Science.gov

Sample records for 15n enriched ammonium

  1. Ammonium and nitrate uptake lengths in a small forested stream determined by {sup 15}N tracer and short-term nutrient enrichment experiments

    SciTech Connect

    Mulholland, P.J.; Tank, J.L.; Sanzone, D.M.; Webster, J.R.; Wollheim, W.; Peterson, B.J.; Meyer, J.L.

    1998-11-01

    Nutrient cycling is an important characteristic of all ecosystems, including streams. Nutrients often limit the growth rates of stream algae and heterotrophic microbes and the decomposition rate of allochthonous organic matter. Nutrient uptake (S{sub W}), defined as the mean distance traveled by a nutrient atom dissolved in stream water before uptake by biota is often used as an index of nutrient cycling in streams. It is often overlooked, however, that S{sub W} is not a measure of nutrient uptake rate per se, but rather a measure of the efficiency with which a stream utilizes the available nutrient supply. The ideal method for measuring S{sub W} involves short-term addition of a nutrient tracer. Regulatory constraints often preclude use of nutrient radiotracers in field studies and methodological difficulties and high analytical costs have previously hindered the use of stable isotope nutrient tracers (e.g., {sup 15}N). Short-term nutrient enrichments are an alternative to nutrient tracer additions for measuring S{sub W}.

  2. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    PubMed

    Dabundo, Richard; Lehmann, Moritz F; Treibergs, Lija; Tobias, Craig R; Altabet, Mark A; Moisander, Pia H; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L(-1) d(-1), to 530 nmoles N L(-1) d(-1), contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2

  3. The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements

    PubMed Central

    Dabundo, Richard; Lehmann, Moritz F.; Treibergs, Lija; Tobias, Craig R.; Altabet, Mark A.; Moisander, Pia H.; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L−1 d−1, to 530 nmoles N L−1 d−1, contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2

  4. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age

    NASA Astrophysics Data System (ADS)

    Minagawa, Masao; Wada, Eitaro

    1984-05-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average δ15Nversus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from the East China Sea show an average -0.55%. (-0.8 to +1.2). All consumers, Zooplankton, fish and bird exhibited Stepwise enrichment of 15N with increasing trophic level. The 15N enrichment at a single feeding process ranged from +1.3 to +5.3 averaging +3.4 ± 1.1%.. This isotopic fractionation seems to be independent of habitat. The effect of age in animals was obtained by analyzing two marine mussels. The soft tissue nitrogen showed +2.0%. enrichment relative to that of primary producers, and the magnitude was almost constant with shell ages ranging from 0 to 8 years. A similar 15N enrichment occurs in all Molluscs, Crustaceans, Insecta, Amphibia, Fish, Ave and Mammal species regardless of the difference in the form of excreted nitrogen and in laboratory cultured fish, brine shrimp and mice (+2.9 to +4.9%.). The excreted ammonia from guppy was sufficiently light to balance the concentration of 15N to animal body.

  5. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2

  6. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  7. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  8. Increase of Natural 15N Enrichment of Soybean Nodules with Mean Nodule Mass 1

    PubMed Central

    Shearer, Georgia; Bryan, Barbara A.; Kohl, Daniel H.

    1984-01-01

    The 15N abundance of soybean (Glycine max L. Merrill var Harosoy) nodules is usually greater than it is for other tissues or for atmospheric N2. Results of experiments in which nodules were separated by size show that the magnitude of the 15N enrichment is correlated with nodule mass. The results support the hypothesis that 15N enrichment of nodules results from differential N isotopic fractionation for synthesis of nodule tissue versus synthesis of compounds for export from the nodule. The physiological significance of this hypothesis is that it requires that a substantial fraction of the N for nodule tissue synthesis in 15N-enriched nodules be N recently fixed within the same nodule. PMID:16663917

  9. Highly 15N-Enriched Chondritic Clasts in the Isheyevo Meteorite

    SciTech Connect

    Bonal, L; Huss, G R; Krot, A N; Nagashima, K; Ishii, H A; Bradley, J P; Hutcheon, I D

    2009-01-14

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock {sup 15}N enrichment ({delta}{sup 15}N up to +1500{per_thousand}), similar to {delta}{sup 15}N values reported in micron-sized regions (hotspots) of Interplanetary Dust Particles (IDPs) of possibly cometary origin and fine-grained matrices of unmetamorphosed chondrites. These {sup 15}N-rich hotspots are commonly attributed to low-temperature ion-molecule reactions in the protosolar molecular cloud or in the outer part of the protoplanetary disk. The nature of the whole-rock {sup 15}N enrichment of the metal-rich chondrites is not understood. We report a discovery of a unique type of primitive chondritic clasts in the CH/CB-like meteorite Isheyevo, which provides important constraints on the origin of {sup 15}N anomaly in metal-rich chondrites and nitrogen-isotope fractionation in the Solar System. These clasts contain tiny chondrules and refractory inclusions (5-15 {micro}m in size), and abundant ferromagnesian chondrule fragments (1-50 {micro}m in size) embedded in the partly hydrated, fine-grained matrix material composed of olivines, pyroxenes, poorly-organized aromatic organics, phyllosilicates and other hydrous phases. The mineralogy and oxygen isotope compositions of chondrules and refractory inclusions in the clasts are similar to those in the Isheyevo host, suggesting formation at similar heliocentric distances. In contrast to the previously known extraterrestrial samples, the fine-grained material in the clasts is highly and rather uniformly enriched in {sup 15}N, with bulk {delta}{sup 15}N values ranging between +1000 and +1300{per_thousand}; the {delta}{sup 15}N values in rare hotspots range from +1400 to +4000{per_thousand}. Since fine-grained matrices in the lithic clasts are the only component containing thermally unprocessed (during CAI and chondrule formation or during impact melting) materials that accreted into the metal rich chondrite parent body(ies), the {sup 15}N-enriched

  10. Highly 15N-enriched chondritic clasts in the CB/CH-like meteorite Isheyevo

    NASA Astrophysics Data System (ADS)

    Bonal, L.; Huss, G. R.; Krot, A. N.; Nagashima, K.; Ishii, H. A.; Bradley, J. P.

    2010-11-01

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock 15N-enrichments15N up to 1500‰) among planetary materials. They are also characterized by the absence of interchondrule fine-grained matrix. The only fine-grained material is present as lithic clasts, which experienced extensive aqueous alteration in contrast to the surrounding high-temperature components (chondrules, refractory inclusions, metal grains). Hence, the clasts are foreign objects that were incorporated at a late stage into the final parent body of Isheyevo. Their origin is poorly constrained. Based on mineralogy, petrography, and thermal processing of the aromatic carbonaceous component, different types of clasts have been previously identified in the CB/CH-like chondrite Isheyevo. Here, we focus on the rare lithic clasts characterized by the presence of anhydrous silicates (chondrules, chondrule fragments, and CAIs). Their mineralogy and oxygen isotopic compositions reveal them to be micro-chondrules, fragments of chondrules, and refractory inclusions related to those in the Isheyevo host, suggesting accretion in the same region. In contrast to previously studied IDPs or primitive chondritic matrices, the fine-grained material in the clasts we studied is highly and rather uniformly enriched in heavy nitrogen, with bulk δ 15N values ranging between 1000‰ and 1300‰. It is also characterized by the presence of numerous 15N hotspots (δ 15N ranging from 1400‰ to 4000‰). No bulk (δD <-240‰) or localized deuterium enrichments were observed. These clasts have the highest bulk enrichment in heavy nitrogen measured to date in a fine-grained material. They represent a unique material, of asteroidal or cometary origin, in our collection of cosmomaterials. We show that they were 15N-enriched before their incorporation in the final parent body of Isheyevo. They experienced an extensive aqueous alteration that most likely played a role in redistributing 15N over the

  11. Why is Mineral-Associated Organic Matter Enriched in 15N? Evidence from Grazed Pasture Soil

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Wells, N. S.; Mudge, P. L.; Clough, T. J.; Schipper, L. A.; Ghani, A.; Stevenson, B.

    2014-12-01

    Throughout the scientific literature, measurements across soil depth and density fractions suggest that, with few exceptions, mineral-associated organic matter (OM) has higher δ15N than non-mineral-associated OM. This implies that the δ15N difference between N inputs and mineral-stabilized OM may characterize the microbial processes involved in stabilization and mineral association. Yet current understanding of observed N isotope fractionation in terrestrial ecosystems suggests the large isotope effects are expressed during inorganic N transformations from NH4 to gaseous loss pathways of NH3 volatilization and denitrification. How can the relative importance of N isotope fractionation during OM stabilization versus loss pathways be resolved? We recently examined N isofluxes when a temporary nitrogen excess is created by urine deposition in a New Zealand dairy pasture. We found that the N isotopic composition of volatilized NH3, and NO3 available for leaching or denitrification could not be linked back to the added N using Rayleigh distillation models. Instead, the results imply that the added N was immobilized, and the N available for losses was increasingly derived from mineralization of organic matter during the course of the experiment. These results are consistent with recent evidence of enhanced OM mineralization in urine patches, understanding of N isotope mass balances and long-standing evidence that gross mineralization and immobilization fluxes greatly exceed net mineralization and nitrification, except at very high N saturation. These results suggest that where 15N enrichment occurs due to fractionating loss pathways, the isotope effects are primarily transmitted to immobilized N, forming 15N enriched stabilized OM. This further explains earlier findings that the δ15N of soil OM represents an integrated indicator of losses, reflecting the intensity and duration of pastoral agriculture. We suggest that development of an indicator based on δ15N in

  12. Food webs of two intermittently open estuaries receiving 15N-enriched sewage effluent

    NASA Astrophysics Data System (ADS)

    Hadwen, Wade L.; Arthington, Angela H.

    2007-01-01

    Carbon and nitrogen stable isotope signatures were used to assess the response of food webs to sewage effluent discharged into two small intermittently open estuaries in northern New South Wales, Australia. One of these systems, Tallows Creek, has a history of direct sewage inputs, whilst the other, Belongil Creek, receives wastewater via an extensive wetland treatment system. The food webs of both systems were driven by algal sources of carbon, reflecting high autotrophic productivity in response to the nutrients entering the system from sewage effluent. All aquatic biota collected from Tallows Creek had significantly enriched δ15N signatures relative to their conspecifics from Belongil Creek, indicating that sewage nitrogen had been assimilated and transferred throughout the Tallows Creek food web. These δ15N values were higher than those reported from studies in permanently open estuaries receiving sewage effluent. We suggest that these enriched signatures and the transfer of nitrogen throughout the entire food web reflect differences in hydrology and associated nitrogen cycling processes between permanently open and intermittently open estuaries. Although all organisms in Tallows Creek were generally 15N-enriched, isotopically light (less 15N-enriched) individuals of estuary perchlet ( Ambassis marianus) and sea mullet ( Mugil cephalus) were also collected. These individuals were most likely recent immigrants into Tallows Creek, as this system had only recently been opened to the ocean. This isotopic discrimination between resident (enriched) and immigrant (significantly less enriched) individuals can provide information on fish movement patterns and the role of heavily polluted intermittently open estuaries in supporting commercially and recreationally valuable estuarine species.

  13. Measuring (13)C/(15)N chemical shift anisotropy in [(13)C,(15)N] uniformly enriched proteins using CSA amplification.

    PubMed

    Hung, Ivan; Ge, Yuwei; Liu, Xiaoli; Liu, Mali; Li, Conggang; Gan, Zhehong

    2015-11-01

    Extended chemical shift anisotropy amplification (xCSA) is applied for measuring (13)C/(15)N chemical shift anisotropy (CSA) of uniformly labeled proteins under magic-angle spinning (MAS). The amplification sequence consists of a sequence of π-pulses that repetitively interrupt MAS averaging of the CSA interaction. The timing of the pulses is designed to generate amplified spinning sideband manifolds which can be fitted to extract CSA parameters. The (13)C/(13)C homonuclear dipolar interactions are not affected by the π-pulses due to the bilinear nature of the spin operators and are averaged by MAS in the xCSA experiment. These features make the constant evolution-time experiment suitable for measuring CSA of uniformly labeled samples. The incorporation of xCSA with multi-dimensional (13)C/(15)N correlation is demonstrated with a GB1 protein sample as a model system for measuring (13)C/(15)N CSA of all backbone (15)NH, (13)CA and (13)CO sites. PMID:26404770

  14. Site-Selective Synthesis of (15)N- and (13)C-Enriched Flavin Mononucleotide Coenzyme Isotopologues.

    PubMed

    Neti, Syam Sundar; Poulter, C Dale

    2016-06-17

    Flavin mononucleotide (FMN) is a coenzyme for numerous proteins involved in key cellular and physiological processes. Isotopically labeled flavin is a powerful tool for studying the structure and mechanism of flavoenzyme-catalyzed reactions by a variety of techniques, including NMR, IR, Raman, and mass spectrometry. In this report, we describe the preparation of labeled FMN isotopologues enriched with (15)N and (13)C isotopes at various sites in the pyrazine and pyrimidine rings of the isoalloxazine core of the cofactor from readily available precursors by a five-step chemo-enzymatic synthesis. PMID:27176708

  15. Stellar Origins of Extremely 13C- and 15N-enriched Presolar SiC Grains: Novae or Supernovae?

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Nittler, Larry R.; O'D. Alexander, Conel M.; Wang, Jianhua; Pignatari, Marco; José, Jordi; Nguyen, Ann

    2016-04-01

    Extreme excesses of 13C (12C/13C < 10) and 15N (14N/15N < 20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been proposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized 13C- and 15N-enriched presolar SiC grains (12C/13C < 16 and 14N/15N < ˜100) from Murchison, and their correlated Mg-Al, S, and Ca-Ti isotope data when available. These grains are enriched in 13C and 15N, but with quite diverse Si isotopic signatures. Four grains with 29,30Si excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with 30Si excesses and 29Si depletions show lower-than-solar 34S/32S ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario. For the remaining five putative nova grains, both nova and supernova origins are viable because explosive H burning in the two stellar sites could result in quite similar proton-capture isotopic signatures. Three of the grains are sub-type AB grains that are also 13C enriched, but have a range of higher 14N/15N. We found that 15N-enriched AB grains (˜50 < 14N/15N < ˜100) have distinctive isotopic signatures compared to putative nova grains, such as higher 14N/15N, lower 26Al/27Al, and lack of 30Si excess, indicating weaker proton-capture nucleosynthetic environments.

  16. Plant community change mediates the response of foliar δ(15)N to CO 2 enrichment in mesic grasslands.

    PubMed

    Polley, H Wayne; Derner, Justin D; Jackson, Robert B; Gill, Richard A; Procter, Andrew C; Fay, Philip A

    2015-06-01

    Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. CO2 may increase leaf δ(15)N by increasing plant community productivity, C input to soil, and, ultimately, microbial mineralization of old, (15)N-enriched organic matter. We predicted that CO2 would increase aboveground productivity (ANPP; g biomass m(-2)) and foliar δ(15)N values of two grassland communities in Texas, USA: (1) a pasture dominated by a C4 exotic grass, and (2) assemblages of tallgrass prairie species, the latter grown on clay, sandy loam, and silty clay soils. Grasslands were exposed in separate experiments to a pre-industrial to elevated CO2 gradient for 4 years. CO2 stimulated ANPP of pasture and of prairie assemblages on each of the three soils, but increased leaf δ(15)N only for prairie plants on a silty clay. δ(15)N increased linearly as mineral-associated soil C declined on the silty clay. Mineral-associated C declined as ANPP increased. Structural equation modeling indicted that CO2 increased ANPP partly by favoring a tallgrass (Sorghastrum nutans) over a mid-grass species (Bouteloua curtipendula). CO2 may have increased foliar δ(15)N on the silty clay by reducing fractionation during N uptake and assimilation. However, we interpret the soil-specific, δ(15)N-CO2 response as resulting from increased ANPP that stimulated mineralization from recalcitrant organic matter. By contrast, CO2 favored a forb species (Solanum dimidiatum) with higher δ(15)N than the dominant grass (Bothriochloa ischaemum) in pasture. CO2 enrichment changed grassland δ(15)N by shifting species relative abundances. PMID:25604918

  17. Determination of the delta(15N/14N)of Ammonium (NH4+) in Water: RSIL Lab Code 2898

    USGS Publications Warehouse

    Hannon, Janet E.; Böhlke, John Karl

    2008-01-01

    The purpose of the technique described by Reston Stable Isotope Laboratory (RSIL) lab code 2898 is to determine the N isotopic composition, delta(15N/14N), abbreviated as d15N, of ammonium (NH4+) in water (freshwater and saline water). The procedure involves converting dissolved NH4+ into NH3 gas by raising the pH of the sample to above 9 with MgO and subsequently trapping the gas quantitatively as (NH4)2SO4 on a glass fiber (GF) filter. The GF filter is saturated with NaHSO4 and pressure sealed between two gas-permeable polypropylene filters. The GF filter 'sandwich' floats on the surface of the water sample in a closed bottle. NH3 diffuses from the water through the polypropylene filter and reacts with NaHSO4, forming (NH4)2SO4 on the GF filter. The GF filter containing (NH4)2SO4 is dried and then combusted with a Carlo Erba NC 2500 elemental analyzer (EA), which is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous-flow isotope-ratio mass spectrometer (CF-IRMS), which determines the relative difference in ratios of the amounts of the stable isotopes of nitrogen (15N and 14N) of the product N2 gas and a reference N2 gas. The filters containing the samples are compressed in tin capsules and loaded into a Costech Zero-Blank Autosampler on the EA. Under computer control, samples then are dropped into a heated reaction tube that contains an oxidant, where combustion takes place in a He atmosphere containing an excess of O2 gas. To remove S-O gases produced from the NaHSO4, a plug of Ag-coated Cu wool is inserted at the bottom of the reaction tube. Combustion products are transported by a He carrier through a reduction furnace to remove excess O2, toconvert all nitrogen oxides to N2, and to remove any remaining S-O gases. The gases then pass through a drying tube to remove water. The gas-phase products, mainly N2 and a small amount of background CO2, are separated by a gas chromatograph (GC). The gas is then introduced

  18. Simple approach for the preparation of 15−15N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations

    PubMed Central

    Klawonn, Isabell; Lavik, Gaute; Böning, Philipp; Marchant, Hannah K.; Dekaezemacker, Julien; Mohr, Wiebke; Ploug, Helle

    2015-01-01

    Recent findings revealed that the commonly used 15N2 tracer assay for the determination of dinitrogen (N2) fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared 15−15N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of 15−15N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add 15−15N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥ 5 min). Optionally, water can be degassed at low-pressure (≥950 mbar) for 10 min prior to the 15−15N2 gas addition to indirectly enhance the 15−15N2 concentration. This preparation of 15−15N2-enriched water can be done within 1 h using standard laboratory equipment. The final 15N-atom% excess was 5% after replacing 2–5% of the incubation volume with 15−15N2-enriched water. Notably, the addition of 15−15N2-enriched water can alter levels of trace elements in the incubation water due to the contact of 15−15N2-enriched water with glass, plastic and rubber ware. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn) increased by up to 0.1 nmol L−1 in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with 15−15N2. The 15−15N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the 15−15N2 equilibration. This approach achieved a 15N-atom% excess of 6.6 ± 1.7% when adding 2 mL 15−15N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the 15N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments. PMID:26300853

  19. Simple approach for the preparation of (15-15)N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations.

    PubMed

    Klawonn, Isabell; Lavik, Gaute; Böning, Philipp; Marchant, Hannah K; Dekaezemacker, Julien; Mohr, Wiebke; Ploug, Helle

    2015-01-01

    Recent findings revealed that the commonly used (15)N2 tracer assay for the determination of dinitrogen (N2) fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared (15-15)N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of (15-15)N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add (15-15)N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥ 5 min). Optionally, water can be degassed at low-pressure (≥950 mbar) for 10 min prior to the (15-15)N2 gas addition to indirectly enhance the (15-15)N2 concentration. This preparation of (15-15)N2-enriched water can be done within 1 h using standard laboratory equipment. The final (15)N-atom% excess was 5% after replacing 2-5% of the incubation volume with (15-15)N2-enriched water. Notably, the addition of (15-15)N2-enriched water can alter levels of trace elements in the incubation water due to the contact of (15-15)N2-enriched water with glass, plastic and rubber ware. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn) increased by up to 0.1 nmol L(-1) in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with (15-15)N2. The (15-15)N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the (15-15)N2 equilibration. This approach achieved a (15)N-atom% excess of 6.6 ± 1.7% when adding 2 mL (15-15)N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the (15)N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments. PMID:26300853

  20. Solving the woolly mammoth conundrum: amino acid 15N-enrichment suggests a distinct forage or habitat

    NASA Astrophysics Data System (ADS)

    Schwartz-Narbonne, Rachel; Longstaffe, Fred J.; Metcalfe, Jessica Z.; Zazula, Grant

    2015-06-01

    Understanding woolly mammoth ecology is key to understanding Pleistocene community dynamics and evaluating the roles of human hunting and climate change in late Quaternary megafaunal extinctions. Previous isotopic studies of mammoths’ diet and physiology have been hampered by the ‘mammoth conundrum’: woolly mammoths have anomalously high collagen δ15N values, which are more similar to coeval carnivores than herbivores, and which could imply a distinct diet and (or) habitat, or a physiological adaptation. We analyzed individual amino acids from collagen of adult woolly mammoths and coeval species, and discovered greater  15N enrichment in source amino acids of woolly mammoths than in most other herbivores or carnivores. Woolly mammoths consumed an isotopically distinct food source, reflective of extreme aridity, dung fertilization, and (or) plant selection. This dietary signal suggests that woolly mammoths occupied a distinct habitat or forage niche relative to other Pleistocene herbivores.

  1. Solving the woolly mammoth conundrum: amino acid 15N-enrichment suggests a distinct forage or habitat

    PubMed Central

    Schwartz-Narbonne, Rachel; Longstaffe, Fred J.; Metcalfe, Jessica Z.; Zazula, Grant

    2015-01-01

    Understanding woolly mammoth ecology is key to understanding Pleistocene community dynamics and evaluating the roles of human hunting and climate change in late Quaternary megafaunal extinctions. Previous isotopic studies of mammoths’ diet and physiology have been hampered by the ‘mammoth conundrum’: woolly mammoths have anomalously high collagen δ15N values, which are more similar to coeval carnivores than herbivores, and which could imply a distinct diet and (or) habitat, or a physiological adaptation. We analyzed individual amino acids from collagen of adult woolly mammoths and coeval species, and discovered greater  15N enrichment in source amino acids of woolly mammoths than in most other herbivores or carnivores. Woolly mammoths consumed an isotopically distinct food source, reflective of extreme aridity, dung fertilization, and (or) plant selection. This dietary signal suggests that woolly mammoths occupied a distinct habitat or forage niche relative to other Pleistocene herbivores. PMID:26056037

  2. CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance.

    PubMed

    Vega-Mas, Izargi; Marino, Daniel; Sánchez-Zabala, Joseba; González-Murua, Carmen; Estavillo, Jose María; González-Moro, María Begoña

    2015-12-01

    Ammonium (NH4(+)) toxicity typically occurs in plants exposed to high environmental NH4(+) concentration. NH4(+) assimilating capacity may act as a biochemical mechanism avoiding its toxic accumulation but requires a fine tuning between nitrogen assimilating enzymes and carbon anaplerotic routes. In this work, we hypothesized that extra C supply, exposing tomato plants cv. Agora Hybrid F1 to elevated atmospheric CO2, could improve photosynthetic process and thus ameliorate NH4(+) assimilation and tolerance. Plants were grown under nitrate (NO3(-)) or NH4(+) as N source (5-15mM), under two atmospheric CO2 levels, 400 and 800ppm. Growth and gas exchange parameters, (15)N isotopic signature, C and N metabolites and enzymatic activities were determined. Plants under 7.5mM N equally grew independently of the N source, while higher ammonium supply resulted toxic for growth. However, specific stomatal closure occurred in 7.5mM NH4(+)-fed plants under elevated CO2 improving water use efficiency (WUE) but compromising plant N status. Elevated CO2 annulled the induction of TCA anaplerotic enzymes observed at non-toxic NH4(+) nutrition under ambient CO2. Finally, CO2 enrichment benefited tomato growth under both nutritions, and although it did not alleviate tomato NH4(+) tolerance it did differentially regulate plant metabolism in N-source and -dose dependent manner. PMID:26706056

  3. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    PubMed

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-01

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments. PMID:27359161

  4. Precision and sensitivity of the measurement of 15N enrichment in D-alanine from bacterial cell walls using positive/negative ion mass spectrometry

    NASA Technical Reports Server (NTRS)

    Tunlid, A.; Odham, G.; Findlay, R. H.; White, D. C.

    1985-01-01

    Sensitive detection of cellular components from specific groups of microbes can be utilized as 'signatures' in the examination of microbial consortia from soils, sediments or biofilms. Utilizing capillary gas chromatography/mass spectrometry and stereospecific derivatizing agents, D-alanine, a component localized in the prokaryotic (bacterial) cell wall, can be detected reproducibly. Enrichments of D-[15N]alanine determined in E. coli grown with [15N]ammonia can be determined with precision at 1.0 atom%. Chemical ionization with methane gas and the detection of negative ions (M - HF)- and (M - F or M + H - HF)- formed from the heptafluorobutyryl D-2 butanol ester of D-alanine allowed as little as 8 pg (90 fmol) to be detected reproducibly. This method can be utilized to define the metabolic activity in terms of 15N incorporation at the level of 10(3)-10(4) cells, as a function of the 15N-14N ratio.

  5. Plant community change mediates the response of foliar delta15N to CO2 enrichment in mesic grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. Isotope fractionation theory and limited experimental evidence indicate that CO2 may increase leaf delta15N by increasing plant community productivity,...

  6. Effect of inorganic carbon on anaerobic ammonium oxidation enriched in sequencing batch reactor.

    PubMed

    Liao, Dexiang; Li, Xiaoming; Yang, Qi; Zeng, Guangming; Guo, Liang; Yue, Xiu

    2008-01-01

    The present lab-scale research reveals the enrichment of anaerobic ammonium oxidation microorganism from methanogenic anaerobic granular sludge and the effect of inorganic carbon (sodium bicarbonate) on anaerobic ammonium oxidation. The enrichment of anammox bacteria was carried out in a 7.0-L sequencing batch reactor (SBR) and the effect of bicarbonate on anammox was conducted in a 3.0-L SBR. Research results, especially the biomass, showed first signs of anammox activity after 54 d cultivation with synthetic wastewater, when the pH was controlled between 7.5 and 8.3, the temperature was 35 degrees C. The anammox activity increased as the influent bicarbonate concentration increased from 1.0 to 1.5 g/L, and then, was inhibited as the bicarbonate concentration approached 2.0 g/L. However, the activity could be restored by the reduction of bicarbonate concentration to 1.0 g/L, as shown by rapid conversion of ammonium, and nitrite and nitrate production with normal stoichiometry. The optimization of the bicarbonate concentration in the reactor could increase the anammox rate up to 66.4 mgN/(L x d). PMID:18817072

  7. Climate-Dependence of Plant-Soil 15N/14N Interactions Across Tropical Rainforests

    NASA Astrophysics Data System (ADS)

    Houlton, B. Z.; Sigman, D. M.; Hedin, L. O.

    2005-12-01

    In most areas of the world, the 15N/14N of bulk soils is higher than that of plant leaves, and the isotopic signatures of these two ecosystem N pools progressively diverge with increasing rainfall. However, both the cause for this isotopic trend and its implications for understanding interactions between climate and N cycles are largely unknown. We report 15N/14N measurements of nitrate, ammonium, and total dissolved N in soil extracts from a highly constrained rainfall sequence in Hawaii, across which this trend in ecosystem 15N/14N is captured, to examine the competing explanations for plant-soil 15N/14N uncouplings. While the isotopic influences of microbial transfers of N between nitrate and ammonium pools and plant-mycorrhizae interactions have been posited in plant-soil 15N/14N relationships, our data did not support an important role for either of these mechanisms. Instead, preferential regeneration of 14N during the breakdown of DON to ammonium explains why the 15N/14N of plants is lower than that of bulk soils. Fractionation at this step leads to two isotopically distinct N subcycles in each forest, a lower-15N/14N subcycle composed of ammonium, nitrate, and bulk plant biomass N that `spins' rapidly and a higher-15N/14N subcycle composed of bulk soil N and DON that is much less dynamic. The increased difference between soil and plant 15N/14N is due to changes in the impacts of nitrification and denitrification on the 15N/14N of ammonium and nitrate, coupled with a switch from nitrate to ammonium uptake by plants under the wettest conditions. For instance, the particularly large (~6 per mil) 15N/14N difference between plants and soils in the wettest sites is due to the lack of 15N-enrichment of ammonium by nitrification coupled with plant dependence on ammonium uptake only. Our results highlight the importance of interactions between DON breakdown, ecosystem N recycling, and gaseous N losses in the explaining the interactions between the 15N signatures of

  8. [Enrichment of anaerobic ammonium oxidation bacteria by expanded-granular sludge bed reactor].

    PubMed

    Huang, Xiaoli; Gao, Dawen; Cong, Yan; Wang, Xiaolong

    2014-12-01

    An expanded-granular sludge bed (EGSB) reactor was set-up with artificial water by seeding a 60 d stored ANAMMOX sludge. The nitrogen removal efficiency of ANAMMOX enrichment culture in the reactor was determined. In addition, the main microbial populations and the relative abundance of ANAMMOX bacteria were investigated by molecular approaches. Results show that the maximum nitrogen removal rate was 3.0 kg-N·m(-3)·d(-1) after 185 d, and the ammonium and nitrite removal efficiencies were all over 85%. Analysis of 16S rRNA gene-cloning indicates that the main microbial population in the ANAMMOX enrichment culture was changed from Candidatus Brocadiafulgid and Candidatus Brocadia brasiliensis (0 day) to Candidatus Jettenia asiatica (185 day). Fluorescence in situ hybridization analysis shows that the relative abundance of ANAMMOX bacteria was increased from (57.69 ± 4.79)% to (83.32 ± 4.40)%. The results of qPCR further indicate that the gene copies of ANAMMOX bacteria in the granules were increased from 1.14 x 10(11) copies/g wet weight to 3.69 x 10(11) copies/g wet weight. PMID:26016374

  9. Coupling between anammox and autotrophic denitrification for simultaneous removal of ammonium and sulfide by enriched marine sediments.

    PubMed

    Rios-Del Toro, E Emilia; Cervantes, Francisco J

    2016-06-01

    In the present study, the capacity of enrichments derived from marine sediments collected from different sites of the Mexican littoral to perform anaerobic ammonium oxidation (anammox) coupled to sulfide-dependent denitrification for simultaneous removal of ammonium and sulfide linked to nitrite reduction was evaluated. Sulfide-dependent denitrification out-competed anammox during the simultaneous oxidation of sulfide and ammonium. Significant accumulation of elemental sulfur (ca. 14-30 % of added sulfide) occurred during the coupling between the two respiratory processes, while ammonium was partly oxidized (31-47 %) due to nitrite limitation imposed in sediment incubations. Nevertheless, mass balances revealed up to 38 % more oxidation of the electron donors available (ammonium and sulfide) than that expected from stoichiometry. Recycling of nitrite, from nitrate produced through anammox, is proposed to contribute to extra oxidation of sulfide, while additional ammonium oxidation is suggested by sulfate-reducing anammox (SR-anammox). The complex interaction between nitrogenous and sulfurous compounds occurring through the concomitant presence of autotrophic denitrification, conventional anammox and SR-anammox may significantly drive the nitrogen and sulfur fluxes in marine environments. PMID:26994921

  10. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    PubMed

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  11. Isotopically enriched ammonium shows high nitrogen transformation in the pile top zone of dairy manure compost

    NASA Astrophysics Data System (ADS)

    Maeda, Koki; Toyoda, Sakae; Yano, Midori; Hattori, Shohei; Fukasawa, Makoto; Nakajima, Keiichi; Yoshida, Naohiro

    2016-03-01

    Nitrogen isotope ratios (δ15N) of NH4+ in dairy manure compost piles with and without bulking agent (10 % w/w) were compared to understand the effects of the use of bulking agent on nitrogen conversion during manure composting. The δ15N-NH4+ values in each of three pile zones (top, side and core) were also compared. At the end of the process, piles with bulking agent showed significantly higher δ15N values (17.7 ± 1.3 ‰) than piles without bulking agent (11.8 ± 0.9 ‰), reflecting the significantly higher nitrogen conversion and NH3 loss in the former. The samples from the top zone, especially in the piles with bulking agent, showed very high NH4+ concentrations with significantly high 15N15N: 12.7-29.8 ‰) values, indicating that extremely high nitrogen conversion, nitrification-denitrification activity of the microbes and NH3 volatilization occurred in this zone.

  12. Polyamine flux analysis by determination of heavy isotope incorporation from 13C, 15N-enriched amino acids into polyamines by LC-MS/MS.

    PubMed

    Cerrada-Gimenez, Marc; Häkkinen, Merja R; Vepsäläinen, Jouko; Auriola, Seppo; Alhonen, Leena; Keinänen, Tuomo A

    2012-02-01

    The study of polyamine flux, i.e. the circulating flow of polyamines through the interconnected biosynthetic and catabolic pathways, is of considerable interest because of the established links between the polyamine metabolism and many diseases, such as cancer and diabetes. To study polyamine flux in detail, a novel method based on following the label incorporation from the (13)C, (15)N-labeled polyamine precursors, arginine, methionine and ornithine, into polyamines by LC-MS/MS was implemented. This methodology was tested on three distinct cell lines with different spermidine/spermine-N (1)-acetyltransferase (SSAT) expression levels, i.e. non-transgenic, transgenic and knockout. These trials allowed the identification of the critical conditions for the successful polyamine flux measurement, such as the functional time frame of label incorporation, until plateau phase with the selected precursor is reached. The novel LC-MS/MS-based method for polyamine flux overcame the limitations of previous existing methodologies, with baseline separation of the different polyamine species and the exact quantification of the incorporated label. Moreover, the obtained results clearly show that the increased SSAT expression is associated with accelerated polyamine flux. PMID:21818565

  13. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina.

    PubMed

    Lü, Fan; Luo, Chenghao; Shao, Liming; He, Pinjing

    2016-03-01

    This investigation evaluated the effectiveness of biochar of different particle sizes in alleviating ammonium (NH4(+)) inhibition (up to 7 g-N/L) during anaerobic digestion of 6 g/L glucose. Compared to the control treatment without biochar addition, treatments that included biochar particles 2-5 mm, 0.5-1 mm and 75-150 μm in size reduced the methanization lag phase by 23.9%, 23.8% and 5.9%, respectively, and increased the maximum methane production rate by 47.1%, 23.5% and 44.1%, respectively. These results confirmed that biochar accelerated the initiation of methanization during anaerobic digestion under double inhibition risk from both ammonium and acids. Furthermore, fine biochar significantly promoted the production of volatile fatty acids (VFAs). Comparative analysis on the archaeal and bacterial diversity at the early and later stages of digestion, and in the suspended, biochar loosely bound, and biochar tightly bound fractions suggested that, in suspended fractions, hydrogenotrophic Methanobacterium was actively resistant to ammonium. However, acetoclastic Methanosaeta can survive at VFAs concentrations up to 60-80 mmol-C/L by improved affinity to conductive biochar, resulting in the accelerated initiation of acetate degradation. Improved methanogenesis was followed by the colonization of the biochar tightly bound fractions by Methanosarcina. The selection of appropriate biochar particles sizes was important in facilitating the initial colonization of microbial cells. PMID:26724437

  14. Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream

    NASA Astrophysics Data System (ADS)

    Nishizawa, Manabu; Koba, Keisuke; Makabe, Akiko; Yoshida, Naohiro; Kaneko, Masanori; Hirao, Shingo; Ishibashi, Jun-ichiro; Yamanaka, Toshiro; Shibuya, Takazo; Kikuchi, Tohru; Hirai, Miho; Miyazaki, Junichi; Nunoura, Takuro; Takai, Ken

    2013-07-01

    ) was nearly constant (250 μM) throughout the stream. Based on the level of detectable dissolved molecular oxygen (O2) of the stream water (⩾38 μM) along with metabolic measurements, it was predicted that nitrification by thermophilic AOA and NOB components in the microbial mats that were exposed to the stream water would constrain the concentrations and isotopic ratios of ΣNH3, NO2- and NO3- of the stream water. The δ15N value of ΣNH3 increased from 0‰ to 7‰ with decreasing concentration, which was consistent with the previously reported isotopic fractionation for microbial ΣNH3 oxidation. In contrast, the δ15N value of NO2- was 22‰ lighter than that of NO3- in the steam water at the same site, indicating an inverse isotopic fractionation for microbial NO2- oxidation. The variation in concentrations and δ15N values of ΣNH3, NO2- and NO3- was largely explained using a two-step nitrification model, and the apparent nitrogen isotopic fractionations of ΣNH3 oxidation and NO2- oxidation were estimated to be 0.986 and 1.020, respectively. In the interstitial water within the microbial mats, the compositional and isotopic properties of TIN at the downstream site indicated potential denitrification by the anaerobic microbial components. The geochemically deduced transition of microbial nitrogen metabolism was substantiated through cultivation-independent microbiological analyses.

  15. Ammonium and phosphate enrichment across the dry-wet transition and their ecological relevance in a subtropical reservoir, China.

    PubMed

    Mo, Qiongli; Chen, Nengwang; Zhou, Xingpeng; Chen, Jixin; Duan, Shuiwang

    2016-07-13

    Small river reservoirs are widespread and can be ecologically sensitive across the dry-wet transition under monsoon climate with respect to nutrient loading and phenology. Monthly sampling and high-frequency in situ measurements were conducted for a river reservoir (southeast China) in 2013-2014 to examine the seasonal pattern of nutrients and phytoplankton. We found that nutrient concentrations were runoff-mediated and determined by watershed inputs and, in some cases, by internal cycling depending on hydrology and temperature. Ammonium and phosphate were relatively enriched in February-March (a transitional period from dry/cold to wet/hot climate), which can be ascribed to initial flushing runoff from human/animal waste and spring fertilizer use. A phytoplankton bloom (mainly Chlorophyta) occurred during April after a surge of water temperature, probably due to the higher availability of inorganic nutrients and sunlight and suitable hydraulic residence time (medium flow) in the transitional period. The concentration of phytoplankton was low during May-June (wet-hot climate) when the concentrations of total suspended matter (TSM) were highest, likely owing to the "shading" effect of TSM and turbulence of high flow conditions. Nutrient-algae shifts across the dry-wet season and vertical profiles suggested that algal blooms seem to be fueled primarily by phosphate and ammonium rather than nitrate. Current findings of a strong temporal pattern and the relationship between physical parameters, nutrient and biota would improve our understanding of drivers of change in water quality and ecosystem functions with dam construction. PMID:27329744

  16. Nitrogen concentration and δ 15N of altered oceanic crust obtained on ODP Legs 129 and 185: Insights into alteration-related nitrogen enrichment and the nitrogen subduction budget

    NASA Astrophysics Data System (ADS)

    Li, Long; Bebout, Gray E.; Idleman, Bruce D.

    2007-05-01

    Knowledge of the subduction input flux of nitrogen (N) in altered oceanic crust (AOC) is critical in any attempt to mass-balance N across arc-trench systems on a global or individual-margin basis. We have employed sealed-tube, carrier-gas-based methods to examine the N concentrations and isotopic compositions of AOC. Analyses of 53 AOC samples recovered on DSDP/ODP legs from the North and South Pacific, the North Atlantic, and the Antarctic oceans (with larger numbers of samples from Site 801 outboard of the Mariana trench and Site 1149 outboard of the Izu trench), and 14 composites for the AOC sections at Site 801, give N concentrations of 1.3 to 18.2 ppm and δ 15N Air of -11.6‰ to +8.3‰, indicating significant N enrichment probably during the early stages of hydrothermal alteration of the oceanic basalts. The N-δ 15N modeling for samples from Sites 801 and 1149 ( n = 39) shows that the secondary N may come from (1) the sedimentary N in the intercalated sediments and possibly overlying sediments via fluid-sediment/rock interaction, and (2) degassed mantle N 2 in seawater via alteration-related abiotic reduction processes. For all Site 801 samples, weak correlation of N and K 2O contents indicates that the siting of N in potassic alteration phases strongly depends on N availability and is possibly influenced by highly heterogeneous temperature and redox conditions during hydrothermal alteration. The upper 470-m AOC recovered by ODP Legs 129 and 185 delivers approximately 8 × 10 5 g/km N annually into the Mariana margin. If the remaining less-altered oceanic crust (assuming 6.5 km, mostly dikes and gabbros) has MORB-like N of 1.5 ppm, the entire oceanic crust transfers 5.1 × 10 6 g/km N annually into that trench. This N input flux is twice as large as the annual N input of 2.5 × 10 6 g/km in seafloor sediments subducting into the same margin, demonstrating that the N input in oceanic crust, and its isotopic consequences, must be considered in any assessment

  17. The response of nitrifying microbial assemblages to ammonium (NH4+) enrichment from salmon farm activities in a northern Chilean Fjord

    NASA Astrophysics Data System (ADS)

    Elizondo-Patrone, Claudia; Hernández, Klaudia; Yannicelli, Beatriz; Olsen, Lasse Mork; Molina, Verónica

    2015-12-01

    The consequences of aquaculture include alterations in nitrogen cycling in aquatic environments that may lead to ecosystem degradation. Herein salmon aquaculture release of ammonium (NH4+) to the water column and its effects on natural archaea and bacteria ammonia-oxidizers (AOA and AOB) and nitrite-oxidizing bacteria (NOB) community structure were studied in the Comau fjord using molecular approaches, such as: cloning (AOA and AOB richness), qPCR for C. Nitrosopumilus maritimus (AOA) and Nitrospina sp. (NOB) abundance (DNA) and RT-qPCR only for Nitrospina sp activity (RNA). Sampling was carried out in brackish (0.7-25 salinity, <5 m depth) and marine (>30 salinity, 25 m depth) waters during contrasting salmon production periods: rest (winter 2012), growth and harvest (summer and winter 2013). During the rest period, the highest NH4+ concentration was observed at Vodudahue River, whereas during productive periods NH4+ accumulated in the brackish layer inside salmon cages and in the vicinty (up to 700 m distance from the cages). The nitrifier community from the fjord reference station (Stn-C) was characterized by C. N. maritimus (AOA) and Nitrosomonas sp. (AOB) sequences affiliated with cosmopolitan ecotypes (e.g., marine, freshwater, hydrothermal), maxima abundances of C. N. maritimus (AOA) and Nitrospina sp. and extreme ranges of Nitrospina sp. activity occurred in the brackish layer. During productive periods, abundances of C. N. maritimus were co-varied with NH4+ concentrations inside salmon cages (summer) and the adjacent areas (winter). Productive periods were characterized by lower abundances but more homogeneity between brackish and marine areas than for the Stn-C nitrifiers. The physiological state of Nitrospina sp. estimated from cDNA:DNA ratios indicated higher growth during winter 2013 associated with NH4+ enrichment derived from production and river input. Our results suggest that in Comau Fjord, NH4+ enrichment events occur during salmon production and

  18. Nitrogen source tracking with delta(15)N content of coastal wetland plants in Hawaii.

    PubMed

    Bruland, Gregory L; MacKenzie, Richard A

    2010-01-01

    Inter- and intra-site comparisons of the nitrogen (N) stable isotope composition of wetland plant species have been used to identify sources of N in coastal areas. In this study, we compared delta(15)N values from different herbaceous wetland plants across 34 different coastal wetlands from the five main Hawaiian Islands and investigated relationships of delta(15)N with land use, human population density, and surface water quality parameters (i.e., nitrate, ammonium, and total dissolved N). The highest delta(15)N values were observed in plants from wetlands on the islands of Oahu (8.7-14.6 per thousand) and Maui (8.9-9.2 per thousand), whereas plants from wetlands on the islands of Kauai, Hawaii, and Molokai had delta(15)N values usually <4 per thousand. The enrichment in delta(15)N values in plant tissues from wetlands on Oahu and Maui was most likely a result of the more developed and densely populated watersheds on these two islands. Urban development within a 1000-m radius and population density were positively correlated to average delta(15)N vegetation values from each wetland site (r = 0.56 and 0.51, respectively; p < 0.001). This suggested that site mean delta(15)N values from mixed stands of wetland plants have potential as indices of N sources in coastal lowland wetlands in Hawaii and that certain sites on Oahu and Maui have experienced significant anthropogenic N loading. This information can be used to monitor future changes in N inputs to coastal wetlands throughout Hawaii and the Pacific. PMID:20048329

  19. Active Autotrophic Ammonia-Oxidizing Bacteria in Biofilm Enrichments from Simulated Creek Ecosystems at Two Ammonium Concentrations Respond to Temperature Manipulation▿†

    PubMed Central

    Avrahami, Sharon; Jia, Zhongjun; Neufeld, Josh D.; Murrell, J. Colin; Conrad, Ralf; Küsel, Kirsten

    2011-01-01

    The first step of nitrification, the oxidation of ammonia to nitrite, is important for reducing eutrophication in freshwater environments when coupled with anammox (anaerobic ammonium oxidation) or denitrification. We analyzed active formerly biofilm-associated aerobic ammonia-oxidizing communities originating from Ammerbach (AS) and Leutra South (LS) stream water (683 ± 550 [mean ± standard deviation] and 16 ± 7 μM NH4+, respectively) that were developed in a flow-channel experiment and incubated under three temperature regimens. By stable-isotope probing using 13CO2, we found that members of the Bacteria and not Archaea were the functionally dominant autotrophic ammonia oxidizers at all temperatures under relatively high ammonium loads. The copy numbers of bacterial amoA genes in 13C-labeled DNA were lower at 30°C than at 13°C in both stream enrichment cultures. However, the community composition of the ammonia-oxidizing bacteria (AOB) in the 13C-labeled DNA responded differently to temperature manipulation at two ammonium concentrations. In LS enrichments incubated at the in situ temperature (13°C), Nitrosomonas oligotropha-like sequences were retrieved with sequences from Nitrosospira AmoA cluster 4, while the proportion of Nitrosospira sequences increased at higher temperatures. In AS enrichments incubated at 13°C and 20°C, AmoA cluster 4 sequences were dominant; Nitrosomonas nitrosa-like sequences dominated at 30°C. Biofilm-associated AOB communities were affected differentially by temperature at two relatively high ammonium concentrations, implicating them in a potential role in governing contaminated freshwater AOB distributions. PMID:21890674

  20. Box-modeling of 15N/14N in mammals.

    PubMed

    Balter, Vincent; Simon, Laurent; Fouillet, Hélène; Lécuyer, Christophe

    2006-03-01

    The 15N/14N signature of animal proteins is now commonly used to understand their physiology and quantify the flows of nutrient in trophic webs. These studies assume that animals are predictably 15N-enriched relative to their food, but the isotopic mechanism which accounts for this enrichment remains unknown. We developed a box model of the nitrogen isotope cycle in mammals in order to predict the 15N/14N ratios of body reservoirs as a function of time, N intake and body mass. Results of modeling show that a combination of kinetic isotope fractionation during the N transfer between amines and equilibrium fractionation related to the reversible conversion of N-amine into ammonia is required to account for the well-established approximately 4 per thousand 15N-enrichment of body proteins relative to the diet. This isotopic enrichment observed in proteins is due to the partial recycling of 15N-enriched urea and the urinary excretion of a fraction of the strongly 15N-depleted ammonia reservoir. For a given body mass and diet delta15N, the isotopic compositions are mainly controlled by the N intake. Increase of the urea turnover combined with a decrease of the N intake lead to calculate a delta15N increase of the proteins, in agreement with the observed increase of collagen delta15N of herbivorous animals with aridity. We further show that the low delta15N collagen values of cave bears cannot be attributed to the dormancy periods as it is commonly thought, but inversely to the hyperphagia behavior. This model highlights the need for experimental investigations performed with large mammals in order to improve our understanding of natural variations of delta15N collagen. PMID:16328553

  1. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  2. Effect of protein restriction on (15)N transfer from dietary [(15)N]alanine and [(15)N]Spirulina platensis into urea.

    PubMed

    Hamadeh, M J; Hoffer, L J

    2001-08-01

    Six normal men consumed a mixed test meal while adapted to high (1.5 g. kg(-1) x day(-1)) and low (0.3 g. kg(-1) x day(-1)) protein intakes. They completed this protocol twice: when the test meals included 3 mg/kg of [(15)N]alanine ([(15)N]Ala) and when they included 30 mg/kg of intrinsically labeled [(15)N]Spirulina platensis ([(15)N]SPI). Six subjects with insulin-dependent diabetes mellitus (IDDM) receiving conventional insulin therapy consumed the test meal with added [(15)N]Ala while adapted to their customary high-protein diet. Protein restriction increased serum alanine, glycine, glutamine, and methionine concentrations and reduced those of leucine. Whether the previous diet was high or low in protein, there was a similar increase in serum alanine, methionine, and branched-chain amino acid concentrations after the test meal and a similar pattern of (15)N enrichment in serum amino acids for a given tracer. When [(15)N]Ala was included in the test meal, (15)N appeared rapidly in serum alanine and glutamine, to a minor degree in leucine and isoleucine, and not at all in other circulating amino acids. With [(15)N]SPI, there was a slow appearance of the label in all serum amino acids analyzed. Despite the different serum amino acid labeling, protein restriction reduced the postmeal transfer of dietary (15)N in [(15)N]Ala or [(15)N]SPI into [(15)N]urea by similar amounts (38 and 43%, respectively, not significant). The response of the subjects with IDDM was similar to that of the normal subjects. Information about adaptive reductions in dietary amino acid catabolism obtained by adding [(15)N]Ala to a test meal appears to be equivalent to that obtained using an intrinsically labeled protein tracer. PMID:11440912

  3. Ammonium assmilation in spruce ectomycorrhizas

    SciTech Connect

    Chalot, M.; Brun, A.; Botton, B. ); Stewart, G. )

    1990-05-01

    Assimilation of labelled NH{sub 4}{sup +} into amino acids has been followed in ectomycorrhizal roots of spruce. Over an 18 h period of NH{sub 4}{sup +} feeding, Gln, Glu and Ala became the most abundant amino acids. Gln was also the most highly labelled amino acid during the experiment, followed by Glu and Ala. This result indicates that Gln synthesis is an important ammonium utilization reaction in spruce mycorrhizas. Addition of MSX to NH{sub 4}{sup +} fed mycorrhizas caused an inhibition of Gln accumulation with a corresponding increase in Glu, Ala and Asn levels. The supply of MSX induced a sharp diminution of {sup 15}N enrichment in both amino and amido groups of glutamine. In contrast, the {sup 15}N incorporation into Glu and derivatives (Ala and Asp) remained very high. This study demonstrates that the fungal glutamate dehydrogenase is quite operative in spruce ectomycorrhizas since it is able to sustain ammonium assimilation when glutamine synthetase is inhibited.

  4. Quantifying nitrate retention processes in a riparian buffer zone using the natural abundance of 15N in NO3-.

    PubMed

    Dhondt, Karel; Boeckx, Pascal; Van Cleemput, Oswald; Hofman, Georges

    2003-01-01

    Quantifying the relative importance of denitrification and plant uptake to groundwater nitrate retention in riparian zones may lead to methods optimising the construction of riparian zones for water pollution control. The natural abundance of 15N in NO3- has been shown to be an interesting tool for providing insights into the NO3- retention processes occurring in riparian zones. In this study, 15N isotope fractionation (variation in delta15N of the residual NO3-) due to denitrification and due to plant uptake was measured in anaerobic soil slurries at different temperatures (5, 10 and 15 degrees C) and in hydroponic systems with different plant species (Lolium perenne L., Urtica dioica L. and Epilobium hirsutum L.). It was found that temperature had no significant effect on isotope fractionation during denitrification, which resulted in a 15N enrichment factor epsilonD of -22.5 +/- 0.6 per thousand. On the other hand, nitrate uptake by plants resulted in 15N isotope fractionation, but was independent of plant species, leading to a 15N enrichment factor epsilonP of -4.4 +/- 0.3 per thousand. By relating these two laboratory-defined enrichment factors to a field enrichment factor for groundwater nitrate retention during the growing season (epsilonR = -15.5 +/- 1.0 per thousand ), the contribution of denitrification and plant uptake to groundwater nitrate retention could be calculated. The relative importance of denitrification and plant uptake to groundwater nitrate retention in the riparian buffer zone was 49 and 51% during spring, 53 and 47% during summer, and 75 and 25% during autumn. During wintertime, high micropore dissolved organic carbon (DOC) concentrations and low redox potentials due to decomposition of the highly productive riparian vegetation probably resulted in a higher denitrification rate and favoured other nitrate retention processes such as nitrate immobilisation or dissimilatory nitrate reduction to ammonium (DNRA). This could have biased the 15N

  5. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2014-08-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron were measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, and real-time quantitative PCR analysis. We believe that one of the dominant microbial species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  6. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  7. Improved mass analysis of oligoribonucleotides by 13C, 15N double depletion and electrospray ionization FT-ICR mass spectrometry.

    PubMed

    Xiong, Ying; Schroeder, Kersten; Greenbaum, Nancy L; Hendrickson, Christopher L; Marshall, Alan G

    2004-03-15

    13C, 15N doubly depleted 32-ribonucleotide was synthesized enzymatically by in vitro transcription from nucleoside triphosphates isolated from E. coli grown in a minimal medium containing 12C, 14N-enriched glucose and ammonium sulfate. Following purification and desalting by reversed-phase HPLC, buffer exchange with Microcon YM-3, and ethanol precipitation, electrospray ionization Fourier transform ion cyclotron resonance mass spectra revealed greatly enhanced abundance of monoisotopic ions (by a factor of approximately 100) and a narrower isotopic distribution with higher signal-to-noise ratio. The abrupt onset and high magnitude of the monoisotopic species promise to facilitate accurate mass measurement of RNA's. PMID:15018587

  8. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  9. Use of a 15N tracer to determine linkages between a mangrove and an upland freshwater swamp

    NASA Astrophysics Data System (ADS)

    MacKenzie, R. A.; Cormier, N.

    2005-05-01

    Mangrove forests and adjacent upland freshwater swamps are important components of subsistence-based economies of Pacific islands. Mangroves provide valuable firewood (Rhizophora apiculata) and mangrove crabs (Scylla serrata); intact freshwater swamps are often used for agroforestry (e.g., taro cultivation). While these two systems are connected hydrologically via groundwater and surface flows, little information is available on how they may be biogeochemically or ecologically linked. For example, mangrove leaf litter was once thought to be an important food source for resident and transient nekton and invertebrates, but this value may have been overestimated. Instead, nutrients or allochthonous material (e.g., phytoplankton, detritus) delivered via groundwater or surface water from upland freshwater swamps may play a larger role in mangrove food webs. Understanding the linkages between these two ecologically and culturally important ecosystems will help us to understand the potential impacts of hydrological alterations that occur when roads or bridges are constructed through them. We conducted a 15N tracer study in the Yela watershed on the island of Kosrae, Federated States of Micronesia. K15NO3 was continually added at trace levels for 4 weeks to the Yela River in an upland freshwater swamp adjacent to a mangrove forest. Nitrate and ammonium pools, major primary producers, macroinvertebrates, and fish were sampled from stations 5 m upstream (freshwater swamp) and 138, 188, 213, and 313 m downstream (mangrove) from the tracer addition. Samples were collected once a week prior to, during, and after the 15N addition for a total of 6 weeks. Preliminary results revealed no significant enrichment (< 1 ‰) in the 15N isotope composition of either resident shrimp (Macrobrachium sp.) or mudskipper fish (Periophthalmus sp.). However, the 15N signature of ammonium pools was enriched 10-60 ‰ by the end of the third week. These results suggest that the tracer was present

  10. Nitrogen input 15N-signatures are reflected in plant 15N natural abundances of N-rich tropical forest in China

    NASA Astrophysics Data System (ADS)

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Yunting, Fang; Mo, Jiangming

    2016-04-01

    In this study, we tested the measurement of natural abundance of 15N15N) for its ability to assess changes in N cycling due to increased N deposition in two forest types; namely, an old-growth broadleaved forest and a pine forest, in southern China. We measured δ15N values of inorganic N in input and output fluxes under ambient N deposition, and N concentration and δ15N of major ecosystem compartments under ambient and increased N deposition. Our results showed that N deposition to the forests was 15N-depleted, and was dominated by NH4-N. Plants were 15N-depleted due to imprint from the 15N-depleted atmospheric N deposition. The old-growth forest had larger N concentration and was more 15N-enriched than the pine forest. Nitrogen addition did not significantly affect N concentration, but it significantly increased δ15N values of plants, and slightly more so in the pine forest, toward the 15N signature of the added N in both forests. The result indicates that the pine forest may rely more on the 15N-depleted deposition N. Soil δ15N values were slightly decreased by the N addition. Our result suggests that ecosystem δ15N is more sensitive to the changes in ecosystem N status and N cycling than N concentration in N-saturated sub-tropical forests.

  11. Robust method for investigating nitrogen metabolism of 15N labeled amino acids using AccQ•Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry: application to a parasitic plant-plant interaction.

    PubMed

    Gaudin, Zachary; Cerveau, Delphine; Marnet, Nathalie; Bouchereau, Alain; Delavault, Philippe; Simier, Philippe; Pouvreau, Jean-Bernard

    2014-01-21

    An AccQ•Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry (AccQ•Tag-UPLC-PDA-ESI-MS) method is presented here for the fast, robust, and sensitive quantification of (15)N isotopologue enrichment of amino acids in biological samples, as for example in the special biotic interaction between the cultivated specie Brassica napus (rapeseed) and the parasitic weed Phelipanche ramosa (broomrape). This method was developed and validated using amino acid standard solutions containing (15)N amino acid isotopologues and/or biological unlabeled extracts. Apparatus optimization, limits of detection and quantification, quantification reproducibility, and calculation method of (15)N isotopologue enrichment are presented. Using this method, we could demonstrate that young parasite tubercles assimilate inorganic nitrogen as (15)N-ammonium when supplied directly through batch incubation but not when supplied by translocation from host root phloem, contrary to (15)N2-glutamine. (15)N2-glutamine mobility from host roots to parasite tubercles followed by its low metabolism in tubercles suggests that the host-derived glutamine acts as an important nitrogen containing storage compound in the young tubercle of Phelipanche ramosa. PMID:24359440

  12. Phytoplankton-Specific Response to Enrichment of Phosphorus-Rich Surface Waters with Ammonium, Nitrate, and Urea

    PubMed Central

    Donald, Derek B.; Bogard, Matthew J.; Finlay, Kerri; Bunting, Lynda; Leavitt, Peter R.

    2013-01-01

    Supply of anthropogenic nitrogen (N) to the biosphere has tripled since 1960; however, little is known of how in situ response to N fertilisation differs among phytoplankton, whether species response varies with the chemical form of N, or how interpretation of N effects is influenced by the method of analysis (microscopy, pigment biomarkers). To address these issues, we conducted two 21-day in situ mesocosm (3140 L) experiments to quantify the species- and genus-specific responses of phytoplankton to fertilisation of P-rich lake waters with ammonium (NH4+), nitrate (NO3−), and urea ([NH2]2CO). Phytoplankton abundance was estimated using both microscopic enumeration of cell densities and high performance liquid chromatographic (HPLC) analysis of algal pigments. We found that total algal biomass increased 200% and 350% following fertilisation with NO3− and chemically-reduced N (NH4+, urea), respectively, although 144 individual taxa exhibited distinctive responses to N, including compound-specific stimulation (Planktothrix agardhii and NH4+), increased biomass with chemically-reduced N alone (Scenedesmus spp., Coelastrum astroideum) and no response (Aphanizomenon flos-aquae, Ceratium hirundinella). Principle components analyses (PCA) captured 53.2–69.9% of variation in experimental assemblages irrespective of the degree of taxonomic resolution of analysis. PCA of species-level data revealed that congeneric taxa exhibited common responses to fertilisation regimes (e.g., Microcystis aeruginosa, M. flos-aquae, M. botrys), whereas genera within the same division had widely divergent responses to added N (e.g., Anabaena, Planktothrix, Microcystis). Least-squares regression analysis demonstrated that changes in phytoplankton biomass determined by microscopy were correlated significantly (p<0.005) with variations in HPLC-derived concentrations of biomarker pigments (r2 = 0.13–0.64) from all major algal groups, although HPLC tended to underestimate the relative

  13. δ15N Value Does Not Reflect Fasting in Mysticetes

    PubMed Central

    Aguilar, Alex; Giménez, Joan; Gómez–Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue δ15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indicatior of nutritive condition. PMID:24651388

  14. Identification of novel hydrazine metabolites by 15N-NMR.

    PubMed

    Preece, N E; Nicholson, J K; Timbrell, J A

    1991-05-01

    15N-NMR has been used to study the metabolism of hydrazine in rats in vivo. Single doses of [15N2]hydrazine (2.0 mmol/kg: 98.6% g atom) were administered to rats and urine collected for 24 hr over ice. A number of metabolites were detected by 15N-NMR analysis of lyophilized urine. Ammonia was detected as a singlet at 0 ppm and unchanged [15N2]hydrazine was present in the urine detectable as a singlet at 32 ppm. Peaks were observed at 107 and 110 ppm which were identified as being due to the hydrazido nitrogen of acetylhydrazine and diacetylhydrazine, respectively. A resonance at 85 ppm was ascribed to carbazic acid, resulting from reaction of hydrazine with carbon dioxide. A singlet detected at 316 ppm was thought to be due to the hydrazono nitrogen of the pyruvate hydrazone. The resonance at 56 ppm was assigned to 15N-enriched urea, this together with the presence of ammonia indicates that the N-N bond of hydrazine is cleaved in vivo, possibly by N-oxidation, and the resultant ammonia is incorporated into urea. A doublet centred at 150 ppm and a singlet at 294 ppm were assigned to a metabolite which results from cyclization of the 2-oxoglutarate hydrazone. Therefore 15N-NMR spectroscopic analysis of urine has yielded significant new information on the metabolism of hydrazine. PMID:2018564

  15. Studies with 15N-labeled ammonia and urea in the malnourished child

    PubMed Central

    Read, W. W. C.; McLaren, D. S.; Tchalian, Marie; Nassar, Siham

    1969-01-01

    Investigations using ammonium citrate-15N and urea-15N showed that children in the acute stage of kwashiorkor and marasmus receiving a diet of adequate protein content retained a considerable percentage of the label from both compounds. Excretion of both total 15N and urea-15N was subnormal and elimination was virtually completed 36 hr after administration of the isotope. During recovery from kwashiorkor total 15N excretion had approached normal a month after commencement of rehabilitation. Urea-15N excretion was still slightly subnormal after 3 months. In marasmus urea-15N formed a normal proportion of total 15N excretion after 1 month, although total 15N excretion then was still low. Ammonia nitrogen was retained to a greater extent than urea nitrogen in all cases. As it is known that a considerable amount of urea is degraded to ammonia in the gastrointestinal tract, it seems probable that urea nitrogen became available for use after this degradation. Examination of blood from one marasmic child after feeding ammonia-15N and from another after intravenous injection of urea-15N showed incorporation of the label into blood cells and plasma proteins. This did not occur in well nourished controls. It is concluded that ammonia and urea as sources of nonessential nitrogen may play an important part in protein metabolism in the malnourished child. PMID:5771193

  16. Nitrate reductase 15N discrimination in Arabidopsis thaliana, Zea mays, Aspergillus niger, Pichea angusta, and Escherichia coli

    PubMed Central

    Carlisle, Eli; Yarnes, Chris; Toney, Michael D.; Bloom, Arnold J.

    2014-01-01

    Stable 15N isotopes have been used to examine movement of nitrogen (N) through various pools of the global N cycle. A central reaction in the cycle involves the reduction of nitrate (NO−3) to nitrite (NO−2) catalyzed by nitrate reductase (NR). Discrimination against 15N by NR is a major determinant of isotopic differences among N pools. Here, we measured in vitro 15N discrimination by several NRs purified from plants, fungi, and a bacterium to determine the intrinsic 15N discrimination by the enzyme and to evaluate the validity of measurements made using 15N-enriched NO−3. Observed NR isotope discrimination ranged from 22 to 32‰ (kinetic isotope effects of 1.022–1.032) among the different isozymes at natural abundance 15N (0.37%). As the fractional 15N content of substrate NO−3 increased from natural abundance, the product 15N fraction deviated significantly from that expected based on substrate enrichment and 15N discrimination measured at natural abundance. Additionally, isotopic discrimination by denitrifying bacteria used to reduce NO−3 and NO−2 in some protocols became a greater source of error as 15N enrichment increased. We briefly discuss potential causes of the experimental artifacts with enriched 15N and recommend against the use of highly enriched 15N tracers to study N discrimination in plants or soils. PMID:25071800

  17. Biosynthetic preparation of L-(/sup 13/C)- and (/sup 15/N)glutamate by Brevibacterium flavum

    SciTech Connect

    Walker, T.E.; London, R.E.

    1987-01-01

    The biosynthesis of isotopically labeled L-glutamic acid by the microorganism Brevibacterium flavum was studied with a variety of carbon-13-enriched precursors. The purpose of this study was twofold: (i) to develop techniques for the efficient preparation of labeled L-glutamate with a variety of useful labeling patterns which can be used for other metabolic studies, and (ii) to better understand the metabolic events leading to label scrambling in these strains. B. flavum, which is used commercially for the production of monosodium glutamate, has the capability of utilizing glucose or acetate as a sole carbon source, and important criterion from the standpoint of developing labeling strategies. Unfortunately, singly labeled glucose precursors lead to excessive isotopic dilution which reduces their usefulness. Studies with (3-/sup 13/C)pyruvate indicate that this problem can in principle be overcome by using labeled three-carbon precursors; however, conditions could not be found which would lead to an acceptable yield of isotopically labeled L-glutamate. In contrast, (1-/sup 13/C)- or (2-/sup 13/C)acetate provides relatively inexpensive, readily available precursors for the production of selectively labeled, high enriched L-glutamate. The preparation of L-(/sup 15/N)glutamate from (/sup 15/N)ammonium sulfate was carried out and is a very effective labeling strategy. Analysis of the isotopic distribution in labeled glutamate provides details about the metabolic pathways in these interesting organisms.

  18. An analytical method for hydrogeochemical surveys: Inductively coupled plasma-atomic emission spectrometry after using enrichment coprecipitation with cobalt and ammonium pyrrolidine dithiocarbamate

    USGS Publications Warehouse

    Hopkins, D.M.

    1991-01-01

    Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a

  19. Marking Drosophila suzukii (Diptera: Drosophilidae) With Rubidium or 15N.

    PubMed

    Klick, J; Yang, W Q; Bruck, D J

    2015-06-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) has caused significant economic damage to berry and stone fruit production regions. Markers that are systemic in plants and easily transferred to target organisms are needed to track D. suzukii exploitation of host resources and trophic interactions. High and low concentrations of the trace element, rubidium (Rb), and the stable isotope, 15N, were tested to mark D. suzukii larvae feeding on fruits of enriched strawberry plants grown in containers under greenhouse conditions. Fly marker content and proportion of flies marked 1, 7, and 14 d after emergence from enriched fruits and fly dry mass were analyzed. Nearly 100% of the flies analyzed 14 d after emerging from 15N-enriched plants were marked, whereas only 30-75% and 0-3% were marked 14 d after emerging from high and low Rb concentration plants, respectively. Rapid Rb decay, strong 15N persistence, and the economics of using these markers in the field to elucidate D. suzukii pest ecology are discussed. PMID:26470275

  20. Refining cotton-wick method for 15N plant labelling.

    NASA Astrophysics Data System (ADS)

    Fustec, Joëlle; Mahieu, Stéphanie

    2010-05-01

    The symbiosis Fabaceae/Rhizobiaceae plays a critical role in the nitrogen cycle. It gives the plant the ability to fix high amounts of atmospheric N. A part of this N can be transferred to the soil via rhizodeposition. The contribution of Fabaceae to the soil N pool is difficult to measure, since it is necessary for assessing N benefits for other crops, for soil biological activity, and for reducing water pollution in sustainable agriculture (Fustec, 2009). The aim of this study was to test and improve the reliability of the 15N cotton-wick method for measuring the soil N derived from plant rhizodeposition (Mahieu et al., 2007). The effects of the concentration of the 15N-urea labelling solution and of the feeding frequency (continuous or pulses) on the assessment of nitrogen rhizodeposition were studied in two greenhouse experiments using the field pea (Pisum sativum L.) and the non-nodulating isoline P2. The plant parts and the soil were prepared for 15N:14N measurements for assessing N rhizodeposition (Mahieu et al., 2009). The fraction of plants' belowground nitrogen allocated to rhizodeposition in both Frisson pea and P2 was 20 to more than 50% higher when plants were labelled continuously than when they were labelled using fortnightly pulses. Our results suggested that when 15N root enrichment was high, nitrogen rhizodeposition was underestimated only for plants that were 15N-fed by fortnightly pulses, and not in plants 15N-fed continuously. This phenomenon was especially observed for plants relying on symbiotic N fixation for N acquisition; it may be linked to the concentration of the labelling solution. In conclusion, N rhizodeposition assessment was strongly influenced by the 15N-feeding frequency and the concentration of the labelling solution. The estimation of N rhizodeposition was more reliable when plants were labelled continuously with a dilute solution of 15N urea. Fustec et al. 2009. Agron. Sustain. Dev., DOI 10.1051/agro/2009003, in press. Mahieu

  1. Measuring denitrification after grassland renewal and grassland conversion to cropland by using the 15N gas-flux method

    NASA Astrophysics Data System (ADS)

    Buchen, Caroline; Eschenbach, Wolfram; Flessa, Heinz; Giesemann, Anette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2015-04-01

    Denitrification, the reduction of oxidized forms of inorganic N to N2O and N2 is an important pathway of gaseous nitrogen losses. Measuring denitrification, especially the reduction of N2O to N2, expressed in the product ratio (N2O/(N2O + N2)), is rather difficult and hence rarely performed under field conditions. But using the 15N gas-flux method allows determining N transformation processes in their natural environment. In order to develop effective climate mitigation strategies understanding the N2O source is essential. We used the 15N gas-flux method to determine N2O and N2 emissions following grassland renewal and conversion techniques. Therefore we selected three different treatments: control (C), mechanical grassland renovation (GR) (autumn 2013) and grassland conversion to maize (GM) (spring 2014) from field plot trials on two different sites (Histic Gleysoil and Plaggic Anthrosol) near Oldenburg, Lower Saxony, Germany. We applied 15N labeled KNO3- (60 atom. % 15N) at a rate equivalent to common farming practices (150 kg N*ha-1) using needle injection of fertilizer solution in three different depths (10 cm, 15 cm, 20 cm) for homogeneous soil labeling up to 30 cm in microplots. During the first 10 days after application (May 2014) gas flux measurements from closed chambers were performed every second day and then weekly following a period of 8 weeks. Gas samples were analyzed for δ15N of N2 and N2O by IRMS according to Lewicka-Szczebak et al. (2013). Concentration and 15N enrichment of NO3- in soil water was determined on weekly samples using the SPIN-MAS technique (Stange et al. 2007). Fluxes of N2 and N2O evolved from the 15N labeled soil nitrogen pool were calculated using the equations of Spott et al. (2006). Peak events of N2 and N2O emissions occurred during the first 10 days of measurement, showing differences in soil types, as well as treatment variations. N2 fluxes up to 178 g*ha-1*day-1 and N2O fluxes up to 280 g*ha-1*day-1 were measured on the

  2. Sources and transformations of N in reclaimed coastal tidelands: evidence from soil δ15N data

    NASA Astrophysics Data System (ADS)

    Kwak, Jin-Hyeob; Choi, Woo-Jung; Lim, Sang-Sun; Lee, Seung-Heon; Lee, Sang-Mo; Chang, Scott X.; Jung, Jae-Woon; Yoon, Kwang-Sik; Choi, Soo-Myung

    2008-01-01

    Electrical conductivity of saturated soil extracts (ECe) in three reclaimed tideland (RTL) soils on the west coast of Korea decreased with time since reclamation, indicating natural desalinization through leaching of salts by precipitation water. Soil N concentration increased with decreasing ECe. With the increase in soil N concentration, the δ15N decreased, likely caused by the input of 15N-depleted N sources. As N2-fixing plant species were found in the oldest RTL, atmospheric N2 fixation likely contributed to the increase in soil N concentration in the oldest RTL. Negative δ15N (-7.1 to -2.0‰) of total inorganic N (NH4 ++NO3 -) and published data on N deposition near the study area indicate that atmospheric N deposition might be another source of N in the RTLs. Meanwhile, the consistently negative δ15N of soil NO3 - excluded N input from chemical fertilizer through groundwater flow as a potential N source, since NO3 - in groundwater generally have a positive δ15N. The patterns of δ15N of NH4 + (+2.3 to +5.1‰) and NO3 - (-9.2 to -5.0‰) suggested that nitrification was an active process that caused 15N enrichment in NH4 + but denitrification was probably minimal which would otherwise have caused 15N enrichment in NO3 -. A quantitative approach on N budget would provide a better understanding of soil N dynamics in the studied RTLs.

  3. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    PubMed

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  4. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies

    PubMed Central

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  5. Symbiotic nitrogen fixation in an arid ecosystem measured by sup 15 N natural abundance

    SciTech Connect

    Johnson, G.V. )

    1990-05-01

    Plants dependent on nitrogen fixation have an {sup 15}N abundance similar to the atmosphere, while non-nitrogen fixing plants usually are enriched in {sup 15}N and are similar to soil nitrogen values. The natural abundance of {sup 15}N in leaf tissues and soils was determined to evaluate symbiotic nitrogen fixation by several legumes and actinorhizal species in the Sevilleta Long-term Ecological Research area in central New Mexico. Comparison of {delta}{sup 15}N values for the legume Prosopis glandulosa (mesquite) to adjacent Atriplex canascens (fourwing saltbush) indicated that P. glandulosa obtained 66% of its nitrogen by fixation. The legume Hoffmanseggia jamesii was found to be utilizing soil nitrogen. The {delta}{sup 15}N values for the actinorhizal plants, Elaeagnus angustifolia and Cercocarpus montanus, while below values for soil nitrogen, did not differ from associated non-fixing plants.

  6. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures.

    PubMed

    Winkler, Mari K H; Kleerebezem, Robbert; Kuenen, J Gijs; Yang, Jingjing; van Loosdrecht, Mark C M

    2011-09-01

    A cyclic anaerobic/aerobic bubble column reactor was run for 420 days to study the competition for nitrite between nitrite oxidizing bacteria (NOB) and anaerobic ammonium oxidizing bacteria (Anammox) at low temperatures. An anaerobic feeding period with nitrite and ammonium in the influent followed by an aerated period was applied resulting in a biomass specific conversion rate of 0.18 ± 0.02 [gN(2) - N · gVSS(-1)· day(-1)] when the dissolved oxygen concentration was maintained at 1.0 mgO(2) · L(-1). An increase in white granules was observed in the reactor which were mainly located at the top of the settled sludge bed, whereas red granules were located at the bottom. FISH, activity tests, and qPCR techniques revealed that red biomass was dominated by Anammox bacteria and white granules by NOB. Granules from the top of the sludge bed were smaller and therefore had a higher aerobic volume fraction, a lower density, and consequently a slower settling rate. Sludge was manually removed from the top of the settled sludge bed to selectively remove NOB which resulted in an increased overall biomass specific N-conversion rate of 0.32 ± 0.02 [gN(2) - N · gVSS(-1) · day(-1)]. Biomass segregation in granular sludge reactors gives an extra opportunity to select for specific microbial groups by applying a different SRT for different microbial groups. PMID:21744798

  7. Incorporation of 15N-labeled ammonia into glutamine amide groups by protein-glutaminase and analysis of the reactivity for α-lactalbumin.

    PubMed

    Miwa, Noriko; Shimba, Nobuhisa; Nakamura, Mina; Yokoyama, Keiichi; Nio, Noriki; Suzuki, Eiichiro; Sonomoto, Kenji

    2011-12-28

    Protein-glutaminase (PG) is an enzyme that catalyzes the deamidation of protein-bound glutamine residues. We found that an enzyme labeling technique (ELT), which is a stable isotope labeling method based on transglutaminase (TGase) reaction, is applicable for PG. PG catalyzed incorporation of (15)N-labeled ammonium ions into reactive glutamine amide groups in α-lactalbumin similarly to TGase and deamidated the most reactive glutamine amide group once labeled with (15)N. Furthermore, we investigated the effect of ammonium ions on the PG activity by peptide mapping, and more reactive glutamine residues were detected than were detected by the ELT in the presence of ammonium ions. This is probably because ammonium ions are competitive inhibitors, causing decreased reactivity for glutamine residues. We propose the reaction scheme of PG in the presence of the (15)N-labeled ammonium ions and show that the ELT method with PG is useful for evaluating the activity of PG. PMID:22060122

  8. Plant and Soil Natural Abundance delta-15N: Indicators of Nitrogen Cycling in the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Templer, P. H.; Lovett, G. M.; Weathers, K.; Arthur, M. A.

    2002-12-01

    We examined the potential use of natural abundance 15N of plants and soils as an indicator of forest nitrogen (N) cycling rates within the Catskill Mountains, NY. These watersheds receive among the highest rates of N deposition in the northeastern United States and are beginning to show signs of N saturation. Many studies have shown a link between increased N cycling rates and 15N enrichment of soil and plant pools. Faster rates of N cycling processes, especially nitrification, lead to fractionation of 14/15N, creating N products that are relatively depleted in 15N. This can lead to enrichment of soil pools, as lighter 14N is lost from the system via leaching or denitrification. Plant N pools can become increasingly enriched as they take up 15N-enriched soil N. Despite similar amounts of N deposition across the Catskill Mountains, forests dominated by different tree species appear to vary in the amount of N retained or lost to nearby streams. To determine if plant and soil 15N could be used as indicators of N cycling rates, we collected foliage, wood, litterfall, organic and mineral soil, and fine roots from single species stands of American beech (Fagus grandifolia), eastern hemlock (Tsuga canadensis), red oak (Quercus rubra), and sugar maple (Acer saccharum). Fine roots and soil 15N were highest within sugar maple stands (p<0.05). Sugar maple soils also had the highest rates of net nitrification and N leaching. Therefore, soil 15N appears to correlate with forest N retention and loss. However, 15N enrichment was highest within foliage, litterfall and wood of beech trees (p<0.05). The decoupling between foliage 15N and N cycling, as well as between 15N of foliage and fine roots, illustrates that it may not be possible to use a single plant pool as an indicator of N cycling rates.

  9. Fate and metabolism of [15N]2,4,6-trinitrotoluene in soil.

    PubMed

    Weiss, Martin; Geyer, Roland; Russow, Rolf; Richnow, Hans H; Kästner, Matthias

    2004-08-01

    The fates of the labels from [14C] and [15N] trinitrotoluene were analyzed in bioreactors under aerobic conditions in soil treated by a fungal bioremediation process with Stropharia rugosoannulata and in control soil. Up to 17.5% of the 15N label had a different fate than the 14C label. Three N-mineralization processes were identified in detailed experiments with [15N]TNT. About 2% of the 15N label was found as NO3- and NH4+, showing simultaneous processes of direct TNT denitration (I) and reduction with cleavage of the amino groups (II). The enrichment of NO2-/NO3- (up to 7.5 atom% 15N abundance) indicates the formation of Meisenheimer complexes with a denitration of [15N]TNT. A 1.4% of the label was found distributed between N2O and N2. However, the 15N enrichment of the N2O (up to 38 atom%) demonstrated that both N atoms were generated from the labeled TNT and clearly indicates a novel formation process (III). We propose, as an explanation, the generation of N2O by cleavage from condensed azoxy metabolites. In addition, 1.7% of the 15N label was detected as biogenic amino acids in the wheat straw containing the fungus. Overall, 60 to 85% of the applied [15N]TNT was degraded and 52 to 64% was found as nonextractable residues in the soil matrix. Three percent was detected as 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene. PMID:15352472

  10. Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring

    NASA Astrophysics Data System (ADS)

    Baker, D. M.; Kim, K.; Andras, J. P.; Sparks, J. P.

    2011-09-01

    The stable nitrogen isotope ratio ( δ 15N) of coral tissue is a useful recorder of anthropogenic pollution in tropical marine ecosystems. However, little is known of the natural environmentally induced fractionations that affect our interpretation of coral δ 15N values. In symbiotic scleractinians, light affects metabolic fractionation of N during photosynthesis, which may confound the identification of N pollution between sites of varied depth or turbidity. Given the superiority of octocorals for δ 15N studies, our goal was to quantify the effect of light on gorgonian δ 15N in the context of monitoring N pollution sources. Using field collections, we show that δ 15N declined by 1.4‰ over 20 m depth in two species of gorgonians, the common sea fan, Gorgonia ventalina, and the slimy sea plume, Pseudopterogorgia americana. An 8-week laboratory experiment with P. americana showed that light, not temperature causes this variation, whereby the lowest fractionation of the N source was observed in the highest light treatment. Finally, we used a yearlong reciprocal depth transplant experiment to quantify the time frame over which δ 15N changes in G. ventalina as a function of light regime . Over the year, δ 15N was unchanged and increased slightly in the deep control colonies and shallow colonies transplanted to the deep site, respectively. Within 6 months, colonies transplanted from deep to shallow became enriched by 0.8‰, mirroring the enrichment observed in the shallow controls, which was likely due to the combined effect of an increase in the source δ 15N and reduced fractionation. We conclude that light affects gorgonian δ 15N fractionation and should be considered in sampling designs for N pollution monitoring. However, these fractionations are small relative to differences observed between natural and anthropogenic N sources.

  11. Ammonium acetate

    Integrated Risk Information System (IRIS)

    Ammonium acetate ; CASRN 631 - 61 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  12. Ammonium methacrylate

    Integrated Risk Information System (IRIS)

    Ammonium methacrylate ; CASRN 16325 - 47 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  13. Ammonium sulfamate

    Integrated Risk Information System (IRIS)

    Ammonium sulfamate ; CASRN 7773 - 06 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  14. Long-term 15N tracking from biological N fixation across different plant and humus components of the boreal forest

    NASA Astrophysics Data System (ADS)

    Arroniz-Crespo, Maria; Jones, David L.; Zackrisson, Olle; Nilsson, Marie-Charlotte; DeLuca, Thomas H.

    2014-05-01

    Biological N2 fixation by cyanobacteria associated with feather mosses is an important cog in the nitrogen (N) cycle of boreal forests; still, our understanding of the turnover and fate of N fixed by this association remains greatly incomplete. The 15N signature of plants and soil serves as a powerful tool to explore N dynamics in forest ecosystems. In particular, in the present study we aimed to investigate the contribution of N2 fixation to δ15N signatures of plants and humus component of the boreal forest. Here we present results from a long-term (7 years) tacking of labelled 15N2 across the humus layer, seedlings of the tree species Pinus sylvestris, two common dwarf shrub species (Empetrum hermaphroditum and Vaccinium vitis-idaea) and the feather moss Pleurozium schreibery. The enriched experiment was conducted in 2005 in a natural boreal forest in northern Sweden. Two different treatments (10% 15N2 headspace enrichment and control) were setup in nine different plots (0.5 x 0.5 m) within the forest. We observed a significant reduction of δ15N signature of the 15N-enriched moss that could be explained by a growth dilution effect. Nevertheless, after 5 years since 15N2 enrichment some of the label 15N was still detected on the moss and in particular in the dead tissue. We could not detect a clear transfer of the labelled 15N2 from the moss-cyanobacteria system to other components of the ecosystem. However, we found consistence relationship through time between increments of δ15N signature of some of the forest components in plots which exhibited higher N fixation rates in the moss. In particular, changes in natural abundance δ15N that could be associated with N fixation were more apparent in the humus layer, the dwarf shrub Vaccinium vitis-idaea and the pine seedlings when comparing across plots and years.

  15. Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom.

    PubMed

    Trimmer, Mark; Nicholls, Joanna C; Deflandre, Bruno

    2003-11-01

    Until recently, denitrification was thought to be the only significant pathway for N(2) formation and, in turn, the removal of nitrogen in aquatic sediments. The discovery of anaerobic ammonium oxidation in the laboratory suggested that alternative metabolisms might be present in the environment. By using a combination of (15)N-labeled NH(4)(+), NO(3)(-), and NO(2)(-) (and (14)N analogues), production of (29)N(2) and (30)N(2) was measured in anaerobic sediment slurries from six sites along the Thames estuary. The production of (29)N(2) in the presence of (15)NH(4)(+) and either (14)NO(3)(-) or (14)NO(2)(-) confirmed the presence of anaerobic ammonium oxidation, with the stoichiometry of the reaction indicating that the oxidation was coupled to the reduction of NO(2)(-). Anaerobic ammonium oxidation proceeded at equal rates via either the direct reduction of NO(2)(-) or indirect reduction, following the initial reduction of NO(3)(-). Whether NO(2)(-) was directly present at 800 micro M or it accumulated at 3 to 20 micro M (from the reduction of NO(3)(-)), the rate of (29)N(2) formation was not affected, which suggested that anaerobic ammonium oxidation was saturated at low concentrations of NO(2)(-). We observed a shift in the significance of anaerobic ammonium oxidation to N(2) formation relative to denitrification, from 8% near the head of the estuary to less than 1% at the coast. The relative importance of anaerobic ammonium oxidation was positively correlated (P < 0.05) with sediment organic content. This report of anaerobic ammonium oxidation in organically enriched estuarine sediments, though in contrast to a recent report on continental shelf sediments, confirms the presence of this novel metabolism in another aquatic sediment system. PMID:14602599

  16. Complete fusion of 15N+27Al

    NASA Astrophysics Data System (ADS)

    Prosser, F. W., Jr.; Racca, R. A.; Daneshvar, K.; Geesaman, D. F.; Henning, W.; Kovar, D. G.; Rehm, K. E.; Tabor, S. L.

    1980-05-01

    The total fusion cross section for the system 15N + 27Al has been measured over an energy range 27 MeV<=Elab<=70 MeV by detection of the fusion-evaporation residues. In addition elastic scattering was measured at six energies and fitted by optical model calculations. The fusion cross section for the system saturates at 1150+/-50 mb. The data can be well described by the model of Glas and Mosel, using a reasonable set of parameters. The model of Horn and Ferguson also describes the data well if an appropriate charge radius is used. Comparison is made between these results and the fusion cross sections for 16O + 26Mg and 18O + 24Mg, which lead to the same compound nucleus. The results for 15N + 27Al are quite similar to those for 18O + 24Mg, and the differences between the fusion cross sections for these two systems and those for 16O + 26Mg may be evidence for an entrance channel effect. NUCLEAR REACTIONS 15N+27Al, Elab=27-70 MeV; measured σfusion(E) measured dσdΩ elastic scattering; data fitted with Glas and Mosel model, Horn and Ferguson model.

  17. Determination of nitrogen-15 enrichment of nitrate and nitrite using thermospray liquid chromatography-mass spectrometry

    SciTech Connect

    Hogge, L.R.; Hynes, R.K.; Nelson, L.M.; Vestal, M.L.

    1986-11-01

    A new method has been developed for the determination of percent /sup 15/N enrichment in NO/sub 2//sup -/ and NO/sub 3//sup -/ that is both rapid and sensitive. NO/sub 2//sup -/ and NO/sub 3//sup -/ separation was done by use of reverse-phase liquid chromatography with a mobile phase consisting of ammonium acetate with tetrabutylammonium acetate as the ion pair reagent. The % /sup 15/N in isotopically enriched anions was determined by using thermospray liquid chromatography-mass spectrometry (LC-MS). Enrichment values were obtained on as little as 20 ng of NO/sub 2//sup -/-N/20 ..mu..L and 4 ng of NO/sub 3//sup -/-N/20 ..mu..L. The linear regression curve was plotted for the observed enrichment vs. the actual enrichment over the range from the natural abundance to 25% enrichment for each anion and the equation for the linear regression calculated (y = 1.16x + 0.7577 for NO/sub 2//sup -/ and y = 0.951x + 0.447 for NO/sub 3//sup -/). The coefficient of determination for the NO/sub 2//sup -/ and NO/sub 3//sup -/ curves was 0.988 and 0.987, respectively. The dynamic range of the method was found to be suitable for the range of NO/sub 2//sup -/ and NO/sub 3//sup -/ expected in plant xylem sap. Xylem sap samples obtained from NO/sub 3//sup -/ fed pea, Pisum sativum cv. Homesteader (3.9 ..mu..g of NO/sub 3//sup -/-N/mL, 24.7% /sup 15/N), contained a /sup 15/N enrichment of 25.4% +/- 0.7%.

  18. Production of 15N-depleted biomass during cyanobacterial N2-fixation at high Fe concentrations

    NASA Astrophysics Data System (ADS)

    Zerkle, Aubrey L.; Junium, Christopher K.; Canfield, Donald E.; House, Christopher H.

    2008-09-01

    In this study we examine the effects of varying Fe, Mo, and P concentrations on δ15N fractionation during N2 fixation in the cyanobacterium Anabaena variabilis. We show that when grown in Fe-enriched media ([Fe] ≥ 50 nM), this organism produces biomass up to 3‰ lower in δ15N than when grown in Fe-limited media ([Fe] < 50 nM). A compilation of our data with previous measurements of δ15N in N2-fixing cyanobacteria reveals a general trend toward the production of more 15N-depleted biomass at higher Fe concentrations. We discuss our results in the context of negative δ15N values preserved in Archean and some Phanerozoic sediments, generally attributed to the production of marine organic matter with low δ15N by N2 fixation (and potentially NH4+ regeneration) during periods of fluctuating nutrient dynamics. We suggest that enhanced Fe availability during periods of widespread ocean anoxia can further stimulate the production of 15N-depleted biomass by N2-fixing organisms, contributing to the isotopic record.

  19. Tomato root transcriptome response to a nitrogen-enriched soil patch

    PubMed Central

    2010-01-01

    Background Nitrogen (N), the primary limiting factor for plant growth and yield in agriculture, has a patchy distribution in soils due to fertilizer application or decomposing organic matter. Studies in solution culture over-simplify the complex soil environment where microbial competition and spatial and temporal heterogeneity challenge roots' ability to acquire adequate amounts of nutrients required for plant growth. In this study, various ammonium treatments (as 15N) were applied to a discrete volume of soil containing tomato (Solanum lycopersicum) roots to simulate encounters with a localized enriched patch of soil. Transcriptome analysis was used to identify genes differentially expressed in roots 53 hrs after treatment. Results The ammonium treatments resulted in significantly higher concentrations of both ammonium and nitrate in the patch soil. The plant roots and shoots exhibited increased levels of 15N over time, indicating a sustained response to the enriched environment. Root transcriptome analysis identified 585 genes differentially regulated 53 hrs after the treatments. Nitrogen metabolism and cell growth genes were induced by the high ammonium (65 μg NH4+-N g-1 soil), while stress response genes were repressed. The complex regulation of specific transporters following the ammonium pulse reflects a simultaneous and synergistic response to rapidly changing concentrations of both forms of inorganic N in the soil patch. Transcriptional analysis of the phosphate transporters demonstrates cross-talk between N and phosphate uptake pathways and suggests that roots increase phosphate uptake via the arbuscular mycorrhizal symbiosis in response to N. Conclusion This work enhances our understanding of root function by providing a snapshot of the response of the tomato root transcriptome to a pulse of ammonium in a complex soil environment. This response includes an important role for the mycorrhizal symbiosis in the utilization of an N patch. PMID:20423508

  20. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Geilmann, Heike; Brand, Willi A.; Bohlke, John Karl

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a δ13C value of −26.24‰ relative to VPDB and a δ15N value of −4.52‰ relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a δ13C value of +37.76‰ and a δ15N value of +47.57‰. The δ13C and δ15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (δ13C = +1.95‰), L-SVEC lithium carbonate (δ13C = −46.48‰), IAEA-N-1 ammonium sulfate (δ15N = 0.43‰), and USGS32 potassium nitrate (δ15N = 180‰) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of δ13C is better than 0.13‰, and that of δ15N is better than 0.13‰ in 100-μg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a δ13C value for NBS 22 oil of −29.91‰, in contrast to the commonly accepted value of −29.78‰ for which off-line blank corrections probably have not been quantified satisfactorily.

  1. Regional patterns of 15N natural abundance in forest ecosystems along a large transect in eastern China

    NASA Astrophysics Data System (ADS)

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Liu, Yingchun; Wang, Qiufeng; Chen, Zhi; Zhang, Li

    2014-02-01

    The regional determining factors underlying inter- and intra-site variation of 15N natural abundance in foliage, O horizon and mineral soil were investigated in eastern China.15N natural abundance values for these forest ecosystems were in the middle of the range of values previously found for global forest ecosystems. In contrast to commonly reported global patterns, temperate forest ecosystems were significantly more15N-enriched than tropical forest ecosystems, and foliage δ15N was negatively correlated with increasing mean annual temperature and net soil N mineralisation in eastern China. Tight N cycling in forest ecosystems and the use of atmospheric N deposition by trees might underlie the δ15N distribution patterns in eastern China. The existence of mycorrhizal fungi and root distribution profiles in the soil may also influence the15N natural abundance patterns in forest ecosystems of eastern China.

  2. 15N Content Reflects Development of Mycorrhizae and Nitrogen Dynamics During Primary Succession

    NASA Astrophysics Data System (ADS)

    Hobbie, E. A.; Jumpponen, A.

    2004-05-01

    Mycorrhizal fungi are ubiquitous symbionts on terrestrial plants that are particularly important for plant nitrogen nutrition. 15N content appears to be a useful marker of the mycorrhizal role in plant nitrogen supply because of an apparent fractionation against 15N during transfer of nitrogen from mycorrhizal fungi to host plants. Because plants developing during primary succession are gradually colonized by mycorrhizal fungi, such situations provide good opportunities to study interactions between mycorrhizal colonization and plant 15N content. Here, we present results of a study of nitrogen isotope patterns in ecosystem components during the first 100 years of ecosystem development after glacial retreat, and compare those patterns with those on adjacent mature terrain. Soils in primary succession were depleted in 15N relative to nitrogen-fixing plants. Nonmycorrhizal plants and plants generally colonized by ectomycorrhizal, ericoid, or arbuscular fungi showed similar 15N content very early in succession (-4 to -6‰ ), corresponding to low colonization levels of all plant species. Subsequent colonization of evergreen plants by ectomycorrhizal and ericoid fungi led to a 5-6‰ decline in 15N content, indicating transfer of 15N-depleted N from fungi to plants. The values recorded (-10 to -14‰ ) are among the lowest yet observed in vascular plants. Nonmycorrhizal plants and plants colonized by arbuscular mycorrhizal fungi did not decline in 15N content. Most ectomycorrhizal and saprotrophic fungi were similar in 15N content in early succession (-1 to -3‰ ), with the notable exception of ectomycorrhizal fungi suspected of proteolytic capabilities, which were 15N enriched relative to all other fungi. 15N contents in both plants and soil from the mature site were 5‰ greater than in recently exposed sites. We conclude that 1) the primary nitrogen source to this ecosystem must be atmospheric deposition, 2) low plant 15N content generally corresponds with greater

  3. 15N fractionation in star-forming regions and Solar System objects

    NASA Astrophysics Data System (ADS)

    Wirström, Eva; Milam, Stefanie; Adande, Gilles; Charnley, Steven B.; Cordiner, Martin A.

    2015-08-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristine molecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N/15N ~ 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N/15N < 100.The coherent 15N enrichment in comets from different formation zones suggests that these isotopic enhancements are remnants of the interstellar chemistry in the natal molecular cloud core and the outer protosolar nebula. Indeed, early chemical models of gas-phase ion-molecule nitrogen fractionation showed that HCN and HNC (nitriles) can hold significant 15N enrichments in cold dark clouds where CO is depleted onto dust grains. In addition, 15N fractionation in nitriles and amines (NH2, NH3) follow different chemical pathways. More recently we have shown that once the spin-state dependence in rates of reactions with H2 is included in the models, amines can either be enhanced or depleted in 15N, depending on the core’s evolutionary stage. Observed 15N fractionation in amines and nitriles therefore cannot be expected to be the same, instead their ratio is a potential chemical clock.Observations of molecular isotope ratios in dark cores are challenging. Limited published results in general show higher 15N/14N ratios in HCN and HNC than ammonia, but more measurements are necessary to confirm these trends. We will present recent results from our ongoing observing campaign of 14N/15N isotopic ratios in HCN, HNC and NH3 in dense cores and protostars which seem consistent with significant fractionation in nitriles as compared to other molecules in each object. The few 14N/15N ratios observed in N2H+ are similar to

  4. Compound-Specific δ15N Amino Acid Measurements in Littoral Mussels in the California Upwelling Ecosystem: A New Approach to Generating Baseline δ15N Isoscapes for Coastal Ecosystems

    PubMed Central

    Vokhshoori, Natasha L.; McCarthy, Matthew D.

    2014-01-01

    We explored δ15N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ15N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ15N values showed a strong linear trend with latitude, increasing from North to South (from ∼7‰ to ∼12‰, R2 = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ15N trend is therefore most consistent with a baseline δ15N gradient, likely due to the mixing of two source waters: low δ15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ15N values of phenylalanine (δ15NPhe), the best AA proxy for baseline δ15N values. We hypothesize δ15NPhe values in intertidal mussels can approximate annual integrated δ15N values of coastal phytoplankton primary production. We therefore used δ15NPhe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ15N values. We propose that δ15NPhe isoscapes derived from filter feeders can directly characterize baseline δ15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  5. Insights into Nitrogen Isotopic Fractionation During Algal Assimilation of Nitrate and Ammonium

    NASA Astrophysics Data System (ADS)

    Evans, S. L.; Swart, P. K.; Capo, T. R.

    2008-12-01

    Nitrogen availability is an important factor controlling algal growth in marine environments, representing a limiting nutrient throughout much of the global ocean. Anthropogenic inputs to the coastal zone may shift the nutrient regime, leading to questions regarding the extent of anthropogenic nutrient impacts in near-shore environments. A large body of work has been completed relating the δ15N of algae, seagrasses, and other benthic organisms to anthropogenic nutrient sources. However, previous work by our research group characterizing the δ15N of organic material associated with waste water discharge points, and in reef and embayment environments of the south Florida coastal zone, has suggested that δ15N values alone do not provide unequivocal evidence of anthropogenic nitrogen loading. Greater understanding of nitrogen processing and isotopic fractionation in coastal benthic organisms is necessary before blanket assumptions regarding nutrient uptake and source association can be universally accepted. Closed system mesocosm incubations examining fractionation associated with assimilation of nitrate and ammonium in cultured red algae, Gracilaria sp. and Agardhiella sp., were completed under varied nitrate and ammonium concentrations from 10 to 500 μM with initial nitrogen isotopic compositions of 2.7-3 ‰. Following 8-day incubations, the isotopic composition of new algal growth ranged between +2.43 and -5.77 ‰, with more depleted values coincident with higher N-availability. Rayleigh fractionation calculations yield fractionation factors of 4-9 ‰ (α values of 1.0045 to 1.008), which represent significantly larger values than those previously reported in the literature for macroalgae. 15N-tracer experiments (initial δ15N = 1000 ‰) were also conducted to assess nutrient preferences in the cultured algae. Isotopic composition of new algal growth varied from -1.3 to +495.0 ‰ with only Agardhiella exhibiting an obvious preference for ammonium

  6. Nitrogen Isotopic Ratios in Cometary NH2: Implication for 15N-fractionation in Ammonia

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Jehin, Emmanuël; Decock, Alice; Hutsemékers, Damien; Manfroid, Jean; Arai, Akira

    2015-11-01

    Isotopic ratios in cometary molecules are diagnostic for the physico-chemical conditions where molecules formed and are processed, from the interstellar medium to the solar nebula. Usually temperatures at the molecular formation control the fractionation of the heavier element in molecular species, e.g., D-fractionation in water.In cometary volatiles, the 14N/15N ratios in CN have been well observed (Manfroid et al. 2009, A&A, 503, 613, and reference therein) and is consistent with the ratio in HCN (a most probable parent of CN) measured in few comets (Bockelée-Morvan et al. 2008, ApJ, 679, L49). Those ratios are enriched compared to the proto-solar value by a factor of ~3. In contrast to those Nitriles, there are only few reports on 14N/15N ratios in Ammonia (as Amine) (Rousselot et al. 2014, ApJ, 780, L17; Shinnaka et al. 2014, ApJ, 782, L16). Ammonia (NH3) is usually the most abundant and HCN is the second most abundant N-bearing volatiles in cometary ice. Especially, recent observations of 15NH2 revealed the 14N/15N ratios in NH3 are comparable to those of CN. However, from the viewpoint of theoretical work, the enrichment of 15N in cometary NH3 cannot be reproduced by current chemical network models. Information about the diversity of the 14N/15N ratios in NH3 of individual comets is needed to understand the formation mechanisms/environments of NH3 in the early solar system.To clarify the diversity of the 14N/15N ratios in cometary NH3, we determine the 14N/15N ratios in NH3 for more than ten comets individually which include not only Oort cloud comets but also short period comets by using the high-resolution optical spectra of NH2. These spectra were obtained with both the UVES mounted on the VLT in Chile and the HDS on the Subaru Telescope in Hawaii.The derived 14N/15N ratios in NH3 for more than ten comets show high 15N-enrichment compared with the elemental abundances of nitrogen in the Sun by about factor of ~3 and has no large diversity depending on

  7. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    NASA Astrophysics Data System (ADS)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    unlike previous works analyses for amino acids (representing organic products) rather than ammonium (NH4+) and nitrate (NO3-). Amino acids are commonly referred to as 'the building blocks of life' as they form the proteins which regulate life's essential biochemical reactions. Proteinaceous matter generally comprises 20-40% of total soil N and is ubiquitous in living organisms, so is a likely 'organic product' of microbial activity/assimilation. Hence, we consider it likely that amino acids represent the major organic nitrogenous products and a reasonable 'proxy' for/measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein. Brookes, P. C. et al. Soil Biol Biochem. 1985, 17, 837-842. Jenkinson, D. S. et al. Soil Biol Biochem. 2004, 36, 5-7. Nannipieri, P. et al. Plant Soil. 1999, 208, 43-56. Pilbeam, C. J. et al. J Agr Sci. 1997, 128, 415-424. Sebilo, M. et al. PNAS. 2013, 110, 18185-18189.

  8. Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: Application to 15N relaxations in 15NH4+

    PubMed Central

    Werbeck, Nicolas D.; Hansen, D. Flemming

    2014-01-01

    The equations that describe the time-evolution of transverse and longitudinal 15N magnetisations in tetrahedral ammonium ions, 15NH4+, are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular 15N–1H and 1H–1H dipole–dipole interactions and (2) interactions of the ammonium protons with remote spins, which also include the contribution to the relaxations that arise from the exchange of the ammonium protons with the bulk solvent. The dipole–dipole cross-correlated relaxation mechanisms between each of the 15N–1H and 1H–1H interactions are explicitly taken into account in the derivations. An application to 15N-ammonium bound to a 41 kDa domain of the protein DnaK is presented, where a comparison between experiments and simulations show that the ammonium ion rotates rapidly within its binding site with a local correlation time shorter than approximately 1 ns. The theoretical framework provided here forms the basis for further investigations of dynamics of AX4 spin systems, with ammonium ions in solution and bound to proteins of particular interest. PMID:25128779

  9. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  10. Analysis of the coexisting pathways for NO and N2O formation in Chernozem using the (15)N-tracer SimKIM-Advanced model.

    PubMed

    Stange, Claus Florian; Spott, Oliver; Russow, Rolf

    2013-01-01

    The nitrogen (N) cycle consists of a variety of microbial processes. These processes often occur simultaneously in soils, but respond differently to local environmental conditions due to process-specific biochemical restrictions (e.g. oxygen levels). Hence, soil nitrogen cycling (e.g. soil N gas production through nitrification and denitrification) is individually affected through these processes, resulting in the complex and highly dynamic behaviour of total soil N turnover. The development and application of methods that facilitate the quantification of individual contributions of coexisting processes is a fundamental prerequisite for (i) understanding the dynamics of soil N turnover and (ii) implementing these processes in ecosystem models. To explain the unexpected results of the triplet tracer experiment (TTE) of Russow et al. (Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: results from (15)N tracer experiments. Soil Biol Biochem. 2009;41:785-795) the existing SimKIM model was extended to the SimKIM-Advanced model through the addition of three separate nitrite subpools associated with ammonia oxidation, oxidation of organic nitrogen (Norg), and denitrification, respectively. For the TTE, individual treatments with (15)N ammonium, (15)N nitrate, and (15)N nitrite were conducted under oxic, hypoxic, and anoxic conditions, respectively, to clarify the role of nitric oxide as a denitrification intermediate during N2O formation. Using a split nitrite pool, this analysis model explains the observed differences in the (15)N enrichments in nitric oxide (NO) and nitrous oxide (N2O) which occurred in dependence on different oxygen concentrations. The change from oxic over hypoxic to anoxic conditions only marginally increased the NO and N2O release rates (1.3-fold). The analysis using the model revealed that, under oxic and hypoxic conditions, Norg-based N2O production was the dominant pathway, contributing to 90 and 50

  11. Effects of Four Different Restoration Treatments on the Natural Abundance of 15N Stable Isotopes in Plants

    PubMed Central

    Temperton, Vicky M.; Märtin, Lea L. A.; Röder, Daniela; Lücke, Andreas; Kiehl, Kathrin

    2012-01-01

    δ15N signals in plant and soil material integrate over a number of biogeochemical processes related to nitrogen (N) and therefore provide information on net effects of multiple processes on N dynamics. In general little is known in many grassland restoration projects on soil–plant N dynamics in relation to the restoration treatments. In particular, δ15N signals may be a useful tool to assess whether abiotic restoration treatments have produced the desired result. In this study we used the range of abiotic and biotic conditions provided by a restoration experiment to assess to whether the restoration treatments and/or plant functional identity and legume neighborhood affected plant δ15N signals. The restoration treatments consisted of hay transfer and topsoil removal, thus representing increasing restoration effort, from no restoration measures, through biotic manipulation to major abiotic manipulation. We measured δ15N and %N in six different plant species (two non-legumes and four legumes) across the restoration treatments. We found that restoration treatments were clearly reflected in δ15N of the non-legume species, with very depleted δ15N associated with low soil N, and our results suggest this may be linked to uptake of ammonium (rather than nitrate). The two non-legume species differed considerably in their δ15N signals, which may be related to the two species forming different kinds of mycorrhizal symbioses. Plant δ15N signals could clearly separate legumes from non-legumes, but our results did not allow for an assessment of legume neighborhood effects on non-legume δ15N signals. We discuss our results in the light of what the δ15N signals may be telling us about plant–soil N dynamics and their potential value as an indicator for N dynamics in restoration. PMID:22645597

  12. Nitrogen dynamics in a Western Boundary Upwelling System (Cabo Frio, Brazil) based on δ15N-nitrate and δ15N of sinking particle signals

    NASA Astrophysics Data System (ADS)

    Fontana, L.; Belem, A. L.; Venancio, I.; Duarte, C.; Chiara, S. D.; Albuquerque, A. L.

    2014-12-01

    To improve the efficiency of upwelling to control nitrogen dynamic in the ocean, better understanding of the occurring processes is necessary. This research explores δ15N of nitrate and sinking particles on a western boundary upwelling System (Cabo Frio, Brazil). The Continental Shelf of southeastern Brazil is dominated by the oligotrophic Brazil Current, whose instabilities promote the coastal upwelling of South Atlantic Central Water (SACW), and consequently increases of primary productivity. The coastal upwelling system plays an important role in the nitrogen dynamics on the Cabo Frio Upwelling System (CFUS). However, the interactions between biological induced processes, including biological N-fixation and nitrate inputs from upwelled waters in CFUS still have not been well explored. Then, this study aims clarify N-dynamics on CFUS based on a cross-shelf approach. δ15N-nitrate was characterized for each water masses present on the shelf (South Atlantic Central Water, Tropical Water and Coastal Water) and associated with physicochemical parameters (T/S, nutrients), as well as the δ15N of sinking particles at different depths (from surface to the bottom water). Samples were collected in a time interval of 1 month during ~4 years (2011 to 2014). Cross-shelf gradients of nitrogen species concentration (ammonium + nitrite + nitrate) and stable isotopes were observed. The δ15N of nitrate and sinking particles were interpreted according to the prevailing processes of the N-transformations. Considering the region as N-limited (N:P < 16), processes as biological N-fixation seems to be dominant on oligotrophic Tropical Waters. Coastal upwelled SACW showed δ15N-nitrate signature within the global average of deep ocean (5-6‰) characterizing the inner and mid-shelf conditions, where the input of new nitrate from upwelling is rapidly used by organisms in the euphotic zone without any fractionation. On the other hands, the dominance of N-limited Tropical Waters on the

  13. Quantifying remobilization of pre-existing nitrogen from cuttings to new growth of woody plants using 15N at natural abundance

    PubMed Central

    2013-01-01

    Background For measurements of nitrogen isotope composition at natural abundance, carry-over of pre-existing nitrogen remobilized to new plant growth can cause deviation of measured isotope composition (δ15N) from the δ15Nof newly acquired nitrogen. To account for this problem, a two-step approach was proposed to quantify and correct for remobilized nitrogen from vegetative cuttings of Populus balsamifera L. grown with either nitrate (δ15N = 58.5‰) or ammonium (δ15N = −0.96‰). First, the fraction of carry-over nitrogen remaining in the cutting was estimated by isotope mass balance. Then measured δ15N values were adjusted for the fraction of pre-existing nitrogen remobilized to the plant. Results Mean plant δ15N prior to correction was 49‰ and −5.8‰ under nitrate and ammonium, respectively. Plant δ15N was non-linearly correlated to biomass (r2 = 0.331 and 0.249 for nitrate and ammonium, respectively; P < 0.05) where the δ15N of plants with low biomass approached the δ15N of the pre-existing nitrogen. Approximately 50% of cutting nitrogen was not remobilized, irrespective of size. The proportion of carry-over nitrogen in new growth was not different between sources but ranged from less than 1% to 21% and was dependent on plant biomass and, to a lesser degree, the size of the cutting. The δ15N of newly acquired nitrogen averaged 52.7‰ and −6.4‰ for nitrate and ammonium-grown plants, respectively; both lower than their source values, as expected. Since there was a greater difference in δ15N between the carried-over pre-existing and newly assimilated nitrogen where nitrate was the source, the difference between measured δ15N and adjusted δ15N was also greater. There was no significant relationship between biomass and plant δ15N with either ammonium or nitrate after adjusting for carry-over nitrogen. Conclusion Here, we provide evidence of remobilized pre-existing nitrogen influencing δ15N of new growth of P. balsamifera L

  14. Afforestation impacts microbial biomass and its natural (13)C and (15)N abundance in soil aggregates in central China.

    PubMed

    Wu, Junjun; Zhang, Qian; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-10-15

    We investigated soil microbial biomass and its natural abundance of δ(13)C and δ(15)N in aggregates (>2000μm, 250-2000μm, 53-250μm and <53μm) of afforested (implementing woodland and shrubland plantations) soils, adjacent croplands and open area (i.e., control) in the Danjiangkou Reservoir area of central China. The afforested soils averaged higher microbial biomass carbon (MBC) and nitrogen (MBN) levels in all aggregates than in open area and cropland, with higher microbial biomass in micro-aggregates (<250μm) than in macro-aggregates (>2000μm). The δ(13)C of soil microbial biomass was more enriched in woodland soils than in other land use types, while δ(15)N of soil microbial biomass was more enriched compared with that of organic soil in all land use types. The δ(13)C and δ(15)N of microbial biomass were positively correlated with the δ(13)C and δ(15)N of organic soil across aggregates and land use types, whereas the (13)C and (15)N enrichment of microbial biomass exhibited linear decreases with the corresponding C:N ratio of organic soil. Our results suggest that shifts in the natural (13)C and (15)N abundance of microbial biomass reflect changes in the stabilization and turnover of soil organic matter (SOM) and thereby imply that afforestation can greatly impact SOM accumulation over the long-term. PMID:27285796

  15. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism?

    NASA Astrophysics Data System (ADS)

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-03-01

    Although nitrogen stable isotope ratio (δ15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in δ15N variability. Simultaneous determinations of δ15N of dissolved inorganic nitrogen (DIN) along the land-sea continuum, inter-species variability of δ15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae δ15N in monitoring nitrogen origin in mixed-use watersheds. In this study, δ15N of annual and perennial macroalgae (Ulva sp., Enteromorpha sp., Fucus vesiculosus and Fucus serratus) are compared to δ15N-DIN along the Charente Estuary, after characterizing δ15N of the three main DIN sources (i.e. cultivated area, pasture, sewage treatment plant outlet). During late winter and spring, when human activities produce high DIN inputs, DIN sources exhibit distinct δ15N signals in nitrate (NO) and ammonium (NH): cultivated area (+6.5 ± 0.6‰ and +9.0 ± 11.0‰), pasture (+9.2 ± 1.8‰ and +12.4‰) and sewage treatment plant discharge (+16.9 ± 8.7‰ and +25.4 ± 5.9‰). While sources show distinct δN- in this multiple source catchment, the overall mixture of NO sources - generally >95% DIN - leads to low variations of δN-NO at the mouth of the estuary (+7.7 to +8.4‰). Even if estuarine δN-NO values are not significantly different from pristine continental and oceanic site (+7.3‰ and +7.4‰), macroalgae δ15N values are generally higher at the mouth of the estuary. This highlights high anthropogenic DIN inputs in the estuary, and enhanced contribution of 15N-depleted NH in oceanic waters. Although seasonal variations in δN-NO are low, the same temporal trends in macroalgae δ15N values at estuarine and oceanic sites, and inter-species differences in δ15N values, suggest that macroalgae δ15N values might be modified by the metabolic response of macroalgae to environmental parameters (e

  16. Vertical δ13C and δ15N changes during pedogenesis

    NASA Astrophysics Data System (ADS)

    Brunn, Melanie; Spielvogel, Sandra; Wells, Andrew; Condron, Leo; Oelmann, Yvonne

    2015-04-01

    The natural abundance of soil organic matter (SOM) stable C and N isotope ratios are subjected to vertical changes throughout the soil profile. This vertical distribution is a widely reported phenomenon across varieties of ecosystems and constitutes important insights of soil carbon cycling. In most ecosystems, SOM becomes enriched in heavy isotopes by several per mill in the first few centimeters of the topsoil. The enrichment of 13C in SOM with soil depth is attributed to biological and physical-chemical processes in soil e.g., plant physiological impacts, microbial decomposition, sorption and transport processes. Such vertical trends in 13C and 15N abundance have rarely been related to SOM composition during pedogenesis. The aims of our study were to investigate short and long-term δ13C and δ15N depth changes and their interrelations under progressing pedogenesis and ecosystem development. We sampled soils across the well studied fordune progradation Haast-chronosequence, a dune ridge system under super-humid climate at the West Coast of New Zealand's South Island (43° 53' S, 169° 3' E). Soils from 11 sites with five replicates each covered a time span of around 2870 yr of soil development (from Arenosol to Podzol). Vertical changes of δ13C and δ15N values of SOM were investigated in the organic layers and in 1-cm depth intervals of the upper 10 cm of the mineral soil. With increasing soil depth SOM became enriched in δ13C by 1.9 ± SE 0.1 o and in δ15N by 6.0 ± 0.4 ‰˙Litter δ13C values slightly decreased with increasing soil age (r = -0.61; p = 0.00) likely due to less efficient assimilation linked to nutrient limitations. Fractionation processes during mycorrhizal transfer appeared to affect δ15N values in the litter. We found a strong decrease of δ15N in the early succession stages ≤ 300 yr B.P. (r = -0.95; p = 0.00). Positive relations of vertical 13C and 15N enrichment with soil age might be related to decomposition and appeared to be

  17. Sewage derive [sup 15]N in the Baltic traced in fucus

    SciTech Connect

    Hobbie, J.E.; Fry, B. ); Larsson, U.; Elmgren, R. )

    1990-01-09

    Himmerfjarden, a fjord-like bay on the eastern shore of the Baltic, receives treated sewage from 250,000 inhabitants. Because the inorganic N in the effluent is enriched in [sup 15]N through denitrification, nitrification, and ammonia volatilization, an analysis of the distribution of [sup 15]N in the Bay tells how far from the source the sewage nitrogen moves. The attached macroalga Fucus vesiculosus was collected in early May from rocky shore at 0-0.5 m depth and the [sup 15]N content of the tips of the fronds analyzed. This N represents uptake and storage during the previous six months and growth during March and April. The [delta][sup 15]N was uniformly high (11-13[per thousand]) in the main body of the Bay within 15 km from the sewage source. Beyond 15 km values decreased with distance to a low of 4.6[per thousand] at 35 km, where the Bay ends and the coastal waters begin. Using the 11-13 and 4.6[per thousand] as endmembers, the percentage of sewage N making up the Fucus at any point may be calculated. The [delta][sub 15]N of particulate organic matter in the offshore Baltic waters was around 0[per thousand] and Fucus had an [delta][sup 15]N about 1.5[per thousand] higher than the POM. From this and other evidence we conclude that there is a belt of coastal water with an elevated [delta][sup 15]N lying along the east coast of the Baltic. This presumably derives from sewage and perhaps from agriculture and is potentially of use as a tracer of coastal zone/pelagic zone interactions.

  18. δ15N patterns of Douglas-fir and red alder riparian forests in the Oregon Coast Range

    USGS Publications Warehouse

    Scott, E.E.; Perakis, S.S.; Hibbs, D.E.

    2008-01-01

    We used naturally occurring stable isotopes of N to compare N dynamics in near-stream and upslope environments along riparian catenas in N-fixing red alder (Alnus rubra) and Douglas-fir (Pseudotsuga menziesii) forests in the Coast Range of western Oregon. Based on the existing literature, we expected soil δ15N to be enriched closer to streams owing to inputs of isotopically heavy, marine-derived N by spawning salmon, higher rates of denitrification near the stream, or both. However, it has been unclear what effect red alder might have on soil δ15N patterns near streams. We found a consistent −1‰ δ15N signature in red alder foliage, and δ15N of total N in soils under red alder averaged 2.2‰ along sampling transects extending 20 m upslope from the stream. Surprisingly, δ15N of total N in soil under Douglas-fir was progressively depleted nearer to streams, opposite from the pattern expected from N losses by denitrification or N inputs from anadromous salmon. Instead, δ15N of total N in soil under Douglas-fir converged toward soil δ15N values typical of red alder sites. We consider that the historic presence of red alder may have contributed a legacy of lower soil δ15N nearer to streams on sites that are currently dominated by young Douglas-fir forest.

  19. Cryptic or day-to-day parts of the riverbed N cycle - new challenges for 15N

    NASA Astrophysics Data System (ADS)

    Trimmer, Mark; Ouyang, Liao; Lansdown, Katrina

    2016-04-01

    The discovery of anaerobic ammonium oxidation (anammox) not only changed our understanding of the nitrogen cycle in aquatic ecosystems but it also undermined some of the key 15N techniques used to study it. Reformulations of principle equations and the development of new 15N2 and 15N2O techniques enabled the simultaneous quantification of N2 production by anammox and denitrification in mainly soft, cohesive sediments where redox gradients are clearly defined and solute exchanged governed by diffusion. At the heart of the application of 15N, for the quantification of natural 14N cycling, is the key assumption that the respective pools of 15N and 14N are evenly mixed and that both are cycled without bias towards each other. Recent evidence, however, from a variety of aquatic ecosystems, suggests that this may not be the case. For example, organic N may be oxidised directly to N2 gas without ever mixing with the inorganic pool or inorganic intermediates (e.g. nitrite) are 'shunted' internally and also fail to mix evenly with the applied tracer pool. Our most recent work in permeable, oxic gravel riverbeds presents some particular challenges to the application of 15N. In these systems, a tight coupling between aerobic nitrification and anaerobic N2 production - in the presence of 100

  20. Variation in foliar [sup 15]N abundance and the availability of soil nitrogen on Walker Branch Watershed

    SciTech Connect

    Garten, C.T. Jr. )

    1993-10-01

    Spatial patterns in natural [sup 15]N abundance ([sigma][sup 15]N) in soil, soil solutions, and non-N[sub 2]-fixing plants were studied in the deciduous forest on Walker Branch Watershed near Oak Ridge, Tennessee. This study was undertaken to test the hypothesis that foliar [sigma][sup 15]N values are related to the availability of inorganic nitrogen in mineral soil. Soils collected in or near valley bottoms on the watershed had higher levels of net nitrogen mineralization and net nitrification potential than those sampled from ridges and slopes. More positive foliar [sigma][sup 15]N values occurred in valley bottoms, which, relative to other positions on the watershed, were characterized by greater availability of soil nitrogen and lower C-to-N ratios in the O[sub 1]-horizon, in the surface mineral soil, and in autumn leaf fall. Although leaf nitrogen concentrations changed significantly over the course of the growing season, there was little seasonal variation in foliar [sigma][sup 15]N values. A hypothesis about the relative importance of different sources of nitrogen to the forest and how nitrogen cycling varies with topography in this nitrogen-deficient ecosystem was derived, in part, from spatial patterns in natural [sup 15]N abundance. There appear to be two processes affecting the topographic patterns in foliar [sup 15]N abundance on this watershed: (1) greater uptake from isotopically heavy pools of inorganic soil nitrogen by plants in valley bottoms, and (2) uptake of isotopically light ammonium-N in atmospheric deposition by plants on ridges and slopes (where the availability of inorganic soil nitrogen to plant roots is more limited). Results from this study indicate that foliar [sigma][sup 15]N values are positively correlated with net nitrification potential in surface soil. 34 refs., 13 figs., 8 tabs.

  1. Review: Mechanisms of ammonium toxicity and the quest for tolerance.

    PubMed

    Esteban, Raquel; Ariz, Idoia; Cruz, Cristina; Moran, Jose Fernando

    2016-07-01

    Ammonium sensitivity of plants is a worldwide problem, constraining crop production. Prolonged application of ammonium as the sole nitrogen source may result in physiological and morphological disorders that lead to decreased plant growth and toxicity. The main causes of ammonium toxicity/tolerance described until now include high ammonium assimilation by plants and/or low sensitivity to external pH acidification. The various ammonium transport-related components, especially the non-electrogenic influx of NH3 (related to the depletion of (15)N) and the electrogenic influx of NH4(+), may contribute to ammonium accumulation, and therefore to NH3 toxicity. However, this accumulation may be influenced by increasing K(+) concentration in the root medium. Recently, new insights have been provided by "omics" studies, leading to a suggested involvement of GDP mannose-pyrophosphorylase in the response pathways of NH4(+) stress. In this review, we highlight the cross-talk signaling between nitrate, auxins and NO, and the importance of the connection of the plants' urea cycle to metabolism of polyamines. Overall, the tolerance and amelioration of ammonium toxicity are outlined to improve the yield of ammonium-grown plants. This review identifies future directions of research, focusing on the putative importance of aquaporins in ammonium influx, and on genes involved in ammonium sensitivity and tolerance. PMID:27181951

  2. Community 15N isoscapes to resolve plant-plant-interactions at the spatial scale

    NASA Astrophysics Data System (ADS)

    Hellmann, Christine; Rascher, Katherine G.; Máguas, Cristina; Werner, Christiane

    2014-05-01

    Isoscapes have greatly improved our ability to understand biogeochemical processes on continental to global scales. However, the isoscapes framework may also have significant potential to resolve the spatial component of within-community interactions. For example, exotic plant invaders often exert strong impacts on ecosystem functioning, particularly regarding water-, carbon- and nutrient-cycles, but the spatial extent of such alterations is largely unknown. Here we show that massive N input by the N2-fixing exotic invasive Acacia longifolia to a Portuguese dune system can be traced using spatially resolved information on native plants' leaf δ15N. We found isotopic signatures of N to differ strongly between the native system (δ15N c. -10 o) and the atmospherically derived N in A. longifolia phyllodes (δ15N c. 0 o). Thus, sources of N for native plants could be readily distinguished. Leaf δ15N of a native, non-fixing species was increasingly enriched the closer the plant grew to the invader, indicating uptake of fixed N provided by A. longifolia. The enrichment was evident far beyond the stands of the invader, demonstrating that A. longifolia affected N budgets of native species up to a distance of 8 m exceeding the margin of the canopy. Furthermore, using the isoscapes approach, we were able to quantify the total area of N enrichment and could thus show that the area affected by invasion was at least 3.5 times larger than the area actually occupied by the invader. However, a native N2-fixing species had no such effects. Thus, downscaling isoscapes to the community level opens new frontiers in quantifying the spatial dimension of functional changes associated with plant invasions. Moreover, considering the feasibility and applicability of this approach, it may provide a promising tool to identify, quantify and monitor different types of functional plant-plant interactions within communities at a spatially explicit scale.

  3. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies

    USGS Publications Warehouse

    Templer, P.H.; Mack, M.C.; Chapin, F. S., III; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.

    2012-01-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  4. Assimilation of ammonium and nitrate nitrogen by bean plants

    SciTech Connect

    Volk, R.J. ); Chaillou, S.; Morot-Gaudry, J.F. ); Mariotti, A. )

    1989-04-01

    Enhanced growth is often observed in plants growing on combined ammonium and nitrate nutrition. The physiological basis for such enhancement was examined by exposing non-nodulated bean (Phaseolus vulgaris L.) plants to {sup 15}N-labeled, 1.0 mM N solutions containing 0, 33, 67 or 100% of the N as ammonium, the balance being nitrate. Maximal total N uptake and biomass production were attained by plants receiving 33% ammonium. A higher proportion of incoming ammonium than nitrate was incorporated into root protein. This was accompanied by increased partitioning of plant biomass to roots. It was concluded that as a consequence of greater N metabolism in the root under mixed ammonium and nitrate nutrition, the root became a more active sink for photosynthate. Concurrently, the augmented supply of N to the shoot enhanced net photosynthesis as reflected in increased plant biomass.

  5. Compound-specific δ15N and chlorin preservation in surface sediments of the Peru Margin with implications for ancient bulk δ15N records

    NASA Astrophysics Data System (ADS)

    Junium, Christopher K.; Arthur, Michael A.; Freeman, Katherine H.

    2015-07-01

    Understanding the processes that control the preservation of paleoceanographic proxies is of clear importance. Surface sediments from the Peru Margin oxygen-minimum zone are subject to lateral and downslope transport by bottom currents that decrease organic matter (OM) quality. Indicators of bulk OM quality (pyrolysis hydrogen index, pyrolysis S1 + S2 and C/N) demonstrate significant degradation between 150 and 400 m water depth, within the oxygen-minimum zone. Concentrations of the three most abundant chlorins (chlorophyllone, pheophytin and pyropheophytin) decrease from 750 to 150 nmol g TOC-1 from 150 to 400 m water depth though the relative abundances of the chlorins in an individual sample do not change. This suggests that the three chlorins have similar reactivity over the ambient conditions. Values for δ15N of bulk sediments (δ15Nbulk) decrease by 3‰ from the inner shelf to the upper slope (1000 m) but co-occurring compound-specific δ15N values (δ15Nchlorin) do not decrease downslope. The low variability of δ15Nchlorin values supports a single source for the chlorins, and demonstrates the recalcitrance of δ15Nchlorin values despite degradation. This set of observation raises questions about which type of OM fraction best records 'primary' signatures. We assess two possible models to guide our interpretation of these disparate datasets (1) that decreasing δ15Nbulk values are the result of degradation of a 15N-enriched fraction during downslope transport, and that δ15Nchlorin values reflect primary values; (2) that δ15Nbulk values are primary and that chlorins are derived from material transported from upslope. These data reaffirm that in active sedimentary environments such as the Eastern Tropical Pacific, transport of OM can significantly alter bulk geochemical parameters of OM integrity, but the impacts on the δ15N record of bulk sediments and chlorins are less clear, and require more study to be thoroughly understood.

  6. Mycorrhizal Fungi Provide Most of the Nitrogen for Symbiotic Arctic Plants: 15N Evidence

    NASA Astrophysics Data System (ADS)

    Hobbie, J. E.; Hobbie, E. A.

    2004-12-01

    When soil nitrogen is in short supply, most terrestrial plants form symbioses with fungi (mycorrhizae) in which fine hyphal threads take up soil nitrogen, transport it into plant roots, and in return receive plant sugars. Because the transfer rates are very difficult to measure in nature, ecologists need new tools by which to assess the role of mycorrhizal fungi in carbon and nitrogen cycling. Recent studies indicate that the natural abundance of 15N taken up from the soil by hyphae is changed during transfer of nitrogen to roots; the result is large differences among the natural abundance of 15N in soil, symbiotic plants, and symbiotic fungi that depend on the mass balance of nitrogen in the mycorrhizal symbiosis. Measurements were carried out in acidic tussock tundra at the Toolik Lake LTER site in Arctic Alaska (68\\deg N 149\\deg W). The \\delta15N of soil N was 1.5%, of soil ammonium was 1.5%, of ericoid and ectomycorrhizal plants was -5.0%, and of ectomycorrhizal fungi was 7.0 parts per mille%. The mass balance of the 15N shows that the plants received 61-86% of their nitrogen from the fungal hyphae. These values, when combined with known plant growth rates, reveal that the plants provided 7-16% of their photosynthetic carbon to the fungi for growth and respiration, or about 25% of all carbon allocated to belowground processes. This analytical technique could be readily applied to other nitrogen-limited ecosystems such as many temperate and boreal forests to quantify the importance for terrestrial carbon and nitrogen cycling of mycorrhizally mediated transfers at the plant-soil interface.

  7. (15)N NMR studies of a nitrile-modified nucleoside.

    PubMed

    Gillies, Anne T; Gai, Xin Sonia; Buckwalter, Beth L; Fenlon, Edward E; Brewer, Scott H

    2010-12-30

    Nitrile-modified molecules have proven to be excellent probes of local environments in biomolecules via both vibrational and fluorescence spectroscopy. The utility of the nitrile group as a spectroscopic probe has been expanded here to (15)N NMR spectroscopy by selective (15)N incorporation. The (15)N NMR chemical shift (δ((15)N)) of the (15)N-labeled 5-cyano-2'-deoxyuridine (C(15)NdU, 1a) was found to change from 153.47 to 143.80 ppm in going from THF-d(8) to D(2)O. A 0.81 ppm downfield shift was measured upon formation of a hydrogen-bond-mediated heterodimer between 2,6-diheptanamidopyridine and a silyl ether analogue of 1a in chloroform, and the small intrinsic temperature dependence of δ((15)N) of C(15)NdU was measured as a 0.38 ppm downfield shift from 298 to 338 K. The experiments were complemented with density functional theory calculations exploring the effect of solvation on the (15)N NMR chemical shift. PMID:21126044

  8. δ15N in the turtle grass from the Mexican Caribbean

    NASA Astrophysics Data System (ADS)

    Talavera-Saenz, A.; Sanchez, A.; Ortiz-Hernandez, M.

    2013-05-01

    Nutrient inputs associated with population growth threaten the integrity of coastal ecosystems. To assess the rapid increase in tourism, we compared the δ15N from Thalassia testudinum collected at sites with different levels of tourism development and population to detect the N inputs of wastewater discharge (WD) along the coast of Quintana Roo. The contributions of nitrogen enriched in 15N are directly related to the increase of WD inputs in areas of high tourism development (Nichupte Lagoon in Cancun, >3 million tourists per year from 2007 to 2011 and 0.7 million of resident population) and decreased towards Bahia Akumal and Tulum (>3 million tourists per year from 2007 to 2011 and 0.15 million of resident population). The δ15N from T. testudinum was significantly lower at Mahahual and Puerto Morelos (about 0.4 million tourists per year in 2007 to 2011 and 0.25 million of resident population) than other the sites. In areas of the lowest development and with tourist activity restricted and small population, such as the Yum Balam Reserve and Sian Ka'an Biosphere Reserve, the δ15N values were in much higher enrichment that Mahahual and Puerto Morelos. Therefore is suggested that Mahahual and Puerto Morelos may be used for baseline isotopic monitoring, over environmental pressure on the reef lagoon ecosystem, where tourist activities and population are growing very slow rate. The anthropogenic N input has the potential to impact, both environmentally and economically, the seagrass meadows and the coral reefs along the coast of Quintana Roo and the Caribbean.

  9. Electron Shuttles Enhance Anaerobic Ammonium Oxidation Coupled to Iron(III) Reduction.

    PubMed

    Zhou, Guo-Wei; Yang, Xiao-Ru; Li, Hu; Marshall, Christopher W; Zheng, Bang-Xiao; Yan, Yu; Su, Jian-Qiang; Zhu, Yong-Guan

    2016-09-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction, termed Feammox, is a newly discovered nitrogen cycling process. However, little is known about the roles of electron shuttles in the Feammox reactions. In this study, two forms of Fe(III) (oxyhydr)oxide ferrihydrite (ex situ ferrihydrite and in situ ferrihydrite) were used in dissimilatory Fe(III) reduction (DIR) enrichments from paddy soil. Evidence for Feammox in DIR enrichments was demonstrated using the (15)N-isotope tracing technique. The extent and rate of both the (30)N2-(29)N2 and Fe(II) formation were enhanced when amended with electron shuttles (either 9,10-anthraquinone-2,6-disulfonate (AQDS) or biochar) and further simulated when these two shuttling compounds were combined. Although the Feammox-associated Fe(III) reduction accounted for only a minor proportion of total Fe(II) formation compared to DIR, it was estimated that the potentially Feammox-mediated N loss (0.13-0.48 mg N L(-1) day(-1)) was increased by 17-340% in the enrichments by the addition of electron shuttles. The addition of electron shuttles led to an increase in the abundance of unclassified Pelobacteraceae, Desulfovibrio, and denitrifiers but a decrease in Geobacter. Overall, we demonstrated a stimulatory effect of electron shuttles on Feammox that led to higher N loss, suggesting that electron shuttles might play a crucial role in Feammox-mediated N loss from soils. PMID:27494694

  10. Isolation and measurement of 15N2 from respiratory gases of animals administered 15N-labeled substances.

    PubMed

    Springer, D L; Reed, D J; Dost, F N

    1981-01-01

    A method is described for collection of metabolic 15N2 from in vitro preparations or intact rats administered 15N-containing compounds. The methods enables routine collection and mass spectrometric measurement of as little as 10 mumol 15N2 respired by a rat over a 24-h period. A device is described that includes either an animal chamber or a tissue reaction vessel in a closed recycling atmosphere, with automatic O2 replenishment and removal of CO2 and water. It is capable of sustaining moderate vacuum and is coupled to a high-vacuum manifold designed to process the contained atmosphere and respiratory gases. The starting atmosphere is an 80:20 mix of sulfur hexafluoride and O2. Recovery of 15N2 gas from the system without an animal present was 101.3 +/- 5.75%. When 15N2 gas was very slowly infused iv into an animal, recovery was 89.1 +/- 5.38%. Use of the method in studies of the fate of [15N]hydrazine in rats indicated that about 15% of the administered hydrazine is rapidly converted to 15N2, followed by slower conversion of an additional 7-10% over the next several hours. PMID:7328697

  11. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies.

    PubMed

    Nikonowicz, E P; Sirr, A; Legault, P; Jucker, F M; Baer, L M; Pardi, A

    1992-09-11

    A procedure is described for the efficient preparation of isotopically enriched RNAs of defined sequence. Uniformly labelled nucleotide 5'triphosphates (NTPs) were prepared from E.coli grown on 13C and/or 15N isotopically enriched media. These procedures routinely yield 180 mumoles of labelled NTPs per gram of 13C enriched glucose. The labelled NTPs were then used to synthesize RNA oligomers by in vitro transcription. Several 13C and/or 15N labelled RNAs have been synthesized for the sequence r(GGCGCUUGCGUC). Under conditions of high salt or low salt, this RNA forms either a symmetrical duplex with two U.U base pairs or a hairpin containing a CUUG loop respectively. These procedures were used to synthesize uniformly labelled RNAs and a RNA labelled only on the G and C residues. The ability to generate milligram quantities of isotopically labelled RNAs allows application of multi-dimensional heteronuclear magnetic resonance experiments that enormously simplify the resonance assignment and solution structure determination of RNAs. Examples of several such heteronuclear NMR experiments are shown. PMID:1383927

  12. Insight on RDX degradation mechanism by Rhodococcus strains using 13C and 15N kinetic isotope effects.

    PubMed

    Bernstein, Anat; Ronen, Zeev; Gelman, Faina

    2013-01-01

    The explosive Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is known to be degraded aerobically by various isolates of the Rhodococcus species, with denitration being the key step, mediated by Cytochrome P450. Our study aimed at gaining insight into the RDX degradation mechanism by Rhodococcus species and comparing isotope effects associated with RDX degradation by distinct Rhodococcus strains. For these purposes, enrichment in (13)C and (15)N isotopes throughout RDX denitration was studied for three distinct Rhodococcus strains, isolated from soil and groundwater in an RDX-contaminated site. The observable (15)N enrichment throughout the reaction, together with minor (13)C enrichment, suggests that N-N bond cleavage is likely to be the key rate-limiting step in the reaction. The similarity in the kinetic (15)N isotope effect between the three tested strains suggests that either isotope-masking effects are negligible, or are of a similar extent for all tested strains. The lack of variability in the kinetic (15)N isotope effect allows the interpretation of environmental studies with greater confidence. PMID:23215036

  13. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  14. Compound-specific 15N stable isotope probing of N assimilation by the soil microbial biomass: a new methodological paradigm in soil N cycling

    NASA Astrophysics Data System (ADS)

    Charteris, A. F.; Knowles, T. D. J.; Michaelides, K.; Evershed, R. P.

    2015-10-01

    A compound-specific nitrogen-15 stable isotope probing (15N-SIP) technique is described which allows investigation of the fate of inorganic- or organic-N amendments to soils. The technique uses gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) to determine the δ15N values of individual amino acids (AAs; determined as N-acetyl, O-isopropyl derivatives) as proxies of biomass protein production. The δ15N values are used together with AA concentrations to quantify N assimilation of 15N-labelled substrates by the soil microbial biomass. The utility of the approach is demonstrated through incubation experiments using inorganic 15N-labelled substrates ammonium (15NH4+) and nitrate (15NO3-) and an organic 15N-labelled substrate, glutamic acid (15N-Glu). Assimilation of all the applied substrates was undetectable based on bulk soil properties, i.e. % total N (% TN), bulk soil N isotope composition and AA concentrations, all of which remained relatively constant throughout the incubation experiments. In contrast, compound-specific AA δ15N values were highly sensitive to N assimilation, providing qualitative and quantitative insights into the cycling and fate of the applied 15N-labelled substrates. The utility of this 15N-AA-SIP technique is considered in relation to other currently available methods for investigating the microbially-mediated assimilation of nitrogenous substrates into the soil organic N pool. This approach will be generally applicable to the study of N cycling in any soil, or indeed, in any complex ecosystem.

  15. Novel labeling technique illustrates transfer of 15N2 from Sphagnum moss to vascular plants via diazotrophic nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Vile, M. A.; Wieder, R.

    2013-12-01

    transferred to P. mariana roots (mean δ15N at 1 and 2 months of 15.26 × 3.30 and 16.19 × 1.21) more than shoots (mean δ15N at 1 and 2 months of 6.57 × 0.52 and 4.67×0.17) (initial δ15N values of roots and shoots of 2.16 × 0.37 and 5.54 × 0.35, respectively). Nitrogen also was transferred to V. oxycoccos roots (δ15N at 2 months of 21.46 × 3.61) more than shoots (δ15N 2 months of -2.17 × 0.23) (initial δ15N values of roots and shoots of -6.41 × 0.21 and -6.85 × 0.15, respectively). A two-way ANOVA and Tukey's HSD verified that both vascular plants' roots were significantly enriched with 15N (P. mariana roots; p < 0.0001, V. oxycoccus roots; p < 0.0001) after 1 month. These results indicate that bog vascular plants may derive considerable nitrogen from biological N2-fixation taking place in Sphagnum moss capitula. The experiment was subsequently repeated in-situ.

  16. Food webs in Mongolian grasslands: the analysis of 13C and 15N natural abundances.

    PubMed

    Kohzu, Ayato; Iwata, T; Kato, M; Nishikawa, J; Wada, Eitaro; Amartuvshin, N; Namkhaidorj, B; Fujita, N

    2009-09-01

    Overgrazing often lowers species richness and productivity of grassland communities. For Mongolian grassland ecosystems, a lack of detailed information about food-web structures makes it difficult to predict the effects of overgrazing on species diversity and community composition. We analysed the delta13C and delta15N signatures of herbaceous plants, arthropods (grouped by feeding habit), wild and domestic mammals, and humans in central Mongolia to understand the predominant food-web pathways in this grassland ecosystem. The delta13C and delta15N values of mammals showed little variation within species, but varied considerably with slope position for arthropods. The apparent isotopic discrimination between body tissue and hair of mammals was estimated as 2.0 per thousand for delta13C and 2.1 per thousand for delta15N, which was large enough to cause overestimation of the trophic level of mammals if not taken into account when using hair samples to measure isotopic enrichment. PMID:19507080

  17. Using δ15N of Chironomidae as an index of nitrogen sources and processing within watersheds as part of EPA's National Aquatic Resource Surveys

    NASA Astrophysics Data System (ADS)

    Brooks, J. R.; Compton, J.; Herlihy, A.; Sobota, D. J.; Stoddard, J.; Weber, M.

    2014-12-01

    Nitrogen (N) removal in watersheds is an important regulating ecosystem service that can help reduce N pollution in the nation's waterways. However, processes that remove N such as denitrification are generally determined at point locations. Measures that integrate N processing within watersheds and over time would be particularly useful for assessing the degree of this vital service. Because most N removal processes isotopically enrich the N remaining, δ15N from basal food-chain organisms in aquatic ecosystems can provide information on watershed N processing. As part of EPA's National Aquatic Resource Surveys (NARS), we measured δ15N of Chironomidae in lakes, rivers and streams because these larval aquatic insects were found in abundance in almost every lake and stream in the U.S. Using information on nitrogen loading to the watershed, and total N concentrations within the water, we assessed when elevated chironomid δ15N would indicate N removal rather than possible enriched sources of N. Chironomid δ15N values ranged from -4 to +20 ‰, and were higher in rivers and streams than in lakes (median = 7.6 ‰ vs. 4.8 ‰, respectively), indicating that N was processed to a greater degree in lotic chironomids than in lentic ones. For both, δ15N increased with watershed-level agricultural land cover and N loading, and decreased as precipitation increased. In rivers and streams with high synthetic N loading, we found lower N concentrations in streams with higher chironomid δ15N values, suggesting greater N removal. At low levels of synthetic N loading, the pattern reversed, and streams with enriched chironomid δ15N had higher N concentrations, suggesting enriched sources such as manure or sewage. Our results indicate that chironomid δ15N values can provide valuable information about watershed-level N inputs and processing for national water quality monitoring efforts.

  18. Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by 1H-detected 15N NMR

    PubMed Central

    Lane, Andrew N.; Arumugam, Sengodagounder; Lorkiewicz, Pawel K.; Higashi, Richard M.; Laulhé, Sébastien; Nantz, Michael H.; Moseley, Hunter N.B.; Fan, Teresa W.-M.

    2015-01-01

    NMR spectra of mixtures of metabolites extracted from cells or tissues are extremely complex, reflecting the large number of compounds that are present over a wide range of concentrations. Although multidimensional NMR can greatly improve resolution as well as improve reliability of compound assignments, lower abundance metabolites often remain hidden. We have developed a carbonyl selective aminooxy probe that specifically reacts with free keto and aldehyde functions, but not carboxylates. By incorporating 15N in the aminooxy functional group, 15N-edited NMR was used to select exclusively those metabolites that contain a free carbonyl function while all other metabolites are rejected. Here we demonstrate that the chemical shifts of the aminooxy adducts of ketones and aldehydes are very different, which can be used to discriminate between aldoses and ketoses for example. Utilizing the 2 or 3 bond 15N-1H couplings, the 15N-edited NMR analysis was optimized first with authentic standards and then applied to an extract of the lung adenocarcinoma cell line A549. More than 30 carbonyl containing compounds at NMR detectable levels, 6 of which we have assigned by reference to our database. As the aminooxy probe contains a permanently charged quaternary ammonium group, the adducts are also optimized for detection by mass spectrometry. Thus, this sample preparation technique provides a better link between the two structural determination tools, thereby paving the way to faster and more reliable identification of both known and unknown metabolites directly in crude biological extracts. PMID:25616249

  19. Selective observation of biologically important 15N-labeled metabolites in isolated rat brain and liver by 1H-detected multiple-quantum-coherence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.; Parivar, Farhad

    Four cerebral metabolites of importance in neurotransmission, serotonin, L-tryptophan, L-glutamine, and N-acetyl- L-aspartate, and two hepatic urea-cycle intermediates, citrulline and urea, were found to be observable by 1H- 15N heteronuclear multiple-quantum-coherence (HMQC) spectroscopy in aqueous solution at physiological pH and temperature, through the protons spin-coupled to their indole, amide, or ureido nitrogen. Their 1H chemical shifts were well dispersed over a 5-10 ppm region while the 1J 15N- 1H values were 87-99 Hz. For [γ- 15N]glutamine, a 50- to 100-fold increase in sensitivity over direct 15N detection was achieved, in contrast to a 2-fold increase by the polarization-transfer method. In the isolated brain of portacaval-shunted rats, the amide protons of biologically 15N-enriched [γ- 15N]glutamine were observed in 2 min of acquisition, with suppression of proton signals from all other cerebral metabolites. In isolated liver of 15N-enriched control rats, [ 15NIurea protons were observed in 16 min. The HMQC method is likely to be effective for the in vivo study of cerebral and hepatic nitrogen metabolism.

  20. Isotopic characterization of nitrate, ammonium and sulfate in stack PM2.5 emissions in the Athabasca Oil Sands Region, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Proemse, Bernadette C.; Mayer, Bernhard; Chow, Judith C.; Watson, John G.

    2012-12-01

    Stable isotope techniques may be a suitable tool for tracing industrial emissions in the atmosphere and the environment provided that the isotopic compositions of industrial emissions are distinct. We determined the isotopic compositions of nitrate, ammonium and sulfate in PM2.5 emitted from two industrial stacks at a large upgrader site in the Athabasca oil sands region (AOSR), northeastern Alberta, Canada, and compared them to the nitrogen and sulfur isotopic compositions of source materials and upgrading by-products. We found distinct isotopic compositions of nitrate and ammonium in PM2.5 compared to those reported for atmospheric nitrate and ammonium in the literature. Nitrate in PM2.5 had δ15N values of 9.4‰ (Stack A) and 16.1 ± 1.2‰ (Stack B) that were significantly enriched in 15N compared to the feedstock materials (˜2.5‰), by-products of upgrading (-0.3-1.3‰), and atmospheric N2 (0‰). δ15N of ammonium in PM2.5 showed a large range with values between - 4.5 to +20.1‰ (Stack B). We report the first measurements of the triple oxygen isotopic composition of industrial emitted nitrate. Nitrate emitted as PM2.5 is not mass-independently enriched in 17O resulting in Δ17O = 0.5 ± 0.9‰ (Stack B) and is therefore distinct from atmospheric nitrate, constituting an excellent indicator of industrial derived nitrate. δ18O values of nitrate in PM2.5 (36.0 and 17.6 ± 1.8‰ for Stack A and B, respectively) were also significantly lower than δ18O values of atmospheric nitrates and hence isotopically distinct. δ34S values of sulfate in PM2.5 were with 7.3 ± 0.3‰ (Stack A) and 9.4 ± 2.0‰ (Stack B) slightly enriched in 34S compared to δ34S in bitumen (4.3 ± 0.3‰) and coke (3.9 ± 0.2‰). δ18O values of sulfate in PM2.5 were 18.9 ± 2.9‰ and 14.2 ± 2.8‰ for Stack A and Stack B, respectively. The isotopic composition of sulfate in PM2.5 was not sufficiently different from δ34S and δ18O values of sulfate in long-range atmospheric

  1. Trophic guilds of generalist feeders in soil animal communities as indicated by stable isotope analysis (15N/14N).

    PubMed

    Oelbermann, K; Scheu, S

    2010-10-01

    We investigated if the commonly used aggregation of organisms into trophic guilds, such as detritivores and predators, in fact represent distinct trophic levels. Soil arthropods of a forest-meadow transect were ascribed a priori to trophic guilds (herbivores, detritivores, predators and necrovores), which are often used as an equivalent to trophic levels. We analysed natural variations in 15N/14N ratios of the animals in order to investigate the trophic similarity of organisms within (a priori defined) trophic guilds. Using trophic guilds as an equivalent to trophic level, the assumed stepwise enrichment of 15N by 3.4 per thousand per trophic level did not apply to detritivores; they were only enriched in 15N by on average 1.5 per thousand compared to litter materials. Predators on average were enriched in 15N by 3.5 per thousand compared to detritivores. Within detritvores and predators delta15N signatures varied markedly, indicating that these trophic guilds are dominated by generalist feeders which form a gradient of organisms feeding on different resources. The results indicate that commonly used trophic guilds, in particular detritivores and predators, do not represent trophic levels but consist of subguilds, i.e. subsets of organisms differing in resource utilization. In particular, in soil and litter food webs where trophic level omnivory is common, the use of distinct trophic levels may be inappropriate. Guilds of species delineated by natural variations of stable isotope ratios are assumed to more adequately represent the structure of litter and soil food webs allowing a more detailed understanding of their functioning. PMID:20109270

  2. Difference in delta(15)N signatures between nodulated roots and shoots of soybean is indicative of the contribution of symbiotic N(2) fixation to plant N.

    PubMed

    Wanek, Wolfgang; Arndt, Stefan K

    2002-05-01

    Symbiotic N(2) fixation has a variable effect on the (15)N abundance of different parts of legumes. Increases in fixation result in (15)N enrichment of nodules, while decreases, in combination with an increased uptake of mineral N, result in (15)N depletion of the root system. The difference between soybean shoot and below-ground delta(15)N (Deltadelta(15)N=delta(15)N(shoot)-delta(15)N(belowground)) was assessed in hydroponic culture over a range of rates of supply of mineral N. The fractional contribution of N(2) fixation to N uptake (%Ndfa) was determined using the natural abundance (NA) technique with ryegrass as a reference plant. Deltadelta(15)N and %Ndfa were highly correlated, and the relationship was tested using the same soybean cultivar grown in pots in N-rich soil. Estimates of %Ndfa derived from the NA method and from the Deltadelta(15)N approach yielded near-identical values. A literature survey showed similar relationships between %Ndfa and Deltadelta(15)N with different growth stages of soybeans grown under glasshouse and field conditions, different cowpea (Vigna unguiculata) cultivars in the field, and tagasaste (Chamaecytisus proliferus) in hydroponic culture. Possible confounding and species-specific (either plant or Rhizobium spp.) influences are discussed. The difference in delta(15)N signatures between nodulated roots and shoots is confirmed as a robust means of quantifying %Ndfa: it is independent of reference plants and offers the possibility of estimating %Ndfa in soils where the isotope composition of mineral N closely matches that of atmospheric N(2). PMID:11971922

  3. ESR characterization of a novel spin-trapping agent, 15N-labeled N-tert-butyl-alpha-phenylnitrone, as a nitric oxide donor.

    PubMed

    Saito, Kieko; Yoshioka, Hisashi

    2002-10-01

    We previously found that one of the pharmacological effects of N-tert-butyl-alpha-phenylnitrone (PBN) is the release of nitric oxide (NO) under oxidative conditions. However, to confirm this hypothesis in vivo, NO released from PBN must be distinguished from NO produced in biological systems, and therefore we undertook the synthesis of PBN using labeled 15N to identify its corresponding 15NO in vivo. The properties were examined with an ESR spectrometer. To synthesize 15N-PBN, the starting material, ammonium-15N chloride, was converted to 2-amino-15N-2-methylpropane, oxidized to 2-methyl-2-nitropropane-15N, and finally reacted with benzaldehyde to give 15N-PBN. The final product was purified by repeated sublimation. With ferrous sulfate-methyl glucamine dithiocarbamate complex, Fe (MGD)2, as a trapping agent to measure the NO levels of 15N-PBN or 14N-PBN in vitro, the peak intensity of 15NO[Fe(MGD)2] was over 50% stronger than that of 14NO[Fe(MGD)2], and that 15NO and 14NO had the corresponding two-and three line hyperfine structures due to their nuclear spin quantum numbers. Subsequently, the ESR spectrum of 15NO derived from 15N-PBN was significantly different than that of lipopolysaccharide (LPS)-induced NO, which was derived from biological cells, and therefore we have demonstrated the possibility to distinguish 15NO from PBN and 14NO generated from cells. These results suggested that 15N-PBN is a useful molecule, not only as a spin-trapping agent, but also as an NO donor to explore the pharmacological mechanisms of PBN in vivo. PMID:12450131

  4. Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and new 15N isotope pairing technique

    NASA Astrophysics Data System (ADS)

    Hsu, T.-C.; Kao, S.-J.

    2013-04-01

    Dinitrogen (N2) and/or nitrous oxide (N2O) are produced through denitrification, anaerobic ammonium oxidation (anammox) or nitrification in sediments, of which entangled processes obfuscate the absolute rate estimation of gaseous nitrogen production from individual pathway. Recently, the classical isotope pairing technique (IPT), the most common 15N-nitrate enrichment method to quantify denitrification, has been modified by different researchers to (1) discriminate relative contribution of N2 production by denitrification from anammox or to (2) provide more accurate denitrification rate by considering both N2O and N2 productions. Both modified methods, however, have deficiencies such as overlooking N2O production in case 1 and neglecting anammox in case 2. In this paper, a new method was developed to refine previous methods. We installed cryogenic traps to pre-concentrate N2 and N2O separately, thus, allowing simultaneous measurement for two gases generated by one sample. The precision is better than 2% for N2 (m/z 28, m/z 29 and m/z 30), and 1.5% for N2O (m/z 44, m/z 45 and m/z 46). Based on the six m/z peaks of the two gases, we further revised IPT formulae to truthfully resolve the production rates of N2 and N2O contributed from 3 specific nitrogen removal processes, i.e. N2 and N2O from denitrification, N2 from anammox and N2O from nitrification. To validate the applicability of our new method, incubation experiments were conducted using sediment cores taken from the Danshuei estuary in Taiwan. We successfully determined the rates of aforementioned nitrogen removal processes. Moreover, N2O yield was as high as 66%, which no doubt would significantly bias previous IPT approaches when N2O was not considered. Our new method not only complements the previous IPT but also provides more comprehensive information to advance our understanding of nitrogen dynamics through the water-sediment interface.

  5. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium.

    PubMed

    Kartal, Boran; Kuypers, Marcel M M; Lavik, Gaute; Schalk, Jos; Op den Camp, Huub J M; Jetten, Mike S M; Strous, Marc

    2007-03-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite and produce N(2). They reside in many natural ecosystems and contribute significantly to the cycling of marine nitrogen. Anammox bacteria generally live under ammonium limitation, and it was assumed that in nature anammox bacteria depend on other biochemical processes for ammonium. In this study we investigated the possibility of dissimilatory nitrate reduction to ammonium by anammox bacteria. Physically purified Kuenenia stuttgartiensis cells reduced (15)NO(3) (-) to (15)NH(4) (+) via (15)NO(2) (-) as the intermediate. This was followed by the anaerobic oxidation of the produced ammonium and nitrite. The overall end-product of this metabolism of anammox bacteria was (15)N(15)N dinitrogen gas. The nitrate reduction to nitrite proceeds at a rate of 0.3 +/- 0.02 fmol cell(-1) day(-1) (10% of the 'normal' anammox rate). A calcium-dependent cytochrome c protein with a high (305 mumol min(-1) mg protein(-1)) rate of nitrite reduction to ammonium was partially purified. We present evidence that dissimilatory nitrate reduction to ammonium occurs in Benguela upwelling system at the same site where anammox bacteria were previously detected. This indicates that anammox bacteria could be mediating dissimilatory nitrate reduction to ammonium in natural ecosystems. PMID:17298364

  6. 15N investigation into the effect of a pollutant on the nitrogen metabolism of Tetrahymena pyriformis as a model for environmental medical research.

    PubMed Central

    Arndt, K; Hofmann, D; Gehre, M; Krumbiegel, P

    1998-01-01

    A pilot study was performed to examine the potential of stable isotope techniques for monitoring the impact of a harmful substance on the cellular nitrogen metabolism in the ciliate species Tetrahymena pyriformis. After identical cultivation periods of control cells and toluene-exposed cells in a defined culture medium enriched with [guanidino-15N2]l-arginine, a number of nitrogen-containing pools were analyzed: 1) quantity and 15N abundance of ammonia as the end product of nitrogen metabolism in the system; 2) pattern and 15N abundances of the protein-bound amino acids in the cells; 3) pattern and 15N abundances of free amino acids in the cells; and 4) pattern and 15N abundances of the amino acids in the culture medium. In addition to 15N emission spectrometry, a new gas chromatography/combustion interface-isotope ratio mass spectrometry/mass spectrometry analytical system was used. The production and 15N content of ammonia were higher in the toluene-exposed system by 30% and 43%, respectively, indicating higher deamination rates and greater arginine consumption. The toluene-exposed cells exhibited increased 15N abundances of protein-bound amino acids in alanine, aspartic acid, glutamic acid, and tyrosine. Furthermore, structural analyses revealed the presence of N[Omega]-acetylarginine and pyrrolidonecarboxylic acid--compounds that had not previously been detected in Tetrahymena pyriformis. Differences in the 15N-enrichment of free amino acids were also evident. This new effect-monitoring system designed to investigate the impact of a pollutant on protein metabolism by using a stable isotope-labeled cell culture is a powerful tool for environmental medical research. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9681977

  7. In vivo activity of glutaminase in the brain of hyperammonaemic rats measured by 15N nuclear magnetic resonance.

    PubMed Central

    Kanamori, K; Ross, B D

    1995-01-01

    The in vivo activity of phosphate-activated glutaminase (PAG) was measured in the brain of hyperammonaemic rat by 15N n.m.r. Brain glutamine was 15N-enriched by intravenous infusion of 15NH4+ until the concentration of [5-15N]glutamine reached 6.1 mumol/g. Further glutamine synthesis was inhibited by intraperitoneal injection of methionine-DL-sulphoximine, an inhibitor of glutamine synthetase, and the infusate was changed to 14NH4+ during observation of decrease in brain [5-15N]glutamine due to PAG and other glutamine utilization pathways. Progressive decrease in brain [5-15N]glutamine, PAG-catalysed production of 15NH4+ and its subsequent assimilation into glutamate by glutamate dehydrogenase were monitored in vivo by 15N n.m.r. Brain [5-15N]glutamine (15N enrichment of 0.35-0.50) decreased at a rate of 1.2 mumol/h per g of brain. The in vivo PAG activity, determined from the observed rate and the quantity of 15NH4+ produced and subsequently assimilated into glutamate and aspartate, was 0.9-1.3 mumol/h per g. This activity is less than 1.1% of the reported activity in vitro measured in rat brain homogenate at a 10 mM concentration of the activator Pi. Inhibition by ammonia (brain level 1.4 mumol/g) alone does not account for the observed low activity in vivo. The result strongly suggests that, in intact brain, PAG activity is maintained at a low level by a suboptimal in situ concentration of Pi and the strong inhibitory effect of glutamate. The observed PAG activity in vivo is lower than the reported in vivo activity of glutamate decarboxylase which converts glutamate into gamma-aminobutyrate (GABA). The result suggests that PAG-catalysed hydrolysis of glutamine is not the sole provider of glutamate used for GABA synthesis. PMID:7826349

  8. 15N-labeled tRNA. Identification of 4-thiouridine in Escherichia coli tRNASer1 and tRNATyr2 by 1H-15N two-dimensional NMR spectroscopy.

    PubMed

    Griffey, R H; Davis, D R; Yamaizumi, Z; Nishimura, S; Hawkins, B L; Poulter, C D

    1986-09-15

    Uridine is uniquely conserved at position 8 in elongator tRNAs and binds to A14 to form a reversed Hoogsteen base pair which folds the dihydrouridine loop back into the core of the L-shaped molecule. On the basis of 1H NMR studies, Hurd and co-workers (Hurd, R. E., Robillard, G. T., and Reid, B. R. (1977) Biochemistry 16, 2095-2100) concluded that the interaction between positions 8 and 14 is absent in Escherichia coli tRNAs with only 3 base pairs in the dihydrouridine stem. We have taken advantage of the unique 15N chemical shift of N3 in thiouridine to identify 1H and 15N resonances for the imino units of S4U8 and s4U9 in E. coli tRNASer1 and tRNATyr2. Model studies with chloroform-soluble derivatives of uridine and 4-thiouridine show that the chemical shifts of the protons in the imino moieties move downfield from 7.9 to 14.4 ppm and from 9.1 to 15.7 ppm, respectively; whereas, the corresponding 15N chemical shifts move downfield from 157.5 to 162.5 ppm and from 175.5 to 180.1 ppm upon hydrogen bonding to 5'-O-acetyl-2',3'-isopropylidene adenosine. The large difference in 15N chemical shifts for U and s4U allows one to unambiguously identify s4U imino resonances by 15N NMR spectroscopy. E. coli tRNASer1 and tRNATyr2 were selectively enriched with 15N at N3 of all uridines and modified uridines. Two-dimensional 1H-15N chemical shift correlation NMR spectroscopy revealed that both tRNAs have resonances with 1H and 15N chemical shifts characteristic of s4UA pairs. The 1H shift is approximately 1 ppm upfield from the typical s4U8 resonance at 14.8 ppm, presumably as a result of local diamagnetic anisotropies. An additional s4U resonance with 1H and 15N shifts typical of interaction of a bound water or a sugar hydroxyl group with s4U9 was discovered in the spectrum of tRNATyr2. Our NMR results for tRNAs with 3-base pair dihydrouridine stems suggest that these molecules have an U8A14 tertiary interaction similar to that found in tRNAs with 4-base pair dihydrouridine

  9. A novel method for trapping and analyzing 15N in NO for tracing NO sources

    NASA Astrophysics Data System (ADS)

    Kang, Ronghua; Mulder, Jan; Dörsch, Peter

    2016-04-01

    15N isotope tracing is an effective and direct approach to investigate the biological and chemical sources of nitric oxide (NO) in soil. However, NO is highly reactive and rapidly converted to nitrogen dioxide (NO2) in the presence of ozone. Various chemical conversions of NO to the more stable solutes nitrite (NO2-) and nitrate (NO3-) have been proposed, which allow analysing the 15N abundance without major fractionation. However, NO emissions from soils are usually small, posing major challenges to conversion efficiency and background contamination. Here we present a novel method in which NO is oxidized to NO2- by chromium trioxide (CrO3) prior to conversion to NO2- and NO3- in an alkaline hydrogen peroxide (H2O2) solution. Immediately following trapping, manganese dioxide (MnO2) and 5M HCl are added to remove excess H2O2, and to adjust the pH to around 6.0-7.0, respectively. The resulting solution can be stored until analysis and is none-toxic, allowing to use a modified denitrifier method (Zhu et al., submitted), where NO2- and NO3- are reduced quantitatively to nitrous oxide (N2O). Optimum NO conversion rates of > 90% even at extremely low initial NO concentration were obtained with 4% H2O2, 0.5 M NaOH, and 0.5 L min-1 gas flow rate. In a laboratory test, using NO gas with different 15N signals produced from unlabelled and labelled NO2-, we found an overall precision of 0.4‰ for unlabelled and 49.7‰ for NO enriched with 1.0 atom% 15N, respectively. This indicates that this method can be used for both natural abundance studies of NO, as well as in labelling studies tracing NO sources. Zhu J, Yu L, Bakken LR, Mørkved PT, Mulder J, Dörsch P. Controlled induction of denitrification in Pseudomonas aureofaciens: a modified denitrifier method for 15N and 18O analysis in NO3- from natural water samples by IRMS. Submitted.

  10. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  11. Ammonium nitrate explosive systems

    SciTech Connect

    Coburn, M.D.; Stinecipher, M.M.

    1981-11-17

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  12. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  13. Spatial Patterns of Plant δ13C and δ15N Along a Topoedaphic Gradient in a Subtropical Savanna Landscape

    NASA Astrophysics Data System (ADS)

    Bai, E.; Boutton, T. W.; Liu, F.; Wu, B.; Archer, S. R.

    2005-12-01

    relationship between δ15N and leaf [N] and soil water may reflect the fact that plants with high δ15N values occurred on lower-lying portions of the landscape with relatively high N-transformation rates where soil mineral N was both relatively available and 15N-enriched. The lack of variation in δ15N values of Prosopis suggests that it may be somewhat uncoupled from these processes because it is an N-fixer. Results of this study indicate that N-availability plays an important role in landscale scale variation in plant δ13C and δ15N.

  14. (15)N methodologies for quantifying the response of N2-fixing associations to elevated [CO2]: A review.

    PubMed

    Chalk, Phillip M; Lam, Shu K; Chen, Deli

    2016-11-15

    Methodologies based on (15)N enrichment (E) and (15)N natural abundance (NA) have been used to obtain quantitative estimates of the response of biological N2 fixation (BNF) of legumes (woody, grain and forage) and actinorhizal plants grown in artificial media or in soil exposed to elevated atmospheric concentrations of carbon dioxide e[CO2] for extended periods of time, in growth rooms, greenhouses, open top chambers or free-air CO2 enrichment (FACE) facilities. (15)N2 has also been used to quantify the response of endophytic and free-living diazotrophs to e[CO2]. The primary criterion of response was the proportional dependence of the N2-fixing system on the atmosphere as a source of N. i.e. the symbiotic dependence (Patm). The unique feature of (15)N-based methods is their ability to provide time-integrated and yield-independent estimates of Patm. In studies conducted in artificial media or in soil using the E methodology there was either no response or a positive response of Patm to e[CO2]. The interpretation of results obtained in artificial media or with (15)N2 is straight forward, not being subject to the assumptions on which the E and NA soil-cultured methods are based. A variety of methods have been used to estimate isotopic fractionation attendant on the NA technique, the so-called 'B value', which attaches a degree of uncertainty to the results obtained. Using the NA technique, a suite of responses of Patm to e[CO2] has been published, from positive to neutral to sometimes negative effects. Several factors which interact with the response of N2-fixing species to e[CO2] were identified. PMID:27424117

  15. Theoretical and experimental study of 15N NMR protonation shifts.

    PubMed

    Semenov, Valentin A; Samultsev, Dmitry O; Krivdin, Leonid B

    2015-06-01

    A combined theoretical and experimental study revealed that the nature of the upfield (shielding) protonation effect in 15N NMR originates in the change of the contribution of the sp(2)-hybridized nitrogen lone pair on protonation resulting in a marked shielding of nitrogen of about 100 ppm. On the contrary, for amine-type nitrogen, protonation of the nitrogen lone pair results in the deshielding protonation effect of about 25 ppm, so that the total deshielding protonation effect of about 10 ppm is due to the interplay of the contributions of adjacent natural bond orbitals. A versatile computational scheme for the calculation of 15N NMR chemical shifts of protonated nitrogen species and their neutral precursors is proposed at the density functional theory level taking into account solvent effects within the supermolecule solvation model. PMID:25891386

  16. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported. PMID:24746715

  17. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system

  18. Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and a modified 15N isotope pairing technique

    NASA Astrophysics Data System (ADS)

    Hsu, T.-C.; Kao, S.-J.

    2013-12-01

    Dinitrogen (N2) and/or nitrous oxide (N2O) are produced through denitrification, anaerobic ammonium oxidation (anammox) or nitrification in sediments, of which entangled processes complicate the absolute rate estimations of gaseous nitrogen production from individual pathways. The classical isotope pairing technique (IPT), the most common 15N nitrate enrichment method to quantify denitrification, has recently been modified by different researchers to (1) discriminate between the N2 produced by denitrification and anammox or to (2) provide a more accurate denitrification rate under considering production of both N2O and N2. In case 1, the revised IPT focused on N2 production being suitable for the environments of a low N2O-to-N2 production ratio, while in case 2, anammox was neglected. This paper develops a modified method to refine previous versions of IPT. Cryogenic traps were installed to separately preconcentrate N2 and N2O, thus allowing for subsequent measurement of the two gases generated in one sample vial. The precision is better than 2% for N2 (m/z 28, m/z 29 and m/z 30), and 1.5% for N2O (m/z 44, m/z 45 and m/z 46). Based on the six m/z peaks of the two gases, the 15N nitrate traceable processes including N2 and N2O from denitrification and N2 from anammox were estimated. Meanwhile, N2O produced by nitrification was estimated via the production rate of unlabeled 44N2O. To validate the applicability of our modified method, incubation experiments were conducted using sediment cores taken from the Danshuei Estuary in Taiwan. Rates of the aforementioned nitrogen removal processes were successfully determined. Moreover, N2O yield was as high as 66%, which would significantly bias previous IPT approaches if N2O was not considered. Our modified method not only complements previous versions of IPT but also provides more comprehensive information to advance our understanding of nitrogen dynamics of the water-sediment interface.

  19. Population of Nitrifying Bacteria and Nitrification in Ammonium Saturated Clinoptilolite

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, Douglas W.; Gruener, J.

    1999-01-01

    As humans begin to spend longer periods of time in space, plants will be incorporated into life support systems. Ammonium saturated clinoptilolite is one plant growth substrate but a balance between ammonium and nitrate is needed. A laboratory study was conducted to determine effects of nitrifying bacteria on ammonium concentrations and kinetics of nitrification. Columns containing clinoptilolite substrate amended with nitrifying bacteria obtained from soil enrichment were analyzed weekly for a 90 day period. The enrichment culture initially contained 1 x 10(exp 5) ammonium oxidizing bacteria and 1 x 10(exp 2) nitrite oxidizing bacteria per gram of substrate. Populations of ammonium oxidizing bacteria increased to 1 x 10(exp 6) and nitrite oxidizing bacteria increased to 1 x 10(exp 3) per gram of substrate. The nitrification rate was approximately 0.25mg NO3(-)-N/kg.hr. Experiments were also conducted to enumerate nitrifying bacteria in a clinoptilolite substrate used to grow wheat (Triticum aestivum L.). Seventy days following the initial inoculation with an unknown number of commercial nitrifying bacteria, 1 x 10(exp 5) ammonium oxidizing bacteria per gram of substrate were present. The number of nitrite oxidizing bacteria was between 1 x 10(exp 3) to 10(exp 4) per gram of substrate as measured by the most probable number method. Nitrification rates were approximately 0.20mg NO3(-)-N/kg.hr. Clinoptilolite readily exchanged sufficient concentrations of ammonium to support nitrifying bacteria and they survived well in this medium.

  20. Primary productivity, bacterial productivity and nitrogen uptake in response to iron enrichment during the SEEDS II

    NASA Astrophysics Data System (ADS)

    Kudo, Isao; Noiri, Yoshifumi; Cochlan, William P.; Suzuki, Koji; Aramaki, Takafumi; Ono, Tsuneo; Nojiri, Yukihiro

    2009-12-01

    Primary productivity (PP), bacterial productivity (BP) and the uptake rates of nitrate and ammonium were measured using isotopic methods ( 13C, 3H, 15N) during a mesoscale iron (Fe)-enrichment experiment conducted in the western subarctic Pacific Ocean in 2004 (SEEDS II). PP increased following Fe enrichment, reached maximal rates 12 days after the enrichment, and then declined to the initial level on day 17. During the 23-day observation period, we observed the development and decline of the Fe-induced bloom. The surface mixed layer (SML) integrated PP increased by 3-fold, but was smaller than the 5-fold increase observed in the previous Fe-enrichment experiment conducted at almost the same location and season during 2001 (SEEDS). Nitrate uptake rates were enhanced by Fe enrichment but decreased after day 5, and became lower than ammonium uptake rates after day 17. The total nitrogenous nutrient uptake rate declined after the peak of the bloom, and accumulation of ammonium was obvious in the euphotic layer. Nitrate utilization accounted for all the requirements of N for the massive bloom development during SEEDS, whereas during SEEDS II, nitrate accounted for >90% of total N utilization on day 5, declining to 40% by the end of the observation period. The SML-integrated BP increased after day 2 and peaked twice on days 8 and 21. Ammonium accumulation and the delayed heterotrophic activity suggested active regeneration occurred after the peak of the bloom. The SML-integrated PP between days 0 and 23 was 19.0 g C m -2. The SML-integrated BP during the same period was 2.6 g C m -2, which was 14% of the SML-integrated PP. Carbon budget calculation for the whole experimental period indicated that 33% of the whole (particulate plus dissolved) PP (21.5 g C m -2) was exported below the SML and 18% was transferred to the meso-zooplankton (growth). The bacterial carbon consumption (43% of the whole PP) was supported by DOC or POC release from phytoplankton, zooplankton

  1. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea

    NASA Astrophysics Data System (ADS)

    Kuypers, Marcel M. M.; Sliekers, A. Olav; Lavik, Gaute; Schmid, Markus; Jørgensen, Bo Barker; Kuenen, J. Gijs; Sinninghe Damsté, Jaap S.; Strous, Marc; Jetten, Mike S. M.

    2003-04-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean. Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N2 in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors. Nutrient profiles, fluorescently labelled RNA probes, 15N tracer experiments and the distribution of specific `ladderane' membrane lipids indicate that ammonium diffusing upwards from the anoxic deep water is consumed by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings indicates that anammox might be important in the oceanic nitrogen cycle.

  2. Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling.

    PubMed Central

    Castillo, L; Beaumier, L; Ajami, A M; Young, V R

    1996-01-01

    The rates of whole body nitric oxide (NO) synthesis, plasma arginine flux, and de novo arginine synthesis and their relationships to urea production, were examined in a total of seven healthy adults receiving an L-amino acid diet for 6 days. NO synthesis was estimated by the rate of conversion of the [15N] guanidino nitrogen of arginine to plasma [15N] ureido citrulline and compared with that based on urinary nitrite (NO2-)/nitrate (NO3-) excretion. Six subjects received on dietary day 7, a 24-hr (12-hr fed/12-hr fasted) primed, constant, intravenous infusion of L-[guanidino-15N2]arginine and [13C]urea. A similar investigation was repeated with three of these subjects, plus an additional subject, in which they received L-[ureido-13C]citrulline, to determine plasma citrulline fluxes. The estimated rates (mean +/- SD) of NO synthesis over a period of 24 hr averaged 0.96 +/- 0.1 mumol .kg-1.hr-1 and 0.95 +/- 0.1 mumol.kg-1.hr-1, for the [15N]citrulline and the nitrite/nitrate methods, respectively. About 15% of the plasma arginine turnover was associated with urea formation and 1.2% with NO formation. De novo arginine synthesis averaged 9.2 +/- 1.4 mumol. kg-1.hr-1, indicating that approximately 11% of the plasma arginine flux originates via conversion of plasma citrulline to arginine. Thus, the fraction of the plasma arginine flux associated with NO and also urea synthesis in healthy humans is small, although the plasma arginine compartment serves as a significant precursor pool (54%) for whole body NO formation. This tracer model should be useful for exploring these metabolic relationships in vivo, under specific pathophysiologic states where the L-arginine-NO pathway might be altered. Images Fig. 4 PMID:8876157

  3. Nitrogen Dynamics in Stream Wood Samples Incubated with [14C]Lignocellulose and Potassium [15N]Nitrate †

    PubMed Central

    Aumen, Nicholas G.; Bottomley, Peter J.; Gregory, Stan V.

    1985-01-01

    Surface wood samples obtained from a Douglas fir log (Pseudotsuga menziesii) in a Pacific Northwest stream were incubated in vitro with [14C]lignocellulose in a defined mineral salts medium supplemented with 10 mg of N liter−1 of 15N-labeled NO3− (50 atom% 15N). Evolution of 14CO2, distribution and isotopic dilution of 15N, filtrate N concentrations, and the rates of denitrification, N2 fixation, and respiration were measured at 6, 12, and 18 days of incubation. The organic N content of the lignocellulose-wood sample mixture had increased from 132 μg of N to a maximum of 231 μg of N per treatment after 6 days of incubation. Rates of [14C]lignocellulose decomposition were greatest during the first 6 days and then began to decline over the remaining 12 days. Total CO2 evolution was also highest at day 6 and declined steadily over the remaining duration of the incubation. Filtrate NH4+-N increased from background levels to a final value of 57 μg of N per treatment. Filtrate NO3− N completely disappeared by day 6, and organic N showed a slight decline between days 12 and 18. The majority of the 15N that could be recovered appeared in the particulate organic fraction by day 6 (41 μg of N), and the filtrate NH4+ N fraction contained 11 μg of 15N by day 18. The 15N enrichment values of the filtrate NH4+ and the inorganic N associated with the particulate fraction had increased to approximately 20 atom% 15N by 18 days of incubation, whereas the particulate organic fraction reached its highest enrichment by day 6. Measurements of N2 fixation and denitrification indicated an insignificant gain or loss of N from the experimental system by these processes. The data show that woody debris in stream ecosystems might function as a rapid and efficient sink for exogenous N, resulting in stimulation of wood decomposition and subsequent activation of other N cycling processes. PMID:16346785

  4. Route of tracer administration does not affect ileal endogenous nitrogen recovery measured with the 15N-isotope dilution technique in pigs fed rapidly digestible diets.

    PubMed

    Steendam, C A Carina; Verstegen, Martin W A; Tamminga, Seerp; Boer, Huug; van 't End, Marianne; Verstappen, Berthe; Caine, William R; Visser, G Henk

    2004-11-01

    The (15)N-isotope dilution technique ((15)N-IDT), with either pulse-dose oral administration or continuous i.v. administration of [(15)N]-l-leucine (carotid artery), both at 5 mg/(kg body weight . d), was used to measure ileal (postvalve T-cecum cannula) endogenous nitrogen recovery (ENR) in pigs (9 +/- 0.6 kg). Diets were cornstarch, enzyme-hydrolyzed casein with no (control) or high (4%) content of quebracho extract (Schinopsis spp.) rich in condensed tannins. Blood was sampled from a catheter in the external jugular vein. Mean plasma (15)N-enrichment at d 8-10 was higher (P = 0.0009) after i.v. than after oral administration [0.0356 vs. 0.0379 atom% excess (APE)]. Plasma (15)N-enrichment for i.v. infused pigs was 0.01117 APE higher (P < 0.0001) and for orally dosed pigs 0.0081 APE lower (P < 0.0001) at 11 h postprandial compared with 1 h postprandial. Apparent ileal N digestibility was higher (P < 0.0001) for the control (85.5%) than for the quebracho diet (69.5%). ENR was calculated from the ratio of (15)N-enrichment of plasma and digesta. The ENR for the quebracho diet was approximately 300% higher than for the control diet (6.03 vs. 1.94 g/kg dry matter intake, P < 0.001). The real N digestibility (92.2 +/- 0.4%) was equal for both diets (P = 0.1030) and both tracer methods (P = 0.9730). We concluded that oral administration of [(15)N]leucine provides reasonable estimates of ENR in pigs fed semipurified diets with high or low content of tannins; however, one must be careful in extrapolating this conclusion to studies with other protein sources or feeding frequencies. PMID:15514277

  5. Aerosol isotopic ammonium signatures over the remote Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lin, C. T.; Jickells, T. D.; Baker, A. R.; Marca, A.; Johnson, M. T.

    2016-05-01

    We report aerosol ammonium 15N signatures for samples collected from research cruises on the South Atlantic and Caribbean using a new high sensitivity method. We confirm a pattern of isotopic signals from generally light (δ15N -5 to -10‰), for aerosols with very low (<2  nmol m-3) ammonium concentrations from the remote high latitude ocean, to generally heavier values (δ15N +5 to +10‰), for aerosols collected in temperate and tropical latitudes and with higher ammonium concentrations (>2  nmol m-3). We discuss whether this reflects a mixing of aerosols from two end-members (polluted continental and remote marine emissions), or isotopic fractionation during aerosol transport.

  6. Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins.

    PubMed

    Pintacuda, Guido; Keniry, Max A; Huber, Thomas; Park, Ah Young; Dixon, Nicholas E; Otting, Gottfried

    2004-03-10

    A novel strategy for fast NMR resonance assignment of (15)N HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively (15)N-labeled samples. Comparison of sensitive undecoupled (15)N HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia coli DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy. PMID:14995214

  7. Non-homogeneity of isotopic labelling in 15N gas flux studies: theory, some observations and possible lessons

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Deppe, Marianna; Eschenbach, Wolfram; Gattinger, Andreas; Giesemann, Anette; Krause, Hans-Martin; Lewicka-Szczebak, Dominika

    2015-04-01

    Quantifying dinitrogen (N2) and nitrous oxide (N2O) fluxes from different soil N pools and processes can be accomplished using the 15N tracer technique but this is subject to four different sources of bias (i. - iv.). This approach includes 15N labelling of selected N pools in soil and subsequent isotope analysis of all relevant N pools as well as of gas samples from enclosures, i.e. mixtures of soil-derived and atmospheric N2 and N2O. Depending on the processes of interest, there may be 15N labelling of one or several N pools, were several labelling treatment are needed in the latter case (e.g. Müller et al., 2004). Measuring pool-derived N2 or N2O has been shown to include two calculation problems, (i.) arising from multiple pools (e.g. Arah, 1992) and (ii.) dealing with the non-random distribution of N2 and N2O mole masses (Hauck et al., 1958). Non-randomness can be solved if m/z 28, 29 and 30 are correctly analysed and the 15N enrichment of one (to distinguish two pools, i.e. soil and atmosphere) or two pools (in case of three pools) is known (Spott & Stange, 2008). Moreover (iii.), NO3- pools generating N2 and N2O via denitrification can be identical or different, e.g. if N2O evolved from higher enriched NO3- in deeper soil was more reduced to N2 compared to N2O evolved from N2O from shallow soil with lower enrichment, or vice versa. Apportioning N2O fluxes to NH4+ (nitrification and/or nitrifier denitrification) and NO3- (denitrification) is often conducted by NO3-labeling, measuring δ15N of emitted N2O and applying mixing equations were the measured 15N enrichment of NH4+and NO3-pool is used. However, this assumes that the average 15N enrichment of NH4+and NO3-in the soil is identical to the enrichment in the active soil domain producing N2 and/or N2O. Violation of this precondition must lead to bias in source apportionment (iv.), but to our knowledge this has not been investigated until now. Here we present conceptual models and model calculations

  8. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  9. [Responses of Soil and Plant 15N Natural Abundance to Long-term N Addition in an N-Saturated Pinus massoniana Forest in Southwest China].

    PubMed

    Liu, Wen-jing; Kang, Rong-hua; Zhang, Ting; Zhu, Jing; Duan, Lei

    2015-08-01

    Increasing N deposition in China will possibly cause N saturation of forest ecosystem, further resulting in a series of serious environmental problems. In order to explore the response of forest ecosystem to N deposition in China, and further evaluate and predict the N status of ecosystem, the 15N natural abundance (delta 15N) of soil and plants was measured in a typical Masson pine (Pinus massoniana) forest in southwest China to examine the potential use of delta 15N enrichment factor (epsilon(p/s)) as an effective indicator of N status. Long-term high N addition could significantly increase delta 15N of soil and plants, which was suggested by an on-going N fertilizing experiment with NH4NO3 or NaNO3 for 7 years. Meanwhile, delta 15N of soil and plants under NH, deposition was significantly higher than that under NO- deposition, suggesting different responses of ecosystem to different N-forms of deposition. The "N enrichment factor (epsilon(p/s)) had positive correlations with N deposition, N nitrification, and N leaching in the soil water. Linear correlation between "N enrichment factor and N deposition was found for all Masson pine forests investigated in this and previous studies in China, demonstrating that 15N enrichment factor could be used as an indicator of N status. The NH3 emission control should also be carried out accompanying with NOx emission control in the future, because NH4- deposition had significantly greater impact on the forest ecosystem than NO3- deposition with the same equivalence. PMID:26592030

  10. A pipeline for 15N metabolic labeling and phosphoproteome analysis in Arabidopsis thaliana.

    PubMed

    Minkoff, Benjamin B; Burch, Heather L; Sussman, Michael R

    2014-01-01

    Within the past two decades, the biological application of mass spectrometric technology has seen great advances in terms of innovations in hardware, software, and reagents. Concurrently, the burgeoning field of proteomics has followed closely (Yates et al., Annu Rev Biomed Eng 11:49-79, 2009)-and with it, importantly, the ability to globally assay altered levels of posttranslational modifications in response to a variety of stimuli. Though many posttranslational modifications have been described, a major focus of these efforts has been protein-level phosphorylation of serine, threonine, and tyrosine residues (Schreiber et al., Proteomics 8:4416-4432, 2008). The desire to examine changes across signal transduction cascades and networks in their entirety using a single mass spectrometric analysis accounts for this push-namely, preservation and enrichment of the transient yet informative phosphoryl side group. Analyzing global changes in phosphorylation allows inferences surrounding cascades/networks as a whole to be made. Towards this same end, much work has explored ways to permit quantitation and combine experimental samples such that more than one replicate or experimental condition can be identically processed and analyzed, cutting down on experimental and instrument variability, in addition to instrument run time. One such technique that has emerged is metabolic labeling (Gouw et al., Mol Cell Proteomics 9:11-24, 2010), wherein biological samples are labeled in living cells with nonradioactive heavy isotopes such as (15)N or (13)C. Since metabolic labeling in living organisms allows one to combine the material to be processed at the earliest possible step, before the tissue is homogenized, it provides a unique and excellent method for comparing experimental samples in a high-throughput, reproducible fashion with minimal technical variability. This chapter describes a pipeline used for labeling living Arabidopsis thaliana plants with nitrogen-15 ((15)N) and how

  11. Infrared band intensities in ammonium hydroxide and ammonium salts

    NASA Technical Reports Server (NTRS)

    Sethna, P. P.; Downing, H. D.; Pinkley, L. W.; Williams, D.

    1978-01-01

    We have applied Kramers-Kronig analysis to reflection spectra to determine the optical constants of ammonium hydroxide and of aqueous solutions of ammonium chloride and bromide. From considerations of the absorption indices k(nu) we conclude that ammonium hydroxide consists of a solution of NH3 in water, in which NH3 molecules are hydrogen bonded to neighboring water molecules. The spectrum of ammonium hydroxide differs from the spectra of ammonium salts, in which bands characteristic of NH4(+) ions are prominent. The existence of ammonium hydroxide as an aerosol in planetary atmospheres is briefly discussed

  12. The vibrational spectra of [ 15N 2]-succinonitrile

    NASA Astrophysics Data System (ADS)

    Fengler, O. I.

    2001-07-01

    For the first time, the infrared and Raman spectra of [ 15N 2]-succinonitrile are presented and discussed in detail. Assignments of the vibrational bands of its two rotational conformers gauche and trans, respectively, have been made for both infrared and Raman spectra. The assignments were based on a recent ab-initio force field calculation for succinonitrile, taking into account the vibrational frequencies of other succinonitrile isotopomers. There are differences in the frequencies of the vibrational bands due to the mass increase in the cyanide groups, which have been analysed in depth.

  13. The vibrational spectra of [15N2]-succinonitrile.

    PubMed

    Fengler, O I

    2001-07-01

    For the first time, the infrared and Raman spectra of [15N2]-succinonitrile are presented and discussed in detail. Assignments of the vibrational bands of its two rotational conformers gauche and trans, respectively, have been made for both infrared and Raman spectra. The assignments were based on a recent ab-initio force field calculation for succinonitrile, taking into account the vibrational frequencies of other succinonitrile isotopomers. There are differences in the frequencies of the vibrational bands due to the mass increase in the cyanide groups, which have been analysed in depth. PMID:11471715

  14. 15N NMR chemical shifts in papaverine decomposition products

    NASA Astrophysics Data System (ADS)

    Czyrski, Andrzej; Girreser, Ulrich; Hermann, Tadeusz

    2013-03-01

    Papaverine can be easily oxidized to papaverinol, papaveraldine and 2,3,9,10-tetramethoxy-12-oxo-12H-indolo[2,1-a]isoquinolinium chloride. On addition of alkali solution the latter compound forms 2-(2-carboxy-4,5-dimethoxyphenyl)-6,7-dimethoxyisoquinolinium inner salt. Together with these structures the interesting 13-(3,4-dimethoxyphenyl)-2,3,8,9-tetramethoxy-6a-12a-diazadibenzo[a,g]fluorenylium chloride is discussed, which is formed in the Gadamer-Schulemann reaction of papaverine as a side product. This letter reports the 15N NMR spectra of the above mentioned compounds.

  15. Uptake of stormwater nitrogen in bioretention systems demonstrated from 15N tracer techniques

    NASA Astrophysics Data System (ADS)

    Houdeshel, D.; Hultine, K. R.; Pomeroy, C. A.

    2012-12-01

    Bioretention stormwater management systems are engineered ecosystems that capture urban stormwater in order to reduce the harmful effects of stormwater pollution on receiving waters. Bioretention systems have been shown to be effective at reducing the volume of runoff, and thereby reduce the nutrient loading to receiving waters from urban areas. However, little work has been done to evaluate the treatment processes that are responsible for reductions in effluent nitrogen (N). We hypothesize that the pulses of inorganic nitrogen associated with urban runoff events are captured in the plat tissues within these systems and not adsorbed to the soil media, thus creating a long-term, sustainable treatment approach to reducing the total nutrient loading to receiving waters. Nitrogen treatment performance was tested on two bioretention systems in Salt Lake City, UT: 1) an upland native community that does not require irrigation in semi-arid climates, and 2) a wetland community that requires 250 l of daily irrigation to offset the relatively high evaporative demand in the region. Each cell is sized to treat a 2.5 cm storm from a 140 m2 impervious surface: the area of the bioretention system is 10 m2. To test the N removal performance of each system, runoff events were simulated to represent an average precipitation regime using a synthetic stormwater blend starting in January, 2012. Effluent was collected from an underdrain and analyzed for total nitrogen (TN); mass removal was calculated for each month by subtracting the TN mass added to the garden minus the TN mass that flowed out of the garden. To test the hypothesis that plants assimilate stormwater N, 4 g of 100 atom% 15N NH4NO3 tracer was used as the N source in the synthetic stormwater during the first 2,000 l synthetic storm event in May. This isotopic label was calculated to enrich the total N pool of each garden to 100‰ 15N/14Nair. New growth was harvested from each plant in both cells and analyzed for 15N

  16. Experimental plant for simultaneous production of (14)N and (15)N by (15)N/(14)N exchange in NO, NO(2)-HNO(3) system under pressure.

    PubMed

    Axente, Damian; Marcu, Cristina; Muresan, Ancuţa; Kaucsar, Martin; Misan, Ioan; Popeneciu, Gabriel; Gligan, Nicolae; Cristea, Gabriela

    2010-06-01

    An experimental study on (14)N and (15)N simultaneous separation using the chemical exchange in NO, NO(2)-HNO(3) system under pressure is presented. The influence of the pressure and of the interstage 10 M HNO(3) flow rate on the separation of (14)N and (15)N was measured on a packed column with product and waste refluxers. At steady state and 1.8 atm (absolute), the isotopic concentration at the bottom of the separation column was 0.563 at% (15)N, and in the top of the column was 0.159 at% (15)N. The height equivalent to a theoretical plate and interstage 10 M HNO(3) flow rate values, obtained in these experimental conditions, allows the separation of (14)N highly depleted of (15)N and of (15)N at 99 at% (15)N concentration. PMID:20582793

  17. Paleoenvironmental implications of taxonomic variation among δ15N values of chloropigments

    USGS Publications Warehouse

    Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mark A.; Pearson, Ann

    2011-01-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ15N values of chloropigments of photosynthetic organisms to determine the corresponding δ15N values of biomass – and by extension, surface waters – the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth’s history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3−, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ15Nbiomass − δ15Nchloropigment) for prokaryotes, with average values for species ranging from −12.2‰ to +11.7‰. We define this difference as εpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of εpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of εpor for freshwater cyanobacterial species is −9.8 ± 1.8‰, while for marine cyanobacteria it is −0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., εpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of εpor for eukaryotic algae (range = 4.7–8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of εpor do not depend on the type of nitrogen substrate used for growth. The observed

  18. 70. INTERIOR VIEW OF AMMONIUM NITRATE HOUSE, LOOKING AT AMMONIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. INTERIOR VIEW OF AMMONIUM NITRATE HOUSE, LOOKING AT AMMONIUM NITRATE IN STORAGE. APRIL 18, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  19. Use of a {sup 15}N isotope dilution method to assess contaminant effects on soil nitrification

    SciTech Connect

    Nason, G.E.; Dinwoodie, G.D.

    1995-12-31

    Ecologically relevant bioassays are needed to assess effects of contaminants on soil processes such as decomposition and nutrient cycling. This study was conducted to assess the potential of a soil-based nitrification bioassay. Soil samples adjusted to 0.03 MPa moisture content were amended with 0.1, 1.0, 10 and 100 mg kg{sup {minus}1} PCP or PCB, and 0.05, 0.5, 5 and 50 mg kg{sup {minus}1} Hg and preincubated for 7 days. A 2-d incubation was then started by addition of 10 mg kg{sup {minus}1} {sup 15}NO{sub 3}-N. Diethyl ether used as a carrier for PCP addition had little effect on inorganic nitrogen concentrations during the incubation. Net nitrogen mineralization and nitrification were unaffected by PCB. Higher amendment levels of both PCP and Hg resulted in increases in ammonium concentrations and decreases in net nitrification. {sup 15}N-nitrate pool dilution was sensitive to contamination and showed some gross nitrification was occurring even when net nitrification had ceased. Recoveries of Hg and PCB at the end of the study were greater than 90%. Recovery of PCP was 5%. Incubations carried out under sterile and non-sterile conditions indicated that both sorption and biological degradation were factors in the low PCP recovery.

  20. Glufosinate-ammonium

    Integrated Risk Information System (IRIS)

    Glufosinate - ammonium ; CASRN 77182 - 82 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  1. Exploring the ammonium and nitrate transport of marine phytoplankton with nutrient analogues

    SciTech Connect

    Balch, W.M.

    1985-01-01

    Radiolabelled methylamine, an ammonium analogue and chlorate, a nitrate analogue, were transported constitutely by laboratory and field populations of phytoplakton. There was no effect of light on the transport of methylamine or chlorate which is contrary to similar measurements made with /sup 15/N-NH/sub 4//sup +/ and /sup 15/N-NO/sub 3//sup -/. The discrepancy appears to result from the fact that the analogues are only transported, while /sup 15/N-NH/sub 4/ and /sup 15/N-NO/sub 3//sup -/ are both transported and assimilated. Transport of ammonium and nitrate appeared to be active; it was against typical values of algal electrochemical gradients. Influx and efflux rates of methylamine and chlorate were measured in pulse-chase experiments; efflux rates increased as intracellular pools filled and net uptake slowed after approximately one to six hours. The pulse-chase experiments indicated that methylamine and chlorate (hence ammonium and nitrate) were stored in two intracellular compartments of diatoms, probably the vacuole and cytoplasm. Laboratory and field experiments demonstrated that chlorate transport by phytoplankton was inhibited when ambient ammonium or nitrite concentrations were high.

  2. δ(15)N variation in Ulva lactuca as a proxy for anthropogenic nitrogen inputs in coastal areas of Gulf of Gaeta (Mediterranean Sea).

    PubMed

    Orlandi, Lucia; Bentivoglio, Flavia; Carlino, Pasquale; Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Rossi, Loreto

    2014-07-15

    We tested the capacity of Ulva lactuca to mark N sources across large marine areas by measuring variation in its δ(15)N at several sites in the Gulf of Gaeta. Comparisons were made with the macroalga Cystoseira amentacea. Variation of δ(15)N values was assessed also in the coastal waters off the Circeo Natural Park, where U. lactuca and C. amentacea were harvested, as these waters are barely influenced by human activities and were used as reference site. A small fragment from each frond was preserved before deployment in order to characterize the initial isotopic values. After 48 h of submersion, U. lactuca was more responsive than C. amentacea to environmental variation and δ(15)N enrichment in the Gulf of Gaeta was observed. The spatial distribution of δ(15)N enrichment indicated that different macro-areas in the Gulf were affected by N inputs from different origins. Comparison of the δ(15)N values of fragments taken from the same transplanted frond avoided bias arising from natural isotopic variability. PMID:24923814

  3. δ15N measurement of organic and inorganic substances by EA-IRMS: a speciation-dependent procedure.

    PubMed

    Gentile, Natacha; Rossi, Michel J; Delémont, Olivier; Siegwolf, Rolf T W

    2013-01-01

    Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ(15)N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ(15)N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH(4)NO(3)) and potassium nitrate (KNO(3)) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH(4))(2)SO(4)]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V(2)O(5)) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ(15)N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the

  4. δ15N of nitrate derived from explosive sources in a karst aquifer beneath the Ammunition Burning Ground, Crane Naval Surface Warfare Center, Indiana, USA

    NASA Astrophysics Data System (ADS)

    DiGnazio, Frank J.; Krothe, Noel C.; Baedke, Steve J.; Spalding, Roy F.

    1998-05-01

    Military institutions involved in the production and demolition of explosives, propellants, and pyrotechnics have the potential to degrade groundwater aquifers through the addition of numerous contaminants including nitrate. A nitrate plume has been identified in a karst aquifer beneath the Ammunition Burning Ground (ABG) at the Crane Naval Surface Warfare Center, Indiana, USA. Wells located in the vicinity of surface impoundments and burn pans used for treatment of explosive materials show the highest concentrations of nitrate ranging from 11.2 to 19.6 mg 1 -1 as NO 3-. Little is known about the isotopic composition of nitrates originating from these processes. Eight wells within the ABG were sampled and analyzed for nitrogen isotopic composition of nitrate. An enrichment in the δ15N ( δ15N = +8.9, +12.0, +13.1, and +13.5‰) occurred at four wells located near the primary areas of disposal activities within the ABG. Four wells located near the outer limits of the ABG had δ15N values significantly lower than those observed in the central area of the ABG ( δ15N = +4.0, +4.1, +4.6, and +2.0‰). Soil samples and burn-pan ash samples were collected and analyzed for the nitrogen isotopic composition of nitrate. Three soil nitrate samples had low δ15N values of -1.7, -1.8, and +2.2‰. The burn-pan ash sample produced nitrate with a δ15N value of +2.9‰. The observed enrichment in δ15N from samples taken from wells located near the ABG has been postulated to be a result of photodegradation or biochemical modification of RDX and TNT contaminated sludges and volatilization of NH 3 in storage lagoons within the ABG.

  5. Macroalgae blooms and delta 15N in subtropical coastal lagoons from the Southeastern Gulf of California: discrimination among agricultural, shrimp farm and sewage effluents.

    PubMed

    Piñón-Gimate, Alejandra; Soto-Jiménez, Martín F; Ochoa-Izaguirre, María Julia; García-Pagés, Eynar; Páez-Osuna, Federico

    2009-08-01

    Macroalgae blooms of Gracilaria vermiculophylla, Hypnea spinella and Spyridia filamentosa have been found in coastal lagoons in the SE Gulf of California. Agriculture, livestock, shrimp and poultry farms and sewage contribute anthropogenic nitrogen to the systems. The delta(15)N of these sources, water column and macroalgae were studied in order to identify the N supply for macroalgae blooms. delta(15)N of three species of macroalgae (4.3-13.6 per thousand) were enriched compared to the water column (delta(15)N-NO(3)(-) 3.7-6.8 per thousand), probably because of fractioning from the macroalgae. delta(15)N of POM (1.4-10.3 per thousand) was similar to the water column but the relationship was unclear. Depending on the site, macroalgae showed different delta(15)N values since some sites receive more or less influence from one given source of the associated watershed, which is reflected in the different delta(15)N values of the macroalgae of the same system and in the relative contributions of the sources. PMID:19442992

  6. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  7. The fate of 15N-nitrate in mesocosms from five European peatlands differing in long-term nitrogen deposition rate

    NASA Astrophysics Data System (ADS)

    Zając, K.; Blodau, C.

    2016-02-01

    Elevated nitrogen (N) deposition changes the retention, transformation, and fluxes of N in ombrotrophic peatlands. To evaluate such effects we applied a 15N tracer (NH4 15NO3) at a rate of 2.3 g N m-2 yr-1 to mesocosms of five European peatlands with differing long-term N deposition rates for a period of 76 days of dry and 90 days of wet conditions. We determined background N content and moss length growth, and recovered the 15N tracer from the mosses, graminoids, shrubs, the peat, and dissolved N. Background N contents in Sphagnum mosses increased from 5.5 (Degerö Stormyr, deposition < 0.2 g N m-2 yr-1) up to 12.2 mg g-1 (Frölichshaier Sattelmoor, 4.7-6.0 g N m-2 yr-1). In peat from Degerö, nitrate and ammonium concentrations were below 3 mg L-1, whereas up to 30 (nitrate) and 11 mg L-1 (ammonium) was found in peat from Frölichshaier Sattelmoor. Sphagnum mosses (down to 5 cm below surface) generally intercepted large amounts of 15N (0.2-0.35 mg g-1) and retained the tracer most effectively relative to their biomass. Similar quantities of the 15N were recovered from the peat, followed by shrubs, graminoids, and the dissolved pool. At the most polluted sites we recovered more 15N from shrubs (up to 12.4 %) and from nitrate and ammonium (up to 0.7 %). However, no impact of N deposition on 15N retention by Sphagnum could be identified and their length growth was highest under high N background deposition. Our experiment suggests that the decline in N retention at levels above ca. 1.5 g m-2 yr-1, as expressed by elevated near-surface peat N content and increased dissolved N concentrations, is likely more modest than previously thought. This conclusion is related to the finding that Sphagnum species can apparently thrive at elevated long-term N deposition rates in European peatlands.

  8. Physiological integration modifies δ15N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring

    PubMed Central

    Roiloa, S. R.; Antelo, B.; Retuerto, R.

    2014-01-01

    Background and Aims One of the most striking attributes of clonal plants is their capacity for physiological integration, which enables movement of essential resources between connected ramets. This study investigated the capacity of physiological integration to buffer differences in resource availability experienced by ramets of the clonal wild strawberry plant, Fragaria vesca. Specifically, a study was made of the responses of connected and severed offspring ramets growing in environments with different water availability conditions (well watered or water stressed) and nitrogen forms (nitrate or ammonium). Methods The experimental design consisted of three factors, ‘integration’ (connected, severed) ‘water status’ (well watered, water stressed) and ‘nitrogen form’ (nitrate, ammonium), applied in a pot experiment. The effects of physiological integration were studied by analysing photochemical efficiency, leaf spectral reflectance, photosynthesis and carbon and nitrogen isotope discrimination, the last of which has been neglected in previous studies. Key Results Physiological integration buffered the stress caused by water deprivation. As a consequence, survival was improved in water-stressed offspring ramets that remained connected to their parent plants. The nitrogen isotope composition (δ15N) values in the connected water-stressed ramets were similar to those in ramets in the ammonium treatment; however, δ15N values in connected well-watered ramets were similar to those in the nitrate treatment. The results also demonstrated the benefit of integration for offspring ramets in terms of photochemical activity and photosynthesis. Conclusions This is the first study in which carbon and nitrogen isotopic discrimination has been used to detect physiological integration in clonal plants. The results for nitrogen isotope composition represent the first evidence of preferential transport of a specific form of nitrogen to compensate for stressful conditions

  9. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY.

    PubMed

    Fushman, D; Cowburn, D

    1999-02-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site-specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D parallel/D perpendicular - 1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D parallel/D perpendicular > or = 1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems. PMID:10070755

  10. What can Δ 15N and Δ 18O isotopes tell us about sources, transport, and fate of nitrate in the Mississippi River Basin?

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.

    2003-12-01

    Water and nutrients, primarily nitrate (NO3) in Mississippi River discharge, affect the size and severity of the Gulf of Mexico hypoxic (depleted dissolved oxygen) zone. Approximately 120 water samples were collected from 16 sites on small streams and 6 sites on large rivers within the Mississippi River Basin in 1997-98 to see if NO3 sources and transformations can be identified using the stable isotopic ratios Δ 15N and Δ 18O. Results from Lagrangian sampling at the large river sites indicate that nitrate mass decreases slightly, while Δ 15N and Δ 18O isotope ratios are unchanged in the 1500 river kilometers between the Upper Mississippi-Ohio River confluence and the Gulf of Mexico. Results also show that Δ 15N and Δ 18O values from small streams draining lands dominated by row crops or livestock tended to be distinct from those dominated by urban or undeveloped land. Mean Δ 15N values at the 16 sites on small streams were most strongly correlated (Pearson's r) with manure production rate (0.64), percent residential land use (-0.45), and urea use rate (0.43). The best multiple linear regression (MLR) model for mean Δ 15N values (r2=0.69) used manure production rate and ammonium nitrate use rate as explanatory variables. Mean Δ 18O values were most strongly correlated with percent wetlands (0.72), mean NO3 concentration (-0.71), and percent residential land use (0.58). The best MLR model for mean Δ 18O values (r2=0.85) used percent residential land use, percent wetlands, and ammonium nitrate use rate as explanatory variables. Mean NO3 concentrations were most strongly correlated with percent row-crops land use (0.84), nitrogen-fertilizer use rate (0.74), and hog-manure production rate (0.66). The best MLR model for mean NO3 concentration (r2=0.85) used percent row-crops land use and percent grain-crops land use as explanatory variables. MLR equations developed from the 16 smaller streams were used to predict mean Δ 15N and Δ 18O values and NO3

  11. Detection of 15NNH+ in L1544: non-LTE modelling of dyazenilium hyperfine line emission and accurate 14N/15N values

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Caselli, P.; Leonardo, E.; Dore, L.

    2013-07-01

    Context. Samples of pristine solar system material found in meteorites and interplanetary dust particles are highly enriched in 15N. Conspicuous nitrogen isotopic anomalies have also been measured in comets, and the 14N/15N abundance ratio of the Earth is itself higher than the recognised presolar value by almost a factor of two. Low-temperature ion/molecule reactions in the proto-solar nebula have been repeatedly indicated as being responsible for these 15N-enhancements. Aims: We have searched for 15N variants of the N2H+ ion in L1544, a prototypical starless cloud core that is one of the best candidate sources for detection owing to its low central core temperature and high CO depletion. The goal is to evaluate accurate and reliable 14N/15N ratio values for this species in the interstellar gas. Methods: A deep integration of the 15NNH+(1-0) line at 90.4 GHz was obtained with the IRAM 30 m telescope. Non-LTE radiative transfer modelling was performed on the J = 1-0 emissions of the parent and 15N-containing dyazenilium ions, using a Bonnor-Ebert sphere as a model for the source. Results: A high-quality fit of the N2H+(1-0) hyperfine spectrum has allowed us to derive a revised value of the N2H+ column density in L1544. Analysis of the observed N15NH+ and 15NNH+ spectra yielded an abundance ratio N(N15NH+)/N(15NNH+) = 1.1 ± 0.3. The obtained 14N/15N isotopic ratio is ~1000 ± 200, suggestive of a sizeable 15N depletion in this molecular ion. Such a result is not consistent with the prediction of the current nitrogen chemical models. Conclusions: Since chemical models predict high 15N fractionation of N2H+, we suggest that 15N14N, or 15N in some other molecular form, tends to deplete onto dust grains. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Full Tables B.1-B.6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  12. New flaxseed orbitides: Detection, sequencing, and (15)N incorporation.

    PubMed

    Okinyo-Owiti, Denis P; Young, Lester; Burnett, Peta-Gaye G; Reaney, Martin J T

    2014-03-01

    Three new orbitides (cyclolinopeptides 17, 18, and 19) were identified in flaxseed (Linum usitatissimum L.) extracts without any form of purification. Their structures were elucidated by a combination of (15) N-labeling experiments and extensive tandem mass spectrometry (MS/MS) with electrospray ionization (ESI). Putative linear peptide sequences of the new orbitides were used as the query in the Basic Local Alignment Search Tool (BLAST) searches of flax genome database. These searches returned linear sequences for the putative precursors of cyclolinopeptides 17 and 19 among others. Cyclolinopeptide 18 contains MetO (O) and is not directly encoded, but is a product of post-translation modification of the Met present in 17. The identification of precursor proteins in flax mRNA transcripts and DNA sequences confirmed the occurrence and amino acid sequences of these orbitides as [1-9-NαC]-MLKPFFFWI, [1-9-NαC]-OLKPFFFWI, and [1-9-NαC]-GIPPFWLTL for cyclolinopeptides 17, 18, and 19, respectively. PMID:24408479

  13. Short-term recovery of NH4-15N applied to a temperate forest inceptisol and ultisol in east Tennessee USA

    SciTech Connect

    Garten Jr, Charles T; Brice, Deanne Jane; Todd Jr, Donald E

    2007-11-01

    The short-term fate and retention of ammonium (NH4)-{sup 15}nitrogen (N) applied to two types of forest soils in east Tennessee was investigated. Four ridgetop forests, predominantly oak (Quercus spp.), were studied. Five applications of NH{sub 4}-{sup 15}N tracer were made to the forest floor at 2- to 4-week intervals over a 14-week period in 2004. Nitrogen-15 recovery in the forest floor, fine roots (<2 mm), and the mineral soil (0-20 cm) was calculated at 6, 21, and 42 weeks after the last application. Most of the {sup 15}N was retained in the forest floor and the mineral soil, with only small amounts ({approx}<2%) found in roots from both soil layers. Recovery of NH{sub 4}-{sup 15}N was greater in Inceptisols, which had a wider carbon (C)-to-N ratio than Ultisols. For both soil types, higher NH{sub 4}-{sup 15}N recoveries and long retention times (half-lives>100 weeks) indicated the forest floor is an effective filter for atmospheric N inputs.

  14. 15N2 formation and fast oxygen isotope exchange during pulsed 15N18O exposure of MnOx/CeO2

    SciTech Connect

    Kwak, Ja Hun; Szanyi, Janos

    2014-12-23

    Pulsing 15N18O onto an annealed 1% Mn16Ox/Ce16O2 catalyst resulted in very fast oxygen isotope exchange and 15N2 formation at 295 K. In the 1st 15N18O pulse, due to the presence of large number of surface oxygen defects, extensive 15N218O and 15N2 formations were observed. In subsequent pulses oxygen isotope exchange dominated as a result of highly labile oxygen in the oxide. We gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  15. Comparing the influence of wildfire and prescribed burns on watershed nitrogen biogeochemistry using 15N natural abundance in terrestrial and aquatic ecosystem components.

    PubMed

    Stephan, Kirsten; Kavanagh, Kathleen L; Koyama, Akihiro

    2015-01-01

    We evaluated differences in the effects of three low-severity spring prescribed burns and four wildfires on nitrogen (N) biogeochemistry in Rocky Mountain headwater watersheds. We compared paired (burned/unburned) watersheds of four wildfires and three spring prescribed burns for three growing seasons post-fire. To better understand fire effects on the entire watershed ecosystem, we measured N concentrations and δ15N in both the terrestrial and aquatic ecosystems components, i.e., soil, understory plants in upland and riparian areas, streamwater, and in-stream moss. In addition, we measured nitrate reductase activity in foliage of Spiraea betulifolia, a dominant understory species. We found increases of δ15N and N concentrations in both terrestrial and aquatic ecosystem N pools after wildfire, but responses were limited to terrestrial N pools after prescribed burns indicating that N transfer from terrestrial to aquatic ecosystem components did not occur in low-severity prescribed burns. Foliar δ15N differed between wildfire and prescribed burn sites; the δ15N of foliage of upland plants was enriched by 2.9 ‰ (difference between burned and unburned watersheds) in the first two years after wildfire, but only 1.3 ‰ after prescribed burns. In-stream moss δ15N in wildfire-burned watersheds was enriched by 1.3 ‰, but there was no response by moss in prescription-burned watersheds, mirroring patterns of streamwater nitrate concentrations. S. betulifolia showed significantly higher nitrate reductase activity two years after wildfires relative to corresponding unburned watersheds, but no such difference was found after prescribed burns. These responses are consistent with less altered N biogeochemistry after prescribed burns relative to wildfire. We concluded that δ15N values in terrestrial and aquatic plants and streamwater nitrate concentrations after fire can be useful indicators of the magnitude and duration of fire effects and the fate of post

  16. Comparing the Influence of Wildfire and Prescribed Burns on Watershed Nitrogen Biogeochemistry Using 15N Natural Abundance in Terrestrial and Aquatic Ecosystem Components

    PubMed Central

    Stephan, Kirsten; Kavanagh, Kathleen L.; Koyama, Akihiro

    2015-01-01

    We evaluated differences in the effects of three low-severity spring prescribed burns and four wildfires on nitrogen (N) biogeochemistry in Rocky Mountain headwater watersheds. We compared paired (burned/unburned) watersheds of four wildfires and three spring prescribed burns for three growing seasons post-fire. To better understand fire effects on the entire watershed ecosystem, we measured N concentrations and δ15N in both the terrestrial and aquatic ecosystems components, i.e., soil, understory plants in upland and riparian areas, streamwater, and in-stream moss. In addition, we measured nitrate reductase activity in foliage of Spiraea betulifolia, a dominant understory species. We found increases of δ15N and N concentrations in both terrestrial and aquatic ecosystem N pools after wildfire, but responses were limited to terrestrial N pools after prescribed burns indicating that N transfer from terrestrial to aquatic ecosystem components did not occur in low-severity prescribed burns. Foliar δ15N differed between wildfire and prescribed burn sites; the δ15N of foliage of upland plants was enriched by 2.9 ‰ (difference between burned and unburned watersheds) in the first two years after wildfire, but only 1.3 ‰ after prescribed burns. In-stream moss δ15N in wildfire-burned watersheds was enriched by 1.3 ‰, but there was no response by moss in prescription-burned watersheds, mirroring patterns of streamwater nitrate concentrations. S. betulifolia showed significantly higher nitrate reductase activity two years after wildfires relative to corresponding unburned watersheds, but no such difference was found after prescribed burns. These responses are consistent with less altered N biogeochemistry after prescribed burns relative to wildfire. We concluded that δ15N values in terrestrial and aquatic plants and streamwater nitrate concentrations after fire can be useful indicators of the magnitude and duration of fire effects and the fate of post

  17. Assignment of the sup 1 H and sup 15 N NMR spectra of Rhodobacter capsulatus ferrocytochrome c sub 2

    SciTech Connect

    Gooley, P.R.; Caffrey, M.S.; Cusanovich, M.A.; MacKenzie, N.E. )

    1990-03-06

    The peptide resonances of the {sup 1}H and {sup 15}N nuclear magnetic resonance spectra of ferrocytochrome c{sub 2} from Rhodobacter capsulatus are sequentially assigned by a combination of 2D {sup 1}H-{sup 1}H and {sup 1}H-{sup 15}N spectroscopy, the latter performed on {sup 15}N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show {alpha}-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two {alpha}-helices, there are three single 3{sub 10} turns, 70-72, 76-78, and 107-109. In addition {alpha}H-NH{sub i+1} and {alpha}H-NH{sub i+2} NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c{sub 2} of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c{sub 2}. The NOE data show that this insertion forms a loop, probably an {Omega} loop. {sup 1}H-{sup 15}N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c{sub 2} of R. capsulatus with the highly homologous horse heart cytochrome c shows that this helix is less stable in cytochrome c{sub 2}.

  18. Fate of nitrogen deposition and decomposed nitrogen from litter in a 15N-tracer mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Nair, R.; Perks, M.; Mencuccini, M.

    2013-12-01

    Atmospheric deposition of anthropogenic-derived nitrogen may be a major driver of the 0.6-0.7 Pg y-1 increase in the carbon sink in historically N-limited northern and boreal forests, but the magnitude of its effect is still uncertain. A strong effect depends on the allocation of N to trees, because of their high C:N ratio in woody tissues, and isotope tracer experiments have shown that the majority of 15N tracers applied directly to the soil are lost via leeching or retained in soil pools rather than being acquired by tree root systems. However, ambient anthropogenic inputs of N to these systems are transported in the atmosphere and intercepted by foliage before they reach the soil system, while labelled fertilization experiments also can only explicitly trace the fate of the 15N-tracer from deposition, as opposed to changes in the fate of N from litter, where decomposition rates may be enhanced at low ambient levels of deposition, affecting the availability of N from this pool for tree nutrition. We present initial results from a potted Sitka Spruce mesocosm 15N-tracer experiment where ambient nitrogen deposition was supplemented with a minor (0.4 kg ha-1 y-1) input of additional N, applied to either the soil or the foliage. Either this deposition, or litter in the pots, was enriched in 15N, allowing the fate of the isotope from two different methods of deposition to be compared with that of nitrogen released from the litter under the deposition treatment.

  19. Heavy water and (15) N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats.

    PubMed

    Kopf, Sebastian H; McGlynn, Shawn E; Green-Saxena, Abigail; Guan, Yunbin; Newman, Dianne K; Orphan, Victoria J

    2015-07-01

    To measure single-cell microbial activity and substrate utilization patterns in environmental systems, we employ a new technique using stable isotope labelling of microbial populations with heavy water (a passive tracer) and (15) N ammonium in combination with multi-isotope imaging mass spectrometry. We demonstrate simultaneous NanoSIMS analysis of hydrogen, carbon and nitrogen at high spatial and mass resolution, and report calibration data linking single-cell isotopic compositions to the corresponding bulk isotopic equivalents for Pseudomonas aeruginosa and Staphylococcus aureus. Our results show that heavy water is capable of quantifying in situ single-cell microbial activities ranging from generational time scales of minutes to years, with only light isotopic incorporation (∼0.1 atom % (2) H). Applying this approach to study the rates of fatty acid biosynthesis by single cells of S. aureus growing at different rates in chemostat culture (∼6 h, 1 day and 2 week generation times), we observe the greatest anabolic activity diversity in the slowest growing populations. By using heavy water to constrain cellular growth activity, we can further infer the relative contributions of ammonium versus amino acid assimilation to the cellular nitrogen pool. The approach described here can be applied to disentangle individual cell activities even in nutritionally complex environments. PMID:25655651

  20. Heavy water and 15N labeling with NanoSIMS analysis reveals growth-rate dependent metabolic heterogeneity in chemostats

    PubMed Central

    McGlynn, Shawn E.; Green-Saxena, Abigail

    2015-01-01

    To measure single cell microbial activity and substrate utilization patterns in environmental systems, we employ a new technique using stable isotope labeling of microbial populations with heavy water (a passive tracer) and 15N ammonium in combination with multi-isotope imaging mass spectrometry. We demonstrate simultaneous NanoSIMS analysis of hydrogen, carbon and nitrogen at high spatial and mass resolution, and report calibration data linking single cell isotopic compositions to the corresponding bulk isotopic equivalents for Pseudomonas aeruginosa and Staphylococcus aureus. Our results show that heavy water is capable of quantifying in situ single cell microbial activities ranging from generational time scales of minutes to years, with only light isotopic incorporation (∼0.1 atom % 2H). Applying this approach to study the rates of fatty acid biosynthesis by single cells of S. aureus growing at different rates in chemostat culture (∼6 hours, 1 day and 2 week generation times), we observe the greatest anabolic activity diversity in the slowest growing populations. By using heavy water to constrain cellular growth activity, we can further infer the relative contributions of ammonium vs. amino acid assimilation to the cellular nitrogen pool. The approach described here can be applied to disentangle individual cell activities even in nutritionally complex environments. PMID:25655651

  1. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    PubMed

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture. PMID:25259503

  2. Comparing isotope signatures of prey fish: does gut removal affect δ13C or δ15N?

    USGS Publications Warehouse

    Chipps, Steven R.; Fincel, Mark J.; VanDeHey, Justin A.; Wuestewald, Andrew

    2011-01-01

    Stable isotope analysis is a quick and inexpensive method to monitor the effects of food web changes on aquatic communities. Traditionally, whole specimens have been used when determining isotope composition of prey fish or age-0 recreational fishes. However, gut contents of prey fish could potentially alter isotope composition of the specimen, especially when recent foraging has taken place or when the gut contains non-assimilated material that would normally pass through fishes undigested. To assess the impacts of gut content on prey fish isotope signatures, we examined the differences in isotopic variation of five prey fish species using whole fish, whole fish with the gut contents removed, and dorsal muscle only. We found significant differences in both δ15N and δ13C between the three tissue treatments. In most cases, muscle tissue was enriched compared to whole specimens or gut-removed specimens. Moreover, differences in mean δ15N within a species were up to 2‰ among treatments. This would result in a change of over half a trophic position (TP) based on a 3.4‰ increase per trophic level. However, there were no apparent relationships between tissue isotope values in fish with increased gut fullness (more prey tissue present). We suggest that muscle tissue should be used as the standard tissue for determining isotope composition of prey fish or age-0 recreational fishes, especially when determining enrichment for mixing models, calculating TP, or constructing aquatic food webs.

  3. Endogenous and environmental factors influence the dietary fractionation of 13C and 15N in hissing cockroaches Gromphadorhina portentosa.

    PubMed

    McCue, Marshall D

    2008-01-01

    Since DeNiro and Epstein's discovery that the (13)C and (15)N isotopic signatures of animals approximate those of their respective diets, the measurement of stable isotope signatures has become an important tool for ecologists studying the diets of wild animals. This study used Madagascar hissing cockroaches (Gromphadorhina portentosa) to examine several preexisting hypotheses about the relationship between the isotopic composition of an animal and its diet. Contrary to my predictions, the results revealed that the tissues of adult cockroaches raised for two generations on a diet of known isotopic composition did not demonstrate enrichment of heavy stable isotopes. Moreover, the (15)N signatures of cockroaches were neither influenced by periods of rapid growth (i.e., 300-fold increase in dry body mass over 120 d) nor by imposed periods of starvation lasting up to 80 d. The offspring born to mothers raised on known diets were enriched in (15)N. Diet-switching experiments showed that turnover times of (13)C were highly correlated with age and ranged from 9 to 10 d to 60 to 75 d in subadults and adults, respectively. Adults subjected to diet switches differed from the subadults in that the adults achieved equilibrated isotopic signatures that were shifted approximately 1.0 per thousand toward their respective original diets. Lipid fractions of adult cockroaches averaged 2.9 per thousand more depleted in (13)C than in lipid-free fractions, but no changes in (13)C were observed in aging adults. Exposure to reduced ambient temperature from 33 degrees C to 23 degrees C over 120 d did not influence isotopic signatures of tissues. Overall, the results of this study reveal that different endogenous and exogenous factors can influence the isotopic signatures of cockroaches. These findings reinforce the need to conduct controlled studies to further examine environmental factors that influence the relationships between the isotopic signatures of animals and their diets. PMID

  4. Hydrothermal synthesis of ammonium illite

    USGS Publications Warehouse

    Sucha, V.; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.

    1998-01-01

    Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.

  5. Millimeter-Wave Observations of Circumstellar 14N/15N and 12C/13C Ratios: New Insights into J-Type Stars

    NASA Astrophysics Data System (ADS)

    Adande, Gilles; Ziurys, Lucy M.; Woolf, Neville

    2016-06-01

    Measurements of 14N/15N and 12C/13C isotopic ratios have been conducted towards circumstellar envelopes of a sample of evolved stars using the J = 3→2 rotational transitions of the isotopologues of HCN, observed with the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO). Towards the J-type stars Y CVn and RY Dra, where 12C/13C ~ 3, the 14N/15N ratios were found to be 120-180 and 225, respectively. The 14N/15N ratio is thus anomalously low relative to interstellar values and a factor ~100 lower than equilibrium values predicted from the CNO cycle. Combining these results with previous chemical and isotopic prior observations of these stars, we conclude that two anomalous behaviors are likely to have occurred in Y CVn and RY Dra. First, the stellar envelope failed to participate in the normal mixing seen in low mass red giants, in which C and then O are substantially converted to N. Secondly, both the carbon enrichment and anomalous isotopic composition of both 13C and15N could have been caused by a plume of hot gas, hydrogen poor but enriched in 12C, from a helium flash mixing into the envelope.

  6. A cross-shelf gradient in δ15N stable isotope values of krill and pollock indicates seabird foraging patterns in the Bering Sea

    NASA Astrophysics Data System (ADS)

    Jones, Nathan M.; Hoover, Brian A.; Heppell, Scott A.; Kuletz, Kathy J.

    2014-11-01

    Concurrent measurements of predator and prey δ15N isotope values demonstrated that a cross-shelf isotopic gradient can propagate through a marine food web from forage species to top-tier predators and indicate foraging areas at a scale of tens of kilometers. We measured δ13C and δ15N in muscle tissues of thick-billed murres (Uria lomvia) and black-legged kittiwakes (Rissa tridactyla), and in whole body tissues of walleye pollock (Gadus chalcogrammus) and krill (Thysanoessa spp), sampled across the continental shelf break in the Bering Sea in 2008 and in 2009. We found significant basin-shelf differences at fine scales (<100 km) in δ15N among murres but not kittiwakes, and no such differences in δ13C in either seabird species at that scale. We then quantified the multi-trophic signal and spatial structure of a basin-shelf δ15Nitrogen gradient in the central and southern Bering Sea, and used it to contrast foraging patterns of thick-billed murres and kittiwakes on the open ocean. Seabird muscle δ15N values were compared to baselines created from measurements in krill and pollock tissues sampled concurrently throughout the study area. Krill, pollock, and murre tissues from northern, shallow, shelf habitat (<200 m) were enriched 1-2‰ in δ15N relative to samples taken from deeper habitats (>200 m) to the south and west. Krill δ15N baseline values predicted 35-42% of the variability in murre tissue values. Patterns between kittiwakes and prey were less coherent. The persistence of strong spatial autocorrelation among sample values, and a congruence of geospatial patterns in δ15N among murre and prey tissues, suggest that murres forage repeatedly in specific areas. Murre isotope values showed distinct geospatial stratification, coincident with the spatial distribution of three colonies: St. Paul, St. George, and Bogoslof. This suggests some degree of foraging habitat partitioning among colonies.

  7. A 115-year δ15N record of cumulative nitrogen pollution in California serpentine grasslands

    NASA Astrophysics Data System (ADS)

    Vallano, D.; Zavaleta, E. S.

    2010-12-01

    Until the 1980s, California’s biodiverse serpentine grasslands were threatened primarily by development and protected by reserve creation. However, nitrogen (N) fertilization due to increasing fossil fuel emissions in the expanding Bay Area is thought to be contributing to rapid, recent invasion of these ecosystems by exotic annual grasses that are displacing rare and endemic serpentine species. Documenting the cumulative effects of N deposition in this ecosystem can direct policy and management actions to mitigate the role of N deposition in its transformation. Natural abundance stable isotopes of N in vegetation have been increasingly used as bio-indicators of N deposition patterns and subsequent changes to plant N cycling and assimilation. However, the long-term record of atmospheric reactive N enrichment and the resulting changes in ecosystem N dynamics have yet to be adequately reconstructed in many ecosystems. Museum archives of vascular plant tissue are valuable sources of materials to reconstruct temporal and spatial isotopic patterns of N inputs to ecosystems. Here, we present N stable isotope data from archived and current specimens of an endemic California serpentine grassland species, leather oak (Quercus durata), since 1895 across the greater San Francisco Bay region. We measured spatial and temporal trends in stable isotope composition (δ15N and δ13C) and concentration (%N and %C) of historical and current samples of leather oak leaves from sites within the Bay Area, impacted by increasing development, and sites northeast of the Bay Area, with significantly lower rates of urbanization and industrialization. Specifically, we sampled dry museum and fresh leaf specimens from serpentine sites within Lake (n=27) and Santa Clara (n=30) counties dating from 1895 to 2010. Leaf δ15N values were stable from 1895 to the 1950s and then decreased strongly throughout the last 50 years as fossil fuel emissions rapidly increased in the Bay Area, indicating that

  8. Isolation and measurement of /sup 15/N/sub 2/ from respiratory gases of animals administered /sup 15/N-labeled substances

    SciTech Connect

    Springer, D.L.; Reed, D.J.; Dost, F.N.

    1981-07-01

    A method is described for collection of metabolic /sup 15/N/sub 2/ from in vitro preparations or intact rats administered /sup 15/N-containing compounds. The method enables routine collection and mass spectrometric measurement of as little as 10 ..mu..mol /sup 15/N/sub 2/ respired by a rat over a 24-h period. A device is described that includes either an animal chamber or a tissue reaction vessel in a closed recycling atmosphere, with automatic O/sub 2/ replenishment and removal of CO/sub 2/ and water. It is capable of sustaining moderate vacuum and is coupled to a high-vacuum manifold designed to process the contained atmosphere and respiratory gases. The starting atmosphere is an 80:20 mix of sulfur hexafluoride and O/sub 2/. Recovery of /sup 15/N/sub 2/ gas from the system without an animal present was 101.3 +/- 5.75%. When /sup 15/N/sub 2/ gas was very slowly infused iv into an animal, recovery was 89.1 +/- 5.38%. Use of the method in studies of the fate of (/sup 15/N)hydrazine in rats indicated that about 15% of the administered hydrazine is rapidly converted to /sup 15/N/sub 2/, followed by slower conversion of an additional 7-10% over the next several hours.

  9. Numerical evaluation of subsoil diffusion of (15) N labelled denitrification products during employment of the (15) N gas flux method in the field

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Lewicka-Szczebak, Dominika; Ruoss, Nicolas

    2016-04-01

    Common methods for measuring soil denitrification in situ include monitoring the accumulation of 15N labelled N2 and N2O evolved from 15N labelled soil nitrate pool in soil surface chambers. Gas diffusion is considered to be the main accumulation process. Because accumulation of the gases decreases concentration gradients between soil and chamber over time, gas production rates are underestimated if calculated from chamber concentrations. Moreover, concentration gradients to the non-labelled subsoil exist, inevitably causing downward diffusion of 15N labelled denitrification products. A numerical model for simulating gas diffusion in soil was used in order to determine the significance of this source of error. Results show that subsoil diffusion of 15N labelled N2 and N2O - and thus potential underestimation of denitrification derived from chamber fluxes - increases with cover closure time as well as with increasing diffusivity. Simulations based on the range of typical gas diffusivities of unsaturated soils show that the fraction of subsoil diffusion after chamber closure for 1 hour is always significant with values up to >30 % of total production of 15N labelled N2 and N2O. Field experiments for measuring denitrification with the 15N gas flux method were conducted. The ability of the model to predict the time pattern of gas accumulation was evaluated by comparing measured 15N2 concentrations and simulated values.

  10. Ammonia 15N/14N Isotope Ratio in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.R.; Niemann, H. B.; Atreya, S. K.; Wong, M. H.; Owen, T. C; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Data from the Galileo Probe Mass Spectrometer has been used to derive the N-15/N-14 isotope ratio in ammonia at Jupiter. Although the mass spectral interference from the water contribution to 18 amu makes an accurate derivation of the (N-15)H3/(N-14)H3 ratio difficult from measurements of the singly ionized signals at 18 and 17 amu, this interference is not present in the doubly charged 8.5 and 9.0 amu signals from (N-14)H3++ and (N-15)H3++ respectively. Although the count rate from the 9 amu signal is low during the direct sampling of the atmosphere, the ammonia signal was considerably enhanced during the first enrichment cell (EC1) experiment that measured gas sampled between 0.8 and 2.8 bar. Count rates at 9 amu in the EC1 experiment reach 60/second and measure ammonia sampled from 0.88 to 2.8 bar. In the EC1 measurements the 8.5 amu signal is not measured directly, but can be calculated from the ammonia contribution to 17 amu and the ratio of NH3 ions of a double to single charged observed during a high resolution mass scan taken near the end of the descent. The high resolution scan gives this ratio from ammonia sampled much deeper in the atmosphere. These results are described and compared with Infrared Space Observatory-Short Wavelength Spectrometer (ISO-SWS) observations that give this ratio at 400 mbar.

  11. Chemoautotrophic growth of ammonia-oxidizing Thaumarchaeota enriched from a pelagic redox gradient in the Baltic Sea

    PubMed Central

    Berg, Carlo; Listmann, Luisa; Vandieken, Verona; Vogts, Angela; Jürgens, Klaus

    2015-01-01

    Ammonia-oxidizing archaea (AOA) are an important component of the planktonic community in aquatic habitats, linking nitrogen and carbon cycles through nitrification and carbon fixation. Therefore, measurements of these processes in culture-based experiments can provide insights into their contributions to energy conservation and biomass production by specific AOA. In this study, by enriching AOA from a brackish, oxygen-depleted water-column in the Landsort Deep, central Baltic Sea, we were able to investigate ammonium oxidation, chemoautotrophy, and growth in seawater batch experiments. The highly enriched culture consisted of up to 97% archaea, with maximal archaeal numbers of 2.9 × 107 cells mL−1. Phylogenetic analysis of the 16S rRNA and ammonia monooxygenase subunit A (amoA) gene sequences revealed an affiliation with assemblages from low-salinity and freshwater habitats, with Candidatus Nitrosoarchaeum limnia as the closest relative. Growth correlated significantly with nitrite production, ammonium consumption, and CO2 fixation, which occurred at a ratio of 10 atoms N oxidized per 1 atom C fixed. According to the carbon balance, AOA biomass production can be entirely explained by chemoautotrophy. The cellular carbon content was estimated to be 9 fg C per cell. Single-cell-based 13C and 15N labeling experiments and analysis by nano-scale secondary ion mass spectrometry provided further evidence that cellular carbon was derived from bicarbonate and that ammonium was taken up by the cells. Our study therefore revealed that growth by an AOA belonging to the genus Nitrosoarchaeum can be sustained largely by chemoautotrophy. PMID:25642221

  12. Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile

    USGS Publications Warehouse

    Perakis, Steven S.; Compton, J.E.; Hedin, L.O.

    2005-01-01

    Accelerated nitrogen (N) inputs can drive nonlinear changes in N cycling, retention, and loss in forest ecosystems. Nitrogen processing in soils is critical to understanding these changes, since soils typically are the largest N sink in forests. To elucidate soil mechanisms that underlie shifts in N cycling across a wide gradient of N supply, we added 15NH415NO3 at nine treatment levels ranging in geometric sequence from 0.2 kg to 640 kg NA? ha-1A? yr-1 to an unpolluted old-growth temperate forest in southern Chile. We recovered roughly half of tracers in 0-25 cm of soil, primarily in the surface 10 cm. Low to moderate rates of N supply failed to stimulate N leaching, which suggests that most unrecovered 15N was transferred from soils to unmeasured sinks above ground. However, soil solution losses of nitrate increased sharply at inputs > 160 kg NA? ha-1A? yr-1, corresponding to a threshold of elevated soil N availability and declining 15N retention in soil. Soil organic matter (15N in soils at the highest N inputs and may explain a substantial fraction of the 'missing N' often reported in studies of fates of N inputs to forests. Contrary to expectations, N additions did not stimulate gross N cycling, potential nitrification, or ammonium oxidizer populations. Our results indicate that the nonlinearity in N retention and loss resulted directly from excessive N supply relative to sinks, independent of plant-soil-microbial feedbacks. However, N additions did induce a sharp decrease in microbial biomass C:N that is predicted by N saturation theory, and which could increase long-term N storage in soil organic matter by lowering the critical C:N ratio for net N mineralization. All measured sinks accumulated 15N tracers across the full gradient of N supply, suggesting that short-term nonlinearity in N retention resulted from saturation of uptake kinetics, not uptake capacity, in plant, soil, and microbial pools.

  13. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots.

    PubMed Central

    Gazzarrini, S; Lejay, L; Gojon, A; Ninnemann, O; Frommer, W B; von Wirén, N

    1999-01-01

    Ammonium and nitrate are the prevalent nitrogen sources for growth and development of higher plants. 15N-uptake studies demonstrated that ammonium is preferred up to 20-fold over nitrate by Arabidopsis plants. To study the regulation and complex kinetics of ammonium uptake, we isolated two new ammonium transporter (AMT) genes and showed that they functionally complemented an ammonium uptake-deficient yeast mutant. Uptake studies with 14C-methylammonium and inhibition by ammonium yielded distinct substrate affinities between ammonium uptake in roots when nitrogen nutrition became limiting, whereas those of AtAMT1;3 increased slightly, with AtAMT1;2 being more constitutively expressed. All three ammonium transporters showed diurnal variation in expression, but AtAMT1;3 transcript levels peaked with ammonium uptake at the end of the light period, suggesting that AtAMT1;3 provides a link between nitrogen assimilation and carbon provision in roots. Our results show that high-affinity ammonium uptake in roots is regulated in relation to the physiological status of the plant at the transcriptional level and by substrate affinities of individual members of the AMT1 gene family. PMID:10330477

  14. Ammonium diphosphitoindate(III)

    PubMed Central

    Hamchaoui, Farida; Rebbah, Houria; Le Fur, Eric

    2013-01-01

    The crystal structure of the title compound, NH4[In(HPO3)2], is built up from InIII cations (site symmetry 3m.) adopting an octa­hedral environment and two different phosphite anions (each with site symmetry 3m.) exhibiting a triangular–pyramidal geometry. Each InO6 octa­hedron shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 group shares all its O atoms with three different metal cations, leading to [In(HPO3)2]− layers which propagate in the ab plane. The ammonium cation likewise has site symmetry 3m.. In the structure, the cations are located between the [In(HPO3)2]− layers of the host framework. The sheets are held together by hydrogen bonds formed between the NH4 + cations and the O atoms of the framework. PMID:23633983

  15. Ammonium diphosphitoindate(III).

    PubMed

    Hamchaoui, Farida; Rebbah, Houria; Le Fur, Eric

    2013-04-01

    The crystal structure of the title compound, NH4[In(HPO3)2], is built up from In(III) cations (site symmetry 3m.) adopting an octa-hedral environment and two different phosphite anions (each with site symmetry 3m.) exhibiting a triangular-pyramidal geometry. Each InO6 octa-hedron shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 group shares all its O atoms with three different metal cations, leading to [In(HPO3)2](-) layers which propagate in the ab plane. The ammonium cation likewise has site symmetry 3m.. In the structure, the cations are located between the [In(HPO3)2](-) layers of the host framework. The sheets are held together by hydrogen bonds formed between the NH4 (+) cations and the O atoms of the framework. PMID:23633983

  16. Nitrogen Addition Regulates Soil Nematode Community Composition through Ammonium Suppression

    PubMed Central

    Wei, Cunzheng; Zheng, Huifen; Li, Qi; Lü, Xiaotao; Yu, Qiang; Zhang, Haiyang; Chen, Quansheng; He, Nianpeng; Kardol, Paul; Liang, Wenju; Han, Xingguo

    2012-01-01

    Nitrogen (N) enrichment resulting from anthropogenic activities has greatly changed the composition and functioning of soil communities. Nematodes are one of the most abundant and diverse groups of soil organisms, and they occupy key trophic positions in the soil detritus food web. Nematodes have therefore been proposed as useful indicators for shifts in soil ecosystem functioning under N enrichment. Here, we monitored temporal dynamics of the soil nematode community using a multi-level N addition experiment in an Inner Mongolia grassland. Measurements were made three years after the start of the experiment. We used structural equation modeling (SEM) to explore the mechanisms regulating nematode responses to N enrichment. Across the N enrichment gradient, significant reductions in total nematode abundance, diversity (H' and taxonomic richness), maturity index (MI), and the abundance of root herbivores, fungivores and omnivores-predators were found in August. Root herbivores recovered in September, contributing to the temporal variation of total nematode abundance across the N gradient. Bacterivores showed a hump-shaped relationship with N addition rate, both in August and September. Ammonium concentration was negatively correlated with the abundance of total and herbivorous nematodes in August, but not in September. Ammonium suppression explained 61% of the variation in nematode richness and 43% of the variation in nematode trophic group composition. Ammonium toxicity may occur when herbivorous nematodes feed on root fluid, providing a possible explanation for the negative relationship between herbivorous nematodes and ammonium concentration in August. We found a significantly positive relationship between fungivores and fungal phospholipid fatty acids (PLFA), suggesting bottom-up control of fungivores. No such relationship was found between bacterivorous nematodes and bacterial PLFA. Our findings contribute to the understanding of effects of N enrichment in

  17. Whole-body protein turnover in preterm appropriate for gestational age and small for gestational age infants: comparison of [15N]glycine and [1-(13)C]leucine administered simultaneously.

    PubMed

    Van Goudoever, J B; Sulkers, E J; Halliday, D; Degenhart, H J; Carnielli, V P; Wattimena, J L; Sauer, P J

    1995-04-01

    Measurements of whole-body protein turnover in preterm infants have been made using different stable isotope methods. Large variation in results has been found, which could be due to different clinical conditions and/or the use of different tracers. We studied 14 appropriate for gestational age and nine small for gestational age orally fed preterm infants using [15N]glycine and [1-(13)C]leucine simultaneously, which allowed us to make a comparison of commonly used methods to calculate whole-body protein turnover. Whole-body protein turnover was calculated from 15N enrichment in urinary ammonia and urea after [15N]-glycine administration and from the 13C enrichment in expired CO2 after administration of [1-(13)C]leucine. Enrichment of alpha-ketoisocaproic acid after [1-(13)C]leucine constant infusion was measured as a direct parameter of whole-body protein turnover. Group means for whole-body protein turnover using [15N]glycine or [1-(13)C]leucine ranged from 10 to 14 g.kg-1.d-1, except when using the end product method that assumes a correlation between leucine oxidation and total nitrogen excretion. We found very low 15N enrichment of urinary urea in the majority of small for gestational age infants. These infants also had a lower nitrogen excretion in urine and oxidized less leucine. Nitrogen balance was higher in small for gestational age infants (416 +/- 25 mg.kg-1.d-1) compared with appropriate for gestational age infants (374 +/- 41 mg.kg-1.d-1, p = 0.003). [15N]Glycine does not seem to exchange its label with the body nitrogen pool to a significant degree and is therefore not always suitable as a carrier for 15N in protein turnover studies in premature infants. PMID:7596675

  18. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis.

    PubMed

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian; Ulrich, Anne S

    2015-06-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly (13)C/(15)N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive (13)C/(15)N-labeled amino acids. The most cost-effective production of (13)C/(15)N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% (13)C-glycerol and 0.5% (15)N-ammonium sulfate, supplemented with only 0.025% of (13)C/(15)N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  19. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  20. Protein expression and isotopic enrichment based on induction of the Entner-Doudoroff pathway in Escherichia coli

    SciTech Connect

    Refaeli, Bosmat; Goldbourt, Amir

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer The Entner-Doudoroff pathway is induced during protein expression in E. coli. Black-Right-Pointing-Pointer 1-{sup 13}C-gluconate and {sup 15}NH{sub 4}Cl provide a carbonyl-amide protein backbone labeling scheme. Black-Right-Pointing-Pointer The enrichment pattern is determined by nuclear magnetic resonance. -- Abstract: The Entner-Doudoroff pathway is known to exist in many organisms including bacteria, archea and eukarya. Although the common route for carbon catabolism in Escherichia coli is the Embden-Meyerhof-Parnas pathway, it was shown that gluconate catabolism in E. coli occurs via the Entner-Doudoroff pathway. We demonstrate here that by supplying BL21(DE3) competent E.coli cells with gluconate in a minimal growth medium, protein expression can be induced. Nuclear magnetic resonance data of over-expressed ubiquitin show that by using [1-{sup 13}C]-gluconate as the only carbon source, and {sup 15}N-enriched ammonium chloride, sparse isotopic enrichment in the form of a spin-pair carbonyl-amide backbone enrichment is obtained. The specific amino acid labeling pattern is analyzed and is shown to be compatible with Entner-Doudoroff metabolism. Isotopic enrichment serves as a key factor in the biophysical characterization of proteins by various methods including nuclear magnetic resonance, mass spectrometry, infrared spectroscopy and more. Therefore, the method presented here can be applied to study proteins by obtaining sparse enrichment schemes that are not based on the regular glycolytic pathway, or to study the Entner-Doudoroff metabolism during protein expression.

  1. Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment.

    PubMed

    Goodale, Christine L; Fredriksen, Guinevere; Weiss, Marissa S; McCalley, K; Sparks, Jed P; Thomas, Steven A

    2015-10-01

    Seasonal patterns of stream nitrate concentration have long been interpreted as demonstrating the central role of plant uptake in regulating stream nitrogen loss from forested catchments. Soil processes are rarely considered as important drivers of these patterns. We examined seasonal variation in N retention in a deciduous forest using three whole-ecosystem 15N tracer additions: in late April (post-snowmelt, pre-leaf-out), late July (mid-growing- season), and late October (end of leaf-fall). We expected that plant 15N uptake would peak in late spring and midsummer, that immobilization in surface litter and soil would peak the following autumn leaf-fall, and that leaching losses would vary inversely with 15N retention. Similar to most other 15N tracer studies, we found that litter and soils dominated ecosystem retention of added 15N. However, 15N recovery in detrital pools varied tremendously by season, with > 90% retention in spring and autumn and sharply reduced 15N retention in late summer. During spring, over half of the 15N retained in soil occurred within one day in the heavy (mineral-associated) soil fraction. During summer, a large decrease in 15N retention one week after addition coincided with increased losses of 15NO3- to soil leachate and seasonal increases in soil and stream NO3- concentrations, although leaching accounted for only a small fraction of the lost 15N (< 0.2%). Uptake of 15N into roots did not vary by season and accounted for < 4% of each tracer addition. Denitrification or other processes that lead to N gas loss may have consumed the rest. These measurements of 15N movement provide strong evidence for the dominant role of soil processes in regulating seasonal N retention and losses in this catchment and perhaps others with similar soils. PMID:26649387

  2. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies

    SciTech Connect

    Modi, S.; Behere, D.V.; Mitra, S. )

    1989-05-30

    The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.

  3. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    PubMed

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27059012

  4. Quantitation of metabolic compartmentation in hyperammonemic brain by natural abundance 13C-NMR detection of 13C-15N coupling patterns and isotopic shifts.

    PubMed

    Lapidot, A; Gopher, A

    1997-02-01

    In the present study, the removal of cerebral ammonia by glutamine synthetase (GS) and by reductive amination of 2-oxoglutarate by glutamate dehydrogenase in the presence of an amino donor group, was determined in hyperammonemic rabbit brains. The 15N enrichments of brain metabolite alpha-amino and amide positions of glutamine, glutamate, and alanine were determined by the indirect detection of 15N-labeled compounds of the 13C-15N spin coupling patterns of natural abundance 13C-NMR spectra. The 13C-NMR spectra of brain extracts were obtained from rabbits infused with 15NH4Cl with or without intraperitoneal infusion of the GS inhibitor, L-methionine DL-sulfoximine, in a reasonable acquisition time period. When 15NH4Cl was infused, [5-15N]glutamine and [2-15N]glutamine concentrations reached 5.2 mumol/100 mg protein and 3.6 mumol/100 mg protein, respectively, which indicates the relatively high activity of reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. The low concentration of [2-15N]glutamate, which is about 30% of that of [2-15N]glutamine obtained in this study, suggests that very little glutamine serves as a precursor of neuronal glutamate. When GS was inhibited by L-methionine DL-sulfoximine, a flux of 15NH4+ via the residual activity of GS was accompanied by an apparent increase of [2-15N]glutamate and [15N]alanine concentrations (2.9 mumol/100 mg protein and 1.8 mumol/100 mg protein, respectively). These findings and those obtained from 13C-13C isotopomer analysis (Lapidot and Gopher, 1994b) suggest that astrocytic 2-oxoglutarate is partially utilized (together with an amino group donor) as a precursor for neuronal glutamate in the hyperammonemic brain when GS is inhibited. This process can partly replace GS activity in metabolizing ammonia in the hyperammonemic rabbit brain. PMID:9057821

  5. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps

    PubMed Central

    Gerbl, Friedrich W.; Weidler, Gerhard W.; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6–47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH4)2SO4as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH+4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ. PMID:24904540

  6. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals

    PubMed Central

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C.; Middelburg, Jack J.; Sinninghe Damsté, Jaap S.

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  7. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals.

    PubMed

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C; Middelburg, Jack J; Sinninghe Damsté, Jaap S

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  8. (15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR.

    PubMed

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang

    2015-10-01

    In this work, we assess the usefulness of static (15)N NMR techniques for the determination of the (15)N chemical shift anisotropy (CSA) tensor parameters and (15)N-(1)H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone (15)N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the (15)N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the (15)N CSA parameters, a more advanced approach based on the "magic sandwich" SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the (15)N-(1)H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples. PMID:26367322

  9. Tracing industrial ammonium in atmospheric deposition in the Athabasca Oil Sands Region, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Mayer, B.; Proemse, B. C.; Fenn, M. E.

    2013-12-01

    The expanding industrial development in the Athabasca oil sands region (AOSR) in northeastern Alberta, Canada, has raised concerns about increasing nitrogen (N) emissions from oil sands operations and their potential effects on the surrounding terrestrial and aquatic ecosystems. Stable isotope techniques may help to trace industrial emissions provided that they are isotopically distinct from background isotope ratios of atmospheric N compounds. Ammonium deposition rates (NH4-N) typically exceed nitrate deposition rates (NO3-N) in the AOSR (Proemse et al., 2013), suggesting that emissions of reduced nitrogen compounds play a significant role for the atmospheric nitrogen budget in the AOSR. We collected atmospheric ammonium in open field bulk deposition and throughfall using ion exchange resins over ~6 months time periods from summer 2007 to summer 2011 located at distances between 3 to 113 km to one of the major oil sands developments in the AOSR. Ammonium deposition rates and δ15N-NH4 values were determined using ion chromatography and the ammonium diffusion method (Sebilo et al., 2004) on resin extracts. Atmospheric ammonium deposition rates in open field bulk collectors and throughfall collectors ranged from 1.0 to 4.7 kg ha-1 yr-1 NH4-N, and from 1.0 to 18.3 kg ha-1 yr-1 NH4-N, respectively. δ15N-NH4 values varied from -6.3 to +14.8‰ with the highest δ15N values typically associated with elevated NH4-N deposition rates. δ15N-NH4 values of up to +20.1‰ were observed for industrially emitted NH4 in particulate matter (PM2.5) emissions (Proemse et al., 2012) suggesting that industrial NH3 and NH4 emissions are associated with elevated δ15N values providing a potential tracer. Applying a two-end-member mixing analysis using a background δ15N-NH4 value of -3.6‰ for summer and -3.2‰ for winter periods revealed that particularly sites within ~30 km radius from the main oil sands developments are significantly affected by industrial contributions to

  10. Sedimentary records of δ(13)C, δ(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    PubMed

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ(15)N and δ(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (δ(15)N-NO3=+3.4±0.3‰; δ(15)N-NH4=-8.0±0.3‰) and NaCN (δ(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters. PMID:24727038

  11. Over 20% (15)N Hyperpolarization in Under One Minute for Metronidazole, an Antibiotic and Hypoxia Probe.

    PubMed

    Barskiy, Danila A; Shchepin, Roman V; Coffey, Aaron M; Theis, Thomas; Warren, Warren S; Goodson, Boyd M; Chekmenev, Eduard Y

    2016-07-01

    Direct NMR hyperpolarization of naturally abundant (15)N sites in metronidazole is demonstrated using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). In only a few tens of seconds, nuclear spin polarization P(15)N of up to ∼24% is achieved using parahydrogen with 80% para fraction corresponding to P(15)N ≈ 32% if ∼100% parahydrogen were employed (which would translate to a signal enhancement of ∼0.1-million-fold at 9.4 T). In addition to this demonstration on the directly binding (15)N site (using J(2)H-(15)N), we also hyperpolarized more distant (15)N sites in metronidazole using longer-range spin-spin couplings (J(4)H-(15)N and J(5)H-(15)N). Taken together, these results significantly expand the range of molecular structures and sites amenable to hyperpolarization via low-cost parahydrogen-based methods. In particular, hyperpolarized nitroimidazole and its derivatives have powerful potential applications such as direct in vivo imaging of mechanisms of action or hypoxia sensing. PMID:27321159

  12. Increased Plant Uptake of Nitrogen from 15N Depleted Fertilizer Using Plant Growth-Promoting Rhizobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The techniques of 15N isotope have been very useful for determining the behavior and fate of N in soil, including the use efficiency of applied N fertilizers by plants. Our objective in this study was to use 15N isotope techniques to demonstrate that a model plant growth-promoting rhizobacteria (PGP...

  13. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    EPA Science Inventory

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  14. δ 15 N constraints on long-term nitrogen balances in temperate forests

    EPA Science Inventory

    Natural abundance δ15N of ecosystems integrates nitrogen (N) inputs and losses, and thus reflects factors that control the long-term development of ecosystem N balances. We here report N and carbon (C) content of forest vegetation and soils, and associated δ15N, across nine Doug...

  15. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.

    2016-05-01

    The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.

  16. Interaction of yeast iso-1-cytochrome c with cytochrome c peroxidase investigated by [15N, 1H] heteronuclear NMR spectroscopy.

    PubMed

    Worrall, J A; Kolczak, U; Canters, G W; Ubbink, M

    2001-06-19

    The interaction of yeast iso-1-cytochrome c with its physiological redox partner cytochrome c peroxidase has been investigated using heteronuclear NMR techniques. Chemical shift perturbations for both 15N and 1H nuclei arising from the interaction of isotopically enriched 15N cytochrome c with cytochrome c peroxidase have been observed. For the diamagnetic, ferrous cytochrome c, 34 amides are affected by binding, corresponding to residues at the front face of the protein and in agreement with the interface observed in the 1:1 crystal structure of the complex. In contrast, for the paramagnetic, ferric protein, 56 amides are affected, corresponding to residues both at the front and toward the rear of the protein. In addition, the chemical shift perturbations were larger for the ferric protein. Using experimentally observed pseudocontact shifts the magnetic susceptibility tensor of yeast iso-1-cytochrome c in both the free and bound forms has been calculated with HN nuclei as inputs. In contrast to an earlier study, the results indicate that there is no change in the geometry of the magnetic axes for cytochrome c upon binding to cytochrome c peroxidase. This leads us to conclude that the additional effects observed for the ferric protein arise either from a difference in binding mode or from the more flexible overall structure causing a transmittance effect upon binding. PMID:11401551

  17. The 15N isotope effect in Escherichia coli: a neutron can make the difference.

    PubMed

    Filiou, Michaela D; Varadarajulu, Jeeva; Teplytska, Larysa; Reckow, Stefan; Maccarrone, Giuseppina; Turck, Christoph W

    2012-11-01

    Several techniques based on stable isotope labeling are used for quantitative MS. These include stable isotope metabolic labeling methods for cells in culture as well as live organisms with the assumption that the stable isotope has no effect on the proteome. Here, we investigate the (15) N isotope effect on Escherichia coli cultures that were grown in either unlabeled ((14) N) or (15) N-labeled media by LC-ESI-MS/MS-based relative protein quantification. Consistent protein expression level differences and altered growth rates were observed between (14) N and (15) N-labeled cultures. Furthermore, targeted metabolite analyses revealed altered metabolite levels between (14) N and (15) N-labeled bacteria. Our data demonstrate for the first time that the introduction of the (15) N isotope affects protein and metabolite levels in E. coli and underline the importance of implementing controls for unbiased protein quantification using stable isotope labeling techniques. PMID:22887715

  18. {sup 1}H and {sup 15}N dynamic nuclear polarization studies of carbazole

    SciTech Connect

    Hu, J.Z.; Solum, M.S.; Wind, R.A.; Nilsson, B.L.; Peterson, M.A.; Pugmire, R.J.; Grant, D.M.

    2000-05-18

    {sup 15}N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3-bisdiphenylene-2-phenylallyl (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that {sup 15}N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% {sup 15}N labeled carbazole with doping levels varying between 0.65 and 5.0 wt {degree} BDPA. A doping level of approximately 1 wt {degree} produced optimal results. DNP enhancement factors of 35 and 930 were obtained for {sup 1}H and {sup 15}N, respectively, making it possible to perform {sup 15}N DNP NMR experiments at the natural abundance level.

  19. 1H and 15N Dynamic Nuclear Polarization Studies of Carbazole

    SciTech Connect

    Hu, Jian Zhi; Solum, Mark S.; Wind, Robert A.; Nilsson, Brad L.; Peterson, Matt A.; Pugmire, Ronald J.; Grant, David M.

    2000-01-01

    15N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3 bisdiphenylene-2 phenylally1 (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that 15 N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% 15N labeled carbazole with doping levels varying between 0.65 and 5.0 wt % BDPA. A doping level of approximately 1 wt % produced optimal results. DNP enhancement factors of 35 and 930 were obtained for 1H and 15N, respectively making it possible to perform 15N DNP NMR experiments at the natural abundance level.

  20. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  1. Sequence-specific sup 1 H and sup 15 N resonance assignments for human dihydrofolate reductase in solution

    SciTech Connect

    Stockman, B.J.; Nirmala, N.R.; Wagner, G. ); Delcamp, T.J.; DeYarman, M.T.; Freisheim, J.H. )

    1992-01-14

    Dihydrofolate reductase is an intracellular target enzyme for folate antagonists, including the anticancer drug methotrexate. In order to design novel drugs with altered binding properties, a detailed description of protein-drug interactions in solution is desirable to understand the specificity of drug binding. As a first step in this process, heteronuclear three-dimensional NMR spectroscopy has been used to make sequential resonance assignments for more than 90% of the residues in human dihydrofolate reductase complexed with methotrexate. Uniform enrichment of the 21.5-kDa protein with {sup 15}N was required to obtain the resonance assignments via heteronuclear 3D NMR spectroscopy since homonuclear 2D spectra did not provide sufficient {sup 1}H resonance dispersion. Medium- and long-range NOE's have been used to characterize the secondary structure of the binary ligand-enzyme complex in solution.

  2. Disturbance and topography shape nitrogen availability and δ15 N over long-term forest succession

    USGS Publications Warehouse

    Perakis, Steven; Tepley, Alan J.; Compton, Jana

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane landscape influenced by human logging and wildfire. In contrast to expectations, we found that disturbance caused declines in surface mineral soil δ15N values, both in logged forests measured 40–50 years after disturbance, and in unlogged forests disturbed by severe wildfire within the last 200 years. Both symbiotic N fixation and N transfers from disturbed vegetation and detritus could lower soil δ15N values after disturbance. A more important role for symbiotic N fixation is suggested by lower soil δ15N values in slow-successional sites with slow canopy closure, which favors early-successional N fixers. Soil δ15N values increased only marginally throughout 800 years of succession, reflecting soil N uptake by vegetation and strong overall N retention. Although post-disturbance N inputs lowered surface soil δ15N values, steady-state mass balance calculations suggest that wildfire combustion of vegetation and detritus can dominate long-term N loss and increase whole-ecosystem δ15N. On steeper topography, declining soil δ15N values highlight erosion and accelerated soil turnover as an additional abiotic control on N balances. We conclude for N-limited montane forests that soil δ15N and N availability are less influenced by nitrate leaching and denitrification loss than by interactions between disturbance, N fixation, and erosion.

  3. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  4. Reducing fertilizer-derived N2O emission: Point injection vs. surface application of ammonium-N fertilizer at a loamy sand site

    NASA Astrophysics Data System (ADS)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Kücke, Martin; Flessa, Heinz

    2013-04-01

    N2O emitted from soil originates either from denitrification of nitrate and/or nitrification of ammonium. N fertilization can have an important impact on N2O emission rates. Injection of nitrate-free ammonium-N fertilizer, in Germany also known as CULTAN (Controlled Uptake Long-Term Ammonium Nutrition), results in fertilizer depots with ammonium concentrations of up to 10 mg N g-1 soil-1. High concentrations of ammonium are known to inhibit nitrification. However, it has not yet been clarified how N2O fluxes are affected by CULTAN. In a field experiment, two application methods of nitrogen fertilizer were used at a loamy sand site: Ammonium sulphate was applied either by point injection or by surface application. 15N-ammonium sulphate was used to distinguish between N2O originating from either fertilizer-N or soil-N. Unfertilized plots and plots fertilized with unlabeled ammonium sulphate served as control. N2O emissions were measured using static chambers, nitrate and ammonium concentrations were determined in soil extracts. Stable isotope analysis of 15N in N2O, nitrate and ammonium was used to calculate the contribution of fertilizer N to N2O emissions and the fertilizer turnover in soil. 15N analysis clearly indicated that fertilizer derived N2O fluxes were higher from surface application plots. For the period of the growing season, about 24% of the flux measured in surface application treatment and less than 10% from injection treatment plots originated from the fertilizer. In addition, a lab experiment was conducted to gain insight into processes leading to N2O emission from fertilizer depots. One aim was to examine whether the ratio of N2O to nitrate formation differs depending on the ammonium concentration. Loamy sand soil was incubated in microcosms continuously flushed with air under conditions favouring nitrification. 15N-labeled nitrate was used to differentiate between nitrification and denitrification. Stable isotope analyses of 15N were performed on

  5. Influence of roots and mycorrhiza on the internal nitrogen cycle in an organic forest soil ­revealed by a 15N tracing experiment

    NASA Astrophysics Data System (ADS)

    Holz, M.; Rutting, T.; Klemedtsson, L.; Kuzyakov, Y.

    2014-12-01

    The cycle of nitrogen in soil is complex, consisting of many simultaneous occurring transformation processes. So far, microorganisms have been thought to govern N cycling in soil. Nevertheless, plant roots and their associated mycorrhizal symbionts may exert control on N turnover for example by input of labile C to soil. However, studies investigating the effect of roots on gross N turnover rates are scarce. We conducted a 15N tracer study under field conditions to reveal the effect of plants on soil N cycle. The experiment includes three treatments: (a) control, (b) excluding roots and (c) excluding roots + mycorrhiza. On the study site, exclusion of roots + mycorrhiza has previously been shown to increase N2O emissions which indicate that plants affect internal N cycling. 15NH4NO3 and NH415NO3 were given to the soil and traced for a period of 10 days. Gross N turnover rates were determined applying a numerical 15N tracing model. Results on N turnover rates showed that roots and their fungal symbionts increased N cycling probably by input of labile C to soil which may results in an activation of the microbial biomass. While gross N mineralization increased by 270 and 313 % compared to the treatment excluding roots + mycorrhiza, NH4+ immobilization increased by 402 and 489 %. Differences in ammonium and nitrate immobilization further indicated that ammonium was the preferred N source for roots and microorganisms. While ammonium availability decreased with trenching (0.59 compared to -0.47 and -0.96 μg N g-1 d-1), the opposite was true for nitrate (0.50 compared to 2.08 and 2.18 μg N g-1 d-1), explaining the increased N2O emissions which were likely caused by denitrification. Further, plants increased dissimilarity nitrate reduction to ammonium (DNRA) and affected autotrophic nitrification probably by the release of nitrification inhibitors and by influencing ammonium availability. We conclude that plants and their mycorrhizal symbionts actively control N cycling

  6. Indirect Measurement of {sup 15}N(p,{alpha}){sup 12}C and {sup 18}O(p,{alpha}){sup 15}N. Applications to the AGB Star Nucleosynthesis

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Tribble, R.; Al-Abdullah, T.; Banu, A.; Fu, C.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.; Trache, L.

    2008-04-06

    The Trojan Horse Method has been recently applied to the study of reactions involved in fluorine nucleosynthesis inside AGB stars. Fluorine abundance is important since it allows to constrain mixing models from the comparison of the observed fluorine abundances with the ones predicted by models. Anyway direct measurements of the cross section do not extend down to the Gamow peak, which is the astrophysically relevant energy region. In particular the study focuses on the {sup 15}N(p,{alpha}){sup 12}C and the {sup 18}O(p,{alpha}){sup 15}N reactions which can influence fluorine yield as they are part of {sup 19}F production/destruction network.

  7. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The less soluble sodium salt... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium chloride. 184.1138 Section 184.1138...

  8. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient...

  9. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...). It is prepared by the sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3,...

  10. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food... GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg. No. 7783-20-2) occurs... neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient meets the specifications of the...

  11. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient...

  12. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...). It is prepared by the sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3,...

  13. Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx.

    PubMed

    Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg

    2015-02-17

    The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles. PMID:25621737

  14. Steroselective synthesis and application of L-( sup 15 N) amino acids

    SciTech Connect

    Unkefer, C.J. ); Lodwig, S.N. . Div. of Science)

    1991-01-01

    We have developed two general approaches to the stereoselective synthesis of {sup 15}N- and {sup 13}C-labeled amino acids. First, labeled serine, biosynthesized using the methylotrophic bacterium M. extorquens AM1, serves as a chiral precursor for the synthesis of other amino acids. For example, pyridoxal phosphate enzymes can be used for the conversion of L-({alpha}-{sup 15}N)serine to L-({alpha}-{sup 15}N)tyrosine, L-({alpha}-{sup 15}N)tryptophan, and L-({alpha}-{sup 15}N)cysteine. In the second approach, developed by Oppolzer and Tamura, an electrophilic amination'' reagent, 1-chloro-1-nitrosocyclohexane, was used to convert chiral enolates into L-{alpha}-amino acids. We prepared 1-chloro-1-({sup 15}N) nitrosocyclohexane and used it to aminate chiral enolates to produce L-({alpha}-{sup 15}N)amino acids. The stereoselectivity of this scheme using the Oppolzer sultam chiral auxiliary is remarkable, producing enantiomer ratios of 200 to 1. 22 refs., 4 figs.

  15. Solubility of the Sodium and Ammonium Salts of Oxalic Acid in Water with Ammonium Sulfate.

    PubMed

    Buttke, Lukas G; Schueller, Justin R; Pearson, Christian S; Beyer, Keith D

    2016-08-18

    The solubility of the sodium and ammonium salts of oxalic acid in water with ammonium sulfate present has been studied using differential scanning calorimetry, X-ray crystallography, and infrared spectroscopy. The crystals that form from aqueous mixtures of ammonium sulfate/sodium hydrogen oxalate were determined to be sodium hydrogen oxalate monohydrate under low ammonium sulfate conditions and ammonium hydrogen oxalate hemihydrate under high ammonium sulfate conditions. Crystals from aqueous mixtures of ammonium sulfate/sodium oxalate were determined to be ammonium oxalate monohydrate under moderate to high ammonium sulfate concentrations and sodium oxalate under low ammonium sulfate concentrations. It was also found that ammonium sulfate enhances the solubility of the sodium oxalate salts (salting in effect) and decreases the solubility of the ammonium oxalate salts (salting out effect). In addition, a partial phase diagram for the ammonium hydrogen oxalate/water system was determined. PMID:27482644

  16. The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)

    NASA Astrophysics Data System (ADS)

    Ahadnejad, Vahid; Hirt, Ann Marie; Valizadeh, Mohammad-Vali; Bokani, Saeed Jabbari

    2011-04-01

    The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+ (mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.

  17. Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: a theoretical and experimental study.

    PubMed

    Infante-Castillo, Ricardo; Pacheco-Londoño, Leonardo; Hernández-Rivera, Samuel P

    2010-07-01

    Unambiguous vibrational band assignments have been made to cyclic nitramine hexahydro-1,3,5-trinitro-s-triazine, commonly known as the alpha-phase of RDX or alpha-RDX, with the use of (13)C and (15)N (on ring) enriched isotopic RDX analogues. Vibrational spectra were collected using Raman and IR spectroscopy in solid state and ab initio normal mode calculations were performed using density functional theory (DFT) and a 6-311G++** basis set. The calculated isotopic frequency shifts, induced by (13)C and (15)N labeling, are in very good accordance with measures ones. The changes in vibrational modes associated with the isotopic substitutions are well modeled by the calculation and previous assignments of the vibrational spectra have been revised, especially where the exact nature of the vibrational modes had been either vague or contradictory. PMID:20381411

  18. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  19. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  20. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  1. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  2. Radiative p 15N Capture in the Region of Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.; Burtebaev, N.; Dzhazairov-Kakhramanov, A. V.; Alimov, D. K.

    2016-06-01

    Within the framework of the modified potential cluster model with classification of orbital states according to the Young schemes, the possibility of describing experimental data for the astrophysical S-factor of p 15N radiative capture at energies from 50 to 1500 keV is considered. It is shown that on the basis of M1 and E1 transitions from various p 15N scattering states to the ground state of the 16O nucleus in the p 15N channel it is entirely possible to successfully explain the overall behavior of the S-factor in the considered energy region in the presence of two resonances.

  3. Job Enrichment

    ERIC Educational Resources Information Center

    Sanders, Rick

    1970-01-01

    Job enrichment means giving people more decision-making power, more responsibility, more grasp of the totality of the job, and a sense of their own importance in the company. This article presents evidence of the successful working of this approach (Donnelly Mirrors), and the lack of success with an opposing approach (General Motors). (NL)

  4. Effects of ruminally degradable nitrogen intake and in vitro addition of ammonia and propionate on the metabolic fate of L-[1-14C]alanine and L-[15N]alanine in isolated sheep hepatocytes.

    PubMed

    Mutsvangwa, T; Buchanan-Smith, J G; McBride, B W

    1997-04-01

    Isolated hepatocytes prepared from sheep fed a basal diet (bromegrass hay-corn, 50:50 wt/ wt, as-fed basis) with or without urea were used to determine the effects of added ammonia (as NH4Cl) and propionate on the partitioning of C from 1.25 mM L-[1-14C]alanine between oxidation and gluconeogenesis, and the flux of 15N from 1.25 mM L-[15N]alanine to [14N15N]urea and [15N15N]urea. Hepatocyte suspensions were incubated with NH4Cl (0, .31, .63, and 1.25 mM) and (or) propionate (0, .31, .63, and 1.25 mM) in the presence of either 1.25 mM L-[15N]alanine or 1.25 mM L-alanine plus 18.5 kBq of L-[1-14C]alanine. Feeding dietary urea did not affect [1-14C]alanine oxidation to 14CO2 (P = .601), or its conversion to [14C]glucose (P = .576) by isolated hepatocytes. Increasing in vitro concentrations of NH4Cl and propionate between 0 and 1.25 mM reduced [1-14C]alanine oxidation to 14CO2 (P < .001). Increasing NH4Cl concentration between 0 and 1.25 mM reduced [1-14C]alanine conversion to [14C]glucose in isolated hepatocytes (P < .001), whereas addition of propionate between 0 and 1.25 mM stimulated production of [14C]glucose from [1-14C]alanine (P < .001). Feeding urea did not affect in vitro rates of total urea production (P = .655) but increased the production of [14N15N]urea and [15N15N]urea (P < .05). Addition of NH4Cl increased total urea, [14N15N]urea, and [15N15N]urea production (P < .001), but reduced 15N isotopic enrichments of [14N15N]urea and [15N15N]urea (P < .001). Increasing propionate concentration between 0 and 1.25 mM reduced total urea production (P < .001), but [14N15N]urea and [15N15N]urea production was reduced only at 1.25 mM propionate (P < .001). We conclude that NH3 detoxification by isolated sheep hepatocytes increases amino acid deamination and this might have implications for nitrogen retention in ruminants consuming diets that promote considerable NH3 absorption from the digestive tract. PMID:9110231

  5. Continuous field measurement of N2O isotopologues using FTIR spectroscopy following 15N addition

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.; Griffith, D. W.; Dijkstra, F. A.; Lugg, G.; Lawrie, R.; Macdonald, B.

    2012-12-01

    Anthropogenic additions of fertilizer nitrogen (N) have significantly increased the mole fraction of nitrous oxide (N2O) in the troposphere. Tracking the fate of fertilizer N and its transformation to N2O is important to advance knowledge of greenhouse gas emissions from soils. Transport and transformations are frequently studied using 15N labeling experiments, but instruments capable of continuous measurements of 15N-N2O at the surface of soil have only recently come to the fore. Our primary aim was to quantify emissions of N2O and the fraction of 15N emitted as N2O from an agricultural soil following 15N addition using a mobile Fourier Transform Infrared (FTIR) spectrometer. We set up a short-term field experiment on a coastal floodplain site near Nowra, New South Wales. We deployed an automated chamber system connected to a multi-pass cell (optical pathlength 24 m) and low resolution FTIR spectrometer to measure fluxes of all N2O isotopologues collected from five 0.25 m2 chambers every three hours. We measured N2O fluxes pre and post-application of 15N-labeled substrate as potassium nitrate (KNO3) or urea [CO(NH2)2] to the soil surface. Root mean square uncertainties for all isotopologue measurements were less than 0.3 nmol mol-1 for 1 minute average concentration measurements, and minimum detectable fluxes for each isotopologue were <0.1 ng N m-2 s-1. Emissions of all N2O isotopologues were evident immediately following 15N addition. Emissions of 14N15NO, 15N14NO and 15N15NO isotopologues subsided within 10 d, but 14N14NO fluxes were evident over the entire experiment. The figure provides an overview of the emissions. Cumulative 15N-N2O fluxes (sum of the three 15N isotopologues) per chamber for the 14 days following 15N addition ranged from 1.5 to 10.3 mg 15N-N2O m-2. The chambers were destructively sampled after 2 weeks and 15N analyzed in soil and plant material using isotope ratio mass spectrometry. Approximately 1% (range 0.7 - 1.9%) of the total amount of

  6. Comparative DFT study of crystalline ammonium perchlorate and ammonium dinitramide.

    PubMed

    Zhu, Weihua; Wei, Tao; Zhu, Wei; Xiao, Heming

    2008-05-22

    The electronic structure, vibrational properties, absorption spectra, and thermodynamic properties of crystalline ammonium perchlorate (AP) and ammonium dinitramide (ADN) have been comparatively studied using density functional theory in the local density approximation. The results shows that the p states for the two solids play a very important role in their chemical reaction. From the low frequency to high frequency region, ADN has more motion modes for the vibrational frequencies than AP. The absorption spectra of AP and ADN display a few, strong bands in the fundamental absorption region. The thermodynamic properties show that ADN is easier to decompose than AP as the temperature increases. PMID:18396853

  7. Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters*

    PubMed Central

    Zhang, Lei; Zheng, Ping; Tang, Chong-jian; Jin, Ren-cun

    2008-01-01

    The concept of anaerobic ammonium oxidation (ANAMMOX) is presently of great interest. The functional bacteria belonging to the Planctomycete phylum and their metabolism are investigated by microbiologists. Meanwhile, the ANAMMOX is equally valuable in treatment of ammonium-rich wastewaters. Related processes including partial nitritation-ANAMMOX and completely autotrophic nitrogen removal over nitrite (CANON) have been developed, and lab-scale experiments proved that both processes were quite feasible in engineering with appropriate control. Successful full-scale practice in the Netherlands will accelerate application of the process in future. This review introduces the microbiology and more focuses on application of the ANAMMOX process. PMID:18500782

  8. Molecular and Stable Isotope Investigation of Nitrite Respiring Bacterial Communities Capable of Anaerobic Ammonium Oxidation (ANAMMOX) and Denitrifying Anaerobic Methane Oxidation (DAMO) in Nitrogen Contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Song, B.; Hirsch, M.; Taylor, J.; Smith, R. L.; Repert, D.; Tobias, C. R.

    2010-12-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) are two recently discovered N2 production pathways in the microbial nitrogen cycle. ANAMMOX has been relatively well investigated in various aquatic ecosystems, while DAMO has been examined only in freshwater wetlands. However, neither ANAMMOX nor DAMO have been studied in groundwater ecosystems as microbial N removal processes where they could compliment or compete with denitrification to remediate N contaminated aquifers. Thus, we conducted molecular and stable isotope analyses to detect and measure ANAMMOX and DAMO in a nitrogen contaminated aquifer on Cape Cod, Massachusetts. The study site has a plume of nitrogen contaminated groundwater as a result of continuous discharge of treated wastewater over 60 years. Groundwater was collected from multiport sampling devices installed at two sites, near the waste-water disposal location (A) and more than 3 km down gradient (B) along the contamination plume. Biomass was collected from water samples for DNA extraction and 15N tracer incubation experiments. PCR with specific 16S rRNA gene primers detected the presence of ANAMMOX and DAMO bacteria at both sites. Phylogenetic analysis of 16S rRNA genes revealed that the ANAMMOX community at site A was most associated with Kuenenia spp. while site B had a community more closely related to Brocadia spp. The DAMO communities at the two sites were quite different based on 16S rRNA gene analysis. The communities at site B are closely associated with Candidatus “Methylomirabilis oxyfera”, which is the first enriched DAMO culture. Most of the 16S rRNA sequences detected in site A were related to those found in other DAMO enrichment cultures established from a eutrophic ditch sediment. In order to determine active members of ANAMMOX communities, the transcriptional expression of hydrazine oxidase (hzo) and hydrazine hydrolase (hh) genes was examined at both sites. In addition, 15N tracer

  9. Covalent binding of reduced metabolites of [{sup 15}N{sub 3}]TNT to soil organic matter during a bioremediation process analyzed by {sup 15}N NMR spectroscopy

    SciTech Connect

    Achtnich, C.; Fernandes, E.; Bollag, J.M.; Knackmuss, H.J.; Lenke, H.

    1999-12-15

    Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-{sup 15}N{sub 3}-trinitrotoluene (TNT) to different soil fractions, using liquid {sup 15}N NMR spectroscopy. A silylation procedure was used to release soil organic matter from humin and whole soil for spectroscopic measurements. TNT-contaminated soil was spiked with 2,4,6-{sup 15}N{sub 3}-trinitrotoluene and {sup 14}C-ring labeled TNT, before treatment in a soil slurry reactor. During the anaerobic/aerobic incubation the amount of radioactivity detected in the fulvic and humic acid fractions did not change significantly whereas the radioactivity bound to humin increased to 71%. The {sup 15}N NMR spectra of the fulvic acid samples were dominated by a large peak that corresponded to aliphatic amines or ammonia. In the early stages of incubation, {sup 15}N NMR analysis of the humic acids indicated bound azoxy compounds. The signals arising from nitro and azoxy groups disappeared with further anaerobic treatment. At the end of incubation, the NMR shifts showed that nitrogen was covalently bound to humic acid as substituted amines and amides. The NMR spectra of the silylated humin suggest formation of azoxy compounds and imine linkages. Bound metabolites possessing nitro groups were also detected. Primary amines formed during the anaerobic incubation disappeared during the aerobic treatment. Simultaneously, the amount of amides and tertiary amines increased. Nitro and azoxy groups of bound molecules were still present in humin at the end of the incubation period. Formation of azoxy compounds from partially reduced TNT followed by binding and further reduction appears to be an important mechanism for the immobilization of metabolites of TNT to soil.

  10. Carbon-rich Presolar Grains from Massive Stars: Subsolar 12C/13C and 14N/15N Ratios and the Mystery of 15N

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.