Sample records for 15n natural abundance

  1. 15 N natural abundances and N use by tundra plants

    Microsoft Academic Search

    K. Nadelhoffer; G. Shaver; B. Fry; A. Giblin; L. Johnson; R. McKane

    1996-01-01

    Plant species collected from tundra ecosystems located along a north-south transect from central Alaska to the north coast of Alaska showed large and consistent differences in 15N natural abundances. Foliar d15N values varied by about 10% among species within each of two moist tussock tundra sites. Differences in 15N contents among species or plant groups were consistent across moist tussock

  2. 15N NATURAL ABUNDANCE AND 15N LABELLING STUDIES IN FOREST ECOSYSTEMS

    EPA Science Inventory

    The relative amounts of the two stable isotopes of Nitrogen (N), 15N, and N, vary predictably in soils and plant tissues of forests and other non-cultivated ecosystems. light fractionations, or discriminations against the heavier N isotope, that can occur as N cycles through vege...

  3. 15N natural abundance in oceanic suspended particulate matter

    Microsoft Academic Search

    Toshiro Saino; Akihiko Hattori

    1980-01-01

    Particulate organic matter (POM) has a central role in the vertical transport of material in the sea1. In the open ocean, POM is produced in the euphotic layer by phytoplankton and degraded in the aphotic layer during sinking to the sea floor. Isotopic abundance of biophilic elements such as C and N in POM is altered by isotopic fractionations associated

  4. Natural abundance of 15 N in particulate organic matter in the North Pacific Ocean

    Microsoft Academic Search

    Eitaro Wada; Akihiko Hattori

    1976-01-01

    The abundance of 15 N in particulate organic matter in the euphotic layer of the North Pacific Ocean was investigated. 15 N values ranged from -1.7 to +9.7% relative to atmospheric nitrogen. 15 N contents in plankton samples collected in the central and northwestern North Pacific were inversely correlated with concentrations of NO - 3 . The 15 N contents

  5. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements

    NASA Astrophysics Data System (ADS)

    Mariotti, André

    1983-06-01

    Research based on 15N stable isotope variations in natural compounds is expanding in scientific fields such as biogeochemistry (isotope fractionation effects measurements1-7), metabolic studies8,9, hydrology (research of NO3- pollution origin in aquifers10-14), agronomy (estimate of N2 symbiotic fixation by legumes15-17) and oceanography (determination of the source of sedimentary nitrogen18-21). However, intercomparison of results obtained in different laboratories is a problem due to the lack of intercalibrated standards. Atmospheric nitrogen has been chosen by many investigators as a standard20,22,23 and I present here a simple method for the preparation of atmospheric N2 as a standard for ?15N expression with excellent reproducibility. The results indicate a wide homogeneity in isotopic composition of atmospheric nitrogen which appears to be a reliable standard for 15N natural abundance measurements.

  6. 15 N natural abundance in plants of the Amazon River floodplain and potential atmospheric N 2 fixation

    Microsoft Academic Search

    L. A. Martinelli; R. L. Victoria; P. C. O. Trivelin; A. H. Devol; J. E. Richey

    1992-01-01

    Summary The15N natural abundance values of various Amazon floodplain (várzea) plants was investigated. Samples of young leaf tissues were collected during three different periods of the river hydrography (low water, mid rising water and high water) and during one period in the Madeira River (high water). A large variation of15N abundance was observed, both among the different plant types and

  7. Regional patterns of 15N natural abundance in forest ecosystems along a large transect in eastern China

    PubMed Central

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Liu, Yingchun; Wang, Qiufeng; Chen, Zhi; Zhang, Li

    2014-01-01

    The regional determining factors underlying inter- and intra-site variation of 15N natural abundance in foliage, O horizon and mineral soil were investigated in eastern China.15N natural abundance values for these forest ecosystems were in the middle of the range of values previously found for global forest ecosystems. In contrast to commonly reported global patterns, temperate forest ecosystems were significantly more15N-enriched than tropical forest ecosystems, and foliage ?15N was negatively correlated with increasing mean annual temperature and net soil N mineralisation in eastern China. Tight N cycling in forest ecosystems and the use of atmospheric N deposition by trees might underlie the ?15N distribution patterns in eastern China. The existence of mycorrhizal fungi and root distribution profiles in the soil may also influence the15N natural abundance patterns in forest ecosystems of eastern China. PMID:24576905

  8. Regional patterns of 15N natural abundance in forest ecosystems along a large transect in eastern China

    NASA Astrophysics Data System (ADS)

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Liu, Yingchun; Wang, Qiufeng; Chen, Zhi; Zhang, Li

    2014-02-01

    The regional determining factors underlying inter- and intra-site variation of 15N natural abundance in foliage, O horizon and mineral soil were investigated in eastern China.15N natural abundance values for these forest ecosystems were in the middle of the range of values previously found for global forest ecosystems. In contrast to commonly reported global patterns, temperate forest ecosystems were significantly more15N-enriched than tropical forest ecosystems, and foliage ?15N was negatively correlated with increasing mean annual temperature and net soil N mineralisation in eastern China. Tight N cycling in forest ecosystems and the use of atmospheric N deposition by trees might underlie the ?15N distribution patterns in eastern China. The existence of mycorrhizal fungi and root distribution profiles in the soil may also influence the15N natural abundance patterns in forest ecosystems of eastern China.

  9. Site history affects soil and plant 15 N natural abundances ( ? ? ? ? 15 N) in forests of northern Vancouver

    Microsoft Academic Search

    S. X. CHANG; L. L. HANDLEY

    Summary 1. About 10 years after establishment, plantations of Western Redcedar ( Thuja plicata Donn ex D. Don) on northern Vancouver Island, British Columbia become nutrient deficient and chlorotic, grow slowly, and are susceptible to invasion by the ericaceous shrub Salal ( Gaultheria shallon Pursh.). 2. To test the hypothesis that ? 15 N can be related to site histories

  10. Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo

    Microsoft Academic Search

    Kanehiro Kitayama; Kojiro Iwamoto

    2001-01-01

    We investigated the natural abundance of 15N in sun leaves and other components of tropical rain forests on altitudinal sequences of eight sites that form a gradient of soil N availability with varying ectomycorrhizal abundances on Mt. Kinabalu, Borneo. We investigated how soil N availability and ectomycorrhizal abundance related to the 15N abundance of ecosystem components. d15N values (15N abundance

  11. Rapid, storm-induced changes in the natural abundance of sup 15 N in a planktonic ecosystem, Chesapeake Bay, USA

    SciTech Connect

    Montoya, J.P.; McCarthy, J.J. (Harvard Univ., Cambridge, MA (United States)); Horrigan, S.G. (State Univ. of New York, Stony Brook (United States))

    1991-12-01

    Samples of dissolved inorganic nitrogen (DIN), particulate nitrogen (PN), and two species of zooplankton were collected during two north-south transects of the Chesapeake Bay in the autumn of 1984 (27-28 September and 3-5 October). During the first transect, the natural abundance of {sup 15}N ({delta} {sup 15}N) in the major dissolved and planktonic pools of nitrogen suggested that the {delta}{sup 15}N of PN was largely determined by isotopic fractionation during uptake of NH{sub 4}{sup +} by phytoplankton. Averaged over the transect as a whole, the {delta}{sup 15}N of the herbivorous calanoid copepod Acartia tonsa was 4.1% higher than that of the PN, while the {delta}{sup 15}N of the carnivorous ctenophore Mnemiopsis leidyi was 6.4% higher than that of the PN. In the interval between the two transects, storm-induced mixing of the water column resulted in the injection of NH{sub 4}{sup +} into the surface layer of the bay. In combination with ancillary physical, chemical, and biological data, these changes in {delta}{sup 15}N provided estimates of the isotopic fractionation factor for NH{sub 4}{sup +} uptake by phytoplankton ({alpha} = 1.0065-1.0080) as well as the turnover time of nitrogen in Acartia tonsa (6.0-9.6 days). Despite the changes in {delta}{sup 15}N observed during this cruise, the relative distribution of {sup 15}N between trophic levels was preserved: during the second transect, the difference in {delta}{sup 15}N between Acartia tonsa and PN was 3.6%, and the difference in {delta}{sup 15}N between Mnemiopsis leidyi and PN was 7.3%. These results demonstrate that the natural abundance of {sup 15}N can change dramatically on a time scale of days, and that time-series studies of the natural abundance of {sup 15}N can be a useful complement to studies using tracer additions of {sup 15}N to document nitrogen transformations in planktonic ecosystems.

  12. ?15N natural abundance in permafrost soil indicates impact of fire on nitrogen cycle.

    PubMed

    Conen, Franz; Yakutin, Mikhail V; Puchnin, Alexander N; Leifeld, Jens; Alewell, Christine

    2011-03-15

    The impact of fire on the nitrogen (N) cycle of natural ecosystems is arguable. Here we report and interpret an observation from boreal ecosystems in the Lena River basin, Sakha Republic (Yakutia), Russian Federation. Different types of permafrost soil (0-30 cm depth) were sampled along transects (60-150 m length) from the forest edge towards the centre of four separate thermokarst depressions under grassland. The average values of ?(15)N were remarkably similar within three transects, but differed systematically between them. Three findings point towards fire being the cause of the observed pattern. First, the spatial extent of systematic differences in soil ?(15)N coincides with the extent of typical fire scars in the region. Second, soil enrichment in (15)N is larger in the proximity of settlements, where fire is generally more frequent than in more remote places. Third, there is a significant positive correlation between ?(15)N values and the ratio of black C to total N. These findings point towards fire having a marked impact on soil ?(15)N and, accordingly, on the N cycle of this cold and dry ecosystem. PMID:21290453

  13. Quantifying nitrate retention processes in a riparian buffer zone using the natural abundance of 15N in NO3-.

    PubMed

    Dhondt, Karel; Boeckx, Pascal; Van Cleemput, Oswald; Hofman, Georges

    2003-01-01

    Quantifying the relative importance of denitrification and plant uptake to groundwater nitrate retention in riparian zones may lead to methods optimising the construction of riparian zones for water pollution control. The natural abundance of 15N in NO3- has been shown to be an interesting tool for providing insights into the NO3- retention processes occurring in riparian zones. In this study, 15N isotope fractionation (variation in delta15N of the residual NO3-) due to denitrification and due to plant uptake was measured in anaerobic soil slurries at different temperatures (5, 10 and 15 degrees C) and in hydroponic systems with different plant species (Lolium perenne L., Urtica dioica L. and Epilobium hirsutum L.). It was found that temperature had no significant effect on isotope fractionation during denitrification, which resulted in a 15N enrichment factor epsilonD of -22.5 +/- 0.6 per thousand. On the other hand, nitrate uptake by plants resulted in 15N isotope fractionation, but was independent of plant species, leading to a 15N enrichment factor epsilonP of -4.4 +/- 0.3 per thousand. By relating these two laboratory-defined enrichment factors to a field enrichment factor for groundwater nitrate retention during the growing season (epsilonR = -15.5 +/- 1.0 per thousand ), the contribution of denitrification and plant uptake to groundwater nitrate retention could be calculated. The relative importance of denitrification and plant uptake to groundwater nitrate retention in the riparian buffer zone was 49 and 51% during spring, 53 and 47% during summer, and 75 and 25% during autumn. During wintertime, high micropore dissolved organic carbon (DOC) concentrations and low redox potentials due to decomposition of the highly productive riparian vegetation probably resulted in a higher denitrification rate and favoured other nitrate retention processes such as nitrate immobilisation or dissimilatory nitrate reduction to ammonium (DNRA). This could have biased the 15N isotope fractionation and led to a low 15N enrichment factor for groundwater nitrate retention during wintertime (-6.2 +/- 0.9 per thousand ). In contradiction to what many other studies suggest, it is possible that due to plant decomposition during the winter period other nitrate transformation processes compete with denitrification. PMID:14648895

  14. Using natural 15N abundances to trace the fate of waste-derived nitrogen in forest ecosystems: New Zealand case studies.

    PubMed

    Wang, H; Magesan, G N; Clinton, P W; Lavery, J M

    2005-03-01

    Treatment of wastewater generally results in elevated natural 15N abundance (delta15N) in the effluent and sludges. For example, high delta15N values are found in treated sewage effluent, biosolids, and other wastes that are commonly applied to land. In contrast, N deficient coniferous forest soils usually have a low delta15N. When wastes with high delta15N values are applied to land, their distinctive delta15N signature can potentially be used to trace the fate of waste-derived N in the ecosystem. In this paper, we provide an overview of the use of delta15N in land application of wastes, including New Zealand case studies on tracing nitrogen in forest ecosystems. PMID:15823855

  15. Estimation of N 2 fixation based on differences in the natural abundance of 15 N among freshwater N 2 -fixing and non-N 2 -fixing algae

    Microsoft Academic Search

    B. Gu; V. Alexander

    1993-01-01

    The dynamics of nitrogen supply was investigated for blue-green and green algae from Smith Lake and other freshwaters of subarctic and arctic Alska. The natural abundance of 15N (defined as d15N) of six N2-fixing blue-green algae was 1.0±%o(X±SE), indicating supply of metabolic nitrogen from atmospheric N2 (d15N=0.0). The d15N of six green algae showed an average of 6.6±4.5%o, which is

  16. Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants

    NASA Astrophysics Data System (ADS)

    Wang, L.; Schjoerring, J. K.

    2012-05-01

    Seasonal changes in nitrogen (N) pools, carbon (C) content and natural abundance of 13C and 15N in different tissues of ryegrass plants were investigated in two intensively managed grassland fields in order to address their ammonia (NH3) exchange potential. Green leaves generally had the largest total N concentration followed by stems and inflorescences. Senescent leaves had the lowest N concentration, indicating N re-allocation. The seasonal pattern of the ? value, i.e. the ratio between NH4+ and H+ concentrations, was similar for the various tissues of the ryegrass plants but the magnitude of ? differed considerably among the different tissues. Green leaves and stems generally had substantially lower ? values than senescent leaves and litter. Substantial peaks in ? were observed during spring and summer in response to fertilization and grazing. These peaks were associated with high NH4+ rather than with low H+ concentrations. Peaks in ? also appeared during the winter, coinciding with increasing ?15N values, indicating absorption of N derived from mineralization of soil organic matter. At the same time, ?13C values were declining, suggesting reduced photosynthesis and capacity for N assimilation. ?15N and ?13C values were more influenced by mean monthly temperature than by the accumulated monthly precipitation. In conclusion, ryegrass plants showed a clear seasonal pattern in N pools. Green leaves and stems of ryegrass plants generally seem to constitute a sink for NH3, while senescent leaves have a large potential for NH3 emission. However, management events such as fertilisation and grazing may create a high NH3 emission potential even in green plant parts. The obtained results provide input for future modelling of plant-atmosphere NH3 exchange.

  17. Natural-abundance 15N NMR studies of Turkey ovomucoid third domain. Assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple-quantum coherence

    NASA Astrophysics Data System (ADS)

    Ortiz-Polo, Gilberto; Krishnamoorthi, R.; Markley, John L.; Live, David H.; Davis, Donald G.; Cowburn, David

    Heteronuclear two-dimensional 1H{ 15N} multiple-quantum (MQ) spectroscopy has been applied to a protein sample at natural abundance: ovomucoid third domain from turkey ( Meleagris gallopavo), a serine proteinase inhibitor of 56 amino acid residues. Peptide amide 1H NMR assignments obtained by two-dimensional 1H{ 1H} NMR methods (R. Krishnamoorthi and J. L. Markley, unpublished data) led to identification of the corresponding 1H{ 15N} MQ coherence cross peaks. From these, 15N NMR chemical shifts were determined for several specific backbone amide groups of amino acid residues located around the reactive site region of the inhibitor. The results suggest that amide 15N chemical shifts, which are readily obtained in this way, may serve as sensitive probes for conformational studies of proteins.

  18. Natural abundance of 15N in particulate nitrogen and zooplankton in the Gulf Stream region and warm-core ring 86A

    NASA Astrophysics Data System (ADS)

    Montoya, J. P.; Wiebe, P. H.; McCarthy, J. J.

    1992-03-01

    The natural abundance of 15N (? 15N) was measured in samples of suspended particles (PN) and macrozooplankton collected in the Slope Water and warm-core ring 86A in late May 1986. The vertical distribution of 15N in PN (? 15PN) was characterized by a maximum below the mixed layer, and frequently by a minimum above the thermocline. The range of ? 15N values in PN, as well as the mean ? 15N for PN in the upper 100 m of the water column were comparable to literature values of these quantities. The ? 15N and concentration of PN were inversely correlated, a pattern that could be generated by isotopie fractionation during the remineralization of sinking PN. The fractionation factor estimated for this process (1.003-1.006) was similar to fractionation factors for the bacterially mediated decomposition of phytoplankton in laboratory studies. The ? 15N of the zooplankton sampled showed a general increase with trophic level: herbivorous species ( Salpa aspera and copepods) were characterized by ? 15NN values of ca 4‰, omnivorous species spanned a range of ? 15N values between 5.5. and 6.5‰, and carnivorous species had a ? 15N of 8-9‰. Despite this trophic level effect on ? 15N among the zooplankton, the range of ? 15N values measured for the animals was not distinctly different from the range of values of ? 15PN. The absence of a difference in ? 15N between the PN and the zooplankton in this ecosystem may be a consequence of the normal variation in ? 15N through the seasonal production cycle and the different turnover times for nitrogen in PN and the higher trophic levels of the food web. Representatives of five zooplankton species were maintained in filtered sea water for up to 74 h. Three of the species ( Euphausia krohnii, Paralhemisto gaudichaudii and Vibilia sp.) showed no significant changes in the ? 15N of body nitrogen with time. The data for the other two species ( Meganyctiphanes norvegica and Euphausia mulica) suggest that the ? 15N of body nitrogen increased with time of starvation. The fecal pellets released by zooplankton used in the starvation experiment were typically similar to or higher in ? 15N than the animals proper. In contrast, the (? 15N of the nitrogen in molted exoskeletons was much lower than the whole-body ? 15N of the animals which produced them. The possible implications of these data are discussed in the context of the distribution of 15N in plankton in the upper ocean.

  19. Impacts of invading N 2 -fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems: evidence from soil incubation studies and 15 N natural abundance values

    Microsoft Academic Search

    W. D. Stock; K. T. Wienand; A. C. Baker

    1995-01-01

    This study examines the impacts of woody, N2-fixing invasive Acacia spp. on the patterns of nutrient cycling in two invaded ecosystems of differing nutrient status in the Cape floristic region. Patterns of soil nutrient mineralization were measured by a field incubation method while the significance of the fixation process in altering nutrient cycling was assessed by the d15N natural abundance

  20. Estimation of biological nitrogen fixation by black locust in short-rotation forests using natural 15N abundance method

    NASA Astrophysics Data System (ADS)

    Veste, M.; Böhm, C.; Quinckenstein, A.; Freese, D.

    2012-04-01

    The importance of short rotation forests and agroforestry systems for woody biomass production for bioenergy will increase in Central Europe within the next decades. In this context, black locust (Robinia pseudoacacia) has a high growth potential especially at marginal, drought-susceptible sites such as occur in Brandenburg State (Eastern Germany). As a pioneer tree species black locust grows under a wide range of site conditions. The native range of black locust in Northern America is classified by a humid to sub-humid climate with a mean annual precipitation of 1020 to 1830 mm. In Central and Eastern Europe, this species is cultivated in a more continental climate with an annual precipitation often below 600 mm. Therefore, black locust is known to be relatively drought tolerant compared to other temperate, deciduous tree species. Because of its N2-fixation ability black locust plays generally an important role for the improvement of soil fertility. This effect is of particular interest at marginal sites in the post-mining landscapes. In order to estimate the N2-fixation potential of black locust at marginal sites leaf samples were taken from black locust trees in short rotation plantations planted between 1995 and 2007 in post-mining sites south of Cottbus (Brandenburg, NE Germany). The variation of the natural 15N abundance was measured to evaluate the biological nitrogen fixation. The nitrogen derived from the atmosphere can be calculated using a two-pool model from the quotient of the natural 15N abundances of the N2-fixing plant and the plant available soil N. Because representatively determining the plant available soil N is difficult, a non-N2-fixing reference plant growing at the same site with a similar root system and temporal N uptake pattern to the N2-fixing plant is often used. In our case we used red oak (Quercus rubra) as a reference. The average nitrogen content in the leaves of black locust ranged from 3.1% (C/N 14.8) in 15 years old trees to 3.4% (C/N 14.4) in 3 year-old trees, respectively. A higher content of nitrogen was found in leaves of re-sprouted trees with 4.3% (C/N 11.5). The estimated percentage of nitrogen derived from the atmosphere (% NdfA) in black locust was 63% - 83% compared to 56% in seabuckthorn (Hippophaë rhamnoides) and 79% in common broom (Genista scuparia). The annual leaf biomass production of black locust varied between 1325 (2 years old trees) and 2576 kg/ha a (4 years old trees). The estimated leaf nitrogen fixed by Robinia was approx. 30.5 - 59.2 kg/ha a. From the results, we can conclude that the biological nitrogen fixation by Robina is an important factor for the nitrogen balance of short-rotation plantations on nutrient poor-soils.

  1. Quantifying remobilization of pre-existing nitrogen from cuttings to new growth of woody plants using 15N at natural abundance

    PubMed Central

    2013-01-01

    Background For measurements of nitrogen isotope composition at natural abundance, carry-over of pre-existing nitrogen remobilized to new plant growth can cause deviation of measured isotope composition (?15N) from the ?15Nof newly acquired nitrogen. To account for this problem, a two-step approach was proposed to quantify and correct for remobilized nitrogen from vegetative cuttings of Populus balsamifera L. grown with either nitrate (?15N?=?58.5‰) or ammonium (?15N?=??0.96‰). First, the fraction of carry-over nitrogen remaining in the cutting was estimated by isotope mass balance. Then measured ?15N values were adjusted for the fraction of pre-existing nitrogen remobilized to the plant. Results Mean plant ?15N prior to correction was 49‰ and ?5.8‰ under nitrate and ammonium, respectively. Plant ?15N was non-linearly correlated to biomass (r2?=?0.331 and 0.249 for nitrate and ammonium, respectively; P?15N of plants with low biomass approached the ?15N of the pre-existing nitrogen. Approximately 50% of cutting nitrogen was not remobilized, irrespective of size. The proportion of carry-over nitrogen in new growth was not different between sources but ranged from less than 1% to 21% and was dependent on plant biomass and, to a lesser degree, the size of the cutting. The ?15N of newly acquired nitrogen averaged 52.7‰ and ?6.4‰ for nitrate and ammonium-grown plants, respectively; both lower than their source values, as expected. Since there was a greater difference in ?15N between the carried-over pre-existing and newly assimilated nitrogen where nitrate was the source, the difference between measured ?15N and adjusted ?15N was also greater. There was no significant relationship between biomass and plant ?15N with either ammonium or nitrate after adjusting for carry-over nitrogen. Conclusion Here, we provide evidence of remobilized pre-existing nitrogen influencing ?15N of new growth of P. balsamifera L. A simple, though approximate, correction is proposed that can account for the remobilized fraction in the plant. With careful sampling to quantify pre-existing nitrogen, this method can more accurately determine changes in nitrogen isotope discrimination in plants. PMID:23849546

  2. /sup 15/N natural abundance in warm-core rings of the Gulf Stream: studies of the upper-ocean nitrogen cycle

    SciTech Connect

    Altabet, M.A.

    1984-01-01

    An extensive study of /sup 15/N natural abundance in particulate organic nitrogen (PON) from warm-core rings of the Gulf Stream was carried out to test its use as an in situ tracer of the marine nitrogen cycle. Ring 82-B exhibited large temporal changes in the delta/sup 15/N of PON. It was found that delta/sup 15/N values for euphotic zone PON were low in April before stratification and higher in June after stratification had occurred. Below 400 meters, in the permanent thermocline, the change was opposite going from very high values to ones similar to those at the surface. Examination of vertical profiles for delta/sup 15/N in the upper 200 meters demonstrated that in stratified waters a delta/sup 15/N minimum for PON occurs with both the top of the nitracline and a maximum in PON concentration. Often a minimum in C/N ratio also occurs at the depth of the delta/sup 15/N minimum. A mathematical model of nitrogen flux into and out of the euphotic zone and associated isotopic fractionation qualitatively reproduced the observed patterns for the delta/sup 15/N of PON, PON concentration and NO/sub 3//sup -/ concentration. Levels of PON increased as a result of either increasing NO/sub 3//sup -/ flux into the euphotic zone or increasing the residence time of PON in the euphotic zone. These results lend general support to current views regarding the nature and significance of the vertical fluxes of nitrogen in the upper-ocean and the hypotheses presented concerning the factors which control the delta/sup 15/N of PON.

  3. Vascular plant 15 N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots

    Microsoft Academic Search

    Anders Michelsen; Chris Quarmby; Darren Sleep; Sven Jonasson

    1998-01-01

    In this study we show that the natural abundance of the nitrogen isotope 15, ?15N, of plants in heath tundra and at the tundra-forest ecocline is closely correlated with the presence and type of mycorrhizal\\u000a association in the plant roots. A total of 56 vascular plant species, 7 moss species, 2 lichens and 6 species of fungi from\\u000a four heath

  4. Effects of Four Different Restoration Treatments on the Natural Abundance of 15N Stable Isotopes in Plants

    PubMed Central

    Temperton, Vicky M.; Märtin, Lea L. A.; Röder, Daniela; Lücke, Andreas; Kiehl, Kathrin

    2012-01-01

    ?15N signals in plant and soil material integrate over a number of biogeochemical processes related to nitrogen (N) and therefore provide information on net effects of multiple processes on N dynamics. In general little is known in many grassland restoration projects on soil–plant N dynamics in relation to the restoration treatments. In particular, ?15N signals may be a useful tool to assess whether abiotic restoration treatments have produced the desired result. In this study we used the range of abiotic and biotic conditions provided by a restoration experiment to assess to whether the restoration treatments and/or plant functional identity and legume neighborhood affected plant ?15N signals. The restoration treatments consisted of hay transfer and topsoil removal, thus representing increasing restoration effort, from no restoration measures, through biotic manipulation to major abiotic manipulation. We measured ?15N and %N in six different plant species (two non-legumes and four legumes) across the restoration treatments. We found that restoration treatments were clearly reflected in ?15N of the non-legume species, with very depleted ?15N associated with low soil N, and our results suggest this may be linked to uptake of ammonium (rather than nitrate). The two non-legume species differed considerably in their ?15N signals, which may be related to the two species forming different kinds of mycorrhizal symbioses. Plant ?15N signals could clearly separate legumes from non-legumes, but our results did not allow for an assessment of legume neighborhood effects on non-legume ?15N signals. We discuss our results in the light of what the ?15N signals may be telling us about plant–soil N dynamics and their potential value as an indicator for N dynamics in restoration. PMID:22645597

  5. Natural 15N- and 13C-abundance as indicators of forest nitrogen status and soil carbon dynamics

    SciTech Connect

    Garten Jr, Charles T [ORNL; Hanson, Paul J [ORNL; Todd Jr, Donald E [ORNL; Lu, Benwhea Bonnie [ORNL; Brice, Deanne Jane [ORNL

    2007-09-01

    This book highlights new and emerging uses of stable isotope analysis in a variety of ecological disciplines. While the use of natural abundance isotopes in ecological research is now relatively standard, new techniques and ways of interpreting patterns are developing rapidly. The second edition of this book provides a thorough, up-to-date examination of these methods of research. As part of the Ecological Methods and Concepts series which provides the latest information on experimental techniques in ecology, this book looks at a wide range of techniques that use natural abundance isotopes to: {sm_bullet} follow whole ecosystem element cycling {sm_bullet} understand processes of soil organic matter formation {sm_bullet} follow the movement of water in whole watersheds {sm_bullet} understand the effects of pollution in both terrestrial and aquatic environments {sm_bullet} study extreme systems such as hydrothermal vents {sm_bullet}follow migrating organisms In each case, the book explains the background to the methodology, looks at the underlying principles and assumptions, and outlines the potential limitations and pitfalls. Stable Isotopes in Ecology and Environmental Science is an ideal resource for both ecologists who are new to isotopic analysis, and more experienced isotope ecologists interested in innovative techniques and pioneering new uses.

  6. Natural abundance 15N in soil and litter across a nitrate-output gradient in New Hampshire

    Microsoft Academic Search

    L. H. Pardo; H. F. Hemond; J. P. Montoya; J. Pett-Ridge

    2007-01-01

    Stable isotopes of nitrogen are potentially a valuable tool for regional assessments of nitrogen saturation because they provide an integrated measure of the past nitrogen cycling history of a site. We measured ?15N of soil and litter, as well as net nitrification potential, at three sites across a nitrate-loss gradient in the White Mountains, New Hampshire to test the hypotheses:

  7. 15N natural abundance during early and late succession in a middle-European dry acidic grassland.

    PubMed

    Beyschlag, W; Hanisch, S; Friedrich, S; Jentsch, A; Werner, C

    2009-09-01

    delta(15)N and total nitrogen content of above- and belowground tissues of 13 plant species from two successional stages (open pioneer community and ruderal grass stage) of a dry acidic grassland in Southern Germany were analysed, in order to evaluate whether resource use partitioning by niche separation and N input by N(2)-fixing legumes are potential determinants for species coexistence and successional changes. Within each stage, plants from plots with different legume cover were compared. Soil inorganic N content, total plant biomass and delta(15)N values of bulk plant material were significantly lower in the pioneer stage than in the ruderal grass community. The observed delta(15)N differences were rather species- than site-specific. Within both stages, there were also species-specific differences in isotopic composition between above- and belowground plant dry matter. Species-specific delta(15)N signatures may theoretically be explained by (i) isotopic fractionation during microbial-mediated soil N transformations; (ii) isotopic fractionation during plant N uptake or fractionation during plant-mycorrhiza transfer processes; (iii) differences in metabolic pathways and isotopic fractionation within the plant; or (iv) partitioning of available N resources (or pools) among plant groups or differential use of the same resources by different species, which seems to be the most probable route in the present case. A significant influence of N(2)-fixing legumes on the N balance of the surrounding plant community was not detectable. This was confirmed by the results of an independent in situ removal experiment, showing that after 3 years there were no measurable differences in the frequency distribution between plots with and without N(2)-fixing legumes. PMID:19689779

  8. Estimates of dry and wet deposition using tissue N contents and 15N natural abundance in epilithic mosses in atmospheric NHy-dominated areas

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Yun; Liu, Cong-Qiang

    2011-02-01

    Measurement of dry N deposition by physical methods is time-consuming because it is usually difficult to measure directly. In this study, an alternative approach has successfully been proposed by coupling isotopic ratios with tissue N contents of epilithic mosses. The method is to use moss N contents to quantitatively estimate total N (TN) deposition and then to use 15N natural abundance in mosses to discriminate dry and wet deposition in atmospheric NHy-dominated areas (NHy/TN > 0.75). On the basis of the isotopic balance between atmospheric NHy and moss tissue N and the correlation between atmospheric NHy concentrations and their isotopes, both wet and dry N deposition can be estimated. By the approach, we have estimated rainwater ammonium concentrations and contribution percentage of wet deposition to total N deposition (fwet) in some areas of southern China. The results indicated that rainwater ammonium concentrations increased relative to those reported previously in most cities, owing to stronger anthropogenic activity. The fwet values estimated in most sites were found to be slightly higher than those reported, because faster transformation rates due to higher SO2 emission later in acid rain areas of southern China favored deposition in the form of wet deposition instead of dry deposition. The largest uncertainty of the approach comes from the influence of NOx in the atmosphere, and thus it cannot be used in areas where NOx deposition is high. The presented isotopic approach represents a new application of moss biomonitoring for estimating atmospheric N deposition in NHy-dominated areas.

  9. Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother's breast milk protein.

    PubMed

    Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J

    2013-12-01

    Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The ?(15)N and ?(13)C (‰) were found to be significantly higher in infant hair than in breast milk (?(15)N, P < 0.001; ?(13)C, P < 0.001). Furthermore, the ?(15)N (‰) of individual amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content. PMID:24072506

  10. Comparing the Influence of Wildfire and Prescribed Burns on Watershed Nitrogen Biogeochemistry Using 15N Natural Abundance in Terrestrial and Aquatic Ecosystem Components

    PubMed Central

    Stephan, Kirsten; Kavanagh, Kathleen L.; Koyama, Akihiro

    2015-01-01

    We evaluated differences in the effects of three low-severity spring prescribed burns and four wildfires on nitrogen (N) biogeochemistry in Rocky Mountain headwater watersheds. We compared paired (burned/unburned) watersheds of four wildfires and three spring prescribed burns for three growing seasons post-fire. To better understand fire effects on the entire watershed ecosystem, we measured N concentrations and ?15N in both the terrestrial and aquatic ecosystems components, i.e., soil, understory plants in upland and riparian areas, streamwater, and in-stream moss. In addition, we measured nitrate reductase activity in foliage of Spiraea betulifolia, a dominant understory species. We found increases of ?15N and N concentrations in both terrestrial and aquatic ecosystem N pools after wildfire, but responses were limited to terrestrial N pools after prescribed burns indicating that N transfer from terrestrial to aquatic ecosystem components did not occur in low-severity prescribed burns. Foliar ?15N differed between wildfire and prescribed burn sites; the ?15N of foliage of upland plants was enriched by 2.9 ‰ (difference between burned and unburned watersheds) in the first two years after wildfire, but only 1.3 ‰ after prescribed burns. In-stream moss ?15N in wildfire-burned watersheds was enriched by 1.3 ‰, but there was no response by moss in prescription-burned watersheds, mirroring patterns of streamwater nitrate concentrations. S. betulifolia showed significantly higher nitrate reductase activity two years after wildfires relative to corresponding unburned watersheds, but no such difference was found after prescribed burns. These responses are consistent with less altered N biogeochemistry after prescribed burns relative to wildfire. We concluded that ?15N values in terrestrial and aquatic plants and streamwater nitrate concentrations after fire can be useful indicators of the magnitude and duration of fire effects and the fate of post-fire available N. PMID:25885257

  11. Savanna-derived organic matter remaining in arable soils of the South African Highveld long-term mixed cropping: Evidence from 13C and 15N natural abundance

    Microsoft Academic Search

    I. Lobe; R. Bol; B. Ludwig; C. C. Du Preez; W. Amelung

    2005-01-01

    Sustainable agriculture requires the formation of new humus from the crops. We utilized 13C and 15N signatures of soil organic matter to assess how rapidly wheat\\/maize cropping contributed to the humus formation in coarse-textured savanna soils of the South African Highveld. Composite samples were taken from the top 20cm of soils (Plinthustalfs) cropped for lengths of time varying from 0

  12. Relationships between soil nitrogen dynamics and natural 15N-abundance in plant foliage from the Great Smoky Mountains National Park

    Microsoft Academic Search

    Charles T. Garten Jr.; Helga Van Miegroet

    1994-01-01

    We tested the hypothesis that naturally occurring nitrogen (N) isotope ratios in foliage (from plants that do not symbiotically fix atmospheric N) are an indicator of soil N dynamics in forests. Replicate plots were established at eight locations ranging in elevation from 615 to 1670 m in Great Smoky Mountains National Park in eastern Tennessee, U.S.A. The locations selected ranged

  13. Leaf 15 N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen

    Microsoft Academic Search

    Anders Michelsen; Inger K. Schmidt; Sven Jonasson; Chris Quarmby; Darren Sleep

    1996-01-01

    The natural abundance of the nitrogen isotope 15, d15N, was analysed in leaves of 23 subarctic vascular plant species and two lichens from a tree-line heath at 450 m altitude and a fellfield at 1150 m altitude close to Abisko in N. Sweden, as well as in soil, rain and snow. The aim was to reveal if plant species with

  14. ? 15N as an integrator of the nitrogen cycle

    Microsoft Academic Search

    David Robinson

    2001-01-01

    Natural abundances of the rare stable isotope of nitrogen, 15N, are now being used widely in research on N cycling in organisms and ecosystems. 15N natural abundances are used in fundamentally different ways from traditional 15N tracers by integrating N cycle processes via N isotope fractionations and the mixing of various N-containing pools. This approach of using 15N natural abundances

  15. 15N and 13C abundances in the Antartic Ocean with emphasis on the biogeochemical structure of the food web

    NASA Astrophysics Data System (ADS)

    Wada, Eitaro; Terazaki, Makoto; Kabaya, Yuko; Nemoto, Takahisa

    1987-06-01

    Distributions of ? 15N and ? 13C for biogenic substances in the Antarctic Ocean were investigated to construct a biogeochemical framework for assessing the Antarctic ecosystem. Phytoplankton exhibited particularly low ? 15N (0.5%) and 13C (-26.9%) values in pelagic plankton samples. High nitrate concentrations, and high PCO 2 in the surface waters on the southern side of the polar front and the resulting slow growth rate of phytoplankton under low light intensity are suggested as possible factors in causing the low isotopic compositions. Mean fractionation factors of 1.029 and 1.006 were estimated for photosynthetic carbon fixation and for the assimilation of inorganic nitrogeneous compounds (ammonium plus nitrate) during algal growth, respectively. Enrichment of 15N with increasing trophic level was confirmed for Antarctic ecosystems: ?15N animal% = 3.3 (trophic level -1) + ?5N algae, whereas 13C content did not increase in the same manner. Differences in lipid content among animals may be the main factor in causing this ? 13C anomaly. 15N and 13C abundance of sedimentary organic nitrogen differed from phytoplankton and settling particles. An exact mechanism for explaining the high ? 15N (around 5%) is not known. The very high ? 13C value of -20.5% at Sta. 3B may originate in ice algae that had grown under CO 2-limited conditions. Particles collected by sediment traps gave characteristically low ? 15N values (-3.0 to 0.9%), strongly suggesting a phytoplankton origin. The ? 15N and ? 13C values of settling material showed similar vertical profiles with depth which might arise from temporal variation of algal growth.

  16. Evaluating the utility of 15N and 18O isotope abundance analyses to identify nitrate sources: A soil zone study.

    PubMed

    Minet, E; Coxon, C E; Goodhue, R; Richards, K G; Kalin, R M; Meier-Augenstein, W

    2012-08-01

    (15)N and (18)O isotope abundance analyses in nitrate (NO(3)(-)) (expressed as ?(15)N-NO(3)(-) and ?(18)O-NO(3)(-) values respectively) have often been used in research to help identify NO(3)(-) sources in rural groundwater. However, questions have been raised over the limitations as overlaps in ? values may occur between N source types early in the leaching process. The aim of this study was to evaluate the utility of using stable isotopes for nitrate source tracking through the determination of ?(15)N-NO(3)(-) and ?(18)O-NO(3)(-) in the unsaturated zone from varying N source types (artificial fertiliser, dairy wastewater and cow slurry) and rates with contrasting isotopic compositions. Despite NO(3)(-) concentrations being often elevated, soil-water nitrate poorly mirrored the (15)N content of applied N and therefore, ?(15)N-NO(3)(-) values were of limited assistance in clearly associating nitrate leaching with N inputs. Results suggest that the mineralisation and the nitrification of soil organic N, stimulated by previous and current intensive management, masked the cause of leaching from the isotopic prospective. ?(18)O-NO(3)(-) was of little use, as most values were close to or within the range expected for nitrification regardless of the treatment, which was attributed to the remineralisation of nitrate assimilated by bacteria (mineralisation-immobilisation turnover or MIT) or plants. Only in limited circumstances (low fertiliser application rate in tillage) could direct leaching of synthetic nitrate fertiliser be identified (?(15)N-NO(3)(-)<0‰ and ?(18)O-NO(3)(-)>15‰). Nevertheless, some useful differences emerged between treatments. ?(15)N-NO(3)(-) values were lower where artificial fertiliser was applied compared with the unfertilised controls and organic waste treatments. Importantly, ?(15)N-NO(3)(-) and ?(18)O-NO(3)(-) variables were negatively correlated in the artificial fertiliser treatment (0.001?p?0.05, attributed to the varying proportion of fertiliser-derived and synthetic nitrate being leached) while positively correlated in the dairy wastewater plots (p?0.01, attributed to limited denitrification). These results suggest that it may be possible to distinguish some nitrate sources if analysing correlations between ? variables from the unsaturated zone. In grassland, the above correlations were related to N input rates, which partly controlled nitrate concentrations in the artificial fertiliser plots (high inputs translated into higher NO(3)(-) concentrations with an increasing proportion of fertiliser-derived and synthetic nitrate) and denitrification in the dairy wastewater plots (high inputs corresponded to more denitrification). As a consequence, nitrate source identification in grassland was more efficient at higher input rates due to differences in ? values widening between treatments. PMID:22578428

  17. 15 N isotope biogeochemistry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France

    Microsoft Academic Search

    André Mariotti; Alain Landreau; Béatrice Simon

    1988-01-01

    The use of 15 N natural isotope tracing in an aquifer contained within chalk rocks in northern France indicates that, under certain hydrogeological conditions, major denitrification occurs. At the boundary where the aquifer becomes confined, the nitrate concentrations decrease in the direction of groundwater flow accompanied by an exponential increase in 15 N (expressed in 15 N ) of the

  18. Assessing denitrification in groundwater using natural gradient tracer tests with 15N: In situ measurement of a sequential multistep reaction

    USGS Publications Warehouse

    Smith, R.L.; Böhlke, J.K.; Garabedian, S.P.; Revesz, K.M.; Yoshinari, T.

    2004-01-01

    Denitrification was measured within a nitrate-contaminated aquifer on Cape Cod, Massachusetts, using natural gradient tracer tests with 15N nitrate. The aquifer contained zones of relatively high concentrations of nitrite (up to 77 ??M) and nitrous oxide (up to 143 ??M) and has been the site of previous studies examining ground water denitrification using the acetylene block technique. Small-scale (15-24 m travel distance) tracer tests were conducted by injecting 15N nitrate and bromide as tracers into a depth interval that contained nitrate, nitrite, nitrous oxide, and excess nitrogen gas. The timing of the bromide breakthrough curves at down-gradient wells matched peaks in 15N abundance above background for nitrate, nitrite, nitrous oxide, and nitrogen gas after more than 40 days of travel. Results were simulated with a one-dimensional transport model using linked reaction kinetics for the individual steps of the denitrification reaction pathway. It was necessary to include within the model spatial variations in background concentrations of all nitrogen oxide species. The model indicated that nitrite production (0.036-0.047 ??mol N (L aquifer)-1 d -1) was faster than the subsequent denitrification steps (0.013-0.016 ??mol N (L aquifer)-1 d-1 for nitrous oxide and 0.013-0.020 ??mol N (L aquifer)-1 d-1 for nitrogen gas) and that the total rate of reaction was slower than indicated by both acetylene block tracer tests and laboratory incubations. The rate of nitrate removal by denitrification was much slower than the rate of transport, indicating that nitrate would migrate several kilometers down-gradient before being completely consumed.

  19. 15N Abundance of Nodules as an Indicator of N Metabolism in N2-Fixing Plants 1

    PubMed Central

    Shearer, Georgia; Feldman, Lori; Bryan, Barbara A.; Skeeters, Jerri L.; Kohl, Daniel H.; Amarger, Nöelle; Mariotti, Françoise; Mariotti, André

    1982-01-01

    This paper expands upon previous reports of 15N elevation in nodules (compared to other tissues) of N2-fixing plants. N2-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in 15N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N2-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in 15N. Thus, 15N elevation in nodules of these plants depends on active N2-fixation. Results obtained so far on the generality of 15N enrichment in N2-fixing nodules suggest that only the nodules of plants which actively fix N2 and which transport allantoin or allantoic acid exhibit 15N enrichment. PMID:16662517

  20. Determination of the abundance of delta15N in nitrate ion in contaminated groundwater samples using an elemental analyzer coupled to a mass spectrometer.

    PubMed

    Ogawa, Y; Nishikawa, M; Nakasugi, O; Ii, H; Hirata, T

    2001-07-01

    A rapid method for measuring the delta15N of nitrate ion in water samples using an isotope ratio mass spectrometer coupled to an elemental analyzer system (EA-MS) was investigated. The water should be removed from the analytical sample before measurement with this system. We investigated the application of a super-absorbent polymer resin powder to various water samples. Each 1 mg of polymer resin powder can absorb about 50-100 mg of solution depending on the concentrations of major ions. Only samples which contain more than 100 mg l(-1) of nitrate-nitrogen are suitable to be absorbed by the polymer resin for the determination of delta15N of nitrate. Preconcentration by rotary evaporation was necessary for dilute samples but the temperature should be kept below 60 degrees C. The polymer resin (about 8 mg) containing the nitrate was directly analyzed using an EA-MS after being oven-dried at 80 degrees C. Good accuracy (precision +/- 0.3%) for delta15N measurements of nitrate-nitrogen in a sample without any isotope fractionation effects during pre-treatment was observed. Results for delta15N of nitrate in contaminated groundwater samples collected in the spring at a tea plantation area in Shizuoka, Japan, were from 9.8 to 10.6%, which were close to the delta15N abundance in organic fertilizers. PMID:11478634

  1. Protein abundance quantification in embryonic stem cells using incomplete metabolic labelling with 15N amino acids, matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, and analysis of relative isotopologue abundances of peptides.

    PubMed

    Vogt, Josef A; Schroer, Klaus; Hölzer, Kerstin; Hunzinger, Christian; Klemm, Martina; Biefang-Arndt, Katja; Schillo, Simone; Cahill, Michael A; Schrattenholz, André; Matthies, Helmut; Stegmann, Werner

    2003-01-01

    An isotope dilution method for protein quantification is presented in the context of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) and mass fingerprinting experiments, revealing an unappreciated high reproducibility and accuracy of relative peak intensity measurements. Labelled proteins were generated by growing cells in a medium containing (15)N-enriched amino acids, and were mixed with proteins of natural isotopic composition from control cells in ratios of approximately 0:1, 1:7, 1:2, 2:1, 7:1, and 1:0 (labelled/unlabelled). Mixtures were separated by two-dimensional gel electrophoresis and analysed by MALDI-TOFMS using typical experimental conditions. A linear relationship is demonstrated between the relative isotopologue abundances (RIA values) for particular peaks in the isotopic distribution of tryptic peptide fragments of the proteins, and the mole fractions of labelled proteins in the mixture. Analysis of RIA values (ARIA quantification) for peptides of six typical silver-stained protein spots for the various mixtures could reproduce the experimentally contrived ratios with approximate errors between 4% (2:1 mixture) and about 18% (1:7 mixture). A consideration of error and its propagation is discussed. ARIA does not require complete separation of the isotope patterns of labelled and unlabelled peptides, and is therefore advantageous in combination with all kinds of labelling experiments in biological systems, because it is compatible with minimal metabolic incorporation of labelling reagent. Simulations indicate that the minimum required (15)N enrichment of the total amino acid pool sufficient for ARIA is less than 4%. In an accompanying paper in this issue, we apply ARIA to proteins differentially labelled with isotope-coded alkylation reagents. PMID:12811750

  2. Natural resource abundance and economic growth revisited

    Microsoft Academic Search

    Jean-Philippe C. Stijns

    2005-01-01

    An analysis using reserves as a measure of resource abundance suggests that natural resource abundance has not been a significant structural determinant of economic growth in the seventies and eighties. The story behind the effect of natural resources on economic growth is a complex one that typical growth regressions do not capture well. Preliminary evidence suggests that natural resources may

  3. Pattern of natural 15 N abundance in lakeside forest ecosystem affected by cormorant-derived nitrogen

    Microsoft Academic Search

    Kayoko Kameda; Keisuke Koba; Satoru Hobara; Takashi Osono; Masakazu Terai

    Waterbirds are one of the most important groups of organisms inhabiting the land-water interface, especially with regard to\\u000a mediating the transport of materials from the aquatic to the terrestrial environment. The great cormorant (Phalacrocorax carbo) is a colonial piscivorous bird that transports nutrients from fresh water to forest. We measured cormorant-derived nitrogen\\u000a at two nesting colonies on the Isaki Peninsula

  4. Pattern of natural 15 N abundance in lakeside forest ecosystem affected by cormorant-derived nitrogen

    Microsoft Academic Search

    Kayoko Kameda; Keisuke Koba; Satoru Hobara; Takashi Osono; Masakazu Terai

    2006-01-01

    Waterbirds are one of the most important groups of organisms inhabiting the land–water interface, especially with regard to\\u000a mediating the transport of materials from the aquatic to the terrestrial environment. The great cormorant (Phalacrocorax carbo) is a colonial piscivorous bird that transports nutrients from fresh water to forest. We measured cormorant-derived nitrogen\\u000a at two nesting colonies on the Isaki Peninsula

  5. d 15 N constraints on long-term nitrogen balances in temperate forests

    EPA Science Inventory

    Natural abundance d15N of ecosystems integrates nitrogen (N) inputs and losses, and thus reflects factors that control the long-term development of ecosystem N balances. We here report N and carbon (C) content of forest vegetation and soils, and associated d15N, across nine Doug...

  6. Natural Resource Abundance and Economic Growth

    Microsoft Academic Search

    Ning Ding; Barry C. Field

    2004-01-01

    This paper explores whether natural resource abundance leads, other things equal, to slower growth rates. We distinguish between natural resource dependence (RD) and the natural resource endowment (RE). We estimate three models, using World Bank data on national capital stocks. In a one-equation model we show that RD has a negative effect on growth rates, apparently confirming the main results

  7. NATURAL RESOURCE ABUNDANCE AND ECONOMIC GROWTH REVISITED

    Microsoft Academic Search

    Jean-Philippe C. Stijns

    2001-01-01

    Data on energy and mineral reserves suggest that natural resource abundance has not been a significant structural determinant of economic growth between 1970 and 1989. The story behind the effect of natural resources on economic growth is a complex one that typical growth regressions do not capture well. Preliminary evidence suggests that natural resources may affect economic growth through both

  8. Coastal lagoons as a natural sewage treatment plant and their impact on the natural stable isotope signature in nitrate (d 15N, d 18O)

    NASA Astrophysics Data System (ADS)

    Voss, M.; Pastuszak, M.; Sitek, S.; Schulte, U.

    2003-04-01

    Eutrophication is one of the major threats to the Baltic Sea ecosystems and, therefore, various possibilities for nutrient removal scenarios are currently discussed. One approach considers a 50% decrease in nutrient inputs by all riparian countries, however, this would cost 380 Mio Euro/yr. Some countries already discharge highly treated sewage waters and any further reduction would be very costly, while other countries use only basic (mechanical) treatment procedures and further treatment could be done cost efficiently. One natural way that reduces nutrient loads and minimize inputs of nitrate, ammonium and phosphate is their transfer through coastal lagoons that act as a natural treatment plant. The residence time of river water is prolonged and that enables settlement of particles and bacterial removal of nitrate and ammonium. This study made it possible to investigate the effect the Szczecin Lagoon has on nutrient concentrations by comparing two stations - one located ca. 100 km upstream, and the other in the Swina Canal, the major outlet of the lagoon. Biweekly samples were taken at both stations. A drop in nitrate concentrations occasionally reached 90%, while the annual removal of nitrate amounted to 55%. The delta 15N and delta 18O data of nitrate were used to investigate the processes responsible for the drop in concentration. Surprisingly, the theoretical delta 15N values (calculated after Rayleigh equation) were negatively correlated with the measured ones, and delta 18O values were unusually high for the river nitrate. We therefore conclude that part of the nitrate was denitrified without fractionation as suggested by Brandes and Devol (1997). However, an additional nitrate source with low delta 15N and high delta 18O values might be also considered. For phosphate the removal was lower, reaching only 15% annually. It seems that the lagoon was more efficiently retaining nitrogen thus changing the N/P ratio of the outflowing water towards N-limitation.

  9. Natural Resource Abundance and Economic Growth

    Microsoft Academic Search

    Jeffrey D. Sachs; Andrew M. Warner

    1995-01-01

    One of the surprising features of modern economic growth is that economies with abundant natural resources have tended to grow less rapidly than natural-resource-scarce economies. In this paper we show that economies with a high ratio of natural resource exports to GDP in 1971 (the base year) tended to have low growth rates during the subsequent period 1971-89. This negative

  10. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different delta15N values. Comparative delta13C and delta15N on-line EA-IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA-IRMS reference materials. PMID:19844968

  11. Helium isotopic abundance variation in nature

    SciTech Connect

    Holden, N.E.

    1993-08-01

    The isotopic abundance of helium in nature has been reviewed. This atomic weight value is based on the value of helium in the atmosphere, which is invariant around the world and up to a distance of 100,000 feet. Helium does vary in natural gas, volcanic rocks and gases, ocean floor sediments, waters of various types and in radioactive minerals and ores due to {alpha} particle decay of radioactive nuclides.

  12. Natural Resource Abundance and Human Capital Accumulation

    Microsoft Academic Search

    Jean-Philippe C. Stijns

    2001-01-01

    This study examines indicators of human capital accumulation together with data for natural resource abundance and rents in a panel of 102 countries running from 1970 to 1999. Mineral wealth makes a positive and marked difference on human capital accumulation. Matching on observables reveals that cross-country results are not driven by a third factor such as overall economic development. Political

  13. 15N -enrichment of plant tissue to mark phytophagous insects, associated parasitoids, and flower-visiting entomophaga

    Microsoft Academic Search

    Shawn A. Steffan; Kent M. Daane; Daniel L. Mahr

    2001-01-01

    New techniques are presented on the use of 15N to mark insects. 15N, a stable isotope of nitrogen, was enriched above natural abundance in plant and insect tissues. Two laboratory studies demonstrated that enriched 15N- concentrations could be tracked from plant to insect using mass spectrometry. In the first study, adult Cotesia plutellae (Kurdjimov) (Hymenoptera: Braconidae) and Hippodamia convergensGuérin-Méneville (Coleoptera:

  14. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N values. Comparative ??13C and ??15N on-line EA-IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA-IRMS reference materials.

  15. Food Resources of Stream Macronivertebrates Determined by Natural-Abundance stable C and N Isotopes and a 15N Tracer Addition

    SciTech Connect

    Mulholland, P. J.

    2000-01-01

    Trophic relationships were examined using natural-abundance {sup 13}C and {sup 15}N analyses and a {sup 15}N-tracer addition experiment in Walker Branch, a 1st-order forested stream in eastern Tennessee. In the {sup 15}N-tracer addition experiment, we added {sup 15}NH{sub 4} to stream water over a 6-wk period in early spring, and measured {sup 15}N:{sup 14}N ratios in different taxa and biomass compartments over distance and time. Samples collected from a station upstream from the {sup 15}N addition provided data on natural-abundance {sup 13}C:{sup 12}C and {sup 15}N:{sup 14}N ratios. The natural-abundance {sup 15}N analysis proved to be of limited value in identifying food resources of macroinvertebrates because {sup 15}N values were not greatly different among food resources. In general, the natural-abundance stable isotope approach was most useful for determining whether epilithon or detritus were important food resources for organisms that may use both (e.g., the snail Elimia clavaeformis), and to provide corroborative evidence of food resources of taxa for which the {sup 15}N tracer results were not definitive. The {sup 15}N tracer results showed that the mayflies Stenonema spp. and Baetis spp. assimilated primarily epilithon, although Baetis appeared to assimilate a portion of the epilithon (e.g., algal cells) with more rapid N turnover than the bulk pool sampled. Although Elimia did not reach isotopic equilibrium during the tracer experiment, application of a N-turnover model to the field data suggested that it assimilated a combination of epilithon and detritus. The amphipod Gammarus minus appeared to depend mostly on fine benthic organic matter (FBOM), and the coleopteran Anchytarsus bicolor on epixylon. The caddisfly Diplectrona modesta appeared to assimilate primarily a fast N-turnover portion of the FBOM pool, and Simuliidae a fast N-turnover component of the suspended particulate organic matter pool rather than the bulk pool sampled. Together, the natural-abundance stable C and N isotope analyses and the experimental {sup 15}N tracer approach proved to be very useful tools for identifying food resources in this stream ecosystem.

  16. Cursing the Blessings? Natural Resource Abundance, Institutions, and Economic Growth

    Microsoft Academic Search

    Christa N. Brunnschweiler

    2008-01-01

    Summary Since Sachs and Warner's [Sachs, J. D., & Warner, A. M. (1995a). Natural resource abundance and economic growth. NBER working paper, no. 5398] contribution, there has been a lively debate on the so-called natural resource curse. This paper re-examines the effects of natural resource abundance on economic growth using new measures of resource endowment and considering the role of

  17. Grass species influence on plant N uptake - Determination of atmospheric N deposition to a semi-natural peat bog site using a 15N labelling approach

    NASA Astrophysics Data System (ADS)

    Hurkuck, Miriam; Brümmer, Christian; Spott, Oliver; Flessa, Heinz; Kutsch, Werner L.

    2014-05-01

    Large areas of natural peat bogs in Northwestern Germany have been converted to arable land and were subjected to draining and peat cutting in the past. The few protected peatland areas remaining are affected by high nitrogen (N) deposition. Our study site - a moderately drained raised bog - is surrounded by highly fertilized agricultural land and livestock production. In this study, we used a 15N pool dilution technique called 'Integrated Total Nitrogen Input' (ITNI) to quantify annual deposition of atmospheric N into biomonitoring pots over a two-year period. Since it considers direct N uptake by plants, it was expected to result in higher N input than conventional methods for determination of N deposition (e.g. micrometeorological approaches, bulk N samplers). Using Lolium multiflorum and Eriophorum vaginatum as monitor plants and low, medium and high levels of fertilization, we aimed to simulate increasing N deposition to planted pots and to allocate airborne N after its uptake by the soil-plant system in aboveground biomass, roots and soil. Increasing N fertilization was positively correlated with biomass production of Eriophorum vaginatum, whereas atmospheric plant N uptake decreased and highest airborne N input of 899.8 ± 67.4 µg N d-1 pot-1 was found for low N fertilization. In contrast, Lolium multiflorum showed a clear dependency of N supply on plant N uptake and was highest (688.7 ± 41.4 µg N d-1 pot-1) for highly fertilized vegetation pots. Our results suggest that grass species respond differently to increasing N input. While crop grasses such as Lolium multiflorum take up N according to N availability, species adopted to nutrient-limited conditions like Eriophorum vaginatum show N saturation effects with increasing N supply. Total airborne N input ranged from about 24 to 66 kg N ha-1 yr-1 dependent on the used indicator plant and the amount of added fertilizer. Parallel determination of atmospheric N deposition using a micrometeorological approach complemented with bulk samplers was about 24 kg N ha-1 yr-1 during both years of experiments and was thus at the lower range of results obtained by the ITNI method. The low 15N recovery rate of about 50 % during some experiments indicated an underestimation of the applied ITNI approach, resulting in a maximum possible N uptake of twice as high as the determined N input. Most likely, the intensive agricultural land management of the surrounding areas leads to this high N deposition into the protected peatland area. As a result, increasing sensitivity of ombrotrophic vegetation with a subsequent change in plant species composition and a decline in bog-specific vegetation cannot be excluded.

  18. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies

    USGS Publications Warehouse

    Templer, P.H.; Mack, M.C.; Chapin, F. S., III; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.

    2012-01-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  19. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies.

    PubMed

    Templer, P H; Mack, M C; Chapin, F S; Christenson, L M; Compton, J E; Crook, H D; Currie, W S; Curtis, C J; Dail, D B; D'Antonio, C M; Emmett, B A; Epstein, H E; Goodale, C L; Gundersen, P; Hobbie, S E; Holland, K; Hooper, D U; Hungate, B A; Lamontagne, S; Nadelhoffer, K J; Osenberg, C W; Perakis, S S; Schleppi, P; Schimel, J; Schmidt, I K; Sommerkorn, M; Spoelstra, J; Tietema, A; Wessel, W W; Zak, D R

    2012-08-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition. PMID:22928411

  20. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance.

    PubMed

    Liu, Dongwei; Fang, Yunting; Tu, Ying; Pan, Yuepeng

    2014-04-15

    We report a new chemical method to determine the (15)N natural abundance (?(15)N) for ammonium (NH4(+)) in freshwater (e.g., precipitation) and soil KCl extract. This method is based on the isotopic analysis of nitrous oxide (N2O). Ammonium is initially oxidized to nitrite (NO2(-)) by hypobromite (BrO(-)) using previously established procedures. NO2(-) is then quantitatively converted into N2O by hydroxylamine (NH2OH) under strongly acid conditions. The produced N2O is analyzed by a commercially available purge and cryogenic trap system coupled to an isotope ratio mass spectrometer (PT-IRMS). On the basis of a typical analysis size of 4 mL, the standard deviation of ?(15)N measurements is less than 0.3‰ and often better than 0.1‰ (3 to 5 replicates). Compared to previous methods, the technique here has several advantages and the potential to be used as a routine method for (15)N/(14)N analysis of NH4(+): (1) substantially simplified preparation procedures and reduced preparation time particularly compared to the methods in which diffusion or distillation is involved since all reactions occur in the same vial and separation of NH4(+) from solution is not required; (2) more suitability for low volume samples including those with low N concentration, having a blank size of 0.6 to 2 nmol; (3) elimination of the use of extremely toxic reagents (e.g., HN3) and/or the use of specialized denitrifying bacterial cultures which may be impractical for many laboratories. PMID:24654992

  1. ON NATURAL RESOURCE ABUNDANCE AND UNDERDEVELOPMENT

    Microsoft Academic Search

    S MANSOOB MURSHED

    2003-01-01

    This paper looks at the relationship between natural resource endowment, particularly the type associated with minerals and plantations, and economic development. It may not be natural resource endowment per se but its type that matters, when it comes to growth and development. Certain types of natural resources such as oil and minerals have a tendency to lead to production and

  2. Stem injection of 15N-NH4NO3 into mature Sitka spruce (Picea sitchensis).

    PubMed

    Nair, Richard; Weatherall, Andrew; Perks, Mike; Mencuccini, Maurizio

    2014-10-01

    Stem injection techniques can be used to introduce (15)N into trees to overcome a low variation in natural abundance and label biomass with a distinct (15)N signature, but have tended to target small and young trees, of a variety of species, with little replication. We injected 98 atom% (15)N ammonium nitrate (NH4NO3) solution into 13 mature, 9- to 13-m tall edge-profile Sitka spruce trees in order to produce a large quantity of labelled litter, examining the distribution of the isotope throughout the canopy after felling in terms of both total abundance of (15)N and relative distribution of the isotope throughout individual trees. Using a simple mass balance of the canopy alone, based on observed total needle biomass and modelled branch biomass, all of the isotope injected was accounted for, evenly split between needles and branches, but with a high degree of variability both within individual trees, and among trees. Both (15)N abundance and relative within-canopy distribution were biased towards the upper and middle crown in foliage. Recovery of the label in branches was much more variable than in needles, possibly due to differences in nitrogen allocation for both growth and storage, which differ seasonally between foliage and woody biomass. PMID:25335951

  3. Paths of Development, Specialization, and Natural Resources Abundance

    Microsoft Academic Search

    Rodrigo Fuentes; Roberto Álvarez

    2006-01-01

    This paper addresses three main questions; how can a country specialized in primary goods become an exporter of manufacturing goods? How does factor abundance affect the possibilities of achieving comparative advantages in manufactures? Does the type of natural resource abundance make any difference to the path of development? Based on factor-endowment-driven specialization, we study the trade patterns along the paths

  4. Differential incorporation of natural spawners vs. artificially planted salmon carcasses in a stream food web: Evidence from delta 15N of juvenile coho salmon

    EPA Science Inventory

    Placement of salmon carcasses is a common restoration technique in Oregon and Washington streams, with the goal of improving food resources and productivity of juvenile salmon. To explore the effectiveness of this restoration technique, we measured the d15N of juvenile coho salmo...

  5. Long-term 15N tracking from biological N fixation across different plant and humus components of the boreal forest

    NASA Astrophysics Data System (ADS)

    Arroniz-Crespo, Maria; Jones, David L.; Zackrisson, Olle; Nilsson, Marie-Charlotte; DeLuca, Thomas H.

    2014-05-01

    Biological N2 fixation by cyanobacteria associated with feather mosses is an important cog in the nitrogen (N) cycle of boreal forests; still, our understanding of the turnover and fate of N fixed by this association remains greatly incomplete. The 15N signature of plants and soil serves as a powerful tool to explore N dynamics in forest ecosystems. In particular, in the present study we aimed to investigate the contribution of N2 fixation to ?15N signatures of plants and humus component of the boreal forest. Here we present results from a long-term (7 years) tacking of labelled 15N2 across the humus layer, seedlings of the tree species Pinus sylvestris, two common dwarf shrub species (Empetrum hermaphroditum and Vaccinium vitis-idaea) and the feather moss Pleurozium schreibery. The enriched experiment was conducted in 2005 in a natural boreal forest in northern Sweden. Two different treatments (10% 15N2 headspace enrichment and control) were setup in nine different plots (0.5 x 0.5 m) within the forest. We observed a significant reduction of ?15N signature of the 15N-enriched moss that could be explained by a growth dilution effect. Nevertheless, after 5 years since 15N2 enrichment some of the label 15N was still detected on the moss and in particular in the dead tissue. We could not detect a clear transfer of the labelled 15N2 from the moss-cyanobacteria system to other components of the ecosystem. However, we found consistence relationship through time between increments of ?15N signature of some of the forest components in plots which exhibited higher N fixation rates in the moss. In particular, changes in natural abundance ?15N that could be associated with N fixation were more apparent in the humus layer, the dwarf shrub Vaccinium vitis-idaea and the pine seedlings when comparing across plots and years.

  6. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  7. 15N CP\\/MAS NMR as an instrument in structure investigations of organosilicon polymers

    Microsoft Academic Search

    E. Brendler; E. Ebrecht; B. Thomas; G. Boden; T. Breuning

    1999-01-01

    15N solid state NMR without enrichment is rarely used because of the low sensitivity and low natural abundance of this nucleus.\\u000a As demonstrated on different nitrogen-containing polysilanes and polysilazanes, it can be shown that with the CP\\/MAS technique\\u000a spectra can be obtained in good quality and within acceptable measuring time. Three main different nitrogen sites – NSi3, NSi2H and NSiH2–

  8. 2005 Nature Publishing Group The abundances of constituents of

    E-print Network

    Atreya, Sushil

    © 2005 Nature Publishing Group The abundances of constituents of Titan's atmosphere from the GCMS Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct

  9. nature | methods Enabling IMAC purification of low abundance recombinant

    E-print Network

    Lebendiker, Mario

    nature | methods Enabling IMAC purification of low abundance recombinant proteins from E. coli Supplementary figures and text: Supplementary Figure 1 E. coli lysate causes migration of His tagged target Supplementary Methods #12;Supplementary Figure 1. Supplementary Figure 1: E.coli lysate causes migration of His

  10. Highly 15N-Enriched Chondritic Clasts in the Isheyevo Meteorite

    SciTech Connect

    Bonal, L; Huss, G R; Krot, A N; Nagashima, K; Ishii, H A; Bradley, J P; Hutcheon, I D

    2009-01-14

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock {sup 15}N enrichment ({delta}{sup 15}N up to +1500{per_thousand}), similar to {delta}{sup 15}N values reported in micron-sized regions (hotspots) of Interplanetary Dust Particles (IDPs) of possibly cometary origin and fine-grained matrices of unmetamorphosed chondrites. These {sup 15}N-rich hotspots are commonly attributed to low-temperature ion-molecule reactions in the protosolar molecular cloud or in the outer part of the protoplanetary disk. The nature of the whole-rock {sup 15}N enrichment of the metal-rich chondrites is not understood. We report a discovery of a unique type of primitive chondritic clasts in the CH/CB-like meteorite Isheyevo, which provides important constraints on the origin of {sup 15}N anomaly in metal-rich chondrites and nitrogen-isotope fractionation in the Solar System. These clasts contain tiny chondrules and refractory inclusions (5-15 {micro}m in size), and abundant ferromagnesian chondrule fragments (1-50 {micro}m in size) embedded in the partly hydrated, fine-grained matrix material composed of olivines, pyroxenes, poorly-organized aromatic organics, phyllosilicates and other hydrous phases. The mineralogy and oxygen isotope compositions of chondrules and refractory inclusions in the clasts are similar to those in the Isheyevo host, suggesting formation at similar heliocentric distances. In contrast to the previously known extraterrestrial samples, the fine-grained material in the clasts is highly and rather uniformly enriched in {sup 15}N, with bulk {delta}{sup 15}N values ranging between +1000 and +1300{per_thousand}; the {delta}{sup 15}N values in rare hotspots range from +1400 to +4000{per_thousand}. Since fine-grained matrices in the lithic clasts are the only component containing thermally unprocessed (during CAI and chondrule formation or during impact melting) materials that accreted into the metal rich chondrite parent body(ies), the {sup 15}N-enriched clasts as present in Isheyevo probably represent the major primordial carrier of {sup 15}N anomaly in these meteorites. The rather uniform and very high bulk {sup 15}N enrichment of the Isheyevo chondritic clasts, in contrast to rare hotspots of possibly molecular cloud origin in cometary IDPs, indicates that the nitrogen-isotope fractionation recorded by these clasts, containing abundant solar system materials, could have resulted from processes in the protoplanetary disk (e.g., ultraviolet photodissociation of {sup 15}N{sub 2} followed by trapping {sup 15}N atoms into NH-bearing ices) rather than solely by inheritance from the protosolar molecular cloud. If this is the case, the unique {sup 15}N-rich signature of the clasts could have resulted from nitrogen-isotope fractionation in cold and optically thin parts of the protoplanetary disk.

  11. Revealing the Nature of Asymmetric Planetary Nebulae through Abundance Analysis

    E-print Network

    Letizia Stanghellini

    2007-09-19

    The correlations between planetary nebula (PN) morphology and the nature of their progenitors are explored by examining homogeneous PN samples in the Galaxy and the Magellanic Clouds. We selected PNe with reliable abundances from spectral analysis, and whose morphology is known, and compared the abundances of the element at variance with stellar evolution with the final yields of Asymptotic Giant Branch (AGB) stellar models. We found that most asymmetric PNe derive from the evolution of massive AGB stars both in the Galactic disk and the Magellanic Clouds.

  12. Stable isotopes (?13C and ?15N) of organic matrix from coral skeleton

    PubMed Central

    Muscatine, Leonard; Goiran, Claire; Land, Lynton; Jaubert, Jean; Cuif, Jean-Pierre; Allemand, Denis

    2005-01-01

    The evolutionary success of reef-building corals in nutrient-poor tropical waters is attributed to endosymbiotic dinoflagellates. The algae release photosynthetic products to the coral animal cells, augment nutrient flux, and enhance the rate of coral calcification. Natural abundance of stable isotopes (?13C and ?18O) provides answers to modern and paleobiological questions about the effect of photosymbiosis on sources of carbon and oxygen in coral skeletal calcium carbonate. Here we compare 17 species of symbiotic and nonsymbiotic corals to determine whether evidence for photosymbiosis appears in stable isotopes (?13C and ?15N) of an organic skeletal compartment, the coral skeletal organic matrix (OM). Mean OM ?13C in symbiotic and nonsymbiotic corals was similar (-26.08‰ vs. -24.31‰), but mean OM ?15N was significantly depleted in 15N in the former (4.09‰) relative to the latter (12.28‰), indicating an effect of the algae on OM synthesis and revealing OM ?15N as a proxy for photosymbiosis. To answer an important paleobiological question about the origin of photosymbiosis in reef-building corals, we applied this proxy test to a fossil coral (Pachythecalis major) from the Triassic (240 million years ago) in which OM is preserved. Mean OM ?15N was 4.66‰, suggesting that P. major was photosymbiotic. The results show that symbiotic algae augment coral calcification by contributing to the synthesis of skeletal OM and that they may have done so as early as the Triassic. PMID:15671164

  13. 13C/12C and 15N/14N Isotope Analysis to Characterize Natural Degradation of Atrazine: Evidence from Parent and Daughter Compound Values

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Meyer, Armin

    2013-04-01

    The mobile and still herbicidal metabolites desethylatrazine (DEA) and desisopropylatrazine (DIA) are frequently detected together with its parent compound atrazine (Atz) in the aquatic environment. Interpretation of their transformation state is often difficult with current methods, which are mainly measuring concentrations. Alternatively, compound specific isotope analyses (CSIA) has become a novel tool to detect degradation processes of contaminants in groundwater. The aim of our study was to investigate on the lab scale 13C/12C and 15N/14N isotope trends in parent and daughter compounds associated with different degradation scenarios of atrazine likely to occur in the environment. Thus atrazine was dealkylated with (i) permanganate and (ii) the bacterium Rhodococcus sp. NI86/21. In both transformations, 13C/12C ratios of atrazine increased strongly (epsilon carbon/permanganate = -4.6 ± 0.6 ‰ and epsilon carbon/Rhodoccoccus = -3.8 ± 0.2 ‰) whereas nitrogen isotope fractionation was small. 13C/12C ratios of DEA showed the following trends. (i) When DEA was formed as only product (Atz + permanganate) 13C/12C remained constant, close to the initial value of Atz. (ii) When DEA was formed together with deisopropylatrazine (biodegradation of Atz) 13C/12C increased, but only within 2‰. (iii) When DEA and DIA was further biodegraded, 13C/12C increased for both metabolites up to 9‰. Thus strong enrichment of 13C/12C in the metabolites in comparison to Atz can give strong testimony for further breakdown of the metabolite.

  14. Human and climate impact on ¹?N natural abundance of plants and soils in high-mountain ecosystems: a short review and two examples from the Eastern Pamirs and Mt. Kilimanjaro.

    PubMed

    Zech, Michael; Bimüller, Carolin; Hemp, Andreas; Samimi, Cyrus; Broesike, Christina; Hörold, Claudia; Zech, Wolfgang

    2011-09-01

    Population pressure increasingly endangers high-mountain ecosystems such as the pastures in the Eastern Pamirs and the mountain forests on Mt. Kilimanjaro. At the same time, these ecosystems constitute the economic basis for millions of people living there. In our study, we, therefore, aimed at characterising the land-use effects on soil degradation and N-cycling by determining the natural abundance of (15)N. A short review displays that ?(15)N of plant-soil systems may often serve as an integrated indicator of N-cycles with more positive ?(15)N values pointing towards N-losses. Results for the high-mountain pastures in the Eastern Pamirs show that intensively grazed pastures are significantly enriched in (15)N compared to the less-exploited pastures by 3.5 ‰, on average. This can be attributed to soil organic matter degradation, volatile nitrogen losses, nitrogen leaching and a general opening of the N-cycle. Similarly, the intensively degraded savanna soils, the cultivated soils and the soils under disturbed forests on the foothill of Mt. Kilimanjaro reveal very positive ?(15)N values around 6.5 ‰. In contrast, the undisturbed forest soils in the montane zone are more depleted in (15)N, indicating that here the N-cycle is relatively closed. However, significantly higher ?(15)N values characterise the upper montane forest zone at the transition to the subalpine zone. We suggest that this reflects N-losses by the recently monitored and climate change and antropogenically induced increasing fire frequency pushing the upper montane rainforest boundary rapidly downhill. Overall, we conclude that the analysis of the (15)N natural abundance in high-mountain ecosystems is a purposeful tool for detecting land-use- or climate change-induced soil degradation and N-cycle opening. PMID:21745030

  15. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  16. Chlorine-36 abundance in natural and synthetic perchlorate

    SciTech Connect

    Heikoop, Jeffrey M [Los Alamos National Laboratory; Dale, M [NON LANL; Sturchio, Neil C [UNIV OF ILLIONOIS; Caffee, M [PURDUE UNIV; Belosa, A D [UNIV OF ILLINOIS; Heraty, Jr., L J [UNIV OF ILLINOIS; Bohike, J K [RESTON, VA; Hatzinger, P B [SHAW ENIVIORNMENTAL C0.; Jackson, W A [TEXAS TECH; Gu, B [ORNL

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is ubiquitous in the environment. It occurs naturally as a product of atmospheric photochemical reactions, and is synthesized for military, aerospace, and industrial applications. Nitrate-enriched soils of the Atacama Desert (Chile) contain high concentrations of natural ClO{sub 4}{sup -}; nitrate produced from these soils has been exported worldwide since the mid-1800's for use in agriculture. The widespread introduction of synthetic and agricultural ClO{sub 4}{sup -} into the environment has complicated attempts to understand the geochemical cycle of ClO{sub 4}{sup -}. Natural ClO{sub 4}{sup -} samples from the southwestern United States have relatively high {sup 36}Cl abundances ({sup 36}Cl/Cl = 3,100 x 10{sup -15} to 28,800 x 10{sup -15}), compared with samples of synthetic ({sup 36}Cl/Cl = 0.0 x 10{sup -15} to 40 x 10{sup -15}) and Atacama Desert ({sup 36}Cl/Cl = 0.9 x 10{sup -15} to 590 x 10{sup -15}) ClO{sub 4}{sup -}. These data give a lower limit for the initial {sup 36}Cl abundance of natural ClO{sub 4}{sup -} and provide temporal and other constraints on its geochemical cycle.

  17. Experimental evidence for diel ?15N-patterns in different tissues, xylem and phloem saps of castor bean (Ricinus communis L.).

    PubMed

    Peuke, A D; Gessler, A; Tcherkez, G

    2013-12-01

    Nitrogen isotope signatures in plants might give insights in the metabolism and allocation of nitrogen. To obtain a deeper understanding of the modifications of the nitrogen isotope signatures, we determined ?(15)N in transport saps and in different fractions of leaves, axes and roots during a diel course along the plant axis. The most significant diel variations were observed in xylem and phloem saps where ?(15)N was significantly higher during the day compared with during the night. However in xylem saps, this was observed only in the canopy, but not at the hypocotyl positions. In the canopy, ?(15)N was correlated fairly well between phloem and xylem saps. These variations in ?(15)N in transport saps can be attributed to nitrate reduction in leaves during the photoperiod as well as to (15)N-enriched glutamine acting as transport form of N. ?(15)N of the water soluble fraction of roots and leaves partially affected ?(15)N of phloem and xylems saps. ?(15)N patterns are likely the result of a complex set of interactions and N-fluxes between plant organs. Furthermore, the natural nitrogen isotope abundance in plant tissue is not constant during the diel course - a fact that needs to be taken into account when sampling for isotopic studies. PMID:23663089

  18. THE EFFECTS OF PARAMAGNETIC RELAXATION REAGENTS ON 15N SPIN RELAXATION AND THE USE OF GD(DPM)3 AS A NITROGEN-15 NUCLEAR MAGNETIC RESONANCE SPIN LABEL

    EPA Science Inventory

    Electron-nuclear relaxation times (T(1) sup e's) for (15)N and (13)C in natural abundance are measured for a series of amines of a wide range of pK(a)s using four paramagnetic relaxation reagents that are soluable in organic solutions. Cr(acac)3 and Cr(dpm)3 are seen to affect th...

  19. Juniperus communis L. ssp. communis at Balnaguard, Scotland: Foliar carbon discrimination (?C) and 15-N natural abundance (?N) suggest gender-linked differences in water and N use

    Microsoft Academic Search

    Paul W. Hill; L. L. Handley; J. A. Raven

    1996-01-01

    The ecophysiology of stands of Juniperus communis L. ssp. communis at Balnaguard was examined by the relatively non-invasive methods of analysis of foliar · C and ·N and the N and chlorophyll contents of foliar samples of genets of known sex and location in three sub-sites. The ratio of male to female plants was close to 1.0 on the two

  20. Associative N 2 -fixation in plants growing in saline sodic soils and its relative quantification based on 15 N natural abundance

    Microsoft Academic Search

    K. A. Malik; Rakhshanda Bilal; G. Rasul; K. Mahmood; M. I. Sajjad

    1991-01-01

    Saline-sodie soils are characterized by a very low nitrogen and organic matter content and thus are practically non fertile. However under these conditions, certain plants have been found to grow luxuriantly. One of such plants,Leptochloa fusca (Kallar grass) has exhibited nitrogenase activity associated with its roots as determined by acetylene reduction assay (ARA). Quantification of such nitrogen fixation was also

  1. Novel labeling technique illustrates transfer of 15N2 from Sphagnum moss to vascular plants via diazotrophic nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Vile, M. A.; Wieder, R.

    2013-12-01

    We used 15N2 gas to trace nitrogen (N) from biological N2-fixation to vascular plant uptake in an Alberta bog in order to determine if neighboring bog plants acquire recently fixed N from diazotrophs associating with Sphagnum mosses. Recent evidence indicates high rates of N2-fixation in Sphagnum mosses of Alberta bogs (Vile et al. 2013). Our previous work has shown that mosses can assimilate fixed N from associated diazotrophs as evidenced by the high N content of mosses despite minimal inputs from atmospheric deposition, retranslocation, and N mineralization. Therefore, the potential exists for vascular plants to obtain N from ';leaky' tissues of live mosses, however, this phenomenon has not been tested previously. Here we document the potential for relatively rapid transfer to vascular plants of N fixed by Sphagnum moss-associated diazotrophs. We utilized the novel approach of incubating mosses in 15N2 to allow the process of diazotrophic N2-fixation to mechanistically provide the 15N label, which is subsequently transferred to Sphagnum mosses. The potential for vascular bog natives to tap this N was assessed by planting the vascular plants in the labeled moss. Sphagnum mosses (upper 3 cm of live plants) were incubated in the presence of 98 atom % 15N2 gas for 48 hours. Two vascular plants common to Alberta bogs; Picea mariana and Vaccinium oxycoccus were then placed in the labeled mosses, where the mosses served as the substrate. Tissue samples from these plants were collected at three time points during the incubation; prior to 15N2 exposure (to determine natural abundance 15N), and at one and two months after 15N2 exposure. Roots and leaves were separated and run separately on a mass spectrometer to determine 15N concentrations. Sphagnum moss capitula obtained N from N2-fixation (?15N of -2.43 × 0.40, 122.76 × 23.78, 224.92 × 68.37, 143.74 × 54.38 prior to, immediately after, and at 1 and 2 months after exposure to 15N2, respectively). Nitrogen was transferred to P. mariana roots (mean ?15N at 1 and 2 months of 15.26 × 3.30 and 16.19 × 1.21) more than shoots (mean ?15N at 1 and 2 months of 6.57 × 0.52 and 4.67×0.17) (initial ?15N values of roots and shoots of 2.16 × 0.37 and 5.54 × 0.35, respectively). Nitrogen also was transferred to V. oxycoccos roots (?15N at 2 months of 21.46 × 3.61) more than shoots (?15N 2 months of -2.17 × 0.23) (initial ?15N values of roots and shoots of -6.41 × 0.21 and -6.85 × 0.15, respectively). A two-way ANOVA and Tukey's HSD verified that both vascular plants' roots were significantly enriched with 15N (P. mariana roots; p < 0.0001, V. oxycoccus roots; p < 0.0001) after 1 month. These results indicate that bog vascular plants may derive considerable nitrogen from biological N2-fixation taking place in Sphagnum moss capitula. The experiment was subsequently repeated in-situ.

  2. Diversity and abundance of phosphonate biosynthetic genes in nature

    PubMed Central

    Yu, Xiaomin; Doroghazi, James R.; Janga, Sarath C.; Zhang, Jun Kai; Circello, Benjamin; Griffin, Benjamin M.; Labeda, David P.; Metcalf, William W.

    2013-01-01

    Phosphonates, molecules containing direct carbon–phosphorus bonds, compose a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than 50 y ago, the extent and diversity of phosphonate production in nature remains poorly characterized. The rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate, catalyzed by the enzyme PEP mutase (PepM), is shared by the vast majority of known phosphonate biosynthetic pathways. Thus, the pepM gene can be used as a molecular marker to examine the occurrence and abundance of phosphonate-producing organisms. Based on the presence of this gene, phosphonate biosynthesis is common in microbes, with ?5% of sequenced bacterial genomes and 7% of genome equivalents in metagenomic datasets carrying pepM homologs. Similarly, we detected the pepM gene in ?5% of random actinomycete isolates. The pepM-containing gene neighborhoods from 25 of these isolates were cloned, sequenced, and compared with those found in sequenced genomes. PEP mutase sequence conservation is strongly correlated with conservation of other nearby genes, suggesting that the diversity of phosphonate biosynthetic pathways can be predicted by examining PEP mutase diversity. We used this approach to estimate the range of phosphonate biosynthetic pathways in nature, revealing dozens of discrete groups in pepM amplicons from local soils, whereas hundreds were observed in metagenomic datasets. Collectively, our analyses show that phosphonate biosynthesis is both diverse and relatively common in nature, suggesting that the role of phosphonate molecules in the biosphere may be more important than is often recognized. PMID:24297932

  3. Stable isotopes (delta13C and delta15N) of organic matrix from coral skeleton.

    PubMed

    Muscatine, Leonard; Goiran, Claire; Land, Lynton; Jaubert, Jean; Cuif, Jean-Pierre; Allemand, Denis

    2005-02-01

    The evolutionary success of reef-building corals in nutrient-poor tropical waters is attributed to endosymbiotic dinoflagellates. The algae release photosynthetic products to the coral animal cells, augment nutrient flux, and enhance the rate of coral calcification. Natural abundance of stable isotopes (delta13C and delta18O) provides answers to modern and paleobiological questions about the effect of photosymbiosis on sources of carbon and oxygen in coral skeletal calcium carbonate. Here we compare 17 species of symbiotic and nonsymbiotic corals to determine whether evidence for photosymbiosis appears in stable isotopes (delta13C and delta15N) of an organic skeletal compartment, the coral skeletal organic matrix (OM). Mean OM delta13C in symbiotic and nonsymbiotic corals was similar (-26.08 per thousand vs. -24.31 per thousand), but mean OM delta15N was significantly depleted in 15N in the former (4.09 per thousand) relative to the latter (12.28 per thousand), indicating an effect of the algae on OM synthesis and revealing OM delta15N as a proxy for photosymbiosis. To answer an important paleobiological question about the origin of photosymbiosis in reef-building corals, we applied this proxy test to a fossil coral (Pachythecalis major) from the Triassic (240 million years ago) in which OM is preserved. Mean OM delta15N was 4.66 per thousand, suggesting that P. major was photosymbiotic. The results show that symbiotic algae augment coral calcification by contributing to the synthesis of skeletal OM and that they may have done so as early as the Triassic. PMID:15671164

  4. Elevated 15N/14N in particulate organic matter, zooplankton, and diatom frustule-bound nitrogen in the ice-covered water column of the Bering Sea eastern shelf

    NASA Astrophysics Data System (ADS)

    Morales, Laura V.; Granger, Julie; Chang, Bonnie X.; Prokopenko, Maria G.; Plessen, Birgit; Gradinger, Rolf; Sigman, Daniel M.

    2014-11-01

    We conducted a survey of the natural abundance 15N/14N ratio (?15N) of particulate organic matter (POM), diatom frustule-bound nitrogen (?15NDB), and zooplankton from water column material collected with net tows across the eastern Bering Sea shelf in late winter of 2007 and 2008, to investigate the N dynamics of primary and secondary production in relation to the presence of seasonal sea ice. The data reveal a pattern of increasing ?15N northward and eastward (POM: 2.1-14.7‰; frustule-bound N: 4.9-20.7‰; zooplankton: 6.4-18.0‰), with POM ?15N reaching ~9‰ higher than that of water-column nitrate. Higher ?15N in each of these plankton fractions was largely associated with stations covered by sea ice. POM ?15N collected concurrently from within sea ice was not sufficiently 15N-enriched to explain the elevated water-column values. Rather, the ?15N of water-column POM under sea ice appears to derive from the assimilation of ammonium released from shelf sediments. Water-column ammonium ?15N was between 28‰ and 63‰, most likely due to partial nitrification in the sediment and overlying water column. The high ?15N of this ammonium is effectively transmitted to phytoplankton under sea ice because light limitation from the ice cover delays the springtime nitrate assimilation that yields algal biomass with a lower ?15N. Despite this seasonal explanation, published ?15N data from sediment traps, summertime zooplankton, and surface sediment indicate that a shoreward and northward ?15N increase - albeit of a weaker magnitude - is perennial, suggesting that the ?15N of the total annual fixed N supply (including both ammonium and nitrate) also increases shoreward and northward. This requires that the partial nitrification of ammonium underlying the spatial pattern in ?15N is at least partly coupled to denitrification in the sediments that preferentially removes 14N, causing the total fixed N reservoir on the shelf to evolve toward higher ?15N. Shelf geometry and the consequent benthic-pelagic coupling of N cycling thus seem to underlie the spatial pattern in the mean annual ?15N of plankton, while sea-ice cover causes the high ?15N of ammonium on the shelf to be most strongly reflected by the production occurring in the winter and early spring. Our results provide a basis for tracing the geographic and seasonal origins and trophic transfer of N in the Bering shelf ecosystem.

  5. NATURAL RESOURCE ABUNDANCE, HUMAN CAPITAL AND ECONOMIC GROWTH IN THE PETROLEUM EXPORTING COUNTRIES

    Microsoft Academic Search

    Davood Behbudi; Siab Mamipour; Azhdar Karami

    2010-01-01

    Growth literatures indicate that human capital, education and technology progress are effective factors on economic growth. Empirical studies present that natural resource abundance have an important role on economic growth in natural-resource-rich countries. This paper investigates the relationship natural resource abundance, human capital and economic growth in two groups of petroleum exporting countries: namely A) Major petroleum exporters B) Other

  6. [superscript 15]N-[superscript 15]N Proton Assisted Recoupling in Magic Angle Spinning NMR

    E-print Network

    Lewandowski, Jozef R.

    We describe a new magic angle spinning (MAS) NMR experiment for obtaining [superscript 15]N?[superscript 15]N correlation spectra. The approach yields direct information about the secondary and tertiary structure of proteins, ...

  7. Resource abundance and internal armed conflict: Types of natural resources and the incidence of ‘new wars’

    Microsoft Academic Search

    Heinz Welsch

    2008-01-01

    Recent armed domestic conflicts have been described as being related to natural resource abundance and as being characterized by new features not present in earlier internal conflicts (multiplicity of actors, devastation of production structures). The paper develops and tests a framework that captures both the role of natural resource abundance and the stylized facts from the descriptive literature in a

  8. Protein Retention Assessment of Four Levels of Poultry By-Product Substitution of Fishmeal in Rainbow Trout (Oncorhynchus mykiss) Diets Using Stable Isotopes of Nitrogen (?15N) as Natural Tracers

    PubMed Central

    Badillo, Daniel; Herzka, Sharon Z.; Viana, Maria Teresa

    2014-01-01

    This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (?15N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources. PMID:25226392

  9. ?15N as a Potential Paleoenvironmental Proxy for Nitrogen Loading in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Black, H. D.; Andrus, C. F.; Rick, T.; Hines, A.

    2013-12-01

    Stable isotope analysis of Eastern Oyster (Crassostrea virginica) and other mollusk shells from archaeological sites is a useful means of acquiring paleoenvironmental data. Recently, nitrogen isotopes have been identified as a potential new proxy in these shells. ?15N content in mollusk shells is affected by numerous anthropogenic and natural influences and may be used as an environmental proxy for nitrogen loading conditions. Chesapeake Bay is well known for both historic and modern pollution problems from numerous anthropogenic sources, such as fertilizer runoff, sewage discharge, and densely populated land use and serves as an ideal study location for long-term nitrogen loading processes. Longer records of these processes may be recorded in abundant archaeological remains around the bay, however, little is known about the stability of ?15N and %N in shell material over recent geologic time. In this study, 90 archaeological C. virginica shells were collected by the Smithsonian Institution from the Rhode River Estuary within Chesapeake Bay and range in age from ~150 to 3200 years old. Twenty-two modern C. virginica shells were also collected from nearby beds in the bay. All shell samples were subsampled from the resilifer region of the calcitic shell using a hand-held micro drill and were analyzed using EA-IRMS analysis to determine the potential temporal variability of ?15N and %N as well as creating a baseline for ancient nitrogen conditions in the bay area. Modern POM water samples and C. virginica soft tissues were also analyzed in this study to determine the degree of seasonal variation of ?15N and %N in Chesapeake Bay.

  10. Natural Resource Abundance and Economic Growth in Pakistan

    Microsoft Academic Search

    Shahzad Hussain; Imran Sharif Chaudhry; Shahnawaz Malik

    Natural capital can play an important role to boost the economic growth and to accelerate the pace of development. Evidence is found that the countries having vast natural resources could not perform significantly compared with the countries deficient of natural capital. This paper empirically explores the contribution of natural resources to economic growth for Pakistan for the period of 1975-2006

  11. When Does Natural Resource Abundance Lead to a Resource Curse?

    Microsoft Academic Search

    S. Mansoob Murshed

    2004-01-01

    This paper looks at the relationship between natural resource endowment, particularly the type associated with minerals and plantations, and economic development. It may not be natural resource endowment per se but its type that matters, when it comes to growth and development. Certain types of natural resources such as oil and minerals have a tendency to lead to production and

  12. A 115-year ?15N record of cumulative nitrogen pollution in California serpentine grasslands

    NASA Astrophysics Data System (ADS)

    Vallano, D.; Zavaleta, E. S.

    2010-12-01

    Until the 1980s, California’s biodiverse serpentine grasslands were threatened primarily by development and protected by reserve creation. However, nitrogen (N) fertilization due to increasing fossil fuel emissions in the expanding Bay Area is thought to be contributing to rapid, recent invasion of these ecosystems by exotic annual grasses that are displacing rare and endemic serpentine species. Documenting the cumulative effects of N deposition in this ecosystem can direct policy and management actions to mitigate the role of N deposition in its transformation. Natural abundance stable isotopes of N in vegetation have been increasingly used as bio-indicators of N deposition patterns and subsequent changes to plant N cycling and assimilation. However, the long-term record of atmospheric reactive N enrichment and the resulting changes in ecosystem N dynamics have yet to be adequately reconstructed in many ecosystems. Museum archives of vascular plant tissue are valuable sources of materials to reconstruct temporal and spatial isotopic patterns of N inputs to ecosystems. Here, we present N stable isotope data from archived and current specimens of an endemic California serpentine grassland species, leather oak (Quercus durata), since 1895 across the greater San Francisco Bay region. We measured spatial and temporal trends in stable isotope composition (?15N and ?13C) and concentration (%N and %C) of historical and current samples of leather oak leaves from sites within the Bay Area, impacted by increasing development, and sites northeast of the Bay Area, with significantly lower rates of urbanization and industrialization. Specifically, we sampled dry museum and fresh leaf specimens from serpentine sites within Lake (n=27) and Santa Clara (n=30) counties dating from 1895 to 2010. Leaf ?15N values were stable from 1895 to the 1950s and then decreased strongly throughout the last 50 years as fossil fuel emissions rapidly increased in the Bay Area, indicating that N pollution is being retained in serpentine grassland ecosystems. Leaf ?15N values in the high-deposition region declined at a rate of -0.041‰ yr-1, while leaf ?15N values in the low-deposition region did not show a strong pattern. In both regions, leaf ?13C values declined through time as atmospheric CO2 concentrations increased in response to fossil fuel combustion (the Suess effect). Leaf %N and %C values did not present any clear patterns at sites within or outside of the Bay Area. We conclude that using natural abundance stable isotope values in leaves can indicate variation in N pollution inputs across wide spatial and temporal scales and that archived plant samples can provide valuable baselines against which to assess changes in regional N cycling and subsequent ecological impacts on vegetation.

  13. Detection of human muscle glycogen by natural abundance /sup 13/C NMR

    SciTech Connect

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-03-01

    Natural abundance /sup 13/C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated /sup 1/H decoupling was used to obtain decoupled natural abundance /sup 13/C NMR spectra of the C-1 position of muscle glycogen.

  14. Transposases are the most abundant, most ubiquitous genes in nature

    PubMed Central

    Aziz, Ramy K.; Breitbart, Mya; Edwards, Robert A.

    2010-01-01

    Genes, like organisms, struggle for existence, and the most successful genes persist and widely disseminate in nature. The unbiased determination of the most successful genes requires access to sequence data from a wide range of phylogenetic taxa and ecosystems, which has finally become achievable thanks to the deluge of genomic and metagenomic sequences. Here, we analyzed 10 million protein-encoding genes and gene tags in sequenced bacterial, archaeal, eukaryotic and viral genomes and metagenomes, and our analysis demonstrates that genes encoding transposases are the most prevalent genes in nature. The finding that these genes, classically considered as selfish genes, outnumber essential or housekeeping genes suggests that they offer selective advantage to the genomes and ecosystems they inhabit, a hypothesis in agreement with an emerging body of literature. Their mobile nature not only promotes dissemination of transposable elements within and between genomes but also leads to mutations and rearrangements that can accelerate biological diversification and—consequently—evolution. By securing their own replication and dissemination, transposases guarantee to thrive so long as nucleic acid-based life forms exist. PMID:20215432

  15. Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants

    NASA Astrophysics Data System (ADS)

    Wang, L.; Schjoerring, J. K.

    2011-12-01

    Seasonal changes in nitrogen (N) pools, carbon (C) content and natural abundance of 13C and 15N in different tissues of ryegrass plants were investigated in two intensively managed grassland fields in order to address their ammonia (NH3) exchange potential. Green leaves generally had the largest total N concentration followed by stems and inflorescences. Senescent leaves had the lowest N concentration, indicating N re-allocation. The seasonal pattern of the ? value, i.e. the ratio between NH4+ and H+ concentrations, was similar for the various tissues of the ryegrass plants but the magnitude of ? differed considerably among the different tissues. Green leaves and stems generally had substantially lower ? values than senescent leaves and litter. Substantial peaks in ? were observed during spring and summer in response to fertilization and grazing. These peaks were associated with high NH4+ rather than with low H+ concentrations. Peaks in ? also appeared during the winter, coinciding with increasing ?15N values, indicating absorption of N derived from mineralization of soil organic matter. At the same time, ?13C values were declining, suggesting reduced photosynthesis and capacity for N assimilation. ?15N and ?13C values were more influenced by mean monthly temperature than by the accumulated monthly precipitation. In conclusion, ryegrass plants showed a clear seasonal pattern in N pools. Green leaves and stems of ryegrass plants generally seem to constitute a sink for NH3, while senescent leaves have a large potential for NH3 emission. However, management events such as fertilisation and grazing may create a high NH3 emission potential even in green plant parts. The obtained results provide input for future modelling of plant-atmosphere NH3 exchange.

  16. A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets

    PubMed Central

    Carreer, William J.; Flight, Robert M.; Moseley, Hunter N. B.

    2013-01-01

    New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both 13C and 15N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440

  17. A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets.

    PubMed

    Carreer, William J; Flight, Robert M; Moseley, Hunter N B

    2013-09-25

    New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both (13)C and (15)N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a (13)C/(15)N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440

  18. Diversity, abundance and natural products of marine sponge-associated actinomycetes.

    PubMed

    Abdelmohsen, Usama Ramadan; Bayer, Kristina; Hentschel, Ute

    2014-03-01

    Actinomycetes are known for their unprecedented ability to produce novel lead compounds of clinical and pharmaceutical importance. This review focuses on the diversity, abundance and methodological approaches targeting marine sponge-associated actinomycetes. Additionally, novel qPCR data on actinomycete abundances in different sponge species and other environmental sources are presented. The natural products literature is covered, and we are here reporting on their chemical structures, their biological activities, as well as the source organisms from which they were isolated. PMID:24496105

  19. Relationships among leaf damage, natural enemy release, and abundance in exotic and native prairie plants

    Microsoft Academic Search

    Eric C. Vasquez; Gretchen A. Meyer

    2011-01-01

    The Enemy Release hypothesis holds that exotic plants may have an advantage over native plants because their specialized natural\\u000a enemies are absent. We tested this hypothesis by measuring leaf damage and plant abundance for naturally-occurring plants\\u000a in prairies, and by removing natural enemies in an enemy exclusion experiment. We classified plants as invasive exotic, noninvasive\\u000a exotic, or native, to determine

  20. Plantation vs. natural forest: matrix quality determines pollinator abundance in crop fields.

    PubMed

    Taki, Hisatomo; Yamaura, Yuichi; Okabe, Kimiko; Maeto, Kaoru

    2011-01-01

    In terrestrial ecosystems, ecological processes and patterns within focal patches frequently depend on their matrix. Crop fields (focal patches) are often surrounded by a mosaic of other land-use types (matrix), which may act as habitats for organisms and differ in terms of the immigration activities of organisms to the fields. We examined whether matrix quality affects wild pollinator abundance in crop fields, given that the species (Apis cerana) generally nest in the cavities of natural trees. We examined fields of a pollination-dependent crop surrounded by plantations and natural forests, which comprised the matrix. Our analysis revealed a clear positive effect of the natural forest on the pollinator abundance, but the plantation forest had little effects. These indicate that agricultural patches are influenced by their matrix quality and the resulting crop pollinator abundance, suggesting the importance of matrix management initiatives such as forest restoration surrounding agricultural fields to improve crop production. PMID:22355649

  1. Plantation vs. natural forest: Matrix quality determines pollinator abundance in crop fields

    PubMed Central

    Taki, Hisatomo; Yamaura, Yuichi; Okabe, Kimiko; Maeto, Kaoru

    2011-01-01

    In terrestrial ecosystems, ecological processes and patterns within focal patches frequently depend on their matrix. Crop fields (focal patches) are often surrounded by a mosaic of other land-use types (matrix), which may act as habitats for organisms and differ in terms of the immigration activities of organisms to the fields. We examined whether matrix quality affects wild pollinator abundance in crop fields, given that the species (Apis cerana) generally nest in the cavities of natural trees. We examined fields of a pollination-dependent crop surrounded by plantations and natural forests, which comprised the matrix. Our analysis revealed a clear positive effect of the natural forest on the pollinator abundance, but the plantation forest had little effects. These indicate that agricultural patches are influenced by their matrix quality and the resulting crop pollinator abundance, suggesting the importance of matrix management initiatives such as forest restoration surrounding agricultural fields to improve crop production. PMID:22355649

  2. Structure, dynamics and mapping of membrane-binding residues of micelle-bound antimicrobial peptides by natural abundance (13)C NMR spectroscopy.

    PubMed

    Wang, Guangshun

    2010-02-01

    Worldwide bacterial resistance to traditional antibiotics has drawn much research attention to naturally occurring antimicrobial peptides (AMPs) owing to their potential as alternative antimicrobials. Structural studies of AMPs are essential for an in-depth understanding of their activity, mechanism of action, and in guiding peptide design. Two-dimensional solution proton NMR spectroscopy has been the major tool. In this article, we describe the applications of natural abundance (13)C NMR spectroscopy that provides complementary information to 2D (1)H NMR. The correlation of (13)Calpha secondary shifts with both 3D structure and heteronuclear (15)N NOE values indicates that natural abundance carbon chemical shifts are useful probes for backbone structure and dynamics of membrane peptides. Using human LL-37-derived peptides (GF-17, KR-12, and RI-10), as well as amphibian antimicrobial and anticancer peptide aurein 1.2 and its analog LLAA, as models, we show that the cross peak intensity plots of 2D (1)H-(13)Calpha HSQC spectra versus residue number present a wave-like pattern (HSQC wave) where key hydrophobic residues of micelle-bound peptides are located in the troughs with weaker intensities, probably due to fast exchange between the free and bound forms. In all the cases, the identification of aromatic phenylalanines as a key membrane-binding residue is consistent with previous intermolecular Phe-lipid NOE observations. Furthermore, mutation of one of the key hydrophobic residues of KR-12 to Ala significantly reduced the antibacterial activity of the peptide mutants. These results illustrate that natural abundance heteronuclear-correlated NMR spectroscopy can be utilized to probe backbone structure and dynamics, and perhaps to map key membrane-binding residues of peptides in complex with micelles. (1)H-(13)Calpha HSQC wave, along with other NMR waves such as dipolar wave and chemical shift wave, offers novel insights into peptide-membrane interactions from different angles. PMID:19682427

  3. Plant Characteristics Associated with Natural Enemy Abundance at Michigan Native Plants

    E-print Network

    Landis, Doug

    BEHAVIOR Plant Characteristics Associated with Natural Enemy Abundance at Michigan Native Plants A. K. FIEDLER1 AND D. A. LANDIS Department of Entomology, 204 Center for Integrated Plant Systems populations by providing them with plant resources such as pollen and nectar. Insects are known to respond

  4. Natural-Abundance 13C Nuclear Magnetic Resonance Spectra of Terpenes and Carotenes

    Microsoft Academic Search

    Manfred Jautelat; John B. Grutzner; John D. Roberts

    1970-01-01

    Natural-abundance 13C nuclear magnetic resonance spectra are reported for some simple terpenes and carotenes. The techniques involved in the assignment of the resonances to specific carbons are outlined. The potential of this nondegradative procedure for structural analysis is demonstrated for the investigation of carbon atoms in chemical and biochemical systems.

  5. A novel method for determination of the (15) N isotopic composition of Rubisco in wheat plants exposed to elevated atmospheric carbon dioxide.

    PubMed

    Aranjuelo, Iker; Molero, Gemma; Avice, Jean Christophe; Bourguignon, Jacques

    2015-02-01

    Although ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is mostly known as a key enzyme involved in CO2 assimilation during the Calvin cycle, comparatively little is known about its role as a pool of nitrogen storage in leaves. For this purpose, we developed a protocol to purify Rubisco that enables later analysis of its (15) N isotope composition (?(15) N) at the natural abundance and (15) N-labeled plants. In order to test the utility of this protocol, durum wheat (Triticum durum var. Sula) exposed to an elevated CO2 concentration (700 vs 400 µmol mol(-1) ) was labeled with K(15) NO3 (enriched at 2 atom %) during the ear development period. The developed protocol proves to be selective, simple, cost effective and reproducible. The study reveals that (15) N labeling was different in total organic matter, total soluble protein and the Rubisco fraction. The obtained data suggest that photosynthetic acclimation in wheat is caused by Rubisco depletion. This depletion may be linked to preferential nitrogen remobilization from Rubisco toward grain filling. PMID:25272325

  6. Species richness and relative abundance of birds in natural and anthropogenic fragments of Brazilian Atlantic forest.

    PubMed

    dos Anjos, Luiz

    2004-06-01

    Bird communities were studied in two types of fragmented habitat of Atlantic forest in the State of Paraná, southern Brazil; one consisted of forest fragments that were created as a result of human activities (forest remnants), the other consisted of a set of naturally occurring forest fragments (forest patches). Using quantitative data obtained by the point counts method in 3 forest patches and 3 forest remnants during one year, species richness and relative abundance were compared in those habitats, considering species groups according to their general feeding habits. Insectivores, omnivores, and frugivores presented similar general tendencies in both habitats (decrease of species number with decreasing size and increasing isolation of forest fragment). However, these tendencies were different, when considering the relative abundance data: the trunk insectivores presented the highest value in the smallest patch while the lowest relative abundance was in the smallest remnant. In the naturally fragmented landscape, time permitted that the loss of some species of trunk insectivores be compensated for the increase in abundance of other species. In contrast, the remnants essentially represented newly formed islands that are not yet at equilibrium and where future species losses would make them similar to the patches. PMID:15258661

  7. Two new organic reference materials for ??13C and ??15N measurements and a new value for the ?? 13C of NBS 22 oil

    USGS Publications Warehouse

    Qi, H.; Coplen, T.B.; Geilmann, H.; Brand, W.A.; Böhlke, J.K.

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a ?? 13C value of -26.24??? relative to VPDB and a ?? 15N value of +4.52??? relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a ?? 13C value of +37.76??? and a ??15N value of +47.57???. The ??13C and ??15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (??13C = +1.95???), L-SVEC lithium carbonate (??13C = -46.48???), IAEA-N-1 ammonium sulfate (??15N=0.43???), and USGS32 potassium nitrate (?? 15N = 180???) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of ??13C is better than 0.13???, and that of ??15N is better than 0. 13??? in 100-??g amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a ?? 13C value for NBS 22 oil of -29.91???, in contrast to the commonly accepted value of -29.78??? for which off-line blank corrections probably have not been quantified satisfactorily. Published in 2003 by John Wiley & Sons, Ltd.

  8. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  9. The relative importance of resources and natural enemies in determining herbivore abundance: thistles, tephritids and parasitoids.

    PubMed

    Walker, Matthew; Hartley, Susan E; Jones, T Hefin

    2008-09-01

    1. The relative importance of host-plant resources and natural enemies in influencing the abundance of insect herbivores was investigated in potted plant and natural population experiments, using tephritid (Diptera: Tephritidae) flies, their host plant, creeping thistle Cirsium arvense, and their Hymenoptera parasitoids. 2. Experimental manipulation of host-plant quality (i.e. levels of host-plant nutrients) and resource availability (i.e. the number of buds) increased tephritid abundance. There was no evidence that the seed-feeding tephritid fly Xyphosia miliaria preferentially oviposited on fertilized C. arvense. 3. At low thistle densities, X. miliaria showed a constant rate of resource exploitation. At higher thistle densities, a threshold was detected, above which additional buds were not attacked. 4. Parasitism attack was variable across host (tephritid) densities but levels of parasitism were consistently higher on the fertilized thistles. 5. Experimental manipulation of host-plant quality and resource availability (quantity) not only directly affects the tephritid population but also, indirectly, leads to high rates of parasitism. Both chemical and physical characteristics of host plants affect the performance of natural enemies. 6. Both top-down and bottom-up forces act to influence tephritid abundance, with bottom-up influences appearing to be the most important. PMID:18507695

  10. Abundance, growth and allometry of red raspberry ( Rubus idaeus L.) along a natural light gradient in a northern hardwood forest

    Microsoft Academic Search

    Jean-Pierre Ricard; Christian Messier

    1996-01-01

    The effects of a natural light gradient on abundance, growth and allometry of red raspberry (Rubus idaeus L.) was investigated in 1993 in a temperate deciduous forest (near Quebec city, Canada) in which 30% of total basal area had been removed in 1989. One hundred and three 1-m2 plots were sampled to evaluate red raspberry abundance along a light gradient

  11. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  12. FOLIAR NITROGEN CONCENTRATIONS AND NATURAL ABUNDANCE OF 15N SUGGEST NITROGEN ALLOCATION PATTERNS OF DOUGLAS-FIR AND MYCORRHIZAL FUNGI DURING DEVELOPMENT IN ELEVATED CARBON DIOXIDE CONCENTRATION AND TEMPERATURE

    EPA Science Inventory

    In an experiment using Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) seedlings and a 2x2 factorial design in enclosed mesocosms, temperatures were maintained at ambient or +3.5 degrees C above ambient, and CO2 levels were maintained at ambient or 179 ppm above ambient. Two ...

  13. Using natural abundance of ?13C to partition ecosystem soil respiration

    NASA Astrophysics Data System (ADS)

    Hunt, J.; Millard, P.; Midwood, A. J.; Whitehead, D.

    2010-12-01

    Soil respiration constitutes a major component of the global carbon and is the single most important flux of CO2 from the terrestrial ecosystem. Recently assimilated (autotrophic) carbon and CO2 respired during microbial decomposition of older SOM (heterotrophic carbon) may differ in their response to environmental conditions. We make use of a natural stable carbon isotope differences (typically 2-4 ‰) between the CO2 from autotrophic respiration of roots and heterotrophic respiration of soil organic matter to partition total soil respiration in situ. We used a new, open steady-state chamber technique to measure the respiration rate and collect samples of soil surface CO2 efflux with minimal disturbance to the diffusion of 12CO2 and 13CO2 from the soil surface. Gas samples were collected in Tedlar bags and analysed with a tunable diode laser. We installed rings and at each ring the roots, litter and root-free soil were incubated in bags to determine the ?13C of the end members. During incubation ?13C became more depleted with time (5.2 ‰ after 8 h), so the initial value was calculated from a time course. The total flux was partitioned into two major sources. Two examples are presented of partitioning soil respiration in young forests using natural abundance ?13C discrimination. In a 23 year-old Kanuka forest, SOM was typically 5.5 ‰ enriched compared with the roots (-27.5 ‰). All 50 rings were successfully partitioned, resulting in a mean of 22 % of the soil surface respiration originated from SOM. In the young 4-year old Pinus radiata forest, SOM was again enriched (3.6 ‰) compared to the roots (-25.8‰). Some 42 % of the soil respiration was from SOM turnover. We have shown the possibility of using natural abundance ?13C discrimination to quantify the proportion of total soil respired CO2 originating from SOM turnover in young C3 forests.

  14. Differences in the fractional abundances of carbohydrates of natural and recombinant human tissue factor

    PubMed Central

    Krudysz-Amblo, Jolanta; Jennings, Mark E; Matthews, Dwight E; Mann, Kenneth G; Butenas, Saulius

    2011-01-01

    Tissue factor (TF) is a single polypeptide integral membrane glycoprotein composed of 263 residues and is essential to life in its role as the initiator of blood coagulation. Objective Previously we have shown that the activity of the natural placental TF (pTF) and the recombinant TF (rTF) from Sf9 insect cells is different (Krudysz-Amblo, J. et al(2010) J. Biol. Chem. 285, 3371–3382). In this study, using mass spectrometry, we show by quantitative analysis that the extent of glycosylation varies on each protein. Results Fractional abundance, of each glycan composition at each of the three glycosylation sites, reveals the most pronounced difference to be at asparagine (Asn) 11. This residue is located in the region of extensive TFfactor VIIa (FVIIa) interaction. Carbohydrate fractional abundance at Asn11 revealed that glycosylation in the natural placental TF is much more prevalent (~76%) than in the recombinant protein (~20%). The extent of glycosylation on Asn124 and Asn137 is similar in the two proteins, despite the pronounced differences in the carbohydrate composition. Additionally, 77% of rTF exists as TF des-1, 2 (missing the first two amino acids from the N-terminus). In contrast, only 31% of pTF is found in the des-1, 2 form. Conclusion These observations may attribute to the difference in the ability of TF-FVIIa complex to activate factor X (FX). Structural and functional comparison of the recombinant and natural protein advances our understanding and knowledge on the biological activity of TF. PMID:21172408

  15. Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the ?(15)N and ?(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used ??(15)N (?(15)N plant - ?(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in ?(13)C in hay and ?(15)N in both soil and hay between management types, but showed that ?(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. ??(15)N values implied that management types did not substantially differ in nitrogen cycling. Only ?(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice. PMID:24205126

  16. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the ?15N and ?13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used ??15N (?15N plant - ?15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in ?13C in hay and ?15N in both soil and hay between management types, but showed that ?13C abundances were significantly lower in soil of organic compared to conventional grasslands. ??15N values implied that management types did not substantially differ in nitrogen cycling. Only ?13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice. PMID:24205126

  17. Reactions, characterization and uptake of ammoxidized kraft lignin labeled with 15N.

    PubMed

    Ramírez, F; Varela, G; Delgado, E; López-Dellamary, F; Zúñiga, V; González, V; Faix, O; Meier, D

    2007-05-01

    Ammoxidation of kraft lignin was carried out in a Parr reactor using (15)NH(3) as the main nitrogen source. Reaction parameters were set up until a total nitrogen content of approximately 13 wt.% in lignin was achieved, in accordance with conditions of previous studies. Analytical tools such as FTIR, Py-GC/MS, and solid state NMR were used in this research. The nature of nitrogen bondings is discussed. The incorporation of the (15)N from ammoxidized lignin was followed in pumpkins (Zucchini cucurbita pepo L.) by means of (15)N emission spectroscopy. PMID:17161600

  18. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.

    PubMed

    Anderson, Thomas L; Hocking, Daniel J; Conner, Christopher A; Earl, Julia E; Harper, Elizabeth B; Osbourn, Michael S; Peterman, William E; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2015-03-01

    Phenology often determines the outcome of interspecific interactions, where early-arriving species often dominate interactions over those arriving later. The effects of phenology on species interactions are especially pronounced in aquatic systems, but the evidence is largely derived from experimental studies. We examined whether differences in breeding phenology between two pond-breeding salamanders (Ambystoma annulatum and A. maculatum) affected metamorph recruitment and demographic traits within natural populations, with the expectation that the fall-breeding A. annulatum would negatively affect the spring-breeding A. maculatum. We monitored populations of each species at five ponds over 4 years using drift fences. Metamorph abundance and survival of A. annulatum were affected by intra- and interspecific processes, whereas metamorph size and date of emigration were primarily influenced by intraspecific effects. Metamorph abundance, snout-vent length, date of emigration and survival for A. maculatum were all predicted by combinations of intra- and interspecific effects, but often showed negative relationships with A. annulatum metamorph traits and abundance. Size and date of metamorphosis were strongly correlated within each species, but in opposite patterns (negative for A. annulatum and positive for A. maculatum), suggesting that the two species use alternative strategies to enhance terrestrial survival and that these factors may influence their interactions. Our results match predictions from experimental studies that suggest recruitment is influenced by intra- and interspecific processes which are determined by phenological differences between species. Incorporating spatiotemporal variability when modeling population dynamics is necessary to understand the importance of phenology in species interactions, especially as shifts in phenology occur under climate change. PMID:25413866

  19. HCNMBC - A pulse sequence for H-(C)-N Multiple Bond Correlations at natural isotopic abundance

    NASA Astrophysics Data System (ADS)

    Cheatham, Steve; Gierth, Peter; Bermel, Wolfgang; Kup?e, ?riks

    2014-10-01

    We propose a pulse sequence, HCNMBC for multiple-bond H-(C)-N correlation experiments via one-bond 1J(C,H) and one- or multiple bond nJ(N,C) coupling constants (typically n = 1-3) at the natural isotopic abundance. A new adiabatic refocussing sequence is introduced to provide accurate and robust refocussing of both chemical shift and J-evolution over wide ranges of C-13 and N-15 frequencies. It is demonstrated that the proposed pulse sequence provides high quality spectra even for sub-milligram samples. We show that when a 1.7 mm cryoprobe is available as little as 10 ?g of glycine in D2O is sufficient to obtain the HCNMBC spectrum in ca. 12 h. The preliminary results indicate that the pulse sequence has a great potential in the structure determination of nitrogen heterocycles especially in cases where synthesis produces regioisomers.

  20. Anti-Gal: an abundant human natural antibody of multiple pathogeneses and clinical benefits

    PubMed Central

    Galili, Uri

    2013-01-01

    Summary Anti-Gal is the most abundant natural antibody in humans, constituting ? 1% of immunoglobulins. Anti-Gal is naturally produced also in apes and Old World monkeys. The ligand of anti-Gal is a carbohydrate antigen called the ‘?-gal epitope’ with the structure Gal?1-3Gal?1-4GlcNAc-R. The ?-gal epitope is present as a major carbohydrate antigen in non-primate mammals, prosimians and New World monkeys. Anti-Gal can contributes to several immunological pathogeneses. Anti-Gal IgE produced in some individuals causes allergies to meat and to the therapeutic monoclonal antibody cetuximab, all presenting ?-gal epitopes. Aberrant expression of the ?-gal epitope or of antigens mimicking it in humans may result in autoimmune processes, as in Graves' disease. ?-Gal epitopes produced by Trypanosoma cruzi interact with anti-Gal and induce ‘autoimmune like’ inflammatory reactions in Chagas' disease. Anti-Gal IgM and IgG further mediate rejection of xenografts expressing ?-gal epitopes. Because of its abundance, anti-Gal may be exploited for various clinical uses. It increases immunogenicity of microbial vaccines (e.g. influenza vaccine) presenting ?-gal epitopes by targeting them for effective uptake by antigen-presenting cells. Tumour lesions are converted into vaccines against autologous tumour-associated antigens by intra-tumoral injection of ?-gal glycolipids, which insert into tumour cell membranes. Anti-Gal binding to ?-gal epitopes on tumour cells targets them for uptake by antigen-presenting cells. Accelerated wound healing is achieved by application of ?-gal nanoparticles, which bind anti-Gal, activate complement, and recruit and activate macrophages that induce tissue regeneration. This therapy may be of further significance in regeneration of internally injured tissues such as ischaemic myocardium and injured nerves. PMID:23578170

  1. Synthesis of 24 bacteriochlorin isotopologues, each containing a symmetrical pair of 13C or 15N atoms in the inner core of the macrocycle.

    PubMed

    Chen, Chih-Yuan; Bocian, David F; Lindsey, Jonathan S

    2014-02-01

    Synthetic bacteriochlorins containing site-specific isotopic substitution enable spectroscopic interrogation to delineate physicochemical features relevant to bacteriochlorophylls in photosynthesis but have been little explored. A de novo synthesis has been employed to prepare bacteriochlorins wherein each macrocycle contains a pair of (13)C or (15)N atoms yet lacks substituents other than a geminal dimethyl group in each pyrroline ring. Preparation of a dihydrodipyrrin–acetal with single-isotopic substitution gives rise to a bacteriochlorin that contains two isotopic substitutions symmetrically disposed by a 180° rotation about the normal to the plane of the macrocycle. Eight such isotopically substituted bacteriochlorins were prepared from commercially available reactants (bacteriochlorin sites): ((13)C)paraformaldehyde (1, 11); ((13)C)formamide (4, 14); triethyl ((13)C)orthoformate (5, 15); K(13)CN (6, 16); (13)CH3NO2 (9, 19); N,N-dimethyl((13)C)formamide (10, 20); ((15)N)pyrrole (21, 23); CH3(15)NO2 (22, 24). Some loss of (15)N upon TiCl3-mediated McMurry-type ring closure of a nitro((15)N)hexanone is attributed to a parallel sequence of three reactions (Nef, exchange with natural-abundance NH4OAc buffer, and Paal–Knorr ring closure) leading to the dihydrodipyrrin–acetal. Zinc and copper chelates of each bacteriochlorin also were prepared. Together, the 24 bacteriochlorin isotopologues should provide valuable benchmarks for understanding ground- and excited-state molecular physics of the macrocycles related to photosynthetic function of bacteriochlorophylls. PMID:24422909

  2. ?15N Value Does Not Reflect Fasting in Mysticetes

    PubMed Central

    Aguilar, Alex; Giménez, Joan; Gómez–Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue ?15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between ?15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues ?15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the ?15N value is not affected by fasting and therefore cannot be used as an indicatior of nutritive condition. PMID:24651388

  3. ?15N value does not reflect fasting in mysticetes.

    PubMed

    Aguilar, Alex; Giménez, Joan; Gómez-Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue ?(15)N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between ?(15)N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues ?(15)N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the ?15N value is not affected by fasting and therefore cannot be used as an indication of nutritive condition. PMID:24651388

  4. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry

    USGS Publications Warehouse

    Rau, G.H.; Arthur, M.A.; Dean, W.E.

    1987-01-01

    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  5. Anharmonic vibrational spectra of hydroxylamine and its 15N, 18O, and deuterium substituted analogs.

    PubMed

    Kowal, Andrzej T

    2002-03-15

    Vibrational self-consistent field (VSCF) and correlation-corrected vibrational self-consistent field (CC-VSCF) methods were used to compute the anharmonic frequencies of fundamentals, overtones, and combination transitions of natural abundance hydroxylamine, 15NH2OH, NH2(18)OH, ND2OD, ND2OH, and NH2OD isotopomers at second order Møller-Plesset perturbation theory (MP2) in basis sets of triple-zeta quality. Frequencies of the fundamental transitions observed in the gas phase spectrum were reproduced by CC-VSCF treatment within 20 cm(-1) in TZV(d,p) and TZV(2d,2p) basis sets, and the change of basis set composition had only minor effect on the frequencies of the computed fundamentals. CC-VSCF computed wave numbers of overtone and combination transitions were typically within 1-40 cm(-1) of the gas phase band positions, except for those resulting from multiple excitations of v2, v3, and v7 fundamentals, because of a strong mutual coupling between these modes. Integral transition intensities calculated at MP2 level closely followed those of experimental spectrum, including intensity decrease in v1, 2v1, 3v1 progression, and 30-fold intensity increase of 2v8 in respect to that of v8 fundamental. The frequency of the OH torsional fundamental was found to be strongly dependent on the mode-mode interaction potential among v9 and v1, v7, v2, v4, v5 modes. Band shifts resulting from 15N, 18O and complete 2H substitutions were reproduced almost quantitatively by CC-VSCF computation in TZV(d,p) basis. Computed anharmonic isotope frequency shifts were different from those obtained in the harmonic approximation and no scaling procedure seemed capable of performing their interchange. PMID:11942392

  6. Anharmonic vibrational spectra of hydroxylamine and its 15N, 18O, and deuterium substituted analogs

    NASA Astrophysics Data System (ADS)

    Kowal, Andrzej T.

    2002-03-01

    Vibrational self-consistent field (VSCF) and correlation-corrected vibrational self-consistent field (CC-VSCF) methods were used to compute the anharmonic frequencies of fundamentals, overtones, and combination transitions of natural abundance hydroxylamine, 15NH 2OH, NH 218OH, ND 2OD, ND 2OH, and NH 2OD isotopomers at second order Møller-Plesset perturbation theory (MP2) in basis sets of triple- ? quality. Frequencies of the fundamental transitions observed in the gas phase spectrum were reproduced by CC-VSCF treatment within 20 cm -1 in TZV(d,p) and TZV(2d,2p) basis sets, and the change of basis set composition had only minor effect on the frequencies of the computed fundamentals. CC-VSCF computed wave numbers of overtone and combination transitions were typically within 1-40 cm -1 of the gas phase band positions, except for those resulting from multiple excitations of ?2, ?3, and ?7 fundamentals, because of a strong mutual coupling between these modes. Integral transition intensities calculated at MP2 level closely followed those of experimental spectrum, including intensity decrease in ?1, 2 ?1, 3 ?1 progression, and 30-fold intensity increase of 2 ?8 in respect to that of ?8 fundamental. The frequency of the OH torsional fundamental was found to be strongly dependent on the mode-mode interaction potential among ?9 and ?1, ?7, ?2, ?4, ?5 modes. Band shifts resulting from 15N, 18O and complete 2H substitutions were reproduced almost quantitatively by CC-VSCF computation in TZV(d,p) basis. Computed anharmonic isotope frequency shifts were different from those obtained in the harmonic approximation and no scaling procedure seemed capable of performing their interchange.

  7. Characterization of Stratum Corneum Molecular Dynamics by Natural-Abundance 13C Solid-State NMR

    PubMed Central

    Bouwstra, Joke A.; Sparr, Emma; Topgaard, Daniel

    2013-01-01

    Despite the enormous potential for pharmaceutical applications, there is still a lack of understanding of the molecular details that can contribute to increased permeability of the stratum corneum (SC). To investigate the influence of hydration and heating on the SC, we record the natural-abundance 13C signal of SC using polarization transfer solid-state NMR methods. Resonance lines from all major SC components are assigned. Comparison of the signal intensities obtained with the INEPT and CP pulse sequences gives information on the molecular dynamics of SC components. The majority of the lipids are rigid at 32°C, and those lipids co-exist with a small pool of mobile lipids. The ratio between mobile and rigid lipids increases with hydration. An abrupt change of keratin filament dynamics occurs at RH?=?80–85%, from completely rigid to a structure with rigid backbone and mobile protruding terminals. Heating has a strong effect on the lipid mobility, but only a weak influence on the keratin filaments. The results provide novel molecular insight into how the SC constituents are affected by hydration and heating, and improve the understanding of enhanced SC permeability, which is associated with elevated temperatures and SC hydration. PMID:23626744

  8. Natural abundance carbon-13 nuclear magnetic resonance studies of bovine white matter and myelin.

    PubMed

    Williams, E C; Cordes, E H

    1976-12-28

    Whole bovine white matter yields a poorly resolved natural abundance 13C nuclear magnetic resonance (NMR) spectrum. The spectrum principally reflects carbon atoms of the constituent membrane lipids: several resonances could be specifically assigned but no resonances attributable to cholesterol are detectable. Except for the methyl group at the terminus of fatty acyl chains, lipid carbons giving rise to the 13C NMR spectrum have values of spin-lattice relaxation time between 140 and 500 ms, indicating significant restrictions on segmental and rotational mibolities but consistent with a generally fluid structural organization. The 13C NMR spectrum of myelin isolated from bovine white matter is similar to that for the whole white matter itself. In both white matter and isolated meylin, the integrated intensities for several carbon atoms are considerably less than those for the same carbon atoms in total lipid extracts. The data for white matter and myelin are consistent with a model in which observed line broadening is due to restrictions in the amplitude of chain flexing rather than to severe restrictions on chain segmental motion. Failure to detect resonances of cholesterol ring system carbon atoms may reflect marked anisotropy of rotational reorientation. PMID:1009087

  9. Relation of desert pupfish abundance to selected environmental variables in natural and manmade habitats in the Salton Sea basin

    Microsoft Academic Search

    Barbara A. Martin; Michael K. Saiki

    2005-01-01

    Synopsis  We assessed the relation between abundance of desert pupfish, Cyprinodon macularius, and selected biological and physicochemical variables in natural and manmade habitats within the Salton Sea Basin. Field sampling in a natural tributary, Salt Creek, and three agricultural drains captured eight species including pupfish (1.1% of the total catch), the only native species encountered. According to Bray–Curtis resemblance functions, fish

  10. The Determination of the Natural Abundance of the Isotopes of Chlorine: An Introductory Experiment in Mass Spectrometry.

    ERIC Educational Resources Information Center

    O'Malley, Rebecca M.

    1982-01-01

    Describes a laboratory experiment which introduces basic principles and experimental techniques of mass spectrometry for fourth year undergraduate (B.Sc.) students. Laboratory procedures, background information, and discussion of results are provided for the experiment in which the natural isotopic abundance of chlorine is determined. (Author/JN)

  11. Elevated Bacterial Abundance in Laboratory-Grown and Naturally Occurring Frost Flowers Under Late Winter Conditions

    NASA Astrophysics Data System (ADS)

    Bowman, J. S.; Deming, J. W.

    2009-12-01

    Sea ice has been identified as an important microbial habitat, with bacteria and other microbes concentrated in the brine inclusions between ice crystals. Frost flowers, thought to draw brine from underlying sea ice, have not been characterized from a microbial standpoint. To test whether frost flowers serve as an upward vector of bacteria contained within sea ice brines we grew frost flowers in a freezer laboratory (air temperature of -21°C) from saline water spiked with the mesophilic (and thus passive under experimental conditions) bacterium Halomonas pacifica. Salinity of melted samples was measured and bacterial abundance determined by epifluorescent microscopy. Bacterial counts scaled to ice-melt volume averaged 2.82 x 106 ml-1 for frost flowers, compared to 9.47 x 105 ml-1 for underlying ice (3 x higher). Bacterial counts also correlated significantly with salinity (maximum value of 62.5 psu) for frost flowers, brine skim, and ice (df = 17, r = 0.59, p < 0.0001). Segregation coefficients were calculated to describe the efficiency of transport of both cells and salt from the starting solution into frost flowers. From these coefficients an enrichment index was calculated to test for bacterial concentration into frost flowers at a different rate than salt. Analysis with a Student’s T-test (df = 24, t = 0.306, p = .76) indicated that cells and salt were not transported into frost flowers with a significantly different efficiency. To test these findings in the field we then collected frost flowers (and related samples) from new sea ice near Barrow, Alaska in April 2009. Bacterial counts were significantly elevated (again, a 3-fold increase) in natural frost flowers (mean = 2.73 x 105 ml-1) compared to underlying sea ice (mean = 8.46 x 104 cells ml-1). For all field samples collected (frost flowers, underlying brine skim and sea ice, as well as snow), bacterial abundance correlated significantly with salinity (maximum value 124 psu, df = 40, r = 0.60, p < 0.0001). The presence of elevated numbers of bacteria in frost flowers may have implications for the previously observed chemical reactions that take place in them, especially if microbial activity can be shown to occur in this unique low temperature, low water activity microbial habitat.

  12. Soil organic matter stability in agricultural land: New insights using ?15N, ?13C and C:N ratio

    NASA Astrophysics Data System (ADS)

    Mao, Yanling; Heiling, Maria; De Clercq, Tim; Resch, Christian; Aigner, Martina; Mayr, Leo; Vanlauwe, Bernard; Thuita, Moses; Steier, Peter; Leifeld, Jens; Merckx, Roel; Spiegel, Heide; Cepuder, Peter; Nguyen, Minh-Long; Zaman, Mohammad; Dercon, Gerd

    2014-05-01

    Soil organic matter (SOM) contains three times more carbon than in the atmosphere or terrestrial vegetation. This major pool of organic carbon is sensitive to climate change, but the mechanisms for carbon stabilization in soils are still not well understood and the ultimate potential for carbon stabilization is unknown. For predicting SOM dynamics, it is necessary to gain information on the turnover rates or stability of different soil organic carbon pools. The common method to determine stability and age of SOM is the 14C radio carbon technique, which is very expensive and therefore limited in use. Conen et al. (2008) developed a model to estimate the SOM stability based on the isotopic discrimination of 15N natural abundance by soil micro-organisms, and the decreasing C:N ratio during organic matter decomposition. This model has been developed for permanent grasslands in the Swiss Alps under steady-state conditions. The objective of our study was to validate whether this model could be used or adapted, in combination with 13C isotope signatures of SOM, to predict the relative age and stability of SOM fractions in more disturbed agricultural ecosystems. The present study was carried out on soils collected from six long-term experimental trials (from 12 to 50 years) under different agricultural management practices (e.g. no tillage vs conventional tillage, and mulch, fertilizer, green or animal manure application), located in Austria, Belgium, Kenya and China. Top and subsoil were sampled until 80-100 cm depth. Particulate organic matter (POM) fraction was obtained by wet sieving (> 63?m) after sonification and density separation (<1.8 g cm-3). Carbon and nitrogen contents and their stable isotopic ratios (i.e. 15N and 13C) were measured in POM and bulk soils. The mineral associated matter fraction (mOM), as the protected carbon, was calculated by difference to the bulk soil organic carbon. The relative age of the SOM was calculated using the Conen model and preliminary validated by 14C dating. At all sites, the POM has a higher C:N ratio and a lower ?15N signature compared to the mOM fraction. The POM in top soil layers (<30 cm) has a lower C:N ratio than in deep soil. The C:N ratio and ?15N of POM was influenced by agricultural management. The mOM fraction has 53 to 2063 times longer turnover rate than POM, the relative age of the SOM raised with increasing soil depth. The combination of the above results with ?13C data lead to a more comprehensive understanding of the processes underlying SOM dynamics. Tillage practices increased the bulk ?13C signature of the SOM in the deeper subsoil, suggesting the presence of more stable decomposed materials. The results of this research seem to indicate that the model, developed for grasslands, can be used to determine the stability of SOM in agricultural ecosystems. The C:N ratio and ?15N signature of the POM and mOM fraction follow the expected model pattern. The isotopic ?13C signature can further enhance the understanding of the processes driving SOM stability.

  13. Interactions between natural-occurring landscape conditions and land use influencing the abundance of riverine smallmouth bass, micropterus dolomieu

    USGS Publications Warehouse

    Brewer, S.K.; Rabeni, C.F.

    2011-01-01

    This study examined how interactions between natural landscape features and land use influenced the abundance of smallmouth bass, Micropterus dolomieu, in Missouri, USA, streams. Stream segments were placed into one of four groups based on natural-occurring watershed characteristics (soil texture and soil permeability) predicted to relate to smallmouth bass abundance. Within each group, stream segments were assigned forest (n = 3), pasture (n = 3), or urban (n = 3) designations based on the percentages of land use within each watershed. Analyses of variance indicated smallmouth bass densities differed between land use and natural conditions. Decision tree models indicated abundance was highest in forested stream segments and lowest in urban stream segments, regardless of group designation. Land use explained the most variation in decision tree models, but in-channel features of temperature, flow, and sediment also contributed significantly. These results are unique and indicate the importance of natural-occurring watershed conditions in defining the potential of populations and how finer-scale filters interact with land use to further alter population potential. Smallmouth bass has differing vulnerabilities to land-use attributes, and the better the natural watershed conditions are for population success, the more resilient these populations will be when land conversion occurs.

  14. Refining cotton-wick method for 15N plant labelling.

    NASA Astrophysics Data System (ADS)

    Fustec, Joëlle; Mahieu, Stéphanie

    2010-05-01

    The symbiosis Fabaceae/Rhizobiaceae plays a critical role in the nitrogen cycle. It gives the plant the ability to fix high amounts of atmospheric N. A part of this N can be transferred to the soil via rhizodeposition. The contribution of Fabaceae to the soil N pool is difficult to measure, since it is necessary for assessing N benefits for other crops, for soil biological activity, and for reducing water pollution in sustainable agriculture (Fustec, 2009). The aim of this study was to test and improve the reliability of the 15N cotton-wick method for measuring the soil N derived from plant rhizodeposition (Mahieu et al., 2007). The effects of the concentration of the 15N-urea labelling solution and of the feeding frequency (continuous or pulses) on the assessment of nitrogen rhizodeposition were studied in two greenhouse experiments using the field pea (Pisum sativum L.) and the non-nodulating isoline P2. The plant parts and the soil were prepared for 15N:14N measurements for assessing N rhizodeposition (Mahieu et al., 2009). The fraction of plants' belowground nitrogen allocated to rhizodeposition in both Frisson pea and P2 was 20 to more than 50% higher when plants were labelled continuously than when they were labelled using fortnightly pulses. Our results suggested that when 15N root enrichment was high, nitrogen rhizodeposition was underestimated only for plants that were 15N-fed by fortnightly pulses, and not in plants 15N-fed continuously. This phenomenon was especially observed for plants relying on symbiotic N fixation for N acquisition; it may be linked to the concentration of the labelling solution. In conclusion, N rhizodeposition assessment was strongly influenced by the 15N-feeding frequency and the concentration of the labelling solution. The estimation of N rhizodeposition was more reliable when plants were labelled continuously with a dilute solution of 15N urea. Fustec et al. 2009. Agron. Sustain. Dev., DOI 10.1051/agro/2009003, in press. Mahieu et al. 2007. Plant Soil 295, 193-205. Mahieu et al. 2009. Soil Biol. Biochem. 41, 2236-2243.

  15. The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements

    PubMed Central

    Dabundo, Richard; Lehmann, Moritz F.; Treibergs, Lija; Tobias, Craig R.; Altabet, Mark A.; Moisander, Pia H.; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ?21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ?11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ?0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L?1 d?1, to 530 nmoles N L?1 d?1, contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations. PMID:25329300

  16. Variability in ?(15)N of intertidal brown algae along a salinity gradient: Differential impact of nitrogen sources.

    PubMed

    Viana, Inés G; Bode, Antonio

    2015-04-15

    While it is generally agreed that ?(15)N of brown macroalgae can discriminate between anthropogenic and natural sources of nitrogen, this study provides new insights on net fractionation processes occurring in some of these species. The contribution of continental and marine sources of nitrogen to benthic macroalgae in the estuary-ria system of A Coruña (NW Spain) was investigated by analyzing the temporal (at a monthly and annual basis) and spatial (up to 10km) variability of ?(15)N in the macroalgae Ascophyllum nodosum and three species of the genus Fucus (F. serratus, F. spiralis and F. vesiculosus). Total nitrate and ammonium concentrations and ?(15)N-DIN, along with salinity and temperature in seawater were also studied to address the sources of such variability. Macroalgal ?(15)N and nutrient concentrations decreased from estuarine to marine waters, suggesting larger dominance of anthropogenic nitrogen sources in the estuary. However, ?(15)N values of macroalgae were generally higher than those of ambient nitrogen at all temporal and spatial scales considered. This suggests that the isotopic composition of these macroalgae is strongly affected by fractionation during uptake, assimilation or release of nitrogen. The absence of correlation between macroalgal and water samples suggests that the ?(15)N of the species considered cannot be used for monitoring short-term changes. But their long lifespan and slow turnover rates make them suitable to determine the impact of the different nitrogen sources integrated over long-time periods. PMID:25617782

  17. 14N15N detectability in Pluto’s atmosphere

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Gladstone, G. R.; Heays, A. N.; Gibson, S. T.; Lewis, B. R.; Stark, G.

    2013-11-01

    Based on the vapor pressure behavior of Pluto’s surface ices, Pluto’s atmosphere is expected to be predominantly composed of N2 gas. Measurement of the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere would provide important clues to the evolution of Pluto’s atmosphere from the time of formation to its present state. The most straightforward way of determining the N2 isotopologue 15N/14N ratio in Pluto’s atmosphere is via spectroscopic observation of the 14N15N gas species. Recent calculations of the 80-100 nm absorption behavior of the 14N2 and 14N15N isotopologues by Heays et al. (Heays, A.N. et al. [2011]. J. Chem. Phys. 135, 244301), Lewis et al. (Lewis, B.R., Heays, A.N., Gibson, S.T., Lefebvre-Brion, H., Lefebvre, R. [2008]. J. Chem. Phys. 129, 164306); Lewis et al. (Lewis, B.R., Gibson, S.T., Zhang, W., Lefebvre-Brion, H., Robbe, J.-M. [2005]. J. Chem. Phys. 122, 144302), and Haverd et al. (Haverd, V.E., Lewis, B.R., Gibson, S.T., Stark, G. [2005]. J. Chem. Phys. 123, 214304) show that the peak magnitudes of the 14N2 and 14N15N absorption bandhead cross-sections are similar, but the locations of the bandhead peaks are offset in wavelength by ?0.05-0.1 nm. These offsets make the segregation of the 14N2 and 14N15N absorption signatures possible. We use the most recent N2 isotopologue absorption cross-section calculations and the atmospheric density profiles resulting from photochemical models developed by Krasnopolsky and Cruickshank (Krasnopolsky, V.A., Cruickshank, D.P. [1999]. J. Geophys. Res. 104, 21979-21996) to predict the level of solar light that will be transmitted through Pluto’s atmosphere as a function of altitude during a Pluto solar occultation. We characterize the detectability of the isotopic absorption signature per altitude assuming 14N15N concentrations ranging from 0.1% to 2% of the 14N2 density and instrumental spectral resolutions ranging from 0.01 to 0.3 nm. Our simulations indicate that optical depth of unity is attained in the key 14N15N absorption bands located between 85 and 90 nm at altitudes ?1100-1600 km above Pluto’s surface. Additionally, an 14N15N isotope absorption depth ?4-15% is predicted for observations obtained at these altitudes at a spectral resolution of ?0.2-0.3 nm, if the N2 isotopologue 15N/14N percent ratio is comparable to the 0.37-0.6% ratio observed at Earth, Titan and Mars. If we presume that the predicted absorption depth must be at least 25% greater than the expected observational uncertainty, then it follows that a statistically significant detection of these signatures and constraint of the N2 isotopologue 14N/15N ratio within Pluto’s atmosphere will be possible if the attainable observational signal-to noise (S/N) ratio is ?9. The New Horizons (NH) Mission will be able to obtain high S/N, 0.27-0.35 nm full-width half-max 80-100 nm spectral observations of Pluto using the Alice spectrograph. Based on the NH/Alice specifications we have simulated 0.3 nm spectral resolution solar occultation spectra for the 1100-1600 km altitude range, assuming 30 s integration times. These simulations indicate that NH/Alice will obtain spectral observations within this altitude range with a S/N ratio ?25-50, and should be able to reliably detect the 14N15N gas absorption signature between 85 and 90 nm if the 14N15N concentration is ?0.3% or greater. This, additionally, implies that the non-detection of the 14N15N species in the 1100-1600 km range by NH/Alice may be used to reliably establish an upper limit to the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere. Similar results may be derived from 0.2 to 0.3 nm spectral resolution observations of any other N2-rich Solar System or exoplanet atmosphere, provided the observations are attained with similar S/N levels.

  18. Investigation of four carbon monoxide isotopomers in natural abundance by laser-induced fluorescence in a supersonic jet

    Microsoft Academic Search

    Anton Du Plessis; Erich G. Rohwer; Christine M. Steenkamp

    2007-01-01

    The four carbon monoxide (CO) isotopomers 12C16O, 13C16O, 12C18O and 12C17O have been detected simultaneously in a CO gas sample of natural isotopic abundance by measuring rovibronic excitation spectra of six vibronic bands in the Fourth Positive System. The CO sample was flow cooled by adiabatic expansion in a pulsed supersonic jet. The rovibronic excitation spectra were obtained using a

  19. Abundance and Diversity of CO 2 -fixing Bacteria in Grassland Soils Close to Natural Carbon Dioxide Springs

    Microsoft Academic Search

    Urška Videmšek; Alexandra Hagn; Marjetka Suhadolc; Viviane Radl; Heike Knicker; Michael Schloter; Dominik Vodnik

    2009-01-01

    Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating\\u000a CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study\\u000a to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in

  20. In vivo natural-abundance 17 O\\/ 1 H MRI of rhesus monkey body in a whole-body scanner

    Microsoft Academic Search

    J. Hankiewicz; S. U. Brint; A. Guidotti; E. Costa; D. Fiat

    2003-01-01

    In vivo natural-abundance17O and1H magnetic resonance imaging (MRI) techniques were combined to image the whole body of a rhesus monkey. The results demonstrate\\u000a the feasibility of acquiring consecutive fast17O and1H images with a standard MRI scanner. The method has applications in the field of functional MRI and in17O MRI measurements of metabolism rate.

  1. Determining the Absolute Abundances of Natural Radioactive Elements on the Lunar Surface by the Kaguya Gamma-ray Spectrometer

    Microsoft Academic Search

    S. Kobayashi; N. Hasebe; E. Shibamura; O. Okudaira; M. Kobayashi; N. Yamashita; Y. Karouji; M. Hareyama; K. Hayatsu; C. d’Uston; S. Maurice; O. Gasnault; O. Forni; B. Diez; R. C. Reedy; K. J. Kim

    2010-01-01

    The Kaguya gamma-ray spectrometer (KGRS) has great potential to precisely determine the absolute abundances of natural radioactive\\u000a elements K, Th and U on the lunar surface because of its excellent spectroscopic performance. In order to achieve the best\\u000a performance of the KGRS, it is important to know the spatial response function (SRF) that describes the directional sensitivity\\u000a of the KGRS.

  2. Is the Multicolored Asian Ladybeetle, Harmonia axyridis, the Most Abundant Natural Enemy to Aphids in Agroecosystems?

    PubMed Central

    Vandereycken, Axel; Durieux, Delphine; Joie, Emilie; Sloggett, John J.; Haubruge, Eric; Verheggen, François J.

    2013-01-01

    The multicolored Asian ladybeetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), was introduced into Western Europe in the late 1990s. Since the late 2000s, this species has been commonly considered one of the most abundant aphid predators in most Western European countries. In spite of the large amount of research on H. axyridis, information concerning its relative abundance in agroecosystems is lacking. This study aims to evaluate the abundance of H. axyridis within the aphidophage community in four crops situated in southern Belgium: wheat, Triticum aestivum L. (Poales: Poaceae), corn, Zea mays, potato, Solanum tuberosum (Solanales: Solanaceae), and broad bean Vicia faba (Fabales: Fabaceae). In order to assess the species diversity, the collected data were analyzed by considering (1) the species richness and (2) the evenness according to the Shannon diversity index. Eleven aphidophages were observed in every inventoried agroecosystem, including five abundant species: three coccinellids, the seven-spotted ladybug, Coccinella septempunctata L. (Coleoptera: Coccinellidae), the 14-spotted Ladybird, Propylea quatuordecimpunctata, and H. axyridis; one hoverfly, the marmalade hoverfly, Episyrphus balteatus De Geer (Diptera: Syrphidae); and one lacewing, the common green lacewing, Chrysoperla carnea Stephens sensu lato (= s.l.) (Neuroptera: Chrysopidae). Harmonia axyridis has been observed to thrive, breed, and reproduce on the four studied crops. Harmonia axyridis is the most abundant predator of aphids in corn followed by C. septempunctata, which is the main aphid predator observed in the three other inventoried crops. In wheat and potato fields, H. axyridis occurs in low numbers compared to other aphidophage. These observations suggest that H. axyridis could be considered an invasive species of agrosystems, and that potato and wheat may intermittently act as refuges for other aphidophages vulnerable to intraguild predation by this invader. Harmonia axyridis is not the most abundant aphid predator in the main Belgian crops. PMID:24785375

  3. Is the multicolored Asian ladybeetle, Harmonia axyridis, the most abundant natural enemy to aphids in agroecosystems?

    PubMed

    Vandereycken, Axel; Durieux, Delphine; Joie, Emilie; Sloggett, John J; Haubruge, Eric; Verheggen, François J

    2013-01-01

    The multicolored Asian ladybeetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), was introduced into Western Europe in the late 1990s. Since the late 2000s, this species has been commonly considered one of the most abundant aphid predators in most Western European countries. In spite of the large amount of research on H. axyridis, information concerning its relative abundance in agroecosystems is lacking. This study aims to evaluate the abundance of H. axyridis within the aphidophage community in four crops situated in southern Belgium: wheat, Triticum aestivum L. (Poales: Poaceae), corn, Zea mays, potato, Solanum tuberosum (Solanales: Solanaceae), and broad bean Vicia faba (Fabales: Fabaceae). In order to assess the species diversity, the collected data were analyzed by considering (1) the species richness and (2) the evenness according to the Shannon diversity index. Eleven aphidophages were observed in every inventoried agroecosystem, including five abundant species: three coccinellids, the seven-spotted ladybug, Coccinella septempunctata L. (Coleoptera: Coccinellidae), the 14-spotted Ladybird, Propylea quatuordecimpunctata, and H. axyridis; one hoverfly, the marmalade hoverfly, Episyrphus balteatus De Geer (Diptera: Syrphidae); and one lacewing, the common green lacewing, Chrysoperla carnea Stephens sensu lato (= s.l.) (Neuroptera: Chrysopidae). Harmonia axyridis has been observed to thrive, breed, and reproduce on the four studied crops. Harmonia axyridis is the most abundant predator of aphids in corn followed by C. septempunctata, which is the main aphid predator observed in the three other inventoried crops. In wheat and potato fields, H. axyridis occurs in low numbers compared to other aphidophage. These observations suggest that H. axyridis could be considered an invasive species of agrosystems, and that potato and wheat may intermittently act as refuges for other aphidophages vulnerable to intraguild predation by this invader. Harmonia axyridis is not the most abundant aphid predator in the main Belgian crops. PMID:24785375

  4. Ureide assay for measuring nitrogen fixation by nodulated soybean calibrated by sup 15 N methods. [Glycine max

    SciTech Connect

    Herridge, D.F. (New South Wales Agriculture Fisheries, Tamworth (Australia)); Peoples, M.B. (CSIRO Division of Plant Industry, Canberra (Australia))

    1990-06-01

    We report experiments to quantify the relationships between the relative abundance of ureide-N in root-bleeding sap, vacuum-extracted sap, and hot water extracts of stems and petioles of nodulated soybean (Glycine max (L.) Merrill cv Bragg) and the proportion of plant N derived from nitrogen fixation. Additional experiments examined the effects of plant genotype and strain of rhizobia on these relationships. In each of the five experiments reported, plants of cv Bragg (experiment 1), cv Lincoln (experiments 3, 4, 5), or six cultivars/genotypes (experiment 2) were grown in a sand:vermiculite mixture in large pots in a naturally lit, temperature-controlled glasshouse during summer. Pots were inoculated at sowing with effective Bradyrhizobium japonicum CB 1809 (USDA 136) or with one of 21 different strains of rhizobia. The proportions of plant N derived from nitrogen fixation were determined using {sup 15}N dilution. Results show that assessment of nitrogen fixation by soybean using the ureide technique should now be possible with the standard curves presented, irrespective of genotype or strain of rhizobia occupying the nodules.

  5. Deuterium isotope shifts for backbone 1H, 15N and 13C nuclei in intrinsically disordered protein -synuclein

    PubMed Central

    Maltsev, Alexander S.; Ying, Jinfa; Bax, Ad

    2012-01-01

    Intrinsically disordered proteins (IDPs) are abundant in nature and characterization of their potential structural propensities remains a widely pursued but challenging task. Analysis of NMR secondary chemical shifts plays an important role in such studies, but the output of such analyses depends on the accuracy of reference random coil chemical shifts. Although uniform perdeuteration of IDPs can dramatically increase spectral resolution, a feature particularly important for the poorly dispersed IDP spectra, the impact of deuterium isotope shifts on random coil values has not yet been fully characterized. Very precise 2H isotope shift measurements for 13C?, 13C?, 13C’, 15N, and 1HN have been obtained by using a mixed sample of protonated and uniformly perdeuterated -synuclein, a protein with chemical shifts exceptionally close to random coil values. Decomposition of these isotope shifts into one-bond, two-bond and three-bond effects as well as intra- and sequential residue contributions shows that such an analysis, which ignores conformational dependence, is meaningful but does not fully describe the total isotope shift to within the precision of the measurements. Random coil 2H isotope shifts provide an important starting point for analysis of such shifts in structural terms in folded proteins, where they are known to depend strongly on local geometry. PMID:22960996

  6. COVALENT BINDING OF REDUCED METABOLITES OF [15N3] TNT TO SOIL ORGANIC MATTER DURING A BIOREMEDIATION PROCESS ANALYZED BY 15N NMR SPECTROSCOPY. (R826646)

    EPA Science Inventory

    Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-15N3-trinitrotoluene (TNT) to different soil fractions (humic acids, fulvic acids, and humin) using liquid 15N NMR spectroscopy. A silylation p...

  7. Fate of nitrogen in riparian forest soils and trees: an 15N tracer study simulating salmon decay.

    PubMed

    Drake, Deanne C; Naiman, I Robert J; Bechtold, J Scott

    2006-05-01

    We introduced an 15N-NH4+ tracer to the riparian forest of a salmon-bearing stream (Kennedy Creek, Washington, USA) to quantify the cycling and fate of a late-season pulse of salmon N and, ultimately, mechanisms regulating potential links between salmon abundance and tree growth. The 15N tracer simulated deposition of 7.25 kg of salmon (fresh) to four 50-m2 plots. We added NH4+ (the initial product of salmon carcass decay) and other important nutrients provided by carcasses (P, S, K, Mg, Ca) to soils in late October 2003, coincident with local salmon spawning. We followed the 15N tracer through soil and tree pools for one year. Biological uptake of the 15N tracer occurred quickly: 64% of the 15N tracer was bound in soil microbiota within 14 days, and roots of the dominant riparian tree, western red cedar (Thuja plicata), began to take up 15N tracer within seven days. Root uptake continued through the winter. The 15N tracer content of soil organic matter reached a maximum of approximately 52%, five weeks after the application, and a relative equilibrium of approximately 40% within five months. Six months after the addition, in spring 2004, at least 37% of the 15N tracer was found in tree tissues: approximately 23% in foliage, approximately 11% in roots, and approximately 3% in stems. Within the stems, xylem and phloem sap contained approximately 96% of the tracer N, and approximately 4% was in structural xylem N. After one year, at least 28% of the 15N tracer was still found in trees, and loss from the plots was only approximately 20%. The large portion of tracer N taken up in the fall and reallocated to leaves and stems the following spring provides mechanistic evidence for a one-year-lagged tree-growth response to salmon nutrients. Salmon nutrients have been deposited in the Kennedy Creek system each fall for centuries, but the system shows no evidence of nutrient saturation. Rates of N uptake and retention are a function of site history and disturbance and also may be the result of a legacy effect, in which annual salmon nutrient addition may lead to increased efficiency of nutrient uptake and use. PMID:16761604

  8. Compound-specific ?15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline ?15N Isoscapes for coastal ecosystems.

    PubMed

    Vokhshoori, Natasha L; McCarthy, Matthew D

    2014-01-01

    We explored ?(15)N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial ?(15)N gradients in the California Upwelling Ecosystem (CUE), determining bulk ?(15)N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk ?(15)N values showed a strong linear trend with latitude, increasing from North to South (from ? 7‰ to ? 12‰, R(2) = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The ?(15)N trend is therefore most consistent with a baseline ?(15)N gradient, likely due to the mixing of two source waters: low ?(15)N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with (15)N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in ?(15)N values of phenylalanine (?(15)NPhe), the best AA proxy for baseline ?(15)N values. We hypothesize ?(15)N(Phe) values in intertidal mussels can approximate annual integrated ?(15)N values of coastal phytoplankton primary production. We therefore used ?(15)N(Phe) values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production ?(15)N values. We propose that ?(15)N(Phe) isoscapes derived from filter feeders can directly characterize baseline ?(15)N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  9. -Amino acids, although less abundant than their -analogues, are also present in peptides and other natural

    E-print Network

    -Amino acids, although less abundant than their -analogues, are also present in peptides and other. A number of methods for synthesis and transformations leading to -amino acids in diastereomerically and enantiomerically enriched forms have been reported.1 The synthesis of modified peptides containing -amino acids

  10. Assessment of the natural variation of low abundant metabolic proteins in soybean seeds using proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry, we investigated the distribution of the low abundant proteins that are involved in soybean seed development in four wild and twelve cultivated soybean genotypes. We found proteomic variation of these proteins within and...

  11. Far-infrared spectrum of 15N16O2

    Microsoft Academic Search

    Yoshiaki Hamada; Naoki Tanaka; Masamichi Tsuboi

    1988-01-01

    The far-infrared spectrum of 15N16O2 has been observed in the 30 to 180 cm-1 region with a resolution of 0.03 cm-1. In order to fit high K energy levels, it was necessary to use three higher order centrifugal distortion terms in addition to a set of parameters previously determined by microwave spectroscopy. The ground state parameters were obtained by fitting

  12. Patterns of diversity and abundance of carrion insect assemblages in the natural park "hoces del río riaza" (central Spain).

    PubMed

    Baz, Arturo; Cifrián, Blanca; Martín-Vega, Daniel

    2014-01-01

    The patterns of diversity and abundance of the carrion insect species in the different habitats of the Natural Park "Hoces del Río Riaza" (central Spain) were studied with the use of carrion-baited traps. Representativeness of the inventories was assessed with the calculation of randomized species richness curves and nonparametric estimators. Coleoptera families, Silphidae and Dermestidae, and Diptera families, Calliphoridae and Muscidae, were dominant in every sampling habitat, but differences in the patterns of diversity and abundance were found. Lusitanian oakwood and riparian forest were the most diverse habitats with high abundance of saprophagous species, whereas more open (i.e., exposed to continuous sunlight during the day) habitats showed lower diversity values and a different species composition and distribution of species abundance, favoring thermophilous species and necrophagous species with high tolerance to different environmental conditions. Differences in the bioclimatical features of the sampled habitats are suggested to explain the composition and diversity of the carrion insect assemblages in different environments. PMID:25368080

  13. The use of ?15N to examine past mangrove stand structures

    E-print Network

    Gudeman, Stephanie M.

    2009-06-02

    using ?13C and ?15N analysis (mean tall ?13C = -28 ‰, mean tall ?15N = 0‰; mean dwarf ?13C = -25‰, mean dwarf ?15N = -10‰), which may also prove useful in examining past mangrove stand structures from sediment cores. 15N label was traced in R. mangle...

  14. Nature's Starships. I. Observed Abundances and Relative Frequencies of Amino Acids in Meteorites

    E-print Network

    Cobb, Alyssa K

    2014-01-01

    The class of meteorites called carbonaceous chondrites are examples of material from the solar system which have been relatively unchanged from the time of their initial formation. These meteorites have been classified according to the temperatures and physical conditions of their parent planetesimals. We collate available data on amino acid abundance in these meteorites and plot the concentrations of different amino acids for each meteorite within various meteorite subclasses. We plot average concentrations for various amino acids across meteorites separated by subclass and petrologic type. We see a predominance in the abundance and variety of amino acids in CM2 and CR2 meteorites. The range in temperature corresponding to these subclasses indicates high degrees of aqueous alteration, suggesting aqueous synthesis of amino acids. Within the CM2 and CR2 subclasses, we identify trends in relative frequencies of amino acids to investigate how common amino acids are as a function of their chemical complexity. The...

  15. Natural Resource Abundance and Economic Growth in a Two Country World

    Microsoft Academic Search

    Beatriz Gaitan

    2005-01-01

    We investigate the dynamics of nonrenewable resource abundance on economic growth and welfare in a two-country world. One country is endowed with a nonrenewable-resource, otherwise, countries are identical, except possibly for their initial endowments of capital. Unlike previous studies analyzing small open economies, we show that once interactions between resource-rich and resource-less economies are considered the effect of the nonrenewable

  16. Stepwise enrichment of 15 N along food chains: Further evidence and the relation between 15 N and animal age

    Microsoft Academic Search

    Masao Minagawa; Eitaro Wada

    1984-01-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average 15 N versus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from

  17. Nature's Starships. I. Observed Abundances and Relative Frequencies of Amino Acids in Meteorites

    NASA Astrophysics Data System (ADS)

    Cobb, Alyssa K.; Pudritz, Ralph E.

    2014-03-01

    The class of meteorites called carbonaceous chondrites are examples of material from the solar system which have been relatively unchanged from the time of their initial formation. These meteorites have been classified according to the temperatures and physical conditions of their parent planetesimals. We collate available data on amino acid abundance in these meteorites and plot the concentrations of different amino acids for each meteorite within various meteorite subclasses. We plot average concentrations for various amino acids across meteorites separated by subclass and petrologic type. We see a predominance in the abundance and variety of amino acids in CM2 and CR2 meteorites. The range in temperature corresponding to these subclasses indicates high degrees of aqueous alteration, suggesting aqueous synthesis of amino acids. Within the CM2 and CR2 subclasses, we identify trends in relative frequencies of amino acids to investigate how common amino acids are as a function of their chemical complexity. These two trends (total abundance and relative frequencies) can be used to constrain formation parameters of amino acids within planetesimals. Our organization of the data supports an onion shell model for the temperature structure of planetesimals. The least altered meteorites (type 3) and their amino acids originated near cooler surface regions. The most active amino acid synthesis likely took place at intermediate depths (type 2). The most altered materials (type 1) originated furthest toward parent body cores. This region is likely too hot to either favor amino acid synthesis or for amino acids to be retained after synthesis.

  18. Direct measurement of the 15N(p,gamma)16O total cross section at novae energies

    E-print Network

    Bemmerer, D; Bonetti, R; Broggini, C; Confortola, F; Corvisiero, P; Costantini, H; Elekes, Z; Formicola, A; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Junker, M; Limata, B; Marta, M; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O

    2009-01-01

    The 15N(p,gamma)16O reaction controls the passage of nucleosynthetic material from the first to the second carbon-nitrogen-oxygen (CNO) cycle. A direct measurement of the total 15N(p,gamma)16O cross section at energies corresponding to hydrogen burning in novae is presented here. Data have been taken at 90-230 keV center-of-mass energy using a windowless gas target filled with nitrogen of natural isotopic composition and a bismuth germanate summing detector. The cross section is found to be a factor two lower than previously believed.

  19. Direct measurement of the 15N(p,gamma)16O total cross section at novae energies

    E-print Network

    D Bemmerer; A Caciolli; R Bonetti; C Broggini; F Confortola; P Corvisiero; H Costantini; Z Elekes; A Formicola; Zs Fulop; G Gervino; A Guglielmetti; C Gustavino; Gy Gyurky; M Junker; B Limata; M Marta; R Menegazzo; P Prati; V Roca; C Rolfs; C Rossi Alvarez; E Somorjai; O Straniero

    2009-02-04

    The 15N(p,gamma)16O reaction controls the passage of nucleosynthetic material from the first to the second carbon-nitrogen-oxygen (CNO) cycle. A direct measurement of the total 15N(p,gamma)16O cross section at energies corresponding to hydrogen burning in novae is presented here. Data have been taken at 90-230 keV center-of-mass energy using a windowless gas target filled with nitrogen of natural isotopic composition and a bismuth germanate summing detector. The cross section is found to be a factor two lower than previously believed.

  20. 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods

    PubMed Central

    van der Sleen, Peter; Vlam, Mart; Groenendijk, Peter; Anten, Niels P. R.; Bongers, Frans; Bunyavejchewin, Sarayudh; Hietz, Peter; Pons, Thijs L.; Zuidema, Pieter A.

    2015-01-01

    Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated 15N abundance (?15N) in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of 15N-depleted nitrate from the soil, following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests, we measured long-term ?15N values in trees from Bolivia, Cameroon, and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pith to the bark across the stem of 28 large trees (the “radial” method). In the second, ?15N values were compared across a fixed diameter (the “fixed-diameter” method). We sampled 400 trees that differed widely in size, but measured ?15N in the stem around the same diameter (20 cm dbh) in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of ?15N values over time with an explicit control for potential size-effects on ?15N values. We found a significant increase of tree-ring ?15N across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring ?15N values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of ?15N values within trees reflect tree ontogeny (size development). However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring ?15N values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring ?15N values can be properly interpreted.

  1. Influences of trees on abundance of natural enemies of insect pests: a review

    Microsoft Academic Search

    M. E. Dix; R. J. Johnson; M. O. Harrell; R. M. Case; R. J. Wright; L. Hodges; J. R. Brandle; M. M. Schoeneberger; N. J. Sunderman; R. L. Fitzmaurice; L. J. Young; K. G. Hubbard

    1995-01-01

    In this article we review the use of natural enemies in crop pest management and describe research needed to better meet information needs for practical applications. Endemic natural enemies (predators and parasites) offer a potential but understudied approach to controlling insect pests in agricultural systems. With the current high interest in environmental stewardship, such an approach has special appeal as

  2. Resolving Isotopic Fine Structure to Detect and Quantify Natural Abundance- and Hydrogen/Deuterium Exchange-Derived Isotopomers

    PubMed Central

    Liu, Qian; Easterling, Michael L.; Agar, Jeffrey N.

    2014-01-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) is used for analyzing protein dynamics, protein folding/unfolding, and molecular interactions. Until this study, HDX MS experiments employed mass spectral resolving powers that afforded only one peak per nominal mass in a given peptide’s isotope distribution, and HDX MS data analysis methods were developed accordingly. A level of complexity that is inherent to HDX MS remained unaddressed, namely, various combinations of natural abundance heavy isotopes and exchanged deuterium shared the same nominal mass and overlapped at previous resolving powers. For example, an A + 2 peak is comprised of (among other isotopomers) a two-2H-exchanged/zero-13C isotopomer, a one-2H-exchanged/one-13C isotopomer, and a zero-2H-exchanged/two-13C isotopomer. Notably, such isotopomers differ slightly in mass as a result of the ~3 mDa mass defect between 2H and 13C atoms. Previous HDX MS methods did not resolve these isotopomers, requiring a natural-abundance-only (before HDX or “time zero”) spectrum and data processing to remove its contribution. It is demonstrated here that high-resolution mass spectrometry can be used to detect isotopic fine structure, such as in the A + 2 profile example above, deconvolving the isotopomer species resulting from deuterium incorporation. Resolving isotopic fine structure during HDX MS therefore permits direct monitoring of HDX, which can be calculated as the sum of the fractional peak magnitudes of the deuterium-exchanged isotopomers. This obviates both the need for a time zero spectrum as well as data processing to account for natural abundance heavy isotopes, saving instrument and analysis time. PMID:24328359

  3. Constraining the S factor of 15N(p,g)16O at Astrophysical Energies

    E-print Network

    P. J. LeBlanc; G. Imbriani; J. Goerres; M. Junker; R. Azuma; M. Beard; D. Bemmerer; A. Best; C. Broggini; A. Caciolli; P. Corvisiero; H. Costantini; M. Couder; R. deBoer; Z. Elekes; S. Falahat; A. Formicola; Zs. Fulop; G. Gervino; A. Guglielmetti; C. Gustavino; Gy. Gyurky; F. Kaeppeler; A. Kontos; R. Kuntz; H. Leiste; A. Lemut; Q. Li; B. Limata; M. Marta; C. Mazzocchi; R. Menegazzo; S. O'Brien; A. Palumbo; P. Prati; V. Roca; C. Rolfs; C. Rossi Alvarez; E. Somorjai; E. Stech; O. Straniero; F. Strieder; W. Tan; F. Terrasi; H. P. Trautvetter; E. Uberseder; M. Wiescher

    2010-11-10

    The 15N(p,g)16O reaction represents a break out reaction linking the first and second cycle of the CNO cycles redistributing the carbon and nitrogen abundances into the oxygen range. The reaction is dominated by two broad resonances at Ep = 338 keV and 1028 keV and a Direct Capture contribution to the ground state of 16O. Interference effects between these contributions in both the low energy region (Ep < 338 keV) and in between the two resonances (338 15N(p,g)16O reaction has been remeasured covering the energy range from Ep=1800 keV down to 130 keV. The results have been analyzed in the framework of a multi-level R-matrix theory and a S(0) value of 39.6 keV b has been found.

  4. Constraining the S factor of 15N(p,g)16O at Astrophysical Energies

    E-print Network

    LeBlanc, P J; Goerres, J; Junker, M; Azuma, R; Beard, M; Bemmerer, D; Best, A; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Couder, M; deBoer, R; Elekes, Z; Falahat, S; Formicola, A; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Kaeppeler, F; Kontos, A; Kuntz, R; Leiste, H; Lemut, A; Li, Q; Limata, B; Marta, M; Mazzocchi, C; Menegazzo, R; O'Brien, S; Palumbo, A; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Stech, E; Straniero, O; Strieder, F; Tan, W; Terrasi, F; Trautvetter, H P; Uberseder, E; Wiescher, M

    2010-01-01

    The 15N(p,g)16O reaction represents a break out reaction linking the first and second cycle of the CNO cycles redistributing the carbon and nitrogen abundances into the oxygen range. The reaction is dominated by two broad resonances at Ep = 338 keV and 1028 keV and a Direct Capture contribution to the ground state of 16O. Interference effects between these contributions in both the low energy region (Ep < 338 keV) and in between the two resonances (338 15N(p,g)16O reaction has been remeasured covering the energy range from Ep=1800 keV down to 130 keV. The results have been analyzed in the framework of a multi-level R-matrix theory and a S(0) value of 39.6 keV b has been found.

  5. Automated Protein Turnover Calculations from 15N Partial Metabolic Labeling LC/MS Shotgun Proteomics Data

    PubMed Central

    Lyon, David; Castillejo, Maria Angeles; Staudinger, Christiana; Weckwerth, Wolfram; Wienkoop, Stefanie; Egelhofer, Volker

    2014-01-01

    Protein turnover is a well-controlled process in which polypeptides are constantly being degraded and subsequently replaced with newly synthesized copies. Extraction of composite spectral envelopes from complex LC/MS shotgun proteomics data can be a challenging task, due to the inherent complexity of biological samples. With partial metabolic labeling experiments this complexity increases as a result of the emergence of additional isotopic peaks. Automated spectral extraction and subsequent protein turnover calculations enable the analysis of gigabytes of data within minutes, a prerequisite for systems biology high throughput studies. Here we present a fully automated method for protein turnover calculations from shotgun proteomics data. The approach enables the analysis of complex shotgun LC/MS 15N partial metabolic labeling experiments. Spectral envelopes of 1419 peptides can be extracted within an hour. The method quantifies turnover by calculating the Relative Isotope Abundance (RIA), which is defined as the ratio between the intensity sum of all heavy (15N) to the intensity sum of all light (14N) and heavy peaks. To facilitate this process, we have developed a computer program based on our method, which is freely available to download at http://promex.pph.univie.ac.at/protover. PMID:24736476

  6. Paramagnetic relaxation enhancement solid-state NMR studies of heterogeneous catalytic reaction over HY zeolite using natural abundance reactant.

    PubMed

    Zhou, Lei; Li, Shenhui; Su, Yongchao; Li, Bojie; Deng, Feng

    2015-01-01

    Paramagnetic relaxation enhancement solid-state NMR (PRE ssNMR) technique was used to investigate catalytic reaction over zeolite HY. After introducing paramagnetic Cu(II) ions into the zeolite, the enhancement of longitudinal relaxation rates of nearby nuclei, i.e.(29)Si of the framework and (13)C of the absorbents, was measured. It was demonstrated that the PRE ssNMR technique facilitated the fast acquisition of NMR signals to monitor the heterogeneous catalytic reaction (such as acetone to hydrocarbon) using natural abundance reactants. PMID:25616847

  7. Variations in the natural ¹?N abundance of Brassica chinensis grown in uncultivated soil affected by different nitrogen fertilizers.

    PubMed

    Yuan, Yuwei; Hu, Guixian; Zhao, Ming; Chen, Tianjin; Zhang, Yongzhi; Zhu, Jiahong; Wang, Qiang

    2014-11-26

    To further investigate the method of using ?(15)N as a marker for organic vegetable discrimination, the effects of different fertilizers on the ?(15)N in different growing stages of Brassica chinensis (B. chinensis) grown in uncultivated soil were investigated with a pot experiment. B. chinensis was planted with uncultivated soil and different fertilizer treatments and then harvested three times in three seasons consecutively. For the spring experiments in the years of 2011 and 2012, the ?(15)N value of B. chinensis, which increased due to organic manure application and decreased due to chemical fertilizer application, was significantly different (p < 0.05) with manure treatment and chemical treatment. The ?(15)N value of vegetables varied among three growing stages and ranged from +8.6‰ to +11.5‰ for the control, from +8.6‰ to +12.8‰ for the compost chicken manure treatment, from +2.8‰ to +7.7‰ for the chemical fertilizer urea treatment, and from +7.7‰ to +10.9‰ for the compost-chemical fertilizer treatment. However, the ?(15)N values observed in the autumn experiment of 2011 without any fertilizer application increased ranging from +13.4‰ to +15.4‰, + 11.2‰ to +17.7‰, +10.7‰ to +17.1‰, and +10.6‰ to +19.1‰, respectively, for the same treatments mentioned above. This result was not significantly different between manure treatment and chemical treatment. The ?(15)N values of soil obtained in the spring of 2011 during three growing stages were slightly affected by fertilizers and varied in the range of +1.6‰ to +2.5‰ for CK, +4.7‰ to +6.5‰ for compost treatment, +2.1‰ to +2.4‰ for chemical treatment, and +2.7‰ to +4.6‰ for chemical-compost treatment, respectively. High ?(15)N values of B. chinensis were observed in these experiments, which would be useful to supplement a ?(15)N database for discriminating organic vegetables. Although there was a significant difference between manure treatment and chemical treatment, it was still difficult to discriminate whether a labeled organic vegetable was really grown without chemical fertilizer just with a fixed high ?(15)N value, especially for the vegetables planted simultaneously with chemical and compost fertilizer. PMID:25369912

  8. Quantification of histone modifications using 15N metabolic labeling

    PubMed Central

    Zhang, Chunchao; Liu, Yifan; Andrews, Philip C

    2013-01-01

    Mass spectrometry has made major contributions to recent discoveries in the field of epigenetics, particularly in the characterization of the myriad post-translational modifications (PTMs) of histones which are technically challenging to analyze. These new developments have further aroused great interest in development of robust, new mass spectrometric methods to quantitatively study the dynamics of histone modifications. This review covers quantitative analysis of histone PTMs and discuss an 15N metabolic labeling procedure for quantifying histone PTMs applied to the analysis of methyltransferase knockouts in the model organism, Tetrahymena thermophila. PMID:23454290

  9. ASSESSING ABUNDANCE DISTRIBUTIONS IN NATURAL COMMUNITIES OF ECTOMYCORRHIZAS ALONG AN ENVIRONMENTAL GRADIENT

    EPA Science Inventory

    Alpha diversity indices often fail to distinguish between natural populations that a more detailed investigation of the distribution of ramets among types would show are quite different. We studied the effectiveness of applying SHE analyses to morphotype classifications of ectom...

  10. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum

    Microsoft Academic Search

    Yugo Habata; Ryo Fujii; Masaki Hosoya; Shoji Fukusumi; Yuji Kawamata; Shuji Hinuma; Chieko Kitada; Naoki Nishizawa; Shinji Murosaki; Tsutomu Kurokawa; Haruo Onda; Kazuhiko Tatemoto; Masahiko Fujino

    1999-01-01

    By using a strategy that we have developed to search for the ligands of orphan seven-transmembrane-domain receptors [S. Hinuma et al., Nature 393 (1998) 272–276], we have recently identified a natural ligand, apelin, for the orphan 7TMR, APJ [K. Tatemoto et al., Biochem. Biophys. Res. Commun. 251 (1998) 471–476]. In this paper, we isolated rat and mouse apelin cDNAs, and

  11. Compound-Specific ?15N Amino Acid Measurements in Littoral Mussels in the California Upwelling Ecosystem: A New Approach to Generating Baseline ?15N Isoscapes for Coastal Ecosystems

    PubMed Central

    Vokhshoori, Natasha L.; McCarthy, Matthew D.

    2014-01-01

    We explored ?15N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial ?15N gradients in the California Upwelling Ecosystem (CUE), determining bulk ?15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk ?15N values showed a strong linear trend with latitude, increasing from North to South (from ?7‰ to ?12‰, R2?=?0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The ?15N trend is therefore most consistent with a baseline ?15N gradient, likely due to the mixing of two source waters: low ?15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in ?15N values of phenylalanine (?15NPhe), the best AA proxy for baseline ?15N values. We hypothesize ?15NPhe values in intertidal mussels can approximate annual integrated ?15N values of coastal phytoplankton primary production. We therefore used ?15NPhe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production ?15N values. We propose that ?15NPhe isoscapes derived from filter feeders can directly characterize baseline ?15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  12. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate

    PubMed Central

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO?3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO?3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO?3-use mechanisms. The concentration and natural isotopes of tissue NO?3 can offer insights into the plant NO?3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO?3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO?3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO?3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO?3 in plants, and discuss the implications of NO?3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO?3 and plant ecophysiological functions in interspecific and intra-plant NO?3 variations. We introduce N and O isotope systematics of NO?3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: ?18O and ?17O); and isotope mass-balance calculations to constrain sources and reduction of NO?3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant ?18O-NO?3 variation, and summarize the uncertainties in using tissue NO?3 parameters to interpret plant NO?3 utilization. PMID:25101106

  13. Study of Early Leaf Senescence in Arabidopsis thaliana by Quantitative Proteomics Using Reciprocal 14N\\/15N Labeling and Difference Gel Electrophoresis

    Microsoft Academic Search

    Romano Hebeler; Silke Oeljeklaus; Kai A. Reidegeld; Martin Eisenacher; Christian Stephan; Barbara Sitek; Kai Stuhler; Helmut E. Meyer; Marcel J. G. Sturre; Paul P. Dijkwel; Bettina Warscheid

    2007-01-01

    Leaf senescence represents the final stage of leaf develop- ment and is associated with fundamental changes on the level of the proteome. For the quantitative analysis of changes in protein abundance related to early leaf senes- cence, we designed an elaborate double and reverse label- ing strategy simultaneously employing fluorescent two-di- mensional DIGE as well as metabolic 15N labeling followed

  14. Effects of Natural Resource Abundance on Institutions: Which, Where and When?

    Microsoft Academic Search

    Luisa Blanco; Jeffrey Nugent; Graham Veenstra

    2012-01-01

    Much research has gone into the effects of oil and other natural resources on growth in which political institutions are often seen as the link between the two. Since institutions are difficult to measure and change very slowly over time, the analysis has largely been confined to cross-country comparisons, most frequently investigating the effects on levels of democracy. This paper

  15. Natural resources and violent conflict: resource abundance, dependence, and the onset of civil wars

    Microsoft Academic Search

    Christa N. Brunnschweiler; Erwin H. Bultey

    2009-01-01

    In this paper we examine the claim that natural resources invite civil conflict, and challenge the main stylized facts in this literature. We find that the conventional measure of resource dependence is endogenous with respect to conflict, and that instrumenting for dependence implies that it is no longer significant in conflict regressions. Instead, it appears that conflict increases dependence on

  16. Nirtogen-15-labeled oligodeoxynucleotides. 4. Tetraplex formation of d[G({sup 15}N{sup 7})GTTTTTGG] and d[T({sup 15}N{sup 7})GGGT] monitored by {sup 1}H detected {sup 15}N NMR

    SciTech Connect

    Gaffney, B.L.; Chuan Wang; Jones, R.A. [State Univ. of New Jersey, Piscataway, NJ (United States)

    1992-05-20

    The authors have synthesized two molecules containing [7-{sup 15}N]-labeled 2{prime}-deoxyguanosine, d[G({sup 15}N{sup 7})GTTTTTGG], and d[T({sup 15}N{sup 7})GGGT] which, under appropriate conditions, will form tetramolecular complexes. The {sup 15}N chemical shifts of these molecules and of their Watson-Crick duplexes, d[G({sup 15}N{sup 7})GTTTTTGG]-d[CCAAAAACC] and d[T({sup 15}N{sup 7})GGGT]-d[ACCCA], were monitored as a function of temperature. The {sup 15}N chemical shift of the labeled N7 atom in each tetramolecular complex shows a similar temperature dependence, and the chemical shifts are not signal-averaged. The similarity of the chemical shifts for the tetraplex and single strand structures, and the difference seen for the two duplexes, are consistent with the different degrees of hydrogen bonding to the N7 which could be expected in each case. Thus, although more examples will be required to establish the generality of these observations, a purine [7-{sup 15}N] label appears to be able to monitor groove interactions, including hydration. 28 refs., 6 figs., 5 tabs.

  17. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  18. New Method for Estimating Bacterial Cell Abundances in Natural Samples by Use of Sublimation

    PubMed Central

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500°C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from ?105 to 109 E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining. PMID:15466534

  19. Measurement of (15)N enrichment of glutamine and urea cycle amino acids derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate using liquid chromatography-tandem quadrupole mass spectrometry.

    PubMed

    Nakamura, Hidehiro; Karakawa, Sachise; Watanabe, Akiko; Kawamata, Yasuko; Kuwahara, Tomomi; Shimbo, Kazutaka; Sakai, Ryosei

    2015-05-01

    6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) is an amino acid-specific derivatizing reagent that has been used for sensitive amino acid quantification by liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). In this study, we aimed to evaluate the ability of this method to measure the isotopic enrichment of amino acids and to determine the positional (15)N enrichment of urea cycle amino acids (i.e., arginine, ornithine, and citrulline) and glutamine. The distribution of the M and M+1 isotopomers of each natural AQC-amino acid was nearly identical to the theoretical distribution. The standard deviation of the (M+1)/M ratio for each amino acid in repeated measurements was approximately 0.1%, and the ratios were stable regardless of the injected amounts. Linearity in the measurements of (15)N enrichment was confirmed by measuring a series of (15)N-labeled arginine standards. The positional (15)N enrichment of urea cycle amino acids and glutamine was estimated from the isotopic distribution of unique fragment ions generated at different collision energies. This method was able to identify their positional (15)N enrichment in the plasma of rats fed (15)N-labeled glutamine. These results suggest the utility of LC-MS/MS detection of AQC-amino acids for the measurement of isotopic enrichment in (15)N-labeled amino acids and indicate that this method is useful for the study of nitrogen metabolism in living organisms. PMID:25681567

  20. Inferring the nature of anthropogenic threats from long-term abundance records.

    PubMed

    Shoemaker, Kevin T; Akçakaya, H Resit

    2015-02-01

    Diagnosing the processes that threaten species persistence is critical for recovery planning and risk forecasting. Dominant threats are typically inferred by experts on the basis of a patchwork of informal methods. Transparent, quantitative diagnostic tools would contribute much-needed consistency, objectivity, and rigor to the process of diagnosing anthropogenic threats. Long-term census records, available for an increasingly large and diverse set of taxa, may exhibit characteristic signatures of specific threatening processes and thereby provide information for threat diagnosis. We developed a flexible Bayesian framework for diagnosing threats on the basis of long-term census records and diverse ancillary sources of information. We tested this framework with simulated data from artificial populations subjected to varying degrees of exploitation and habitat loss and several real-world abundance time series for which threatening processes are relatively well understood: bluefin tuna (Thunnus maccoyii) and Atlantic cod (Gadus morhua) (exploitation) and Red Grouse (Lagopus lagopus scotica) and Eurasian Skylark (Alauda arvensis) (habitat loss). Our method correctly identified the process driving population decline for over 90% of time series simulated under moderate to severe threat scenarios. Successful identification of threats approached 100% for severe exploitation and habitat loss scenarios. Our method identified threats less successfully when threatening processes were weak and when populations were simultaneously affected by multiple threats. Our method selected the presumed true threat model for all real-world case studies, although results were somewhat ambiguous in the case of the Eurasian Skylark. In the latter case, incorporation of an ancillary source of information (records of land-use change) increased the weight assigned to the presumed true model from 70% to 92%, illustrating the value of the proposed framework in bringing diverse sources of information into a common rigorous framework. Ultimately, our framework may greatly assist conservation organizations in documenting threatening processes and planning species recovery. PMID:25065712

  1. Characterization of fecal nitrogen forms produced by a sheep fed with 15 N labeled ryegrass

    Microsoft Academic Search

    C. Bosshard; A. Oberson; P. Leinweber; G. Jandl; H. Knicker; H.-R. Wettstein; M. Kreuzer; E. Frossard

    2011-01-01

    Little is known about nitrogen (N) forms in ruminant feces, although this information is important to understand N dynamics\\u000a in agro-ecosystems. We fed 15N labeled ryegrass hay to a sheep and collected 15N labeled feces. Nitrogen forms in the feces were characterized by chemical extractions, solid-state cross polarization 15N nuclear magnetic resonance spectroscopy (SS CP\\/MAS 15N NMR) and Curie-point pyrolysis–gas

  2. A theory for 15 N\\/ 14 N fractionation in nitrate-grown vascular plants

    Microsoft Academic Search

    David Robinson; L. L. Handley; C. M. Scrimgeour

    1998-01-01

    .   We present a theory describing how the ?15N values of the nitrogen (N) pools in a vascular plant depend on that of its source N (nitrate), on 15N\\/14N fractionations during N assimilation, and on N transport within and N loss from the plant. The theory allows measured ?15N values to be interpreted in terms of physiological processes. The ?15N

  3. Compound specific amino acid ?15N in marine sediments: A new approach for studies of the marine nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Batista, Fabian C.; Ravelo, A. Christina; Crusius, John; Casso, Michael A.; McCarthy, Matthew D.

    2014-10-01

    The nitrogen (N) isotopic composition (?15N) of bulk sedimentary N (?15Nbulk) is a common tool for studying past biogeochemical cycling in the paleoceanographic record. Empirical evidence suggests that natural fluctuations in the ?15N of surface nutrient N are reflected in the ?15N of exported planktonic biomass and in sedimentary ?15Nbulk. However, ?15Nbulk is an analysis of total combustible sedimentary N, and therefore also includes mixtures of N sources and/or selective removal or preservation of N-containing compounds. Compound-specific nitrogen isotope analyses of individual amino acids (?15NAA) are novel measurements with the potential to decouple ?15N changes in nutrient N from trophic effects, two main processes that can influence ?15Nbulk records. As a proof of concept study to examine how ?15NAA can be applied in marine sedimentary systems, we compare the ?15NAA signatures of surface and sinking POM sources with shallow surface sediments from the Santa Barbara Basin, a sub-oxic depositional environmental that exhibits excellent preservation of sedimentary organic matter. Our results demonstrate that ?15NAA signatures of both planktonic biomass and sinking POM are well preserved in such surface sediments. However, we also observed an unexpected inverse correlation between ?15N value of phenylalanine (?15NPhe; the best AA proxy for N isotopic value at the base of the food web) and calculated trophic position. We used a simple N isotope mass balance model to confirm that over long time scales, ?15NPhe values should in fact be directly dependent on shifts in ecosystem trophic position. While this result may appear incongruent with current applications of ?15NAA in food webs, it is consistent with expectations that paleoarchives will integrate N dynamics over much longer timescales. We therefore propose that for paleoceanographic applications, key ?15NAA parameters are ecosystem trophic position, which determines relative partitioning of 15N into source AA versus trophic AA pools, and the integrated ?15NAA of all common protein AA (?15NTHAA), which serves as a proxy for the ?15N of nutrient N. Together, we suggest that these can provide a coupled picture of regime shifts in planktonic ecosystem structure, ?15N at the base of food webs, and possibly additional information about nutrient dynamics.

  4. Paleoenvironmental implications of taxonomic variation among ??15N values of chloropigments

    USGS Publications Warehouse

    Higgins, M.B.; Wolfe-Simon, F.; Robinson, R.S.; Qin, Y.; Saito, M.A.; Pearson, A.

    2011-01-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use ??15N values of chloropigments of photosynthetic organisms to determine the corresponding ??15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth's history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3-, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (??15Nbiomass-??15Nchloropigment) for prokaryotes, with average values for species ranging from -12.2??? to +11.7???. We define this difference as ??por, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of ??por reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of ??por for freshwater cyanobacterial species is -9.8??1.8???, while for marine cyanobacteria it is -0.9??1.3???. These isotopic effects group environmentally but not phylogenetically, e.g., ??por values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of ??por for eukaryotic algae (range=4.7-8.7???) are similar to previous reports for pure cultures. For all taxa studied, values of ??por do not depend on the type of nitrogen substrate used for growth. The observed environmental control of ??por suggests that values of ??por could be useful for determining the fractional burial of eukaryotic vs. cyanobacterial organic matter in the sedimentary record. ?? 2011 Elsevier Ltd.

  5. Variability in the bulk composition and abundance of dissolved organic matter in the lower Mississippi and Pearl rivers

    Microsoft Academic Search

    Shuiwang Duan; Thomas S. Bianchi; Alan M. Shiller; Karl Dria; Patrick G. Hatcher; Kevin R. Carman

    2007-01-01

    In this study, we examined the temporal and spatial variability of dissolved organic matter (DOM) abundance and composition in the lower Mississippi and Pearl rivers and effects of human and natural influences. In particular, we looked at bulk C\\/N ratio, stable isotopes (?15N and ?13C) and 13C nuclear magnetic resonance (NMR) spectrometry of high molecular weight (HMW; 0.2 ?m to

  6. A New Method for Estimating Bacterial Abundances in Natural Samples using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert were heated to a temperature of 500 C for several seconds under reduced pressure. The sublimate was collected on a cold finger and the amount of adenine released from the samples then determined by high performance liquid chromatography (HPLC) with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approx. l0(exp 5) to l0(exp 9) E. coli cell equivalents per gram. For most of these samples, the sublimation based cell counts were in agreement with total bacterial counts obtained by traditional DAPI staining. The simplicity and robustness of the sublimation technique compared to the DAPI staining method makes this approach particularly attractive for use by spacecraft instrumentation. NASA is currently planning to send a lander to Mars in 2009 in order to assess whether or not organic compounds, especially those that might be associated with life, are present in Martian surface samples. Based on our analyses of the Atacama Desert soil samples, several million bacterial cells per gam of Martian soil should be detectable using this sublimation technique.

  7. HCNMBC--a pulse sequence for H-(C)-N Multiple Bond Correlations at natural isotopic abundance.

    PubMed

    Cheatham, Steve; Gierth, Peter; Bermel, Wolfgang; Kup?e, ?riks

    2014-10-01

    We propose a pulse sequence, HCNMBC for multiple-bond H-(C)-N correlation experiments via one-bond (1)J(C,H) and one- or multiple bond (n)J(N,C) coupling constants (typically n=1-3) at the natural isotopic abundance. A new adiabatic refocussing sequence is introduced to provide accurate and robust refocussing of both chemical shift and J-evolution over wide ranges of C-13 and N-15 frequencies. It is demonstrated that the proposed pulse sequence provides high quality spectra even for sub-milligram samples. We show that when a 1.7 mm cryoprobe is available as little as 10 ?g of glycine in D2O is sufficient to obtain the HCNMBC spectrum in ca. 12 h. The preliminary results indicate that the pulse sequence has a great potential in the structure determination of nitrogen heterocycles especially in cases where synthesis produces regioisomers. PMID:25233112

  8. Nutrient regime shift in the western North Atlantic indicated by compound-specific ?15N of deep-sea gorgonian corals

    PubMed Central

    Sherwood, Owen A.; Lehmann, Moritz F.; Schubert, Carsten J.; Scott, David B.; McCarthy, Matthew D.

    2011-01-01

    Despite the importance of the nitrogen (N) cycle on marine productivity, little is known about variability in N sources and cycling in the ocean in relation to natural and anthropogenic climate change. Beyond the last few decades of scientific observation, knowledge depends largely on proxy records derived from nitrogen stable isotopes (?15N) preserved in sediments and other bioarchives. Traditional bulk ?15N measurements, however, represent the combined influence of N source and subsequent trophic transfers, often confounding environmental interpretation. Recently, compound-specific analysis of individual amino acids (?15N-AA) has been shown as a means to deconvolve trophic level versus N source effects on the ?15N variability of bulk organic matter. Here, we demonstrate the first use of ?15N-AA in a paleoceanographic study, through analysis of annually secreted growth rings preserved in the organic endoskeletons of deep-sea gorgonian corals. In the Northwest Atlantic off Nova Scotia, coral ?15N is correlated with increasing presence of subtropical versus subpolar slope waters over the twentieth century. By using the new ?15N-AA approach to control for variable trophic processing, we are able to interpret coral bulk ?15N values as a proxy for nitrate source and, hence, slope water source partitioning. We conclude that the persistence of the warm, nutrient-rich regime since the early 1970s is largely unique in the context of the last approximately 1,800 yr. This evidence suggests that nutrient variability in this region is coordinated with recent changes in global climate and underscores the broad potential of ?15N-AA for paleoceanographic studies of the marine N cycle. PMID:21199952

  9. Paleobiological Implications of the Isotopic Signatures ( 13C, 15N) of Fossil Mammal Collagen in Scladina Cave (Sclayn, Belgium)

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé; Billiou, Daniel; Patou-Mathis, Marylène; Bonjean, Dominique; Otte, Marcel; Mariotti, André

    1997-11-01

    An isotopic investigation of upper Pleistocene mammal bones and teeth from Scladina cave (Sclayn, Belgium) demonstrated the very good quality of collagen preservation. A preliminary screening of the samples used the amount of nitrogen in whole bone and dentine in order to estimate the preserved amount of collagen before starting the extraction process. The isotopic abundances of fossil specimens from still-extant species are consistent with their trophic position. Moreover, the 15N isotopic abundance is higher in dentine than in bone in bears and hyenas, a phenomenon already observed in modern specimens. These results demonstrate that the isotopic compositions of samples from Scladina cave can be interpreted in ecological terms. Mammoths exhibit a high 15N isotopic abundance relative to other herbivores, as was the case in Siberian and Alaskan samples. These results suggest distinctive dietary adaptations in herbivores living in the mammoth steppe. Cave bears are clearly isotopically different from coeval brown bears, suggesting an ecological separation between species, with a pure vegetarian diet for cave bear and an omnivorous diet for brown bear.

  10. 15N2 formation and fast oxygen isotope exchange during pulsed 15N18O exposure of MnOx/CeO2

    SciTech Connect

    Kwak, Ja Hun; Szanyi, Janos

    2014-12-23

    Pulsing 15N18O onto an annealed 1% Mn16Ox/Ce16O2 catalyst resulted in very fast oxygen isotope exchange and 15N2 formation at 295 K. In the 1st 15N18O pulse, due to the presence of large number of surface oxygen defects, extensive 15N218O and 15N2 formations were observed. In subsequent pulses oxygen isotope exchange dominated as a result of highly labile oxygen in the oxide. We gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  11. Asymptotic Normalization Coefficients from the 15N(3He,d)16O Reaction and the Astrophysical Factor for the 15N(p,?)16O Capture

    NASA Astrophysics Data System (ADS)

    Burjan, V.; Bém, P.; Cherubini, S.; Gagliardi, C. A.; Hons, Z.; La Cognata, M.; Kroha, V.; Mrázek, J.; Mukhamedzhanov, A. M.; Novák, J.; Pisko?, Š.; Pizzone, R. G.; Plunkett, A.; Romano, S.; Šime?ková, E.; Spitaleri, C.; Trache, L.; Tribble, R. E.; Tumino, A.; Vincour, J.

    2008-05-01

    The angular distributions of the 15N(3He,d)16O reaction were measured with the aim to determine the direct capture rate of the astrophysical reaction 15N(p, ?)16O by deducing asymptotic normalization coefficients (ANC). The 15N(p,?)16O reaction is a part of the CNO cycle having importance in the nucleosynthesis of the N and O isotopes. The measurement was carried out on the cyclotron U120M of NPI CAS at the energy 25.74 MeV of 3He ions in a gas chamber containing the high purity 15N isotope. The preliminary results of corresponding spectroscopic factors and ANC's were used for the estimation of the S-factor for the direct capture 15N(p,?)16O. Using the widths of the resonances ER = 312 and 962 keV, the total S-factor was determined within the framework of the R-matrix approach.

  12. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance

    SciTech Connect

    Jastrow, J.D.; Miller, R.M. [Argonne National Lab., IL (United States); Boutton, T.W. [Texas A& M Univ., College Station, TX (United States)

    1996-05-01

    A major factor controlling soil organic matter dynamics is believed to be the differing degrees of protection from decomposition afforded by the spatially hierarchical organization of soil aggregate structure. Changes in the natural {sup 13}C content and in the concentration of soil organic C resulting from the growth of C3 pasture grasses (low {delta}{sup 13}C{sub PDB}) on former C4 cropland (high {delta}{sup 13}C{sub PDB}) were used to investigate the turnover and inputs of organic C in water-stable aggregates of different sizes. After removal of free and released particulate organic matter (POM) in aggregate size separates (POM with a density <= 1.85 g cm{sup -3} that was either exterior to aggregates in situ or released from unstable aggregates by slaking), organic C concentrations were greater in macroaggregates (> 212 {mu}m) than in microaggregates (53-212 {mu}m). The turnover time (1/k) for C4-drived C was 412 yr for microaggregates, compared with an average turnover of 140 yr for macroaggrgates, indicating that old C associated with microaggregates may be both biochemically recalcitrant and physically protected. Net input rates of C3-derived C increased with aggregate size (0.73-1.13 g kg{sup -1} yr{sup -1}), supporting the concept of an aggregate hierarchy created by the binding of microaggregates into increasingly larger macroaggregates. 38 refs., 1 fig., 4 tabs.

  13. Regional, seasonal and interspecific variation in 15N and 13C in sympatric mouse lemurs

    NASA Astrophysics Data System (ADS)

    Rakotondranary, S. Jacques; Struck, Ulrich; Knoblauch, Christian; Ganzhorn, Jörg U.

    2011-11-01

    Madagascar provides some of the rare examples where two or more primate species of the same genus and with seemingly identical niche requirements occur in sympatry. If congeneric primate species co-occur in other parts of the world, they differ in size in a way that is consistent with Hutchinson's rule for coexisting species, or they occupy different ecological niches. In some areas of Madagascar, mouse lemurs do not follow these "rules" and thus seem to violate one of the principles of community ecology. In order to understand the mechanisms that allow coexistence of sympatric congeneric species without obvious niche differentiation, we studied food composition of two identical sized omnivorous mouse lemur species, Microcebus griseorufus and M. murinus with the help of stable isotope analyses ( ? 15N and ? 13C). The two species are closely related sister species. During the rich season, when food seems abundant, the two species do not differ in their nitrogen isotope composition, indicating that the two species occupy the same trophic level. But they differ in their ? 13C values, indicating that M. griseorufus feeds more on C4 and CAM (Crassulacean-acid-metabolism) plants than M. murinus. During the lean season, M. murinus has lower ? 15N values, indicating that the two species feed at different trophic levels during times of food shortage. Hybrids between the two species showed intermediate food composition. The results reflect subtle differences in foraging or metabolic adaptations that are difficult to quantify by traditional observations but that represent possibilities to allow coexistence of species.

  14. Factors driving the abundance of ixodes ricinus ticks and the prevalence of zoonotic I. ricinus-borne pathogens in natural foci.

    PubMed

    Ruiz-Fons, Francisco; Fernández-de-Mera, Isabel G; Acevedo, Pelayo; Gortázar, Christian; de la Fuente, José

    2012-04-01

    Environmental factors may drive tick ecology and therefore tick-borne pathogen (TBP) epidemiology, which determines the risk to animals and humans of becoming infected by TBPs. For this reason, the aim of this study was to analyze the influence of environmental factors on the abundance of immature-stage Ixodes ricinus ticks and on the prevalence of two zoonotic I. ricinus-borne pathogens in natural foci of endemicity. I. ricinus abundance was measured at nine sites in the northern Iberian Peninsula by dragging the vegetation with a cotton flannelette, and ungulate abundance was measured by means of dung counts. In addition to ungulate abundance, data on variables related to spatial location, climate, and soil were gathered from the study sites. I. ricinus adults, nymphs, and larvae were collected from the vegetation, and a representative subsample of I. ricinus nymphs from each study site was analyzed by PCR for the detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum DNA. Mean prevalences of these pathogens were 4.0% ± 1.8% and 20.5% ± 3.7%, respectively. Statistical analyses confirmed the influence of spatial factors, climate, and ungulate abundance on I. ricinus larva abundance, while nymph abundance was related only to climate. Interestingly, cattle abundance rather than deer abundance was the main driver of B. burgdorferi sensu lato and A. phagocytophilum prevalence in I. ricinus nymphs in the study sites, where both domestic and wild ungulates coexist. The increasing abundance of cattle seems to increase the risk of other hosts becoming infected by A. phagocytophilum, while reducing the risk of being infected by B. burgdorferi sensu lato. Controlling ticks in cattle in areas where they coexist with wild ungulates would be more effective for TBP control than reducing ungulate abundance. PMID:22286986

  15. Factors Driving the Abundance of Ixodes ricinus Ticks and the Prevalence of Zoonotic I. ricinus-Borne Pathogens in Natural Foci

    PubMed Central

    Fernández-de-Mera, Isabel G.; Acevedo, Pelayo; Gortázar, Christian; de la Fuente, José

    2012-01-01

    Environmental factors may drive tick ecology and therefore tick-borne pathogen (TBP) epidemiology, which determines the risk to animals and humans of becoming infected by TBPs. For this reason, the aim of this study was to analyze the influence of environmental factors on the abundance of immature-stage Ixodes ricinus ticks and on the prevalence of two zoonotic I. ricinus-borne pathogens in natural foci of endemicity. I. ricinus abundance was measured at nine sites in the northern Iberian Peninsula by dragging the vegetation with a cotton flannelette, and ungulate abundance was measured by means of dung counts. In addition to ungulate abundance, data on variables related to spatial location, climate, and soil were gathered from the study sites. I. ricinus adults, nymphs, and larvae were collected from the vegetation, and a representative subsample of I. ricinus nymphs from each study site was analyzed by PCR for the detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum DNA. Mean prevalences of these pathogens were 4.0% ± 1.8% and 20.5% ± 3.7%, respectively. Statistical analyses confirmed the influence of spatial factors, climate, and ungulate abundance on I. ricinus larva abundance, while nymph abundance was related only to climate. Interestingly, cattle abundance rather than deer abundance was the main driver of B. burgdorferi sensu lato and A. phagocytophilum prevalence in I. ricinus nymphs in the study sites, where both domestic and wild ungulates coexist. The increasing abundance of cattle seems to increase the risk of other hosts becoming infected by A. phagocytophilum, while reducing the risk of being infected by B. burgdorferi sensu lato. Controlling ticks in cattle in areas where they coexist with wild ungulates would be more effective for TBP control than reducing ungulate abundance. PMID:22286986

  16. sup 15 N NMR spectroscopic investigation of nitrous and nitric acids in sulfuric acid solutions of varying acidities

    SciTech Connect

    Prakash, G.K.S.; Heiliger, L.; Olah, G.A. (Univ. of Southern California, Los Angeles (USA))

    1990-11-28

    Both nitrous and nitric acids were studied in sulfuric acid solutions of varying acid strengths by {sup 15}N NMR spectroscopy. The study gives new insights into the nature of intermediates present at different acid strengths. Furthermore, we have also discovered a novel redox reaction between NO{sub 2}{sup +} and NO{sup +} ions involving the intermediacy of their respective acids. A mechanism is proposed to explain the observed results. 13 refs., 2 figs., 1 tab.

  17. Female offspring desertion and male-only care increase with natural and experimental increase in food abundance.

    PubMed

    Eldegard, Katrine; Sonerud, Geir A

    2009-05-01

    In species with biparental care, one parent may escape the costs of parental care by deserting and leaving the partner to care for the offspring alone. A number of theoretical papers have suggested a link between uniparental offspring desertion and ecological factors, but empirical evidence is scarce. We investigated the relationship between uniparental desertion and food abundance in a natural population of Tengmalm's owl Aegolius funereus, both by means of a 5-year observational study and a 1-year experimental study. Parents and offspring were fitted with radio-transmitters in order to reveal the parental care strategy (i.e. care or desert) of individual parents, and to keep track of the broods post-fledging. We found that 70 per cent of the females from non-experimental nests deserted, while their partner continued to care for their joint offspring alone. Desertion rate was positively related to natural prey population densities and body reserves of the male partner. In response to food supplementation, a larger proportion of the females deserted, and females deserted the offspring at an earlier age. Offspring survival during the post-fledging period tended to be lower in deserted than in non-deserted broods. We argue that the most important benefit of deserting may be remating (sequential polyandry). PMID:19324835

  18. Female offspring desertion and male-only care increase with natural and experimental increase in food abundance

    PubMed Central

    Eldegard, Katrine; Sonerud, Geir A.

    2009-01-01

    In species with biparental care, one parent may escape the costs of parental care by deserting and leaving the partner to care for the offspring alone. A number of theoretical papers have suggested a link between uniparental offspring desertion and ecological factors, but empirical evidence is scarce. We investigated the relationship between uniparental desertion and food abundance in a natural population of Tengmalm's owl Aegolius funereus, both by means of a 5-year observational study and a 1-year experimental study. Parents and offspring were fitted with radio-transmitters in order to reveal the parental care strategy (i.e. care or desert) of individual parents, and to keep track of the broods post-fledging. We found that 70 per cent of the females from non-experimental nests deserted, while their partner continued to care for their joint offspring alone. Desertion rate was positively related to natural prey population densities and body reserves of the male partner. In response to food supplementation, a larger proportion of the females deserted, and females deserted the offspring at an earlier age. Offspring survival during the post-fledging period tended to be lower in deserted than in non-deserted broods. We argue that the most important benefit of deserting may be remating (sequential polyandry). PMID:19324835

  19. Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance.

    PubMed Central

    Bak, M; Bywater, R P; Hohwy, M; Thomsen, J K; Adelhorst, K; Jakobsen, H J; Sørensen, O W; Nielsen, N C

    2001-01-01

    The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of the alpha-amino-isobutyric acid residues replaced by alanines have been investigated to establish experimental structural constraints and determine the orientation of alamethicin in hydrated phospholipid (dimyristoylphosphatidylcholine) bilayers and to investigate the potential for a major kink in the region of the central Pro(14) residue. From the anisotropic (15)N chemical shifts and (1)H-(15)N dipolar couplings determined for alamethicin with (15)N-labeling on the Ala(6), Val(9), and Val(15) residues and incorporated into phospholipid bilayer with a peptide:lipid molar ratio of 1:8, we deduce that alamethicin has a largely linear alpha-helical structure spanning the membrane with the molecular axis tilted by 10-20 degrees relative to the bilayer normal. In particular, we find compatibility with a straight alpha-helix tilted by 17 degrees and a slightly kinked molecular dynamics structure tilted by 11 degrees relative to the bilayer normal. In contrast, the structural constraints derived by solid-state NMR appear not to be compatible with any of several model structures crossing the membrane with vanishing tilt angle or the earlier reported x-ray diffraction structure (Fox and Richards, Nature. 300:325-330, 1982). The solid-state NMR-compatible structures may support the formation of a left-handed and parallel multimeric ion channel. PMID:11509381

  20. Resolving the bulk ? 15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids

    NASA Astrophysics Data System (ADS)

    Styring, Amy K.; Sealy, Judith C.; Evershed, Richard P.

    2010-01-01

    Stable nitrogen isotope analysis is a fundamental tool in assessing dietary preferences and trophic positions within contemporary and ancient ecosystems. In order to assess more fully the dietary contributions to human tissue isotope values, a greater understanding of the complex biochemical and physiological factors which underpin bulk collagen ? 15N values is necessary. Determinations of ? 15N values of the individual amino acids which constitute bone collagen are necessary to unravel these relationships, since different amino acids display different ? 15N values according to their biosynthetic origins. A range of collagen isolates from archaeological faunal and human bone ( n = 12 and 11, respectively), representing a spectrum of terrestrial and marine protein origins and diets, were selected from coastal and near-coastal sites at the south-western tip of Africa. The collagens were hydrolysed and ? 15N values of their constituent amino acids determined as N-acetylmethyl esters (NACME) via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The analytical approach employed accounts for 56% of bone collagen nitrogen. Reconstruction of bulk bone collagen ? 15N values reveals a 2‰ offset from bulk collagen ? 15N values which is attributable to the ? 15N value of the amino acids which cannot currently be determined by GC-C-IRMS, notably arginine which comprises 53% of the nitrogen unaccounted for (23% of the total nitrogen). The ? 15N values of individual amino acids provide insights into both the contributions of various amino acids to the bulk ? 15N value of collagen and the factors influencing trophic position and the nitrogen source at the base of the food web. The similarity in the ? 15N values of alanine, glutamate, proline and hydroxyproline reflects the common origin of their amino groups from glutamate. The depletion in the ? 15N value of threonine with increasing trophic level indicates a fundamental difference between the biosynthetic pathway of threonine and the other amino acids. The ? 15N value of phenylalanine does not change significantly with trophic level, reflecting its conservative nature as an essential amino acid, and thus represents the isotopic composition of the nitrogen at the base of the food web. ? 15N Glu-Phe values in particular are shown to reflect trophic level nitrogen sources within a food web. In relation to the reconstruction of ancient human diet the contribution of marine and terrestrial protein are strongly reflected in ? 15N Glu-Phe values. Differences in nitrogen metabolism are also shown to have an influence upon individual amino acid ? 15N values with ? 15N Glu-Phe values emphasising differences between the different physiological adaptations. The latter is demonstrated in tortoises, which can excrete nitrogen in the form of uric acid and urea and display negative ? 15N Glu-Phe values whereas those for marine and terrestrial mammals are positive. The findings amplify the potential advantages of compound-specific nitrogen isotope analysis in the study of nitrogen flow within food webs and in the reconstruction of past human diets.

  1. Spectroscopic factors for low-lying 16N levels and the astrophysical 15N(n,gamma)16N reaction rate

    E-print Network

    B. Guo; Z. H. Li; Y. J. Li; J. Su; D. Y. Pang; S. Q. Yan; Z. D. Wu; E. T. Li; X. X. Bai; X. C. Du; Q. W. Fan; L. Gan; J. J. He; S. J. Jin; L. Jing; L. Li; Z. C. Li; G. Lian; J. C. Liu; Y. P. Shen; Y. B. Wang; X. Q. Yu; S. Zeng; L. Y. Zhang; W. J. Zhang; W. P. Liu

    2013-12-31

    Fluorine is a key element for nucleosynthetic studies since it is extremely sensitive to the physical conditions within stars. The astrophysical site to produce fluorine is suggested to be asymptotic giant branch (AGB) stars. In these stars the 15N(n, g)16N reaction could affect the abundance of fluorine by competing with 15N(a, g)19F. The 15N(n, g)16N reaction rate depends directly on the neutron spectroscopic factors of the low-lying states in 16N. The angular distributions of the 15N(7Li, 6Li)16N reaction populating the ground state and the first three excited states in 16N are measured using a Q3D magnetic spectrograph and are used to derive the spectroscopic factors of these states based on distorted wave Born approximation (DWBA) analysis. The spectroscopic factors of these four states are extracted to be 0.96+-0.09, 0.69+-0.09, 0.84+-0.08 and 0.65+-0.08, respectively. Based on the new spectroscopic factors we derive the 15N(n,g)16N reaction rate. The accuracy and precision of the spectroscopic factors are enhanced due to the first application of high-precision magnetic spectrograph for resolving the closely-spaced 16N levels which can not be achieved in most recent measurement. The present result demonstrates that two levels corresponding to neutron transfers to the 2s1/2 orbit in 16N are not so good single-particle levels although 15N is a closed neutron-shell nucleus. This finding is contrary to the shell model expectation. The present work also provides an independent examination to shed some light on the existing discrepancies in the spectroscopic factors and the 15N(n, g)16N rate.

  2. Sources of material for 'loess' deposits at 15°N in North Africa

    NASA Astrophysics Data System (ADS)

    McLaren, Sue; Smalley, Ian; O'Hara-Dhand, Ken

    2014-05-01

    Africa is not a loess-rich continent. Lacking are the large expanses of glacial terrain and the high cold mountain regions, which would have provided the material and processes for loess deposits. African geomorphology and climatic history did not favour the formation of major loess deposits. However, within the African setting there are situations which could lead to particle formation and loess deposition. Loess deposits are made from 'large' dust (i.e. particles around 30µm). Small dust (around 3µm) is generated in large amounts in Africa, and distributed over large distances. Large dust is not generated in significant amounts in Africa, and this accounts for the relative lack of loess deposits. It is a relative lack; examination of the map of loess distribution in the World by Scheidig 1934 (still the best world loess map) shows some possible loess in Africa. In particular there is a band across the continent at around 15°N. We propose some possible sources for this material, and fit these sources into a recently revised deterministic model of loess deposit formation. And look at some exotic but possible indicators of the loessic nature of the 15°N band. Three possible material sources are: (1). The Fonta-Djalon highlands to the west of the loess band, (2). The Bodélé Depression, towards the centre of the loess band, and (3). The Ethiopian highlands to the east. There is a convenient river associated with the loess band; the Niger rises in the Fonta-Djalon region and carries material through the loess zone. The catchment of the Niger is well placed to receive large dust material from the Bodélé depression. Most Bodélé material is small dust carried away in high suspension but small amounts of large dust could be transported to the Niger catchment. Material from the Ethiopian highlands makes up the Nile silt but again some could be transported to the west to contribute to the loess band- which is a modest loess deposit. The deposit can be examined with respect to the deterministic model of loess deposit formation which sets out four event aspects which must be accommodated. PTDC: provenance (of material), transportation, deposition and change- all need to be considered when loess deposit genesis is examined. In the case of the 15°N loess the P actions are speculative, and probably not very effective. In fact the deposits they deliver, as mapped by Scheidig, still have to be established as genuine loess. There are indicators of loessic nature; one is that they are favoured by tunnel nesting birds, in particular bee-eaters. Merops apiaster (the European bee-eater) travels large distances to nest in the European loess. The bee-eater nesting zones map nicely on to European loess distribution. In the 15°N zone there is a concentration of nesting activity by the Northern Carmine bee-eater (Merops nubicus) and we take this as an indicator of ground nature.

  3. sup 14,15 N, sup 13 C, sup 57 Fe, and sup 1,2 H Q-band ENDOR study of Fe-S proteins with clusters that have endogenous sulfur ligands

    SciTech Connect

    Houseman, A.L.P.; Chaoliang Fan; Werst, M.M.; Hoffman, B.M. (Northwestern Univ., Evanston, IL (United States)); Byungha Oh; Markley, J.L. (Univ. of Wisconsin, Madison (United States)); Kennedy, M.C.; Beinert, H. (Medical College of Wisconsin, Milwaukee (United States))

    1992-02-25

    The benefits of performing ENDOR experiments at higher microwave frequency are demonstrated in a Q-band (35 GHz) ENDOR investigation of a number of proteins with (nFe-mS) clusters, n = 2,3,4. Each protein displays several resonances in the frequency range of 0-20 MHz. In all instances, features are seen near {nu} {approx} 13 and 8 MHz that can be assigned, respectively, to distant ENDOR from {sup 13}C in natural-abundance (1.1%) and from {sup 14}N. In addition, a number of proteins show local {sup 13}C ENDOR signals with resolved hyperfine interactions; these are assigned to the {beta} carbons of cysteines bound to the cluster. Quadrupole coupling constants are derived for both local and distant {sup 14}N signals. The interpretation of the data is supported by studies on {sup 15}N- and {sup 13}C-enriched ferredoxin (Fd) from Anabaena 7120, where the {sup 15}N signals can be clearly correlated with the corresponding {sup 14}N signals and where the {sup 13}C signals are strongly enhanced. Thus, the observation of {sup 14}N {Delta}m{sub I} = {plus minus} 2 signals at Q-band provides a new technique for examining weak interactions with a cluster. Six proteins show an additional pattern near {nu} {approx} 18 MHz that arises from {sup 57}Fe in natural abundance (2.2%) with A({sup 57}Fe) {approx} 36 MHz, which opens the possibility of studying proteins for which enrichment is impractical. Q-band ENDOR studies also have been carried out on four {sup 2}H-exchanged Fe-S proteins, and ENDOR detects exchangeable protons in each. The importance of these findings for the interpretation of X- and Q-band ENDOR at low radiofrequencies is discussed.

  4. TEDOR with adiabatic inversion pulses: Resonance assignments of 13C/15N labelled RNAs.

    PubMed

    Riedel, Kerstin; Leppert, Jörg; Ohlenschläger, Oliver; Görlach, Matthias; Ramachandran, Ramadurai

    2005-01-01

    We have examined via numerical simulations the performance characteristics of different 15N RF pulse schemes employed in the transferred echo double resonance (TEDOR) experimental protocol for generating 13C-15N dipolar chemical shift correlation spectra of isotopically labelled biological systems at moderate MAS frequencies (omega(r) approximately 10 kHz). With an 15N field strength of approximately 30-35 kHz that is typically available in 5 mm triple resonance MAS NMR probes, it is shown that a robust TEDOR sequence with significant tolerance to experimental imperfections sa as H1 inhomogeneity and resonance offsets can be effectively implemented using adiabatic heteronuclear dipolar recoupling pulse schemes. TEDOR-based 15N-13C and 15N-13C-13C chemical shift correlation experiments were carried out for obtaining 13C and 15N resonance assignments of an RNA composed of 97 (CUG) repeats which has been implicated in the neuromuscular disease myotonic dystrophy. PMID:15692738

  5. Natural Abundance 43Ca NMR Spectroscopy of Tobermorite and Jennite: Model Compounds for C–S–H

    SciTech Connect

    Bowers, Geoffrey M.; Kirkpatrick, Robert J.

    2009-02-13

    There are few effective methods for characterizing the molecular scale structural environments of Ca2? in hydrated cements, which has limited our ability to understand the structure of, for example, Ca–silicate hydrate (C–S–H). 43Ca nuclear magnetic resonance (NMR) spectroscopy has long been considered too insensitive to provide useful data in this regard, but 43Ca magic angle spinning (MAS) NMR spectra reported here for synthetic tobermorite and jennite with naturally abundant levels of 43Ca demonstrate that this is a viable approach.We show that spectra with useful signal/noise ratios can be obtained in a reasonable acquisition period (~2 days) using an H? field strength of 21.1 T, 5 mm rotors spinning at a frequency of 5 kHz, and a double frequency sweep preparatory pulse sequence. Tobermorite and jennite produce relatively broad resonances due to their complex structures and structural disorder, however, the chemical shift differences between six-coordinate 43Ca in jennite and seven-coordinate 43Ca in 11? tobermorite are large enough that the signals are entirely resolved at this field. These data suggest that signal from ideal tobermorite-like and jennite-like sites in cement C–S–H can most likely be distinguished by 43Ca NMR and that this method will be a powerful approach for studying cement-based ceramic materials in the coming decade.

  6. Natural Abundance Carbon Isotope Composition of Isoprene Reflects Incomplete Coupling between Isoprene Synthesis and Photosynthetic Carbon Flow

    PubMed Central

    Affek, Hagit P.; Yakir, Dan

    2003-01-01

    Isoprene emission from leaves is dynamically coupled to photosynthesis through the use of primary and recent photosynthate in the chloroplast. However, natural abundance carbon isotope composition (?13C) measurements in myrtle (Myrtus communis), buckthorn (Rhamnus alaternus), and velvet bean (Mucuna pruriens) showed that only 72% to 91% of the variations in the ?13C values of fixed carbon were reflected in the ?13C values of concurrently emitted isoprene. The results indicated that 9% to 28% carbon was contributed from alternative, slow turnover, carbon source(s). This contribution increased when photosynthesis was inhibited by CO2-free air. The observed variations in the ?13C of isoprene under ambient and CO2-free air were consistent with contributions to isoprene synthesis in the chloroplast from pyruvate associated with cytosolic Glc metabolism. Irrespective of alternative carbon source(s), isoprene was depleted in 13C relative to mean photosynthetically fixed carbon by 4‰ to 11‰. Variable 13C discrimination, its increase by partially inhibiting isoprene synthesis with fosmidomicin, and the associated accumulation of pyruvate suggested that the main isotopic discrimination step was the deoxyxylulose-5-phosphate synthase reaction. PMID:12692331

  7. Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy.

    PubMed

    Pautler, Brent G; Woods, Gwen C; Dubnick, Ashley; Simpson, André J; Sharp, Martin J; Fitzsimons, Sean J; Simpson, Myrna J

    2012-04-01

    Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes. PMID:22385100

  8. Sources of ?15N variability in sinking particulate nitrogen in the Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Montes, Enrique; Thunell, Robert; Muller-Karger, Frank E.; Lorenzoni, Laura; Tappa, Eric; Troccoli, Luis; Astor, Yrene; Varela, Ramón

    2013-09-01

    Ten years of monthly observations of the ?15N of sinking particulate nitrogen (?15N-PN (in ‰ versus atmospheric N2)=[(15N/14N)sample/(15N/14N)standard)-1]1000) in the Cariaco Basin, Venezuela, confirm that the basin's bottom sediments store information about nitrogen dynamics related to seasonal and interannual variability in regional surface ocean processes. During the upwelling period of the southern Caribbean Sea (February-April), the ?15N-PN is similar to that of the thermocline nitrate (˜3.5‰). This nitrate is imported into the Cariaco Basin with Subtropical Underwater (SUW), which wells up near the coast. Thus, particles generated by phytoplankton photosynthesis during this productive period bear a sub-tropical North Atlantic isotopic imprint of N2 fixation (low compared to the global average of nitrate ?15N?5‰). During the non-upwelling period when surface waters are stratified (September-November), the ?15N-PN is also 3.5-4.0‰, and reflects a mixture of local N2 fixation within the mixed layer, inputs of terrigenous organic matter and SUW nitrate consumption by phytoplankton below the mixed layer, which most likely exerts the strongest control on the ?15N-PN signal during this time. In the transition periods of May-July and December-January, the ?15N-PN increases to 4.5-6.5‰. This coincides with maxima of continental material fluxes (terrestrial PON ?15N is >6‰) into the Cariaco Basin. The ?15N signal in the sediments of the Cariaco Basin thus provides information about the relative strength of the local coastal upwelling, the relative input of continental material via river runoff, and local N2 fixation. The findings contribute to interpretations of the basin's paleoclimatic nitrogen cycle variations based on observations of the sedimentary ?15N record at this location.

  9. Nitrogen Cycling in a Forest Stream Determined a 15N Tracer Addition

    Microsoft Academic Search

    Patrick J. Mulholland; Jennifer L. Tank; Diane M. Sanzone; Wilfred M. Wollheim; Bruce J. Peterson; Jackson R. Webster; Judy L. Meyer

    2000-01-01

    Nitrogen uptake and cycling was examined using a six-week tracer addition of 15N-labeled ammonium in early spring in Walker Branch, a first-order deciduous forest stream in eastern Tennessee. Prior to the 15N addition, standing stocks of N were determined for the major biomass compartments. During and after the addition, 15N was measured in water and in dominant biomass compartments upstream

  10. Seasonal abundance of Agrilus planipennis (Coleoptera: Buprestidae) and its natural enemies Oobius agrili (Hymenoptera: Encyrtidae) and Tetrastichus planipennisi (Hymenoptera: Eulophidae) in China

    Microsoft Academic Search

    Houping Liu; Leah S. Bauer; Deborah L. Miller; Tonghai Zhao; Ruitong Gao; Liwen Song; Qingshu Luan; Ruozhong Jin; Changqi Gao

    2007-01-01

    The seasonal abundance and population dynamics of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) and its natural enemies Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) and Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) were studied on ash (Fraxinus spp.) in northeastern China in 2004 and 2005. A. planipennis population density varied greatly between sites, trees, and heights in Manchurian ash (Fraxinus mandshurica) forests. At

  11. HYDROGEN ISOTOPE PROFILE OF METHYL GROUPS IN MILIACIN (OLEAN-18-EN-3OL ME) BY NATURAL ABUNDANCE DEUTERIUM 2D-NMR

    E-print Network

    Paris-Sud XI, Université de

    HYDROGEN ISOTOPE PROFILE OF METHYL GROUPS IN MILIACIN (OLEAN- 18-EN-3OL ME) BY NATURAL ABUNDANCE.lesot@u-psud.fr; jeremy.jacob@univ-orleans.fr Compound-specific hydrogen isotope analyses are gaining increasing interest to which extent these modifications can be accompanied by a hydrogen isotope fractionation process

  12. Effects of climate on deer bone ?15N and ?13C: Lack of precipitation effects on ?15N for animals consuming low amounts of C 4 plants

    NASA Astrophysics Data System (ADS)

    Cormie, A. B.; Schwarcz, H. P.

    1996-11-01

    We have examined the relationship of bone collagen ?15N and ?13C to climatic variables, humidity, temperature, and amount of precipitation using fifty-nine specimens of North American white-tailed deer ( Odocoileus virginianus) from forty-six different locations. In previous studies of African mammals there was a significant correlation between bone collagen ?15N and local amount of precipitation. Results presented here similarly show an increase in ?15N with decreasing amount of precipitation but only for 25% of the animals, namely those consuming more than 10% C 4 plants. These animals also exhibited a significant correlation between ?13C and temperature which mirrors previous observations for grasses suggesting that these deer consume grasses during times of population and nutrient stress. In contrast, even in dry areas containing high proportions of C 4 grasses, the majority of the deer had consumed low amounts of C 4 plants and these deer did not have ?15N which correlate with amount of precipitation. Only when deer deviated from their normal feeding pattern by consuming C 4 plants or grasses did their ?15N correlate with amount of rainfall. For these animals, consumption of C 4 plants or grasses may signal conditions of water and nutrient stress. An increase in ?15N of bone collagen may result from combined effects from excretion of concentrated urine (to conserve water) and increased internal recycling of nitrogen (to conserve nitrogen).

  13. ?15N constraints on long-term nitrogen balances in temperate forests

    USGS Publications Warehouse

    Perakis, S.S.; Sinkhorn, E.R.; Compton, J.E.

    2011-01-01

    Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and ?15N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha?1 and carbon (C) ranged from 188 to 460 Mg ha?1, with highest values near the coast. Ecosystem ?15N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96–98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N2-fixation, and that were consistent with cycles of post-fire N2-fixation by early-successional red alder. Soil water ?15NO3 ? patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N2-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N2-fixing vegetation.

  14. ?(15)N variation in Ulva lactuca as a proxy for anthropogenic nitrogen inputs in coastal areas of Gulf of Gaeta (Mediterranean Sea).

    PubMed

    Orlandi, Lucia; Bentivoglio, Flavia; Carlino, Pasquale; Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Rossi, Loreto

    2014-07-15

    We tested the capacity of Ulva lactuca to mark N sources across large marine areas by measuring variation in its ?(15)N at several sites in the Gulf of Gaeta. Comparisons were made with the macroalga Cystoseira amentacea. Variation of ?(15)N values was assessed also in the coastal waters off the Circeo Natural Park, where U. lactuca and C. amentacea were harvested, as these waters are barely influenced by human activities and were used as reference site. A small fragment from each frond was preserved before deployment in order to characterize the initial isotopic values. After 48 h of submersion, U. lactuca was more responsive than C. amentacea to environmental variation and ?(15)N enrichment in the Gulf of Gaeta was observed. The spatial distribution of ?(15)N enrichment indicated that different macro-areas in the Gulf were affected by N inputs from different origins. Comparison of the ?(15)N values of fragments taken from the same transplanted frond avoided bias arising from natural isotopic variability. PMID:24923814

  15. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  16. Response of Organic Carbon Fractions in Tropical Soils to Land Use Changes: Evidence from 13-C Natural Abundance

    NASA Astrophysics Data System (ADS)

    Flessa, H.; Paul, S.; Veldkamp, E.

    2008-12-01

    Tropical soils store about one third of the global soil organic carbon. Quantitative knowledge of stabilization and decomposition processes is necessary to understand, assess and predict effects of land use changes on storage and stability of soil organic carbon (SOC). We analyzed the effects of land use (natural forest, pasture, secondary forest) on carbon storage in different organic matter fractions of topsoils developed on different parent material (marine Tertiary sediments and volcanic ashes) in the humid tropics of northwest Ecuador. Soil density fractionation was combined with 13-C analysis to determine the origin and stability of SOC under pasture and secondary forest. Stocks of mineral-associated carbon and particulate, light organic carbon were greater in volcanic ash soils than in sedimentary soils. Conversion of forest to pasture reduced total SOC stocks and it decreased the relative contribution of the light fraction to total SOC storage in both parent materials. Relative changes in SOC stocks were more pronounced in the light fraction than in the total soil carbon. The 13-C abundance in soil carbon fractions revealed that recently incorporated pasture-derived carbon was less stabilized in the volcanic ash soils than in the sedimentary soils. Most of the pasture-derived SOC which accumulated during about 20 years of pasture use was rapidly mineralized under secondary forest in sedimentary soils. The mineral-associated, pasture-derived C was the fraction with the highest stability. In the volcanic ash soils decomposition of pasture-derived SOC was even faster. It was completely lost after 10 to 20 years of secondary forest growth. The results show that the stabilization of recently incorporated SOC depends on the soil type and on the associated mineralogy. They also indicate that recently accumulated SOC stocks in the analyzed topsoils represent rather labile SOC pools.

  17. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  18. Evaluating microbial carbon sources in Athabasca oil sands tailings ponds using natural abundance stable and radiocarbon isotopes

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Pakdel, H.

    2013-12-01

    Natural abundance stable (?13C) and radiocarbon (?14C) isotopes of phospholipid fatty acids (PLFAs) were used to evaluate the carbon sources utilized by the active microbial populations in surface sediments from Athabasca oil sands tailings ponds. The absence of algal-specific PLFAs at three of the four sites investigated, in conjunction with ?13C signatures for PLFAs that were generally within ~3‰ of that reported for oil sands bitumen (~ -30‰), indicated that the microbial communities growing on petroleum constituents were dominated by aerobic heterotrophs. The ?14C values of PLFAs ranged from -906 to -586‰ and pointed to a significant uptake of fossil carbon (up to ~90% of microbial carbon derived from petroleum), particularly in PLFAs (e.g., cy17:0 and cy19:0) often associated with petroleum hydrocarbon degrading bacteria. The comparatively higher levels of 14C in other, less specific PLFAs (e.g., 16:0) indicated the preferential uptake of younger organic matter by the general microbial population (~50-80% of microbial carbon derived from petroleum). Since the main carbon pools in tailings sediment were essentially 'radiocarbon dead' (i.e., no detectable 14C), the principal source for this modern carbon is considered to be the Athabasca River, which provides the bulk of the water used in the bitumen extraction process. The preferential uptake of the minor amount of young and presumably more biodegradable material present in systems otherwise dominated by recalcitrant petroleum constituents has important implications for remediation strategies. On the one hand, it implies that mining-related organic contaminants could persist in the environment long after tailings pond reclamation has begun. Alternatively, it may be that the young, labile organic matter provided by the Athabasca River plays an important role in stimulating or supporting the microbial utilization of petroleum carbon in oil sands tailings ponds via co-metabolism or priming processes. Further research needs to examine the role which priming processes play in controlling the fate of organic contaminants in Athabasca oil sands tailings ponds, such as understanding to what extent the addition of labile material may hinder or enhance microbial uptake of fossil carbon. This knowledge can be subsequently used to optimize conditions which favour natural attenuation processes in reclamation sites following mine closure.

  19. Disturbance and topography shape nitrogen availability and ?15N over long-term forest succession

    EPA Science Inventory

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil ?15N values. We examined soil and foliar patterns in N and ?15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by hu...

  20. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  1. Increased Plant Uptake of Nitrogen from 15N Depleted Fertilizer Using Plant Growth-Promoting Rhizobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The techniques of 15N isotope have been very useful for determining the behavior and fate of N in soil, including the use efficiency of applied N fertilizers by plants. Our objective in this study was to use 15N isotope techniques to demonstrate that a model plant growth-promoting rhizobacteria (PGP...

  2. The use of 15N to measure nitrogen uptake in eutrophic oceans; experimental considerations

    Microsoft Academic Search

    R. C. DUGDALE; F. P. WILKERSON

    1986-01-01

    The use of 15N to measure the flux of nitrogen compounds has become increasingly popular as the techniques and instrumentation for stable isotope analysis have become more widely available. Questions concerning equations for calculating uptake, effect of isotope dilution (in the case of ammonium), duration of incubation, and relationship between disappearance of a nitrogen com- pound and the 15N uptake

  3. Tracking wind-dispersed seeds using (15)N-isotope enrichment.

    PubMed

    Forster, C; Herrmann, J D

    2014-11-01

    Seed dispersal influences a wide range of ecological processes. However, measuring dispersal patterns, particularly long-distance dispersal, has been a difficult task. Marking bird-dispersed seeds with stable (15)N isotopes has been shown to be a user-friendly method to trace seed dispersal. In this study, we determined whether (15)N urea solution could be used to enrich seeds of two common wind-dispersed plants, Eupatorium glaucescens (Asteraceae) and Sericocarpus tortifolius (Asteraceae). We further tested if the water type (distilled versus tap) in (15)N urea solutions influences the level and variability of enrichment of plant seeds, and if increasing spraying frequency per se increases enrichment. Because droughts may lower seed set or kill plants, we wanted to investigate if the additional use of an externally applied anti-transpirant affects the intake of externally applied (15)N into seeds. The results demonstrate that (15)N enrichment of seeds can facilitate dispersal experiments with wind-dispersed plants. The use of distilled water in (15)N urea solutions did not increase (15)N enrichment compared to tap water. Further, enrichment was more efficient at lower spray frequencies. Both the use of tap water and low frequencies could lower time, effort and project costs. The results suggest that species can be protected from drought using an anti-transpirant without decreasing the incorporation of (15)N into seeds. PMID:25174806

  4. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  5. Resonance strengths in the 14N(p, ?)15O and 15N(p, ? ?)12C reactions

    E-print Network

    Michele Marta; Erik Trompler; Daniel Bemmerer; Roland Beyer; Carlo Broggini; Antonio Caciolli; Martin Erhard; Zsolt Fülöp; Eckart Grosse; György Gyürky; Roland Hannaske; Arnd R. Junghans; Roberto Menegazzo; Chithra Nair; Ronald Schwengner; Tamás Szücs; Simone Vezzú; Andreas Wagner; Dmitry Yakorev

    2010-06-01

    The 14N(p, \\gamma)15O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The 15N(p, \\alpha \\gamma)12C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The 14N(p, \\gamma)15O and 15N(p, \\alpha \\gamma)12C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at Ep = 1058 keV in 14N(p, \\gamma)15O and at Ep = 897 and 430 keV in 15N(p, \\alpha \\gamma)12C have been determined with improved precision, relative to the well-known resonance at Ep = 278 keV in 14N(p, \\gamma)15O. The new recommended values are \\omega \\gamma = 0.353$\\pm$0.018, 362$\\pm$20, and 21.9$\\pm$1.0 eV for their respective strengths. In addition, the branching ratios for the decay of the Ep = 1058 keV resonance in 14N(p, \\gamma)15O have been redetermined. The data reported here should facilitate future studies of off-resonant capture in the 14N(p, \\gamma)15O reaction that are needed for an improved R-matrix extrapolation of the cross section. In addition, the data on the 430 keV resonance in 15N(p, \\alpha \\gamma)12C may be useful for hydrogen depth profiling.

  6. Using a macroalgal ?15N bioassay to detect cruise ship waste water effluent inputs.

    PubMed

    Kaldy, James

    2011-08-01

    Green macroalgae bioassays were used to determine if the ?15N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and ?15N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5‰ in ?15N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed ?15N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N2-fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the ?15N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment. PMID:21683418

  7. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  8. Syntheses of 15N-labeled pre-queuosine nucleobase derivatives

    PubMed Central

    Levic, Jasmin

    2014-01-01

    Summary Pre-queuosine or queuine (preQ1) is a guanine derivative that is involved in the biosynthetic pathway of the hypermodified tRNA nucleoside queuosine (Que). The core structure of preQ1 is represented by 7-(aminomethyl)-7-deazaguanine (preQ1 base). Here, we report the synthesis of three preQ1 base derivatives with complementary 15N-labeling patterns, utilizing [15N]-KCN, [15N]-phthalimide, and [15N3]-guanidine as cost-affordable 15N sources. Such derivatives are required to explore the binding process of the preQ1 base to RNA targets using advanced NMR spectroscopic methods. PreQ1 base specifically binds to bacterial mRNA domains and thereby regulates genes that are required for queuosine biosynthesis. PMID:25246950

  9. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹?N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹?N NMR. Liquid state ¹?N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹?N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  10. Importance of bacterivory and preferential selection toward diatoms in larvae of Crepidula fornicata (L.) assessed by a dual stable isotope (13C, 15N) labeling approach

    NASA Astrophysics Data System (ADS)

    Leroy, Fanny; Riera, Pascal; Jeanthon, Christian; Edmond, Frédérique; Leroux, Cédric; Comtet, Thierry

    2012-05-01

    In Europe, the gastropod Crepidula fornicata is an invasive species characterized by a long reproductive period (from February to November). Thus, its larvae are exposed to variations in available food sources (in terms of quantity and quality). We aimed to investigate if bacteria could contribute to larval food both in presence or absence of phytoplankton, and to compare these results to seasonal variations of bacteria and phytoplankton abundances at a coastal site in the English Channel. First, ingestion of fluorescent beads of 0.5 to 2 ?m diameter, showed that larvae were able to ingest particles of typical bacterial size. Then we used a dual stable isotope labeling approach which consisted in labeling a bacterial pelagic community with 15N and a diatom (Chaetoceros gracilis) culture with 13C, and supplying larvae with 15N-labeled bacteria, 13C-labeled diatoms, and both labeled sources. This technique has, to our knowledge, never been applied to invertebrate larvae. After 24 h of experiment, larvae were significantly enriched in all treatments: + 21.5‰ (??13C) when supplied with diatoms, + 1364‰ (??15N) when supplied with bacteria, and + 24‰ (??13C) and + 135‰ (??15N) when supplied with the two mixed sources. These results indicated that bacteria can contribute to the larval nutrition in C. fornicata, even in the presence of phytoplankton. Our results however suggested that larvae of C. fornicata preferentially used diatoms and showed that the supply of free bacteria did not alter the uptake of diatoms. Considering the seasonal variations of bacteria and phytoplankton abundances at the study site, these results suggested that bacteria may constitute a complementary resource for the larvae of C. fornicata when phytoplankton is abundant and may become a substitute resource when phytoplankton is less available. This approach offers promising perspectives to trace food sources and assess nitrogen and carbon fluxes between planktotrophic larvae and their preys.

  11. ?13C and ?15N values in scales of Micropterus salmoides largemouth bass as a freshwater environmental indicator.

    PubMed

    Inamura, O; Zhang, J; Minagawa, M

    2012-01-15

    We have investigated the effectiveness of using the Micropterus salmoides largemouth bass, which is a top predator found throughout the world, as the index of a hydrosphere environment and its food chain. To this end, we used stable carbon and nitrogen isotope analysis (SIA). Largemouth bass were collected from eight dam reservoirs and two ponds in Toyama Prefecture, Japan. Toyama is located in central Japan and features a variety of distinct geographical environments, a result of the 3000-m elevation that changes over short distances, and abundant water systems. The mean ?(13)C and ?(15)N values for the lipid-extracted muscle of largemouth bass from all sampling locations showed large variability, but there were only small standard deviations at each sampling location. The isotope ratios for largemouth bass express the characteristics of each investigated hydrosphere environment and food chain. A very high correlation (?(13)C: Y(scale) = 0.96 X(muscle) + 1.58, R(2) = 0.98, ?(15)N: Y(scale) = 0.92 X(muscle) - 1.15, R(2) = 0.95) of SIA values was found between largemouth bass scales and lipid-extracted muscles, which suggests that the more easily analyzed scales are useful as SIA samples for the monitoring and comparison of hydrosphere environments throughout the world. PMID:22215573

  12. 15N-labelling and preliminary heteronuclear NMR study of Desulfovibrio vulgaris Hildenborough cytochrome c553.

    PubMed

    Morelli, X; Dolla, A; Toci, R; Guerlesquin, F

    1999-04-01

    When using heteronuclear NMR, 15N-labelling is necessary for structural analysis, dynamic studies and determination of complex formation. The problems that arise with isotopic labelling of metalloproteins are due to their complex maturation process, which involves a large number of factors. Cytochromes c are poorly expressed in Escherichia coli and the overexpression that is necessary for 15N-labelling, requires an investigation of the expression host and special attention to growth conditions. We have succeeded in the heterologous expression and the complete and uniform isotopic 15N-labelling of the cytochrome c553 from Desulfovibrio vulgaris Hildenborough, in a sulphate-reducing bacterium, D. desulfuricans G200, by using a growth medium combining 15N-ammonium chloride and 15N-Celtone. These conditions allowed us to obtain approximately 0.8 mg x L-1 of pure labelled cytochrome c553. 1H and 15N-assignments for both the oxidized and the reduced states of cytochrome c553 were obtained from two-dimensional heteronuclear experiments. Pseudocontact effects due to the haem Fe3+ have been analysed for the first time through 15N and 1H chemical shifts in a c-type cytochrome. PMID:10215849

  13. Production of 15N-depleted biomass during cyanobacterial N2-fixation at high Fe concentrations

    NASA Astrophysics Data System (ADS)

    Zerkle, Aubrey L.; Junium, Christopher K.; Canfield, Donald E.; House, Christopher H.

    2008-09-01

    In this study we examine the effects of varying Fe, Mo, and P concentrations on ?15N fractionation during N2 fixation in the cyanobacterium Anabaena variabilis. We show that when grown in Fe-enriched media ([Fe] ? 50 nM), this organism produces biomass up to 3‰ lower in ?15N than when grown in Fe-limited media ([Fe] < 50 nM). A compilation of our data with previous measurements of ?15N in N2-fixing cyanobacteria reveals a general trend toward the production of more 15N-depleted biomass at higher Fe concentrations. We discuss our results in the context of negative ?15N values preserved in Archean and some Phanerozoic sediments, generally attributed to the production of marine organic matter with low ?15N by N2 fixation (and potentially NH4+ regeneration) during periods of fluctuating nutrient dynamics. We suggest that enhanced Fe availability during periods of widespread ocean anoxia can further stimulate the production of 15N-depleted biomass by N2-fixing organisms, contributing to the isotopic record.

  14. Steroselective synthesis and application of L-( sup 15 N) amino acids

    SciTech Connect

    Unkefer, C.J. (Los Alamos National Lab., NM (United States)); Lodwig, S.N. (Centralia Coll., WA (United States). Div. of Science)

    1991-01-01

    We have developed two general approaches to the stereoselective synthesis of {sup 15}N- and {sup 13}C-labeled amino acids. First, labeled serine, biosynthesized using the methylotrophic bacterium M. extorquens AM1, serves as a chiral precursor for the synthesis of other amino acids. For example, pyridoxal phosphate enzymes can be used for the conversion of L-({alpha}-{sup 15}N)serine to L-({alpha}-{sup 15}N)tyrosine, L-({alpha}-{sup 15}N)tryptophan, and L-({alpha}-{sup 15}N)cysteine. In the second approach, developed by Oppolzer and Tamura, an electrophilic amination'' reagent, 1-chloro-1-nitrosocyclohexane, was used to convert chiral enolates into L-{alpha}-amino acids. We prepared 1-chloro-1-({sup 15}N) nitrosocyclohexane and used it to aminate chiral enolates to produce L-({alpha}-{sup 15}N)amino acids. The stereoselectivity of this scheme using the Oppolzer sultam chiral auxiliary is remarkable, producing enantiomer ratios of 200 to 1. 22 refs., 4 figs.

  15. Nitrogen stable isotope composition (?15N) of vehicle-emitted NOx.

    PubMed

    Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg

    2015-02-17

    The nitrogen stable isotope ratio of NOx (?(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of ?(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of ?(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and ?(15)N-NOx was analyzed. The vehicles sampled in this study emitted ?(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted ?(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current ?(15)N-NOx values emitted from vehicles. PMID:25621737

  16. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model

    NASA Astrophysics Data System (ADS)

    Sunshine, J. M.; Pieters, C. M.

    1993-05-01

    The modified Gaussian model (MGM) is used to explore spectra of samples containing multiple pyroxene components as a function of modal abundance. The MGM allows spectra to be analyzed directly, without the use of actual or assumed end-member spectra and therefore holds great promise for remote applications. A series of mass fraction mixtures created from several different particle size fractions are analyzed with the MGM to quantify the properties of pyroxene mixtures as a function of both modal abundance and grain size. Band centers, band widths, and relative band strengths of absorptions from individual pyroxenes in mixture spectra are found to be largely independent of particle size. Spectral properties of both zoned and exsolved pyroxene components are resolved in exsolved samples using the MGM, and modal abundances are accurately estimated to within 5-10 percent without predetermined knowledge of the end-member spectra.

  17. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model

    NASA Technical Reports Server (NTRS)

    Sunshine, Jessica M.; Pieters, Carle M.

    1993-01-01

    The modified Gaussian model (MGM) is used to explore spectra of samples containing multiple pyroxene components as a function of modal abundance. The MGM allows spectra to be analyzed directly, without the use of actual or assumed end-member spectra and therefore holds great promise for remote applications. A series of mass fraction mixtures created from several different particle size fractions are analyzed with the MGM to quantify the properties of pyroxene mixtures as a function of both modal abundance and grain size. Band centers, band widths, and relative band strengths of absorptions from individual pyroxenes in mixture spectra are found to be largely independent of particle size. Spectral properties of both zoned and exsolved pyroxene components are resolved in exsolved samples using the MGM, and modal abundances are accurately estimated to within 5-10 percent without predetermined knowledge of the end-member spectra.

  18. Variable ?15N Diet-Tissue Discrimination Factors among Sharks: Implications for Trophic Position, Diet and Food Web Models

    PubMed Central

    Olin, Jill A.; Hussey, Nigel E.; Grgicak-Mannion, Alice; Fritts, Mark W.; Wintner, Sabine P.; Fisk, Aaron T.

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of ?15N diet-tissue discrimination factors (?15N). As ?15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ?15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ?15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ?15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean ?15N dietary values). Overall, the most suitable species-specific ?15N values decreased with increasing dietary-?15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ?15N value was not supported for this speciose group of marine predatory fishes. For example, the ?15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet ?15N = 9‰) whereas a ?15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet ?15N = 15‰). These data corroborate the previously reported inverse ?15N-dietary ?15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ?15N values that reflect the predators’ ?15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species’ ecological role in their community will be influenced with consequences for conservation and management actions. PMID:24147026

  19. Effects of heavy metals on the nitrogen metabolism of the aquatic moss Fontinalis antipyretica L. ex Hedw. A 15N tracer study.

    PubMed

    Sutter, Kristin; Jung, Klaus; Krauss, Gerd-Joachim

    2002-01-01

    The assessment of pollution in aquatic systems necessitates an accurate indication of toxicity of heavy metals for organisms and ecosystems. We used the stable nitrogen isotope 15N to estimate the influence of the heavy metals Cd, Pb and Zn on the synthesis of nitrogen-containing fractions in the aquatic moss Fontinalis antipyretica. This method permits conclusions concerning inhibitory effects of these heavy metals on the assimilation of nitrogen and the biosynthesis of amino acids and proteins. The moss was exposed to metal concentrations of 25-500 microM over a period of 5-10 days. 15N abundance of exposed plants was compared with that of control plants. Similar to a loss of vitality determined using a fluorometric assay, a decrease of the 15N abundance in the N fractions of Fontinalis antipyretica was measured in dependence on the metal concentration. Nevertheless, the individual inhibition by the distinct metals was different, so that the following order of toxicity was derived: Cd > Pb > Zn. PMID:12515351

  20. Bacterial abundance and aerobic microbial activity across natural and oyster aquaculture habitats during summer conditions in a northeastern Pacific estuary.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We measured sediment properties and the abundance and functional diversity of microbes in Willapa Bay, Washington, USA, to test the response of sediment microbes to oyster aquaculture. Sites spanned the estuary gradient (salinity 24-30) and six different habitat types: eelgrass (Zostera marina), uns...

  1. The natural decline of an introduced species following its initial increase in abundance; an explanation for Ommatoiulus moreletii in Australia

    Microsoft Academic Search

    S. C. McKillup; P. G. Allen; M. A. Skewes

    1988-01-01

    The black Portuguese millipede, Ommatoiulus moreletii, an exotic species first reported in Australia in 1953, shows a pattern of initial eruption and subsequent decline in abundance following its introduction to sites in South Australia. Comparative sampling of new, erupted populations and older, declined populations was done in an attempt to find testable hypotheses to account for the decline. We report

  2. Eastern oyster (Crassostrea virginica) ?15N as a bioindicator of nitrogen sources: Observations and modeling

    PubMed Central

    Fertig, B.; Carruthers, T.J.B.; Dennison, W.C.; Fertig, E.J.; Altabet, M.A.

    2013-01-01

    Stable nitrogen isotopes (?15N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue ?15N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that ?15N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal ?15N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations. PMID:20381097

  3. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian (Los Alamos, NM); Gupta, Goutam (Santa Fe, NM); Bradbury, E. Morton (Santa Fe, NM)

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  4. Distribution of 15N-chlorocholine chloride in eggs of laying hens.

    PubMed

    Songsang, A; Chakeredza, S; Thinggaard, G; Vearasilp, T; ter Meulen, U

    2002-06-01

    The distribution of Chlorocholine chloride (CCC) in the eggs of laying hens was studied using 15N-CCC. Twelve layers (37 weeks old) were divided into four groups and used in this study consisting of three feeding phases. In phase one (7 days), all the hens received a CCC-free diet [165 g CP/kg dry matter (DM); 11.58 MJ ME/kg DM]. In phase two (11 days), four levels of 15N-CCC: 0, 5, 50 and 250 ppm were added to the respective diets, while in phase three (7 days), CCC-free feed was again offered. Egg samples were taken and the 15N content of egg yolk and albumin were determined. At the end of phase two, there was a significant (p < 0.05) increase in 15N content in egg yolk from hens fed the 50 and 250 ppm CCC diets and in albumin from hens fed the 250 ppm CCC diet. The estimated 15N-CCC residue was 1.71, 6.64, 28.80 ppm in egg yolk and 1.58, 1.08 and 4.50 ppm in albumin from hens fed 5, 50 and 250 ppm CCC, respectively. The CCC residue, from quantitative analysis ranged from 0.21 to 0.93 and 0.93 to 2.43 ppm in yolk of hens fed 50 and 250 ppm CCC, respectively, whereas a range of 0.40-1.46 ppm, was found in the albumin of hens fed 250 ppm. The difference in measured CCC in yolk and albumin and that estimated from 15N-CCC could have been due to breakdown products of 15N-CCC. Seven days after withdrawal of 15N-CCC, the estimated 15N-CCC residue in egg yolk decreased to 0.43, 2.45 and 15.59 ppm, on 5, 50 and 250 ppm CCC dietary treatments, respectively, and to 2.46 ppm in albumin from hens fed 250 ppm CCC. The higher increase in 15N content could have been due to a higher incorporation of 15N-CCC into yolk than albumin during the process of rapid yolk deposition. This experiment showed that consumed CCC is distributed both into yolk and albumin in a dose dependent manner and that CCC is metabolized in laying hens. However, the level of CCC in the diet which could lead to accumulation of detectable CCC levels in eggs as observed in this study, is much higher than the established maximum residual limits in grains. PMID:15379914

  5. NMR of Enzymatically Synthesized Uniformly 13C15N-Labeled DNA Oligonucleotides

    Microsoft Academic Search

    Daniel P. Zimmer; Donald M. Crothers

    1995-01-01

    A procedure for the enzymatic synthesis of uniformly 13C15N-labeled DNA oligonucleotides in milligram quantities for NMR studies is described. Deoxynucleotides obtained from microorganisms grown on 13C and 15N nutrient sources are enzymatically phosphorylated to dNTPs, and the dNTPs are incorporated into oligonucleotides using a 3'-5' exonuclease-deficient mutant of Klenow fragment of DNA polymerase I and an oligonucleotide template primer designed

  6. Ecosystem N distribution and ?15N during a century of forest regrowth after agricultural abandonment

    USGS Publications Warehouse

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem ?15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and ?15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and ?15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar ?15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha?1). Temporal trends in soil ?15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil ?15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem ?15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and ?15N.

  7. 1 H, 13 C and 15 N chemical shift referencing in biomolecular NMR

    Microsoft Academic Search

    David S. Wishart; Colin G. Bigam; Jian Yao; Frits Abildgaard; H. Jane Dyson; Eric Oldfield; John L. Markley; Brian D. Sykes

    1995-01-01

    A considerable degree of variability exists in the way that 1H, 13C and 15N chemical shifts are reported and referenced for biomolecules. In this article we explore some of the reasons for this situation and propose guidelines for future chemical shift referencing and for conversion from many common 1H, 13C and 15N chemical shift standards, now used in biomolecular NMR,

  8. Biosynthesis of calystegines: 15N NMR and kinetics of formation in root cultures of Calystegia sepium

    Microsoft Academic Search

    Yvonne Scholl; Bernd Schneider; Birgit Dräger

    2003-01-01

    Calystegines are nortropane alkaloids bearing between three and five hydroxyl groups in various positions. [15N]Tropinone was administered to root cultures of Calystegia sepium and the incorporation into calystegines was followed. Increase of label in calystegines was measured by one-dimensional 15N NMR and inverse-detected 2D NMR techniques. The results show that tropinone and pseudotropine are metabolites in the biosynthetic pathway of

  9. The C$^{14}$N/C$^{15}$N Ratio in Diffuse Molecular Clouds

    E-print Network

    Ritchey, Adam M; Lambert, David L

    2015-01-01

    We report the first detection of C$^{15}$N in diffuse molecular gas from a detailed examination of CN absorption lines in archival VLT/UVES spectra of stars probing local diffuse clouds. Absorption from the C$^{15}$N isotopologue is confidently detected (at $\\gtrsim4\\sigma$) in three out of the four directions studied and appears as a very weak feature between the main $^{12}$CN and $^{13}$CN absorption components. Column densities for each CN isotopologue are determined through profile fitting, after accounting for weak additional line-of-sight components of $^{12}$CN, which are seen in the absorption profiles of CH and CH$^+$ as well. The weighted mean value of C$^{14}$N/C$^{15}$N for the three sight lines with detections of C$^{15}$N is $274\\pm18$. Since the diffuse molecular clouds toward our target stars have relatively high gas kinetic temperatures and relatively low visual extinctions, their C$^{14}$N/C$^{15}$N ratios should not be affected by chemical fractionation. The mean C$^{14}$N/C$^{15}$N ratio ...

  10. Changing gull diet in a changing world: A 150-year stable isotope (?(13) C, ?(15) N) record from feathers collected in the Pacific Northwest of North America.

    PubMed

    Blight, Louise K; Hobson, Keith A; Kyser, T Kurt; Arcese, Peter

    2015-04-01

    The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long-term human impacts. We used stable isotope (?(13) C, ?(15) N) analysis of feathers from glaucous-winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long-term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of ?(13) C and ?(15) N declined since 1860 in both subadult and adult gulls (?(13) C, ~ 2-6‰; ?(15) N, ~4-5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish ?(13) C and ?(15) N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage-based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long-term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional population declines in this species and other piscivores. PMID:25369474

  11. Gas chromatography-mass spectrometry of N-heptafluorobutyryl isobutyl esters of amino acids in the analysis of the kinetics of (/sup 15/N)H/sub 4//sup +/ assimilation in Lemna minor L

    SciTech Connect

    Rhodes, D.; Myers, A.C.; Jamieson, G.

    1981-11-01

    Rapid, sensitive, and selective methods for the determination of the /sup 15/N abundance of amino acids in isotopic tracer experiments with plant tissues are described and discussed. Methodology has been directly tested in an analysis of the kinetics of (/sup 15/N)H/sub 4//sup +/ assimilation in Lemna minor L. The techniques utilize gas chromatography-mass spectrometry selected ion monitoring of major fragments containing the N moiety of N-heptafluorobutyryl isobutyl esters of amino acids. The ratio of selected ion pairs at the characteristic retention time of each amino acid derivative can be used to calcuulate /sup 15/N abundance with an accuracy of +/- 1 atom % excess /sup 15/N using samples containing as little as 30 picomoles of individual amino acids. Up to 11 individual amino acid derivatives can be selectively monitored in a single chromatogram of 30 minutes. It is suggested that these techniques will be useful in situations where the small quantities of N available for analysis have hitherto hindered the use of /sup 15/N-labeled precursors.

  12. Abiotic and biotic factors associated with the presence of Anopheles arabiensis immatures and their abundance in naturally occurring and man-made aquatic habitats

    PubMed Central

    2012-01-01

    Background Anopheles arabiensis (Diptera: Culicidae) is a potential malaria vector commonly present at low altitudes in remote areas in Reunion Island. Little attention has been paid to the environmental conditions driving larval development and abundance patterns in potential habitats. Two field surveys were designed to determine whether factors that discriminate between aquatic habitats with and without An. arabiensis larvae also drive larval abundance, comparatively in man-made and naturally occurring habitats. Methods In an initial preliminary survey, a representative sample of aquatic habitats that would be amenable to an intensive long-term study were selected and divided into positive and negative sites based on the presence or absence of Anopheles arabiensis larvae. Subsequently, a second survey was prompted to gain a better understanding of biotic and abiotic drivers of larval abundance, comparatively in man-made and naturally occurring habitats in the two studied locations. In both surveys, weekly sampling was performed to record mosquito species composition and larval density within individual habitats, as well as in situ biological characteristics and physico-chemical properties. Results Whilst virtually any stagnant water body could be a potential breeding ground for An. arabiensis, habitats occupied by their immatures had different structural and biological characteristics when compared to those where larvae were absent. Larval occurrence seemed to be influenced by flow velocity, macrofauna diversity and predation pressure. Interestingly, the relative abundance of larvae in man-made habitats (average: 0.55 larvae per dip, 95%CI [0.3–0.7]) was significantly lower than that recorded in naturally occurring ones (0.74, 95%CI [0.5–0.8]). Such differences may be accounted for in part by varying pressures that could be linked to a specific habitat. Conclusions If the larval ecology of An. arabiensis is in general very complex and factors affecting breeding site productivity sometimes not easy to highlight, our results, however, highlight lower populations of An. arabiensis immatures compared to those reported in comparable studies conducted in the African continent. Overall, this low larval abundance, resulting from both abiotic and biotic factors, suggests that vector control measures targeting larval habitats are likely to be successful in Reunion, but these could be better implemented by taking environmental variability into account. PMID:22608179

  13. Acetylene inhibition of N2O reduction in laboratory soil and groundwater denitrification assays: evaluation by 15N tracer and 15N site preference of N2O

    NASA Astrophysics Data System (ADS)

    Weymann, Daniel; Well, Reinhard; Lewicka-Szczebak, Dominika; Lena, Rohe

    2013-04-01

    The measurement of denitrification in soils and aquifers is still challenging and often enough associated with considerable experimental effort and high costs. Against this background, the acetylene inhibition technique (AIT) applied in laboratory soil and groundwater denitrification assays is by far the most effective approach. However, this method has been largely criticized, as it is susceptible to underestimate denitrification rates and adds an additional carbon source to the substrates to be investigated. Here we provide evidence that the AIT is not necessarily an inappropriate approach to measure denitrification, that its reliability depends on the drivers governing the process, and that the 15N site preference of N2O (SP) may serve as a tool to assess this reliability. Two laboratory batch experiments were conducted, where sandy aquifer material and a peat soil were incubated as slurries. We established (i) a standard anaerobic treatment by adding KNO3 (10 mg N L-1), (ii) an oxygen treatment by adding KNO3 and O2 (5 mg L-1), and (iii) a glucose treatment by adding KNO3 supplemented with glucose (200 mg C L-1). Both experiments were run under 10 % (v/v) acetylene atmosphere and as 15N tracer treatments using labeled K15NO3 (60 atom % 15N). In the case of the standard anaerobic treatments, we found a very good agreement of denitrification potential obtained by the AIT and 15N tracer methods. SP of N2O of the AIT samples from this treatment ranged between -4.8 and 2.6 ‰ which is indicative for N2O production during bacterial denitrification but not for N2O reduction to N2. In contrast, we observed substantial underestimation of denitrification by AIT for the glucose treatments compared to the 15N method, i.e. denitrification was underestimated by 36 % (sandy aquifer material) and 47 % (peat soil). SP of N2O of the AIT samples from this treatment ranged between 4.5 and 9.6 ‰, which suggests occurrence of bacterial N2O reduction. In the case of the oxygen treatments, we observed a very good agreement of denitrification potential obtained by the AIT and 15N tracer methods for the aquifer material, but a significant underestimation of 20 % in the AIT samples of the peat soil. The 15N site preference of N2O again mirrored this and ranged between -1.2 and -3.5 ‰ (aquifer material) and 5.5 and 11.0 (peat soil), respectively. We conclude that the AIT can act as a reliable method in laboratory soil and groundwater bacterial denitrification assays, but our results suggest that this relies on substrate types and incubation conditions. Additional measurements of SP have potential to assess AIT efficacy and can help to reduce parallel time-consuming and expensive 15N tracer experiments.

  14. Sewage derive [sup 15]N in the Baltic traced in fucus

    SciTech Connect

    Hobbie, J.E.; Fry, B. (The Ecosystems Center, Woods Hole, MA (United States)); Larsson, U.; Elmgren, R. (Univ. of Sotckholm (Sweden))

    1990-01-09

    Himmerfjarden, a fjord-like bay on the eastern shore of the Baltic, receives treated sewage from 250,000 inhabitants. Because the inorganic N in the effluent is enriched in [sup 15]N through denitrification, nitrification, and ammonia volatilization, an analysis of the distribution of [sup 15]N in the Bay tells how far from the source the sewage nitrogen moves. The attached macroalga Fucus vesiculosus was collected in early May from rocky shore at 0-0.5 m depth and the [sup 15]N content of the tips of the fronds analyzed. This N represents uptake and storage during the previous six months and growth during March and April. The [delta][sup 15]N was uniformly high (11-13[per thousand]) in the main body of the Bay within 15 km from the sewage source. Beyond 15 km values decreased with distance to a low of 4.6[per thousand] at 35 km, where the Bay ends and the coastal waters begin. Using the 11-13 and 4.6[per thousand] as endmembers, the percentage of sewage N making up the Fucus at any point may be calculated. The [delta][sub 15]N of particulate organic matter in the offshore Baltic waters was around 0[per thousand] and Fucus had an [delta][sup 15]N about 1.5[per thousand] higher than the POM. From this and other evidence we conclude that there is a belt of coastal water with an elevated [delta][sup 15]N lying along the east coast of the Baltic. This presumably derives from sewage and perhaps from agriculture and is potentially of use as a tracer of coastal zone/pelagic zone interactions.

  15. Soil N and 15N variation with time in a California annual grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Brenner, Dana L.; Amundson, Ronald; Baisden, W. Troy; Kendall, Carol; Harden, Jennifer

    2001-11-01

    The %N and ? 15N values of soils and plants were measured along a chronosequence spanning 3 to 3000 Ky in a California annual grassland. Total soil N decreased with increasing soil age (1.1 to 0.4 kg N m -2) while the mean ? 15N values of the soil N increased by several ‰ from the youngest to oldest sites (+3.5 to +6.2 ‰). The ? 15N values of plants varied along the gradient, reflecting changing soil N pools and differences in the form of N uptake. The decline in total N storage with time is hypothesized to be due to a shift from N to P limitation with increasing soil age. The general increase in ? 15N values with time is interpreted using a N mass balance model, and appears to reflect a shift toward an increasing proportional losses of inorganic mineral forms of N (vs. organic forms) with increasing soil age. We develop a quantitative index of this trend (mineral vs. organic forms of N loss) using mass balance considerations and parameters. The %N and ? 15N values along the California age gradient were compared to the published data for a comparably aged chronosequence in Hawaii. Most striking in this comparison is the observation that the California soil and plant ? 15N values are several ‰ greater than those on comparably aged Hawaiian sites. Multiple explanations are plausible, but assuming the sites have a similar range in ? 15N values of atmospheric inputs, the isotopic differences suggest that N may be, at least seasonally, in greater excess in the strongly seasonal, semi-arid, California grassland.

  16. A new method to track seed dispersal and recruitment using 15N isotope enrichment.

    PubMed

    Carlo, Tomás A; Tewksbury, Joshua J; Martínez Del Río, Carlos

    2009-12-01

    Seed dispersal has a powerful influence on population dynamics, genetic structuring, evolutionary rates, and community ecology. Yet, patterns of seed dispersal are difficult to measure due to methodological shortcomings in tracking dispersed seeds from sources of interest. Here we introduce a new method to track seed dispersal: stable isotope enrichment. It consists of leaf-feeding plants with sprays of 15N-urea during the flowering stage such that seeds developed after applications are isotopically enriched. We conducted a greenhouse experiment with Solanum americanum and two field experiments with wild Capsicum annuum in southern Arizona, USA, to field-validate the method. First, we show that plants sprayed with 15N-urea reliably produce isotopically enriched progeny, and that delta 15N (i.e., the isotopic ratio) of seeds and seedlings is a linear function of the 15N-urea concentration sprayed on mothers. We demonstrate that three urea dosages can be used to distinctly enrich plants and unambiguously differentiate their offspring after seeds are dispersed by birds. We found that, with high urea dosages, the resulting delta 15N values in seedlings are 10(3) - 10(4) times higher than the delta 15N values of normal plants. This feature allows tracking not only where seeds arrive, but in locations where seeds germinate and recruit, because delta 15N enrichment is detectable in seedlings that have increased in mass by at least two orders of magnitude before fading to normal delta 15N values. Last, we tested a mixing model to analyze seed samples in bulk. We used the delta 15N values of batches (i.e., combined seedlings or seeds captured in seed traps) to estimate the number of enriched seeds coming from isotopically enriched plants in the field. We confirm that isotope enrichment, combined with batch-sampling, is a cheap, reliable, and user-friendly method for bulk-processing seeds and is thus excellent for the detection of rare dispersal events. This method could further the study of dispersal biology, including the elusive, but critically important, estimation of long-distance seed dispersal. PMID:20120818

  17. Distribution of 15N in amino acids during 15N-leucine infusion: impact on the estimation of endogenous flows in dairy cows.

    PubMed

    Lapierre, H; Ouellet, D R; Berthiaume, R; Martineau, R; Holtrop, G; Lobley, G E

    2008-07-01

    The distribution of (15)N in AA during [(15)N]Leu infusion and its impact on the estimation of endogenous nitrogen (EN) flows in dairy cows was evaluated in 4 lactating cows equipped with ruminal, duodenal (n = 4), and ileal (n = 2) cannulae fed a silage-based diet during a 35-d experimental period. To label EN, starting on d 27, an infusion of L-[(15)N]Leu (0.45 mmol/h) was performed for 200 h. Samples of feed, duodenal and ileal digesta, feces, blood, urine, and mucosa of the rumen and duodenum were taken at 0900, 1100, 1300, and 1500 h on d 34 and at 0800, 1000, 1200, and 1400 h on d 35. The enrichment and fluxes of total N and individual AA were determined and used to calculate the EN flows at the duodenum, ileum, and in the feces. Based on the concept that EN comprises desquamation and secretions, EN flows were estimated, using as representative of the enrichment of EN only the enrichment of the gut mucosa (upper limit) or the average of the mucosa and the export protein enrichment (assumed to have a similar enrichment to casein; lower limit). Estimations of duodenal and fecal EN flows using the isotope dilution of (15)N-total and (15)N-Leu were not different and EN was an important fraction of duodenal and fecal flows, representing 14 to 30% of the duodenal flow and 18 to 31% of the fecal flow, depending on the dilution method used. The total EN flow at the duodenum is present in approximately equal proportions as either free EN or EN incorporated into bacterial protein. Ileal EN flow was 18% greater than the fecal EN flow. Using the combination of the gut and export protein, the duodenal and fecal EN flows estimated with the isotopic dilution of Leu vs. other labeled AA were less different than when estimated using the enrichment of gut mucosa alone. The current approaches have highlighted that present prediction schemes probably underestimate EN flows at the duodenum and, in consequence, overestimate net protein and AA supply. Refinement of the procedures may allow direct and accurate estimation of metabolic fecal protein, an important component of the so-called maintenance requirement of dairy cows. PMID:18565929

  18. Variability in the trophic position of larval fishes in the upper Paraná floodplain based on ?15N.

    PubMed

    Manetta, Gislaine I; Bialetzki, Andréa; Martinelli, Luiz A; Benedito, Evanilde

    2011-06-01

    The upper Paraná River floodplain is composed of several marginal lagoons, making it a natural breeding ground for many fish species at developmental stages. The aim of this study is to estimate the trophic positions of these fishes based on feed intake (measured via diet) and nitrogen assimilation (measured via ?(15)N). The monthly samplings were concentrated during the spawning season in the Ivinheima River, which is located in the upper Paraná River floodplain. The specimens were grouped into preflexion, flexion and postflexion stages. Trophic positions were estimated based on the isotope value of nitrogen and on diet. During the developmental stages of P. squamosissimus, there were significant differences in the isotope values of ?(15)N; for H. edentatus, however, no significant differences were found. During the developmental stages, both species were classified as either at or above the third trophic level. Once this information is obtained for other species and components of the ecosystem, it will not only provide a more precise view of the energy allocation and flow in the ecosystem, but will also make possible for management measures to promote sustainability in this environment. PMID:21670879

  19. Complexity of the food web structure of the Ascophyllum nodosum zone evidenced by a ?13C and ?15N study

    NASA Astrophysics Data System (ADS)

    Golléty, Claire; Riera, Pascal; Davoult, Dominique

    2010-10-01

    Rocky shores dominated by canopy-forming macroalgae are characterized by complex communities making it difficult to assess whether the most abundant primary producers are at the base of the food web. This difficulty is exacerbated by the seasonal- and regional-scale variations of environmental and biotic factors that can affect the main trophic pathways. The food web structure of the Ascophyllum nodosum zone was studied during three seasons and at two sites separated by several 100s of kilometers by measuring the ?13C and ?15N of the major food sources and the dominant consumers of the zone. Despite the variability in isotopic compositions, both sites underwent similar significant seasonal variations. The main primary producers of the zone, A.nodosum, Fucus vesiculosus and Fucus serratus, were not at the base of the main trophic pathway but part of the diverse number of basal resources supporting the food web. The use of community-wide metric indices allowed further defining the food web structure of the A. nodosum zone as one characterized by trophic redundancy and numerous major trophic pathways. Indeed, grazers were dominated by generalists, filter-feeders utilized both planktonic and benthic organic matter, and predators displayed a high degree of omnivory. The range of values in ?15N showed a high spatiotemporal variability within and an important overlap between trophic groups. This prevented establishing distinctive trophic levels and further emphasized the complexity of the food web structure. The spatiotemporal stability of the relative isotopic composition of the dominant consumers within trophic groups and the low variability of the community-wide indices suggested a stability of the food web structure of the A.nodosum zone at a regional scale.

  20. Oak loss increases foliar nitrogen, ?(15)N and growth rates of Betula lenta in a northern temperate deciduous forest.

    PubMed

    Falxa-Raymond, Nancy; Patterson, Angelica E; Schuster, William S F; Griffin, Kevin L

    2012-09-01

    Oak forests dominate much of the eastern USA, but their future is uncertain due to a number of threats and widespread failure of oak regeneration. A sudden loss of oaks (Quercus spp.) could be accompanied by major changes in forest nitrogen (N) cycles with important implications for plant nutrient uptake and tree species composition. In this study, we measured the changes in N use and growth rates of black birch trees (Betula lenta L.) following oak girdling at the Black Rock Forest in southeastern New York, USA. Data were collected from nine experimental plots composed of three treatments: 100% oaks girdled (OG), 50% oaks girdled (O50) and control (C). Foliar N concentration and foliar (15)N abundance increased significantly in the oak-girdled plots relative to the control, indicating that the loss of oaks significantly altered N cycling dynamics. As mineralization and nitrification rates increase following oak loss, black birch trees increase N absorption as indicated by higher foliar N content and increased growth rates. Foliar N concentration increased by 15.5% in the O50 and 30.6% in the OG plots relative to the control, while O50 and OG plots were enriched in (15)N by 1.08‰ and 3.33‰, respectively (P?

  1. Multiple regression models of ?13C and ?15N for fish populations in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Radabaugh, Kara R.; Peebles, Ernst B.

    2014-08-01

    Multiple regression models were created to explain spatial and temporal variation in the ?13C and ?15N values of fish populations on the West Florida Shelf (eastern Gulf of Mexico, USA). Extensive trawl surveys from three time periods were used to acquire muscle samples from seven groundfish species. Isotopic variation (?13Cvar and ?15Nvar) was calculated as the deviation from the isotopic mean of each fish species. Static spatial data and dynamic water quality parameters were used to create models predicting ?13Cvar and ?15Nvar in three fish species that were caught in the summers of 2009 and 2010. Additional data sets were then used to determine the accuracy of the models for predicting isotopic variation (1) in a different time period (fall 2010) and (2) among four entirely different fish species that were collected during summer 2009. The ?15Nvar model was relatively stable and could be applied to different time periods and species with similar accuracy (mean absolute errors 0.31-0.33‰). The ?13Cvar model had a lower predictive capability and mean absolute errors ranged from 0.42 to 0.48‰. ?15N trends are likely linked to gradients in nitrogen fixation and Mississippi River influence on the West Florida Shelf, while ?13C trends may be linked to changes in algal species, photosynthetic fractionation, and abundance of benthic vs. planktonic basal resources. These models of isotopic variability may be useful for future stable isotope investigations of trophic level, basal resource use, and animal migration on the West Florida Shelf.

  2. Delta15N of soil N and plants in a N-saturated, subtropical forest of southern China.

    PubMed

    Koba, K; Isobe, K; Takebayashi, Y; Fang, Y T; Sasaki, Y; Saito, W; Yoh, M; Mo, J; Liu, L; Lu, X; Zhang, T; Zhang, W; Senoo, K

    2010-09-15

    We investigated the delta(15)N profile of N (extractable NH(4)(+), NO(3)(-), and organic N (EON)) in the soil of a N-saturated subtropical forest. The order of delta(15)N in the soil was EON > NH(4)(+) > NO(3)(-). Although the delta(15)N of EON had been expected to be similar to that of bulk soil N, it was higher than that of bulk soil N by 5 per thousand. The difference in delta(15)N between bulk soil N and EON (Delta(15)N(bulk-EON)) was correlated significantly with the soil C/N ratio. This correlation implies that carbon availability, which determines the balance between N assimilation and dissimilation of soil microbes, is responsible for the high delta(15)N of EON, as in the case of soil microbial biomass delta(15)N. A thorough delta(15)N survey of available N (NH(4)(+), NO(3)(-), and EON) in the soil profiles from the organic layer to 100 cm depth revealed that the delta(15)N of the available N forms did not fully overlap with the delta(15)N of plants. This mismatch in delta(15)N between that of available N and that of plants reflects apparent isotopic fractionation during N uptake by plants, emphasizing the high N availability in this N-saturated forest. PMID:20740523

  3. Hyperpolarized 15N-pyridine Derivatives as pH-Sensitive MRI Agents

    PubMed Central

    Jiang, Weina; Lumata, Lloyd; Chen, Wei; Zhang, Shanrong; Kovacs, Zoltan; Sherry, A. Dean; Khemtong, Chalermchai

    2015-01-01

    Highly sensitive MR imaging agents that can accurately and rapidly monitor changes in pH would have diagnostic and prognostic value for many diseases. Here, we report an investigation of hyperpolarized 15N-pyridine derivatives as ultrasensitive pH-sensitive imaging probes. These molecules are easily polarized to high levels using standard dynamic nuclear polarization (DNP) techniques and their 15N chemical shifts were found to be highly sensitive to pH. These probes displayed sharp 15N resonances and large differences in chemical shifts (?? >90?ppm) between their free base and protonated forms. These favorable features make these agents highly suitable candidates for the detection of small changes in tissue pH near physiological values. PMID:25774436

  4. Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Dehouck, Erwin; McLennan, Scott M.; Meslin, Pierre-Yves; Cousin, Agnès.

    2014-12-01

    X-ray diffraction patterns of the three samples analyzed by Curiosity's Chemistry and Mineralogy (CheMin) instrument during the first year of the Mars Science Laboratory mission—the Rocknest sand, and the John Klein and Cumberland drill fines, both extracted from the Sheepbed mudstone—show evidence for a significant amorphous component of unclear origin. We developed a mass balance calculation program that determines the range of possible chemical compositions of the crystalline and amorphous components of these samples within the uncertainties of mineral abundances derived from CheMin data. In turn, the chemistry constrains the minimum abundance of amorphous component required to have realistic compositions (all oxides ? 0 wt %): 21-22 wt % for Rocknest and 15-20 wt % for Cumberland, in good agreement with estimates derived from the diffraction patterns (~27 and ~31 wt %, respectively). Despite obvious differences between the Rocknest sand and the Sheepbed mudstone, the amorphous components of the two sites are chemically very similar, having comparable concentrations of SiO2, TiO2, Al2O3, Cr2O3, FeOT, CaO, Na2O, K2O, and P2O5. MgO tends to be lower in Rocknest, although it may also be comparable between the two samples depending on the exact composition of the smectite in Sheepbed. The only unambiguous difference is the SO3 content, which is always higher in Rocknest. The observed similarity suggests that the two amorphous components share a common origin or formation process. The individual phases possibly present within the amorphous components include: volcanic (or impact) glass, hisingerite (or silica + ferrihydrite), amorphous sulfates (or adsorbed SO42-), and nanophase ferric oxides.

  5. Rapid and automated processing of MALDI-FTICR/MS data for 15N-metabolic labeling in a shotgun proteomics analysis

    NASA Astrophysics Data System (ADS)

    Jing, Li; Amster, I. Jonathan

    2009-10-01

    Offline high performance liquid chromatography combined with matrix assisted laser desorption and Fourier transform ion cyclotron resonance mass spectrometry (HPLC-MALDI-FTICR/MS) provides the means to rapidly analyze complex mixtures of peptides, such as those produced by proteolytic digestion of a proteome. This method is particularly useful for making quantitative measurements of changes in protein expression by using 15N-metabolic labeling. Proteolytic digestion of combined labeled and unlabeled proteomes produces complex mixtures with many mass overlaps when analyzed by HPLC-MALDI-FTICR/MS. A significant challenge to data analysis is the matching of pairs of peaks which represent an unlabeled peptide and its labeled counterpart. We have developed an algorithm and incorporated it into a computer program which significantly accelerates the interpretation of 15N-metabolic labeling data by automating the process of identifying unlabeled/labeled peak pairs. The algorithm takes advantage of the high resolution and mass accuracy of FTICR mass spectrometry. The algorithm is shown to be able to successfully identify the 15N/14N peptide pairs and calculate peptide relative abundance ratios in highly complex mixtures from the proteolytic digest of a whole organism protein extract.

  6. Nitrate removal in two relict oxbow urban wetlands: a 15N mass-balance approach

    NASA Astrophysics Data System (ADS)

    Harrison, M. D.; Groffman, P. M.; Mayer, P. M.; Kaushal, S.

    2012-12-01

    A mass-balance approach was used to directly determine the flow of 15NO3- to plants, algae, and sediments,with unaccounted for 15N assumed to be denitrified. During the summer, plant and algal uptake accounted for 42%, of the added 15NO3 - in oxbow 1, less than 1% remained in the water column and 57% was unaccounted for. In oxbow 2 during the summer, plant and algal uptake accounted for 63% of the added 15NO3 -, with 1% remaining in the water column and 38% unaccounted for. During the early spring, plant and algal uptake were much lower in both oxbows, ranging from 0.05 to 13.3% of the 15N added, with 97 and 87% was unaccounted for in oxbow 1 and 2, respectively. The amount of unaccounted for 15N was equivalent to estimated areal denitrification rates of 12 and 6 mg N m-2 d-1 in the summer and 78 and 15 mg N m-2 d-1 in the spring, in oxbow 1 and oxbow 2, respectively. However, the uncertainty of these estimates is high as it was difficult to detect accumulation of 15N in the sediments which could have accounted for a very large percentage of the added 15N. Our results suggest that the two relict oxbow wetlands are sinks for NO3 - during both summer and spring. Plane view of Ox1 (A) and Ox2 (B) wetlands with closed contour intervals (color scale) and surrounding stream and upland elevations (labeled in black) located at Minebank Run, near Glen Arms, MD. 15N enrichment (atom %) of measured N pools prior to (Day 0) and after (Day 5) the end of the experiment in July 2009 and April 2010 for Ox1 and Ox2. Values are mean atom % (n = 2 algae, macrophytes and sediment; n = 6 for water samples).

  7. Sensitivity enhancement in natural-abundance solid-state 33S MAS NMR spectroscopy employing adiabatic inversion pulses to the satellite transitions

    NASA Astrophysics Data System (ADS)

    Hansen, Michael Ryan; Brorson, Michael; Bildsøe, Henrik; Skibsted, Jørgen; Jakobsen, Hans J.

    2008-02-01

    The WURST (wideband uniform rate smooth truncation) and hyperbolic secant (HS) pulse elements have each been employed as pairs of inversion pulses to induce population transfer (PT) between the four energy levels in natural abundance solid-state 33S (spin I = 3/2) MAS NMR, thereby leading to a significant gain in intensity for the central transition (CT). The pair of inversion pulses are applied to the satellite transitions for a series of inorganic sulfates, the sulfate ions in the two cementitious materials ettringite and thaumasite, and the two tetrathiometallates (NH 4) 2WS 4 and (NH 4) 2MoS 4. These materials all exhibit 33S quadrupole coupling constants ( CQ) in the range 0.1-1.0 MHz, with precise CQ values being determined from analysis of the PT enhanced 33S MAS NMR spectra. The enhancement factors for the WURST and HS elements are quite similar and are all in the range 1.74-2.25 for the studied samples, in excellent agreement with earlier reports on HS enhancement factors (1.6-2.4) observed for other spin I = 3/2 nuclei with similar CQ values (0.3-1.2 MHz). Thus, a time saving in instrument time by a factor up to five has been achieved in natural abundance 33S MAS NMR, a time saving which is extremely welcome for this important low-? nucleus.

  8. Sensitivity enhancement in natural-abundance solid-state 33S MAS NMR spectroscopy employing adiabatic inversion pulses to the satellite transitions.

    PubMed

    Hansen, Michael Ryan; Brorson, Michael; Bildsøe, Henrik; Skibsted, Jørgen; Jakobsen, Hans J

    2008-02-01

    The WURST (wideband uniform rate smooth truncation) and hyperbolic secant (HS) pulse elements have each been employed as pairs of inversion pulses to induce population transfer (PT) between the four energy levels in natural abundance solid-state (33)S (spin I=3/2) MAS NMR, thereby leading to a significant gain in intensity for the central transition (CT). The pair of inversion pulses are applied to the satellite transitions for a series of inorganic sulfates, the sulfate ions in the two cementitious materials ettringite and thaumasite, and the two tetrathiometallates (NH(4))(2)WS(4) and (NH(4))(2)MoS(4). These materials all exhibit (33)S quadrupole coupling constants (C(Q)) in the range 0.1-1.0 MHz, with precise C(Q) values being determined from analysis of the PT enhanced (33)S MAS NMR spectra. The enhancement factors for the WURST and HS elements are quite similar and are all in the range 1.74-2.25 for the studied samples, in excellent agreement with earlier reports on HS enhancement factors (1.6-2.4) observed for other spin I=3/2 nuclei with similar C(Q) values (0.3-1.2 MHz). Thus, a time saving in instrument time by a factor up to five has been achieved in natural abundance (33)S MAS NMR, a time saving which is extremely welcome for this important low-gamma nucleus. PMID:18082436

  9. ?15N measurement of organic and inorganic substances by EA-IRMS: a speciation-dependent procedure.

    PubMed

    Gentile, Natacha; Rossi, Michel J; Delémont, Olivier; Siegwolf, Rolf T W

    2013-01-01

    Little attention has been paid so far to the influence of the chemical nature of the substance when measuring ?(15)N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of ?(15)N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH(4)NO(3)) and potassium nitrate (KNO(3)) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH(4))(2)SO(4)]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V(2)O(5)) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, ?(15)N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the thermochemistry of the substances and the analytical technique itself. The results emphasise the difference in chemical nature of inorganic and organic samples, which necessarily involves distinct thermochemistry when analysed by EA-IRMS. Therefore, they should not be processed using the same analytical procedure. This clearly impacts on the way international secondary reference materials should be used for the calibration of organic laboratory standards. PMID:23099528

  10. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine ?13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 ?gC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 ?gC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 ?gC, and a blank isotopic value of 0.54±0.05 fMC. The size of the blank agreed well with that determined directly by processing variable volumes of UV-irradiated deionized water (5.6±0.7 ?gC, n=9). The size of the blank amounts to <~5% of the size of porewater DOC samples that are typically recovered from organic-rich sediment cores (~100-500 ?gC). The fMC value of the blank suggests that there may be multiple sources of extraneous carbon that range in 14C abundance. In order to assess the fidelity of 14C abundances in natural porewater DOC oxidized by thermal sulfate reduction, we oxidized porewater DOC samples collected from the central floor of the Santa Monica Basin, California Borderland, using both this method and UV irradiation (the latter carried out at the Druffel laboratory, University of California Irvine). The fMC values obtained by the two methods agreed within error. Carbon yields from the two methods also agreed closely. These findings show that thermal sulfate reduction may be a promising method to oxidize small, concentrated marine DOC samples for 14C analysis.

  11. A Survey of \\delta18O and \\delta15N Ratios in Ground Water from an Agricultural Community in the San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Glowacki, S. D.; Suen, C. J.

    2004-12-01

    We studied ground water samples from domestic and monitoring wells in an agricultural community in the eastern side of the San Joaquin Valley, California. The study area is rich in alluvial soils creating an extremely fertile farmland. Livestock farms and agricultural fields are abundant in the area. Fifty-four ground water samples were analyzed for \\delta18O and \\delta15N in dissolved nitrate, in addition to nutrients and major minerals. Nitrate concentration levels in groundwater are elevated and affected by agricultural and other activities. Possible sources of nutrients include: a municipal waste-water treatment facility, a raisin processing plant, a meat processing plant, a turkey farm, diary operations, and agricultural fields. However, except for the turkey farm and a diary, we found no statistical significant contribution of nitrate from the other facilities as compared to the rest of the area. The \\delta18O versus \\delta15N ratios plot of dissolved ground water nitrate shows most samples clustered around an area consistent with soil organic nitrogen. In addition, the rest of the samples show a trend that is indicative of denitrification process. Generally, high \\delta15N values are associated with low nitrate concentrations. The isotopic signal of denitrification is particularly pronounced in samples in the vicinity of the waste water treatment facility, where the highest values of \\delta15N and the lowest nitrate concentrations are observed. However, these samples also have elevated chloride concentrations indicating a waste-water source. These data suggest that the denitrification in the subsurface may have been enhanced by bacteria species introduced by the effluence of the plant. [This study was performed with the collaboration of Steven R Silva of USGS, Menlo Park, and Iris Yamagata and Holly Jo Ferrin of California Department of Water Resources.

  12. Variation in environmental conditions, understorey species number, abundance and composition among natural and managed Picea abies forest stands

    Microsoft Academic Search

    Tonje Økland; Knut Rydgren; Rune Halvorsen Økland; Ken Olaf Storaunet; Jørund Rolstad

    2003-01-01

    We studied four south-facing and three north-facing boreal spruce forest stands (ca. 0.1ha each) in SE Norway with the aim of testing the hypothesis that former logging has long-term effects on boreal forest-floor vegetation. The stand series comprised unlogged natural forests and forests that were selectively or clear cut 60–70 years prior to our study. Each stand was described with

  13. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  14. ? 15N values in Lake Erie sediments as indicators of nitrogen biogeochemical dynamics during cultural eutrophication

    Microsoft Academic Search

    Yuehan Lu; Philip A. Meyers; Thomas H. Johengen; Brian J. Eadie; John A. Robbins; Haejin Han

    2010-01-01

    We have measured the stable nitrogen isotope values (?15N) in two sediment cores sampled 15years apart (1988 and 2003) from the Eastern Basin of Lake Erie and compared them to the total phosphorus (TP) and biogenic silica (BSi) concentrations in the 2003 core. Changes in the TP, BSi and total nitrogen (TN) accumulations in the 2003 core correspond to three

  15. Asymptotic normalization coefficient and important astrophysical process 15N(p,?)160

    NASA Astrophysics Data System (ADS)

    Mukhamedzhanov, A. M.; Banu, A.; Bem, P.; Burjan, V.; Gagliardi, C. A.; Goldberg, V. Z.; Hons, Z.; Kroha, V.; La Cognata, M.; Pisko?, Š.; Pizzone, R. G.; Romano, S.; Šime?ková, E.; Spitaleri, C.; Trache, L.; Tribble, R. E.

    2010-01-01

    In this work we report the application of the ANC method for the determination of the non-resonant radiative capture amplitude for the important astrophysical CNO cycle reaction 15N(p, ?) 16O, which provides a leak from the CN cycle into the CNO bi-cycle and CNO tri-cycle. It is contributed by the resonance capture to the ground state through two strong 1- resonances and non-resonant capture to the ground state, which interferes with the resonant capture terms. To determine more accurately the contribution from the non-resonant capture we determined the proton ANCs for the ground and seven excited states of 16O by measuring the angular distributions of the peripheral 15N(3He, d)16O proton transfer reaction. Using these ANCs and proton and ? resonance widths determined from an R-matrix fit to the data from the 15N(p, ?)12C reaction, we calculated the astrophysical S factor for the 15N(p, ?)16O reaction. The results indicate that the direct capture contribution was previously overestimated. We find the astrophysical factor to be S(0) = 36.0 ± 6.0 keVb, which is about a factor of two lower than the presently accepted value. We conclude that for every 2200 ± 300 cycles of the main CN cycle one CN catalyst is lost due to this reaction.

  16. 15N Uptake from Manure and Fertilizer Sousrces by Three Consecutive Crops Under Controlled Conditions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The North Central “La Comarca Lagunera” region (25° 31’ N, 103° 14’ W), is one of the most important dairy production areas of Mexico. We conducted the first isotopic nitrogen (15N) labeled manure study in Mexico to assess the potential to supply nitrogen (N) to three consecutive forage crops with a...

  17. Sources of d15 N variability in sinking particulate nitrogen in the Cariaco

    E-print Network

    Meyers, Steven D.

    to interpretations of the basin's paleoclimatic nitrogen cycle variations based on observations of the sedimentary dSources of d15 N variability in sinking particulate nitrogen in the Cariaco Basin, Venezuela, Venezuela a r t i c l e i n f o Keywords: Cariaco Basin Sinking particulate organic matter Nitrogen isotopes

  18. Using a Macroalgal d15N Bioassay to Detect Cruise Ship Waste Water Effluent Inputs

    EPA Science Inventory

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the d15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  19. Tracing Nitrogen through Landscapes to Coastal Wetlands using d15N of Larval Fish

    EPA Science Inventory

    Our objective was to evaluate the use of the nitrogen stable isotope value (d15N) of larval fish as an indicator of incipient anthropogenic nitrogen loading to coastal wetlands in the Great Lakes. We sampled coastal wetlands in five Lake Superior south shore tributaries that had ...

  20. The use of delta(15)N in assessing sewage stress on coral reefs.

    PubMed

    Risk, Michael J; Lapointe, Brian E; Sherwood, Owen A; Bedford, Bradley J

    2009-06-01

    While coral reefs decline, scientists argue, and effective strategies to manage land-based pollution lag behind the extent of the problem. There is need for objective, cost-effective, assessment methods. The measurement of stable nitrogen isotope ratios, delta(15)N, in tissues of reef organisms shows promise as an indicator of sewage stress. The choice of target organism will depend upon study purpose, availability, and other considerations such as conservation. Algae are usually plentiful and have been shown faithfully to track sewage input. The organic matrix of bivalve shells can provide time series spanning, perhaps, decades. Gorgonians have been shown to track sewage, and can provide records potentially centuries-long. In areas where baseline data are lacking, which is almost everywhere, delta(15)N in gorgonians can provide information on status and trends. In coral tissue, delta(15)N combined with insoluble residue determination can provide information on both sewage and sediment stress in areas lacking baseline data. In the developed world, delta(15)N provides objective assessment in a field complicated by conflicting opinions. Sample handling and processing are simple and analysis costs are low. This is a method deserving widespread application. PMID:19286230

  1. Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI.

    PubMed Central

    Akasaka, K.; Li, H.; Yamada, H.; Li, R.; Thoresen, T.; Woodward, C. K.

    1999-01-01

    The effect of pressure on amide 15N chemical shifts was studied in uniformly 15N-labeled basic pancreatic trypsin inhibitor (BPTI) in 90%1H2O/10%2H2O, pH 4.6, by 1H-15N heteronuclear correlation spectroscopy between 1 and 2,000 bar. Most 15N signals were low field shifted linearly and reversibly with pressure (0.468 +/- 0.285 ppm/2 kbar), indicating that the entire polypeptide backbone structure is sensitive to pressure. A significant variation of shifts among different amide groups (0-1.5 ppm/2 kbar) indicates a heterogeneous response throughout within the three-dimensional structure of the protein. A tendency toward low field shifts is correlated with a decrease in hydrogen bond distance on the order of 0.03 A/2 kbar for the bond between the amide nitrogen atom and the oxygen atom of either carbonyl or water. The variation of 15N shifts is considered to reflect site-specific changes in phi, psi angles. For beta-sheet residues, a decrease in psi angles by 1-2 degrees/2 kbar is estimated. On average, shifts are larger for helical and loop regions (0.553 +/- 0.343 and 0.519 +/- 0.261 ppm/2 kbar, respectively) than for beta-sheet (0.295 +/- 0.195 ppm/2 kbar), suggesting that the pressure-induced structural changes (local compressibilities) are larger in helical and loop regions than in beta-sheet. Because compressibility is correlated with volume fluctuation, the result is taken to indicate that the volume fluctuation is larger in helical and loop regions than in beta-sheet. An important aspect of the volume fluctuation inferred from pressure shifts is that they include motions in slower time ranges (less than milliseconds) in which many biological processes may take place. PMID:10548039

  2. Evaluating ?(15)N-body size relationships across taxonomic levels using hierarchical models.

    PubMed

    Reum, Jonathan C P; Marshall, Kristin N

    2013-12-01

    Ecologists routinely set out to estimate the trophic position of individuals, populations, and species composing food webs, and nitrogen stable isotopes (?(15)N) are a widely used proxy for trophic position. Although ?(15)N values are often sampled at the level of individuals, estimates and confidence intervals are frequently sought for aggregations of individuals. If individual ?(15)N values are correlated as an artifact of sampling design (e.g., clustering of samples in space or time) or due to intrinsic groupings (e.g., life history stages, social groups, taxonomy), such estimates may be biased and exhibit overly optimistic confidence intervals. However, these issues can be accommodated using hierarchical modeling methods. Here, we demonstrate how hierarchical models offer an additional quantitative tool for investigating ?(15)N variability and we explicitly evaluate how ?(15)N varies with body size at successively higher levels of taxonomic aggregation in a diverse fish assemblage. The models take advantage of all available data, better account for uncertainty in parameters estimates, may improve inferences on coefficients corresponding to groups with small to moderate sample sizes, and partition variation across model levels, which provides convenient summaries of the 'importance' of each level in terms of unexplained heterogeneity in the data. These methods can easily be applied to diet-based studies of trophic position. Although hierarchical models are well-understood and established tools, their benefits have yet to be fully reaped by stable isotope and food web ecologists. We suggest that hierarchical models can provide a robust framework for conceptualizing and statistically modeling trophic position at multiple levels of aggregation. PMID:23812110

  3. Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of Chinook salmon.

    PubMed

    Hess, Maureen A; Rabe, Craig D; Vogel, Jason L; Stephenson, Jeff J; Nelson, Doug D; Narum, Shawn R

    2012-11-01

    While supportive breeding programmes strive to minimize negative genetic impacts to populations, case studies have found evidence for reduced fitness of artificially produced individuals when they reproduce in the wild. Pedigrees of two complete generations were tracked with molecular markers to investigate differences in reproductive success (RS) of wild and hatchery-reared Chinook salmon spawning in the natural environment to address questions regarding the demographic and genetic impacts of supplementation to a natural population. Results show a demographic boost to the population from supplementation. On average, fish taken into the hatchery produced 4.7 times more adult offspring, and 1.3 times more adult grand-offspring than naturally reproducing fish. Of the wild and hatchery fish that successfully reproduced, we found no significant differences in RS between any comparisons, but hatchery-reared males typically had lower RS values than wild males. Mean relative reproductive success (RRS) for hatchery F(1) females and males was 1.11 (P = 0.84) and 0.89 (P = 0.56), respectively. RRS of hatchery-reared fish (H) that mated in the wild with either hatchery or wild-origin (W) fish was generally equivalent to W × W matings. Mean RRS of H × W and H × H matings was 1.07 (P = 0.92) and 0.94 (P = 0.95), respectively. We conclude that fish chosen for hatchery rearing did not have a detectable negative impact on the fitness of wild fish by mating with them for a single generation. Results suggest that supplementation following similar management practices (e.g. 100% local, wild-origin brood stock) can successfully boost population size with minimal impacts on the fitness of salmon in the wild. PMID:23025818

  4. What's on the menu? Assessing microbial carbon sources and cycling in soils using natural abundance radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Mahmoudi, N.; Burns, L.; Mancini, S.; Fulthorpe, R.; Slater, G. F.

    2011-12-01

    Organic matter in soils is composed of diverse materials in various stages of decomposition. Soil organic matter is not in a single pool but rather in multiple carbon pools with different intrinsic turnover times that can be on annual to decadal and even millennial timescales. Microorganisms can influence the total amount of carbon stored in soils and the turnover rates of these different pools. However, the links between microbes and their ability to utilize these various carbon pools are not well understood. Moreover, microbes have been shown to co-utilize a number of available carbon sources rather than a single carbon source under soil conditions which creates difficulties in identifying microbial carbon sources in the natural environment. Compound-specific radiocarbon analysis of microbial phospholipid fatty acids (PLFA) has become a useful tool in elucidating microbial carbon sources in complex environments with multiple carbon sources. We investigated microbial carbon cycling at an industrial site in Ontario which included a variety of carbon sources including vegetation, PAHs and natural organic matter (NOM). Using this approach, the 14C content of microbial membrane lipids (which reflects their carbon source) can be compared to surrounding carbon sources in order to assess which carbon source they are metabolizing and incorporating into their lipids. In addition, we assessed microbial community structure and diversity by analyzing amplified bacterial, eukaryotic and archaeal rDNA fragments with denaturing gel gradient electrophoresis (DGGE). The ?14C value for PLFAs ranged from +54 to -697% which indicates that microbial carbon sources across soils differ. The ?14CPLFA for some soils is consistent with modern carbon sources while ?14CPLFA for other soils is consistent with natural organic matter including older pools of carbon. The microbial communities at this site are not metabolizing PAHs but rather they are utilizing various pools of natural organic matter as a carbon source. Moreover, our radiocarbon analysis of total organic carbon (TOC) and non-solvent extracted residue (representative of NOM) support the notion that soil organic matter is not homogenous and is comprised of multiple carbon fractions with different intrinsic turnover times. DNA fingerprinting revealed consistent levels of diversity across soils with the greatest diversity observed in the bacteria, followed by eukarya and finally archaea which had the lowest observed diversity. It was previously thought that there is a pool of refractory organic compounds that are biologically inert in soil however our findings indicate that microbes are able to utilize almost all available carbon sources in soil. These finding brings forth questions regarding the influence of microbes on soil organic matter stabilization and the bioavailability of different carbon pools.

  5. Thousand Year Archives of the Bulk and Compound-Specific ?15N of Export Production From the North Pacific Subtropical Gyre Indicate Increasing Nitrogen Fixation Over the Past 150 Years

    NASA Astrophysics Data System (ADS)

    Sherwood, O.; Batista, F. C.; Brown, J. T.; Guilderson, T. P.; McCarthy, M.

    2012-12-01

    Stable nitrogen isotopic analysis of amino acids (?15N-AA) preserved in proteins has emerged as a powerful new tool to explore trophic levels and nutrient cycling in nature. To date, little has been done to explore ?15N-AA in paleo-studies of the marine nitrogen cycle. We analysed the bulk and AA-specific ?15N in the long-lived, deep-sea, proteinaceous coral Gerardia. By feeding on sinking particulate organic matter, proteinaceous corals integrate the biogeochemical signature of recently exported production within discrete skeletal growth layers. Sub-decadal resolution time-series records spanning the time period 1000 AD to present were generated from specimens of Gerardia collected from the main Hawaiian Islands, Cross Seamount, and French Frigate Shoals in the North Pacific Subtropical Gyre (NPSG). Records of bulk ?15N from the three different locations, geographically separated by up to 1000 km, showed remarkably similar long term trends. Bulk ?15N remained relatively stable from ~1000-1850 years AD, and then decreased by a total of 2 ‰ from ~1850 AD to the present. The ?15N-AA of the "trophic" group of amino acids indicated no significant changes in trophic level or microbial re-synthesis of export production over this time period. The ?15N of "source" amino acids was significantly correlated with corresponding values of bulk ?15N, with the ?15N of phenylalanine decreasing from 4.2 to 2.1‰. The latter value is similar to recent measurements of subsurface nitrate ?15N near Hawaii, suggesting that the ?15N of phenylalanine may be used to quantitatively track changes in the isotopic signature of nitrate at the base of the food web. Using a simple isotopic mass balance between upwelled nitrate and nitrogen fixation we calculate a 30% increase in nitrogen fixation in the NPSG since ~1850. These results provide invaluable long-term context for recent observations, and highlight profound changes in the marine biogeochemical cycling of nitrogen over the past 150 years in this climatically-sensitive area of the world ocean.

  6. Heathland vegetation as a bio-monitor for nitrogen deposition and source attribution using ?15N values

    NASA Astrophysics Data System (ADS)

    Skinner, R. A.; Ineson, P.; Jones, H.; Sleep, D.; Leith, I. D.; Sheppard, L. J.

    The %N and ?15N signals in foliar nitrogen (N) from four heathland species have been monitored in a blanket bog plant community subjected to different experimental inputs of wet and dry N deposition. Interactions with combined additional treatments of phosphorus (P) and potassium (K) were also investigated. Calluna vulgaris, Cladonia portentosa, Sphagnum capillifolium and Hypnum cupressiforme were harvested for 15N analysis prior to wet and dry treatment applications and again after 16 months field exposure. A significant increase was observed in both %N and ?15N values for all plant species in response to both wet and dry treatments whilst PK additions also produced significant decreases in foliar %N and associated ?15N values for several of the species sampled. These enrichments in the ?15N signals for post-treatment shoot tissue were attributable to the ?15N signal in the source application, a finding of potential value in using bio-monitors for assessment of N deposition.

  7. Determining Degradation and Synthesis Rates of Arabidopsis Proteins Using the Kinetics of Progressive 15N Labeling of Two-dimensional Gel-separated Protein Spots*

    PubMed Central

    Li, Lei; Nelson, Clark J.; Solheim, Cory; Whelan, James; Millar, A. Harvey

    2012-01-01

    The growth and development of plant tissues is associated with an ordered succession of cellular processes that are reflected in the appearance and disappearance of proteins. The control of the kinetics of protein turnover is central to how plants can rapidly and specifically alter protein abundance and thus molecular function in response to environmental or developmental cues. However, the processes of turnover are largely hidden during periods of apparent steady-state protein abundance, and even when proteins accumulate it is unclear whether enhanced synthesis or decreased degradation is responsible. We have used a 15N labeling strategy with inorganic nitrogen sources coupled to a two-dimensional fluorescence difference gel electrophoresis and mass spectrometry analysis of two-dimensional IEF/SDS-PAGE gel spots to define the rate of protein synthesis (KS) and degradation (KD) of Arabidopsis cell culture proteins. Through analysis of MALDI-TOF/TOF mass spectra from 120 protein spots, we were able to quantify KS and KD for 84 proteins across six functional groups and observe over 65-fold variation in protein degradation rates. KS and KD correlate with functional roles of the proteins in the cell and the time in the cell culture cycle. This approach is based on progressive 15N labeling that is innocuous for the plant cells and, because it can be used to target analysis of proteins through the use of specific gel spots, it has broad applicability. PMID:22215636

  8. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    USGS Publications Warehouse

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  9. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements

    Microsoft Academic Search

    Walter Durka; Ernst-Detlef Schulze; Gerhard Gebauer; Susanne Voerkeliust

    1994-01-01

    ATTEMPTS to understand how atmospheric nitrogen deposition affects forest ecosystems1'2 have been hampered by the lack of a direct method to trace the fate of the deposited nitrogen. Nitrate originating in the atmosphere has natural abundances of nitrogen and oxygen isotopes that differ measurably from those of soil nitrate3. Here we present an analysis of the isotope ratios of nitrate

  10. The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Greathouse, T. K.; Orton, G. S.; Irwin, P. G. J.; Mousis, O.; Sinclair, J. A.; Giles, R. S.

    2014-08-01

    The Texas Echelon cross Echelle Spectrograph (TEXES), mounted on NASA’s Infrared Telescope Facility (IRTF), was used to map mid-infrared ammonia absorption features on both Jupiter and Saturn in February 2013. Ammonia is the principle reservoir of nitrogen on the giant planets, and the ratio of isotopologues (15N/14N) can reveal insights into the molecular carrier (e.g., as N2 or NH3) of nitrogen to the forming protoplanets, and hence the source reservoirs from which these worlds accreted. We targeted two spectral intervals (900 and 960 cm-1) that were relatively clear of terrestrial atmospheric contamination and contained close features of 14NH3 and 15NH3, allowing us to derive the ratio from a single spectrum without ambiguity due to radiometric calibration (the primary source of uncertainty in this study). We present the first ground-based determination of Jupiter’s 15N/14N ratio (in the range from 1.4×10-3 to 2.5×10-3), which is consistent with both previous space-based studies and with the primordial value of the protosolar nebula. On Saturn, we present the first upper limit on the 15N/14N ratio of no larger than 2.0×10-3 for the 900-cm-1 channel and a less stringent requirement that the ratio be no larger than 2.8×10-3 for the 960-cm-1 channel (1? confidence). Specifically, the data rule out strong 15N-enrichments such as those observed in Titan’s atmosphere and in cometary nitrogen compounds. To the extent possible with ground-based radiometric uncertainties, the saturnian and jovian 15N/14N ratios appear indistinguishable, implying that 15N-enriched ammonia ices could not have been a substantial contributor to the bulk nitrogen inventory of either planet. This result favours accretion of primordial N2 on both planets, either in the gas phase from the solar nebula, or as ices formed at very low temperatures. Finally, spatially-resolved TEXES observations are used to derive zonal contrasts in tropospheric temperatures, phosphine and 14NH3 on both planets, allowing us to relate thermal conditions and chemical compositions to phenomena observed at visible wavelengths in 2013 (e.g., Jupiter’s faint equatorial red colouration event and wave activity in the equatorial belts, plus the remnant warm band on Saturn following the 2010-11 springtime storm).

  11. The perils and promises of microbial abundance: novel natures and model ecosystems, from artisanal cheese to alien seas.

    PubMed

    Paxson, Heather; Helmreich, Stefan

    2014-04-01

    Microbial life has been much in the news. From outbreaks of Escherichia coli to discussions of the benefits of raw and fermented foods to recent reports of life forms capable of living in extreme environments, the modest microbe has become a figure for thinking through the presents and possible futures of nature, writ large as well as small. Noting that dominant representations of microbial life have shifted from an idiom of peril to one of promise, we argue that microbes--especially when thriving as microbial communities--are being upheld as model ecosystems in a prescriptive sense, as tokens of how organisms and human ecological relations with them could, should, or might be. We do so in reference to two case studies: the regulatory politics of artisanal cheese and the speculative research of astrobiology. To think of and with microbial communities as model ecosystems offers a corrective to the scientific determinisms we detect in some recent calls to attend to the materiality of scientific objects. PMID:24941610

  12. Salinity-induced Patterns of Natural Abundance Carbon-13 and Nitrogen-15 in Plant Jan-Willem van Groenigen* and Chris van Kessel

    E-print Network

    van Kessel, Chris

    / A relationship between 13 C of crop tissue and salinitywater paste (EC1:5) ranged from 2.7 to 8.9 dS m 1 . The 13 confirmed under field conditions for the same species correlation between salinity and 15 N in crop and LF and Jefferies (1989) reported a significant shift from 32.4 to 28.3 because of salinity in the C3 halophyte

  13. Nitrogen stress causes unpredictable enrichments of 15N in two nectar-feeding bat species.

    PubMed

    Voigt, Christian C; Matt, Felix

    2004-04-01

    We estimated the effect of nitrogen stress on the nitrogen isotope enrichments in wing membrane and blood of two nectar-feeding bats (Glossophaga soricina and Leptonycteris curasoae) by offering a nitrogen-poor diet with a high delta(15)N and delta(13)C. Before the experiment, bats were sustained on a normal diet with a low delta(15)N and delta(13)C. Under this first food regime, the fractionation of nitrogen isotopes averaged 3.1 per thousand delta(15)N for blood and 4.4 per thousand delta(15)N for wing membrane, which was almost twice as high as the corresponding fractionation of carbon isotopes. After switching to the nitrogen-poor diet, the enrichment of heavy isotopes increased for both elements in all tissues under study. The recently published estimates of half-life of carbon isotopes indicated a low turnover rate of carbon in wing membrane and blood and an almost constant half-life over varying losses of body mass. The estimates of half-life of nitrogen were two to six times higher than those of carbon. We argue that this discrepancy was caused by the mixing of nitrogen isotopes from internal and external sources. The mixing effect was probably negligible for carbon as the amount of ingested carbon outweighed the amount of mobilized carbon from internal sources. A correlation between the estimated turnover rates of nitrogen and losses of body masses was probably obscured by the additional fractionation of nitrogen isotopes in catabolic animals. We conclude that the interpretation of nitrogen isotope data of free-ranging animals is difficult when the animal's diet is changing to a critical nitrogen content. PMID:15073206

  14. Determination of the ?15N of total nitrogen in solids; RSIL lab code 2893

    USGS Publications Warehouse

    Revesz, Kinga; Qi, Haiping; Coplen, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2893 is to determine the ?(15N/14N), abbreviated as ?15N , of total nitrogen in solid samples. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines relative difference in the isotope-amount ratios of stable nitrogen isotopes (15N/14N)of the product N2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in a tin capsule and loaded into the Costech Zero Blank Autosampler of the EA. Under computer control, samples are dropped into a heated reaction tube that contains an oxidant, where the combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction tube to remove excess oxygen and convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Finnigan MAT (now Thermo Scientific) ConFlo II interface, which also is used to inject N2 reference gas and helium for sample dilution. The IRMS is a Thermo Scientific Delta V Plus CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle, capable of measuring mass/charge (m/z) 28, 29, 30, simultaneously. The ion beams from N2 are as follows: m/z 28 = N2 = 14N14N; m/z 29 = N2 = 14N15N primarily; m/z 30 = NO = 14N16O primarily, which is a sign of contamination or incomplete reduction.

  15. Vibronic spectrum of 15N 16O 2 between 415 and 440 nm

    Microsoft Academic Search

    E. A. Volkers; J. Bulthuis; S. Stolte; R. Jost; N. Wehres; H. V. J. Linnartz

    2007-01-01

    The time gated laser induced fluorescence (LIF) excitation spectrum of adiabatically cooled 15N16O2 has been measured close to the dissociation limit (22700–24050cm?1). The spectrum consists of numerous rotationally resolved vibronic bands with mainly irregular structures and consequently only an angular momentum labeling has been possible. These rotationally assigned isolated transitions, however, are highly suited for laser induced dispersed fluorescence spectroscopy

  16. (1)H, (13)C and (15)N resonance assignments of human FK506 binding protein 25.

    PubMed

    Prakash, Ajit; Shin, Joon; Yoon, Ho Sup

    2015-04-01

    Human FKBP25, a nuclear protein, is a member of FK506 binding protein family (FKBP) and binds to immunosuppressive drugs such as FK506 and rapamycin. Human FKBP25 interacts with several nuclear proteins and regulates nuclear events. To understand the molecular basis of such interactions, we have performed NMR studies. Here, we report (1)H, (15)N and (13)C resonance assignments of the full-length human FKBP25 protein. PMID:24414276

  17. Community 15N isoscapes to resolve plant-plant-interactions at the spatial scale

    NASA Astrophysics Data System (ADS)

    Hellmann, Christine; Rascher, Katherine G.; Máguas, Cristina; Werner, Christiane

    2014-05-01

    Isoscapes have greatly improved our ability to understand biogeochemical processes on continental to global scales. However, the isoscapes framework may also have significant potential to resolve the spatial component of within-community interactions. For example, exotic plant invaders often exert strong impacts on ecosystem functioning, particularly regarding water-, carbon- and nutrient-cycles, but the spatial extent of such alterations is largely unknown. Here we show that massive N input by the N2-fixing exotic invasive Acacia longifolia to a Portuguese dune system can be traced using spatially resolved information on native plants' leaf ?15N. We found isotopic signatures of N to differ strongly between the native system (?15N c. -10 o) and the atmospherically derived N in A. longifolia phyllodes (?15N c. 0 o). Thus, sources of N for native plants could be readily distinguished. Leaf ?15N of a native, non-fixing species was increasingly enriched the closer the plant grew to the invader, indicating uptake of fixed N provided by A. longifolia. The enrichment was evident far beyond the stands of the invader, demonstrating that A. longifolia affected N budgets of native species up to a distance of 8 m exceeding the margin of the canopy. Furthermore, using the isoscapes approach, we were able to quantify the total area of N enrichment and could thus show that the area affected by invasion was at least 3.5 times larger than the area actually occupied by the invader. However, a native N2-fixing species had no such effects. Thus, downscaling isoscapes to the community level opens new frontiers in quantifying the spatial dimension of functional changes associated with plant invasions. Moreover, considering the feasibility and applicability of this approach, it may provide a promising tool to identify, quantify and monitor different types of functional plant-plant interactions within communities at a spatially explicit scale.

  18. 15N Enrichment in the Sahara: In Search of a Global Relationship

    Microsoft Academic Search

    Henry P. Schwarcz; Tosha L. Dupras; Scott I. Fairgrieve

    1999-01-01

    We have analysed human and animal collagen samples from three geographically and temporally distinct cemeteries at the Dakhleh Oasis, Egypt. All sites display strikingly high average values of ?15N: Kellis 1 (Late Ptolemaic–Early Roman period) 18·0 per mil Kellis 2 (Romano-Christian period) 18·0 per mil, and ‘ein Tirghi (Roman period) 17·0 per mil. Rainfall at Dakhleh is essentially zero. The

  19. Seasonal ?13C and ?15N isoscapes of fish populations along a continental shelf trophic gradient

    NASA Astrophysics Data System (ADS)

    Radabaugh, Kara R.; Hollander, David J.; Peebles, Ernst B.

    2013-10-01

    The West Florida Shelf, located in the eastern Gulf of Mexico, transitions from a eutrophic ecosystem dominated by the Mississippi River plume to mesotrophic and oligotrophic ecosystems off the coast of peninsular Florida. Three extensive trawl surveys in this region were used to acquire samples of fish muscle, benthic algae from sea urchin stomach contents, and filtered particulate organic matter (POM) to create ?13C and ?15N isoscapes. Muscle ?15N from three widely distributed fish species, Synodus foetens (inshore lizardfish), Calamus proridens (littlehead porgy), and Syacium papillosum (dusky flounder), exhibited strong longitudinal correlations (Pearson?s r=-0.67 to -0.90, p<0.001) that coincided with the principal trophic gradient, whereas ?13C values of fish muscle and benthic algae were correlated with depth (Pearson?s r=-0.34 to -0.73, p<0.05). Correlations between isotopic values and surface concentrations of chlorophyll and particulate organic carbon (POC) imply linkages between the isotopic baseline and transitions from eutrophic to oligotrophic waters. The ?13C depth gradient and the ?15N longitudinal gradient were consistent between seasons and years, providing a foundation for future stable isotope studies of animal migration in the Gulf of Mexico.

  20. A Study of 15N/14N Isotopic Exchange over Cobalt Molybdenum Nitrides

    PubMed Central

    2013-01-01

    The 14N/15N isotopic exchange pathways over Co3Mo3N, a material of interest as an ammonia synthesis catalyst and for the development of nitrogen transfer reactions, have been investigated. Both the homomolecular and heterolytic exchange processes have been studied, and it has been shown that lattice nitrogen species are exchangeable. The exchange behavior was found to be a strong function of pretreatment with ca. 25% of lattice N atoms being exchanged after 40 min at 600 °C after N2 pretreatment at 700 °C compared to only 6% following similar Ar pretreatment. This observation, for which the potential contribution of adsorbed N species can be discounted, is significant in terms of the application of this material. In the case of the Co6Mo6N phase, regeneration to Co3Mo3N under 15N2 at 600 °C occurs concurrently with 14N15N formation. These observations demonstrate the reactivity of nitrogen in the Co–Mo–N system to be a strong function of pretreatment and worthy of further consideration. PMID:24265977

  1. Enzymatic Synthesis and Structural Characterization of 13C, 15N - Poly(ADP-ribose)

    PubMed Central

    Schultheisz, Heather L.; Szymczyna, Blair R.; Williamson, James R.

    2009-01-01

    Poly(ADP-ribose) is a significant nucleic acid polymer involved with diverse functions in eukaryotic cells, yet no structural information is available. A method for the synthesis of 13C, 15N- poly(ADP-ribose) (PAR) has been developed to allow characterization of the polymer using multidimensional nuclear magnetic resonance (NMR) spectroscopy. Successful integration of pentose phosphate, nicotinamide adenine dinucleotide biosynthesis, and cofactor recycling pathways with poly(ADP-ribose) polymerase-1 permitted labeling of PAR from 13C-glucose and 13C, 15N- ATP in a single pot reaction. The scheme is efficient, yielding ~ 400 nmoles of purified PAR from 5 ?moles ATP, and the behavior of the synthetic PAR is similar to data from PAR synthesized by cell extracts. The resonances for 13C, 15N-PAR were unambiguously assigned, but the polymer appears to be devoid of inherent regular structure. PAR may form an ordered macromolecular structure when interacting with proteins, and due to the extensive involvement of PAR in cell function and disease, further studies of PAR structure will be required. The labeled PAR synthesis reported here will provide an essential tool for the future study of PAR-protein complexes. PMID:19757771

  2. Individual protein balance strongly influences ?15N and ?13C values in Nile tilapia, Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing ?15N and ?13C values. An experiment using Nile tilapia [Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on ?15N and ?13C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. ?15N and ?13C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5‰ to 4‰ and for C in the lipid-free body from 4‰ to 2.5‰. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  3. Changes in Natural Abundance Carbon Stable isotopes of Human Blood and Saliva After 24 Days of Controlled Carbohydrate Supplementation

    NASA Astrophysics Data System (ADS)

    Kraft, R. A.; Jahren, A. H.; Baer, D. J.; Caballero, B.

    2008-12-01

    With the advent of corporate agriculture, large-scale economic decisions have given rise to unique global environmental effects. Emphasis on corn production results in dramatic changes in nitrogen and water cycling via the intensive cultivation practices necessary to support Zea mays (Tilman, 1998). In particular, consumption of corn derived food additive high-fructose corn syrup (HFCS) has increased more than 1000% since 1970 and may be associated with the epidemics of obesity and diabetes (Bray et al., 2004). Plausible mechanisms for an adverse effect of fructose load on glucose homeostasis have been proposed (Havel, 2005). The unusually heavy 13C signature of corn, as compared to other plants, offers the opportunity to develop a biomarker for sugar consumption. Among the many experiments that are needed to establish such a technique, the demonstration of change in 13C signature of human tissues with known change in carbohydrate consumption is foremost. Here we report on a controlled feeding study performed in cooperation with the United States Department of Agriculture (USDA), to test the effect of supplementation of human diet with carbohydrate of known ?13C value. During this study, 13 individuals were fed a typical American diet (32% calories from fat, 15% calories from protein, 53% carbohydrate) for ~six months. Each participant was fed a random sequence of carbohydrate supplements (50 grams of supplement per day): 1. resistant maltodextrin (?13C = -10.59‰); 2. maltodextrin (?13C = -23.95‰); 3. a 50-50 mixture of the two (?13C = -15.94‰). After 24 days of feeding, subjects showed enrichment in blood serum that was significantly correlated (p = 0.0038) with the ?13C value of the supplement. However, blood clot and saliva showed no such correlation, suggesting that the half-lives of these substrates may render them unsuitable for carbohydrate dietary reconstruction over day-to-month timescales. All subjects of the study showed a net enrichment in the ?13C value of their blood and saliva relative to baseline: blood clot was enriched by 0.27‰; blood serum by 0.50‰ and saliva by 1.12‰. We believe this overall enrichment resulted from a 13C-enriched bulk diet (?13C = - 20.42‰) relative to the subjects free-living diet. Evidence for this derives from inspection of foods within the bulk diet provided, compared to published profiles of the typical American diet. We will discuss possible complicating factors, such as differential absorption and metabolism of the supplements according to solubility and caloric value. These results are encouraging for the development of a ?13C blood serum biomarker that, in the company of other tests, could be used to indicate a change in carbohydrate intake. Bray, G.A., Nielsen, S.J. and Popkin, B.M., 2004. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. American Journal of Clinical Nutrition, 79: 537-543. Havel, P.J., 2005. Dietary fructose: Implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutrition Reviews, 63(5): 133-157. Tilman D., 1998. The greening of the green revolution. Nature, 396:211-212.

  4. Denitrification in nitrate-rich streams: Application of N2:Ar and 15N-tracer methods in intact cores

    USGS Publications Warehouse

    Smith, L.K.; Voytek, M.A.; Böhlke, J.K.; Harvey, J.W.

    2006-01-01

    Rates of benthic denitrification were measured using two techniques, membrane inlet mass spectrometry (MIMS) and isotope ratio mass spectrometry (IRMS), applied to sediment cores from two NO3--rich streams draining agricultural land in the upper Mississippi River Basin. Denitrification was estimated simultaneously from measurements of N 2:Ar (MIMS) and 15N[N2] (IRMS) after the addition of low-level 15NO3- tracer ( 15N:N = 0.03-0.08) in stream water overlying intact sediment cores. Denitrification rates ranged from about 0 to 4400 lmol N??m -2??h-1 in Sugar Creek and from 0 to 1300 ??mol N??m-2??h-1 in Iroquois River, the latter of which possesses greater streamflow discharge and a more homogeneous streambed and water column. Within the uncertainties of the two techniques, there is good agreement between the MIMS and IRMS results, which indicates that the production of N2 by the coupled process of nitrification/denitrification was relatively unimportant and surface-water NO3- was the dominant source of NO3- for benthic denitrification in these streams. Variation in stream NO3- concentration (from about 20 ??mol/L during low discharge to 1000 ??mol/L during high discharge) was a significant control of benthic denitrification rates, judging from the more abundant MIMS data. The interpretation that NO3- concentration directly affects denitrification rate was corroborated by increased rates of denitrification in cores amended with NO 3-. Denitrification in Sugar Creek removed ???11% per day of the instream NO3- in late spring and removed roughly 15-20% in late summer. The fraction of NO3- removed in Iroquois River was less than that of Sugar Creek. Although benthic denitrification rates were relatively high during periods of high stream flow, when NO3 concentrations were also high, the increase in benthic denitrification could not compensate for the much larger increase in stream NO3- fluxes during high flow. Consequently, fractional NO3- losses were relatively low during high flow. ?? 2006 by the Ecological Society of America.

  5. Resonance strengths in the 14N(p,gamma)15O and 15N(p,alpha gamma)12C reactions

    E-print Network

    Marta, Michele; Bemmerer, Daniel; Beyer, Roland; Broggini, Carlo; Caciolli, Antonio; Erhard, Martin; Fülöp, Zsolt; Grosse, Eckart; Gyürky, György; Hannaske, Roland; Junghans, Arnd R; Menegazzo, Roberto; Nair, Chithra; Schwengner, Ronald; Szücs, Tamás; Vezzú, Simone; Wagner, Andreas; Yakorev, Dmitry

    2010-01-01

    The 14N(p,gamma)15O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The 15N(p,alpha gamma)12C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The 14N(p,gamma)15O and 15N(p,alpha gamma)12C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at Ep = 1058 keV in 14N(p,gamma)15O and at Ep = 897 and 430 keV in 15N(p,alpha gamma)12C have been determined with improved precision, relative to the well-known resonance at Ep = 278 keV in 14N(p,gamma)15O. The new recommended values are \\omega\\gamma = 0.352$\\pm$0.018, 362$\\pm$20, and 22.0$\\pm$0.9\\,eV for their respective strengths. In addition, the branching ratios for the decay of the Ep = 1058 keV resonance in 14N(p,gamma)15O have been redetermined. The data reported here should facilitate future studies of off-resona...

  6. 13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies

    PubMed Central

    Baptist, Florence; Tcherkez, Guillaume; Aubert, Serge; Pontailler, Jean-Yves; Choler, Philippe; Nogués, Salvador

    2009-01-01

    Intense efforts are currently devoted to disentangling the relationships between plant carbon (C) allocation patterns and soil nitrogen (N) availability because of their consequences for growth and more generally for C sequestration. In cold ecosystems, only a few studies have addressed whole-plant C and/or N allocation along natural elevational or topographical gradients. 12C/13C and 14N/15N isotope techniques have been used to elucidate C and N partitioning in two alpine graminoids characterized by contrasted nutrient economies: a slow-growing species, Kobresia myosuroides (KM), and a fast-growing species, Carex foetida (CF), located in early and late snowmelt habitats, respectively, within the alpine tundra (French Alps). CF allocated higher labelling-related 13C content belowground and produced more root biomass. Furthermore, assimilates transferred to the roots were preferentially used for growth rather than respiration and tended to favour N reduction in this compartment. Accordingly, this species had higher 15N uptake efficiency than KM and a higher translocation of reduced 15N to aboveground organs. These results suggest that at the whole-plant level, there is a compromise between N acquisition/reduction and C allocation patterns for optimized growth. PMID:19401411

  7. The Pure Rotational Spectra of Acetaldehyde and Glycolaldehyde Isotopologues Measured in Natural Abundance by Chirped-Pulse Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Carroll, P. Brandon; McGuire, Brett A.; Weaver, Susanna L. Widicus; Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.

    2011-06-01

    Complex organic molecules (COMs) such as glycolaldehyde (HOCH_2CHO) and acetaldehyde (CH_3CHO) have now been detected in numerous interstellar sources. Glycolaldehyde has been detected in two hot cores, Sgr B2(N) and G31.41+0.31. Acetaldehyde has been observed in various sources, including the translucent clouds CB 17 and CB 24, cold molecular clouds such as TMC-1 and L134N, and hot cores such as Sgr B2(N), NGC 6334F, and the Orion Compact Ridge. Such COMs are known to have rich and complex spectra that add to the line confusion problem faced in observations of molecule-rich sources. Laboratory studies of excited vibrational states and isotopologues for known COMs therefore provide important guidance for sorting out the interstellar line confusion problem. Detection of isotopologues and determination of their abundance relative to the main isotopic species would also provide important constraints on interstellar chemical models, as these isotopic ratios are dependent on the formation mechanism for each species. The isotopic ratios for 13C/12C, 18O/16O, and D/H are known in various interstellar environments for simple molecules, but remain relatively unexplored for more complex species such as glycolaldehyde and acetaldehyde. The rotational spectra of the main isotopologues for glycolaldehyde and acetaldehyde have been well-characterized through microwave, millimeter, and submillimeter laboratory spectroscopy. Here we present the laboratory characterization of the isotopologues of acetaldehyde and glycolaldehyde in natural abundance by chirped pulse Fourier transform microwave spectroscopy (CP-FTMW). This spectroscopic information lays the groundwork for additional higher-frequency studies that can be directly applied to the interpretation of millimeter and submillimeter observations.

  8. Mangrove isotopic (??15N and ??13C) fractionation across a nitrogen vs. phosphorus limitation gradient

    USGS Publications Warehouse

    McKee, K.L.; Feller, I.C.; Popp, M.; Wanek, W.

    2002-01-01

    Mangrove islands in Belize are characterized by a unique switching from nitrogen (N) to phosphorus (P) limitation to tree growth from shoreline to interior. Fertilization has previously shown that Rhizophora mangle (red mangrove) fringe trees (5-6 m tall) growing along the shoreline are N limited; dwarf trees (???1.5 m tall) in the forest interior are P limited; and transition trees (2-4 m tall) are co-limited by both N and P. Growth patterns paralleled a landward decrease in soil flushing by tides and an increase in bioavailable N, but P availability remained consistently low across the gradient. Stable isotopic composition was measured in R. mangle leaves to aid in explaining this nutrient switching pattern and growth variation. Along control transects, leaf ??15N decreased from +0.10??? (fringe) to -5.38??? (dwarf). The ??15N of N-fertilized trees also varied spatially, but the values were consistently more negative (by ???3???) compared to control trees. Spatial variation in ??15N values disappeared when the trees were fertilized with P, and values averaged +0.12???, similar to that in control fringe trees. Neither variation in source inputs nor microbial fractionation could fully account for the observed patterns in ??15N. The results instead suggest that the lower ??15N values in transition and dwarf control trees were due to plant fractionation as a consequence of slower growth and lower N demand. P fertilization increased N demand and decreased fractionation. Although leaf ??13C was unaffected by fertilization, values increased from fringe (-28.6???) to transition (-27.9???) to dwarf (-26.4???) zones, indicating spatial variation in environmental stresses affecting stomatal conductance or carboxylation. The results thus suggest an interaction of external supply, internal demand, and plant ability to acquire nutrients under different hydro-edaphic conditions that vary across this tree-height gradient. The findings not only aid in understanding mangrove discrimination of nitrogen and carbon isotopes, but also have implications for identifying nutrient loading and other stress conditions in coastal systems dominated by mangroves.

  9. Macroalgae ?15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism?

    NASA Astrophysics Data System (ADS)

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-03-01

    Although nitrogen stable isotope ratio (?15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in ?15N variability. Simultaneous determinations of ?15N of dissolved inorganic nitrogen (DIN) along the land-sea continuum, inter-species variability of ?15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae ?15N in monitoring nitrogen origin in mixed-use watersheds. In this study, ?15N of annual and perennial macroalgae (Ulva sp., Enteromorpha sp., Fucus vesiculosus and Fucus serratus) are compared to ?15N-DIN along the Charente Estuary, after characterizing ?15N of the three main DIN sources (i.e. cultivated area, pasture, sewage treatment plant outlet). During late winter and spring, when human activities produce high DIN inputs, DIN sources exhibit distinct ?15N signals in nitrate (NO) and ammonium (NH): cultivated area (+6.5 ± 0.6‰ and +9.0 ± 11.0‰), pasture (+9.2 ± 1.8‰ and +12.4‰) and sewage treatment plant discharge (+16.9 ± 8.7‰ and +25.4 ± 5.9‰). While sources show distinct ?N- in this multiple source catchment, the overall mixture of NO sources - generally >95% DIN - leads to low variations of ?N-NO at the mouth of the estuary (+7.7 to +8.4‰). Even if estuarine ?N-NO values are not significantly different from pristine continental and oceanic site (+7.3‰ and +7.4‰), macroalgae ?15N values are generally higher at the mouth of the estuary. This highlights high anthropogenic DIN inputs in the estuary, and enhanced contribution of 15N-depleted NH in oceanic waters. Although seasonal variations in ?N-NO are low, the same temporal trends in macroalgae ?15N values at estuarine and oceanic sites, and inter-species differences in ?15N values, suggest that macroalgae ?15N values might be modified by the metabolic response of macroalgae to environmental parameters (e.g., temperature, light, DIN concentrations). Differences between annual and perennial macroalgae indicate both a higher integration time of perennial compared to annual macroalgae and the possible role of passive versus active uptake mechanisms. Further studies are required to characterize the sensitivity of macroalgae fractionation to variable environmental conditions and uptake mechanisms.

  10. Molecular Investigation of the Short-term Sequestration of Natural Abundance 13C -labelled Cow Dung in the Surface Horizons of a Temperate Grassland Soil

    NASA Astrophysics Data System (ADS)

    Dungait, J.; Bol, R.; Evershed, R. P.

    2004-12-01

    An adequate understanding of the carbon (C) sequestration potential of grasslands requires that the quantity and residence times of C inputs be measured. Herbivore dung is largely comprised of plant cell wall material, a significant source of stable C in intensively grazed temperate grassland ecosystems that contributes to the soil carbon budget. Our work uses compound-specific isotope analysis to identify the pattern of input of dung-derived compounds from natural abundance 13C/-labelled cow dung into the surface horizons of a temperate grassland soil over one year. C4 dung (? 13C \\-12.6 ‰ ) from maize fed cows was applied to a temperate grassland surface (? 13C \\-29.95 ‰ ) at IGER-North Wyke (Devon, UK), and dung remains and soil cores beneath the treatments collected at ? = 7, 14, 28, 56, 112, 224 and 372 days. Bulk dung carbon present in the 0\\-1 cm and 1\\-5 cm surface horizons of a grassland soil over one year was estimated using ? 13C between C4 dung and C3 dung, after Bol {\\et al.} (2000). The major biochemical components of dung were quantified using proximate forage fibre analyses, after Goering and Van Soest (1970) and identified using `wet' chemical and GC-MS methods. Plant cell wall polysaccharides and lignin were found to account for up to 67 {%} of dung dry matter. Hydrolysed polysaccharides were prepared as alditol acetates for analyses (after Docherty {\\et al.}, 2001), and a novel application of an off-line pyrolysis method applied to measure lignin-derived phenolic compounds (after Poole & van Bergen, 2002). This paper focuses on major events in the incorporation of dung carbon, estimated using natural abundance 13C&-slash;labelling technique. This revealed a major bulk input of dung carbon after a period of significant rainfall with a consequent decline in bulk soil ? 13C values until the end of the experiment (Dungait {\\et al.}, submitted). Findings will be presented revealing contribution of plant cell wall polysaccharides and lignin to these bulk ? 13C values, and their potential for sequestration considered. References: Bol, R., Amelung, W., Friedrich, C. Ostle, N. (2000). Tracing dung-derived carbon in temperate grassland using 13C natural abundance measurements. Soil Biology and Biochemistry, 32, 1337-1343. Goering and Van Soest (1970). Forage fibre analysis (apparatus, reagents, procedures and some applications). In: USDA-ARS Agricultural Handbook, 379. U. S. Government Printing Office, Washington D.C. Docherty, G., Jones, V. and Evershed, R.P. (2001). Practical and theoretical considerations in the gas chromatography/combustion/isotope ratio mass spectrometry ? 13C analysis of small polyfunctional compounds. Rapid Communications in Mass Spectrometry, 15, 730-738. Poole, I. & van Bergen, P. F. (2002). Carbon isotope ratio analysis of organic moieties from fossil mummified wood: establishing optimum conditions for off-line pyrolysis extraction using gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 16, 1976-1981. Dungait, J. A. J., Bol, R. and Evershed, R.P. (submitted). The Fate of Dung Carbon in Temperate Grassland Soil: 1. Preliminary Findings Based on Bulk Stable Carbon Isotope Determinations. Isotopes in Health and Environmental Studies

  11. Evaluation of methods to measure differential 15N labeling of soil and root N pools for studies of root exudation.

    PubMed

    Hertenberger, Gerhard; Wanek, Wolfgang

    2004-01-01

    To study patterns of root exudation, the effectiveness of different techniques for in situ 15N labeling of Brassica napus, Centaurea jacea and Lolium perenne with ammonium nitrate was tested. Stem infiltration was found to effectively label plants with thicker stems, whereas, for grass species, cutting and immersing the leaf tips into 15N solution proved to be most effective. A microdiffusion technique to isolate ammonium, combined with conventional cation-exchange chromatography to separate nitrate from amino-N compounds thereafter, was found suitable for separation of the N fractions of plant and soil extracts for 15N determination. All three species were then cultivated in nutrient solution and labeled with 15NH4 15NO3 by stem feeding for 42 hours. Kinetics of 15N labeling of bulk roots and shoots as well as hot water extractable material were assessed, and up to 1.1 at% 15N excess (APE) was found in nutrient solutions. The main amino acids exuded by L. perenne were glycine, serine, alanine and aspartic acid. To assess the suitability of this set of methods to study root exudation in field settings, L. perenne was grown without fertiliser addition in pots containing low-nutrient soil. Plants were 15N labeled via tip immersion and 15N and N concentrations were analysed in shoots, roots and soils during a 48-h interval. Shoots reached 1.25 APE, roots and soil 0.10 and 0.005 APE, respectively. Between 4% (48 h) and 6% (24 h) of total plant 15N was exuded by roots into the soil. In roots amino acids comprised the largest proportion of the soluble 15N pool, whereas soil 15N levels were similar for amino acids and ammonium, exceeding those of nitrate. Mechanisms for the shift within N fractions from roots to soils are briefly discussed. PMID:15386635

  12. Detection of open and closed conformations of tryptophan synthase by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance of bound 1-15N-L-tryptophan.

    PubMed

    Osborne, Andrew; Teng, Quincy; Miles, Edith Wilson; Phillips, Robert S

    2003-11-01

    1-15N-L-Tryptophan (1-15N-L-Trp) was synthesized from 15N-aniline by a Sandmeyer reaction, followed by cyclization to isatin, reduction to indole with LiAlH4, and condensation of the 15N-indole with L-serine, catalyzed by tryptophan synthase. 1-15N-L-Trp was complexed with wild-type tryptophan synthase and beta-subunit mutants, betaK87T, betaD305A, and betaE109D, in the absence or presence of the allosteric ligands sodium chloride and disodium alpha-glycerophosphate. The enzyme complexes were observed by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance (15N-HSQC NMR) spectroscopy for the presence of 1-15N-L-Trp bound to the beta-active site. No 15N-HSQC signal was detected for 1-15N-L-Trp in 10 mm triethanolamine hydrochloride buffer at pH 8. 1-15N-L-Trp in the presence of wild-type tryptophan synthase in the absence or presence of 50 mm sodium chloride showed a cross peak at 10.25 ppm on the 1H axis and 129 ppm on the 15N axis as a result of reduced solvent exchange for the bound 1-15N-L-Trp, consistent with formation of a closed conformation of the active site. The addition of disodium alpha-glycerophosphate produced a signal twice as intense, suggesting that the equilibrium favors the closed conformation. 15N-HSQC NMR spectra of betaK87T and betaE109D mutant Trp synthase with 1-15N-L-Trp showed a similar cross peak either in the presence or absence of disodium alpha-glycerophosphate, indicating the preference for a closed conformation for these mutant proteins. In contrast, the betaD305A Trp synthase mutant only showed a 15N-HSQC signal in the presence of disodium alpha-glycerophosphate. Thus, this mutant Trp synthase favored an open conformation in the absence of disodium alpha-glycerophosphate but was able to form a closed conformation in the presence of disodium alpha-glycerophosphate. Our results demonstrate that the 15N-HSQC NMR spectra of 1-15N-L-Trp bound to Trp synthase can be used to determine the conformational state of mutant forms in solution rapidly. In contrast, UV-visible spectra of wild-type and mutant Trp synthase in the presence of L-Trp with NaCl and/or disodium alpha-glycerophosphate are more difficult to interpret in terms of altered conformational equilibria. PMID:12939261

  13. Vertical concentration profiles of lead in the Central Pacific at 15°N and 20°S

    NASA Astrophysics Data System (ADS)

    Flegal, A. R.; Patterson, C. C.

    1983-07-01

    Concentrations of lead were measured in a surface transect and at two vertical profile stations (15°N and 20°S) in the Central Pacific. These measurements complement similar measurements made earlier in the North Pacific at 33°N and in the Northwest Atlantic at 34°N [1,2], as well as recent measurements of eolian lead input fluxes near each of these locations [3]. The new transect of surface water concentrations of lead corroborates previous measurements, which decrease from 13 ng/kg at 30°N to 4 ng/kg at 17°S in the Central Pacific [4]. This transect gradient is shown to overlie a similar geographic gradient of subsurface maximum concentrations of lead in the three Pacific vertical profile stations, decreasing from 14 ng/kg at 33°N to 11 ng/kg at 14°N to 2.5 ng/kg at 20°S. Lead concentrations at each of those locations exhibit maxima at 400 m, decreasing concentrations to 2500 m and approximately concentrations of 0.8-1.1 ng/kg below that depth. The subsurface maximum at the northwest Atlantic profile station (36 ng/kg at 34°N) is also congruent with surface water lead concentrations which decrease from 806 ng/kg to 32 ng/kg in an offshore transect from Rhode Island to 34°N, 66°W [5], and the shape of the Atlantic profile is congruent with those in the Pacific. There is a positive correlation between the magnitudes of eolian lead input fluxes and the magnitudes of the upper water maxima in lead concentration profiles at corresponding locations as follows: South Pacific easterlies 3 ng/cm 2 yr vs. 2.5 ng/kg; North Pacific easterlies 6 ng/cm 2 yr vs. 11 ng/kg; North Pacific westerlies 50 ng/cm 2 yr vs. 14 ng/kg; and North Atlantic westerlies 170 ng/cm 2 yr vs. 36 ng/kg. This relationship enables one to view the anthropogenic perturbations of the marine lead cycle on a global scale, since the industrial origin of eolian and seawater lead has been established by correlations between geographic patterns of industrial lead emissions to the atmosphere and isotopic ratios of industrial leads [3] and by geographic patterns of Pb/silicate-dust ratios and lead isotopic ratios in ocean surface waters [3-5]. These new data coupled with earlier biogeochemical data indicate that surface water concentrations of lead in the North Pacific and North Atlantic are now conservatively estimated to be 8 to 20-fold greater and those in the South Pacific are 2-fold greater than natural concentrations because of industrial emissions of lead to the atmosphere.

  14. Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N15N and carbonyl 13C–13C dipolar recoupling data

    PubMed Central

    Hu, Kan-Nian; Qiang, Wei; Bermejo, Guillermo A.; Schwieters, Charles D.; Tycko, Robert

    2013-01-01

    Recent structural studies of uniformly 15N, 13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical shifts, based on empirical correlations between chemical shifts and backbone torsion angles; (ii) restraints on inter-residue proximities from qualitative measurements of internuclear dipole–dipole couplings, detected as the presence or absence of inter-residue crosspeaks in multidimensional spectra. We show that site-specific dipole–dipole couplings among 15N-labeled backbone amide sites and among 13C-labeled backbone carbonyl sites can be measured quantitatively in uniformly-labeled proteins, using dipolar recoupling techniques that we call 15N-BARE and 13C-BARE (BAckbone REcoupling), and that the resulting data represent a new source of restraints on backbone conformation. 15N-BARE and 13C-BARE data can be incorporated into structural modeling calculations as potential energy surfaces, which are derived from comparisons between experimental 15N and 13C signal decay curves, extracted from crosspeak intensities in series of two-dimensional spectra, with numerical simulations of the 15N-BARE and 13C-BARE measurements. We demonstrate this approach through experiments on microcrystalline, uniformly 15N, 13C-labeled protein GB1. Results for GB1 show that 15N-BARE and 13C-BARE restraints are complementary to restraints from chemical shifts and inter-residue crosspeaks, improving both the precision and the accuracy of calculated structures. PMID:22449573

  15. Localization of 15N uptake in a Tibetan alpine Kobresia pasture

    NASA Astrophysics Data System (ADS)

    Schleuß, Per-Marten; Kuzyakov, Yakov

    2014-05-01

    The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation of Kobresia ecosystems. Considering only the nitrogen uptake of AGB hardly any differences appeared between the six injection depths. Nevertheless, it could be shown, that 50.4 % percent of total variance of AGB nitrogen uptake could be explained by combining root density and root activity. Concluding, from the upper root mat horizons highest amounts of nitrogen were taken up by plants, because root densities are correspondingly high. However, in deeper root mat layers the root activity increases and accordingly plays a key role for plant nitrogen supply in this depth. Underlying causes for increasing root activities may be better soil moisture conditions, lower variation of soil temperature and/or a higher access to plant available nitrogen in deeper soil layers.Please fill in your abstract text.

  16. The physical state of osmoregulatory solutes in unicellular algae. A natural-abundance carbon-13 nuclear-magnetic-resonance relaxation study.

    PubMed Central

    Norton, R S; MacKay, M A; Borowitzka, L J

    1982-01-01

    Natural-abundance 13C n.m.r. spin-lattice relaxation-time measurements have been carried out on intact cells of the unicellular blue--green alga Synechococcus sp. and the unicellular green alga Dunaliella salina, with the aim of characterizing the environments of the organic osmoregulatory solutes in these salt-tolerant organisms. In Synechococcus sp., all of the major organic osmoregulatory solute, 2-O-alpha-D-glucopyranosylglycerol, is visible in spectra of intact cells. Its rotational motion in the cell is slower by a factor of approx. 2.4 than in aqueous solution, but the molecule is still freely mobile and therefore able to contribute to the osmotic balance. In D. salina, only about 60% of the osmoregulatory solute glycerol is visible in spectra of intact cells. The rotational mobility of this observable fraction is approximately half that found in aqueous solution, but the data also indicate that there is a significant concentration of some paramagnetic species in D. salina which contributes to the overall spin-lattice relaxation of the glycerol carbon atoms. The non-observable fraction, which must correspond to glycerol molecules that have very broad 13C resonances and that are in slow exchange with bulk glycerol, has not been properly characterized as yet, but may represent glycerol in the chloroplast. The implications of these findings in relation to the physical state of the cytoplasm and the mechanism of osmoregulation in these cells are discussed. PMID:6807296

  17. Black Sea nitrogen cycling and the preservation of phytoplankton ?15N signals during the Holocene

    NASA Astrophysics Data System (ADS)

    Fulton, James M.; Arthur, Michael A.; Freeman, Katherine H.

    2012-06-01

    The stable isotopic compositions of bulk, clay-bound, organic, and compound-specific nitrogen were determined for mid to late Holocene Black Sea sediments from a set of box and gravity cores. The data demonstrate that cyanobacterial N2fixation provided ˜55% of phytoplankton-derived N preserved in the top 1-2 cm of the sediments. Prior to widespread agricultural and industrial development in the catchment, N2fixation was more prominent, providing 70-80% of phytoplankton N. Organic and clay-bound nitrogen fractions record different down-core?15N trends that reflect phytoplankton and detrital sources, respectively, and in samples with low organic matter content, the clay-bound fraction comprises up to 38% of bulk nitrogen. Compared with bulk samples, pyropheophytina (Pphe a), which is a chlorophyll a (Chl a) degradation product, provides a more accurate record of changing phytoplankton ?15N values during the Holocene. An examination of the ?15NPphe a values in light of published and new estimates of the isotopic difference between biomass and Chl a suggests that most of the preserved Pphe a was derived from eukaryotic algae, not cyanobacteria. We infer from these data that cyanobacterial biomass is rapidly recycled in the photic zone, with 15N-depleted NH4+ released during heterotrophy and assimilated by other phytoplankton. A conceptual model for N2 fixation in the Black Sea is presented, drawing upon water column nutrient and hydrographic data as well as regional climate variability to explain the proposed temporal variability in N2 fixation.

  18. Hydrogen exchange behavior of [U-15N]-labeled oxidized and reduced iso-1-cytochrome c.

    PubMed

    Baxter, S M; Fetrow, J S

    1999-04-01

    Heteronuclear NMR spectroscopy was used to measure the hydrogen-deuterium exchange rates of backbone amide hydrogens in both oxidized and reduced [U-15N]iso-1-cytochrome c from the yeast Saccharomyces cerevisiae. The exchange data confirm previously reported data [Marmorino et al. (1993) Protein Sci. 2, 1966-1974], resolve several inconsistencies, and provide more thorough coverage of exchange rates throughout the cytochrome c protein in both oxidation states. Combining the data previously collected on unlabeled C102T with the current data collected on [U-15N]C102T, exchange rates for 53 protons in the oxidized state and 52 protons in the reduced state can now be reported. Most significantly, hydrogen exchange measurements on [U-15N]iso-1-cytochrome c allowed the observation of exchange behavior of the secondary structures, such as large loops, that are not extensively hydrogen-bonded. For the helices, the most slowly exchanging protons are found in the middle of the helix, with more rapidly exchanging protons at the helix ends. The observation for the Omega-loops in cytochrome c is just the opposite. In the loops, the ends contain the most slowly exchanging protons and the loop middles allow more rapid exchange. This is found to be true in cytochrome c loops, even though the loop ends are not attached to any regular secondary structures. Some of the exchange data are strikingly inconsistent with data collected on the C102S variant at a different pH, which suggests pH-dependent dynamic differences in the protein structure. This new hydrogen exchange data for loop residues could have implications for the substructure model of eukaryotic cytochrome c folding. Isotopic labeling of variant forms of cytochrome c can now be used to answer many questions about the structure and folding of this model protein. PMID:10194371

  19. Site-specific 15N isotopic signatures of abiotically produced N2O

    NASA Astrophysics Data System (ADS)

    Heil, Jannis; Wolf, Benjamin; Brüggemann, Nicolas; Emmenegger, Lukas; Tuzson, Béla; Vereecken, Harry; Mohn, Joachim

    2014-08-01

    Efficient nitrous oxide (N2O) mitigation strategies require the identification of the main source and sink processes and their contribution to total soil N2O production. Several abiotic reactions of nitrification intermediates leading to N2O production are known, but their contribution to total N2O production in soils is uncertain. As the site preference (SP) of 15N in N2O is a promising tool to give more insight into N2O production processes, we investigated the SP of N2O produced by different abiotic reactions in a laboratory study. All reactions involved the nitrification intermediate hydroxylamine (NH2OH) in combination with nitrite (NO2-), Fe3+, Fe2+ and Cu2+, reactants commonly or potentially found in soils, at different concentrations and pH values. N2O production and its four main isotopic species (14N14N16O, 15N14N16O, 14N15N16O, and 14N14N18O) were quantified simultaneously and online at high temporal resolution using quantum cascade laser absorption spectroscopy. Thereby, our study presents the first continuous analysis of ?18O in N2O. The experiments revealed the possibility of purely abiotic reactions over a wide range of acidity (pH 3-8) by different mechanisms. All studied abiotic pathways produced N2O with a characteristic SP in the range of 34-35‰, unaffected by process conditions and remaining constant over the course of the experiments. These findings reflect the benefit of continuous N2O isotopic analysis by laser spectroscopy, contribute new information to the challenging source partitioning of N2O emissions from soils, and emphasize the potentially significant role of coupled biotic-abiotic reactions in soils.

  20. A spectral correlation function for efficient sequential NMR assignments of uniformly (15)N-labeled proteins.

    PubMed

    Bartels, C; Wüthrich, K

    1994-11-01

    A new computer-based approach is described for efficient sequence-specific assignment of uniformly (15)N-labeled proteins. For this purpose three-dimensional (15)N-correlated [(1)H, (1)H]-NOESY spectra are divided up into two-dimensional (1)H-(1)H strips which extend over the entire spectral width along one dimension and have a width of ca. 100 Hz, centered about the amide proton chemical shifts along the other dimension. A spectral correlation function enables sorting of these strips according to proximity of the corresponding residues in the amino acid sequence. Thereby, starting from a given strip in the spectrum, the probability of its corresponding to the C-terminal neighboring residue is calculated for all other strips from the similarity of their peak patterns with a pattern predicted for the sequentially adjoining residue, as manifested in the scalar product of the vectors representing the predicted and measured peak patterns. Tests with five different proteins containing both ?-helices and ?-sheets, and ranging in size from 58 to 165 amino acid residues show that the discrimination achieved between the sequentially neighboring residue and all other residues compares well with that obtained with an unguided interactive search of pairs of sequentially neighboring strips, with important savings in the time needed for complete analysis of 3D (15)N-correlated [(1)H, (1)H]-NOESY spectra. The integration of this routine into the program package XEASY ensures that remaining ambiguities can be resolved by visual inspection of the strips, combined with reference to the amino acid sequence and information on spin-system types obtained from additional NMR spectra. PMID:22911386

  1. Nitrate Reduction in a Groundwater Microcosm Determined by 15N Gas Chromatography-Mass Spectrometry

    PubMed Central

    Bengtsson, Göran; Annadotter, Heléne

    1989-01-01

    Aerobic and anaerobic groundwater continuous-flow microcosms were designed to study nitrate reduction by the indigenous bacteria in intact saturated soil cores from a sandy aquifer with a concentration of 3.8 mg of NO3?-N liter?1. Traces of 15NO3? were added to filter-sterilized groundwater by using a Darcy flux of 4 cm day?1. Both assimilatory and dissimilatory reduction rates were estimated from analyses of 15N2, 15N2O, 15NH4+, and 15N-labeled protein amino acids by capillary gas chromatography-mass spectrometry. N2 and N2O were separated on a megabore fused-silica column and quantified by electron impact-selected ion monitoring. NO3? and NH4+ were analyzed as pentafluorobenzoyl amides by multiple-ion monitoring and protein amino acids as their N-heptafluorobutyryl isobutyl ester derivatives by negative ion-chemical ionization. The numbers of bacteria and their [methyl-3H]thymidine incorporation rates were simultaneously measured. Nitrate was completely reduced in the microcosms at a rate of about 250 ng g?1 day?1. Of this nitrate, 80 to 90% was converted by aerobic denitrification to N2, whereas only 35% was denitrified in the anaerobic microcosm, where more than 50% of NO3? was reduced to NH4+. Assimilatory reduction was recorded only in the aerobic microcosm, where N appeared in alanine in the cells. The nitrate reduction rates estimated for the aquifer material were low in comparison with rates in eutrophic lakes and coastal sediments but sufficiently high to remove nitrate from an uncontaminated aquifer of the kind examined in less than 1 month. PMID:16348048

  2. Molecular beam electric resonance study of KCN, K 13CN and KC 15N

    NASA Astrophysics Data System (ADS)

    van Vaals, J. J.; Leo Meerts, W.; Dymanus, A.

    1984-08-01

    The microwave spectra of the isotopic species K 13CN and KC 15N have been investigated by molecular beam electric resonance spectroscopy, using the seeded beam technique. For both isotopic species about 20 rotational transitions originating in the ground vibrational state were observed in the frequency range 9-38 GHz. The observed transitions were fitted to an asymmetric rotor model to determine the three rotational, as well as the five quartic and three sextic centrifugal distortion constants. The hyperfine spectrum of KCN has been unravelled with the help of microwave-microwave double-resonance techniques. One hundred and forty hyperfine transitions in 11 rotational transitions have been assigned. The hyperfine structures of K 13CN and KC 15N were also studied. For all three isotopic species the quadrupole coupling constants and some spin-rotation coupling constants could be deduced. The rotational constants of the 13C and 15N isotopically substituted species of potassium cyanide, combined with those of the normal isotopic species (determined more accurately in this work), allowed an accurate and unambiguous evaluation of the structure, which was confirmed to be T shaped. Both the effective structure of the ground vibrational state and the substitution structure were evaluated. The results for the effective structural parameters are r CN = 1.169(3) Å, r KC = 2.716(9) Å, and r KN = 2.549(9) Å. The values obtained for the principal hyperfine coupling constant eQqz(N), the angle between the CN axis and zN, and the bond length rCN indicate that in gaseous potassium cyanide the CN group can be considered as an almost unperturbed CN - ion.

  3. Heterotrophic 15N2 Fixation and Distribution of Newly Fixed Nitrogen in a Rice-Flooded Soil System 1

    PubMed Central

    Eskew, David L.; Eaglesham, Allan R. J.; App, A. A.

    1981-01-01

    Rice (Oryza sativa L.) plants growing in pots of flooded soil were exposed to a 15N2-enriched atmosphere for 3 to 13 days in a gas-tight chamber. The floodwater and soil surface were shaded with a black cloth to reduce the activity of phototrophic N2-fixing micro-organisms. The highest 15N enrichments were consistently observed in the roots, although the total quantity of 15N incorporated into the soil was much greater. The rate of 15N incorporation into roots was much higher at the heading than at the tillering stage of growth. Definite enrichments were also found in the basal node and in the lower outer leaf sheath fractions after 3 days of exposure at the heading stage. Thirteen days was the shortest time period in which definite 15N enrichment was observed in the leaves and panicle. When plants were exposed to 15N2 for 13 days just before heading and then allowed to mature in a normal atmosphere, 11.3% of the total 15N in the system was found in the panicles, 2.3% in the roots, and 80.7% in the subsurface soil. These results provide direct evidence of heterotrophic N2 fixation associated with rice roots and the flooded soil and demonstrate that part of the newly fixed N is available to the plant. PMID:16661887

  4. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    PubMed

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-01

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:?-cyclodextrin, ABZ:methyl-?-cyclodextrin, ABZ:hydroxypropyl-?-cyclodextrin and ABZ:citrate-?-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. PMID:25843843

  5. Determination of the ?15N of nitrate in solids; RSIL lab code 2894

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2894 is to determine the ?15N of nitrate (NO3-) in solids. The nitrate fraction of the nitrogen species is dissolved by water (called leaching) and can be analyzed by the bacterial method covered in RSIL lab code 2899. After leaching, the ?15N of the dissolved NO3- is analyzed by conversion of the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of NO3- to N2O, which follows the pathway shown in equation 1: NO3- ? NO2- ? NO ? 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before ?15N values are reported.

  6. Determination of the ?15N of nitrate in water; RSIL lab code 2899

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2899 is to determine the ?15N of nitrate (NO3-) in water. The ?15N of the dissolved NO3- is analyzed by conversion of the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of the NO3- to N2O, which follows the pathway shown in equation 1: NO3- ? NO2- ? NO ? 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before ?15N values are reported.

  7. Determination of the ?15N and ?18O of nitrate in solids; RSIL lab code 2897

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2897 is to determine the ?15N and ?18O of nitrate (NO3-) in solids. The NO3- fraction of the nitrogen species is dissolved by water (called leaching) and can be analyzed by the bacterial method covered in RSIL lab code 2900. After leaching, the ?15N and ?18O of the dissolved NO3- is analyzed by conversion of the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of NO3- to N2O, which follows the pathway shown in equation 1: NO3- ? NO2- ? NO ? 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before ?15N values are reported.

  8. Determination of the ?15N and ?18O of nitrate in water; RSIL lab code 2900

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2900 is to determine the ?15N and ?18O of nitrate (NO3-) in water. The ?15N and ?18O of the dissolved NO3- are analyzed by converting the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of the NO3- to N2O, which follows the pathway shown in equation 1: NO3- ? NO2- ? NO ? 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before ?15N values are reported.

  9. 29,30Si(16O, 15N) proton stripping reaction at 60 MeV

    Microsoft Academic Search

    D. Dehnhard; J. L. Artz; D. J. Weber; V. Shkolnik; R. M. Devries

    1976-01-01

    Differential cross sections of the [16O, 15N(g.s.)] reaction on 29Si and 30Si were measured at E(16O)=60 MeV at far forward angles. The strongly oscillatory DeltaL=1, (2) angular distributions for the 2s12 and 1d32 transitions to 30P and 31P were found to be out of phase. The pure DeltaL=1, 2s12 transitions were fitted well by finite range distorted wave Born approximation

  10. Uptake of stormwater nitrogen in bioretention systems demonstrated from 15N tracer techniques

    NASA Astrophysics Data System (ADS)

    Houdeshel, D.; Hultine, K. R.; Pomeroy, C. A.

    2012-12-01

    Bioretention stormwater management systems are engineered ecosystems that capture urban stormwater in order to reduce the harmful effects of stormwater pollution on receiving waters. Bioretention systems have been shown to be effective at reducing the volume of runoff, and thereby reduce the nutrient loading to receiving waters from urban areas. However, little work has been done to evaluate the treatment processes that are responsible for reductions in effluent nitrogen (N). We hypothesize that the pulses of inorganic nitrogen associated with urban runoff events are captured in the plat tissues within these systems and not adsorbed to the soil media, thus creating a long-term, sustainable treatment approach to reducing the total nutrient loading to receiving waters. Nitrogen treatment performance was tested on two bioretention systems in Salt Lake City, UT: 1) an upland native community that does not require irrigation in semi-arid climates, and 2) a wetland community that requires 250 l of daily irrigation to offset the relatively high evaporative demand in the region. Each cell is sized to treat a 2.5 cm storm from a 140 m2 impervious surface: the area of the bioretention system is 10 m2. To test the N removal performance of each system, runoff events were simulated to represent an average precipitation regime using a synthetic stormwater blend starting in January, 2012. Effluent was collected from an underdrain and analyzed for total nitrogen (TN); mass removal was calculated for each month by subtracting the TN mass added to the garden minus the TN mass that flowed out of the garden. To test the hypothesis that plants assimilate stormwater N, 4 g of 100 atom% 15N NH4NO3 tracer was used as the N source in the synthetic stormwater during the first 2,000 l synthetic storm event in May. This isotopic label was calculated to enrich the total N pool of each garden to 100‰ 15N/14Nair. New growth was harvested from each plant in both cells and analyzed for 15N before the isotopic label was introduced and weekly thereafter. In May 2012, the upland garden captured 6.2 grams of TN from the added stormwater (55% of TN added), and the wetland garden captured 7.1 grams of TN from the added stormwater (67% of TN added). Within two weeks of adding the label, the 15N ratio increased 500‰ to 3,000‰ in all plant tissues tested in both systems. The results of the isotopic labeling experiment support the hypothesis that the plants used in both vegetated bioretention systems directly contribute to stormwater N treatment through N assimilation.

  11. Influenza A (H15N4) Virus Isolation in Western Siberia, Russia

    PubMed Central

    Sivay, Mariya V.; Baranovich, Tatiana; Marchenko, Vasiliy Y.; Sharshov, Kirill A.; Govorkova, Elena A.; Shestopalov, Aleksander M.

    2013-01-01

    The rarely identified influenza A viruses of the H15 hemagglutinin subtype have been isolated exclusively in Australia. Here we report the isolation of an H15N4 influenza A virus (A/teal/Chany/7119/2008) in Western Siberia, Russia. Phylogenetic analysis demonstrated that the internal genes of the A/teal/Chany/7119/2008 strain belong to the Eurasian clade and that the H15 and N4 genes were introduced into the gene pool of circulating endemic avian influenza viruses through reassortment events. PMID:23283950

  12. An Investigation of Wild Bee Diversity and Abundance in Plots Managed by The Nature Conservancy in South-Central Nebraska and of Beneficial Arthropods Associated with Native Nebraska Flora

    Microsoft Academic Search

    Dori Ann Porter

    2010-01-01

    Insect pollination is an essential ecosystem service, and bees are the principal pollinators of wild and cultivated plants. Habitat management and enhancement are a proven way to encourage wild bee populations, providing them with food and nesting resources. I examined bee diversity and abundance in plots managed by The Nature Conservancy near Wood River, NE. The plots were seeded with

  13. Discrimination against 15N among recombinant inbred lines of Phaseolus vulgaris L. contrasting in phosphorus use efficiency for nitrogen fixation.

    PubMed

    Lazali, Mohamed; Bargaz, Adnane; Carlsson, Georg; Ounane, Sidi Mohamed; Drevon, Jean Jacques

    2014-02-15

    Although isotopic discrimination processes during nitrogen (N) transformations influence the outcome of (15)N based quantification of N2 fixation in legumes, little attention has been given to the effects of genotypic variability and environmental constraints such as phosphorus (P) deficiency, on discrimination against (15)N during N2 fixation. In this study, six Phaseolus vulgaris recombinant inbred lines (RILs), i.e. RILs 115, 104, 34 (P deficiency tolerant) and 147, 83, 70 (P deficiency sensitive), were inoculated with Rhizobium tropici CIAT899, and hydroaeroponically grown with P-sufficient (250 ?mol P plant(-1) week(-1)) versus P-deficient (75 ?mol P plant(-1) week(-1)) supply. Two harvests were done at 15 (before nodule functioning) and 42 (flowering stage) days after transplanting. Nodulation, plant biomass, P and N contents, and the ratios of (15)N over total N content ((15)N/Nt) for shoots, roots and nodules were determined. The results showed lower (15)N/Nt in shoots than in roots, both being much lower than in nodules. P deficiency caused a larger decrease in (15)N/Nt in shoots (-0.18%) than in nodules (-0.11%) for all of the genotypes, and the decrease in shoots was greatest for RILs 34 (-0.33%) and 104 (-0.25%). Nodule (15)N/Nt was significantly related to both the quantity of N2 fixed (R(2)=0.96***) and the P content of nodules (R(2)=0.66*). We conclude that the discrimination against (15)N in the legume N2-fixing symbiosis of common bean with R. tropici CIAT899 is affected by P nutrition and plant genotype, and that the (15)N/Nt in nodules may be used to screen for genotypic variation in P use efficiency for N2 fixation. PMID:24035519

  14. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies.

    PubMed Central

    Nikonowicz, E P; Sirr, A; Legault, P; Jucker, F M; Baer, L M; Pardi, A

    1992-01-01

    A procedure is described for the efficient preparation of isotopically enriched RNAs of defined sequence. Uniformly labelled nucleotide 5'triphosphates (NTPs) were prepared from E.coli grown on 13C and/or 15N isotopically enriched media. These procedures routinely yield 180 mumoles of labelled NTPs per gram of 13C enriched glucose. The labelled NTPs were then used to synthesize RNA oligomers by in vitro transcription. Several 13C and/or 15N labelled RNAs have been synthesized for the sequence r(GGCGCUUGCGUC). Under conditions of high salt or low salt, this RNA forms either a symmetrical duplex with two U.U base pairs or a hairpin containing a CUUG loop respectively. These procedures were used to synthesize uniformly labelled RNAs and a RNA labelled only on the G and C residues. The ability to generate milligram quantities of isotopically labelled RNAs allows application of multi-dimensional heteronuclear magnetic resonance experiments that enormously simplify the resonance assignment and solution structure determination of RNAs. Examples of several such heteronuclear NMR experiments are shown. PMID:1383927

  15. Measurement and interpretation of 15N- 1H residual dipolar couplings in larger proteins

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Akash; Revington, Matthew; Zuiderweg, Erik R. P.

    2010-03-01

    A decade ago, Dr. L.E. Kay and co-workers described an ingenious HNCO-based triple-resonance experiment from which several protein backbone RDCs can be measured simultaneously (Yang et al. (1999) [1]). They implemented a J-scaling technique in the 15N dimension of the 3D experiment to obtain the NH RDCs. We have used this idea to carry out J-scaling in a 2D 15N- 1H-TROSY experiment and have found it to be an excellent method to obtain NH RDCs for larger proteins upto 70 kDa, far superior to commonly used HSQC in-phase/anti-phase and HSQC/TROSY comparisons. Here, this method, dubbed "RDC-TROSY" is discussed in detail and the limits of its utility are assessed by simulations. Prominent in the latter analysis is the evaluation of the effect of amide proton flips on the "RDC-TROSY" linewidths. The details of the technical and computational implementations of these methods for the determination of domain orientations in 45-60 kDa Hsp70 chaperone protein constructs are described.

  16. The coral ?15N record of terrestrial nitrate loading varies with river catchment land use

    NASA Astrophysics Data System (ADS)

    Yamazaki, A.; Watanabe, T.; Tsunogai, U.; Hasegawa, H.; Yamano, H.

    2015-03-01

    We analysed the nitrogen isotopes in two coral cores (?15Ncoral) from the mouth of the Todoroki River, Ishigaki Island, Japan, to examine whether the ?15Ncoral reflects the run-off of nitrate related to the land use in the river catchment. The two coral cores were used to examine the seasonal variation in ?15Ncoral for 14 years (CORE1; 1993-2007) and the annual variation of ?15Ncoral for 52 years (CORE2; 1958-2010). In CORE1, the 5-month running mean of ?15Ncoral was positively correlated with that of monthly precipitation, excluding all strong precipitation events (>150 mm d-1). In CORE2, the ?15Ncoral mean in the earlier period (1958-1980) was 1.0 ‰ greater than that in the later period (1981-2010). The annual averages of ?15Ncoral are positively correlated with the total precipitation in the rainy season (May-June) for both time periods. The difference in the ?15Ncoral between the earlier and later periods is probably caused by the land use changed from paddy fields with 15N-rich manure to sugar cane fields in the early 1980s. Although some uncertainties still remain regarding the precision of ?15N coral proxy records, this study emphasises the clear potential for their use in reconstructing terrestrial nitrate discharge records from corals.

  17. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  18. Analysis of the structure of synthetic and natural melanins by solid-phase

    SciTech Connect

    Duff, G.A.; Roberts, J.E.; Foster, N.

    1988-09-06

    The structures of one synthetic and two natural melanins are examined by solid-state NMR using cross polarization, magic angle sample spinning, and high-power proton decoupling. The structural features of synthetic dopa malanin are compared to those of melanin from malignant melanoma cells grown in culture and sepia melanin from squid ink. Natural abundance /sup 13/C and /sup 15/N spectra show resonances consistent with known pyrrolic and indolic structures within the heterogeneous biopolymer; /sup 13/C spectra indicate the presence of aliphatic residues in all three materials. These solid-phase experiments illustrate the promise of solid-phase NMR for elucidating structural from insoluble biomaterials.

  19. 15N depleted nitrogen isotope values in Cretaceous black shales: paleoceanographic event or diagenesis.

    NASA Astrophysics Data System (ADS)

    Junium, C. K.; Arthur, M. A.

    2004-12-01

    Nitrogen isotopic values of bulk sediment samples in black shales are almost exclusively near 0 ‰ and C/N ratios are high (20-35). Sequential extraction of exchangeable and non-exchangeable N fractions demonstrates that the inorganic N fraction is negligible and bulk sediment data reflect the organic N fraction. The trend in \\delta$15N and C/N has been observed in numerous localities and depositional environments in the mid-Cretaceous (Demarara Rise, DSDP Sites 367, 603B and 530, the Cretaceous Western Interior Seaway, Wunstorf, Germany, and Bahloul, Tunisia) as well as the Toarcian of England and in Quaternary Mediterranean Sapropels. Three explanations are considered: 1) That primary production during black shale deposition was dominated by a unique community composed of nitrogen-fixing cyanobacteria; or 2) utilization of a 15N depleted ammonium source by another set of biota; or 3) that the values are the result of diagenetic loss of N prevailing in Corg-rich strata with a low capacity for N adsorption. The depleted nitrogen isotopic values suggest that nitrogen fixation or utilization of a depleted nitrogen source (e.g. ammonium) may have been important which is plausible in consideration of nitrogen deficiencies that might characterize widespread deep-water anoxia. Secular variations in nitrogen isotope values across the Cenomanian-Turonian Boundary of ODP Site 1261, Demarara Rise, show a shift from -1 to -3‰ . One interpretation of the origin of the excursion could be that a fraction of the organic matter was produced utilizing a 15N depleted ammonium source, assuming that the nitrogen isotopic composition of fixed oceanic nitrogen does not change. However, it should be noted that large (greater than 1‰ ) variations in nitrogen isotope values are observed above and below the Cenomanian-Turonian Boundary Event and have no known paleoceanographic forcing. The variations in nitrogen isotope values are matched by antithetic variations in C/N indicating diagenetic N-loss that could be interpreted as the primary control on the nitrogen isotope variations. The high C/N ratios probably result from selective removal of N-enriched compounds in the water column and during burial diagenesis. Clay-poor, Corg-rich sediments have a low sorptive capacity, allowing diffusion of dissolved N out of the Corg-rich sediments resulting in higher C/N ratios. Pore water ammonium concentrations are mM, indicating low sorption and high rates of diffusion into overlying strata. Coupled C/N and N-isotope variations occur by the removal of a 15N enriched fraction. Protein degradation has been suggested to result in negative isotopic shifts but would not result in large increases in C/N and the isotopic shifts are limited by the protein richness of the primary organic matter and the internal isotopic heterogeneity of the organic matter pools. Although we favor an explanation that involves a primary signature, diagenesis cannot be excluded in low ? 15N values.

  20. A simple method to adjust inconsistently referenced 13C and 15N chemical shift assignments of proteins.

    PubMed

    Wang, Yunjun; Wishart, David S

    2005-02-01

    Inconsistent 13C and 15N chemical shift referencing is a continuing problem associated with protein chemical shift assignments deposited in BioMagResBank (BMRB). Here we describe a simple and robust approach that can quantitatively determine the 13C and 15N referencing offsets solely from chemical shift assignment data and independently of 3D coordinate data. This novel structure-independent approach permitted the assessment and determination of 13C and 15N reference offsets for all protein entries deposited in the BMRB. Tests on 452 proteins with known 3D structures show that this structure-independent approach yields 13C and 15N referencing offsets that exhibit excellent agreement with those calculated on the basis of 3D structures. Furthermore, this protocol appears to improve the accuracy of chemical shift-derived secondary structural identification, and has been formally incorporated into a computer program called PSSI (http//www.pronmr.com). PMID:15772753

  1. (1)H, (15)N and (13)C resonance assignments of the two TPR domains from the human RPAP3 protein.

    PubMed

    Chagot, Marie-Eve; Jacquemin, Clémence; Branlant, Christiane; Charpentier, Bruno; Manival, Xavier; Quinternet, Marc

    2015-04-01

    We report the nearly complete (1)H, (15)N and (13)C resonance assignments of the two tetratricopeptide-repeat domains of the human RPAP3 protein, a co-chaperone of the heat-shock protein family. PMID:24668569

  2. The effect of drought and interspecific interactions on depth of water uptake in deep- and shallow-rooting grassland species as determined by ?18O natural abundance

    NASA Astrophysics Data System (ADS)

    Hoekstra, N. J.; Finn, J. A.; Hofer, D.; Lüscher, A.

    2014-08-01

    Increased incidence of drought, as predicted under climate change, has the potential to negatively affect grassland production. Compared to monocultures, vertical belowground niche complementarity between shallow- and deep-rooting species may be an important mechanism resulting in higher yields and higher resistance to drought in grassland mixtures. However, very little is known about the belowground responses in grassland systems and increased insight into these processes may yield important information both to predict the effect of future climate change and better design agricultural systems to cope with this. This study assessed the effect of a 9-week experimental summer drought on the depth of water uptake of two shallow-rooting species (Lolium perenne L. and Trifolium repens L.) and two deep-rooting species (Cichorium intybus L. and Trifolium pratense L.) in grassland monocultures and four-species mixtures by using the natural abundance ?18O isotope method. We tested the following three hypotheses: (1) drought results in a shift of water uptake to deeper soil layers, (2) deep-rooting species take up a higher proportion of water from deeper soil layers relative to shallow-rooting species, and (3) as a result of interspecific interactions in mixtures, the water uptake of shallow-rooting species becomes shallower when grown together with deep-rooting species and vice versa, resulting in reduced niche overlap. The natural abundance ?18O technique provided novel insights into the depth of water uptake of deep- and shallow- rooting grassland species and revealed large shifts in depth of water uptake in response to drought and interspecific interactions. Compared to control conditions, drought reduced the proportional water uptake from 0-10 cm soil depth (PCWU0-10) of L. perenne, T. repens and C. intybus in monocultures by on average 54%. In contrast, the PCWU0-10 of T. pratense in monoculture increased by 44%, and only when grown in mixture did the PCWU0-10 of T. pratense decrease under drought conditions. In line with hypothesis (2), in monoculture, the PCWU0-10 of shallow-rooting species L. perenne and T. repens was 0.53 averaged over the two drought treatments, compared to 0.16 for the deep-rooting C. intybus. Surprisingly, in monoculture, water uptake by T. pratense was shallower than for the shallow-rooting species (PCWU0-10 = 0.68). Interspecific interactions in mixtures resulted in a shift in the depth of water uptake by the different species. As hypothesised, the shallow-rooting species L. perenne and T. repens tended to become shallower, and the deep-rooting T. pratense made a dramatic shift to deeper soil layers (reduction in PCWU0-10 of 58% on average) in mixture compared to monoculture. However, these shifts did not result in a reduction in the proportional similarity of the proportional water uptake from different soil depth intervals (niche overlap) in mixtures compared to monocultures. There was no clear link between interspecific differences in depth of water uptake and the reduction of biomass production under drought compared to control conditions (drought resistance). Cichorium intybus, the species with water uptake from the deepest soil layers was one of the species most affected by drought. Interestingly, T. pratense, which was least affected by drought, also had the greatest plasticity in depth of water uptake. This suggests that there may be an indirect effect of rooting depth on drought resistance, as it determines the potential plasticity in the depth of water uptake.

  3. The effect of drought and interspecific interactions on the depth of water uptake in deep- and shallow-rooting grassland species as determined by ?18O natural abundance

    NASA Astrophysics Data System (ADS)

    Hoekstra, N. J.; Finn, J. A.; Lüscher, A.

    2014-03-01

    Increased incidence of weather drought, as predicted under climate change, has the potential to negatively affect grassland production. Compared to monocultures, vertical belowground niche complementarity between shallow- and deep-rooting species may be an important mechanism resulting in higher yields and higher resistance to drought in grassland mixtures. However, very little is known about the belowground responses in grassland systems and increased insight into these processes may yield important information both to predict the effect of future climate change and better design agricultural systems to cope with this. This study assessed the effect of a 10-week experimental summer drought on the depth of water uptake of two shallow-rooting species (Lolium perenne L. and Trifolium repens L.) and two deep-rooting species (Chicorium intybus L. and Trifolium pratense L.) in grassland monocultures and four-species-mixtures by using the natural abundance ?18O isotope method. We tested the following hypotheses: (1) drought results in a shift of water uptake to deeper soil layers, (2) deep-rooting species take up a higher proportion of water from deeper soil layers relative to shallow-rooting species, (3) as a result of interspecific interactions in mixtures, the water uptake of shallow-rooting species become shallower when grown together with deep-rooting species and vice versa, resulting in reduced niche overlap. The natural abundance ?18O technique provided novel insights into the depth of water uptake of deep- and shallow- rooting grassland species and revealed large shifts in response to drought and interspecific interactions. Compared to control conditions, drought reduced the proportional water uptake from 0-10 cm soil depth (PCWU0-10) of L. perenne, T. repens and C. intybus in monocultures by on average 54%. In contrast, the PCWU0-10 of T. pratense in monoculture increased by 44%, and only when grown in mixture did the PCWU0-10 of T. pratense decrease under drought conditions. In line with hypothesis 2, in monoculture, the PCWU0-10 of shallow-rooting species L. perenne and T. repens was 0.53 averaged over the two drought treatments, compared to 0.16 for the deep-rooting C. intybus. Surprisingly, in monoculture, water uptake by T. pratense was shallower than for the shallow-rooting species (PCWU0-10 = 0.68). Interspecific interactions in mixtures resulted in a shift in the depth of water uptake by the different species. As hypothesised, the shallow-rooting species L. perenne and T. repens tended to become shallower, and the deep-rooting T. pratense made a dramatic shift to deeper soil layers (reduction in PCWU0-10 of 58% on average) in mixture compared to monoculture. However, these shifts did not result in a reduction in the proportional similarity of the proportional water uptake from different soil depth intervals (niche overlap) in mixtures compared to monocultures. There was no clear link between interspecific differences in depth of water uptake and drought resistance. C. intybus, the species with water uptake from the deepest soil layers was one of the species most affected by drought. However, T. pratense, the species with the highest plasticity in depth of water uptake, was least affected by drought, suggesting an indirect effect of rooting depth on drought resistance. Our results show that niche complementarity in the depth of water uptake between shallow- and deep-rooting species may have contributed to the diversity effect in mixtures.

  4. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change

    NASA Astrophysics Data System (ADS)

    Beamish, R. J.; Mahnken, Conrad

    We hypothesise that salmon year class strength is determined in two stages during the first year in the ocean. There is an early natural mortality that is mostly related to predation, which is followed by a physiologically-based mortality. Juvenile salmon that fail to reach a critical size by the end of their first marine summer do not survive the following winter. In this study we describe our initial tests of this critical size and critical period hypothesis using data from ocean surveys of juvenile salmon and from experimental feeding studies on coho. Conservative swept volume abundance estimates for juvenile coho, and possibly chinook, indicate that there is high mortality in fall and winter during their first year in the sea. Studies of otolith weight show that the length and otolith-weight relationship for young coho changes in the early fall of their first ocean year. Studies of growth and associated hormone levels in feeding studies show that slow growing juvenile coho are stunted and deficient in an insulin-like growth factor-I (IGF-I). Juvenile coho sampled in September had low IGF-I values, indicative of poor growth. The results of these studies provide evidence for the general hypothesis that growth-related mortality occurs late in the first marine year and may be important in determining the strength of the year class (brood year). The link between total mortality and climate could be operating via the availability of nutrients regulating the food supply and hence competition for food (i.e. bottom-up regulation).

  5. [Distribution characteristics of soil humus fractions stable carbon isotope natural abundance (delta 13C) in paddy field under long-term ridge culture].

    PubMed

    Tang, Xiao-hong; Luo, You-jin; Ren, Zhen-jiang; Lü, Jia-ke; Wei, Chao-fu

    2011-04-01

    A 16-year field experiment was conducted in a ridge culture paddy field in the hilly region of Sichuan Basin, aimed to investigate the distribution characteristics of stable carbon isotope natural abundance (delta 13C) in soil humus fractions. The soil organic carbon (SOC) content in the paddy field under different cultivation modes ranked in the order of wide ridge culture > ridge culture > paddy and upland rotation. In soil humus substances (HS), humin (HU) was the main composition, occupying 21% - 30% of the total SOC. In the extracted soil carbon, humic acid (HA) dominated, occupying 17% - 21% of SOC and 38% - 65% of HS. The delta 13C value of SOC ranged from -27.9 per thousand to -25.6 per thousand, and the difference of the delta 13C value between 0-5 cm and 20-40 cm soil layers was about 1.9 per thousand. The delta 13C value of HA under different cultivation modes was 1 per thousand - 2 per thousand lower than that of SOC, and more approached to the delta 13C value of rapeseed and rice residues. As for fulvic acid (FA), its delta 13C value was about 2 per thousand and 4 per thousand higher than that of SOC and HA, respectively. The delta 13C value of HU in plough layer (0-20 cm) and plow layer (20-40 cm) ranged from -23.7 per thousand - -24.9 per thousand and -22.6 per thousand - -24.2 per thousand, respectively, reflecting the admixture of young and old HS. The delta 13C value in various organic carbon fractions was HU>FA>SOC>rapeseed and rice residues>HA. Long-term rice planting benefited the increase of SOC content, and cultivation mode played an important role in affecting the distribution patterns of soil humus delta 13C in plough layer and plow layer. PMID:21774322

  6. Isotopic analysis of bulk, LMW, and HMW DON d15N indicates recycled nitrogen release from marine DON

    Microsoft Academic Search

    A. N. Knapp; D. M. Sigman; F. Lipschultz; A. Kustka; D. G. Capone

    2010-01-01

    Nitrogen (N) concentration and stable isotope ratio (d15N) measurements were made on bulk and size fractionated surface ocean dissolved organic nitrogen (DON) samples collected in the oligotrophic North Atlantic and Pacific Oceans. The bulk DON concentration in the upper 100 m is similar between the North Atlantic and North Pacific, between 4.5 and 5.0 uM, but the average d15N of

  7. 1H- 15N NMR studies of the complex bis( S-allyl- L-cysteinate)palladium(II)

    NASA Astrophysics Data System (ADS)

    Corbi, Pedro P.; Massabni, Antonio C.

    2006-05-01

    1H- 15N 2D NMR data for S-allyl- L-cysteine (deoxyalliin) and for bis( S-allyl- L-cysteinate)palladium(II) complex are presented in this manuscript. Large upfield 15N NMR shift of the amine nitrogen in the spectrum of the complex when compared to the spectrum of the ligand shows clearly coordination of S-allyl- L-cysteine, in the anion form, to palladium(II) through the NH 2 group.

  8. Abundance of Ixodes ricinus and prevalence of Borrelia burgdorferi s.l. in the nature reserve Siebengebirge, Germany, in comparison to three former studies from 1978 onwards

    PubMed Central

    2012-01-01

    Background During the last decades, population densities of Ixodes ricinus and prevalences of Borrelia burgdorferi s.l. have increased in different regions in Europe. In the present study, we determined tick abundance and the prevalence of different Borrelia genospecies in ticks from three sites in the Siebengebirge, Germany, which were already examined in the years 1987, 1989, 2001 and 2003. Data from all investigations were compared. Methods In 2007 and 2008, host-seeking I. ricinus were collected by monthly blanket dragging at three distinct vegetation sites in the Siebengebirge, a nature reserve and a well visited local recreation area near Bonn, Germany. In both years, 702 ticks were tested for B. burgdorferi s.l. DNA by nested PCR, and 249 tick samples positive for Borrelia were further genotyped by reverse line blotting. Results A total of 1046 and 1591 I. ricinus were collected in 2007 and 2008, respectively. In comparison to previous studies at these sites, the densities at all sites increased from 1987/89 and/or from 2003 until 2008. Tick densities and Borrelia prevalences in 2007 and 2008, respectively, were not correlated for all sites and both years. Overall, Borrelia prevalence of all ticks decreased significantly from 2007 (19.5%) to 2008 (16.5%), thus reaching the same level as in 2001 two times higher than in 1987/89 (7.6%). Since 2001, single infections with a Borrelia genospecies predominated in all collections, but the number of multiple infections increased, and in 2007, for the first time, triple Borrelia infections occurred. Prevalences of Borrelia genospecies differed considerably between the three sites, but B. garinii or B. afzelii were always the most dominant genospecies. B. lusitaniae was detected for the first time in the Siebengebirge, also in co-infections with B. garinii or B. valaisiana. Conclusions Over the last two centuries tick densities have changed in the Siebengebirge at sites that remained unchanged by human activity since they belong to a nature reserve. Abiotic and biotic conditions most likely favored the host-seeking activity of I. ricinus and the increase of multiple Borrelia infections in ticks. These changes have led to a potential higher risk of humans and animals to be infected with Lyme borreliosis. PMID:23171708

  9. Investigating patterns of symbiotic nitrogen fixation during vegetation change from grassland to woodland using fine scale ?(15) N measurements.

    PubMed

    Soper, Fiona M; Boutton, Thomas W; Sparks, Jed P

    2015-01-01

    Biological nitrogen fixation (BNF) in woody plants is often investigated using foliar measurements of ?(15) N and is of particular interest in ecosystems experiencing increases in BNF due to woody plant encroachment. We sampled ?(15) N along the entire N uptake pathway including soil solution, xylem sap and foliage to (1) test assumptions inherent to the use of foliar ?(15) N as a proxy for BNF; (2) determine whether seasonal divergences occur between ?(15) Nxylem sap and ?(15) Nsoil inorganic N that could be used to infer variation in BNF; and (3) assess patterns of ?(15) N with tree age as indicators of shifting BNF or N cycling. Measurements of woody N-fixing Prosopis glandulosa and paired reference non-fixing Zanthoxylum fagara at three seasonal time points showed that ?(15) Nsoil inorganic N varied temporally and spatially between species. Fractionation between xylem and foliar ?(15) N was consistently opposite in direction between species and varied on average by 2.4‰. Accounting for these sources of variation caused percent nitrogen derived from fixation values for Prosopis to vary by up to ?70%. Soil-xylem ?(15) N separation varied temporally and increased with Prosopis age, suggesting seasonal variation in N cycling and BNF and potential long-term increases in BNF not apparent through foliar sampling alone. PMID:24890575

  10. Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15N is the key signal.

    PubMed

    Hobbie, John E; Hobbie, Erik A; Drossman, Howard; Conte, Maureen; Weber, J C; Shamhart, Julee; Weinrobe, Melissa

    2009-01-01

    Symbiotic fungi's role in providing nitrogen to host plants is well-studied in tundra at Toolik Lake, Alaska, but little-studied in the adjoining boreal forest ecosystem. Along a 570 km north-south transect from the Yukon River to the North Slope of Alaska, the 15N content was strongly reduced in ectomycorrhizal and ericoid mycorrhizal plants including Betula, Salix, Picea mariana (P. Mill.) B.S.P., Picea glauca Moench (Voss), and ericaceous plants. Compared with the 15N content of soil, the foliage of nonmycorrhizal plants (Carex and Eriophorum) was unchanged, whereas content of the ectomycorrhizal fungi was very much higher (e.g., Boletaceae, Leccinum and Cortinarius). It is hypothesized that similar processes operate in tundra and boreal forest, both nitrogen-limited ecosystems: (i) mycorrhizal fungi break down soil polymers and take up amino acids or other nitrogen compounds; (ii) mycorrhizal fungi fractionate against 15N during production of transfer compounds; (iii) host plants are accordingly depleted in 15N; and (iv) mycorrhizal fungi are enriched in 15N. Increased N availability for plant roots or decreased light availability to understory plants may have decreased N allocation to mycorrhizal partners and increased delta15N by 3-4 parts per million for southern populations of Vaccinium vitis-idaea L. and Salix. Fungal biomass, measured as ergosterol, correlated strongly with soil organic matter and attained amounts similar to those in temperate forest soils. PMID:19190704

  11. Using dual-bacterial denitrification to improve ??15N determinations of nitrates containing mass-independent 17O

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; Casciotti, K.L.

    2004-01-01

    The bacterial denitrification method for isotopic analysis of nitrate using N2O generated from Pseudomonas aureofaciens may overestimate ??15N values by as much as 1-2??? for samples containing atmospheric nitrate because of mass-independent 17O variations in such samples. By analyzing such samples for ??15N and ??18O using the denitrifier Pseudomonas chlororaphis, one obtains nearly correct ??15N values because oxygen in N 2O generated by P. chlororaphis is primarily derived from H 2O. The difference between the apparent ??15N value determined with P. aureofaciens and that determined with P. chlororaphis, assuming mass-dependent oxygen isotopic fractionation, reflects the amount of mass-independent 17O in a nitrate sample. By interspersing nitrate isotopic reference materials having substantially different ?? 18O values with samples, one can normalize oxygen isotope ratios and determine the fractions of oxygen in N2O derived from the nitrate and from water with each denitrifier. This information can be used to improve ??15N values of nitrates having excess 17O. The same analyses also yield estimates of the magnitude of 17O excess in the nitrate (expressed as ??17O) that may be useful in some environmental studies. The 1-?? uncertainties of ??15N, ??18O and ??17O measurements are ??0.2, ??0.3 and ??5???, respectively. Copyright ?? 2004 John Wiley & Sons, Ltd.

  12. Lineshape-based polarimetry of dynamically-polarized 15N2O in solid-state mixtures

    PubMed Central

    Kuzma, N.N.; Håkansson, P.; Pourfathi, M.; Ghosh, R.K.; Kara, H.; Kadlecek, S.J.; Pileio, G.; Levitt, M.H.; Rizi, R.R.

    2013-01-01

    Dynamic nuclear polarization (DNP) of 15N2O, known for its long-lived singlet-state order at low magnetic field, is demonstrated in organic solvent/trityl mixtures at ~1.5 K and 5 T. Both 15N polarization and intermolecular dipolar broadening are strongly affected by the sample's thermal history, indicating spontaneous formation of N2O clusters. In situ 15N NMR reveals four distinct powder-pattern spectra, attributed to the chemical-shift anisotropy (CSA) tensors of the two 15N nuclei, further split by the intramolecular dipolar coupling between their magnetic moments. 15N polarization is estimated by fitting the free-induction decay (FID) signals to the analytical model of four single-quantum transitions. This analysis implies (10:2 ± 2:2)% polarization after 37 h of DNP, and provides a direct, instantaneous probe of the absolute 15N polarization, without a need for time-consuming referencing to a thermal-equilibrium NMR signal. PMID:23851025

  13. Lineshape-based polarimetry of dynamically-polarized 15N2O in solid-state mixtures

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Håkansson, P.; Pourfathi, M.; Ghosh, R. K.; Kara, H.; Kadlecek, S. J.; Pileio, G.; Levitt, M. H.; Rizi, R. R.

    2013-09-01

    Dynamic nuclear polarization (DNP) of 15N2O, known for its long-lived singlet-state order at low magnetic field, is demonstrated in organic solvent/trityl mixtures at ?1.5 K and 5 T. Both 15N polarization and intermolecular dipolar broadening are strongly affected by the sample's thermal history, indicating spontaneous formation of N2O clusters. In situ 15N NMR reveals four distinct powder-pattern spectra, attributed to the chemical-shift anisotropy (CSA) tensors of the two 15N nuclei, further split by the intramolecular dipolar coupling between their magnetic moments. 15N polarization is estimated by fitting the free-induction decay (FID) signals to the analytical model of four single-quantum transitions. This analysis implies (10.2±2.2)% polarization after 37 h of DNP, and provides a direct, instantaneous probe of the absolute 15N polarization, without a need for time-consuming referencing to a thermal-equilibrium NMR signal.

  14. Nitrous oxide nitrification and denitrification 15N enrichment factors from Amazon forest soils.

    PubMed

    Pérez, Tibisay; Garcia-Montiel, Diana; Trumbore, Susan; Tyler, Stanley; de Camargo, Plínio; Moreira, Marcelo; Piccolo, Marisa; Cerri, Carlos

    2006-12-01

    The isotopic signatures of 15N and 18O in N2O emitted from tropical soils vary both spatially and temporally, leading to large uncertainty in the overall tropical source signature and thereby limiting the utility of isotopes in constraining the global N2O budget. Determining the reasons for spatial and temporal variations in isotope signatures requires that we know the isotope enrichment factors for nitrification and denitrification, the two processes that produce N2O in soils. We have devised a method for measuring these enrichment factors using soil incubation experiments and report results from this method for three rain forest soils collected in the Brazilian Amazon: soil with differing sand and clay content from the Tapajos National Forest (TNF) near Santarém, Pará, and Nova Vida Farm, Rondônia. The 15N enrichment factors for nitrification and denitrification differ with soil texture and site: -111 per thousand +/- 12 per thousand and -31 per thousand +/- 11 per thousand for a clay-rich Oxisol (TNF), -102 per thousand +/- 5 per thousand and -45 per thousand +/- 5 per thousand for a sandier Ultisol (TNF), and -10.4 per thousand +/- 3.5 per thousand (enrichment factor for denitrification) for another Ultisol (Nova Vida) soil, respectively. We also show that the isotopomer site preference (delta15Nalpha - delta15Nbeta, where alpha indicates the central nitrogen atom and beta the terminal nitrogen atom in N2O) may allow differentiation between processes of production and consumption of N2O and can potentially be used to determine the contributions of nitrification and denitrification. The site preferences for nitrification and denitrification from the TNF-Ultisol incubated soils are: 4.2 per thousand +/- 8.4 per thousand and 31.6 per thousand +/- 8.1 per thousand, respectively. Thus, nitrifying and denitrifying bacteria populations under the conditions of our study exhibit significantly different 15N site preference fingerprints. Our data set strongly suggests that N2O isotopomers can be used in concert with traditional N2O stable isotope measurements as constraints to differentiate microbial N2O processes in soil and will contribute to interpretations of the isotopic site preference N2O values found in the free troposphere. PMID:17205894

  15. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with ?15N values varying from 271.6‰ to 1354.2‰ at the end of the experiment. Enrichment of roots was significantly higher than leaves (?13C range: 111.5-219.2‰; ?15N range: 1516.9-3939.3‰) indicating that nutrients were translocated away from leaves prior to senescence, which is supported by the increase in C:N ratio between the initial (19.0) and final (60.1) leaf sampling. Despite the variable levels of enrichment, leaves from all species were sufficiently labeled for use in future studies aimed at tracking the transformation of carbon and nitrogen during decomposition. The greatest challenges were treating diseases and pests and creating ideal growing conditions for many species within the same chamber. Reducing the number of individuals and better pest management will lead to even higher level enrichment in the future.

  16. The 15N(?,?)19F reaction and nucleosynthesis of 19F

    NASA Astrophysics Data System (ADS)

    Wilmes, S.; Wilmes, V.; Staudt, G.; Mohr, P.; Hammer, J. W.

    2002-12-01

    Several resonances in the 15N(?,?)19F reaction have been investigated in the energy range between 0.6 MeV and 2.7 MeV. Resonance strengths and branching ratios have been determined. High sensitivity could be obtained by the combination of the Dynamitron high current accelerator, the windowless gas target system Rhinoceros, and actively shielded germanium detectors. Two levels of 19F could be observed for the first time in the (?,?) channel, and several weak branchings below the detection limits of previous experiments were measured. Two observed resonances correspond to ?-cluster states in 19F, which have been assigned unambiguously. The astrophysical reaction rate is derived from this set of resonance strengths.

  17. Isotopic profiling of seized benzylpiperazine and trifluoromethylphenylpiperazine tablets using ?(13)C and ?(15)N stable isotopes.

    PubMed

    Beckett, Nicola M; Cresswell, Sarah L; Grice, Darren I; Carter, James F

    2015-01-01

    This paper demonstrates the use of isotopic analysis of 23 benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) containing tablets seized on two independent occasions by the Northern Territory (NT) Police, Australia. Isolation (High Performance Liquid Chromatography (HPLC)) of BZP and TFMPP followed by Isotope Ratio Mass Spectrometry (IRMS) (carbon and nitrogen stable isotopes) analysis was performed. Results are presented for ?(13)C and ?(15)N values of the respective piperazine analogues. The isotopic data and statistical analysis suggest a common source of manufacture for the BZP samples but suggest different sources for the TFMPP isolated from the corresponding BZP containing tablets investigated. The use of IRMS in this case study demonstrated the ability to obtain information regarding the BZP/TFMPP sources unattainable via conventional chemical analysis. PMID:25577007

  18. Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine

    NASA Astrophysics Data System (ADS)

    Bara?ska, M.; Czarniecki, K.; Proniewicz, L. M.

    2001-05-01

    Famotidine, 3-[[[2-[(aminoiminomethyl)amino]-4-thiazolyl]methyl]thio]- N-(aminosulfonyl), is a histamine H 2-receptor blocker that has been used mainly for the treatment of peptic ulcers and the Zollinger-Ellison syndrome. Its NMR spectra in different solvents were reported earlier; however, detailed interpretation has not been done thus far. In this work, experimental 1H, 13C and 15N NMR spectra of famotidine dissolved in DMSO-d 6 are shown. The assignment of observed chemical shifts is based on quantum chemical calculation at the Hartree-Fock/6-31G ? level. The geometry optimization of the famotidine molecule with two internal hydrogen bonds, i.e. [N(3)-H(23)⋯N(9) and N(3)⋯H(34)-N(20)], is done by using the B3LYP method with the 6-31G ? basis set.

  19. Determining protein dynamics from 15N relaxation data by using DYNAMICS

    PubMed Central

    Fushman, David

    2013-01-01

    Summary Motions are essential for protein function, and knowledge of protein dynamics is a key to our understanding the mechanisms underlying protein folding and stability, ligand recognition, allostery, and catalysis. In the last two decades, NMR relaxation measurements have become a powerful tool for characterizing backbone and side chain dynamics in complex biological macromolecules like proteins and nucleic acids. Accurate analysis of the experimental data in terms of motional parameters is an essential prerequisite for developing physical models of motions in order to paint an adequate picture of protein dynamics. Here I describe in detail how to use the software package DYNAMICS that was developed for accurate characterization of the overall tumbling and local dynamics in a protein from nuclear spin-relaxation rates measured by NMR. Step by step instructions are provided and illustrated through analysis of 15N relaxation data for protein G. PMID:22167688

  20. Effect of body size and body mass on ? 13 C and ? 15 N in coastal fishes and cephalopods

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2011-11-01

    Carbon and nitrogen isotopes have been widely used in the investigation of trophic relations, energy pathways, trophic levels and migrations, under the assumption that ? 13C is independent of body size and that variation in ? 15N occurs exclusively due to ontogenetic changes in diet and not body size increase per se. However, several studies have shown that these assumptions are uncertain. Data from food-webs containing an important number of species lack theoretical support on these assumptions because very few species have been tested for ? 13C and ? 15N variation in captivity. However, if sampling comprises a wide range of body sizes from various species, the variation of ? 13C and ? 15N with body size can be investigated. While correlation between body size and ? 13C and ? 15N can be due to ontogenetic diet shifts, stability in such values throughout the size spectrum can be considered an indication that ? 13C and ? 15N in muscle tissues of such species is independent of body size within that size range, and thus the basic assumptions can be applied in the interpretation of such food webs. The present study investigated the variation in muscle ? 13C and ? 15N with body size and body mass of coastal fishes and cephalopods. It was concluded that muscle ? 13C and ? 15N did not vary with body size or mass for all bony fishes with only one exception, the dragonet Callionymus lyra. Muscle ? 13C and ? 15N also did not vary with body size or mass in cartilaginous fishes and cephalopods, meaning that body size/mass per se have no effect on ? 13C or ? 15N, for most species analysed and within the size ranges sampled. The assumption that ? 13C is independent of body size and that variation in ? 15N is not affected by body size increase per se was upheld for most organisms and can be applied to the coastal food web studied taking into account that C. lyra is an exception.

  1. Stable Carbon and Nitrogen isoscapes of the California Coast: integrated ?15N and ?13C of suspended particulate organic matter inferred from tissues of the California Mussel (mytilus californianus)

    NASA Astrophysics Data System (ADS)

    Vokhshoori, N. L.; McCarthy, M. D.

    2011-12-01

    Spatial maps of isotopic variability in a single species, or isoscapes, can characterize the natural variability in carbon (C) and nitrogen (N) isotope ratios across ecosystems on broad spatial scales, trace the signature of a source across a given area, as well as constrain animal migration patterns (Graham et al. 2002). In this study, isoscapes of stable carbon (13C) and nitrogen (15N) isotopes were constructed using intertidal mussels for northeast Pacific coastal waters of California. In this region biogeochemical cycling is primarily controlled by upwelling intensity and large-scale transport of the California Current System (CCS). We hypothesize that sampling specific tissues of filter-feeding organisms can provide an integrated measure of variation in 15N and 13C of the suspended particulate organic matter (POM) pool vs. latitude within the CCS, as well indicate main sources of both organic C and N to littoral food webs. California mussels (mytilus californianus) were collected from 28 sites between Coos Bay, OR and La Jolla, CA in the winter of 2009-2010 and summer of 2011, and adductor tissue was analyzed for ?13C and ?15N. Mussel size classes were chosen to provide ~ 1 yr integrated signal. Spatial trends in ?15N from the winter sampling show a strong linear trend in increasing ?15N values with latitude north to south (?15N values range from 7 % to 12%) consistent with slowly attenuating northward transport of 15N-depleted nitrate via California Undercurrent (Altabet et al. 1999). The ?13C values have no strong north to south correlation, but exhibit strong location-specific variability. The ?13C values range between -13 % and -18%. We propose the site-specific signature of ?13C indicates relative source of primary productin to POM at a given region (i.e. kelp, phytoplankton, zooplankton). Overall, these results suggest that isoscapes for filter-feeding organisms may offer a more accurate integrated picture of 15N and 13C values of POM than is possible from sediment traps or discrete time sampling of POM. The average latitudinal trends we observe may also be useful in interpreting stable isotopic values of higher trophic animals in the CA current system. Keywords: isoscape, California Current, stable isotope, geographic variation

  2. Studying ancient crop provenance: implications from ?(13)C and ?(15)N values of charred barley in a Middle Bronze Age silo at Ebla(NW Syria).

    PubMed

    Fiorentino, Girolamo; Caracuta, Valentina; Casiello, Grazia; Longobardi, Francesco; Sacco, Antonio

    2012-02-15

    The discovery of a storeroom full of barley and other cereals (L.9512) in the proto-historic site of Ebla has provided a unique opportunity to study the centralized storage system of the early city-state from a different perspective. Epigraphic evidence available within the site reveals a complex system of taxation which included gathering grain tributes from satellite sites and redistributing semi-finished products such as flour. In this paper, we intend to explore the possibilities of a combined approach to studying the storage system, based on estimated barley grain volumes and ?(13)C-?(15)N analyses. This approach is used to distinguish between grain from different harvesting sites and to identify any grain cultivated using special agricultural practices (e.g. manuring or irrigation). The basic assumption for this kind of analysis is that the growth-site conditions, natural or anthropogenic, of harvested cereals are reflected in their grain size and ?(13)C-?(15)N values. Since the remains found in the storeroom were charred, the first task was to evaluate the effect of carbonization on the ?(13)C-?(15)N and the size of the grains. Thus, the effect of charring was tested on modern samples of Syrian barley landraces. Once it had been ascertained that fresh grains reduced to charred remains retain their original biometric and isotopic traits, the ancient material was examined. Thirteen groups were identified, each characterized by a specific average volume and specific carbon and nitrogen values. The analysis revealed that what had first appeared to be a homogeneous concentration of grain was in fact an assemblage of barley harvested from different sites. PMID:22223320

  3. Asymptotic Normalization Coefficients from the {sup 15}N({sup 3}He,d){sup 16}O Reaction and the Astrophysical Factor for the {sup 15}N(p,{gamma}){sup 16}O Capture

    SciTech Connect

    Burjan, V.; Bem, P.; Hons, Z.; Kroha, V.; Mrazek, J.; Novak, J.; Piskor, S.; Simeckova, E.; Vincour, J. [Nuclear Physics Institute, Czech Academy of Sciences, 250 68 Reznear Prague (Czech Republic); Cherubini, S.; La Cognata, M.; Pizzone, R. G.; Romano, S.; Spitaleri, C.; Tumino, A. [Universita di Catania and INFN Laboratori Nazionali del Sud, Catania (Italy); Gagliardi, C. A.; Mukhamedzhanov, A. M.; Plunkett, A.; Trache, L.; Tribble, R. E. [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States)

    2008-05-12

    The angular distributions of the {sup 15}N({sup 3}He,d){sup 16}O reaction were measured with the aim to determine the direct capture rate of the astrophysical reaction {sup 15}N(p, {gamma}){sup 16}O by deducing asymptotic normalization coefficients (ANC). The {sup 15}N(p,{gamma}){sup 16}O reaction is a part of the CNO cycle having importance in the nucleosynthesis of the N and O isotopes. The measurement was carried out on the cyclotron U120M of NPI CAS at the energy 25.74 MeV of {sup 3}He ions in a gas chamber containing the high purity {sup 15}N isotope. The preliminary results of corresponding spectroscopic factors and ANC's were used for the estimation of the S-factor for the direct capture {sup 15}N(p,{gamma}){sup 16}O. Using the widths of the resonances E{sub R} = 312 and 962 keV, the total S-factor was determined within the framework of the R-matrix approach.

  4. Spatial and Temporal Variations in Stable Carbon (?13C) and Nitrogen (?15N) Isotopic Composition of Symbiotic Scleractinian Corals

    PubMed Central

    Nahon, Sarah; Richoux, Nicole B.; Kolasinski, Joanna; Desmalades, Martin; Ferrier Pages, Christine; Lecellier, Gael; Planes, Serge; Berteaux Lecellier, Véronique

    2013-01-01

    Tropical scleractinian corals are considered autotrophic as they rely mainly on photosynthesis-derived nutrients transferred from their photosymbionts. Corals are also able to capture and ingest suspended particulate organic matter, so heterotrophy can be an important supplementary trophic pathway to optimize coral fitness. The aim of this in situ study was to elucidate the trophic status of 10 coral species under contrasted environmental conditions in a French Polynesian lagoon. Carbon (?13C) and nitrogen (?15N) isotopic compositions of coral host tissues and photosymbionts were determined at 3 different fringing reefs during wet and dry seasons. Our results highlighted spatial variability in stable isotopic compositions of both coral host tissues and photosymbionts. Samples from the site with higher level of suspended particulate matter were 13C-depleted and 15N-enriched relative to corals and photosymbionts from less turbid sites. However, differences in both ?13C and ?15N between coral host tissues and their photosymbionts (?host-photosymbionts 13C and ?host-photosymbionts 15N) were small (0.27 ± 0.76‰ and 1.40 ± 0.90‰, respectively) and similar at all sites, thus indicating no general increases in the heterotrophic pathway. Depleted ?13C and enriched ?15N values of coral host tissues measured at the most turbid site were explained by changes in isotopic composition of the inorganic nutrients taken up by photosymbionts and also by changes in rate of isotopic fractionation with environmental conditions. Our results also highlighted a lack of significant temporal variations in ?13C and ?15N values of coral host and photosymbiont tissues and in ?host-photosymbionts 13C and ?host-photosymbionts 15N values. This temporal stability indicated that corals remained principally autotrophic even during the wet season when photosymbiont densities were lower and the concentrations of phytoplankton were higher. Increased coral heterotrophy with higher food availability thus appears to be species-specific. PMID:24312542

  5. A 15N-n.m.r. study of cerebral, hepatic and renal nitrogen metabolism in hyperammonaemic rats.

    PubMed Central

    Farrow, N A; Kanamori, K; Ross, B D; Parivar, F

    1990-01-01

    1. Rats were infused with 15NH4+ or L-[15N]alanine to induce hyperammonaemia, a potential cause of hepatic encephalopathy. HClO4 extracts of freeze-clamped brain, liver and kidney were analysed by 15N-n.m.r. spectroscopy in combination with biochemical assays to investigate the effects of hyperammonaemia on tissue concentrations of ammonia, glutamine, glutamate and urea. 2. 15NH4+ infusion resulted in a 36-fold increase in the concentration of blood ammonia. Cerebral glutamine concentration increased, with 15NH4+ incorporated predominantly into the gamma-nitrogen atom of glutamine. Incorporation into glutamate was very low. Cerebral ammonia concentration increased 5-10-fold. The results suggest that the capacity of glutamine synthetase for ammonia detoxification was saturated. 3. Pretreatment with the glutamine synthetase inhibitor L-methionine DL-sulphoximine resulted in 84% inhibition of [gamma-15N]glutamine synthesis, but incorporation of 15N into other metabolites was not observed. The result suggests that no major alternative pathway for ammonia detoxification, other than glutamine synthetase, exists in rat brain. 4. In the liver 15NH4+ was incorporated into urea, glutamine, glutamate and alanine. The specific activity of 15N was higher in the gamma-nitrogen atom of glutamine than in urea. A similar pattern was observed when [15N]alanine was infused. The results are discussed in terms of the near-equilibrium states of the reactions involved in glutamate and alanine formation, heterogeneous distribution in the liver lobules of the enzymes involved in ammonia removal and their different affinities for ammonia. 5. Synthesis of glutamine, glutamate and hippurate de novo was observed in kidney. Hippurate, as well as 15NH4+, was contributed by co-extracted urine. 6. The potential utility and limitations of 15N n.m.r. for studies of mammalian metabolism in vivo are discussed. PMID:1976007

  6. Spatial and temporal variations in stable carbon (?(13)C) and nitrogen (?(15)N) isotopic composition of symbiotic scleractinian corals.

    PubMed

    Nahon, Sarah; Richoux, Nicole B; Kolasinski, Joanna; Desmalades, Martin; Ferrier Pages, Christine; Lecellier, Gael; Planes, Serge; Berteaux Lecellier, Véronique

    2013-01-01

    Tropical scleractinian corals are considered autotrophic as they rely mainly on photosynthesis-derived nutrients transferred from their photosymbionts. Corals are also able to capture and ingest suspended particulate organic matter, so heterotrophy can be an important supplementary trophic pathway to optimize coral fitness. The aim of this in situ study was to elucidate the trophic status of 10 coral species under contrasted environmental conditions in a French Polynesian lagoon. Carbon (?(13)C) and nitrogen (?(15)N) isotopic compositions of coral host tissues and photosymbionts were determined at 3 different fringing reefs during wet and dry seasons. Our results highlighted spatial variability in stable isotopic compositions of both coral host tissues and photosymbionts. Samples from the site with higher level of suspended particulate matter were (13)C-depleted and (15)N-enriched relative to corals and photosymbionts from less turbid sites. However, differences in both ?(13)C and ?(15)N between coral host tissues and their photosymbionts (?(host-photosymbionts 13)C and ?(host-photosymbionts 15)N) were small (0.27 ± 0.76‰ and 1.40 ± 0.90‰, respectively) and similar at all sites, thus indicating no general increases in the heterotrophic pathway. Depleted ?(13)C and enriched ?(15)N values of coral host tissues measured at the most turbid site were explained by changes in isotopic composition of the inorganic nutrients taken up by photosymbionts and also by changes in rate of isotopic fractionation with environmental conditions. Our results also highlighted a lack of significant temporal variations in ?(13)C and ?(15)N values of coral host and photosymbiont tissues and in ?(host-photosymbionts 13)C and ?(host-photosymbionts 15)N values. This temporal stability indicated that corals remained principally autotrophic even during the wet season when photosymbiont densities were lower and the concentrations of phytoplankton were higher. Increased coral heterotrophy with higher food availability thus appears to be species-specific. PMID:24312542

  7. An isotopic (?14C, ?13C, and ?15N) investigation of the composition of particulate organic matter and zooplankton food sources in Lake Superior and across a size-gradient of aquatic systems

    NASA Astrophysics Data System (ADS)

    Zigah, P. K.; Minor, E. C.; Werne, J. P.; McCallister, S. Leigh

    2012-09-01

    Food webs in aquatic systems can be supported both by carbon from recent local primary productivity and by carbon subsidies, such as material from terrestrial ecosystems, or past in situ primary productivity. The importance of these subsidies to respiration and biomass production remains a topic of debate. While some studies have reported that terrigenous organic carbon supports disproportionately high zooplankton production, others have suggested that phytoplankton preferentially support zooplankton production in aquatic ecosystems. Here we apply natural abundance radiocarbon (?14C) and stable isotope (?13C, ?15N) analyses to show that zooplankton in Lake Superior selectively incorporate recently fixed, locally produced (autochthonous) organic carbon even though other carbon sources are readily available. Estimates from Bayesian isotopic modeling based on ?14C and ?13C values show that the average lake-wide median contributions of recent in-lake primary production and terrestrial, sedimentary, and bacterial organic carbon to the bulk POM in Lake Superior were 58%, 5%, 33%, and 3%, respectively. However, isotopic modeling estimates also show that recent in situ production contributed a disproportionately large amount (median, 91%) of the carbon in mesozooplankton biomass in Lake Superior. Although terrigenous organic carbon and old organic carbon from resuspended sediments were significant portions (median, 38%) of the available basal food resources, these contributed only a small amount to mesozooplankton biomass. Comparison of zooplankton food sources based on their radiocarbon composition showed that terrigenous organic carbon was relatively more important in rivers and small lakes, and the proportion of terrestrially derived material used by zooplankton correlated with the hydrologic residence time and the ratio of basin area to water surface area.

  8. Abundance coefficients, a new method for measuring microorganism relative abundance

    USGS Publications Warehouse

    Forester, R.M.

    1977-01-01

    A new method of measuring the relative abundance of microorganisms by using a set of interrelated coefficients, termed 'abundance coefficients' or 'AC', is proposed. These coefficients provide a means of recording abundance for geometric density categories, and each density measurement represents an approximation of the Poisson parameter ??t. The AC is the natural logarithm of a 'characteristic value,' which is a particular number for each geometric density category. The 'characteristic values' are based upon a probabilistic error statement derived from the Poisson formula, and they present evidence for separation of the geometric category boundaries by e = 2.71828. The proposed AC provide a means for recording species abundance in a manner suitable for arithmetic manipulation, for population structure studies, and for the determination of practical limits for defining the presence or absence of a species. Further, these coefficients provide for both intrasample and intersample abundance comparisons. ?? 1977 Plenum Publishing Corporation.

  9. Reevaluation of siderophile element abundances and ratios across the Cretaceous-Paleogene (K-Pg) boundary: Implications for the nature of the projectile

    NASA Astrophysics Data System (ADS)

    Goderis, S.; Tagle, R.; Belza, J.; Smit, J.; Montanari, A.; Vanhaecke, F.; Erzinger, J.; Claeys, Ph.

    2013-11-01

    The discovery over 30 years ago at Gubbio (Italy) and Caravaca (Spain) of an enrichment in the concentrations of iridium (Ir) and the other platinum group elements (PGE) by up to four orders of magnitude (Irmax = 0.10-87 ng/g) compared to average continental crustal background levels remains one of the most important discoveries in the Earth sciences. Since then, similar anomalies have been detected in more than 120 Cretaceous-Paleogene (K-Pg) boundary sites worldwide. Highly elevated Ir and other siderophile element abundances in roughly chondritic ratios are considered strong indicators for the presence of a meteoritic contribution in impact-related lithologies (melt rocks, impact ejecta material, etc.), delivered when an extraterrestrial object strikes Earth. The presented work adds 113 unpublished PGE analyses of 38 K-Pg sections worldwide to the existing literature. The analytical protocol relied on for this purpose consisted of a combination of a nickel-sulfide fire assay pre-concentration technique and subsequent trace metal determination via inductively coupled plasma-mass spectrometry (ICP-MS). Through repeated determination of key siderophile elements (i.e., Cr, Co, Ni, and PGE), the importance of sampling, nugget effects, and analytical methodologies applied becomes more apparent. Even more critically, these analytical effects are superimposed by the local syn- and post-depositional conditions that have affected the pristine meteoritic signature of the K-Pg impactor, including potential fractionation during vaporization and condensation, dissimilar PGE carrier phases, terrestrial PGE input, sedimentation rate, reworking, diagenesis, bioturbation, and chemical diffusion. While chondrite-normalized PGE patterns of individual sites appear relatively flat (i.e., chondritic), strong variations in siderophile element content and inter-element ratios exist between K-Pg locations, inter-laboratory measurements, and replicate analyses, hampering a precise projectile identification using (highly) siderophile elements. Only when considering improved databases of siderophile element concentrations in meteorites, in combination with linear regression analysis to calculate inter-element ratios from a large suite of ejecta deposit sites, the nature of the K-Pg projectile can be resolved. Application of this methodology to an extensive data set of continental and marine sites, very proximal to distal to the Chicxulub impact structure, supports a carbonaceous chondritic impactor (type CM or CO).

  10. Range Expansion of the Jumbo Squid in the NE Pacific: ?15N Decrypts Multiple Origins, Migration and Habitat Use

    PubMed Central

    Ruiz-Cooley, Rocio I.; Ballance, Lisa T.; McCarthy, Matthew D.

    2013-01-01

    Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997–98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu) in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS) documents for the first time multiple geographic origins and migration. Phe ?15N values, a proxy for habitat baseline ?15N values, confirm at least three different geographic origins that were initially detected by highly variable bulk ?15N values in gladii for squid at small sizes (<30 cm gladii length). In contrast, bulk ?15N values from gladii of large squid (>60 cm) converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe ?15N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key “invasive” predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure. PMID:23527242

  11. Oceanic ?15N biogeography: a novel top-down approach to examine nutrient dynamics in the equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Graham, B. S.; Fry, B.; Popp, B. N.; Allain, V.; Olson, R.; Galvan, F.

    2010-12-01

    By mapping the ?15N and ?13C values of three top-level pelagic predators, yellowfin (Thunnus albacares), bigeye (T. obesus), and skipjack (Katsuwonus pelamis) tuna throughout the equatorial Pacific Ocean, we demonstrated systematic geographic isotopic variation (up to ~12‰ for the ?15N values) that reflect nutrient dynamics that occur at the base of the food web. Remarkably the variation observed in the ?15N values of the tunas is geographically similar to ?15N values previously reported in surface particulate organic matter and deep-sea sediments in the tropical Pacific. We discuss the mechanisms occurring at the base of the food web that could produce the spatial variability observed in tropical tuna ?15N values. We present a simple Rayleigh fractionation model that can explain much of the spatial structure. We also discuss the temporal stability in the isotopic compositions at the base and top of the food web. Overall, this nitrogen isotope cartography or “isoscapes” suggests nitrogen is tightly retained in the marine food web, up to the top predators, and that the uptake of nitrate from the equatorial upwelling zone, denitrification in the oxygen minimum zones, and nitrogen fixation at the base of the food web play major roles in the observed geographical variation. In addition to providing insight into the nutrient dynamics of the open ocean, these predator isoscapes can begin to be used to characterize regional residency in tropical tunas, which is important for the successful management of tuna fisheries.

  12. Measurement of NO synthesis in humans by L-[15N2]arginine: application to the response to vaccination.

    PubMed

    Macallan, D C; Smith, L M; Ferber, J; Milne, E; Griffin, G E; Benjamin, N; McNurlan, M A

    1997-06-01

    Induction of nitric oxide (NO) synthesis is a key element of the inflammatory response in humans. We describe a sensitive gas isotope ratio mass spectrometric (GIRMS) method for measuring urinary [15N]nitrate production during intravenous infusion of L-[guanidino-15N2]arginine and its application to investigate the effects of a controlled inflammatory stimulus, typhoid vaccination, on NO synthesis in humans. Intravenous infusion of L-[15N2]arginine at 5-12 mumol.kg-1.h-1 for 24 h in three subjects was used to determine arginine and nitrate pool kinetics. Eight subjects received primed constant infusion of 2.5 mumol.kg-1.h-1 of L-[15N2]arginine for 12 h once before and again after typhoid vaccination. NO synthesis was calculated from 15N enrichment of plasma arginine and urinary nitrate, measured by gas chromatography mass spectrometry and GIRMS, respectively, and total urinary nitrate excretion. Baseline NO synthesis was 298 +/- 44 nmol.h-1.kg lean body mass-1, representing 0.41% of arginine flux. After vaccination, NO synthesis (267 +/- 77 nmol.h-1.kg-1) was not increased (P = 0.18), despite demonstration of an acute phase response. Typhoid vaccination is not accompanied by accelerated NO synthesis. PMID:9227604

  13. Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater

    USGS Publications Warehouse

    Seiler, R.L.

    2005-01-01

    Isotopic composition of NO3 (??15NNO3 and ??18ONO3) and B (??11B) were used to evaluate NO3 contamination and identify geochemical processes occurring in a hydrologically complex Basin and Range valley in northern Nevada with multiple potential sources of NO3. Combined use of these isotopes may be a useful tool in identifying NO3 sources because NO3 and B co-migrate in many environmental settings, their isotopes are fractionated by different environmental processes, and because wastewater and fertilizers may have distinct isotopic signatures for N and B. The principal cause of elevated NO3 concentrations in residential parts of the study area is wastewater and not natural NO3 or fertilizers. This is indicated by some samples with elevated NO3 concentrations plotting along ??15NNO3 and NO3 mixing lines between natural NO3 from the study area and theoretical septic-system effluent. This conclusion is supported by the presence of caffeine in one sample and the absence of samples with elevated NO3 concentrations that fall along mixing lines between natural NO3 and theoretical percolate below fertilized lawns. Nitrogen isotopes alone could not be used to determine NO3 sources in several wells because denitrification blurred the original isotopic signatures. The range of ??11B values in native ground water in the study area (-8.2??? to +21.2???) is large. The samples with the low ??11B values have a geochemical signature characteristic of hydrothermal systems. Physical and chemical data suggest B is not being strongly fractionated by adsorption onto clays. ??11B values from local STP effluent (-2.7???) and wash water from a domestic washing machine (-5.7???) were used to plot mixing lines between wastewater and native ground water. In general, wells with elevated NO3 concentrations fell along mixing lines between wastewater and background water on plots of ??11B against 1/B and Cl/B. Combined use of ??15N and ??11B in the study area was generally successful in identifying contaminant sources and processes that are occurring, however, it is likely to be more successful in simpler settings with a well-characterized ??11B value for background wells.

  14. IR and ESR study of copper(II) complexes with 15N-labelled lysine and ornithine

    NASA Astrophysics Data System (ADS)

    Cozar, O.; Bratu, I.; Szabó, L.; Cozar, I. B.; Chi?, V.; David, L.

    2011-05-01

    [ 15N]-labelled lysine and ornithine amino acids together with their copper(II) complexes are investigated by IR and ESR spectroscopies. The small isotopic shifts in the vibrations frequencies of the bonds involving the N atoms were evidenced by comparing IR spectra of [ 15N]-labelled and [ 14N]-forms of these amino acids. Different monomeric species and their local symmetries were established from ESR spectra of Cu(II)-[ 15N]-lysine (and ornithine) complexes adsorbed on NaY and HY zeolites. The in-plane ? bond has an ionic character ( ?2 ? 0.80) while the in-plane ? bond is more covalent ( ?2 ? 0.73) than that of the ? type for all these species.

  15. Slow motions in microcrystalline proteins as observed by MAS-dependent 15N rotating-frame NMR relaxation.

    PubMed

    Krushelnitsky, Alexey; Zinkevich, Tatiana; Reif, Bernd; Saalwächter, Kay

    2014-11-01

    (15)N NMR relaxation rate R1? measurements reveal that a substantial fraction of residues in the microcrystalline chicken alpha-spectrin SH3 domain protein undergoes dynamics in the ?s-ms timescale range. On the basis of a comparison of 2D site-resolved with 1D integrated (15)N spectral intensities, we demonstrate that the significant fraction of broad signals in the 2D spectrum exhibits the most pronounced slow mobility. We show that (15)N R1?'s in proton-diluted protein samples are practically free from the coherent spin-spin contribution even at low MAS rates, and thus can be analysed quantitatively. Moderate MAS rates (10-30 kHz) can be more advantageous in comparison with the rates >50-60 kHz when slow dynamics are to be identified and quantified by means of R1? experiments. PMID:25282442

  16. The production of recombinant (15)N, (13)C-labelled somatostatin 14 for NMR spectroscopy.

    PubMed

    Nespovitaya, Nadezhda; Barylyuk, Konstantin; Eichmann, Cédric; Zenobi, Renato; Riek, Roland

    2014-07-01

    Structural studies of human peptide hormone somatostatin 14 (SS14) require high amounts of isotopically labelled SS14 to be produced. Here we report a method for effective production of isotopically labelled SS14. SS14 was expressed as a fusion protein with thioredoxin in Escherichia coli. Co-expression of a longer polypeptide product lowered the yield of the target peptide and complicated its purification. The side product contained the N-terminal 6His-tag together with the thioredoxin fusion partner and the specific enzymatic cleavage site-containing linker followed by an unknown peptide starting with the first 7N-terminal amino acid residues of SS14, as revealed by the Edman degradation. The combination of DNA sequence analysis, the Edman degradation, and high-resolution mass spectrometry allowed to identify the amino acid sequence of the unknown peptide. The appearance of the side product was attributed to inefficient termination of mRNA translation. The stop codon and its downstream sequence optimization allowed eliminating the side product synthesis. The optimized expression system, purification protocol, and post-translational modification procedure yielded 1.5mg of SS14 per liter of minimal medium. Nearly 99% incorporation of (13)C and (15)N isotopes was achieved, as demonstrated by high-resolution mass spectrometry. PMID:24698890

  17. Tracking the incorporation of 15N from labeled beech litter into mineral-organic associations

    NASA Astrophysics Data System (ADS)

    Kleber, M.; Hatton, P.; Derrien, D.; Lajtha, K.; Zeller, B.

    2008-12-01

    Nitrogen containing organic compounds are thought to have a role in the complex web of processes that control the turnover time of soil organic matter. The sequential density fractionation technique is increasingly used for the purpose of investigating the association of organic materials with the mineral matrix. Organic materials in the denser fractions (>2.0 kg L-1) typically show 13C NMR signals indicative of carbohydrate and aliphatic structures, an absence of lignin and tannin structures and a narrow C:N ratio, suggesting a microbial origin of organic matter in these fractions. Here we take advantage of a labeling experiment conducted at two different sites in Germany and in France to investigate the incorporation of organic nitrogen into physical fractions of increasing density, representing a proximity gradient to mineral surfaces. 15N labeled beech litter was applied to two acidic forest topsoils 8 and 12 years ago. Although there are differences in the distribution patterns between the two soils, and the majority of the organic nitrogen was recovered in fractions representing organic matter of plant origin and not bound to the mineral matrix, our data clearly show that after a decade, significant amounts of the nitrogen had been incorporated in mineral-organic fractions of supposedly slow turnover. It remains to be shown to which extent the N in the densest fractions was incorporated by soil microbiota and associated with mineral surfaces in organic form or adsorbed to mineral surfaces in inorganic form (NH4+).

  18. Partial NMR assignments for uniformly (13C, 15N)-enriched BPTI in the solid state.

    PubMed

    McDermott, A; Polenova, T; Bockmann, A; Zilm, K W; Paulson, E K; Martin, R W; Montelione, G T; Paulsen, E K

    2000-03-01

    We demonstrate that high-resolution multidimensional solid state NMR methods can be used to correlate many backbone and side chain chemical shifts for hydrated micro-crystalline U-13C,15N Basic Pancreatic Trypsin Inhibitor (BPTI), using a field strength of 800 MHz for protons, magic angle sample spinning rates of 20 kHz and proton decoupling field strengths of 140 kHz. Results from two homonuclear transfer methods, radio frequency driven dipolar recoupling and spin diffusion, were compared. Typical 13C peak line widths are 0.5 ppm, resulting in Calpha-Cbeta and Calpha-CO regions that exhibit many resolved peaks. Two-dimensional carbon-carbon correlation spectra of BPTI have sufficient resolution to identify and correlate many of the spin systems associated with the amino acids. As a result, we have been able to assign a large number of the spin systems in this protein. The agreement between shifts measured in the solid state and those in solution is typically very good, although some shifts near the ion binding sites differ by at least 1.5 ppm. These studies were conducted with approximately 0.2 to 0.4 micromol of enriched material; the sensitivity of this method is apparently adequate for other biological systems as well. PMID:10805127

  19. The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments.

    PubMed

    Gardner, Jennifer B; Drinkwater, Laurie E

    2009-12-01

    Intensively managed grain farms are saturated with large inputs of nitrogen (N) fertilizer, leading to N losses and environmental degradation. Despite decades of research directed toward reducing N losses from agroecosystems, progress has been minimal, and the currently promoted best management practices are not necessarily the most effective. We investigated the fate of N additions to temperate grain agroecosystems using a meta-analysis of 217 field-scale studies that followed the stable isotope 15N in crops and soil. We compared management practices that alter inorganic fertilizer additions, such as application timing or reduced N fertilizer rates, to practices that re-couple the biogeochemical cycles of carbon (C) and N, such as organic N sources and diversified crop rotations, and analyzed the following response variables: 15N recovery in crops, total recovery of 15N in crops and soil, and crop yield. More of the literature (94%) emphasized crop recovery of 15N than total 15N recovery in crops and soil (58%), though total recovery is a more ecologically appropriate indicator for assessing N losses. Findings show wide differences in the ability of management practices to improve N use efficiency. Practices that aimed to increase crop uptake of commercial fertilizer had a lower impact on total 15N recovery (3-21% increase) than practices that re-coupled C and N cycling (30-42% increase). A majority of studies (66%) were only one growing season long, which poses a particular problem when organic N sources are used because crops recover N from these sources over several years. These short-term studies neglect significant ecological processes that occur over longer time scales. Field-scale mass balance calculations using the 15N data set show that, on average, 43 kg N x ha(-1) x yr(-1) was unaccounted for at the end of one growing season out of 114 kg N x ha(-1) x yr(-1), representing approximately 38% of the total 15N applied. This comprehensive assessment of stable-isotope research on agroecosystem N management can inform the development of policies to mitigate nonpoint source pollution. Nitrogen management practices that most effectively increase N retention are not currently being promoted and are rare on the landscape in the United States. PMID:20014586

  20. Nitrogen mineralization from selected /sup 15/N-labelled crop residues and humus as affected by inorganic nitrogen

    SciTech Connect

    Santos, J.A.

    1987-01-01

    The use of cover crops or crop residues as a source of N to succeeding crops has become a matter of increasing importance for economic and environmental reason. Greenhouse and field studies were conducted to determine the N contribution of four /sup 15/N labelled crop residues, rye (Secale cereale L.), wheat (Triticum aestivum L.), crimson clover (Trifolium encarnatum L.), and hairy vetch (Vicia sativa L.), to successive crops and to evaluate the effect of different organic (ON) and inorganic N (IN) combinations on mineralization of the above residues. Total /sup 15/N recovery from the residues ranged from 51% to 85% and 4% to 74% for the greenhouse and field studies, respectively.

  1. Nitrate removal in stream ecosystems measured by 15N addition experiments: 2. Denitrification

    SciTech Connect

    Mulholland, Patrick J [ORNL; Hall, Robert [University of Wyoming, Laramie; Sobota, Daniel [Oregon State University; Dodds, Walter [Kansas State University; Findlay, Stuart [Institute of Ecosystem Studies; Grimm, Nancy [Arizona State University; Hamilton, Stephen [Michigan State University, East Lansing; McDowell, William [University of Hew Hampshire; O'Brien, Jon [Michigan State University, East Lansing; Tank, Jennifer [University of Notre Dame, IN; Ashkenas, Linda [Oregon State University, Corvallis; Cooper, Lee W [ORNL; Dahm, Cliff [University of New Mexico, Albuquerque; Gregory, Stanley [Oregon State University, Corvallis; Johnson, Sherri [Oregon State University; Meyer, Judy [University of Georgia, Athens, GA; Peterson, Bruce [Marine Biological Laboratory; Poole, Geoff [Eco-metrics; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Webster, Jackson [Virginia Polytechnic Institute and State University (Virginia Tech); Arango, Clay [University of Notre Dame, IN; Beaulieu, Jake [University of Notre Dame, IN; Bernot, Melody [Murray State University; Burgin, Amy [Michigan State University, East Lansing; Crenshaw, Chelsea [University of New Mexico, Albuquerque; Helton, Ashley [University of Georgia, Athens, GA; Johnson, Laura [University of Notre Dame, IN; Niederlehner, Bobbie [Virginia Polytechnic Institute and State University (Virginia Tech); Potter, Jody [University of New Hampshire; Sheibley, Rich [Arizona State University; Thomas, Suzanne [Marine Biological Laboratory

    2009-01-01

    We measured denitrification rates using a field {sup 15}N-NO{sub 3}{sup -} tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (S{sub Wden}) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N{sub 2} production rates far exceeded N{sub 2}O production rates in all streams. The fraction of total NO{sub 3}{sup -} removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NH{sub 4}{sup +} concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling S{sub Wden} were specific discharge (discharge/width) and NO{sub 3}{sup -} concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (U{sub den}) and NO{sub 3}{sup -} concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although U{sub den} increased with increasing NO{sub 3}{sup -} concentration, the efficiency of NO{sub 3}{sup -} removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO{sub 3}{sup -} load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO{sub 3}{sup -} concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO{sub 3}{sup -} concentration.

  2. Nuclear Quadrupole Hyperfine Structure in HC14N/H14NC and DC15N/D15NC Isomerization: A Diagnostic Tool for Characterizing Vibrational Localization

    E-print Network

    Wong, Bryan M

    2010-01-01

    Large-amplitude molecular motions which occur during isomerization can cause significant changes in electronic structure. These variations in electronic properties can be used to identify vibrationally-excited eigenstates which are localized along the potential energy surface. This work demonstrates that nuclear quadrupole hyperfine interactions can be used as a diagnostic marker of progress along the isomerization path in both the HC14N/H14NC and DC15N/D15NC chemical systems. Ab initio calculations at the CCSD(T)/cc-pCVQZ level indicate that the hyperfine interaction is extremely sensitive to the chemical bonding of the quadrupolar 14N nucleus and can therefore be used to determine in which potential well the vibrational wavefunction is localized. A natural bonding orbital analysis along the isomerization path further demonstrates that hyperfine interactions arise from the asphericity of the electron density at the quadrupolar nucleus. Using the CCSD(T) potential surface, the quadrupole coupling constants of...

  3. Density functional calculations of backbone 15N shielding tensors in beta-sheet and turn residues of protein G

    PubMed Central

    Cai, Ling; Kosov, Daniel S.; Fushman, David

    2011-01-01

    Summary We performed density functional calculations of backbone 15N shielding tensors in the regions of beta-sheet and turns of protein G. The calculations were carried out for all twenty-four beta-sheet residues and eight beta-turn residues in the protein GB3 and the results were compared with the available experimental data from solid-state and solution NMR measurements. Together with the alpha-helix data, our calculations cover 39 out of the 55 residues (or 71%) in GB3. The applicability of several computational models developed previously (Cai, Fushman, Kosov, J. Biomol NMR 2009, 45:245-253) to compute 15N shielding tensors of alpha-helical residues is assessed. We show that the proposed quantum chemical computational model is capable of predicting isotropic 15N chemical shifts for an entire protein that are in good correlation with experimental data. However, the individual components of the predicted 15N shielding tensor agree with experiment less well: the computed values show much larger spread than the experimental data, and there is a profound difference in the behavior of the tensor components for alpha-helix/turns and beta-sheet residues. We discuss possible reasons for this. PMID:21305337

  4. Improved determination of the astrophysical S(0) factor of the (15)N(p,alpha)(12)C reaction

    E-print Network

    La Cognata, M.; Goldberg, V. Z.; Mukhamedzhanov, A. M.; Spitaleri, C.; Tribble, Robert E.

    2009-01-01

    We present new improved R matrix fits of direct data and indirect Trojan Horse data for the (15)N(p,alpha)(12)C reaction and provide a more accurate recommended value of S(0)=73.0 +/- 5.0 MeV b from direct Redder data [A. Redder , Z. Phys. A 305...

  5. Variation in hair ?13C and ?15N values in long-tailed macaques (Macaca fascicularis) from Singapore

    USGS Publications Warehouse

    Schillaci, Michael A.; Castellini, J. Margaret; Stricker, Craig A.; Jones-Engel, Lisa; Lee, Benjamin P.Y.-H.

    2014-01-01

    Much of the primatology literature on stable isotope ratios of carbon (?13C) and nitrogen (?15N) has focused on African and New World species, with comparatively little research published on Asian primates. Here we present hair ?13C and ?15N isotope values for a sample of 33 long-tailed macaques from Singapore. We evaluate the suggestion by a previous researcher that forest degradation and biodiversity loss in Singapore have led to a decline in macaque trophic level. The results of our analysis indicated significant spatial variability in ?13C but not ?15N. The range of variation in ?13C was consistent with a diet based on C3 resources, with one group exhibiting low values consistent with a closed canopy environment. Relative to other macaque species from Europe and Asia, the macaques from Singapore exhibited a low mean ?13C value but mid-range mean ?15N value. Previous research suggesting a decline in macaque trophic level is not supported by the results of our study.

  6. Effects of region, genotype, harvest year and their interactions on ?13C, ?15N and ?D in wheat kernels.

    PubMed

    Liu, Hongyan; Guo, Boli; Wei, Yimin; Wei, Shuai; Ma, Yiyan; Zhang, Wan

    2015-03-15

    The objective of this study was to investigate the influences of region, genotype, harvest year and their interactions on stable carbon, nitrogen and hydrogen isotopic ratio (?(13)C, ?(15)N and ?D) fingerprints in wheat kernels. A total of 270 wheat kernel samples including ten genotypes were collected from three different regions of China during 2011-2013 harvest. Analysis of variance was employed to investigate the effects of region, genotype, harvest year and their interactions on the ?(13)C, ?(15)N and ?D. The results showed that the ?(13)C and ?(15)N values in wheat kernels were significantly influenced by the region, genotype, harvest year and their interactions (region × genotype, genotype × year, region × year and region × genotype × year), ?D was significantly affected by region, genotype, harvest year and region × year. Region accounted for the largest proportion of the total variation and explained 47.57%, 58.02% and 27.96% for ?(13)C, ?(15)N and ?D, respectively. PMID:25308642

  7. Biosynthesis and characterization of (15)N6-labeled phomopsin A, a lupin associated mycotoxin produced by Diaporthe toxica.

    PubMed

    Schloß, Svenja; Wedell, Ines; Koch, Matthias; Rohn, Sascha; Maul, Ronald

    2015-06-15

    The hepatotoxin phomopsin A (PHO-A), a secondary metabolite mainly produced by the fungus Diaporthe toxica, occurs predominantly on sweet lupins. Along with the growing interest in sweet lupins for food and feed commodities, concerns have been raised about fungal infestations, and consequently, about the determination of PHO-A. High performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) represents the most suitable analytical technique for sensitive and selective detection of mycotoxins including PHO-A. However, isotopic labeled substances are needed as internal standards for a reliable and convenient quantification. As no isotope standard for PHO-A is currently available, a biosynthesis of fully (15)N6-labeled PHO-A was established by cultivation of D. toxica on defined media containing Na(15)NO3 and (15)N-labeled yeast extract as the only nitrogen sources. The identity of (15)N6-PHO-A was confirmed by high resolution mass spectrometry. The new (15)N6-labeled standard will facilitate the method development for PHO-A including a more accurate quantification by LC-MS/MS. PMID:25660858

  8. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J. [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  9. Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: Application to 15N relaxations in 15NH4+

    PubMed Central

    Werbeck, Nicolas D.; Hansen, D. Flemming

    2014-01-01

    The equations that describe the time-evolution of transverse and longitudinal 15N magnetisations in tetrahedral ammonium ions, 15NH4+, are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular 15N–1H and 1H–1H dipole–dipole interactions and (2) interactions of the ammonium protons with remote spins, which also include the contribution to the relaxations that arise from the exchange of the ammonium protons with the bulk solvent. The dipole–dipole cross-correlated relaxation mechanisms between each of the 15N–1H and 1H–1H interactions are explicitly taken into account in the derivations. An application to 15N-ammonium bound to a 41 kDa domain of the protein DnaK is presented, where a comparison between experiments and simulations show that the ammonium ion rotates rapidly within its binding site with a local correlation time shorter than approximately 1 ns. The theoretical framework provided here forms the basis for further investigations of dynamics of AX4 spin systems, with ammonium ions in solution and bound to proteins of particular interest. PMID:25128779

  10. Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: Application to 15N relaxations in 15NH4+

    NASA Astrophysics Data System (ADS)

    Werbeck, Nicolas D.; Hansen, D. Flemming

    2014-09-01

    The equations that describe the time-evolution of transverse and longitudinal 15N magnetisations in tetrahedral ammonium ions, 15NH4+, are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular 15N-1H and 1H-1H dipole-dipole interactions and (2) interactions of the ammonium protons with remote spins, which also include the contribution to the relaxations that arise from the exchange of the ammonium protons with the bulk solvent. The dipole-dipole cross-correlated relaxation mechanisms between each of the 15N-1H and 1H-1H interactions are explicitly taken into account in the derivations. An application to 15N-ammonium bound to a 41 kDa domain of the protein DnaK is presented, where a comparison between experiments and simulations show that the ammonium ion rotates rapidly within its binding site with a local correlation time shorter than approximately 1 ns. The theoretical framework provided here forms the basis for further investigations of dynamics of AX4 spin systems, with ammonium ions in solution and bound to proteins of particular interest.

  11. Studies on electron spin resonance spectroscopy of biradical molecules containing 14N-O and 15N-O moieties

    NASA Astrophysics Data System (ADS)

    Kameya, Hiromi; Nakamura, Hideo; Ukai, Mitsuko; Shimoyama, Yuhei

    2008-05-01

    The biradicals with 14N-Oxide and 15N-Oxide at the both ends of a molecule are synthesized for the molecular ruler of protein structure, and a potential device for quantum computing. We also establish a general synthetic method for reliable biradical formation. ESR spectra are recorded for the biradicals containing 15N-Oxide and 14N-Oxide with various interdistance separations. We find that two types of biradicals yielded different ESR spectra depending upon the distance between the 15N-O and 14N-O moieties in a molecule. This is due to electron spin dipole-dipole interaction occurring between the radicals. We also find that there is an indication of isotopic nuclear effects in the dipole-dipole interactions. The present study implies feasibility of the distance measurement between two different N-Oxides containing 14N and 15N isotopes. We conclude that quantum entanglement effects are observed through the dipolar interactions, which enable application of quantum computing devices operating in the liquid state.

  12. STATISTICAL ESTIMATES OF VARIANCE FOR 15N ISOTOPE DILUTION MEASUREMENTS OF GROSS RATES OF NITROGEN CYCLE PROCESSES

    EPA Science Inventory

    It has been fifty years since Kirkham and Bartholmew (1954) presented the conceptual framework and derived the mathematical equations that formed the basis of the now commonly employed method of 15N isotope dilution. Although many advances in methodology and analysis have been ma...

  13. Using macroalgal d15N bioassay to detect cruise ship waste water effluent inputs in Skagway, AK

    EPA Science Inventory

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the d15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  14. COMPARISON OF STABLE-NITROGEN (15N/14N) ISOTOPE RATIOS IN LARGE MOUTH BASS SCALES AND MUSCLE TISSUE

    EPA Science Inventory

    Stable-nitrogen (15N/14N) isotope ratios of fish tissue are currently used to determine trophic structure, contaminant bioaccumulation, and the level of anthropogenic nitrogen enrichment in aquatic systems. The most common tissue used for these measurements is fileted dorsal musc...

  15. Endogenous and Environmental Factors Influence the Dietary Fractionation of 13 C and 15 N in Hissing Cockroaches

    Microsoft Academic Search

    Marshall D. McCue

    Since DeNiro and Epstein's discovery that the 13C and 15N isotopic signatures of animals approximate those of their re- spective diets, the measurement of stable isotope signatures has become an important tool for ecologists studying the diets of wild animals. This study used Madagascar hissing cockroaches (Gromphadorhina portentosa) to examine several preexisting hypotheses about the relationship between the isotopic com-

  16. Plant community change mediates the response of foliar delta15N to CO2 enrichment in mesic grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. Isotope fractionation theory and limited experimental evidence indicate that CO2 may increase leaf delta15N by increasing plant community productivity,...

  17. Contrasting food web linkages for the grazing pathway in 3 temperate forested streams using {sup 15}N as a tracer

    SciTech Connect

    Tank, J.L.; Mulholland, P.J.; Meyer, J.L.; Bowden, W.B.; Webster, J.R.; Peterson, B.J.

    1998-11-01

    Nitrogen is a critical element controlling the productivity and dynamics of stream ecosystems and many streams are limited by the supply of biologically available nitrogen. The authors are learning more about the fate of inorganic nitrogen entering streams through {sup 15}N tracer additions. The Lotic Intersite Nitrogen Experiment (LINX) is studying the uptake, cycling, and fate of {sup 15}N-NH{sub 4} in the stream food web of 10 streams draining different biomes. Using the {sup 15}N tracer method and data from 3 sites in the study, the authors can differentiate patterns in the cycling of nitrogen through the grazing pathway (N from the epilithon to grazing macroinvertebrates) for 3 temperate forested streams. Here, they quantify the relationship between the dominant grazer and its proposed food resource, the epilithon, by comparing {sup 15}N levels of grazers with those of the epilithon, as well as the biomass, nitrogen content, and chlorophyll a standing stocks of the epilithon in 3 streams.

  18. Proton-decoupled CPMG: a better experiment for measuring (15)N R2 relaxation in disordered proteins.

    PubMed

    Yuwen, Tairan; Skrynnikov, Nikolai R

    2014-04-01

    (15)N R2 relaxation is one of the most informative experiments for characterization of intrinsically disordered proteins (IDPs). Small changes in nitrogen R2 rates are often used to determine how IDPs respond to various biologically relevant perturbations such as point mutations, posttranslational modifications and weak ligand interactions. However collecting high-quality (15)N relaxation data can be difficult. Of necessity, the samples of IDPs are often prepared with low protein concentration and the measurement time can be limited because of rapid sample degradation. Furthermore, due to hardware limitations standard experiments such as (15)N spin-lock and CPMG can sample the relaxation decay only to ca. 150ms. This is much shorter than (15)N T2 times in disordered proteins at or near physiological temperature. As a result, the sampling of relaxation decay profiles in these experiments is suboptimal, which further lowers the precision of the measurements. Here we report a new implementation of the proton-decoupled (PD) CPMG experiment which allows one to sample (15)N R2 relaxation decay up to ca. 0.5-1s. The new experiment has been validated through comparison with the well-established spin-lock measurement. Using dilute samples of denatured ubiquitin, we have demonstrated that PD-CPMG produces up to 3-fold improvement in the precision of the data. It is expected that for intrinsically disordered proteins the gains may be even more substantial. We have also shown that this sequence has a number of favorable properties: (i) the spectra are recorded with narrow linewidth in nitrogen dimension; (ii) (15)N offset correction is small and easy to calculate; (iii) the experiment is immune to various spurious effects arising from solvent exchange; (iv) the results are stable with respect to pulse miscalibration and rf field inhomogeneity; (v) with minimal change, the pulse sequence can also be used to measure R2 relaxation of (15)N(?) spins in arginine side chains. We anticipate that the new experiment will be a valuable addition to the NMR toolbox for studies of IDPs. PMID:24120537

  19. Proton-decoupled CPMG: A better experiment for measuring 15N R2 relaxation in disordered proteins

    NASA Astrophysics Data System (ADS)

    Yuwen, Tairan; Skrynnikov, Nikolai R.

    2014-04-01

    15N R2 relaxation is one of the most informative experiments for characterization of intrinsically disordered proteins (IDPs). Small changes in nitrogen R2 rates are often used to determine how IDPs respond to various biologically relevant perturbations such as point mutations, posttranslational modifications and weak ligand interactions. However collecting high-quality 15N relaxation data can be difficult. Of necessity, the samples of IDPs are often prepared with low protein concentration and the measurement time can be limited because of rapid sample degradation. Furthermore, due to hardware limitations standard experiments such as 15N spin-lock and CPMG can sample the relaxation decay only to ca. 150 ms. This is much shorter than 15N T2 times in disordered proteins at or near physiological temperature. As a result, the sampling of relaxation decay profiles in these experiments is suboptimal, which further lowers the precision of the measurements. Here we report a new implementation of the proton-decoupled (PD) CPMG experiment which allows one to sample 15N R2 relaxation decay up to ca. 0.5-1 s. The new experiment has been validated through comparison with the well-established spin-lock measurement. Using dilute samples of denatured ubiquitin, we have demonstrated that PD-CPMG produces up to 3-fold improvement in the precision of the data. It is expected that for intrinsically disordered proteins the gains may be even more substantial. We have also shown that this sequence has a number of favorable properties: (i) the spectra are recorded with narrow linewidth in nitrogen dimension; (ii) 15N offset correction is small and easy to calculate; (iii) the experiment is immune to various spurious effects arising from solvent exchange; (iv) the results are stable with respect to pulse miscalibration and rf field inhomogeneity; (v) with minimal change, the pulse sequence can also be used to measure R2 relaxation of 15N? spins in arginine side chains. We anticipate that the new experiment will be a valuable addition to the NMR toolbox for studies of IDPs.

  20. Mean lifetimes and equilibrium abundances in the fast CN cycle.

    NASA Technical Reports Server (NTRS)

    Caughlan, G. R.; Fowler, W. A.

    1972-01-01

    It is shown that the production of small nitrogen to carbon ratios is possible, in contrast to the equilibrium production in the ordinary CN cycle. Associated with such a production are high ratios of C-13/C-12 and of N-15/N-14. The final ratios depend on the conditions under which cessation of hydrogen burning occurs under astrophysical circumstances. A table showing proton capture mean lifetimes of CN nuclei is provided together with tables of the equilibrium abundances in a fast CN cycle. The ratios of final abundances of nitrogen to carbon as functions of temperature are also presented.

  1. Retrospective characterization of ontogenetic shifts in killer whale diets via ?13C and ?15N analysis of teeth

    USGS Publications Warehouse

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic ?13C and ?15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes—resident and transient—collected across ~25° of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in ?15N values of ~2.5‰ through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable ?15N and ?13C values throughout the remainder of their lives, whereas ?15N values of most (n = 11) increased by ~1.5‰, suggestive of an ontogenetic increase in trophic level. Significant differences in mean ?13C and ?15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean

  2. Retrospective characterization of ontogenetic shifts in killer whale diets via ?13C and ?15N analysis of teeth

    USGS Publications Warehouse

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic ??13C and ??15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes-resident and transient - collected across ???25?? of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in ??15N values of ???2.5% through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable ??15N and ??13C values throughout the remainder of their lives, whereas ??15N values of most (n = 11) increased by ???1.5%, suggestive of an ontogenetic increase in trophic level. Significant differences in mean ??13C and ??15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean. ?? Inter-Research 2009.

  3. Sedimentary records of ?(13)C, ?(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    PubMed

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, ?(15)N and ?(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (?(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (?(15)N-NO3=+3.4±0.3‰; ?(15)N-NH4=-8.0±0.3‰) and NaCN (?(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters. PMID:24727038

  4. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and ?15N analysis of amino acids.

    PubMed

    Seminoff, Jeffrey A; Benson, Scott R; Arthur, Karen E; Eguchi, Tomoharu; Dutton, Peter H; Tapilatu, Ricardo F; Popp, Brian N

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in ?(15)N values of bulk skin, with distinct "low ?(15)N" and "high ?(15)N" groups. ?(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin ?(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species' imminent risk of extinction in the Pacific. PMID:22666354

  5. Measurement of 1H-15N and 1H-13C residual dipolar couplings in nucleic acids from TROSY intensities

    PubMed Central

    Ying, Jinfa; Wang, Jinbu; Grishaev, Alex; Yu, Ping; Wang, Yun-Xing; Bax, Ad

    2011-01-01

    Analogous to the recently introduced ARTSY method for measurement of one-bond 1H-15N residual dipolar couplings (RDCs) in large perdeuterated proteins, we introduce methods for measurement of base 13C-1H and 15N-1H RDCs in protonated nucleic acids. Measurements are based on quantitative analysis of intensities in 1H-15N and 13C-1H TROSY-HSQC spectra, and are illustrated for a 71-nucleotide adenine riboswitch. Results compare favorably with those of conventional frequency-based measurements in terms of completeness and convenience of use. The ARTSY method derives the size of the coupling from the ratio of intensities observed in two TROSY-HSQC spectra recorded with different dephasing delays, thereby minimizing potential resonance overlap problems. Precision of the RDC measurements is limited by the signal-to-noise ratio, S/N, achievable in the 2D TROSY-HSQC reference spectrum, and is approximately given by 30/(S/N) Hz for 15N-1H and 65/(S/N) Hz for 13C-1H. The signal-to-noise ratio of both 1H-15N and 1H-13C spectra greatly benefits when water magnetization during the experiments is not perturbed, such that rapid magnetization transfer from bulk water to the nucleic acid, mediated by rapid amino and hydroxyl hydrogen exchange coupled with 1H-1H NOE transfer, allows for fast repetition of the experiment. RDCs in the mutated helix 1 of the riboswitch are compatible with nucleotide-specifically modeled, idealized A-form geometry and a static orientation relative to the helix 2/3 pair, which differs by ca 6° relative to the X-ray structure of the native riboswitch. PMID:21947918

  6. Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and ?15N Analysis of Amino Acids

    PubMed Central

    Seminoff, Jeffrey A.; Benson, Scott R.; Arthur, Karen E.; Eguchi, Tomoharu; Dutton, Peter H.; Tapilatu, Ricardo F.; Popp, Brian N.

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in ?15N values of bulk skin, with distinct “low ?15N” and “high ?15N” groups. ?15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin ?15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species’ imminent risk of extinction in the Pacific. PMID:22666354

  7. Robust Abundance Estimation in Animal Abundance Surveys with Imperfect Detection

    EPA Science Inventory

    Surveys of animal abundance are central to the conservation and management of living natural resources. However, detection uncertainty complicates the sampling process of many species. One sampling method employed to deal with this problem is depletion (or removal) surveys in whi...

  8. Shifts in Ross Sea food web structure as indicated by ?15N and ?13C values of fossil Antarctic seals

    NASA Astrophysics Data System (ADS)

    Leopold, A.; Brault, E.; McMahon, K.

    2013-12-01

    As climate change continues to mount, there is a growing need for understanding its effects on biological-physical interactions of marine ecosystems. Assessing the effects of anthropogenic activities on the coastal marine ecosystem involves understanding the underlying mechanisms driving these changes as well as establishing baselines of the natural system. Preliminary findings have indicated shifts in bulk carbon (C) and nitrogen (N) isotopic values of southern elephant seal (Mirounga leonina) samples, collected in the Dry Valleys of Antarctica in the Ross Sea region, over approximately the last 7,000 years. These shifts could result from 1) seals changing their foraging location and/or diet over this time, 2) climate change-induced shifts in the biogeochemistry at the base of the food web, or 3) some combination of both processes. We explored the patterns of long-term change in Ross Sea food web structure by examining the stable isotope values of three top predators in this system, Weddell seals (Leptonychotes weddellii), leopard seals (Hydrurga leptonyx), and crabeater seals (Lobodon carcinophagus). Fossil seal samples were collected in the Dry Valleys during the austral summer of 2012/13 and then analyzed for bulk C and N isotopes via an elemental analyzer/isotope-ratio mass spectrometer (EA/IRMS). Our initial findings indicate that C isotopic values of fossil seal samples from Weddell, leopard, and crabeater seals were more enriched than isotopic values of modern seals of the same species (e.g., ?13C = -22.79 × 0.92 ‰ and -26.71 × 0.50 ‰ for fossil and modern crabeater seals, respectively). Given the relatively consistent diet of crabeater seals, these findings suggest a shift in baseline food web structure occurred over the last 10,000 years, either through changes in foraging location or local shifts in biogeochemistry. For all species, N isotopic values are widely variable (e.g., 7.28 to 16.0 ?15N ‰ for the Weddell seal), which may be a result of greatly changing diets in the last ~10,000 years, or a changing baseline N value for the Ross Sea. Seal bones will be radiocarbon-dated to isolate the key shifts in C and N isotopic values. Once those major shifts are temporally constrained, compound-specific isotopic analysis of the bone samples will be used to tease apart the diet vs. baseline effects on the bulk isotopic signatures of the seals. Our results suggests that during the last ~10,000 years, there was a fundamental shift in Ross Sea food web structure likely related to long term climatic variability.

  9. Distribution and abundance of natural parasitoid (Hymenoptera: Pteromalidae) populations of house flies and stable flies (Diptera: Muscidae) at the University of Florida Dairy Research Unit.

    PubMed

    Romero, Alvaro; Hogsette, Jerome A; Coronado, Alfredo

    2010-01-01

    From September 2001 through September 2002, house fly and stable fly pupae were collected weekly from three fly habitats at the University of Florida Research dairy in northcentral Florida and evaluated for parasitism. Varying parasitism percentages were observed throughout the study but they were not affected by temperature, precipitation or fly abundance. Of the 6,222 house fly pupae and 1,660 stable fly pupae that produced either a host fly or a parasitoid, 26.9% and 26.7% were parasitized, respectively. Ten parasitoid species were recovered, with the genus Spalangia accounting for 85.7% of the total; the most common parasitoids attacking house fly and stable fly pupae were Spalangia endius Walker (33.9% and 27.3%), S. cameroni Perkins (27.9% and 40.6%), and S. nigroaenea Curtis (21.0% and 24.8%), respectively. Other parasitoids included one specimen of S. erythromera Förster and four specimens of Phygadeuon fumator Gravenhörst (Ichneumonidae). The percentage parasitism of pupae collected from bunker silos was higher than that of pupae from calf pens and open pastures. Spalangia cameroni was consistently recovered through the entire year. Spalangia nigroaenea was predominant in July, August, and September. Spalangia endius was most active from October to May with a peak of relative abundance in January. PMID:20676517

  10. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274)

    NASA Astrophysics Data System (ADS)

    Bach, Wolfgang; Paulick, Holger; Garrido, Carlos J.; Ildefonse, Benoit; Meurer, William P.; Humphris, Susan E.

    2006-07-01

    The results of detailed textural, mineral chemical, and petrophysical studies shed new light on the poorly constrained fluid-rock reaction pathways during retrograde serpentinization at mid-ocean ridges. Uniformly depleted harzburgites and dunites from the Mid-Atlantic Ridge at 15°N show variable extents of static serpentinization. They reveal a simple sequence of reactions: serpentinization of olivine and development of a typical mesh texture with serpentine-brucite mesh rims, followed by replacement of olivine mesh centers by serpentine and brucite. The serpentine mesh rims on relic olivine are devoid of magnetite. Conversely, domains in the rock that are completely serpentinized show abundant magnetite. We propose that low-fluid-flux serpentinization of olivine to serpentine and ferroan brucite is followed by later stages of serpentinization under more open-system conditions and formation of magnetite by the breakdown of ferroan brucite. Modeling of this sequence of reactions can account for covariations in magnetic susceptibility and grain density of the rocks.

  11. Using major ions and ?15N-NO3(-) to identify nitrate sources and fate in an alluvial aquifer of the Baiyangdian lake watershed, North China Plain.

    PubMed

    Wang, Shiqin; Tang, Changyuan; Song, Xianfang; Yuan, Ruiqiang; Wang, Qinxue; Zhang, Yinghua

    2013-07-01

    In semi-arid regions, most human activities occur in alluvial fan areas; however, NO3(-) pollution has greatly threatened the shallow groundwater quality. In this paper, ?(15)N-NO3(-) and multi-tracers were used to identify the origin and fate of NO3(-) in groundwater of the Baiyangdian lake watershed, North China Plain. The investigation was conducted in two typical regions: one is the agricultural area located in the upstream of the watershed and another is the region influenced by urban wastewater in the downstream of the watershed. Results indicate that the high NO3(-) concentrations of the upstream shallow groundwater were sourced from fertilizer and manure or sewage leakage, whilst the mixture and denitrification caused the decrease in the NO3(-) concentration along the flow path of the groundwater. In the downstream, industrial and domestic effluent has a great impact on groundwater quality. The contaminated rivers contributed from 45% to 76% of the total recharge to the groundwater within a distance of 40 m from the river. The mixture fraction of the wastewater declined with the increasing distance away from the river. However, groundwater with NO3(-) concentrations larger than 20 mg l(-1) was only distributed in areas near to the polluted river or the sewage irrigation area. It is revealed that the frontier and depression regions of an alluvial fan in a lake watershed with abundant organics, silt and clay sediments have suitable conditions for denitrification in the downstream. PMID:23743546

  12. Variation in ?13C and ?15N diet–vibrissae trophic discrimination factors in a wild population of California sea otters

    USGS Publications Warehouse

    Newsome, Seth D.; Bentall, Gena B.; Tinker, M. Tim; Oftedal, Olav T.; Ralls, Katherine; Estes, James A.; Fogel, Marilyn L.

    2010-01-01

    The ability to quantify dietary inputs using stable isotope data depends on accurate estimates of isotopic differences between a consumer (c) and its diet (d), commonly referred to as trophic discrimination factors (TDFs) and denoted by ?c-d. At present, TDFs are available for only a few mammals and are usually derived in captive settings. The magnitude of TDFs and the degree to which they vary in wild populations is unknown. We determined ?13C and ?15N TDFs for vibrissae (i.e., whiskers), a tissue that is rapidly becoming an informative isotopic substrate for ecologists, of a wild population of sea otters for which individual diet has been quantified through extensive observational study. This is one of the very few studies that report TDFs for free-living wild animals feeding on natural diets. Trophic discrimination factors of 2.2? ± 0.7? for ?13C and 3.5? ± 0.6? for ?15N (mean ± SD) were similar to those reported for captive carnivores, and variation in individual ?13C TDFs was negatively but significantly related to sea urchin consumption. This pattern may relate to the lipid-rich diet consumed by most sea otters in this population and suggests that it may not be appropriate to lipid-extract prey samples when using the isotopic composition of keratinaceous tissues to examine diet in consumers that frequently consume lipid-rich foods, such as many marine mammals and seabirds. We suggest that inherent variation in TDFs should be included in isotopically based estimates of trophic level, food chain length, and mixing models used to quantify dietary inputs in wild populations; this practice will further define the capabilities and limitations of isotopic approaches in ecological studies.

  13. Variation in delta13C and delta15N diet-vibrissae trophic discrimination factors in a wild population of California sea otters.

    PubMed

    Newsome, Seth D; Bentall, Gena B; Tinker, M Tim; Oftedal, Olav T; Ralls, Katherine; Estes, James A; Fogel, Marilyn L

    2010-09-01

    The ability to quantify dietary inputs using stable isotope data depends on accurate estimates of isotopic differences between a consumer (c) and its diet (d), commonly referred to as trophic discrimination factors (TDFs) and denoted by delta(c-d). At present, TDFs are available for only a few mammals and are usually derived in captive settings. The magnitude of TDFs and the degree to which they vary in wild populations is unknown. We determined delta13C and delta15N TDFs for vibrissae (i.e., whiskers), a tissue that is rapidly becoming an informative isotopic substrate for ecologists, of a wild population of sea otters for which individual diet has been quantified through extensive observational study. This is one of the very few studies that report TDFs for free-living wild animals feeding on natural diets. Trophic discrimination factors of 2.2 per thousand +/- 0.7 per thousand for delta13C and 3.5 per thousand +/- 0.6 per thousand for delta15N (mean +/- SD) were similar to those reported for captive carnivores, and variation in individual delta13C TDFs was negatively but significantly related to sea urchin consumption. This pattern may relate to the lipid-rich diet consumed by most sea otters in this population and suggests that it may not be appropriate to lipid-extract prey samples when using the isotopic composition of keratinaceous tissues to examine diet in consumers that frequently consume lipid-rich foods, such as many marine mammals and seabirds. We suggest that inherent variation in TDFs should be included in isotopically based estimates of trophic level, food chain length, and mixing models used to quantify dietary inputs in wild populations; this practice will further define the capabilities and limitations of isotopic approaches in ecological studies. PMID:20945772

  14. Cross sections for n+{sup 14}N from an R-matrix analysis of the {sup 15}N system

    SciTech Connect

    Hale, G.M.; Young, P.G. [Los Alamos National Lab., NM (United States); Chadwick, M.B. [Lawrence Livermore National Lab., CA (United States)

    1994-06-01

    As part of the Hiroshima-Nagasaki Dose Reevaluation Program, a new evaluation of the neutron cross sections for {sup 14}N was made for ENDF/B-VI, based at energies below 2.5 MeV on a multichannel R-matrix analysis of reactions in the {sup 15}N system. The types of data used in the analysis, and the resulting cross sections and resonance structure for {sup 15}N are briefly described. The resonant features of the neutron cross sections were especially well determined by including precise, high-resolution neutron total cross section measurements from ORNL. While the new evaluated cross section appear to be significant improvements over the earlier ones, they still need to be tested more extensively against recent measurements of the differential elastic cross section from Oak Ridge.

  15. Influence of canopy drip on the indicative N, S and ?(15)N content in moss Hypnum cupressiforme.

    PubMed

    Skudnik, Mitja; Jeran, Zvonka; Bati?, Franc; Simon?i?, Primož; Lojen, Sonja; Kastelec, Damijana

    2014-07-01

    Samples of Hypnum cupressiforme were collected at two types of site in forest areas: within the forest stand and within forest openings, and analyzed for N and S concentrations and ?(15)N. Mosses sampled within forest openings reflect the atmospheric N deposition; however, no influence of throughfall N deposition on the N in the moss that was sampled within the forest stand was found, nor was any influence of S deposition on the S in the moss found. For the N and S concentrations in the mosses sampled within forest openings, the within-site variability was comparable to the between-site variability, and for the ?(15)N, the within-site variability was lower than the between-site. The results showed that a short distance (<1 m) between the sampling location and the nearest tree canopy increases the N in the moss, and significantly higher values are found in mosses sampled in areas within the forest stand. PMID:24704808

  16. Ratios of 15N/12C and 4He/12C inclusive electroproduction cross sections in the nucleon resonance region

    SciTech Connect

    Peter Bosted; Robert Fersch

    2007-12-14

    The ratio of inclusive electron scattering cross sections for 15N/12C was determined in the kinematic range 0.8<2 GeV and 0.2<1 GeV2 using 2.285 GeV electrons and the CLAS detector at Jefferson Lab. The ratio exhibits only slight resonance structure, as predicted by a phenomenological model, and also by quark-hadron duality. Within the super-scaling quasi-elastic model, slight evidence is found for a 1 MeV lower effective nucleon binding energy in 15N than in 12C. Ratios of 4He/12C using 1.6 to 2.5 GeV electrons are in good agreement with the phenomenological model.

  17. Linking ? 15N and histopathological effects in molluscs exposed in situ to effluents from land-based marine fish farms.

    PubMed

    Carballeira, C; Espinosa, J; Carballeira, A

    2011-12-01

    Histopathological alterations can indicate time-integrated impacts on organisms stemming from alterations at lower biological organisation levels. Long-term (native mussels) and short-term (transplanted clams) changes in the tissues of molluscs exposed to the effluents from two land-based marine fish farms (LBMFFs) were determined. Histological alterations were related to the ?(15)N isotopic signal measured in mussels and macroalgae. Effluents from LBMFFs were found to cause severe and moderate gill filament exfoliation in clams and mussels, respectively. Some transplanted clams showed severe degrees of hemocytic phagocytosis in gonads and connective tissue. In an attempt to semi-quantitatively summarize the observed histopathological alterations, a weighted index of damage (WID) was calculated for each type of alteration, species and sampling site. The WID was clearly related to the ?(15)N descriptor of exposure. Further studies aimed at standardizing this relationship may establish critical thresholds of the descriptor for its implementation within environmental monitoring plans for LBMFFs. PMID:22024543

  18. Exploring Symbiotic Nitrogen Fixation and Assimilation in Pea Root Nodules by in Vivo 15N Nuclear Magnetic Resonance Spectroscopy and Liquid Chromatography-Mass Spectrometry1

    PubMed Central

    Scharff, Anne Marie; Egsgaard, Helge; Hansen, Poul Erik; Rosendahl, Lis

    2003-01-01

    Nitrogen (N) fixation and assimilation in pea (Pisum sativum) root nodules were studied by in vivo 15N nuclear magnetic resonance (NMR) by exposing detached nodules to 15N2 via a perfusion medium, while recording a time course of spectra. In vivo 31P NMR spectroscopy was used to monitor the physiological state of the metabolically active nodules. The nodules were extracted after the NMR studies and analyzed for total soluble amino acid pools and 15N labeling of individual amino acids by liquid chromatography-mass spectrometry. A substantial pool of free ammonium was observed by 15N NMR to be present in metabolically active, intact nodules. The ammonium ions were located in an intracellular environment that caused a remarkable change in the in vivo 15N chemical shift. Alkalinity of the ammonium-containing compartment may explain the unusual chemical shift; thus, the observations could indicate that ammonium is located in the bacteroids. The observed 15N-labeled amino acids, glutamine/glutamate and asparagine (Asn), apparently reside in a different compartment, presumably the plant cytoplasm, because no changes in the expected in vivo 15N chemical shifts were observed. Extensive 15N labeling of Asn was observed by liquid chromatography-mass spectrometry, which is consistent with the generally accepted role of Asn as the end product of primary N assimilation in pea nodules. However, the Asn 15N amino signal was absent in in vivo 15N NMR spectra, which could be because of an unfavorable nuclear Overhauser effect. ?-Aminobutyric acid accumulated in the nodules during incubation, but newly synthesized 15N ?-aminobutyric acid seemed to be immobilized in metabolically active pea nodules, which made it NMR invisible. PMID:12529544

  19. Compound-specific amino acid ?15N patterns in marine algae: Tracer potential for cyanobacterial vs. eukaryotic organic nitrogen sources in the ocean

    NASA Astrophysics Data System (ADS)

    McCarthy, Matthew D.; Lehman, Jennifer; Kudela, Raphael

    2013-02-01

    Stable nitrogen isotopic analysis of individual amino acids (?15N-AA) has unique potential to elucidate the complexities of food webs, track heterotrophic transformations, and understand diagenesis of organic nitrogen (ON). While ?15N-AA patterns of autotrophs have been shown to be generally similar, prior work has also suggested that differences may exist between cyanobacteria and eukaryotic algae. However, ?15N-AA patterns in differing oceanic algal groups have never been closely examined. The overarching goals of this study were first to establish a more quantitative understanding of algal ?15N-AA patterns, and second to examine whether ?15N-AA patterns have potential as a new tracer for distinguishing prokaryotic vs. eukaryotic N sources. We measured ?15N-AA from prokaryotic and eukaryotic phytoplankton cultures and used a complementary set of statistical approaches (simple normalization, regression-derived fractionation factors, and multivariate analyses) to test for variations. A generally similar ?15N-AA pattern was confirmed for all algae, however significant AA-specific variation was also consistently identified between the two groups. The relative ?15N fractionation of Glx (glutamine + glutamic acid combined) vs. total proteinaceous N appeared substantially different, which we hypothesize could be related to differing enzymatic forms. In addition, the several other AA (most notably glycine and leucine) appeared to have strong biomarker potential. Finally, we observed that overall patterns of ?15N values in algae correspond well with the Trophic vs. Source-AA division now commonly used to describe variable AA ?15N changes with trophic transfer, suggesting a common mechanistic basis. Overall, these results show that autotrophic ?15N-AA patterns can differ between major algal evolutionary groupings for many AA. The statistically significant multivariate results represent a first approach for testing ideas about relative eukaryotic vs. prokaryotic ON sources in the sea.

  20. Intrapopulation variation in gray wolf isotope (? 15 N and ? 13 C) profiles: implications for the ecology of individuals

    Microsoft Academic Search

    Erin J. M. Urton; Keith A. Hobson

    2005-01-01

    Trophic relationships among organisms in terrestrial boreal ecosystems define ecological communities and are important in\\u000a determining dynamics of energy flow and ecosystem function. We examined trophic relationships between the gray wolf (Canis lupus) and 18 mammalian species from the boreal forest of central Saskatchewan, Canada, using ?13C and ?15N stable isotope values measured in guard hair samples. Variance in isotope

  1. Inverse 15N-metabolic labeling/mass spectrometry for comparative proteomics and rapid identification of protein markers/targets.

    PubMed

    Wang, Y Karen; Ma, Zhixiang; Quinn, Douglas F; Fu, Emil W

    2002-01-01

    The inverse labeling/mass spectrometry strategy has been applied to protein metabolic (15)N labeling for gel-free proteomics to achieve the rapid identification of protein markers/targets. Inverse labeling involves culturing both the perturbed (by disease or by a drug treatment) and control samples each in two separate pools of normal and (15)N-enriched culture media such that four pools are produced as opposed to two in a conventional labeling approach. The inverse labeling is then achieved by combining the normal (14)N-control with the (15)N-perturbed sample, and the (15)N-control with the (14)N-perturbed sample. Both mixtures are then proteolyzed and analyzed by mass spectrometry (coupled with on-line or off-line separation). Inverse labeling overcomes difficulties associated with protein metabolic labeling with regard to isotopic peak correlation and data interpretation in the single-experiment approach (due to the non-predictable/variable mass difference). When two data sets from inverse labeling are compared, proteins of differential expression are readily recognized by a characteristic inverse labeling pattern or apparent qualitative mass shifts between the two inverse labeling analyses. MS/MS fragmentation data provide further confirmation and are subsequently used to search protein databases for protein identification. The methodology has been applied successfully to two model systems in this study. Utilizing the inverse labeling strategy, one can use any mass spectrometer of standard unit resolution, and acquire only the minimum, essential data to achieve the rapid and unambiguous identification of differentially expressed protein markers/targets. The strategy permits quick focus on the signals of differentially expressed proteins. It eliminates the detection ambiguities caused by the dynamic range of detection. Finally, inverse labeling enables the detection of covalent changes of proteins responding to a perturbation that one might fail to distinguish with a conventional labeling experiment. PMID:12112619

  2. Changes in leaf ?13C and ?15N for three Mediterranean tree species in relation to soil water availability

    NASA Astrophysics Data System (ADS)

    Ogaya, Romà; Peñuelas, Josep

    2008-11-01

    A rain exclusion experiment simulating drought conditions expected in Mediterranean areas for the following decades (15% decrease in soil moisture) was conducted in a Mediterranean holm oak forest to study the response of leaf ?13C, ?15N, and N concentrations to the predicted climatic changes for the coming decades. Plant material was sampled in 2000, 2003, 2004, and 2005 in eight plots: four of them were control plots and the other four plots received the rain exclusion treatment. Although there was a negative relationship between ?13C and soil moisture, for each species and year, the rain exclusion treatment did not have any significant effect on ?13C, and therefore on the intrinsic water use efficiency (iWUE) of the three dominant species: Phillyrea latifolia, Arbutus unedo, and Quercus ilex. On the other hand, rain exclusion clearly increased the ?15N values in the three species studied, probably indicating higher N losses at the soil level leading to a 15N enrichment of the available N. It suggested that rain exclusion exerted a greater effect on the nitrogen biogeochemical cycle than on the carbon assimilation process. ?15N values were inversely correlated with summer soil moisture in Q. ilex and A. unedo, but no relationship was observed in P. latifolia. This latter species showed the lowest iWUE values, but it was the only species with no decrease in annual basal increment in response to the rain exclusion treatment, and it also had the highest resistance to the hot and dry conditions projected for the Mediterranean basin in the coming decades. The different strategies to resist rain exclusion conditions of these species could induce changes in their competitive ability and future distribution. The losses of N from the ecosystem may further limit plant growth and ecosystem functioning.

  3. Use of a 15N tracer to determine linkages between a mangrove and an upland freshwater swamp

    NASA Astrophysics Data System (ADS)

    MacKenzie, R. A.; Cormier, N.

    2005-05-01

    Mangrove forests and adjacent upland freshwater swamps are important components of subsistence-based economies of Pacific islands. Mangroves provide valuable firewood (Rhizophora apiculata) and mangrove crabs (Scylla serrata); intact freshwater swamps are often used for agroforestry (e.g., taro cultivation). While these two systems are connected hydrologically via groundwater and surface flows, little information is available on how they may be biogeochemically or ecologically linked. For example, mangrove leaf litter was once thought to be an important food source for resident and transient nekton and invertebrates, but this value may have been overestimated. Instead, nutrients or allochthonous material (e.g., phytoplankton, detritus) delivered via groundwater or surface water from upland freshwater swamps may play a larger role in mangrove food webs. Understanding the linkages between these two ecologically and culturally important ecosystems will help us to understand the potential impacts of hydrological alterations that occur when roads or bridges are constructed through them. We conducted a 15N tracer study in the Yela watershed on the island of Kosrae, Federated States of Micronesia. K15NO3 was continually added at trace levels for 4 weeks to the Yela River in an upland freshwater swamp adjacent to a mangrove forest. Nitrate and ammonium pools, major primary producers, macroinvertebrates, and fish were sampled from stations 5 m upstream (freshwater swamp) and 138, 188, 213, and 313 m downstream (mangrove) from the tracer addition. Samples were collected once a week prior to, during, and after the 15N addition for a total of 6 weeks. Preliminary results revealed no significant enrichment (< 1 ‰) in the 15N isotope composition of either resident shrimp (Macrobrachium sp.) or mudskipper fish (Periophthalmus sp.). However, the 15N signature of ammonium pools was enriched 10-60 ‰ by the end of the third week. These results suggest that the tracer was present in the mangrove but was either unavailable to higher organisms or was incorporated into organic matter not utilized by shrimp or mudskippers.

  4. Imprint of oaks on nitrogen availability and ?15N in California grassland-savanna: A case of enhanced N inputs?

    USGS Publications Warehouse

    Perakis, S.S.; Kellogg, C.H.

    2007-01-01

    Woody vegetation is distributed patchily in many arid and semi-arid ecosystems, where it is often associated with elevated nitrogen (N) pools and availability in islands of fertility. We measured N availability and ?15N in paired blue-oak versus annual grass dominated patches to characterize the causes and consequences of spatial variation in N dynamics of grassland-savanna in Sequoia-Kings Canyon National Park. We found significantly greater surface soil N pools (0–20 cm) in oak patches compared to adjacent grass areas across a 700 m elevation gradient from foothills to the savanna-forest boundary. N accumulation under oaks was associated with a 0.6‰ depletion in soil ?15N relative to grass patches. Results from a simple ?15N mass balance simulation model, constrained by surface soil N and ?15N measured in the field, suggest that the development of islands of N fertility under oaks can be traced primarily to enhanced N inputs. Net N mineralization and percent nitrification in laboratory incubations were consistently higher under oaks across a range of experimental soil moisture regimes, suggesting a scenario whereby greater N inputs to oak patches result in net N accumulation and enhanced N cycling, with a potential for greater nitrate loss as well. N concentrations of three common herbaceous annual plants were nearly 50% greater under oak than in adjacent grass patches, with community composition shifted towards more N-demanding species under oaks. We find that oaks imprint distinct N-rich islands of fertility that foster local feedback between soil N cycling, plant N uptake, and herbaceous community composition. Such patch-scale differences in N inputs and plant–soil interactions increase biogeochemical heterogeneity in grassland-savanna ecosystems and may shape watershed-level responses to chronic N deposition.

  5. Mineralization of 15 N-labelled legume residues in soils with different nitrogen contents and its uptake by Rhodes grass

    Microsoft Academic Search

    Othman Yaacob; Graeme J. Blair

    1980-01-01

    Summary Soil was collected from pots that had grown 1,3 or 6 soybean (Glycine max) or Siratro (Macroptillium atropurpureum) crops that had received organic residue returns from each crop.15N-labelled residues were added to half the pots in the experiment and the other half left unamended. Half of each group was then sown to Rhodes grass (Chloris gayana) which was grown,

  6. Assignment of the sup 1 H and sup 15 N NMR spectra of Rhodobacter capsulatus ferrocytochrome c sub 2

    SciTech Connect

    Gooley, P.R.; Caffrey, M.S.; Cusanovich, M.A.; MacKenzie, N.E. (Univ. of Arizona, Tucson (USA))

    1990-03-06

    The peptide resonances of the {sup 1}H and {sup 15}N nuclear magnetic resonance spectra of ferrocytochrome c{sub 2} from Rhodobacter capsulatus are sequentially assigned by a combination of 2D {sup 1}H-{sup 1}H and {sup 1}H-{sup 15}N spectroscopy, the latter performed on {sup 15}N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show {alpha}-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two {alpha}-helices, there are three single 3{sub 10} turns, 70-72, 76-78, and 107-109. In addition {alpha}H-NH{sub i+1} and {alpha}H-NH{sub i+2} NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c{sub 2} of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c{sub 2}. The NOE data show that this insertion forms a loop, probably an {Omega} loop. {sup 1}H-{sup 15}N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c{sub 2} of R. capsulatus with the highly homologous horse heart cytochrome c shows that this helix is less stable in cytochrome c{sub 2}.

  7. Fate of nitrogen deposition and decomposed nitrogen from litter in a 15N-tracer mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Nair, R.; Perks, M.; Mencuccini, M.

    2013-12-01

    Atmospheric deposition of anthropogenic-derived nitrogen may be a major driver of the 0.6-0.7 Pg y-1 increase in the carbon sink in historically N-limited northern and boreal forests, but the magnitude of its effect is still uncertain. A strong effect depends on the allocation of N to trees, because of their high C:N ratio in woody tissues, and isotope tracer experiments have shown that the majority of 15N tracers applied directly to the soil are lost via leeching or retained in soil pools rather than being acquired by tree root systems. However, ambient anthropogenic inputs of N to these systems are transported in the atmosphere and intercepted by foliage before they reach the soil system, while labelled fertilization experiments also can only explicitly trace the fate of the 15N-tracer from deposition, as opposed to changes in the fate of N from litter, where decomposition rates may be enhanced at low ambient levels of deposition, affecting the availability of N from this pool for tree nutrition. We present initial results from a potted Sitka Spruce mesocosm 15N-tracer experiment where ambient nitrogen deposition was supplemented with a minor (0.4 kg ha-1 y-1) input of additional N, applied to either the soil or the foliage. Either this deposition, or litter in the pots, was enriched in 15N, allowing the fate of the isotope from two different methods of deposition to be compared with that of nitrogen released from the litter under the deposition treatment.

  8. Application of Nitrogen and Carbon Stable Isotopes (?15N and ?13C) to Quantify Food Chain Length and Trophic Structure

    PubMed Central

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (?15N) and carbon (?13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using ?15N, and carbon range (CR) using ?13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in ?15N or ?13C from source to consumer) between trophic levels and among food chains. ?15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. ?13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of ?13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems. PMID:24676331

  9. Observation of the bond-dependent Doppler broadening of the p( 15N, ??) 12C nuclear reaction

    NASA Astrophysics Data System (ADS)

    Horn, K. M.; Lanford, W. A.

    1988-01-01

    Excitation curves for the p( 15N, ??) 12C nuclear reaction have been measured on a number of hydrogen-bearing gases to investigate the bond-dependent Doppler broadening resulting from the motion of the target hydrogen atoms. Contributions to the resonance width due to the intrinsic width of the resonance, gas-induced beam energy loss and energy straggle, accelerator beam energy spread, and Doppler broadening are considered. Calculations of Doppler broadening based on molecular spectroscopy data are presented.

  10. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    PubMed

    Paradowska, Katarzyna; Wolniak, Micha?; Pisklak, Maciej; Gli?ski, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm. PMID:19019638

  11. Cysteamine inhibition of (/sup 15/N)-glycine turnover in cystinosis and of glycine cleavage system in vitro

    SciTech Connect

    Yudkoff, M.; Nissim, I.; Schneider, A.; Segal, S.

    1981-01-01

    In order to clarify the hyperglycinemic effect of cysteamine treatment in children with nephropathic cystinosis, we measured (/sup 15/N)-glycine turnover in three affected patients. Administration of cysteamine lowered the glycine flux and the glycine metabolic clearance rate but did not alter the glycine pool size. Formation of (/sup 15/N)-serine from (/sup 15/N)-glycine was lower in untreated patients than in control subjects and was reduced still further by cysteamine. Studies in vitro with isolated rat liver mitochondria and acetone extracts of mitochondria indicated that even low cysteamine concentrations (0.1 mM) inhibited the glycine cleavage system in both the direction of glycine oxidation and glycine synthesis. Cysteamine was a more potent inhibitor of the glycine cleavage system than any other sulfhydryl containing compound. Although no ill effects of cysteamine treatment were immediately apparent, patients receiving cysteamine should be monitored carefully for the appearance of any neurologic symptoms which might be referable to inhibition of the glycine cleavage system.

  12. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    USGS Publications Warehouse

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  13. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios

    NASA Astrophysics Data System (ADS)

    Altabet, Mark A.; Francois, Roger; Murray, David W.; Prell, Warren L.

    1995-02-01

    DENITRIFICATION-the process by which nitrate is reduced to gaseous nitrogen species (usually N2 or N2O)-is the dominant mechanism for removal of fixed nitrogen from the biosphere. In the oceans, denitrification is mediated by bacteria in suboxic environments and, by controlling the supply of fixed nitrogen, is an important limiting factor for marine productivity1-3. Denitrification produces substantial 15N enrichment in subsurface nitrate4-6, which is reflected in the isotopic composition of sinking particulate nitrogen7; sediment 15N/14N ratios in regions with suboxic water columns may therefore provide a record of past changes in denitrification intensity. Here we report nitrogen isotope data for sediment cores from three sites in the Arabian Sea. At all three sites we find large, near-synchronous downcore variations in 15N/14N, which are best explained by regional changes in the isotopic composition of subsurface nitrate, and hence denitrification. Moreover, these variations are synchronous with Milankovitch cycles, thereby establishing a link with climate. We argue that these large, climate-linked variations, in a region that contributes significantly to global marine denitrification, are likely to have perturbed marine biogeo-chemical cycles during the Late Quaternary period.

  14. 15N NMR investigation of the reduction and binding of TNT in an aerobic bench scale reactor simulating windrow composting

    USGS Publications Warehouse

    Thorn, K.A.; Pennington, J.C.; Hayes, C.A.

    2002-01-01

    T15NT was added to a soil of low organic carbon content and composted for 20 days in an aerobic bench scale reactor. The finished whole compost and fulvic acid, humic acid, humin, and lignocellulose fractions extracted from the compost were analyzed by solid-state CP/MAS and DP/MAS 15N NMR. 15N NMR spectra provided direct spectroscopic evidence for reduction of TNT followed by covalent binding of the reduced metabolites to organic matter of the composted soil, with the majority of metabolite found in the lignocellulose fraction, by mass also the major fraction of the compost. In general, the types of bonds formed between soil organic matter and reduced TNT amines in controlled laboratory reactions were observed in the spectra of the whole compost and fractions, confirming that during composting TNT is reduced to amines that form covalent bonds with organic matter through aminohydroquinone, aminoquinone, heterocyclic, and imine linkages, among others. Concentrations of imine nitrogens in the compost spectra suggestthat covalent binding bythe diamines 2,4DANT and 2,6DANT is a significant process in the transformation of TNT into bound residues. Liquid-phase 15N NMR spectra of the fulvic acid and humin fractions provided possible evidence for involvement of phenoloxidase enzymes in covalent bond formation.

  15. [Absorption and distribution of nitrogen from 15N labelled urea applied at core-hardening stage in winter jujube].

    PubMed

    Zhao, Dengchao; Jiang, Yuanmao; Peng, Futian; Zhang, Jin; Zhang, Xu; Ju, Xiaotang; Zhang, Fusuo

    2006-01-01

    The study with pot experiment showed that at the rapid-swelling stage of winter jujube fruit, the percent of nitrogen derived from fertilizer (Ndff%) was the highest (10.64%) in fine roots, followed by new-growth nutritive organs. The absorbed urea-15N decreased in leaves and deciduous supers, and accumulated preferentially in root systems after harvest. The Ndff% in coarse roots was the highest (3.69%) before budding stage, while that in new-growth organs (new branches, deciduous supers, leaves and flowers) was the highest at full-blooming stage. The urea-15N applied at core-hardening stage mainly allocated in nutritive organs (leaves, deciduous supers, roots) in the first year, with the distribution rate 54.01% in root systems in winter, which was higher than that in branches (45.99%). The 15N stored in main branches changed drastically from post-harvest to budding stage. Main branches could be regarded as the 'target organs' of N storage, while coarse roots were the 'long-term sink' of N storage. The N reserve distributed preferentially in contiguity organs, and the distribution center changed with the growth and development of winter jujube in next spring. PMID:16689228

  16. Net postprandial utilization of [15N]-labeled milk protein nitrogen is influenced by diet composition in humans.

    PubMed

    Gaudichon, C; Mahé, S; Benamouzig, R; Luengo, C; Fouillet, H; Daré, S; Van Oycke, M; Ferrière, F; Rautureau, J; Tomé, D

    1999-04-01

    The aim of this study was to follow the fate of dietary nitrogen to assess the postprandial utilization of purified milk protein and to determine the acute influence of energy nutrients. For this purpose, a [15N]-labeling dietary protein approach was used. Twenty-five subjects swallowed an ileal tube and ingested [15 N]-milk protein alone or supplemented with either milk fat or sucrose. The absorption and postprandial deamination of dietary protein was monitored for 8 h. Sucrose delayed the absorption of protein longer than fat, but the ileal digestibility did not differ among groups (94.5-94.8%). Sucrose, but not fat, significantly reduced the postprandial transfer of [15N]-milk nitrogen to urea. Consequently, the net postprandial protein utilization (NPPU) of milk protein calculated 8 h after meal ingestion was 80% when ingested either alone or supplemented with fat and was significantly greater with sucrose (NPPU = 85%). This study shows that energy nutrients do not affect the nitrogen absorption but modify the metabolic utilization of dietary protein in the phase of nitrogen gain. Our method provides information concerning the deamination kinetics of dietary amino acids and further allows the detection of differences of dietary protein utilization in acute conditions. The diet composition should be carefully considered, and protein quality must be determined under optimal conditions of utilization. PMID:10203566

  17. (13)C and (15)N NMR characterization of amine reactivity and solvent effects in CO2 capture.

    PubMed

    Perinu, Cristina; Arstad, Bjørnar; Bouzga, Aud M; Jens, Klaus-J

    2014-08-28

    Factors influencing the reactivity of selected amine absorbents for carbon dioxide (CO2) capture, in terms of the tendency to form amine carbamate, have been studied. Four linear primary alkanolamines at varying chain lengths (MEA, 3A1P, 4A1B , and 5A1P ), two primary amines with different substituents in the ?-position to the nitrogen (1A2P and ISOB), a secondary alkanolamine (DEA), and a sterically hindered primary amine (AMP) were investigated. The relationship between the (15)N NMR data of aqueous amines and their ability to form carbamate, as determined at equilibrium by quantitative (13)C NMR experiments, was analyzed, taking into account structural-chemical properties. For all the amines, the (15)N chemical shifts fairly reflected the observed reactivity for carbamate formation. In addition to being a useful tool for the investigation of amine reactivity, (15)N NMR data clearly provided evidence of the importance of solvent effects for the understanding of chemical dynamics in CO2 capture by aqueous amine absorbents. PMID:25093443

  18. Impact of a Nucleopolyhedrovirus Bioinsecticide and Selected Synthetic Insecticides on the Abundance of Insect Natural Enemies on Maize in Southern Mexico

    Microsoft Academic Search

    R. Armenta; A. M. Martínez; J. W. Chapman; R. Magallanes; D. Goulson; P. Caballero; R. D. Cave; J. Cisneros; J. Valle; V. Castillejos; D. I. Penagos; L. F. García; T. Williams

    2003-01-01

    The impact of commonly used organophosphate (chlorpyrifos, methamidophos), car- bamate (carbaryl), and pyrethroid (cypermethrin) insecticides on insect natural enemies was com- pared with that of a nucleopolyhedrovirus (Baculoviridae) of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in maize grown in southern Mexico. Analyses of the SELECTV and Koppert Side Effects (IOBC) databases on the impact of synthetic insecticides on arthropod

  19. Quantitative analysis of 15N labeled positional isomers of glutamine and citrulline via electrospray ionization tandem mass spectrometry of their dansyl derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enteral metabolism of glutamine and citrulline are intertwined because, while glutamine is one of the main fuel sources for the enterocyte, citrulline is one of its products. It has been shown that the administration of 15N labeled glutamine results in the incorporation of the 15N label into cit...

  20. Astrophysical S(E) factor of the (15)N(p, alpha)(12)C reaction at sub-Coulomb energies via the Trojan horse method

    E-print Network

    La Cognata, M.; Romano, S.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Tumino, A.; Tribble, Robert E.; Fu, Changbo; Goldberg, V. Z.; Mukhamedzhanov, A. M.; Schmidt, D.; Tabacaru, G.; Trache, L.; Irgaziev, B. F.

    2007-01-01

    The low-energy bare-nucleus cross section for (15)N(p, alpha)(12)C is extracted by means of the Trojan horse method applied to the (2)H((15)N,alpha(12)C)n reaction at E(beam) = 60 MeV. For the first time we applied the modified half...

  1. The effects of sex, tissue type, and dietary components on stable isotope discrimination factors (?13C and ?15N) in mammalian omnivores.

    PubMed

    Kurle, Carolyn M; Koch, Paul L; Tershy, Bernie R; Croll, Donald A

    2014-01-01

    We tested the effects of sex, tissue, and diet on stable isotope discrimination factors (?(13)C and ?(15)N) for six tissues from rats fed four diets with varied C and N sources, but comparable protein quality and quantity. The ?(13)C and ?(15)N values ranged from 1.7-4.1‰ and 0.4-4.3‰, respectively. Females had higher ?(15)N values than males because males grew larger, whereas ?(13)C values did not differ between sexes. Differences in ?(13)C values among tissue types increased with increasing variability in dietary carbon sources. The ?(15)N values increased with increasing dietary ?(15)N values for all tissues except liver and serum, which have fast stable isotope turnover times, and differences in ?(15)N values among tissue types decreased with increasing dietary animal protein. Our results demonstrate that variability in dietary sources can affect ?(13)C values, protein source affects ?(15)N values even when protein quality and quantity are controlled, and the isotope turnover rate of a tissue can influence the degree to which diet affects ?(15)N values. PMID:24787278

  2. 15N nuclear magnetic resonance studies of acid-base properties of pyridoxal-5'-phosphate aldimines in aqueous solution.

    PubMed

    Sharif, Shasad; Huot, Monique Chan; Tolstoy, Peter M; Toney, Michael D; Jonsson, K Hanna M; Limbach, Hans-Heinrich

    2007-04-19

    By use of 15N NMR spectroscopy, we have measured the pKa values of the aldimines 15N-(pyridoxyl-5'-phosphate-idine)-methylamine (2a), N-(pyridoxyl-5'-phosphate-15N-idine)-methylamine (2b), and 15N-(pyridoxyl-idine)-methylamine (3). These aldimines model the cofactor pyridoxal-5'-phosphate (PLP, 1) in a variety of PLP-dependent enzymes. The acid-base properties of the aldimines differ substantially from those of the free cofactor in the aldehyde form 1a or in the hydrated form 1b, which were also investigated using 15N NMR for comparison. All compounds contain three protonation sites, the pyridine ring, the phenol group, and the side chain phosphate (1, 2) or hydroxyl group (3). In agreement with the literature, 1a exhibits one of several pKas at 2.9 and 1b at 4.2. The 15N chemical shifts indicate that the corresponding deprotonation occurs partially in the pyridine and partially in the phenolic site, which compete for the remaining proton. The equilibrium constant of this ring-phenolate tautomerism was measured to be 0.40 for 1a and 0.06 for 1b. The tautomerism is essentially unaltered above pH 6.1, where the phosphate group is deprotonated to the dianion. This means that the pyridine ring is more basic than the phenolate group. Pyridine nitrogen deprotonation occurs at 8.2 for 1a and at 8.7 for 1b. By contrast, above pH 4 the phosphate site of 2 is deprotonated, while the pyridine ring pKa is 5.8. The Schiff base nitrogen does not deprotonate below pH 11.4. When the phosphate group is removed, the pKa of the Schiff base nitrogen decreases to 10.5. The phenol site cannot compete for the proton of the Schiff base nitrogen and is present in the entire pH range as a phenolate, preferentially hydrogen bonded to the solvent. The intrinsic 15N chemical shifts provide information about the hydrogen bond structures of the protonated and unprotonated species involved. Evidence is presented that the intramolecular OHN hydrogen bond of PLP aldimines is broken in aqueous solution. The coupling between the inter- and intramolecular OHN hydrogen bonds is also lost in this environment. The pyridine ring of the PLP aldimines is not protonated in aqueous solution near neutral pH. The basicity of the aldimine nitrogens would be even lower without the doubly negatively charged phosphate group. Protonation of both the Schiff base and pyridine nitrogens has been discussed as a prerequisite for catalytic activity, and the implications of the present findings for PLP catalysis are discussed. PMID:17388551

  3. DNA–protein ?-interactions in nature: abundance, structure, composition and strength of contacts between aromatic amino acids and DNA nucleobases or deoxyribose sugar

    PubMed Central

    Wilson, Katie A.; Kellie, Jennifer L.; Wetmore, Stacey D.

    2014-01-01

    Four hundred twenty-eight high-resolution DNA–protein complexes were chosen for a bioinformatics study. Although 164 crystal structures (38% of those searched) contained no interactions, 574 discrete ?–contacts between the aromatic amino acids and the DNA nucleobases or deoxyribose were identified using strict criteria, including visual inspection. The abundance and structure of the interactions were determined by unequivocally classifying the contacts as either ?–? stacking, ?–? T-shaped or sugar–? contacts. Three hundred forty-four nucleobase–amino acid ?–? contacts (60% of all interactions identified) were identified in 175 of the crystal structures searched. Unprecedented in the literature, 230 DNA–protein sugar–? contacts (40% of all interactions identified) were identified in 137 crystal structures, which involve C–H···? and/or lone–pair···? interactions, contain any amino acid and can be classified according to sugar atoms involved. Both ?–? and sugar–? interactions display a range of relative monomer orientations and therefore interaction energies (up to –50 (–70) kJ mol?1 for neutral (charged) interactions as determined using quantum chemical calculations). In general, DNA–protein ?-interactions are more prevalent than perhaps currently accepted and the role of such interactions in many biological processes may yet to be uncovered. PMID:24744240

  4. Shade Alone Reduces Adult Dragonfly (Odonata: Libellulidae) Abundance

    E-print Network

    Turner, Monica G.

    Shade Alone Reduces Adult Dragonfly (Odonata: Libellulidae) Abundance Alysa J. Remsburg & Anders C conditions influence adult dragonfly (Odonata: Anisoptera) riparian site selection. In naturally treeless. Dragonfly abundances (predominantly Trithemis species) were lower at sites with high (75%) or moderate (55

  5. Evidence for shifting environmental conditions in Southwestern France from 33?000 to 15?000 years ago derived from carbon-13 and nitrogen-15 natural abundances in collagen of large herbivores

    Microsoft Academic Search

    Dorothée G. Drucker; Hervé Bocherens; Daniel Billiou

    2003-01-01

    A paleoenvironmental reconstruction of terrestrial environments in Southwestern France between 33 and 15 cal kyr BP is provided using ?13C and ?15N variations in collagen of three herbivorous mammals. Altogether 161 analyses have been carried out on collagen extracted from skeletal fragments of reindeer, horse and Bos\\/Bison from four successive chronological phases covering the end of MOIS 3 and MOIS

  6. Abundance and orientation responses of the sandhopper Talitrus saltator to beach nourishment and groynes building at San Rossore natural park, Tuscany, Italy

    Microsoft Academic Search

    Lucia Fanini; Giovanni Maria Marchetti; Felicita Scapini; Omar Defeo

    2007-01-01

    Beach nourishment and groynes building were implemented to counteract erosion in sandy beaches located at San Rossore natural\\u000a park (Tuscany, Italy), near the mouth of Arno river. From 2000 to 2003, nine groynes were built along 3.6 km of coastline\\u000a at intervals of ca. 400 m, and two of the eight beach segments were filled with marble gravel. Here, we analysed the

  7. Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio.

    PubMed

    Ercole, Enrico; Adamo, Martino; Rodda, Michele; Gebauer, Gerhard; Girlanda, Mariangela; Perotto, Silvia

    2015-02-01

    Many adult orchids, especially photoautotrophic species, associate with a diverse range of mycorrhizal fungi, but little is known about the temporal changes that might occur in the diversity and functioning of orchid mycorrhiza during vegetative and reproductive plant growth. Temporal variations in the spectrum of mycorrhizal fungi and in stable isotope natural abundance were investigated in adult plants of Anacamptis morio, a wintergreen meadow orchid. Anacamptis morio associated with mycorrhizal fungi belonging to Tulasnella, Ceratobasidium and a clade of Pezizaceae (Ascomycetes). When a complete growing season was investigated, multivariate analyses indicated significant differences in the mycorrhizal fungal community. Among fungi identified from manually isolated pelotons, Tulasnella was more common in autumn and winter, the pezizacean clade was very frequent in spring, and Ceratobasidium was more frequent in summer. By contrast, relatively small variations were found in carbon (C) and nitrogen (N) stable isotope natural abundance, A. morio samples showing similar (15)N enrichment and (13)C depletion at the different sampling times. These observations suggest that, irrespective of differences in the seasonal environmental conditions, the plant phenological stages and the associated fungi, the isotopic content in mycorrhizal A. morio remains fairly constant over time. PMID:25382295

  8. The decrease in Greenland ice-core ?15N of nitrate in the industrial period: influenced by changes in atmospheric acidity?

    NASA Astrophysics Data System (ADS)

    Geng, L.; Cole-Dai, J.; Alexander, B.; Steig, E. J.; Schauer, A. J.; Savarino, J.

    2012-12-01

    Previous study in a central Greenland ice core has revealed a decreasing trend in ?15N of nitrate (?15N (nitrate)) starting as early as 1850 C.E.. Lake sediment cores from North America show a similar trend in ?15N of total nitrogen starting around 1895 C.E.. The decrease in ?15N has been proposed to be due to the increasing deposition of anthropogenically derived (i.e., fossil fuel combustion) nitrate in the industrial period. However, this interpretation is questioned by measurements of ?15N in NOx and atmospheric nitrate. Here, we present new, annually-resolved records of ?15N (nitrate) and major ion concentrations (Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, and Ca2+) obtained from two central Greenland ice cores. The results (Figure 1) indicate that the significant decrease in ?15N is coincident with an increase in acidity (H+ concentration estimated based on ionic balance) beginning around 1895 C.E., which is about 50 years earlier than the start of the increase in nitrate concentration (~1945 C.E.) . This observation suggests that it is likely the acidity change, instead of the input of anthropogenic nitrate, triggered the decrease in ice-core ?15N (nitrate). Atmospheric aerosol acidity influences the partitioning of atmospheric nitrate between its gaseous (HNO3) and particulate (p-NO3-) phases, resulting in a depletion of ?15N in HNO3 relative to p-NO3-. If atmospheric nitrate is transported to central Greenland preferentially in its gaseous form (HNO3), which is an open question, a decrease in ice-core ?15N (nitrate) would be expected with an increase in atmospheric acidity. We will examine the relationships between ?15N (nitrate) and the ice-core records of acidity, and HNO3, to discern the processes from changes in atmospheric acidity to the observed variability in ice core ?15N (nitrate) during the Industrial era.igure 1. The annual NO3- (blue curve), H+ (black curve) concentrations, and annual ?15N (nitrate) (red curve, y-axis is reversely plotted). Gray dots represent the annual data; the curves are plotted from 3-year running averages.

  9. Nature

    NSDL National Science Digital Library

    Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance, and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public. Nature publishes more articles than any other multidisciplinary journal, and retains its position as the most cited weekly science journal. The site provides free access to news stories in the latest issue; access to research articles, and to the Nature archive, is by subscription.

  10. Determination of the delta(15N/14N)of Ammonium (NH4+) in Water: RSIL Lab Code 2898

    USGS Publications Warehouse

    Hannon, Janet E.; Böhlke, John Karl

    2008-01-01

    The purpose of the technique described by Reston Stable Isotope Laboratory (RSIL) lab code 2898 is to determine the N isotopic composition, delta(15N/14N), abbreviated as d15N, of ammonium (NH4+) in water (freshwater and saline water). The procedure involves converting dissolved NH4+ into NH3 gas by raising the pH of the sample to above 9 with MgO and subsequently trapping the gas quantitatively as (NH4)2SO4 on a glass fiber (GF) filter. The GF filter is saturated with NaHSO4 and pressure sealed between two gas-permeable polypropylene filters. The GF filter 'sandwich' floats on the surface of the water sample in a closed bottle. NH3 diffuses from the water through the polypropylene filter and reacts with NaHSO4, forming (NH4)2SO4 on the GF filter. The GF filter containing (NH4)2SO4 is dried and then combusted with a Carlo Erba NC 2500 elemental analyzer (EA), which is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous-flow isotope-ratio mass spectrometer (CF-IRMS), which determines the relative difference in ratios of the amounts of the stable isotopes of nitrogen (15N and 14N) of the product N2 gas and a reference N2 gas. The filters containing the samples are compressed in tin capsules and loaded into a Costech Zero-Blank Autosampler on the EA. Under computer control, samples then are dropped into a heated reaction tube that contains an oxidant, where combustion takes place in a He atmosphere containing an excess of O2 gas. To remove S-O gases produced from the NaHSO4, a plug of Ag-coated Cu wool is inserted at the bottom of the reaction tube. Combustion products are transported by a He carrier through a reduction furnace to remove excess O2, toconvert all nitrogen oxides to N2, and to remove any remaining S-O gases. The gases then pass through a drying tube to remove water. The gas-phase products, mainly N2 and a small amount of background CO2, are separated by a gas chromatograph (GC). The gas is then introduced into the IRMS through a Finnigan ConFlo II interface. The ConFlo II interface is used to introduce not only sample into the IRMS but also N2 reference gas and He for sample dilution. The flash combustion is quantitative, so no isotopic fractionation is involved. The IRMS is a Finnigan Delta V CF-IRMS with 10 cups and is capable of detecting ion beams with mass/charge (m/z) 28, 29, 30. The ion beams from N2 are as follows: m/z 28 = 14N14N, m/z 29 = 14N15N, and m/z 30 = 15N15N. The ion beam with m/z 30 also represents 14N16O, which may indicate contamination or incomplete reduction.