assays.

    PubMed

    Diez, V; Ramos, C; Cabezas, J L

    2012-01-01

    An Anaerobic Membrane Bioreactor (AnMBR) pilot plant was studied to improve certain operational conditions of AnMBRs that treat high oil and grease wastewaters discharged from a snacks factory. A comparison of its performance and behavior was made with an upflow anaerobic reactor throughout the first eight weeks of its operation. Raw snack food wastewater was characterized by oil and grease concentrations of up to 6,000 mg/l, with chemical oxygen demand (COD) and biological oxygen demand (BOD(5)) concentrations of up to 22,000 and 10,300 mg/l, respectively. The AnMBR achieved COD removal efficiencies of 97% at an organic loading rate (OLR) of 5.1 kg COD/m(3) d. The filtration flux, and the suction, backwash and relaxation times for each cycle were all varied: an 11 min filtration time involving 10 s pre-relaxation, 20 s backwash and 70 s post-relaxation was finally selected. The filtration flux for long-term operation was between 6.5 and 8.0 l/m(2) h. The study also tested physical cleaning strategies such as intensive backwashing cycles and extended relaxation mode, and different chemical cleaning methods, such as chemically enhanced backwash on air and chemical cleaning by immersion. PMID:22546801

  9. Anaerobic digestion of microalgal bacterial flocs from a raceway pond treating aquaculture wastewater: need for a biorefinery.

    PubMed

    Van Den Hende, Sofie; Laurent, Cedric; Bégué, Marine

    2015-11-01

    An outdoor raceway pond with microalgal bacterial flocs (MaB-flocs) is a novel sunlight-based system to treat pikeperch aquaculture wastewater while producing biomass. The harvested MaB-floc biomass (33tonTSha(-1)y(-1)) needs further valorization. Therefore, the biochemical methane yield (BMY) of MaB-floc biomass was determined in batch experiments. The results show significant differences between the BMY of MaB-flocs amongst their harvest dates (128-226NLCH4kg(-1)VS), a low anaerobic digestion conversion efficiency (25.0-36.2%), a moderate chlorophyll a removal (51.5-86.9%) and a low biogas profit (<0.01€m(-3)wastewater). None of the pretreatment methods screened (freezing, thermal, microwave, ultrasonic and chlorination, flue gas sparging, and acid) can be recommended due to a low BMY improvement and/or unfavorable energy balance. Therefore, anaerobic digestion of this MaB-floc biomass should only be granted a supporting role within a biorefinery concept. PMID:26241837

  10. Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains.

    PubMed

    Kumar, Gopalakrishnan; Bakonyi, Péter; Sivagurunathan, Periyasamy; Kim, Sang-Hyoun; Nemestóthy, Nándor; Bélafi-Bakó, Katalin; Lin, Chiu-Yue

    2015-08-01

    In this work biohydrogen generation and its improvement possibilities from beverage industrial wastewater were sought. Firstly, mesophilic hydrogen fermentations were conducted in batch vials by applying heat-treated (80°C, 30 min) sludge and liquid (LB-grown) cultures of Escherichia coli XL1-Blue/Enterobacter cloacae DSM 16657 strains for bioaugmentation purposes. The results showed that there was a remarkable increase in hydrogen production capacities when facultative anaerobes were added in the form of inoculum. Furthermore, experiments were carried out in order to reveal whether the increment occurred either due to the efficient contribution of the facultative anaerobic microorganisms or the culture ingredients (in particular yeast extract and tryptone) supplied when the bacterial suspensions (LB media-based inocula) were mixed with the sludge. The outcome of these tests was that both the applied nitrogen sources and the bacteria (E. coli) could individually enhance hydrogen formation. Nevertheless, the highest increase took place when they were used together. Finally, the optimal initial wastewater concentration was determined as 5 g/L. PMID:25661265

  11. Start-up of an anaerobic hybrid (UASB/filter) reactor treating wastewater from a coffee processing plant.

    PubMed

    Bello-Mendoza, R; Castillo-Rivera, M F

    1998-10-01

    The ability of an anaerobic hybrid reactor, treating coffee wastewater, to achieve a quick start-up was tested at pilot scale. The unacclimatized seed sludge used showed a low specific methanogenic activity of 26.47 g CH4 as chemical oxygen demand (COD)/kg volatile suspended solids (VSS) x day. This strongly limited the reactor performance. After a few days of operation, a COD removal of 77.2% was obtained at an organic loading rate (OLR) of 1.89 kg COD/m3 x day and a hydraulic retention time (HRT) of 22 h. However, suddenly increasing OLR above 2.4 kg COD/m3 x day resulted in a deterioration in treatment efficiency. The reactor recovered from shock loads after shutdowns of 1 week. The hybrid design of the anaerobic reactor prevented the biomass from washing-out but gas clogging in the packing material was also observed. Wide variations in wastewater strength and flow rates prevented stable reactor operation in the short period of the study. PMID:16887646

  12. Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge

    SciTech Connect

    Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G.

    2013-01-14

    The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

  13. High rate biological nutrient removal from high strength wastewater using anaerobic-circulating fluidized bed bioreactor (A-CFBBR).

    PubMed

    Andalib, Mehran; Nakhla, George; Zhu, Jesse

    2012-08-01

    Biological nutrient removal (BNR) from high strength wastewater was investigated using a newly developed integrated anaerobic fluidized bed (AF) with circulating fluidized bed bioreactor henceforth called A-CFBBR. The A-CFBBR showed 99.7%COD removal, 84% nitrogen removal, with a very low sludge yield of 0.017 g VSS/g COD while treating a synthetic wastewater containing 10,700 mg COD/L and 250 mg NH(3)-N/L over a period of 6 months. The system was operated at an organic loading rate (OLR) of 35 kg COD/m(3)(AF) d and nitrogen loading rate (NLR) of 1.1 kg N/m(3)(CFBBR) d at a hydraulic retention time (HRT) of less than 12 h in the A-CFBBR. Microbial communities analysis using DGGE confirmed the presence of both AOBs and NOBs in the riser and downer. Pseudomonas putida and Pseudomonas fluorescence were the dominant denitrifiers present in the downer. Methanogenic activity was accomplished by a microbial mixture of archaea and bacteria in the anaerobic column. PMID:22717573

  14. Using mushroom farm and anaerobic digestion wastewaters as supplemental fertilizer sources for growing container nursery stock in a closed system.

    PubMed

    Chong, C; Purvis, P; Lumis, G; Holbein, B E; Voroney, R P; Zhou, H; Liu, H-W; Alam, M Z

    2008-04-01

    Wastewaters from farm and composting operations are often rich in select nutrients that potentially can be reutilized in crop production. Liners of silverleaf dogwood (Cornus alba L. 'Argenteo-marginata'), common ninebark [Physocarpus opulifolius (L.) Maxim.], and Anthony Waterer spirea (Spiraeaxbumalda Burvénich 'Anthony Waterer') were grown in 6L containers filled with a bark-based commercial mix. Plants were fertigated daily via a computer-controlled multi-fertilizer injector with three recirculated fertilizer treatments: (1) a stock (control) solution with complete macro- and micro-nutrients, electrical conductivity (EC) 2.2 dS m(-1); (2) wastewater from a mushroom farm; and (3) process wastewater from anaerobic digestion of municipal solid waste. The wastewaters used in both treatments 2 and 3 were diluted with tap water, and the computer was programmed to amend, dispense and recirculate nutrients based on the same target EC as in treatment 1. For comparison, there was a traditional controlled-release fertilizer treatment [Nutryon 17-5-12 (17N-2P-10K) plus micro-nutrients topdressed at a rate of 39 g/plant, nutrients not recirculated]. All three species responded similarly to the three recirculated fertilizer treatments. Growth with the recirculated treatments was similar and significantly higher than that obtained with controlled-release fertilizer. Throughout the study, the EC measured in wastewater-derived nutrient solutions, and also in the container substrate, were similar or close to those of the control treatment, although there were small to large differences among individual major nutrients. There was no sign of nutrient deficiency or toxicity symptoms to the plants. Small to moderate excesses in concentrations of SO(4), Na, and/or Cl were physiologically tolerable to the species. PMID:17481890

  15. Fate of estrogen conjugate 17α-estradiol-3-sulfate in dairy wastewater: comparison of aerobic and anaerobic degradation and metabolite formation.

    PubMed

    Zheng, Wei; Zou, Yonghong; Li, Xiaolin; Machesky, Michael L

    2013-08-15

    Irrigation with concentrated animal feeding operation (CAFO) wastewater on croplands has been identified as a major source discharging steroid hormones into the environment. To assess the potential risks on this irrigation practice, the degradation kinetics and mechanisms of 17α-estradiol-3-sulfate were systematically investigated in aqueous solutions blended with dairy wastewater. Dissipation of the conjugated estrogen was dominated by biodegradation under both aerobic and anaerobic conditions. The half-lives for the biodegradation of 17α-estradiol-3-sulfate under aerobic and anaerobic conditions from 15 to 45°C varied from 1.70 to 415 d and 22.5 to 724 d, respectively. Under the same incubation conditions, anaerobic degradation rates of 17α-estradiol-3-sulfate were significantly less than aerobic degradation rates, suggesting that this hormone contaminant may accumulate in anaerobic or anoxic environments. Three degradation products were characterized under both aerobic and anaerobic conditions at 25°C, with estrone-3-sulfate and 17α-estradiol identified as primary metabolites and estrone identified as a secondary metabolite. However, the major degradation mechanisms under aerobic and anaerobic conditions were distinctly different. For aerobic degradation, oxidation at position C17 of the 17α-estradiol-3-sulfate ring was a major degradation mechanism. In contrast, deconjugation of the 17α-estradiol-3-sulfate thio-ester bond at position C3 was a major process initiating degradation under anaerobic conditions. PMID:23708453

  16. Evaluation of system performance and microbial communities of a bioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater.

    PubMed

    Ng, Kok Kwang; Shi, Xueqing; Ng, How Yong

    2015-09-15

    In this study, a control anaerobic membrane bioreactor (C-AnMBR) and a bioaugmented anaerobic membrane bioreactor (B-AnMBR) were operated for 210 d to treat pharmaceutical wastewater. Both the bioreactors were fed with the pharmaceutical wastewater containing TCOD of 16,249 ± 714 mg/L and total dissolved solids (TDS) of 29,450 ± 2209 mg/L with an organic loading rate (OLR) of 13.0 ± 0.6 kgCOD/m(3)d. Under steady-state condition, an average total chemical oxygen demand (TCOD) removal efficiency of 46.1 ± 2.9% and 60.3 ± 2.8% was achieved by the C-AnMBR and the B-AnMBR, respectively. The conventional anaerobes in the C-AnMBR cannot tolerate the hypersaline conditions well, resulting in lower TCOD removal efficiency, biogas production and methane yield than the B-AnMBR seeded from the coastal shore. Pyrosequencing analysis indicated that marine bacterial species (Oliephilus sp.) and halophilic bacterial species (Thermohalobacter sp.) were only present in the B-AnMBR; these species could possibly degrade complex and recalcitrant organic matter and withstand hypersaline environments. Two different dominant archaeal communities, genus Methanosaeta (43.4%) and Methanolobus (61.7%), were identified as the dominant methanogens in the C-AnMBR and the B-AnMBR, respectively. The species of genus Methanolobus was reported resistant to penicillin and required sodium and magnesium for growth, which could enable it to thrive in the hypersaline environment. PMID:26086149

  17. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    PubMed

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor. PMID:25267355

  18. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters

    SciTech Connect

    Kato, M.T.; Field, J.A.; Versteeg, P.; Lettinga, G. . Dept. of Environmental Technology)

    1994-08-05

    The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30 C. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to 12 g COD/L [center dot] d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGSB reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V[sub up]) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K[sub s] value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V[sub up] lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A more important restriction of the EGSB reactor was the sludge washout occurring at V[sub up] higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L [center dot] d due to buoyancy forces from the gas production.

  19. Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2013-12-01

    The objective of this study was to assess the environmental impact of a submerged anaerobic MBR (SAnMBR) system in the treatment of urban wastewater at different temperatures: ambient temperature (20 and 33°C), and a controlled temperature (33°C). To this end, an overall energy balance (OEB) and life cycle assessment (LCA), both based on real process data, were carried out. Four factors were considered in this study: (1) energy consumption during wastewater treatment; (2) energy recovered from biogas capture; (3) potential recovery of nutrients from the final effluent; and (4) sludge disposal. The OEB and LCA showed SAnMBR to be a promising technology for treating urban wastewater at ambient temperature (OEB=0.19 kW h m(-3)). LCA results reinforce the importance of maximising the recovery of nutrients (environmental impact in eutrophication can be reduced up to 45%) and dissolved methane (positive environmental impact can be obtained) from SAnMBR effluent. PMID:24119499

  20. Metagenomic Reconstruction of Key Anaerobic Digestion Pathways in Municipal Sludge and Industrial Wastewater Biogas-Producing Systems.

    PubMed

    Cai, Mingwei; Wilkins, David; Chen, Jiapeng; Ng, Siu-Kin; Lu, Hongyuan; Jia, Yangyang; Lee, Patrick K H

    2016-01-01

    Anaerobic digestion (AD) is a microbial process widely used to treat organic wastes. While the microbes involved in digestion of municipal sludge are increasingly well characterized, the taxonomic and functional compositions of AD digesters treating industrial wastewater have been understudied. This study examined metagenomes from a biogas-producing digester treating municipal sludge in Shek Wu Hui (SWH), Hong Kong and an industrial wastewater digester in Guangzhou (GZ), China, and compared their taxonomic composition and reconstructed biochemical pathways. Genes encoding carbohydrate metabolism and protein metabolism functions were overrepresented in GZ, while genes encoding functions related to fatty acids, lipids and isoprenoids were overrepresented in SWH, reflecting the plants' feedstocks. Mapping of genera to functions in each community indicated that both digesters had a high level of functional redundancy, and a more even distribution of genera in GZ suggested that it was more functionally stable. While fermentation in both samples was dominated by Clostridia, SWH had an overrepresentation of Proteobacteria, including syntrophic acetogens, reflecting its more complex substrate. Considering the growing importance of biogas as an alternative fuel source, a detailed mechanistic understanding of AD is important and this report will be a basis for further study of industrial wastewater AD. PMID:27252693

  1. Metagenomic Reconstruction of Key Anaerobic Digestion Pathways in Municipal Sludge and Industrial Wastewater Biogas-Producing Systems

    PubMed Central

    Cai, Mingwei; Wilkins, David; Chen, Jiapeng; Ng, Siu-Kin; Lu, Hongyuan; Jia, Yangyang; Lee, Patrick K. H.

    2016-01-01

    Anaerobic digestion (AD) is a microbial process widely used to treat organic wastes. While the microbes involved in digestion of municipal sludge are increasingly well characterized, the taxonomic and functional compositions of AD digesters treating industrial wastewater have been understudied. This study examined metagenomes from a biogas-producing digester treating municipal sludge in Shek Wu Hui (SWH), Hong Kong and an industrial wastewater digester in Guangzhou (GZ), China, and compared their taxonomic composition and reconstructed biochemical pathways. Genes encoding carbohydrate metabolism and protein metabolism functions were overrepresented in GZ, while genes encoding functions related to fatty acids, lipids and isoprenoids were overrepresented in SWH, reflecting the plants’ feedstocks. Mapping of genera to functions in each community indicated that both digesters had a high level of functional redundancy, and a more even distribution of genera in GZ suggested that it was more functionally stable. While fermentation in both samples was dominated by Clostridia, SWH had an overrepresentation of Proteobacteria, including syntrophic acetogens, reflecting its more complex substrate. Considering the growing importance of biogas as an alternative fuel source, a detailed mechanistic understanding of AD is important and this report will be a basis for further study of industrial wastewater AD. PMID:27252693

  2. ELECTRICITY GENERATION FROM ANAEROBIC WASTEWATER TREATMENT IN MICROBIAL FUEL CELLS (MFCS) - PHASE I

    EPA Science Inventory

    Municipal wastewater treatment plants represent a huge energy ‘sink’ in the United States. Estimates are that these plants consume up to 3 percent of the total amount of power consumed annually. Ironically, the wastewater is concentrated with materials (carbohydrates) which ...

  3. Anaerobic microbial fuel cell treating combined industrial wastewater: Correlation of electricity generation with pollutants.

    PubMed

    Abbasi, Umara; Jin, Wang; Pervez, Arshid; Bhatti, Zulfiqar Ahmad; Tariq, Madiha; Shaheen, Shahida; Iqbal, Akhtar; Mahmood, Qaisar

    2016-01-01

    Microbial fuel cell (MFC) is a new technology that not only generates energy but treats wastewater as well. A dual chamber MFC was operated under laboratory conditions. Wastewater samples from vegetable oil industries, metal works, glass and marble industries, chemical industries and combined industrial effluents were collected and each was treated for 98h in MFC. The treatment efficiency for COD in MFC was in range of 85-90% at hydraulic retention time (HRT) of 96h and had significant impact on wastewater treatment as well. The maximum voltage of 890mV was generated when vegetable oil industries discharge was treated with columbic efficiency of 5184.7C. The minimum voltage was produced by Glass House wastewater which was 520mV. There was positive significant co-relation between COD concentration and generated voltage. Further research should be focused on the organic contents of wastewater and various ionic species affecting voltage generation in MFC. PMID:26476157

  4. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process. PMID:25689817

  5. Comparison of semi-batch vs. continuously fed anaerobic bioreactors for the treatment of a high-strength, solids-rich pumpkin-processing wastewater.

    PubMed

    del Agua, Isabel; Usack, Joseph G; Angenent, Largus T

    2015-01-01

    The objective of this work was to compare two different high-rate anaerobic bioreactor configurations--the anaerobic sequencing batch reactor (ASBR) and the upflow anaerobic solid removal (UASR) reactor--for the treatment of a solid-rich organic wastewater with a high strength. The two, 4.5-L reactors were operated in parallel for close to 100 days under mesophilic conditions (37°C) with non-granular biomass by feeding a pumpkin wastewater with ∼4% solids. The organic loading rate of pumpkin wastewater was increased periodically to a maximum of 8 g COD L(-1) d(-1) by shortening the hydraulic retention time to 5.3 days. Compositional analysis of pumpkin wastewater revealed deficiencies in the trace metal cobalt and alkalinity. With supplementation, the ASBR outperformed the UASR reactor with total chemical oxygen demand (COD) removal efficiencies of 64% and 53%, respectively, achieving a methane yield of 0.27 and 0.20 L CH4 g(-1) COD fed to the ASBR and UASR, respectively. The better performance realized with the ASBR and this specific wastewater was attributed to its semi-batch, dynamic operating conditions rather than the continuous operating conditions of the UASR reactor. PMID:25683478

  6. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. PMID:25898079

  7. Anaerobic digestion of ice-cream wastewater: A comparison of single and two-phase reactor systems

    SciTech Connect

    Borja, R.; Banks, C.J.

    1995-03-01

    The anaerobic digestion of ice-cream wastewater, a complex substrate which includes milk proteins, carbohydrates, and lipids, has received little attention. Work using an aerobic contact system showed that at a 7.5-d hydraulic retention time (HRT), with an organic loading rate of 1.7 g COD/Ld and influent TSS (total suspended solids) of 5870 mg/L, the effluent COD was 628 mg/L, BOD was 91 mg/L and TSS was 674. Anaerobic filters have also been used at organic loadings of 6 kg COD/m{sup 3}d applied at a HRT of 0.42 day, with COD removals of 80%. Goodwing showed that this waste was capable of being treated by the UASB process with granulation commencing after 60-70 days, and gas production ranging between 0.73 and 0.93 L CH{sub 4}/g COD removed with loading rates between 0.7 and 3.0 g TOC/Ld. Two-phase anaerobic digestion is an innovative fermentation mode that has recently received increased attention. The kinetically dissimilar fermentation phases, hydrolysis-acidification and acetogenesis-methanation are operated in two separate reactors; the first of which is maintained at a very short HRT. The effluent from the first, acid-forming, phase is used as the substrate for the methane-phase reactor which has a longer HRT or cell immobilization. The aim of this work was to compare the methane production capability and performance of a single-phase upflow fixed bed reactor with a two-phase digestion system. The two-phase digestion system consists of a completely mixed reactor for the acidogenic reaction and an upflow fixed bed reactor for the methanogenic reaction. Because of the high lipid content and COD of ice cream wastewater off site disposal has proved to be both expensive and poses problems to the receiving effluent treatment plant. For this reason the potential for a rapid anaerobic stabilization of the waste, with energy recovery in the form of methane gas, has been investigated in an attempt to minimize plant size and maximize gas production. 9 refs., 2 tabs.

  8. Ecological significance of Synergistetes in the biological treatment of tuna cooking wastewater by an anaerobic sequencing batch reactor.

    PubMed

    Militon, Cécile; Hamdi, Olfa; Michotey, Valerie; Fardeau, Marie-Laure; Ollivier, Bernard; Bouallagui, Hassib; Hamdi, Moktar; Bonin, Patricia

    2015-11-01

    Lab-scale 2L-anaerobic sequencing batch reactor was operated under mesothermic conditions. The degradation of protein-rich organic matter was determined by chemical oxygen demand, biogas production, and protein-removal activity over the operation. The structure of the microbial community was determined by qPCR and next-generation sequencing on 16S rRNA genes. At the steady state, a very efficient removal of protein (92%) was observed. Our results demonstrate a decrease of archaeal and bacterial abundance over time. Members of the phylum Synergistetes, with a peculiar emphasis for those pertaining to families Dethiosulfovibrionaceae and Aminiphilaceae, are of major ecological significance regarding the treatment of this industrial wastewater. The prominent role to be played by members of the phylum Synergistetes regarding protein and/or amino acid degradation is discussed. PMID:26194235

  9. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    PubMed

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes. PMID:26255104

  10. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment.

    PubMed

    Shrestha, Pravin Malla; Malvankar, Nikhil S; Werner, Jeffrey J; Franks, Ashley E; Elena-Rotaru, Amelia; Shrestha, Minita; Liu, Fanghua; Nevin, Kelly P; Angenent, Largus T; Lovley, Derek R

    2014-12-01

    Prior investigation of an upflow anaerobic sludge blanket (UASB) reactor treating brewery wastes suggested that direct interspecies electron transfer (DIET) significantly contributed to interspecies electron transfer to methanogens. To investigate DIET in granules further, the electrical conductivity and bacterial community composition of granules in fourteen samples from four different UASB reactors treating brewery wastes were investigated. All of the UASB granules were electrically conductive whereas control granules from ANAMMOX (ANaerobic AMMonium OXidation) reactors and microbial granules from an aerobic bioreactor designed for phosphate removal were not. There was a moderate correlation (r=0.67) between the abundance of Geobacter species in the UASB granules and granule conductivity, suggesting that Geobacter contributed to granule conductivity. These results, coupled with previous studies, which have demonstrated that Geobacter species can donate electrons to methanogens that are typically predominant in anaerobic digesters, suggest that DIET may be a widespread phenomenon in UASB reactors treating brewery wastes. PMID:25443621

  11. Biofouling and pollutant removal during long-term operation of an anaerobic membrane bioreactor treating municipal wastewater.

    PubMed

    Herrera-Robledo, M; Morgan-Sagastume, J M; Noyola, A

    2010-01-01

    Two different sludge retention times (SRTs) were tested in order to assess the impact on membrane fouling and effluent quality in an anaerobic membrane bioreactor (AnMBR). Two up-flow anaerobic sludge bed (UASB) reactors (1 l volume) coupled to external tubular ultrafiltration membranes (filtration area = 81 cm(2)) were operated at a hydraulic retention time of 3 h and two different SRTs (100 and 60 days). The transmembrane pressure (TMP), flux (J) and relevant parameters to assess water quality were measured. Effluents from UASB reactors were filtered for 500 h without intermediate cleaning. The permeate met Mexican standards for wastewater reclamation in both tested conditions. Abrupt and periodical changes in the TMP and J were noticed during the experimental period. A fouling layer collapse and compression hypothesis was set forth in order to explain these changes. An autopsy performed on biofouled membranes indicated that deposited mass was mainly composed of volatile solids (85%) and the rest related to mineral matter, with the presence of inorganic salts containing Ca, Mg, Fe, P and Si. Biomass in the fouling layer was estimated at 0.27% based on the DNA/biomass ratio for the bacterial biofilm. No clear difference in membrane fouling was detected under the two SRTs applied to the systems. However, when operated over 500 h, repetitive sudden TMP and flux changes occurred later in system A (SRT of 100 days) than in system B (SRT of 60 days) suggesting a stronger fouling layer structure in the former. PMID:20390553

  12. Modified septic tank-anaerobic filter unit as a two-stage onsite domestic wastewater treatment system.

    PubMed

    Sharma, Meena Kumari; Khursheed, Anwar; Kazmi, Absar Ahmad

    2014-01-01

    This study demonstrates the performance evaluation of a uniquely designed two-stage system for onsite treatment of domestic wastewater. The system consisted of two upflow anaerobic bioreactors, a modified septic tank followed by an upflow anaerobic filter, accommodated within a single cylindrical unit. The system was started up without inoculation at 24 h hydraulic retention time (HRT). It achieved a steady-state condition after 120 days. The system was observed to be remarkably efficient in removing pollutants during steady-state condition with the average removal efficiency of 88.6 +/- 3.7% for chemical oxygen demand, 86.3 +/- 4.9% for biochemical oxygen demand and 91.2 +/- 9.7% for total suspended solids. The microbial analysis revealed a high reduction (>90%) capacity of the system for indicator organism and pathogens. It also showed a very good endurance against imposed hydraulic shock load. Tracer study showed that the flow pattern was close to plug flow reactor. Mean HRT was also found to be close to the designed value. PMID:25145171

  13. Removal of Total Coliforms, Thermotolerant Coliforms, and Helminth Eggs in Swine Production Wastewater Treated in Anaerobic and Aerobic Reactors

    PubMed Central

    Zacarias Sylvestre, Silvia Helena; Lux Hoppe, Estevam Guilherme; de Oliveira, Roberto Alves

    2014-01-01

    The present work evaluated the performance of two treatment systems in reducing indicators of biological contamination in swine production wastewater. System I consisted of two upflow anaerobic sludge blanket (UASB) reactors, with 510 and 209 L in volume, being serially arranged. System II consisted of a UASB reactor, anaerobic filter, trickling filter, and decanter, being also organized in series, with volumes of 300, 190, 250, and 150 L, respectively. Hydraulic retention times (HRT) applied in the first UASB reactors were 40, 30, 20, and 11 h in systems I and II. The average removal efficiencies of total and thermotolerant coliforms in system I were 92.92% to 99.50% and 94.29% to 99.56%, respectively, and increased in system II to 99.45% to 99.91% and 99.52% to 99.93%, respectively. Average removal rates of helminth eggs in system I were 96.44% to 99.11%, reaching 100% as in system II. In reactor sludge, the counts of total and thermotolerant coliforms ranged between 105 and 109 MPN (100 mL)−1, while helminth eggs ranged from 0.86 to 9.27 eggs g−1 TS. PMID:24812560

  14. Application and kinetic evaluation of upflow anaerobic biofilm reactor for nitrogen removal from wastewater by Anammox process

    PubMed Central

    2013-01-01

    The lab-scale upflow anaerobic biofilm reactor was successfully operated for the treatment of synthetic wastewater with high nitrogen load by Anammox (anaerobic ammonium oxidation) process. During the entire period of operation, the reactor temperature was kept at 35±1°C. The operational strategy consisted of both increasing the ammonium and nitrite concentrations from 60 to 700mgN/L and from 80 to 920 mgN/L, respectively and decreasing the hydraulic retention time from 24 to 6 h, at each step. The highest achieved removal efficiency of ammonium and nitrite were 91 and 93%, respectively. Consequently, due to their acceptable performance for nitrogen removal in previous researches, modified Stover-Kincannon and Grau second-order models were used in this study. According to the experiment results, the model validity testing showed that the Stover-Kincannon model was a little more appropriate for the description of nitrogen removal in the reactor, even though both models gave high correlation coefficients (R2=0.999). PMID:23414202

  15. Bacterial community dynamics in a swine wastewater anaerobic reactor revealed by 16S rDNA sequence analysis.

    PubMed

    Liu, An-Chi; Chou, Chu-Yang; Chen, Ling-Ling; Kuo, Chih-Horng

    2015-01-20

    Anaerobic digestion is a microbiological process of converting organic wastes into digestate and biogas in the absence of oxygen. In practice, disturbance to the system (e.g., organic shock loading) may cause imbalance of the microbial community and lead to digester failure. To examine the bacterial community dynamics after a disturbance, this study simulated an organic shock loading that doubled the chemical oxygen demand (COD) loading using a 4.5L swine wastewater anaerobic completely stirred tank reactor (CSTR). Before the shock (loading rate=0.65gCOD/L/day), biogas production rate was about 1-2L/L/day. After the shock, three periods representing increased biogas production rates were observed during days 1-7 (∼4.0L/L/day), 13 (3.3L/L/day), and 21-23 (∼6.1L/L/day). For culture-independent assessments of the bacterial community composition, the 454 pyrosequencing results indicated that the community contained >2500 operational taxonomic units (OTUs) and was dominated by three phyla: Bacteroidetes, Firmicutes, and Proteobacteria. The shock induced dynamic changes in the community composition, which was re-stabilized after approximately threefold hydraulic retention time (HRT). Intriguingly, upon restabilization, the community composition became similar to that observed before the shock, rather than reaching a new equilibrium. PMID:25500375

  16. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass.

    PubMed

    Hernández, D; Riaño, B; Coca, M; García-González, M C

    2013-05-01

    Two combined processes were studied in order to produce second generation biofuels: microalgae biomass production and its further use to produce biogas. Two 5 L photobioreactors for treating wastewater from a potato processing industry (from now on RPP) and from a treated liquid fraction of pig manure (from now on RTE) were inoculated with Chlorella sorokiniana and aerobic bacteria at 24±2.7 °C and 6000 lux for 12 h per day of light supply. The maximum biomass growth was obtained for RTE wastewater, with 26.30 mg dry weight L(-1) d(-1). Regarding macromolecular composition of collected biomass, lipid concentration reached 30.20% in RPP and 4.30% in RTE. Anaerobic digestion results showed that methane yield was highly influenced by substrate/inoculum ratio and by lipids concentration of the biomass, with a maximum methane yield of 518 mL CH4 g COD(-1)added using biomass with a lipid content of 30% and a substrate/inoculum ratio of 0.5. PMID:23069610

  17. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment.

    PubMed

    Wei, Chun-Hai; Harb, Moustapha; Amy, Gary; Hong, Pei-Ying; Leiknes, TorOve

    2014-08-01

    The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10 gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50 mg/L for general reuse was 6 gCOD/L/d and 0.63 gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6 gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300 ml/gCOD (even approaching the theoretical value of 382 ml/gCOD). A low biomass production of 0.015-0.026 gMLVSS/gCOD and a sustainable flux of 6L/m(2)/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area. PMID:24926606

  18. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process.

    PubMed

    Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung

    2015-12-15

    This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. PMID:26241771

  19. Nitritation and denitritation of domestic wastewater using a continuous anaerobic-anoxic-aerobic (A(2)O) process at ambient temperatures.

    PubMed

    Zeng, Wei; Li, Lei; Yang, Yingying; Wang, Shuying; Peng, Yongzhen

    2010-11-01

    In a continuous anaerobic-anoxic-aerobic (A(2)O) process treating domestic wastewater at ambient temperatures, nitritation was achieved through a combination of short aerobic actual hydraulic retention time (AHRT) and low dissolved oxygen (DO) levels (0.3-0.5mg/L). The nitrite accumulation rate was about 90% and ammonia removal efficiency was over 95%. With respect to total nitrogen removal, nitritation-denitritation at low DO levels of 0.3-0.5mg/L was essentially equal to the complete nitrification-denitrification at DO levels of 1.5-2.5mg/L with the addition of external carbon sources. Regardless of low DO operation, sludge bulking did not occur since the sludge volume index was below 150ml/g. Real-time PCR assays showed that in response to complete and partial nitrification modes, the numbers of ammonia oxidizing bacteria population were 5.28x10(9)cells/g MLVSS and 3.95x10(10)cells/g MLVSS, respectively. Achievement of nitritation-denitritation is highly beneficial to the treatment of domestic wastewater in terms of lower carbon requirements and reduced aeration costs. PMID:20579871

  20. Synthesis of nano-zeolite from coal fly ash and its potential for nutrient sequestration from anaerobically digested swine wastewater.

    PubMed

    Chen, Xiaoyan; Wendell, Khunjar; Zhu, Jun; Li, Jiangli; Yu, Xianxian; Zhang, Zhijian

    2012-04-01

    The treatment of anaerobically digested swine wastewater (ADSW) is problematic due to its high nutrient concentration. This study investigated the simultaneous sequestration of ammonium (N) and phosphate (P) from ADSW using nano-zeolites synthesized from fly ash (ZFA). The nanometer-scale crystalline structures plentiful of zeolite-NaP1 coating on ZFA particle increased the levels of specific surface area and cation exchange capacity at times of 40 and 104, compared to raw fly ash. Kinetic N and P sorption experiments with ZFA were well described by both the Langmuir and Freundlich models, suggesting the co-existence of homogeneous and heterogeneous sorption mechanisms. N and P removal efficiencies ranged from 41% to 95% and 75% to 98%, respectively, across a range of ZFA doses (from 0.25 to 8g/100ml). Collectively, application of the laboratory-synthesized ZFA can alleviate the nutrient loads in ADSW and therefore modify the ratio of N:P in wastewater beneficial for subsequent biological treatment. PMID:22330598

  1. Removal of organics and nutrients from food wastewater using combined thermophilic two-phase anaerobic digestion and shortcut biological nitrogen removal.

    PubMed

    Cui, Fenghao; Lee, Seungho; Kim, Moonil

    2011-10-15

    A process combining pilot-scale two-phase anaerobic digestion and shortcut biological nitrogen removal (SBNR) was developed to treat organics and nutrients (nitrogen and phosphorus) from food wastewater. The thermophilic two-phase anaerobic digestion process was investigated without adjusting the pH of the wastewater for the pre-acidification process. The digested food wastewater was treated using the SBNR process without supplemental carbon sources or alkalinity. Under these circumstances, the combined system was able to remove about 99% of COD, 88% of TN, and 97% of TP. However, considerable amounts of nutrients were removed due to chemical precipitation processes between the anaerobic digestion and SBNR. The average TN removal efficiency of the SBNR process was about 74% at very low C/N (TCOD/TN) ratio of 2. The SBNR process removed about 39% of TP from the digested food wastewater. Conclusively, application of the combined system improved organic removal efficiency while producing valuable energy (biogas), removed nitrogen at a low C/N ratio, and conserved additional resources (carbon and alkalinity). PMID:21849203

  2. Environmental profile of typical anaerobic/anoxic/oxic wastewater treatment systems meeting increasingly stringent treatment standards from a life cycle perspective.

    PubMed

    Wang, Xu; Liu, Junxin; Ren, Nan-Qi; Duan, Zuoshan

    2012-12-01

    Stringent new legislation for wastewater treatment plants (WWTPs) is currently motivating innovation and optimization of wastewater treatment technologies. Evaluating the environmental performance of a wastewater treatment system is a necessary precursor before proposing implementation of WWTPs designed to address the global requirements for reduced resource use, energy consumption and environmental emissions. However, developing overly-sophisticated treatment methods may lead to negative environmental effects. This study was conducted to employ a process modeling approach from a life cycle perspective to construct and evaluate six anaerobic/anoxic/oxic wastewater treatment systems that include a water line, sludge line and bioenergy recovery system and was designed to meet different treatment standards in China. The results revealed that improved treatments optimized for local receiving watercourses can be realized at the cost of higher resource consumption and greenhouse gas emissions. Optimal Scenarios were also identified from different positive perspectives. PMID:23073087

  3. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.

    PubMed

    Ge, Huoqing; Batstone, Damien J; Keller, Jurg

    2013-11-01

    Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion. PMID:24045213

  4. EVALUATION OF ANAEROBIC, EXPANDED-BED CONTRACTORS FOR MUNICIPAL WASTEWATER TREATMENT

    EPA Science Inventory

    The anaerobic expanded-bed contactors for treating dilute municipal wastes were evaluated. A 334-liter diatomaceous earth, a 334 liter granular activated carbon, a set of two 66-liter sand, and two 3-liter diatomaceous earth reactor systems were used. For the most part the feed w...

  5. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters.

    PubMed

    Kato, M T; Field, J A; Versteeg, P; Lettinga, G

    1994-08-01

    The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc. PMID:18618781

  6. Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure.

    PubMed

    Leal, Cíntia Dutra; Pereira, Alyne Duarte; Nunes, Fernando Terra; Ferreira, Luísa Ornelas; Coelho, Aline Carolina Cirilo; Bicalho, Sarah Kinaip; Mac Conell, Erika F Abreu; Ribeiro, Thiago Bressani; de Lemos Chernicharo, Carlos Augusto; de Araújo, Juliana Calábria

    2016-07-01

    Long-term effects of COD/N ratios on the nitrogen removal performance and bacterial community of an anammox reactor were evaluated by adding a synthetic medium (with glucose) and real anaerobic effluent to a SBR. At a COD/N ratio of 2.8 (COD, 390mg·L(-1)) ammonium removal efficiency was 66%, while nitrite removal remained high (99%). However, at a COD/N ratio of 5.0 (COD, 300mg·L(-1)), ammonium and nitrite removal efficiencies were high (84% and 99%, respectively). High COD, nitrite, and ammonium removal efficiencies (80%, 90% and 95%, respectively) were obtained on adding anaerobically pre-treated municipal wastewater (with nitrite) to the reactor. DGGE revealed that the addition of anaerobic effluent changed the bacterial community structure and selected for DNA sequences related to Brocadia sinica and Chloroflexi. Adding glucose and anaerobic effluent increased denitrifiers concentration threefold. Thus, the possibility of using the anammox process to remove nitrogen from anaerobically pre-treated municipal wastewater was demonstrated. PMID:27023380

  7. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    PubMed

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency. PMID:23656940

  8. Using floating vegetation to remove nutrients from an anaerobic swine wastewater lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed for utilizing nutrients contained within animal wastewater lagoons. One potential method for removing nutrients is to have vegetation growing in the lagoon. A study was conducted from 2005-2007 to determine the feasibility of growing vegetation on floating platforms on a single ...

  9. Influence of wastewater composition on nutrient removal behaviors in the new anaerobic-anoxic/nitrifying/induced crystallization process.

    PubMed

    Shi, Jing; Lu, Xiwu; Yu, Ran; Gu, Qian; Zhou, Yi

    2014-01-01

    In this study, the new anaerobic-anoxic/nitrifying/induced crystallization (A2N-IC) system was compared with anaerobic-anoxic/nitrifying (A2N) process to investigate nutrient removal performance under different influent COD and ammonia concentrations. Ammonia and COD removal rates were very stable in both processes, which were maintained at 84.9% and 86.6% when the influent ammonia varied from 30 mg L(-1) to 45 mg L(-1) and COD ranged from 250 mg L(-1) to 300 mg L(-1). The effluent phosphorus always maintained below 0.2 mg L(-1) in A2N-IC, whereas in A2N the effluent phosphorus concentration was 0.4-1.7 mg L(-1), demonstrating that A2N-IC is suitable to apply in a broader influent COD and ammonia concentration range. Under higher influent COD (300 mg L(-1)) or lower ammonia conditions (30 mg L(-1)), the main function of chemical induced crystallization was to coordinate better nutrient ratio for anoxic phosphorus uptake, whereas under high phosphorus concentration, it was to reduce phosphorus loading for biological system. Under the similar influent wastewater compositions, phosphorus release amounts were always lower in A2N-IC. To clarify the decrease procedure of phosphorus release in the A2N-IC, the equilibrium between chemical phosphorus removal and biological phosphorus removal in A2N-IC was analyzed by mass balance equations. During the long-term experiment, some undesirable phenomena were observed: the declining nitrification in post-aerobic tank and calcium phosphorus precipitation in the anaerobic tank. The reasons were analyzed; furthermore, the corresponding improvements were proposed. Nitrification effect could be enhanced in the post-aerobic tank, therefore ammonia removal rate could be increased; and biologically induced phosphorus precipitation could be inhibited by controlling pH at the anaerobic stage, so the phosphorus release and recovery could be improved. PMID:24596502

  10. Start-up of an anaerobic/oxic process for phosphorus removal at the Northwest Quadrant Wastewater Treatment Plant. Final report

    SciTech Connect

    Not Available

    1992-08-01

    This study investigated the suitability and effectiveness of a proprietary anaerobic/oxic (A/0) process to facilitate the biological removal of phosphorus from domestic wastewater. The study took place at the Northwest Quadrant Wastewater Treatment Plant in Hilton, New York, and was conducted in conjunction with the New York State Energy Research & Development Authority (the Energy Authority) and the Monroe County Department of Pure Waters. The NWQWWTP concentration limit for total effluent phosphorus is 1.0 mg/l. Influent phosphorus concentrations usually vary from 4 to 5 mg/l at the plant.