Science.gov

Sample records for 15n nmr spectra

  1. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  2. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C <--> (15)N HSQC-IMPEACH and (13)C <--> (15)N HMBC-IMPEACH correlation spectra.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. PMID:17729230

  3. Assignment of the sup 1 H and sup 15 N NMR spectra of Rhodobacter capsulatus ferrocytochrome c sub 2

    SciTech Connect

    Gooley, P.R.; Caffrey, M.S.; Cusanovich, M.A.; MacKenzie, N.E. )

    1990-03-06

    The peptide resonances of the {sup 1}H and {sup 15}N nuclear magnetic resonance spectra of ferrocytochrome c{sub 2} from Rhodobacter capsulatus are sequentially assigned by a combination of 2D {sup 1}H-{sup 1}H and {sup 1}H-{sup 15}N spectroscopy, the latter performed on {sup 15}N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show {alpha}-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two {alpha}-helices, there are three single 3{sub 10} turns, 70-72, 76-78, and 107-109. In addition {alpha}H-NH{sub i+1} and {alpha}H-NH{sub i+2} NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c{sub 2} of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c{sub 2}. The NOE data show that this insertion forms a loop, probably an {Omega} loop. {sup 1}H-{sup 15}N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c{sub 2} of R. capsulatus with the highly homologous horse heart cytochrome c shows that this helix is less stable in cytochrome c{sub 2}.

  4. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  5. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  6. 15N NMR chemical shifts in papaverine decomposition products

    NASA Astrophysics Data System (ADS)

    Czyrski, Andrzej; Girreser, Ulrich; Hermann, Tadeusz

    2013-03-01

    Papaverine can be easily oxidized to papaverinol, papaveraldine and 2,3,9,10-tetramethoxy-12-oxo-12H-indolo[2,1-a]isoquinolinium chloride. On addition of alkali solution the latter compound forms 2-(2-carboxy-4,5-dimethoxyphenyl)-6,7-dimethoxyisoquinolinium inner salt. Together with these structures the interesting 13-(3,4-dimethoxyphenyl)-2,3,8,9-tetramethoxy-6a-12a-diazadibenzo[a,g]fluorenylium chloride is discussed, which is formed in the Gadamer-Schulemann reaction of papaverine as a side product. This letter reports the 15N NMR spectra of the above mentioned compounds.

  7. (15)N NMR studies of a nitrile-modified nucleoside.

    PubMed

    Gillies, Anne T; Gai, Xin Sonia; Buckwalter, Beth L; Fenlon, Edward E; Brewer, Scott H

    2010-12-30

    Nitrile-modified molecules have proven to be excellent probes of local environments in biomolecules via both vibrational and fluorescence spectroscopy. The utility of the nitrile group as a spectroscopic probe has been expanded here to (15)N NMR spectroscopy by selective (15)N incorporation. The (15)N NMR chemical shift (δ((15)N)) of the (15)N-labeled 5-cyano-2'-deoxyuridine (C(15)NdU, 1a) was found to change from 153.47 to 143.80 ppm in going from THF-d(8) to D(2)O. A 0.81 ppm downfield shift was measured upon formation of a hydrogen-bond-mediated heterodimer between 2,6-diheptanamidopyridine and a silyl ether analogue of 1a in chloroform, and the small intrinsic temperature dependence of δ((15)N) of C(15)NdU was measured as a 0.38 ppm downfield shift from 298 to 338 K. The experiments were complemented with density functional theory calculations exploring the effect of solvation on the (15)N NMR chemical shift. PMID:21126044

  8. Identification of novel hydrazine metabolites by 15N-NMR.

    PubMed

    Preece, N E; Nicholson, J K; Timbrell, J A

    1991-05-01

    15N-NMR has been used to study the metabolism of hydrazine in rats in vivo. Single doses of [15N2]hydrazine (2.0 mmol/kg: 98.6% g atom) were administered to rats and urine collected for 24 hr over ice. A number of metabolites were detected by 15N-NMR analysis of lyophilized urine. Ammonia was detected as a singlet at 0 ppm and unchanged [15N2]hydrazine was present in the urine detectable as a singlet at 32 ppm. Peaks were observed at 107 and 110 ppm which were identified as being due to the hydrazido nitrogen of acetylhydrazine and diacetylhydrazine, respectively. A resonance at 85 ppm was ascribed to carbazic acid, resulting from reaction of hydrazine with carbon dioxide. A singlet detected at 316 ppm was thought to be due to the hydrazono nitrogen of the pyruvate hydrazone. The resonance at 56 ppm was assigned to 15N-enriched urea, this together with the presence of ammonia indicates that the N-N bond of hydrazine is cleaved in vivo, possibly by N-oxidation, and the resultant ammonia is incorporated into urea. A doublet centred at 150 ppm and a singlet at 294 ppm were assigned to a metabolite which results from cyclization of the 2-oxoglutarate hydrazone. Therefore 15N-NMR spectroscopic analysis of urine has yielded significant new information on the metabolism of hydrazine. PMID:2018564

  9. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported. PMID:24746715

  10. Theoretical and experimental study of 15N NMR protonation shifts.

    PubMed

    Semenov, Valentin A; Samultsev, Dmitry O; Krivdin, Leonid B

    2015-06-01

    A combined theoretical and experimental study revealed that the nature of the upfield (shielding) protonation effect in 15N NMR originates in the change of the contribution of the sp(2)-hybridized nitrogen lone pair on protonation resulting in a marked shielding of nitrogen of about 100 ppm. On the contrary, for amine-type nitrogen, protonation of the nitrogen lone pair results in the deshielding protonation effect of about 25 ppm, so that the total deshielding protonation effect of about 10 ppm is due to the interplay of the contributions of adjacent natural bond orbitals. A versatile computational scheme for the calculation of 15N NMR chemical shifts of protonated nitrogen species and their neutral precursors is proposed at the density functional theory level taking into account solvent effects within the supermolecule solvation model. PMID:25891386

  11. Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins.

    PubMed

    Pintacuda, Guido; Keniry, Max A; Huber, Thomas; Park, Ah Young; Dixon, Nicholas E; Otting, Gottfried

    2004-03-10

    A novel strategy for fast NMR resonance assignment of (15)N HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively (15)N-labeled samples. Comparison of sensitive undecoupled (15)N HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia coli DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy. PMID:14995214

  12. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  13. The vibrational spectra of [ 15N 2]-succinonitrile

    NASA Astrophysics Data System (ADS)

    Fengler, O. I.

    2001-07-01

    For the first time, the infrared and Raman spectra of [ 15N 2]-succinonitrile are presented and discussed in detail. Assignments of the vibrational bands of its two rotational conformers gauche and trans, respectively, have been made for both infrared and Raman spectra. The assignments were based on a recent ab-initio force field calculation for succinonitrile, taking into account the vibrational frequencies of other succinonitrile isotopomers. There are differences in the frequencies of the vibrational bands due to the mass increase in the cyanide groups, which have been analysed in depth.

  14. The vibrational spectra of [15N2]-succinonitrile.

    PubMed

    Fengler, O I

    2001-07-01

    For the first time, the infrared and Raman spectra of [15N2]-succinonitrile are presented and discussed in detail. Assignments of the vibrational bands of its two rotational conformers gauche and trans, respectively, have been made for both infrared and Raman spectra. The assignments were based on a recent ab-initio force field calculation for succinonitrile, taking into account the vibrational frequencies of other succinonitrile isotopomers. There are differences in the frequencies of the vibrational bands due to the mass increase in the cyanide groups, which have been analysed in depth. PMID:11471715

  15. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry. PMID:15625718

  16. Covalent binding of reduced metabolites of [{sup 15}N{sub 3}]TNT to soil organic matter during a bioremediation process analyzed by {sup 15}N NMR spectroscopy

    SciTech Connect

    Achtnich, C.; Fernandes, E.; Bollag, J.M.; Knackmuss, H.J.; Lenke, H.

    1999-12-15

    Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-{sup 15}N{sub 3}-trinitrotoluene (TNT) to different soil fractions, using liquid {sup 15}N NMR spectroscopy. A silylation procedure was used to release soil organic matter from humin and whole soil for spectroscopic measurements. TNT-contaminated soil was spiked with 2,4,6-{sup 15}N{sub 3}-trinitrotoluene and {sup 14}C-ring labeled TNT, before treatment in a soil slurry reactor. During the anaerobic/aerobic incubation the amount of radioactivity detected in the fulvic and humic acid fractions did not change significantly whereas the radioactivity bound to humin increased to 71%. The {sup 15}N NMR spectra of the fulvic acid samples were dominated by a large peak that corresponded to aliphatic amines or ammonia. In the early stages of incubation, {sup 15}N NMR analysis of the humic acids indicated bound azoxy compounds. The signals arising from nitro and azoxy groups disappeared with further anaerobic treatment. At the end of incubation, the NMR shifts showed that nitrogen was covalently bound to humic acid as substituted amines and amides. The NMR spectra of the silylated humin suggest formation of azoxy compounds and imine linkages. Bound metabolites possessing nitro groups were also detected. Primary amines formed during the anaerobic incubation disappeared during the aerobic treatment. Simultaneously, the amount of amides and tertiary amines increased. Nitro and azoxy groups of bound molecules were still present in humin at the end of the incubation period. Formation of azoxy compounds from partially reduced TNT followed by binding and further reduction appears to be an important mechanism for the immobilization of metabolites of TNT to soil.

  17. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    PubMed

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  18. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGESBeta

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; Kispal, Brianna M.; Mireault, Christopher R.; Kobayashi, Takeshi; Pruski, Marek; Schurko, Robert W.

    2016-06-08

    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH+ and RR'NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments.« less

  19. Natural abundance (14)N and (15)N solid-state NMR of pharmaceuticals and their polymorphs.

    PubMed

    Veinberg, Stanislav L; Johnston, Karen E; Jaroszewicz, Michael J; Kispal, Brianna M; Mireault, Christopher R; Kobayashi, Takeshi; Pruski, Marek; Schurko, Robert W

    2016-06-29

    (14)N ultra-wideline (UW), (1)H{(15)N} indirectly-detected HETCOR (idHETCOR) and (15)N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of (14)N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. A case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW (14)N SSNMR spectra of stationary samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R''NH(+) and RR'NH2(+)) or other (i.e., RNH2 and RNO2) nitrogen environments. Directly-excited (14)N NMR spectra were acquired using the WURST-CPMG pulse sequence, which incorporates WURST (wideband, uniform rate, and smooth truncation) pulses and a CPMG (Carr-Purcell Meiboom-Gill) refocusing protocol. In certain cases, spectra were acquired using (1)H → (14)N broadband cross-polarization, via the BRAIN-CP (broadband adiabatic inversion - cross polarization) pulse sequence. These spectra provide (14)N electric field gradient (EFG) tensor parameters and orientations that are particularly sensitive to variations in local structure and intermolecular hydrogen-bonding interactions. The (1)H{(15)N} idHETCOR spectra, acquired under conditions of fast magic-angle spinning (MAS), used CP transfers to provide (1)H-(15)N chemical shift correlations for all nitrogen environments, except for two sites in acebutolol and nicardipine. One of these two sites (RR'NH2(+) in acebutolol) was successfully detected using the DNP-enhanced (15)N{(1)H} CP/MAS measurement, and one (RNO2 in nicardipine) remained elusive due to the absence of

  20. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  1. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  2. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    PubMed

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-01

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. PMID:25843843

  3. Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by 1H-detected 15N NMR

    PubMed Central

    Lane, Andrew N.; Arumugam, Sengodagounder; Lorkiewicz, Pawel K.; Higashi, Richard M.; Laulhé, Sébastien; Nantz, Michael H.; Moseley, Hunter N.B.; Fan, Teresa W.-M.

    2015-01-01

    NMR spectra of mixtures of metabolites extracted from cells or tissues are extremely complex, reflecting the large number of compounds that are present over a wide range of concentrations. Although multidimensional NMR can greatly improve resolution as well as improve reliability of compound assignments, lower abundance metabolites often remain hidden. We have developed a carbonyl selective aminooxy probe that specifically reacts with free keto and aldehyde functions, but not carboxylates. By incorporating 15N in the aminooxy functional group, 15N-edited NMR was used to select exclusively those metabolites that contain a free carbonyl function while all other metabolites are rejected. Here we demonstrate that the chemical shifts of the aminooxy adducts of ketones and aldehydes are very different, which can be used to discriminate between aldoses and ketoses for example. Utilizing the 2 or 3 bond 15N-1H couplings, the 15N-edited NMR analysis was optimized first with authentic standards and then applied to an extract of the lung adenocarcinoma cell line A549. More than 30 carbonyl containing compounds at NMR detectable levels, 6 of which we have assigned by reference to our database. As the aminooxy probe contains a permanently charged quaternary ammonium group, the adducts are also optimized for detection by mass spectrometry. Thus, this sample preparation technique provides a better link between the two structural determination tools, thereby paving the way to faster and more reliable identification of both known and unknown metabolites directly in crude biological extracts. PMID:25616249

  4. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported. PMID:25451865

  5. 15N NMR investigation of the reduction and binding of TNT in an aerobic bench scale reactor simulating windrow composting

    USGS Publications Warehouse

    Thorn, K.A.; Pennington, J.C.; Hayes, C.A.

    2002-01-01

    T15NT was added to a soil of low organic carbon content and composted for 20 days in an aerobic bench scale reactor. The finished whole compost and fulvic acid, humic acid, humin, and lignocellulose fractions extracted from the compost were analyzed by solid-state CP/MAS and DP/MAS 15N NMR. 15N NMR spectra provided direct spectroscopic evidence for reduction of TNT followed by covalent binding of the reduced metabolites to organic matter of the composted soil, with the majority of metabolite found in the lignocellulose fraction, by mass also the major fraction of the compost. In general, the types of bonds formed between soil organic matter and reduced TNT amines in controlled laboratory reactions were observed in the spectra of the whole compost and fractions, confirming that during composting TNT is reduced to amines that form covalent bonds with organic matter through aminohydroquinone, aminoquinone, heterocyclic, and imine linkages, among others. Concentrations of imine nitrogens in the compost spectra suggestthat covalent binding bythe diamines 2,4DANT and 2,6DANT is a significant process in the transformation of TNT into bound residues. Liquid-phase 15N NMR spectra of the fulvic acid and humin fractions provided possible evidence for involvement of phenoloxidase enzymes in covalent bond formation.

  6. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    PubMed

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm. PMID:19019638

  7. A New Tool for NMR Crystallography: Complete (13)C/(15)N Assignment of Organic Molecules at Natural Isotopic Abundance Using DNP-Enhanced Solid-State NMR.

    PubMed

    Märker, Katharina; Pingret, Morgane; Mouesca, Jean-Marie; Gasparutto, Didier; Hediger, Sabine; De Paëpe, Gaël

    2015-11-01

    NMR crystallography of organic molecules at natural isotopic abundance (NA) strongly relies on the comparison of assigned experimental and computed NMR chemical shifts. However, a broad applicability of this approach is often hampered by the still limited (1)H resolution and/or difficulties in assigning (13)C and (15)N resonances without the use of structure-based chemical shift calculations. As shown here, such difficulties can be overcome by (13)C-(13)C and for the first time (15)N-(13)C correlation experiments, recorded with the help of dynamic nuclear polarization. We present the complete de novo (13)C and (15)N resonance assignment at NA of a self-assembled 2'-deoxyguanosine derivative presenting two different molecules in the asymmetric crystallographic unit cell. This de novo assignment method is exclusively based on aforementioned correlation spectra and is an important addition to the NMR crystallography approach, rendering firstly (1)H assignment straightforward, and being secondly a prerequisite for distance measurements with solid-state NMR. PMID:26485326

  8. Hydrogen Bonds in Crystalline Imidazoles Studied by 15N NMR and ab initio MO Calculations

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Nagatomo, Shigenori; Masui, Hirotsugu; Nakamura, Nobuo; Hayashi, Shigenobu

    1999-07-01

    Intermolecular hydrogen bonds of the type N-H...N in crystals of imidazole and its 4-substituted and 4,5-disubstituted derivatives were studied by 15N CP/MAS NMR and an ab initio molecular orbital (MO) calculation. In the 15N CP/MAS NMR spectrum of each of the imidazole derivatives, two peaks due to the two different functional groups, >NH and =N-, were observed. The value of the 15N isotropic chemical shift for each nitrogen atom depends on both the length of the intermolecular hydrogen bond and the kind of the substituent or substituents. It was found that the difference between the experimen-tal chemical shifts of >NH and =N-varies predominantly with the hydrogen bond length but does not show any systematic dependence on the kind of substituent. The ab initio MO calculations suggest that the hydrogen bond formation influences the 15N isotropic chemical shift predominantly, and that the difference between the 15N isotropic chemical shift of >NH and =N-varies linearly with the hydrogen bond length.

  9. Simple, efficient protocol for enzymatic synthesis of uniformly 13C, 15N-labeled DNA for heteronuclear NMR studies.

    PubMed Central

    Masse, J E; Bortmann, P; Dieckmann, T; Feigon, J

    1998-01-01

    The use of uniformly 13C,15N-labeled RNA has greatly facilitated structural studies of RNA oligonucleotides by NMR. Application of similar methodologies for the study of DNA has been limited, primarily due to the lack of adequate methods for sample preparation. Methods for both chemical and enzymatic synthesis of DNA oligonucleotides uniformly labeled with 13C and/or 15N have been published, but have not yet been widely used. We have developed a modified procedure for preparing uniformly 13C,15N-labeled DNA based on enzymatic synthesis using Taq DNA polymerase. The highly efficient protocol results in quantitative polymerization of the template and approximately 80% incorporation of the labeled dNTPs. Procedures for avoiding non-templated addition of nucleotides or for their removal are given. The method has been used to synthesize several DNA oligonucleotides, including two complementary 15 base strands, a 32 base DNA oligonucleotide that folds to form an intramolecular triplex and a 12 base oligonucleotide that dimerizes and folds to form a quadruplex. Heteronuclear NMR spectra of the samples illustrate the quality of the labeled DNA obtained by these procedures. PMID:9592146

  10. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  11. 15N and 1H NMR spectroscopy of the catalytic histidine in chloromethyl ketone-inhibited complexes of serine proteases.

    PubMed

    Tsilikounas, E; Rao, T; Gutheil, W G; Bachovchin, W W

    1996-02-20

    The hemiketal hydroxyl groups in chloromethyl ketone (cmk) complexes of trypsin and chymotrypsin have been reported to ionize to the oxyanion with pK(a) values 2-4 pK(a) units below expectations for such a functional group on the basis of the behavior of the hemiketal carbon atom in 13C NMR spectra [Finucane, M. D., & Malthouse, J. P. G. (1992) Biochem. J. 286, 889-900]. The low pK(a) indicates the enzymes selectively stabilize the oxyanion form of the bound inhibitor, and therefore that cmk complexes may be good models of enzyme-mediated transition-state stabilization. However, the 13C NMR studies could not rule out His57 as the titrating group. Here we report the behavior of the ring 15N atoms of His57 in the Ala-Ala-Pro-Val-cmk complex of alpha-lytic protease. Both N(delta 1) and N(epsilon 2) of His57 respond to an ionization with a pK(a) of approximately 7.5, but His57 itself does not titrate as N(epsilon 2) remains alkylated and N(delta 1) remains bonded to a proton over the entire pH range. The species titrating with a pK(a) of approximately 7.5 must therefore be the hemiketal hydroxyl. The results also show that the 1H NMR signal from the proton in the Asp-His hydrogen bond behaves in a characteristic manner in cmk complexes and can be used diagnostically to confirm that His57 does not titrate and to measure the pK(a) of the hemiketal hydroxyl in cmk-protease complexes without resorting to 15N-labeling. We have used the behavior of this signal to directly confirm that His57 does not titrate in the trypsin and chymotrypsin complexes that were the subjects of the original 13C NMR studies. PMID:8652587

  12. Exogenous proline relieves growth inhibition caused by NaCl in petunia cells: Metabolism of L-( sup 15 M)-proline followed by sup 15 N NMR

    SciTech Connect

    Heyser, J.W.; Chacon, M.J. )

    1989-04-01

    Exogenous proline stimulated the growth of Petunia hybrida cells on 195 mM NaCl 10-fold as compared with cells grown on 195 mM CaCl medium minus proline. L-({sup 15}N)-proline was fed to cells growing on 0 and 195 mM CaCl, and its metabolism was followed by {sup 15}N NMR analysis of cell extracts. Total proline and amino acids were determined by ninhydrin assay. Proline and primary amino acids were easily resolved in NMR spectra and the amount of {sup 15}N-label which remained in proline was determined. Reduced catabolism of proline in cells grown on NaCl was evident. The role of exogenous proline in conferring increased NaCl tolerance in this nonhalophyte will be discussed.

  13. (15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR.

    PubMed

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang

    2015-10-01

    In this work, we assess the usefulness of static (15)N NMR techniques for the determination of the (15)N chemical shift anisotropy (CSA) tensor parameters and (15)N-(1)H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone (15)N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the (15)N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the (15)N CSA parameters, a more advanced approach based on the "magic sandwich" SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the (15)N-(1)H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples. PMID:26367322

  14. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    USGS Publications Warehouse

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  15. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton.

    PubMed

    Pomin, Vitor H

    2016-01-01

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially ¹H-(15)N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the ¹H-(15)N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate (15)N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS (15)N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via ¹H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D ¹H and 2D ¹H-(15)N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin. PMID:27618066

  16. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies.

    PubMed

    Nikonowicz, E P; Sirr, A; Legault, P; Jucker, F M; Baer, L M; Pardi, A

    1992-09-11

    A procedure is described for the efficient preparation of isotopically enriched RNAs of defined sequence. Uniformly labelled nucleotide 5'triphosphates (NTPs) were prepared from E.coli grown on 13C and/or 15N isotopically enriched media. These procedures routinely yield 180 mumoles of labelled NTPs per gram of 13C enriched glucose. The labelled NTPs were then used to synthesize RNA oligomers by in vitro transcription. Several 13C and/or 15N labelled RNAs have been synthesized for the sequence r(GGCGCUUGCGUC). Under conditions of high salt or low salt, this RNA forms either a symmetrical duplex with two U.U base pairs or a hairpin containing a CUUG loop respectively. These procedures were used to synthesize uniformly labelled RNAs and a RNA labelled only on the G and C residues. The ability to generate milligram quantities of isotopically labelled RNAs allows application of multi-dimensional heteronuclear magnetic resonance experiments that enormously simplify the resonance assignment and solution structure determination of RNAs. Examples of several such heteronuclear NMR experiments are shown. PMID:1383927

  17. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  18. Simultaneous cross polarization to 13C and 15N with 1H detection at 60 kHz MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Das, Bibhuti B.; Opella, Stanley J.

    2016-01-01

    We describe high resolution MAS solid-state NMR experiments that utilize 1H detection with 60 kHz magic angle spinning; simultaneous cross-polarization from 1H to 15N and 13C nuclei; bidirectional cross-polarization between 13C and 15N nuclei; detection of both amide nitrogen and aliphatic carbon 1H; and measurement of both 13C and 15N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide 1H and alpha 1H selectively with 13C or 15N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating 1Hα/13Cα/1HN and 1HN/15N/1Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable. Spectral editing using bidirectional coherence transfer pathways enables simultaneous magnetization transfers between 15N, 13Cα(i) and 13C‧(i-1), facilitating intra- and inter-residue correlations for sequential resonance assignment. Non-uniform sampling is integrated into the experiments, further reducing the length of experimental time.

  19. Evidence of entropy-driven bistability through (15)N NMR analysis of a temperature- and solvent-induced, chiroptical switching polycarbodiimide.

    PubMed

    Reuther, James F; Novak, Bruce M

    2013-12-26

    The thermo- and solvo-driven chiroptical switching process observed in specific polycarbodiimides occurs in a concerted fashion with large deviations in specific optical rotation (OR) and CD Cotton effect as a consequence of varying populations of two distinct polymer conformations. These two conformations are clearly visible in the (15)N NMR and IR spectra of the (15)N-labeled poly((15)N-(1-naphthyl)-N'-octadecylcarbodiimide) (Poly-3) and poly((15)N-(1-naphthyl)-(15)N'-octadecylcarbodiimide) (Poly-5). Using van't Hoff analysis, the enthalpies and entropies of switching (ΔHswitching; ΔSswitching) were calculated for both Poly-3 and Poly-5 using the relative integrations of both peaks in the (15)N NMR spectra at different temperatures to measure the populations of each state. The chiroptical switching (i.e., transitioning from state A to state B) was found to be an endothermic process (positive ΔHswitching) for both Poly-3 and Poly-5 in all solvents studied, meaning the conformation correlating with the downfield chemical shift (ca. 148 ppm, state B) is the higher enthalpy state. The compensating factor behind this phenomenon has been determined to be the large increase in entropy in CHCl3 as a result of the switching. Herein, we propose that the increased entropy in the system is a direct consequence of increased disorder in the solvent as the switching occurs. Specifically, the chloroform solvent molecules are very ordered around the polymer chains due to favorable solvent-polymer interactions, but as the switching occurs, these interactions become less favorable and disorder results. The same level of solvent disorder is not achieved in toluene, causing the chiroptical switching process to occur at higher temperatures. PMID:24313274

  20. Solution 1H, 15N NMR spectroscopic characterization of substrate-bound, cyanide-inhibited human heme oxygenase: water occupation of the distal cavity.

    PubMed

    Li, Yiming; Syvitski, Ray T; Auclair, Karine; Ortiz de Montellano, Paul; La Mar, Gerd N

    2003-11-01

    A solution NMR spectroscopic study of the cyanide-inhibited, substrate-bound complex of uniformly (15)N-labeled human heme oxygenase, hHO, has led to characterization of the active site with respect to the nature and identity of strong hydrogen bonds and the occupation of ordered water molecules within both the hydrogen bonding network and an aromatic cluster on the distal side. [(1)H-(15)N]-HSQC spectra confirm the functionalities of several key donors in particularly robust H-bonds, and [(1)H-(15)N]HSQC-NOESY spectra lead to the identification of three additional robust H-bonds, as well as the detection of two more relatively strong H-bonds whose identities could not be established. The 3D NMR experiments provided only a modest, but important, extension of assignments because of the loss of key TOCSY cross-peaks due to the line broadening from a dynamic heterogeneity in the active site. Steady-state NOEs upon saturating the water signal locate nine ordered water molecules in the immediate vicinity of the H-bond donors, six of which are readily identified in the crystal structure. The additional three are positioned in available spaces to account for the observed NOEs. (15)N-filtered steady-state NOEs upon saturating the water resonances and (15)N-filtered NOESY spectra demonstrate significant negative NOEs between water molecules and the protons of five aromatic rings. Many of the NOEs can be rationalized by water molecules located in the crystal structure, but strong water NOEs, particularly to the rings of Phe47 and Trp96, demand the presence of at least an additional two immobilized water molecules near these rings. The H-bond network appears to function to order water molecules to provide stabilization for the hydroperoxy intermediate and to serve as a conduit to the active site for the nine protons required per HO turnover. PMID:14583035

  1. Backbone dynamics of the oligomerization domain of p53 determined from 15N NMR relaxation measurements.

    PubMed

    Clubb, R T; Omichinski, J G; Sakaguchi, K; Appella, E; Gronenborn, A M; Clore, G M

    1995-05-01

    The backbone dynamics of the tetrameric p53 oligomerization domain (residues 319-360) have been investigated by two-dimensional inverse detected heteronuclear 1H-15N NMR spectroscopy at 500 and 600 MHz. 15N T1, T2, and heteronuclear NOEs were measured for 39 of 40 non-proline backbone NH vectors at both field strengths. The overall correlation time for the tetramer, calculated from the T1/T2 ratios, was found to be 14.8 ns at 35 degrees C. The correlation times and amplitudes of the internal motions were extracted from the relaxation data using the model-free formalism (Lipari G, Szabo A, 1982, J Am Chem Soc 104:4546-4559). The internal dynamics of the structural core of the p53 oligomerization domain are uniform and fairly rigid, with residues 327-354 exhibiting an average generalized order parameter (S2) of 0.88 +/- 0.08. The N- and C-termini exhibit substantial mobility and are unstructured in the solution structure of p53. Residues located at the N- and C-termini, in the beta-sheet, in the turn between the alpha-helix and beta-sheet, and at the C-terminal end of the alpha-helix display two distinct internal motions that are faster than the overall correlation time. Fast internal motions (< or = 20 ps) are within the extreme narrowing limit and are of uniform amplitude. The slower motions (0.6-2.2 ns) are outside the extreme narrowing limit and vary in amplitude.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7663341

  2. Quantitation of metabolic compartmentation in hyperammonemic brain by natural abundance 13C-NMR detection of 13C-15N coupling patterns and isotopic shifts.

    PubMed

    Lapidot, A; Gopher, A

    1997-02-01

    In the present study, the removal of cerebral ammonia by glutamine synthetase (GS) and by reductive amination of 2-oxoglutarate by glutamate dehydrogenase in the presence of an amino donor group, was determined in hyperammonemic rabbit brains. The 15N enrichments of brain metabolite alpha-amino and amide positions of glutamine, glutamate, and alanine were determined by the indirect detection of 15N-labeled compounds of the 13C-15N spin coupling patterns of natural abundance 13C-NMR spectra. The 13C-NMR spectra of brain extracts were obtained from rabbits infused with 15NH4Cl with or without intraperitoneal infusion of the GS inhibitor, L-methionine DL-sulfoximine, in a reasonable acquisition time period. When 15NH4Cl was infused, [5-15N]glutamine and [2-15N]glutamine concentrations reached 5.2 mumol/100 mg protein and 3.6 mumol/100 mg protein, respectively, which indicates the relatively high activity of reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. The low concentration of [2-15N]glutamate, which is about 30% of that of [2-15N]glutamine obtained in this study, suggests that very little glutamine serves as a precursor of neuronal glutamate. When GS was inhibited by L-methionine DL-sulfoximine, a flux of 15NH4+ via the residual activity of GS was accompanied by an apparent increase of [2-15N]glutamate and [15N]alanine concentrations (2.9 mumol/100 mg protein and 1.8 mumol/100 mg protein, respectively). These findings and those obtained from 13C-13C isotopomer analysis (Lapidot and Gopher, 1994b) suggest that astrocytic 2-oxoglutarate is partially utilized (together with an amino group donor) as a precursor for neuronal glutamate in the hyperammonemic brain when GS is inhibited. This process can partly replace GS activity in metabolizing ammonia in the hyperammonemic rabbit brain. PMID:9057821

  3. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  4. (1)H, (13)C and (15)N NMR assignments of a calcium-binding protein from Entamoeba histolytica.

    PubMed

    Verma, Deepshikha; Bhattacharya, Alok; Chary, Kandala V R

    2016-04-01

    We report almost complete sequence specific (1)H, (13)C and (15)N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization. PMID:26377206

  5. Characterizing the Microstructure of Heparin and Heparan Sulfate using N-sulfoglucosamine 1H and 15N NMR Chemical Shift Analysis

    PubMed Central

    Langeslay, Derek J.; Beecher, Consuelo N.; Naggi, Annamaria; Guerrini, Marco; Torri, Giangiacomo; Larive, Cynthia K.

    2014-01-01

    Heparin and heparan sulfate (HS) are members of a biologically important group of highly anionic linear polysaccharides called glycosaminoglycans (GAGs). Because of their structural complexity, the molecular-level characterization of heparin and HS continues to be a challenge. The work presented herein describes an emerging approach for the analysis of unfractionated and low molecular weight heparins as well as porcine and human-derived HS. This approach utilizes the untapped potential of 15N NMR to characterize these preparations through detection of the NH resonances of N-sulfo-glucosamine residues. The sulfamate group 1H and 15N chemical shifts of six GAG microenvironments were assigned based on the critical comparison of selectively modified heparin derivatives, NMR measurements for a library of heparin-derived oligosaccharide standards, and an in-depth NMR analysis of the low molecular weight heparin enoxaparin through systematic investigation of the chemical exchange properties of NH resonances and residue-specific assignments using the [1H, 15N] HSQC-TOCSY experiment. The sulfamate microenvironments characterized in this study include GlcNS(6S)-UA(2S), ΔUA(2S)-GlcNS(6S), GlcNS(3S)(6S)-UA(2S), GlcNS-UA, GlcNS(6S)-redα, and 1,6-anhydro GlcNS demonstrate the utility of [1H, 15N] HSQC NMR spectra to provide a spectroscopic fingerprint reflecting the composition of intact GAGs and low molecular weight heparin preparations. PMID:23240897

  6. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  7. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  8. Global Fold of Human Cannabinoid Type 2 Receptor Probed by Solid-State 13C-, 15N-MAS NMR and Molecular Dynamics Simulations

    PubMed Central

    Kimura, Tomohiro; Vukoti, Krishna; Lynch, Diane L.; Hurst, Dow P.; Grossfield, Alan; Pitman, Michael C.; Reggio, Patricia H.; Yeliseev, Alexei A.; Gawrisch, Klaus

    2014-01-01

    The global fold of human cannabinoid type 2 (CB2) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state 13C- and 15N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly 13C-, and 15N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. 13C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C=O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the 13C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular loop 2 and the second half of intracellular loop 3, change their chemical shifts significantly (≥1.5 ppm for carbons and ≥5.0 ppm for nitrogens). Simulated two-dimensional 13Cα(i)-13C=O(i) and 13C=O(i)-15NH(i+1) dipolar-interaction correlation spectra provide guidance for selective amino-acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid-state MAS NMR. PMID:23999926

  9. A facile method for expression and purification of (15)N isotope-labeled human Alzheimer's β-amyloid peptides from E. coli for NMR-based structural analysis.

    PubMed

    Sharma, Sudhir C; Armand, Tara; Ball, K Aurelia; Chen, Anna; Pelton, Jeffrey G; Wemmer, David E; Head-Gordon, Teresa

    2015-12-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting millions of people worldwide. AD is characterized by the presence of extracellular plaques composed of aggregated/oligomerized β-amyloid peptides with Aβ42 peptide representing a major isoform in the senile plaques. Given the pathological significance of Aβ42 in the progression of AD, there is considerable interest in understanding the structural ensembles for soluble monomer and oligomeric forms of Aβ42. This report describes an efficient method to express and purify high quality (15)N isotope-labeled Aβ42 for structural studies by NMR. The protocol involves utilization of an auto induction system with (15)N isotope labeled medium, for high-level expression of Aβ42 as a fusion with IFABP. After the over-expression of the (15)N isotope-labeled IFABP-Aβ42 fusion protein in the inclusion bodies, pure (15)N isotope-labeled Aβ42 peptide is obtained following a purification method that is streamlined and improved from the method originally developed for the isolation of unlabeled Aβ42 peptide (Garai et al., 2009). We obtain a final yield of ∼ 6 mg/L culture for (15)N isotope-labeled Aβ42 peptide. Mass spectrometry and (1)H-(15)N HSQC spectra of monomeric Aβ42 peptide validate the uniform incorporation of the isotopic label. The method described here is equally applicable for the uniform isotope labeling with (15)N and (13)C in Aβ42 peptide as well as its other variants including any Aβ42 peptide mutants. PMID:26231074

  10. Retrieving nitrogen isotopic signatures from fresh leaf reflectance spectra: disentangling δ15N from biochemical and structural leaf properties

    PubMed Central

    Hellmann, Christine; Große-Stoltenberg, André; Lauströ, Verena; Oldeland, Jens; Werner, Christiane

    2015-01-01

    Linking remote sensing methodology to stable isotope ecology provides a promising approach to study ecological processes from small to large spatial scales. Here, we show that δ15N can be detected in fresh leaf reflectance spectra of field samples along a spatial gradient of increasing nitrogen input from an N2-fixing invasive species. However, in field data it is unclear whether δ15N directly influences leaf reflectance spectra or if the relationship is based on covariation between δ15N and foliar nitrogen content or other leaf properties. Using a 15N-labeling approach, we experimentally varied δ15N independently of any other leaf properties in three plant species across different leaf developmental and physiological states. δ15N could successfully be modeled by means of partial least squares (PLSs) regressions, using leaf reflectance spectra as predictor variables. PLS models explained 53–73% of the variation in δ15N within species. Several wavelength regions important for predicting δ15N were consistent across species and could furthermore be related to known absorption features of N-containing molecular bonds. By eliminating covariation with other leaf properties as an explanation for the relationship between reflectance and δ15N, our results demonstrate that 15N itself has an inherent effect on leaf reflectance spectra. Thus, our study substantiates the use of spectroscopic measurements to retrieve isotopic signatures for ecological studies and encourages future development. Furthermore, our results highlight the great potential of optical measurements for up-scaling isotope ecology to larger spatial scales. PMID:25983740

  11. Slow motions in microcrystalline proteins as observed by MAS-dependent 15N rotating-frame NMR relaxation

    NASA Astrophysics Data System (ADS)

    Krushelnitsky, Alexey; Zinkevich, Tatiana; Reif, Bernd; Saalwächter, Kay

    2014-11-01

    15N NMR relaxation rate R1ρ measurements reveal that a substantial fraction of residues in the microcrystalline chicken alpha-spectrin SH3 domain protein undergoes dynamics in the μs-ms timescale range. On the basis of a comparison of 2D site-resolved with 1D integrated 15N spectral intensities, we demonstrate that the significant fraction of broad signals in the 2D spectrum exhibits the most pronounced slow mobility. We show that 15N R1ρ's in proton-diluted protein samples are practically free from the coherent spin-spin contribution even at low MAS rates, and thus can be analysed quantitatively. Moderate MAS rates (10-30 kHz) can be more advantageous in comparison with the rates >50-60 kHz when slow dynamics are to be identified and quantified by means of R1ρ experiments.

  12. HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in 13C/15N-labeled proteins.

    PubMed

    Sudmeier, J L; Ash, E L; Günther, U L; Luo, X; Bullock, P A; Bachovchin, W W

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from 1H to 13C to 15N and reverse through direct spin couplings 1JCH and 1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain 1H, 13C, and 15N resonances in uniformly 13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay tau 3 were employed for determination of optimal tau 3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the 1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the 13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 12 1H and 13C chemical shifts and 10 of the 12 15N chemical shifts were determined. The 13C dimension proved essential in assignment of the multiply overlapping 1H and 15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mM sample of phenylmethanesulfonyl fluoride (PMSF)-inhibited alpha-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited alpha-lytic protease after 18 h at various temperatures ranging from 5 to 55 degrees C, probably due to efficient relaxation of active-site imidazole 1H and/or 15N nuclei. PMID:8995843

  13. Automated evaluation of chemical shift perturbation spectra: New approaches to quantitative analysis of receptor-ligand interaction NMR spectra

    PubMed Central

    Peng, Chen; Unger, Stephen W.; Filipp, Fabian V.; Sattler, Michael; Szalma, Sándor

    2016-01-01

    This paper presents new methods designed for quantitative analysis of chemical shift perturbation NMR spectra. The methods automatically trace the displacements of cross peaks between a perturbed test spectrum and the reference spectrum (or among a series of titration spectra), and measure the changes of chemical shifts, heights, and widths of the altered peaks. The methods are primary aimed at the 1H-15N HSQC spectra of relatively small proteins (<15 kDa) assuming fast exchange between free and ligand-bound states on the chemical shift time scale, or for comparing spectra of free and fully bound states in the slow exchange situation. Using the 1H-15N HSQC spectra from a titration experiment of the 74-residue Pex13p SH3 domain with a Pex14p peptide ligand (14 residues, Kd = ~ 40µM), we demonstrate the scope and limits of our automatic peak tracing (APET) algorithm for efficient scoring of high-throughput SAR by NMR type HSQC spectra, and progressive peak tracing (PROPET) algorithm for detailed analysis of ligand titration spectra. Simulated spectra with low signal-to-noise ratios (S/N ranged from 20 to 1) were used to demonstrate the reliability and reproducibility of the results when dealing with poor quality spectra. These algorithms have been implemented in a new software module, FELIX-Autoscreen, for streamlined processing, analysis and visualization of SAR by NMR and other high-throughput receptor/ligand interaction experiments. PMID:15243180

  14. Characterization of the nitrate complexes of Pu(IV) using absorption spectroscopy, {sup 15}N NMR, and EXAFS

    SciTech Connect

    Veirs, D.K.; Smith, C.A.; Zwick, B.D.; Marsh, S.F.; Conradson, S.D.

    1993-12-01

    Nitrate complexes of Pu(IV) are studied in solutions containing nitrate up to 13 molar (M). Three major nitrato complexes are observed and identified using absorption spectroscopy, {sup 15}N nuclear magnetic resonance (NMR), and extended x-ray absorption fine structure (EXAFS) as Pu(NO{sub 3}){sub 2}{sup 2+}, Pu(NO{sub 3}){sub 4}, and Pu(NO{sub 3}){sub 6}{sup 2{minus}}. The possibility that Pu(NO{sub 3}){sub 1}{sup 3+}, Pu(NO{sub 3}){sub 3}{sup 1+} and Pu(NO{sub 3}){sub 5}{sup 1{minus}} are major species in solution is not consistent with these results and an upper limit of 0.10 can be set on the fraction for each of these three nitrate complexes in nitrate containing solutions. Fraction of the three major species in nitric acid over the 1--13 M range were calculated from absorption spectra data. The fraction of Pu(NO{sub 3}){sub 6}{sup 2{minus}} as a function of nitric acid concentration is in good agreement with the literature, whereas the fraction of Pu(NO{sub 3}){sub 2}{sup 2+} and Pu(NO{sub 3}){sub 4} species differ from previous studies. We have modeled the chemical equilibria up to moderate ionic strength ( < 6 molal) using the specific ion interaction theory (SM. Comparison of our experimental observations to literature stability constants that assume the presence of mononitrate species is poor. Stability constant at zero ionic strength for the dinitrato complex is determined to be log({beta}{sub 2}{sup 0})=3.77 {plus_minus} 0.14 (2{sigma}).

  15. Secondary Structure, Backbone Dynamics, and Structural Topology of Phospholamban and Its Phosphorylated and Arg9Cys-Mutated Forms in Phospholipid Bilayers Utilizing 13C and 15N Solid-State NMR Spectroscopy

    PubMed Central

    2015-01-01

    Phospholamban (PLB) is a membrane protein that regulates heart muscle relaxation rates via interactions with the sarcoplasmic reticulum Ca2+ ATPase (SERCA). When PLB is phosphorylated or Arg9Cys (R9C) is mutated, inhibition of SERCA is relieved. 13C and 15N solid-state NMR spectroscopy is utilized to investigate conformational changes of PLB upon phosphorylation and R9C mutation. 13C=O NMR spectra of the cytoplasmic domain reveal two α-helical structural components with population changes upon phosphorylation and R9C mutation. The appearance of an unstructured component is observed on domain Ib. 15N NMR spectra indicate an increase in backbone dynamics of the cytoplasmic domain. Wild-type PLB (WT-PLB), Ser16-phosphorylated PLB (P-PLB), and R9C-mutated PLB (R9C-PLB) all have a very dynamic domain Ib, and the transmembrane domain has an immobile component. 15N NMR spectra indicate that the cytoplasmic domain of R9C-PLB adopts an orientation similar to P-PLB and shifts away from the membrane surface. Domain Ib (Leu28) of P-PLB and R9C-PLB loses the alignment. The R9C-PLB adopts a conformation similar to P-PLB with a population shift to a more extended and disordered state. The NMR data suggest the more extended and disordered forms of PLB may relate to inhibition relief. PMID:24511878

  16. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.

    PubMed

    Leniak, Arkadiusz; Kamieński, Bohdan; Jaźwiński, Jarosław

    2015-05-01

    Seven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The (15)N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex  - δligand). This parameter ranged from around -40 to -90 ppm in the case of heteroaromatic ligands, from around -12 to -22 ppm for diamines and from -16 to -31 ppm for the complexes of molybdenum tetracarboxylates with 4,4'-bipyridine. The experimental results have been supported by a density functional theory computation of (15)N NMR chemical shifts and complexation shifts at the non-relativistic Becke, three-parameter, Perdew-Wang 91/[6-311++G(2d,p), Stuttgart] and GGA-PBE/QZ4P levels of theory and at the relativistic scalar and spin-orbit zeroth order regular approximation/GGA-PBE/QZ4P level of theory. Nucleus-independent chemical shifts have been calculated for the selected compounds. PMID:25614975

  17. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains in 13C/ 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Ash, Elissa L.; Günther, Ulrich L.; Luo, Xuelian; Bullock, Peter A.; Bachovchin, William W.

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from1H to13C to15N and reverse through direct spin couplings1JCHand1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain1H,13C, and15N resonances in uniformly13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay τ3were employed for determination of optimal τ3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 121H and13C chemical shifts and 10 of the 1215N chemical shifts were determined. The13C dimension proved essential in assignment of the multiply overlapping1H and15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mMsample of phenylmethanesulfonyl fluoride (PMSF)-inhibited α-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited α-lytic protease after 18 h at various temperatures ranging from 5 to 55°C, probably due to efficient relaxation of active-site imidazole1H and/or15N nuclei.

  18. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose.

    PubMed

    Thorn, K A; Kennedy, K R

    2002-09-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined. PMID:12322752

  19. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    USGS Publications Warehouse

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  20. Monitoring the refinement of crystal structures with (15)N solid-state NMR shift tensor data.

    PubMed

    Kalakewich, Keyton; Iuliucci, Robbie; Mueller, Karl T; Eloranta, Harriet; Harper, James K

    2015-11-21

    The (15)N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated (15)N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2-3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X-Y and X-H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of (15)N tensors at natural abundance is challenging and this limitation is overcome by improved (1)H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental (15)N tensors are at least 5 times more sensitive to crystal structure than (13)C tensors due to nitrogen's greater polarizability and larger range of chemical shifts. PMID:26590548

  1. Cerebral glutamine metabolism under hyperammonemia determined in vivo by localized 1H and 15N NMR spectroscopy

    PubMed Central

    Cudalbu, Cristina; Lanz, Bernard; Duarte, João MN; Morgenthaler, Florence D; Pilloud, Yves; Mlynárik, Vladimir; Gruetter, Rolf

    2012-01-01

    Brain glutamine synthetase (GS) is an integral part of the glutamate–glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. 15N MRS is an alternative approach to 13C MRS. Incorporation of labeled 15N from ammonia in cerebral glutamine allows to measure several metabolic reactions related to nitrogen metabolism, including the glutamate–glutamine cycle. To measure 15N incorporation into the position 5N of glutamine and position 2N of glutamate and glutamine, we developed a novel 15N pulse sequence to simultaneously detect, for the first time, [5-15N]Gln and [2-15N]Gln+Glu in vivo in the rat brain. In addition, we also measured for the first time in the same experiment localized 1H spectra for a direct measurement of the net glutamine accumulation. Mathematical modeling of 1H and 15N MRS data allowed to reduce the number of assumptions and provided reliable determination of GS (0.30±0.050 μmol/g per minute), apparent neurotransmission (0.26±0.030 μmol/g per minute), glutamate dehydrogenase (0.029±0.002 μmol/g per minute), and net glutamine accumulation (0.033±0.001 μmol/g per minute). These results showed an increase of GS and net glutamine accumulation under hyperammonemia, supporting the concept of their implication in cerebral ammonia detoxification. PMID:22167234

  2. 15N-Cholamine – A Smart Isotope Tag for Combining NMR- and MS-Based Metabolite Profiling

    PubMed Central

    Tayyari, Fariba; Nagana Gowda, G. A.; Gu, Haiwei; Raftery, Daniel

    2013-01-01

    Recently, the enhanced resolution and sensitivity offered by chemoselective isotope tags have enabled new and enhanced methods for detecting hundreds of quantifiable metabolites in biofluids using nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry. However, the inability to effectively detect the same metabolites using both complementary analytical techniques has hindered the correlation of data derived from the two powerful platforms and thereby the maximization of their combined strengths for applications such as biomarker discovery of the identification of unknown metabolites. With the goal of alleviating this bottleneck, we describe a smart isotope tag, 15N-cholamine, which possesses two important properties: an NMR sensitive isotope, and a permanent charge for MS sensitivity. Using this tag, we demonstrate the detection of carboxyl group containing metabolites in both human serum and urine. By combining the individual strengths of the 15N label and permanent charge, the smart isotope tag facilitates effective detection of the carboxyl-containing metabolome by both analytical methods. This study demonstrates a unique approach to exploit the combined strength of MS and NMR in the field of metabolomics. PMID:23930664

  3. Catalytic Roles of βLys87 in Tryptophan Synthase: 15N Solid State NMR Studies

    PubMed Central

    Caulkins, Bethany G.; Yang, Chen; Hilario, Eduardo; Fan, Li; Dunn, Michael F.; Mueller, Leonard J.

    2015-01-01

    The proposed mechanism for tryptophan synthase shows βLys87 playing multiple catalytic roles: it bonds to the PLP cofactor, activates C4′ for nucleophilic attack via a protonated Schiff base nitrogen, and abstracts and returns protons to PLP-bound substrates (i.e. acid-base catalysis). ε-15N-lysine TS was prepared to access the protonation state of βLys87 using 15N solid-state nuclear magnetic resonance (SSNMR) spectroscopy for three quasi-stable intermediates along the reaction pathway. These experiments establish that the protonation state of the ε-amino group switches between protonated and neutral states as the β-site undergoes conversion from one intermediate to the next during catalysis, corresponding to mechanistic steps where this lysine residue has been anticipated to play alternating acid and base catalytic roles that help steer reaction specificity in tryptophan synthase catalysis. PMID:25688830

  4. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    SciTech Connect

    Kobayashi, Takeshi; Gupta, Shalabh; Caporini, Marc A; Pecharsky, Vitalij K; Pruski, Marek

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  5. Differentiation of histidine tautomeric states using (15)N selectively filtered (13)C solid-state NMR spectroscopy.

    PubMed

    Miao, Yimin; Cross, Timothy A; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional (15)N selectively filtered (13)C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all (13)C resonances of the individual imidazole rings in a mixture of tautomeric states. When (15)N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the (13)C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of (13)C, (15)N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture. PMID:25026459

  6. Differentiation of Histidine Tautomeric States using 15N Selectively Filtered 13C Solid-State NMR Spectroscopy

    PubMed Central

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-01-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C,15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture. PMID:25026459

  7. Differentiation of histidine tautomeric states using 15N selectively filtered 13C solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C, 15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture.

  8. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Udgaonkar, J B; Hosur, R V

    2000-10-01

    Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 degrees C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D [1H]-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear [1H]-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (tau(m)) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motion's cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action. PMID

  9. /sup 15/N and /sup 13/C NMR determination of methionine metabolism in developing soybean cotyledons

    SciTech Connect

    Coker, G.T. III; Garbow, J.R.; Schaefer, J.

    1987-03-01

    The metabolism of D- and L-methionine by immature cotyledons of soybean (Glycine max, L. cv Elf) grown in culture has been investigated using solid-state /sup 13/C and /sup 15/N nuclear magnetic resonance. D-Methionine is taken up by the cotyledons and converted to an amide, most likely by N-malonylation. About 16% of the L-methionine taken up is incorporated intact into protein, and 25% remains as soluble methionine. Almost two-thirds of the L-methionine that enters the cotyledons is degraded. The largest percentage of this is used in transmethylation of the carboxyl groups of pectin. Methionine is not extensively converted to polyamines. The authors attribute the stimulation of growth of the cotyledons by exogenous methionine to the bypassing of a rate-limiting methyl-transfer step in the synthesis of methionine itself, and subsequently of pectins and proteins.

  10. 15N-labeled tRNA. Identification of 4-thiouridine in Escherichia coli tRNASer1 and tRNATyr2 by 1H-15N two-dimensional NMR spectroscopy.

    PubMed

    Griffey, R H; Davis, D R; Yamaizumi, Z; Nishimura, S; Hawkins, B L; Poulter, C D

    1986-09-15

    Uridine is uniquely conserved at position 8 in elongator tRNAs and binds to A14 to form a reversed Hoogsteen base pair which folds the dihydrouridine loop back into the core of the L-shaped molecule. On the basis of 1H NMR studies, Hurd and co-workers (Hurd, R. E., Robillard, G. T., and Reid, B. R. (1977) Biochemistry 16, 2095-2100) concluded that the interaction between positions 8 and 14 is absent in Escherichia coli tRNAs with only 3 base pairs in the dihydrouridine stem. We have taken advantage of the unique 15N chemical shift of N3 in thiouridine to identify 1H and 15N resonances for the imino units of S4U8 and s4U9 in E. coli tRNASer1 and tRNATyr2. Model studies with chloroform-soluble derivatives of uridine and 4-thiouridine show that the chemical shifts of the protons in the imino moieties move downfield from 7.9 to 14.4 ppm and from 9.1 to 15.7 ppm, respectively; whereas, the corresponding 15N chemical shifts move downfield from 157.5 to 162.5 ppm and from 175.5 to 180.1 ppm upon hydrogen bonding to 5'-O-acetyl-2',3'-isopropylidene adenosine. The large difference in 15N chemical shifts for U and s4U allows one to unambiguously identify s4U imino resonances by 15N NMR spectroscopy. E. coli tRNASer1 and tRNATyr2 were selectively enriched with 15N at N3 of all uridines and modified uridines. Two-dimensional 1H-15N chemical shift correlation NMR spectroscopy revealed that both tRNAs have resonances with 1H and 15N chemical shifts characteristic of s4UA pairs. The 1H shift is approximately 1 ppm upfield from the typical s4U8 resonance at 14.8 ppm, presumably as a result of local diamagnetic anisotropies. An additional s4U resonance with 1H and 15N shifts typical of interaction of a bound water or a sugar hydroxyl group with s4U9 was discovered in the spectrum of tRNATyr2. Our NMR results for tRNAs with 3-base pair dihydrouridine stems suggest that these molecules have an U8A14 tertiary interaction similar to that found in tRNAs with 4-base pair dihydrouridine

  11. Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data

    PubMed Central

    Hu, Kan-Nian; Qiang, Wei; Bermejo, Guillermo A.; Schwieters, Charles D.; Tycko, Robert

    2013-01-01

    Recent structural studies of uniformly 15N, 13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical shifts, based on empirical correlations between chemical shifts and backbone torsion angles; (ii) restraints on inter-residue proximities from qualitative measurements of internuclear dipole–dipole couplings, detected as the presence or absence of inter-residue crosspeaks in multidimensional spectra. We show that site-specific dipole–dipole couplings among 15N-labeled backbone amide sites and among 13C-labeled backbone carbonyl sites can be measured quantitatively in uniformly-labeled proteins, using dipolar recoupling techniques that we call 15N-BARE and 13C-BARE (BAckbone REcoupling), and that the resulting data represent a new source of restraints on backbone conformation. 15N-BARE and 13C-BARE data can be incorporated into structural modeling calculations as potential energy surfaces, which are derived from comparisons between experimental 15N and 13C signal decay curves, extracted from crosspeak intensities in series of two-dimensional spectra, with numerical simulations of the 15N-BARE and 13C-BARE measurements. We demonstrate this approach through experiments on microcrystalline, uniformly 15N, 13C-labeled protein GB1. Results for GB1 show that 15N-BARE and 13C-BARE restraints are complementary to restraints from chemical shifts and inter-residue crosspeaks, improving both the precision and the accuracy of calculated structures. PMID:22449573

  12. Solution NMR Experiment for Measurement of (15)N-(1)H Residual Dipolar Couplings in Large Proteins and Supramolecular Complexes.

    PubMed

    Eletsky, Alexander; Pulavarti, Surya V S R K; Beaumont, Victor; Gollnick, Paul; Szyperski, Thomas

    2015-09-01

    NMR residual dipolar couplings (RDCs) are exquisite probes of protein structure and dynamics. A new solution NMR experiment named 2D SE2 J-TROSY is presented to measure N-H RDCs for proteins and supramolecular complexes in excess of 200 kDa. This enables validation and refinement of their X-ray crystal and solution NMR structures and the characterization of structural and dynamic changes occurring upon complex formation. Accurate N-H RDCs were measured at 750 MHz (1)H resonance frequency for 11-mer 93 kDa (2)H,(15)N-labeled Trp RNA-binding attenuator protein tumbling with a correlation time τc of 120 ns. This is about twice as long as that for the most slowly tumbling system, for which N-H RDCs could be measured, so far, and corresponds to molecular weights of ∼200 kDa at 25 °C. Furthermore, due to the robustness of SE2 J-TROSY with respect to residual (1)H density from exchangeable protons, increased sensitivity at (1)H resonance frequencies around 1 GHz promises to enable N-H RDC measurement for even larger systems. PMID:26293598

  13. Sensitive, quantitative carbon-13 NMR spectra by mechanical sample translation

    NASA Astrophysics Data System (ADS)

    Donovan, Kevin J.; Allen, Mary; Martin, Rachel W.; Shaka, A. J.

    2009-04-01

    Collecting a truly quantitative carbon-13 spectrum is a time-consuming chore. Very long relaxation delays, required between transients to allow the z-magnetization, M z, of the spin with the longestT1 to return to the equilibrium value, M0, must precede each transient. These long delays also reduce sensitivity, as fewer transients per unit time can be acquired. In addition, sometimes T1 is not known to within even a factor of two: a conservative guess for the relaxation delay then leads to very low sensitivity. We demonstrate a fresh method to bypass these problems and collect quantitative carbon-13 spectra by swapping the sample volume after each acquisition with a different portion where the magnetization is already equilibrated to M0. Loading larger sample volumes of 10-20 mL into an unusually long (1520 mm) 5 mm OD. NMR tube and vertically sliding the tube between acquisitions accomplishes the swap. The relaxation delay can then be skipped altogether. The spectra are thus both quantitative, and far more sensitive. We demonstrate the moving tube technique on two small molecules (thymol and butylhydroxytoluene) and show good carbon-13 quantification. The gain in sensitivity can be as much as 10-fold for slowly-relaxing 13C resonances. These experiments show that quantitative, sensitive carbon-13 spectra are possible whenever sufficient sample volumes are available. The method is applicable to any slow-relaxing nuclear spin species, such as 29Si, 15N and other low-γ nuclei.

  14. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds. PMID:19685922

  15. Qualitative Study of Substituent Effects on NMR 15N and 17O Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Contreras, Rubén H.; Llorente, Tomás; Pagola, Gabriel I.; Bustamante, Manuel G.; Pasqualini, Enrique E.; Melo, Juan I.; Tormena, Cláudio F.

    2009-08-01

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-β substituent effects on both 15N and 17O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and σ-hyperconjugative interactions in saturated multicyclic compounds.

  16. 15N NMR study of nitrate ion structure and dynamics in hydrotalcite-like compounds

    USGS Publications Warehouse

    Hou, X.; James, Kirkpatrick R.; Yu, P.; Moore, D.; Kim, Y.

    2000-01-01

    We report here the first nuclear magnetic resonance (NMR) spectroscopic study of the dynamical and structural behavior of nitrate on the surface and in the interlayer of hydrotalcite-like compounds (15NO3--HT). Spectroscopically resolvable surface-absorbed and interlayer NO3- have dramatically different dynamical characteristics. The interlayer nitrate shows a well defined, temperature independent uniaxial chemical shift anisotropy (CS A) powder pattern. It is rigidly held or perhaps undergoes rotation about its threefold axis at all temperatures between -100 ??C and +80 ??C and relative humidities (R.H.) from 0 to 100% at room temperature. For surface nitrate, however, the dynamical behavior depends substantially on temperature and relative humidity. Analysis of the temperature and R.H. dependences of the peak width yields reorieritational frequencies which increase from essentially 0 at -100 ??C to 2.6 ?? 105 Hz at 60 ??C and an activation energy of 12.6 kJ/mol. For example, for samples at R.H. = 33%, the surface nitrate is isotropically mobile at frequencies greater than 105 Hz at room temperature, but it becomes rigid or only rotates on its threefold axis at -100 ??C. For dry samples and samples heated at 200 ??C (R.H. near 0%), the surface nitrate is not isotropically averaged at room temperature. In contrast to our previous results for 35Cl--containing hydrotalcite (35Cl--HT), no NMR detectable structural phase transition is observed for 15NO3--HT. The mobility of interlayer nitrate in HT is intermediate between that of carbonate and chloride.

  17. Mapping membrane protein backbone dynamics: a comparison of site-directed spin labeling with NMR 15N-relaxation measurements.

    PubMed

    Lo, Ryan H; Kroncke, Brett M; Solomon, Tsega L; Columbus, Linda

    2014-10-01

    The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR (15)N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins. PMID:25296323

  18. Interaction of yeast iso-1-cytochrome c with cytochrome c peroxidase investigated by [15N, 1H] heteronuclear NMR spectroscopy.

    PubMed

    Worrall, J A; Kolczak, U; Canters, G W; Ubbink, M

    2001-06-19

    The interaction of yeast iso-1-cytochrome c with its physiological redox partner cytochrome c peroxidase has been investigated using heteronuclear NMR techniques. Chemical shift perturbations for both 15N and 1H nuclei arising from the interaction of isotopically enriched 15N cytochrome c with cytochrome c peroxidase have been observed. For the diamagnetic, ferrous cytochrome c, 34 amides are affected by binding, corresponding to residues at the front face of the protein and in agreement with the interface observed in the 1:1 crystal structure of the complex. In contrast, for the paramagnetic, ferric protein, 56 amides are affected, corresponding to residues both at the front and toward the rear of the protein. In addition, the chemical shift perturbations were larger for the ferric protein. Using experimentally observed pseudocontact shifts the magnetic susceptibility tensor of yeast iso-1-cytochrome c in both the free and bound forms has been calculated with HN nuclei as inputs. In contrast to an earlier study, the results indicate that there is no change in the geometry of the magnetic axes for cytochrome c upon binding to cytochrome c peroxidase. This leads us to conclude that the additional effects observed for the ferric protein arise either from a difference in binding mode or from the more flexible overall structure causing a transmittance effect upon binding. PMID:11401551

  19. Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by sup 15 N NMR spectroscopy

    SciTech Connect

    van Dijk, A.A.; de Lange, L.C.M.; Robillard, G.T. ); Bachovchin, W.W. )

    1990-09-04

    The phosphocarrier protein HPr of the phosphoenolpyruvate-dependent sugar transport system of Escherichia coli can exist in a phosphorylated and a nonphosphorylated form. During phosphorylation, the phosphoryl group is carried on a histidine residue, His15. The hydrogen-bonding state of this histidine was examined with {sup 15}N NMR. For this purpose we selectively enriched the histidine imidazole nitrogens with {sup 15}N by supplying an E. coli histidine auxotroph with the amino acid labeled either at the N{delta}1 and N{epsilon}2 positions or at only the N{delta}1 position. {sup 15}N NMR spectra of two synthesized model compound, phosphoimidazole and phosphomethylimidazole, were also recorded. The authors show that, prior to phosphorylation, the protonated His15 N{epsilon}2 is strongly hydrogen bonded, most probably to a carboxylate moiety. The H-bond should strengthen the nucleophilic character of the deprotonated N{delta}1, resulting in a good acceptor for the phosphoryl group. The hydrogen bond to the His15 N{delta}1 breaks upon phosphorylation of the residue. Implications of the H-bond structure for the mechanism of phosphorylation of HPr are discussed.

  20. Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by 15N NMR spectroscopy.

    PubMed

    van Dijk, A A; de Lange, L C; Bachovchin, W W; Robillard, G T

    1990-09-01

    The phosphocarrier protein HPr of the phosphoenolpyruvate-dependent sugar transport system of Escherichia coli can exist in a phosphorylated and a nonphosphorylated form. During phosphorylation, the phosphoryl group is carried on a histidine residue, His15. The hydrogen-bonding state of this histidine was examined with 15N NMR. For this purpose we selectively enriched the histidine imidazole nitrogens with 15N by supplying an E. coli histidine auxotroph with the amino acid labeled either at the N delta 1 and N epsilon 2 positions or at only the N delta 1 position. 15N NMR spectra of two synthesized model compounds, phosphoimidazole and phosphomethylimidazole, were also recorded. We show that, prior to phosphorylation, the protonated His15 N epsilon 2 is strongly hydrogen bonded, most probably to a carboxylate moiety. The H-bond should strengthen the nucleophilic character of the deprotonated N delta 1, resulting in a good acceptor for the phosphoryl group. The hydrogen bond to the His15 N delta 1 breaks upon phosphorylation of the residue. Implications of the H-bond structure for the mechanism of phosphorylation of HPr are discussed. PMID:2261470

  1. Carbon-13, sup 15 N, and sup 31 P NMR studies on 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans

    SciTech Connect

    Pust, S.; Vervoort, J.; Decker, K.; Bacher, A.; Mueller, F. )

    1989-01-24

    The interaction between the apoprotein of 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans and the prosthetic group FAD has been investigated by {sup 13}C, {sup 15}N and {sup 31}P NMR techniques. The FAD prosthetic group was selectively enriched in {sup 13}C and {sup 15}N isotopes by adding isotopically labeled riboflavin derivatives to the growth medium of riboflavin-requiring mutant cells. In the oxidized state the chemical shift of the C(7) and C(8) atoms indicates that the xylene moiety of the isoalloxazine ring is embedded in a hydrophobic environment. The binding of the competitive inhibitor, 6-hydroxy-D-nicotine, influences the resonances of the C(4a) and the N(5) atom strongly. It is suggested that these shifts are due to a strong hydrogen-bonding interaction between the N(5) atom and the inhibitor. On reduction all resonances, except those of the C(10a) and the N(1) atoms, shift upfield, indicating the increased electron density in the ring system. It can unambiguously be concluded from the chemical shift of the N(1) atom that the reduced flavin is anionic. The doublet character of the N(3) and N(5) resonances suggests that bulk water has no access to the active center. The strong downfield shift of the N(1) position indicates that this atom is embedded in a polar environment, but it does not indicate the presence of a positively charged residue. The {sup 31}P NMR spectra show that the resonances of the pyrophosphate group of the bound FAD differ slightly from those of free FAD. Besides the {sup 31}P resonances from FAD, four peaks around 0 ppm are observed that belongs to bound phosphorus residues. The residues are not located close to the isoalloxazine ring.

  2. COVALENT BINDING OF REDUCED METABOLITES OF [15N3] TNT TO SOIL ORGANIC MATTER DURING A BIOREMEDIATION PROCESS ANALYZED BY 15N NMR SPECTROSCOPY. (R826646)

    EPA Science Inventory

    Evidence is presented for the covalent binding of
    biologically reduced metabolites of 2,4,6-15N3-trinitrotoluene
    (TNT) to different soil fractions (humic acids, fulvic
    acids, and humin) using liquid 15N NMR spectroscopy. A
    silylation p...

  3. 1H/15N HSQC NMR studies of ligand carboxylate group interactions with arginine residues in complexes of brodimoprim analogues and Lactobacillus casei dihydrofolate reductase.

    PubMed

    Morgan, W D; Birdsall, B; Nieto, P M; Gargaro, A R; Feeney, J

    1999-02-16

    1H and 15N NMR studies have been undertaken on complexes of Lactobacillus casei dihydrofolate reductase (DHFR) formed with analogues of the antibacterial drug brodimoprim (2,4-diamino-5-(3', 5'-dimethoxy-4'-bromobenzyl)pyrimidine) in order to monitor interactions between carboxylate groups on the ligands and basic residues in the protein. These analogues had been designed by computer modeling with carboxylated alkyl chains introduced at the 3'-O position in order to improve their binding properties by making additional interactions with basic groups in the protein. Specific interactions between ligand carboxylate groups and the conserved Arg57 residue have been detected in studies of 1H/15N HSQC spectra of complexes of DHFR with both the 4-carboxylate and the 4, 6-dicarboxylate brodimoprim analogues. The spectra from both complexes showed four resolved signals for the four NHeta protons of the guanidino group of Arg57, and this is consistent with hindered rotation in the guanidino group resulting from interactions with the 4-carboxylate group in each analogue. In the spectra of each complex, one of the protons from each of the two NH2 groups and both nitrogens are considerably deshielded compared to the shielding values normally observed for such nuclei. This pattern of deshielding is that expected for a symmetrical end-on interaction of the carboxylate oxygens with the NHeta12 and NHeta22 guanidino protons. The differences in the degree of deshielding between the complexes of the two structurally similar brodimoprim analogues and the methotrexate indicates that the shielding is very sensitive to geometry, most probably to hydrogen bond lengths. The 1H/15N HSQC spectrum of the DHFR complex with the brodimoprim-6-carboxylate analogue does not feature any deshielded Arg NHeta protons and this argues against a similar interaction with the Arg57 in this case. It has not proved possible to determine whether the 6-carboxylate in this analogue is interacting directly with

  4. sup 15 N NMR study on cyanide (C sup 15 N sup minus ) complex of cytochrome P-450 sub cam. Effects of d-camphor and putidaredoxin on the iron-ligand structure

    SciTech Connect

    Shiro, Yoshitsugu; Iizuka, Tetsutaro ); Makino, Ryu; Ishimura, Yuzuru ); Morishima, Isao )

    1989-11-27

    The cyanide (C{sup 15}N{sup {minus}}) complex of Pseudomonas putida cytochrome P-450 (P-450{sub cam}) exhibited well-resolved and hyperfine-shifted {sup 15}N NMR resonances arising from the iron-bound C{sup 15}N{sup {minus}} at 423 and 500 ppm in the absence and presence of the substrate, d-camphor, respectively. The values were smaller than those for cyanide complexes of myoglobin and hemoglobin ({approx} 1000 ppm) but fell into the same range as those for the cyanide complexes of peroxidases ({approx} 500 ppm). The {sup 15}N shift values of P-450{sub cam} were not incompatible with the existence of anionic ligand, such as cysteinyl thiolate anion, at the fifth coordination site of heme iron. The difference in the {sup 15}N chemical shift values between camphor-free and bound enzymes was inferred by the increase in the steric constraint to the Fe-C-N bond upon substrate binding.

  5. Theoretical and experimental (15)N NMR study of enamine-imine tautomerism of 4-trifluoromethyl[b]benzo-1,4-diazepine system.

    PubMed

    Semenov, Valentin A; Samultsev, Dmitry O; Rulev, Alexander Yu; Krivdin, Leonid B

    2015-12-01

    The tautomeric structure of 4-trifluoromethyl[b]benzo-1,4-diazepine system in solution has been evaluated by means of the calculation of (15)N NMR chemical shifts of individual tautomers in comparison with the averaged experimental shifts to show that the enamine-imine equilibrium is entirely shifted toward the imine form. The adequacy of the theoretical level used for the computation of (15)N NMR chemical shifts in this case has been verified based on the benchmark calculations in the series of the push-pull and captodative enamines together with related azomethynes, which demonstrated a good to excellent agreement with experiment. PMID:26290420

  6. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation.

    PubMed

    Akke, M; Skelton, N J; Kördel, J; Palmer, A G; Chazin, W J

    1993-09-21

    The backbone dynamics of apo- and (Cd2+)1-calbindin D9k have been characterized by 15N nuclear magnetic resonance spectroscopy. Spin-lattice and spin-spin relaxation rate constants and steady-state [1H]-15N nuclear Overhauser effects were measured at a magnetic field strength of 11.74 T by two-dimensional, proton-detected heteronuclear NMR experiments using 15N-enriched samples. The relaxation parameters were analyzed using a model-free formalism that characterizes the dynamics of the N-H bond vectors in terms of generalized order parameters and effective correlation times. The data for the apo and (Cd2+)1 states were compared to those for the (Ca2+)2 state [Kördel, J., Skelton, N. J., Akke, M., Palmer, A. G., & Chazin, W. J. (1992) Biochemistry 31, 4856-4866] to ascertain the effects on ion ligation on the backbone dynamics of calbindin D9k. The two binding loops respond differently to ligation by metal ions: high-frequency (10(9)-10(12) s-1) fluctuations of the N-terminal ion-binding loop are not affected by ion binding, whereas residues G57, D58, G59, and E60 in the C-terminal ion-binding loop have significantly lower order parameters in the apo state than in the metal-bound states. The dynamical responses of the four helices to binding of ions are much smaller than that for the C-terminal binding loop, with the strongest effect on helix III, which is located between the linker loop and binding site II. Significant fluctuations on slower time scales also were detected in the unoccupied N-terminal ion-binding loop of the apo and (Cd2+)1 states; the apparent rates were greater for the (Cd2+)1 state. These results on the dynamical response to ion binding in calbindin D9k provide insights into the molecular details of the binding process and qualitative evidence for entropic contributions to the cooperative phenomenon of calcium binding for the pathway in which the ion binds first in the C-terminal site. PMID:8373781

  7. High Field Solid-State NMR Spectroscopy Investigation of (15)N-Labeled Rosette Nanotubes: Hydrogen Bond Network and Channel-Bound Water.

    PubMed

    Fenniri, Hicham; Tikhomirov, Grigory A; Brouwer, Darren H; Bouatra, Souhaila; El Bakkari, Mounir; Yan, Zhimin; Cho, Jae-Young; Yamazaki, Takeshi

    2016-05-18

    (15)N-labeled rosette nanotubes were synthesized and investigated using high-field solid-state NMR spectroscopy, X-ray diffraction, atomic force microscopy, and electron microscopy. The results established the H-bond network involved in the self-assembly of the nanostructure as well as bound water molecules in the nanotube's channel. PMID:27141817

  8. Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines

    NASA Astrophysics Data System (ADS)

    Jehle, Stefan; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan

    2006-12-01

    Amino-acid selective magic-angle spinning (MAS) NMR experiments can aid the assignment of ambiguous cross-peaks in crowded spectra of solid proteins. In particular for larger proteins, data analysis can be hindered by severe resonance overlap. In such cases, filtering techniques may provide a good alternative to site-specific spin-labeling to obtain unambiguous assignments that can serve as starting points in the assignment procedure. In this paper we present a simple pulse sequence that allows selective excitation of arginine and lysine residues. To achieve this, we make use of a combination of specific cross-polarization for selective excitation [M. Baldus, A.T. Petkova, J. Herzfeld, R.G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys. 95 (1998) 1197-1207.] and spin diffusion for transfer along the amino-acid side-chain. The selectivity of the filter is demonstrated with the excitation of lysine and arginine side-chain resonances in a uniformly 13C and 15N labeled protein preparation of the α-spectrin SH3 domain. It is shown that the filter can be applied as a building block in a 13C- 13C lysine-only correlation experiment.

  9. Multinuclear 1H, 13C and 15N NMR study of some substituted 2-amino-4-nitropyridines and their N-oxides

    NASA Astrophysics Data System (ADS)

    Laihia, K.; Kolehmainen, E.; Kauppinen, R.; Lorenc, J.; Puszko, A.

    2002-05-01

    1H, 13C and 15N NMR chemical shift assignments based on pulsed field gradient selected PFG 1H,X (X= 13C and 15N) HMQC and HMBC experiments are reported for three 4-nitropyridine N-oxides and four 4-nitropyridines. It was found that an ortho effect of a methyl group inhibits the deshielding effect of the 4-nitro group and that this effect and the so-called back donation is influenced by electronegativity and position of substituents in the multisubstituted pyridine N-oxides. The shielding effect of N-oxide group is most pronounced in the 15N NMR chemical shifts of the studied compounds. This effect is further modified by methylamino, methylnitramino, 5- or 3-methyl and 4-nitro groups. Among them the 4-nitro group exerts the highest influence on the shielding effect of the N-oxide functionality. Experimental 1H, 13C and 15N NMR chemical shifts and GIAO/DFT theoretical calculations are consistent with each other and supported by the reactivity on nucleophilic substitution, the UV spectral and the dipole moment data.

  10. 1H, 13C, 15N and 195Pt NMR studies of Au(III) and Pt(II) chloride organometallics with 2-phenylpyridine.

    PubMed

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2009-11-01

    (1)H, (13)C, (15)N and (195)Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2')-chelated, deprotonated 2-phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl(2)], trans(N,N)-[Pt(2ppy*)(2ppy)Cl] and trans(S,N)-[Pt(2ppy*)(DMSO-d(6))Cl] (formed in situ upon dissolving [Pt(2ppy*)(micro-Cl)](2) in DMSO-d(6)) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective (1)H, (13)C and (15)N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Delta(1H)(coord) = delta(1H)(complex) - delta(1H)(ligand), Delta(13C)(coord) = delta(13C)(complex) - delta(13C)(ligand), Delta(15N)(coord) = delta(15N)(complex) - delta(15N)(ligand)), as well as (195)Pt chemical shifts and (1)H-(195)Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen-adjacent H(6) protons and metallated C(2') atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds. PMID:19691018

  11. Practical model fitting approaches to the direct extraction of NMR parameters simultaneously from all dimensions of multidimensional NMR spectra.

    PubMed

    Chylla, R A; Volkman, B F; Markley, J L

    1998-08-01

    A maximum likelihood (ML)-based approach has been established for the direct extraction of NMR parameters (e.g., frequency, amplitude, phase, and decay rate) simultaneously from all dimensions of a D-dimensional NMR spectrum. The approach, referred to here as HTFD-ML (hybrid time frequency domain maximum likelihood), constructs a time-domain model composed of a sum of exponentially-decaying sinusoidal signals. The apodized Fourier transform of this time-domain signal is a model spectrum that represents the 'best-fit' to the equivalent frequency-domain data spectrum. The desired amplitude and frequency parameters can be extracted directly from the signal model constructed by the HTFD-ML algorithm. The HTFD-ML approach presented here, as embodied in the software package CHIFIT, is designed to meet the challenges posed by model fitting of D-dimensional NMR data sets, where each consists of many data points (10(8) is not uncommon) encoding information about numerous signals (up to 10(5) for a protein of moderate size) that exhibit spectral overlap. The suitability of the approach is demonstrated by its application to the concerted analysis of a series of ten 2D 1H-15N HSQC experiments measuring 15N T1 relaxation. In addition to demonstrating the practicality of performing maximum likelihood analysis on large, multidimensional NMR spectra, the results demonstrate that this parametric model-fitting approach provides more accurate amplitude and frequency estimates than those obtained from conventional peak-based analysis of the FT spectrum. The improved performance of the model fitting approach derives from its ability to take into account the simultaneous contributions of all signals in a crowded spectral region (deconvolution) as well as to incorporate prior knowledge in constructing models to fit the data. PMID:9751999

  12. DFT calculations of 15N NMR shielding constants, chemical shifts and complexation shifts in complexes of rhodium(II) tetraformate with some nitrogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Leniak, Arkadiusz; Jaźwiński, Jarosław

    2015-03-01

    Benchmark calculations of 15N NMR shielding constants for a set of model complexes of rhodium(II) tetraformate with nine organic ligands using the Density Functional Theory (DFT) methods have been carried out. The calculations were performed by means of several methods: the non-relativistic, relativistic scalar ZORA, and spin-orbit ZORA approaches at the CGA-PBE/QZ4P theory level, and the GIAO NMR method using the B3PW91 functional with the 6-311++G(2d,p) basis set for C, H, N, O atoms and the Stuttgart basis set for the Rh atom. The geometry of compounds was optimised either by the same basis set as for the NMR calculations or applying the B3LYP functional with the 6-31G(2d) basis set for C, H, N, O atoms and LANL2DZ for the Rh atom. Computed 15N NMR shielding constants σ were compatible with experimental 15N chemical shifts δ of complexes exhibiting similar structure and fulfil the linear equation δ = aσ + b. The a and b parameters for all data sets have been estimated by means of linear regression analysis. In contrast to the correlation method giving "scaled" chemical shifts, the conversion of shielding constants to chemical shifts with respect to the reference shielding of CH3NO2 provided very inaccurate "raw" δ values. The application of the former to the calculation of complexation shifts Δδ (Δδ = δcompl - δlig) reproduced experimental values qualitatively or semi-quantitatively. The non-relativistic B3PW91/[6-311++G(2d,p), Stuttgart] theory level reproduced the NMR parameters as good as the more expensive relativistic CGA-PBE//QZ4P ZORA approaches.

  13. Phosphorus-31, sup 15 N, and sup 13 C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    SciTech Connect

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A. )

    1989-05-02

    The herbicidal dead-end ternary complex (E{sup S3P}{sub Glyph}) of glyphosate (N-(phosphonomethyl)glycine) with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by {sup 31}P, {sup 15}N, and {sup 13}C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts ({delta}) for each of the three nuclei. By {sup 31}P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The {sup 13}C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The {sup 15}N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the {sup 31}P {delta} and the C-P-O bond angle, and the {sup 13}C and {sup 15}N {delta} values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield {sup 31}P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P {sup 31}P {delta} vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E{sup S3P} binary complex, while the E{sup S3P}{sub Glyph} complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle.

  14. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2007-12-01

    1H, 13C, and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with quinolines (L=quinoline-quin, or isoquinoline-isoquin; LL=2,2'-biquinoline-bquin), having the general formulae trans-/cis-[ML2Cl2] and [M(LL)Cl2], were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H coordination shifts of various signs and magnitudes (Delta1Hcoord=delta1Hcomplex-delta1Hligand) are discussed in relation to the changes of diamagnetic contribution to the relevant 1H shielding constants. The comparison to the literature data for similar complexes containing auxiliary ligands other than chlorides exhibited a large dependence of delta1H parameters on electron density variations and ring-current effects (inductive and anisotropic phenomena). The influence of deviations from planarity, concerning either MN2Cl2 chromophores or azine ring systems, revealed by the known X-ray structures of [Pd(bquin)Cl2] and [Pt(bquin)Cl2], is discussed in respect to 1H NMR spectra. 15N coordination shifts (Delta15Ncoord=delta15Ncomplex-delta15Nligand) of ca. 78-100 ppm (to lower frequency) are attributed mainly to the decrease of the absolute value of paramagnetic contribution in the relevant 15N shielding constants, this phenomenon being noticeably dependent on the type of a platinide metal and coordination sphere geometry. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) replacement but decreased by ca. 15 ppm following trans-->cis transition. Experimental 1H, 13C, 15N NMR chemical shifts are compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in CHCl3 or DMF solution. PMID:18044805

  15. Monitoring the refinement of crystal structures with {sup 15}N solid-state NMR shift tensor data

    SciTech Connect

    Kalakewich, Keyton; Eloranta, Harriet; Harper, James K.; Iuliucci, Robbie; Mueller, Karl T.

    2015-11-21

    The {sup 15}N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated {sup 15}N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2–3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X–Y and X–H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of {sup 15}N tensors at natural abundance is challenging and this limitation is overcome by improved {sup 1}H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental {sup 15}N tensors are at least 5 times more sensitive to crystal structure than {sup 13}C tensors due to nitrogen’s greater polarizability and larger range of chemical shifts.

  16. Properties of bridgehead-substituted polycycloalkanes. Synthesis and NMR analysis of /sup 15/N-labeled 1-aminobicycloalkanes and their hydrochlorides

    SciTech Connect

    Della, E.W.; Kasum, B.; Kirkbride, K.P.

    1987-04-29

    NMR analysis of adamantane and four bicycloalkanes substituted at the bridgehead with /sup 15/N-labeled amino and ammonio groups is described. It is found that where most of the one-bond carbon-nitrogen coupling constants are relatively large, those in 1-aminobicyclo (1.1.1)pentane and its hydrochloride are significantly reduced; in fact, in the latter compound one-bond /sup 13/C-/sup 15/N coupling could not even be detected. Values of experimentally determined vicinal couplings were in accord with those expected on the basis of the number of three-bond pathways available for transmission of spin-spin information; INDO calculations, however, suggest that in the more highly strained systems there is a substantial contribution to /sup 3/J(CN) arising from through-space interactions and that these oppose through-bond effects. Large four-bond /sup 15/N-/sup 1/H couplings were found to occur in 1-aminobicyclo(1.1.1)pentane and its hydrochloride; MO calculations indicate that through-space interactions constitute the predominant mechanism contributing to /sup 4/J(/sup 15/N-/sup 1/H), although in this case through-bond and through-space effects reinforce each other. The nitrogen-15 chemical shifts of the amine hydrochlorides were determined, and they appear to occur in random fashion.

  17. An NMR study of the interaction of 15N-labelled bradykinin with an antibody mimic of the bradykinin B2 receptor.

    PubMed

    Ottleben, H; Haasemann, M; Ramachandran, R; Görlach, M; Müller-Esterl, W; Brown, L R

    1997-03-01

    An isotope-edited NMR study of the peptide hormone bradykinin (RPPGFSPFR) bound to the Fab fragment of a monoclonal antibody against bradykinin (MBK3) is reported. MBK3 was previously shown to provide a binding site model of the B2 bradykinin receptor [Haasemann, M., Buschko, J., Faussner, A., Roscher, A. A., Hoebeke, J., Burch, R. M. & Muller-Esterl, W. (1991) Anti-idiotypic antibodies bearing the internal image of a bradykinin epitope, J. Immunol. 147, 3882-3892]. Bradykinin was obtained in a uniformly 15N-labelled form using recombinant expression of a fusion protein consisting of the glutathione-binding domain of glutathione S-transferase fused to residues 354-375 of the high-molecular-mass kininogen from which bradykinin was released by proteolytic digestion with its natural protease plasma kallikrein. Bradykinin forms a complex with the Fab fragment of MBK3 which exchanges slowly on the NMR time scale. The 15N and 1H resonances of the tightly bound residues of bradykinin show appreciable changes in chemical shift with respect to the free form, while the 15N and 1H linewidths indicate that the hydrodynamic behaviour of bound bradykinin is dominated by the high-molecular-mass Fab fragment. The NMR data indicate that essentially the entire nonapeptide is involved in binding. The kinetics of the ligand-exchange process, together with resonance assignments obtained via exchange spectroscopy. indicate that bradykinin binds to MBK3 only in the all-trans conformation at all three Xaa-Pro amide bonds. NH-NH NOE connectivities suggest that bradykinin is bound in an extended conformation. The spectroscopic data obtained from this study are compared to recently proposed computational models of the conformation of bradykinin bound to the B2 receptor. PMID:9119014

  18. The theoretical investigation of solvent effects on the relative stability and 15N NMR shielding of antidepressant heterocyclic drug

    NASA Astrophysics Data System (ADS)

    Tahan, Arezoo; Khojandi, Mahya; Salari, Ali Akbar

    2016-01-01

    The density functional theory (DFT) and Tomasi's polarized continuum model (PCM) were used for the investigation of solvent polarity and its dielectric constant effects on the relative stability and NMR shielding tensors of antidepressant mirtazapine (MIR). The obtained results indicated that the relative stability in the polar solvents is higher than that in non-polar solvents and the most stable structure was observed in the water at the B3LYP/6-311++G ( d, p) level of theory. Also, natural bond orbital (NBO) interpretation demonstrated that by increase of solvent dielectric constant, negative charge on nitrogen atoms of heterocycles and resonance energy for LP(N10) → σ* and π* delocalization of the structure's azepine ring increase and the highest values of them were observed in water. On the other hand, NMR calculations showed that with an increase in negative charge of nitrogen atoms, isotropic chemical shielding (σiso) around them increase and nitrogen of piperazine ring (N19) has the highest values of negative charge and σiso among nitrogen atoms. NMR calculations also represented that direct solvent effect on nitrogen of pyridine ring (N15) is more than other nitrogens, while its effect on N19 is less than other ones. Based on NMR data and NBO interpretation, it can be deduced that with a decrease in the negative charge on nitrogen atoms, the intramolecular effects on them decrease, while direct solvent effect increases.

  19. On the solid-state NMR spectra of naproxen

    NASA Astrophysics Data System (ADS)

    Czernek, Jiří

    2015-01-01

    Two previous measurements of the 13C and 1H NMR isotropic chemical shifts in crystalline naproxen, which is an important pharmaceutical compound, are confronted with the results obtained from several theoretical approaches capable of the proper treatment of solid-phase effects. In the underlying geometrical optimizations, two crystal structures are considered. The agreement between the data sets is quantified, including an evaluation of the similarity between the experimental solid-state NMR spectra. The 13C-1H heteronuclear correlations are analyzed, and their various assignments are discussed employing the statistical treatment of the differences between the measured and theoretical isotropic chemical shifts.

  20. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability.

    PubMed Central

    Richie, K. A.; Teng, Q.; Elkin, C. J.; Kurtz, D. M.

    1996-01-01

    Based on 2D 1H-1H and 2D and 3D 1H-15N NMR spectroscopies, complete 1H NMR assignments are reported for zinc-containing Clostridium pasteurianum rubredoxin (Cp ZnRd). Complete 1H NMR assignments are also reported for a mutated Cp ZnRd, in which residues near the N-terminus, namely, Met 1, Lys 2, and Pro 15, have been changed to their counterparts, (-), Ala and Glu, respectively, in rubredoxin from the hyperthermophilic archaeon, Pyrococcus furiosus (Pf Rd). The secondary structure of both wild-type and mutated Cp ZnRds, as determined by NMR methods, is essentially the same. However, the NMR data indicate an extension of the three-stranded beta-sheet in the mutated Cp ZnRd to include the N-terminal Ala residue and Glu 15, as occurs in Pf Rd. The mutated Cp Rd also shows more intense NOE cross peaks, indicating stronger interactions between the strands of the beta-sheet and, in fact, throughout the mutated Rd. However, these stronger interactions do not lead to any significant increase in thermostability, and both the mutated and wild-type Cp Rds are much less thermostable than Pf Rd. These correlations strongly suggest that, contrary to a previous proposal [Blake PR et al., 1992, Protein Sci 1:1508-1521], the thermostabilization mechanism of Pf Rd is not dominated by a unique set of hydrogen bonds or electrostatic interactions involving the N-terminal strand of the beta-sheet. The NMR results also suggest that an overall tighter protein structure does not necessarily lead to increased thermostability. PMID:8732760

  1. High Resolution 15N NMR of the 225 K Phase Transition of Ammonia Borane (NH3BH3): Mixed Order-Disorder and Displacive Behavior

    SciTech Connect

    Gunaydin-Sen, Ozge; Achey, Randall; Dalal, Nar S.; Stowe, Ashley C.; Autrey, Thomas

    2007-02-01

    We report high resolution 15N NMR probing of the solid-solid phase transition of 15N-labeled ammonia borane (NH3BH3) around 225 K. Both the 15N isotropic chemical shift, δiso, and the spin-lattice relaxation rate (T1-1) exhibited strong anomalies around 225 K. The analysis of T1-1 using the Bloembergen-Purcell and Pound model showed that the motional correlation time, τ, increased from about 1 ps to 100 ps while the corresponding Arrhenius activation energy increased from 6 to 13.4 kJ/mol on going through the transition. The observed strong temperature dependence of δiso was interpreted by an extension of the Bayer model. The time scale of the underlying motion was found to be in a reasonable agreement with the T1-1 data. These results imply that the NH3 rotor motion plays a pivotal role in the transition mechanism, and that the transition is of both order-disorder and displacive type. This work was supported by the Office of Basic Energy Sciences of the U. S. Department of Energy Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for the U. S. Department of Energy.

  2. Evidence for tautomerism in nucleic acid base pairs. 1H NMR study of 15N labeled tRNA.

    PubMed Central

    Rüterjans, H; Kaun, E; Hull, W E; Limbach, H H

    1982-01-01

    The imino proton resonances of 15N labeled tRNA appear as asymmetric doublet signals, the asymmetry being dependent on the applied magnetic field strength. Assuming a tautomerism of the type N-H...N not equal to N...H-N in the base pairs the line shapes can be simulated. The most important parameters fitted in the simulation are the rate constants of the proton transfer and the mole fractions of either tautomeric state. The rate constants are of the order of 100s-1 and the mole fractions of the non dominant tautomer about 0.1 depending on the temperature and on the nature of the base pairing. The observations are attributed to a double proton transfer in the base pairs. The unexpectedly slow rates of the double proton transfer process may be connected with a concomitant conformational change of the duplex structure. PMID:7177856

  3. ImatraNMR: novel software for batch integration and analysis of quantitative NMR spectra.

    PubMed

    Mäkelä, A V; Heikkilä, O; Kilpeläinen, I; Heikkinen, S

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D (1)H and (13)C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request. PMID:21705250

  4. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    NASA Astrophysics Data System (ADS)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  5. Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: a theoretical and experimental study.

    PubMed

    Infante-Castillo, Ricardo; Pacheco-Londoño, Leonardo; Hernández-Rivera, Samuel P

    2010-07-01

    Unambiguous vibrational band assignments have been made to cyclic nitramine hexahydro-1,3,5-trinitro-s-triazine, commonly known as the alpha-phase of RDX or alpha-RDX, with the use of (13)C and (15)N (on ring) enriched isotopic RDX analogues. Vibrational spectra were collected using Raman and IR spectroscopy in solid state and ab initio normal mode calculations were performed using density functional theory (DFT) and a 6-311G++** basis set. The calculated isotopic frequency shifts, induced by (13)C and (15)N labeling, are in very good accordance with measures ones. The changes in vibrational modes associated with the isotopic substitutions are well modeled by the calculation and previous assignments of the vibrational spectra have been revised, especially where the exact nature of the vibrational modes had been either vague or contradictory. PMID:20381411

  6. Study of stereospecificity of 1H, 13C, 15N and 77Se shielding constants in the configurational isomers of the selenophene-2-carbaldehyde azine by NMR spectroscopy and MP2-GIAO calculations.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Albanov, Alexander I; Levanova, Ekaterina P; Levkovskaya, Galina G

    2011-11-01

    In the (1)H and (13)C NMR spectra of selenophene-2-carbaldehyde azine, the (1)H-5, (13)C-3 and (13)C-5 signals of the selenophene ring are shifted to higher frequencies, whereas those of the (1)H-1, (13)C-1, (13)C-2 and (13)C-4 are shifted to lower frequencies on going from the EE to ZZ isomer or from the E moiety to the Z moiety of EZ isomer. The (15)N chemical shift is significantly larger in the EE isomer relative to the ZZ isomer and in the E moiety relative to the Z moiety of EZ isomer. A very pronounced difference (60-65 mg/g) between the (77)Se resonance positions is revealed in the studied azine isomers, the (77)Se peak being shifted to higher frequencies in the ZZ isomer and in the Z moiety of EZ isomer. The trends in the changes of the measured chemical shifts are reasonably reproduced by the GIAO calculations at the MP2 level of the (1)H, (13)C, (15)N and (77)Se shielding constants in the energy-favorable conformation with the syn orientation of both selenophene rings relative to the C = N groups. The NBO analysis suggests that such an arrangement of the selenophene rings may take place because of a higher energy of some intramolecular interactions. PMID:22002712

  7. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    SciTech Connect

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.

  8. Analysis of internal motions of interleukin-13 variant associated with severe bronchial asthma using {sup 15}N NMR relaxation measurements

    SciTech Connect

    Yoshida, Yuichiro; Ohkuri, Takatoshi; Takeda, Chika; Kuroki, Ryota; Izuhara, Kenji; Imoto, Taiji; Ueda, Tadashi . E-mail: ueda@phar.kyushu-u.ac.jp

    2007-06-22

    The single nucleotide polymorphism interleukin-13 (IL-13) R110Q is associated with severe bronchial asthma because its lower affinity leads to the augmentation of local IL-13 concentration, resulting in an increase in the signal transduction via IL-13R. Since the mutation site does not directly bind to IL-13R{alpha}2, we carried out NMR relaxation analyses of the wild-type IL-13 and IL-13-R110Q in order to examine whether the R110Q mutation affects the internal motions in IL-13 molecules. The results showed that the internal motion in the micro- to millisecond time scale on helix D, which is suggested to be important for the interaction between IL-13 and IL-13R{alpha}2, is increased in IL-13-R110Q compared with that in the wild-type IL-13. It therefore appears that the difference in the internal motions on helix D between the wild-type IL-13 and IL-13-R110Q may be involved in their affinity differences with IL-13R{alpha}2.

  9. 1H, 15N and 13C assignment of the amyloidogenic protein medin using fast-pulsing NMR techniques.

    PubMed

    Davies, H A; Phelan, M M; Madine, J

    2016-04-01

    Thirty-one proteins are known to form extracellular fibrillar amyloid in humans. Molecular information about many of these proteins in their monomeric, intermediate or fibrillar form and how they aggregate and interact to form the insoluble fibrils is sparse. This is because amyloid proteins are notoriously difficult to study in their soluble forms, due to their inherent propensity to aggregate. Using recent developments in fast NMR techniques, band-selective excitation short transient and band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence we have been able to assign a 5 kDa full-length amyloidogenic protein called medin. Medin is the key protein component of the most common form of localised amyloid with a proposed role in aortic aneurysm and dissection. This assignment will now enable the study of the early interactions that could influence initiation and progression of medin aggregation. The chemical shifts have been deposited in the BioMagRes-Bank accession Nos. 25399 and 26576. PMID:26377205

  10. (1)H NMR assignment corrections and (1)H, (13)C, (15)N NMR coordination shifts structural correlations in Fe(II), Ru(II) and Os(II) cationic complexes with 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2010-06-01

    (1)H, (13)C and (15)N NMR studies of iron(II), ruthenium(II) and osmium(II) tris-chelated cationic complexes with 2,2'-bipyridine and 1,10-phenanthroline of the general formula [M(LL)(3)](2+) (M = Fe, Ru, Os; LL = bpy, phen) were performed. Inconsistent literature (1)H signal assignments were corrected. Significant shielding of nitrogen-adjacent protons [H(6) in bpy, H(2) in phen] and metal-bonded nitrogens was observed, being enhanced in the series Ru(II) --> Os(II) --> Fe(II) for (1)H, Fe(II) --> Ru(II) --> Os(II) for (15)N and bpy --> phen for both nuclei. The carbons are deshielded, the effect increasing in the order Ru(II) --> Os(II) --> Fe(II). PMID:20474023

  11. Mechanism of the bisphosphatase reaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase probed by (1)H-(15)N NMR spectroscopy.

    PubMed

    Okar, D A; Live, D H; Devany, M H; Lange, A J

    2000-08-15

    The histidines in the bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were labeled with (15)N, both specifically at N1' and globally, for use in heteronuclear single quantum correlation (HSQC) NMR spectroscopic analyses. The histidine-associated (15)N resonances were assigned by correlation to the C2' protons which had been assigned previously [Okar et al., Biochemistry 38, 1999, 4471-79]. Acquisition of the (1)H-(15)N HSQC from a phosphate-free sample demonstrated that the existence of His-258 in the rare N1' tautomeric state is dependent upon occupation of the phosphate binding site filled by the O2 phosphate of the substrate, fructose-2,6-bisphosphate, and subsequently, the phosphohistidine intermediate. The phosphohistidine intermediate is characterized by two hydrogen bonds involving the catalytic histidines, His-258 and His-392, which are directly observed at the N1' positions of the imidazole rings. The N1' of phospho-His-258 is protonated ((1)H chemical shift, 14.0 ppm) and hydrogen bonded to the backbone carbonyl of Gly-259. The N1' of cationic His-392 is hydrogen bonded ((1)H chemical shift, 13.5 ppm) to the phosphoryl moiety of the phosphohistidine. The existence of a protonated phospho-His-258 intermediate and the observation of a fairly strong hydrogen bond to the same phosphohistidine implies that hydrolysis of the covalent intermediate proceeds without any requirement for an "activated" water. Using the labeled histidines as probes of the catalytic site mutation of Glu-327 to alanine revealed that, in addition to its function as the proton donor to fructose-6-phosphate during formation of the transient phosphohistidine intermediate at the N3' of His-258, this residue has a significant role in maintaining the structural integrity of the catalytic site. The (1)H-(15)N HSQC data also provide clear evidence that despite being a surface residue, His-446 has a very acidic pK(a), much less than 6.0. On the basis of

  12. Backbone and Ile-δ1, Leu, Val Methyl 1H, 13C and 15N NMR chemical shift assignments for human interferon-stimulated gene 15 protein

    SciTech Connect

    Yin, Cuifeng; Aramini, James M.; Ma, LiChung; Cort, John R.; Swapna, G.V.T.; Krug, R. M.; Montelione, Gaetano

    2011-10-01

    Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing two ubiquitin-like domains fused in tandem. The active form of ISG15 is conjugated to target proteins via the C-terminal glycine residue through an isopeptide bond in a manner similar to ubiquitin. The biological role of ISG15 is strongly associated with the modulation of cell immune function, and there is mounting evidence suggesting that many viral pathogens evade the host innate immune response by interfering with ISG15 conjugation to both host and viral proteins in a variety of ways. Here we report nearly complete backbone 1HN, 15N, 13CO, and 13Ca, as well as side chain 13Cb, methyl (Ile-d1, Leu, Val), amide (Asn, Gln), and indole NH (Trp) NMR resonance assignments for the 157-residue human ISG15 protein. These resonance assignments provide the basis for future structural and functional solution NMR studies of the biologically important human ISG15 protein.

  13. Complete thermodynamic characterization of the multiple protonation equilibria of the aminoglycoside antibiotic paromomycin: a calorimetric and natural abundance 15N NMR study.

    PubMed

    Barbieri, Christopher M; Pilch, Daniel S

    2006-02-15

    The binding of aminoglycoside antibiotics to a broad range of macromolecular targets is coupled to protonation of one or more of the amino groups that typify this class of drugs. Determining how and to what extent this linkage influences the energetics of the aminoglycoside-macromolecule binding reaction requires a detailed understanding of the thermodynamics associated with the protonation equilibria of the aminoglycoside amino groups. In recognition of this need, a calorimetric- and NMR-based approach for obtaining the requisite thermodynamic information is presented using paromomycin as the model aminoglycoside. Temperature- and pH-dependent 15N NMR studies provide pK(a) values for the five paromomycin amino groups, as well as the temperature dependence of these pK(a) values. These studies also indicate that the observed pK(a) values associated with the free base form of paromomycin are lower in magnitude than the corresponding values associated with the sulfate salt form of the drug. This difference in pK(a) is due to drug interactions with the sulfate counterions at the high drug concentrations (> or = 812 mM) used in the 15N NMR studies. Isothermal titration calorimetry studies conducted at drug concentrations < or = 45 microM reveal that the extent of paromomycin protonation linked to the binding of the drug to its pharmacologically relevant target, the 16 S rRNA A-site, is consistent with the pK(a) values of the free base and not the sulfate salt form of the drug. Temperature- and pH-dependent isothermal titration calorimetry studies yield exothermic enthalpy changes (deltaH) for protonation of the five paromomycin amino groups, as well as positive heat capacity changes (deltaC(p)) for three of the five amino groups. Regarded as a whole, the results presented here represent an important first step toward establishing a thermodynamic database that can be used to predict how aminoglycoside-macromolecule binding energetics will be influenced by conditions such

  14. (15)N NMR spectroscopy unambiguously establishes the coordination mode of the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) in Ru(ii) complexes.

    PubMed

    Battistin, Federica; Balducci, Gabriele; Demitri, Nicola; Iengo, Elisabetta; Milani, Barbara; Alessio, Enzo

    2015-09-21

    We investigated the reactivity of three Ru(ii) precursors -trans,cis,cis-[RuCl2(CO)2(dmso-O)2], cis,fac-[RuCl2(dmso-O)(dmso-S)3], and trans-[RuCl2(dmso-S)4] - towards the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) or its parent compound 4-methyl-2-(2'-pyridyl)pyrimidine ligand (mpp), in which a methyl group replaces the carboxylic group on the pyrimidine ring. In principle, both cppH and mpp can originate linkage isomers, depending on how the pyrimidine ring binds to ruthenium through the nitrogen atom ortho (N(o)) or para (N(p)) to the group in position 4. The principal aim of this work was to establish a spectroscopic fingerprint for distinguishing the coordination mode of cppH/mpp also in the absence of an X-ray structural characterization. By virtue of the new complexes described here, together with the others previously reported by us, we successfully recorded {(1)H,(15)N}-HMBC NMR spectra at natural abundance of the (15)N isotope on a consistent number of fully characterized Ru(ii)-cppH/mpp compounds, most of them being stereoisomers and/or linkage isomers. Thus, we found that (15)N NMR chemical shifts unambiguously establish the binding mode of cppH and mpp - either through N(o) or N(p)- and can be conveniently applied also in the absence of the X-ray structure. In fact, coordination of cppH to Ru(ii) induces a marked upfield shift for the resonance of the N atoms directly bound to the metal, with coordination induced shifts (CIS) ranging from ca.-45 to -75 ppm, depending on the complex, whereas the unbound N atom resonates at a frequency similar to that of the free ligand. Similar results were found for the complexes of mpp. This work confirmed our previous finding that cppH has no binding preference, whereas mpp binds exclusively through N(p). Interestingly, the two cppH linkage isomers trans,cis-[RuCl2(CO)2(cppH-κN(p))] (5) and trans,cis-[RuCl2(CO)2(cppH-κN(o))] (6) were easily obtained in pure form by exploiting their different

  15. 15N NMR spectroscopy of hydrogen-bonding interactions in the active site of serine proteases: evidence for a moving histidine mechanism.

    PubMed

    Bachovchin, W W

    1986-11-18

    Nitrogen-15 NMR spectroscopy has been used to study the hydrogen-bonding interactions involving the histidyl residue in the catalytic triad of alpha-lytic protease in the resting enzyme and in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate. The 15N shifts indicate that a strong hydrogen bond links the active site histidine and serine residues in the resting enzyme in solution. This result is at odds with interpretations of the X-ray diffraction data of alpha-lytic protease and of other serine proteases, which indicate that the serine and histidine residues are too far apart and not properly aligned for the formation of a hydrogen bond. In addition, the nitrogen-15 shifts demonstrate that protonation of the histidine imidazole ring at low pH in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate triggers the disruption of the aspartate-histidine hydrogen bond. These results suggest a catalytic mechanism involving directed movement of the imidazole ring of the active site histidyl residue. PMID:3542033

  16. Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2.

    PubMed

    Flynn, P F; Bieber Urbauer, R J; Zhang, H; Lee, A L; Wand, A J

    2001-06-01

    A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is presented. (15)N relaxation measurements confirm earlier results indicating that R. capsulatus ferrocytochrome c(2) exhibits minor rotational anisotropy in solution. The current study is focused on the use of deuterium relaxation in side chain methyl groups, which has been shown to provide a detailed and accurate measure of internal dynamics. Results obtained indicate that the side chains of ferrocytochrome c(2) exhibit a wide range of motional amplitudes, but are more rigid than generally found in the interior of nonprosthetic group bearing globular proteins. This unusual rigidity is ascribed to the interactions of the protein with the large heme prosthetic group. This observation has significant implications for the potential of the heme-protein interface to modulate the redox properties of the protein and also points to the need for great precision in the design and engineering of heme proteins. PMID:11380250

  17. Experimental and quantum-chemical studies of 15N NMR coordination shifts in palladium and platinum chloride complexes with pyridine, 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pazderski, Leszek; Szłyk, Edward; Sitkowski, Jerzy; Kamieński, Bohdan; Kozerski, Lech; Tousek, Jaromír; Marek, Radek

    2006-02-01

    A series of Pd and Pt chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), of general formulae trans-/cis-[M(py)2Cl2], [M(py)4]Cl2, trans-/cis-[M(py)2Cl4], [M(bpy)Cl2], [M(bpy)Cl4], [M(phen)Cl2], [M(phen)Cl4], where M = Pd, Pt, was studied by 1H, 195Pt, and 15N NMR. The 90-140 ppm low-frequency 15N coordination shifts are discussed in terms of such structural features of the complexes as the type of platinide metal, oxidation state, coordination sphere geometry and the type of ligand. The results of quantum-chemical NMR calculations were compared with the experimental 15N coordination shifts, well reproducing their magnitude and correlation with the molecular structure. PMID:16392105

  18. {sup 19}F NMR spectra and structures of halogenated porphyrins

    SciTech Connect

    Birnbaum, E.R.; Hodge, J.A.; Grinstaff, M.W.

    1995-07-05

    Fluorine-19 NMR spectra of a series of halogenated porphyrins have been used to create a spectral library of different types of fluorine splitting patterns for tetrakis(pentafluorophenyl) porphyrins (TFPP) complexed with diamagnetic and paramagnetic metal ions. The paramagnetic shift, line broadening, and fine structure of the resonances form the peripheral pentafluorophenyl rings are dependent on the symmetry and core environment of the porphyrin macrocycles. In combination with crystal structure data, {sup 19}F NMR helps define the behavior of halogenated porphyrins in solution. Six new crystal structures for TFPP and octahalo-TFPP derivatives are reported: H{sub 2}TFPP in rhombohedral space group R3, a = 20.327(4) {Angstrom}, c = 15.261(2) {Angstrom}, {beta} = 103.87(2){degrees}, V = 2227.6(13) {Angstrom}{sup 3}, Z = 2; CuTFPP in rhombohedral space group R3, a = 20.358(5), c = 14.678(2) {Angstrom}, {alpha} = 88.97(1), {beta}=76.05(1){degrees}, {gamma} = 71.29(1){degrees}, V = 2181.4(6) {Angstrom}{sup 3}, Z = 2; ZnTFPPCl{sub 8} in tetragonal space group P42, c, a = 19.502(20), c = 10.916(8) {Angstrom}, V = 4152(6) {Angstrom}{sup 3}, Z = 2; H{sub 2}TFPPBr{sub 8} in monoclinic space group C2, a = 27.634(6) {Angstrom}, b = 6.926(2) {Angstrom}, c = 14.844(3) {Angstrom}, {beta} = 109.64(2){degrees}, V = 2675.8(11) {Angstrom}{sup 3}, Z = 2.

  19. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  20. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  1. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Au(III), Pd(II) and Pt(II) chloride complexes with picolines.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Malináková, Katerina; Kozerski, Lech; Szłyk, Edward

    2009-03-01

    (1)H, (13)C and (15)N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with picolines, [Au(PIC)Cl(3)], trans-[Pd(PIC)(2)Cl(2)], trans/cis-[Pt(PIC)(2)Cl(2)] and [Pt(PIC)(4)]Cl(2), were performed. After complexation, the (1)H and (13)C signals were shifted to higher frequency, whereas the (15)N ones to lower (by ca 80-110 ppm), with respect to the free ligands. The (15)N shielding phenomenon was enhanced in the series [Au(PIC)Cl(3)] < trans-[Pd(PIC)(2)Cl(2)] < cis-[Pt(PIC)(2)Cl(2)] < trans-[Pt(PIC)(2)Cl(2)]; it increased following the Pd(II) --> Pt(II) replacement, but decreased upon the trans --> cis-transition. Experimental (1)H, (13)C and (15)N NMR chemical shifts were compared to those quantum-chemically calculated by B3LYP/LanL2DZ + 6-31G**//B3LYP/LanL2DZ + 6-31G*. PMID:19097135

  2. Structural correlations for (1)H, (13)C and (15)N NMR coordination shifts in Au(III), Pd(II) and Pt(II) chloride complexes with lutidines and collidine.

    PubMed

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2010-06-01

    (1)H, (13)C and (15)N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with dimethylpyridines (lutidines: 2,3-lutidine, 2,3lut; 2,4-lutidine, 2,4lut; 3,5-lutidine, 3,5lut; 2,6-lutidine, 2,6lut) and 2,4,6-trimethylpyridine (2,4,6-collidine, 2,4,6col) having general formulae [AuLCl(3)], trans-[PdL(2)Cl(2)] and trans-/cis-[PtL(2)Cl(2)] were performed and the respective chemical shifts (delta(1H), delta(13C), delta(15N)) reported. The deshielding of protons and carbons, as well as the shielding of nitrogens was observed. The (1)H, (13)C and (15)N NMR coordination shifts (Delta(1H) (coord), Delta(13C) (coord), Delta(15N) (coord); Delta(coord) = delta(complex) - delta(ligand)) were discussed in relation to some structural features of the title complexes, such as the type of the central atom [Au(III), Pd(II), Pt(II)], geometry (trans- or cis-), metal-nitrogen bond lengths and the position of both methyl groups in the pyridine ring system. PMID:20474019

  3. Structure and reactivity of lithium amides. /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies and colligative measurements of lithium diphenylamide and lithium diphenylamide-lithium bromide complex solvated by tetrahydrofuran

    SciTech Connect

    DePue, J.S.; Collum, D.B.

    1988-08-03

    /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies of lithium diphenylamide in THF/hydrocarbon solutions (THF = tetrahydrofuran) detected two different species. /sup 6/Li and /sup 15/N NMR spectroscopic studies of (/sup 6/Li, /sup 15/N)lithium diphenylamide showed the species observed at low THF concentrations to be a cyclic oligomer. Structural analogies provided strong support for a dimer while colligative measurements at 0/degrees/C indicated the dimer to be di- or trisolvated. On the basis of the observed mass action effects, the species appearing at intermediate THF concentrations is assigned as a contact or solvent-separated ion-paired monomer. Lithium diphenylamide forms a 1:1 adduct with lithium bromide at low THF concentrations. A combination of /sup 6/Li-/sup 15/N double labeling studies and colligative measurements supports a trisolvated cyclic mixed dimer structure. Although detailed spectroscopic studies at elevated THF concentrations were precluded by high fluctionality, the similarity of the /sup 13/C chemical shifts of lithium diphenylamide in the presence and absence of lithium bromide provide indirect evidence that the mixed dimer undergoes a THF concentration dependent dissociation to the monomeric amide and free lithium bromide. 24 references, 9 figures, 2 tables.

  4. Access to experimentally infeasible spectra by pure-shift NMR covariance.

    PubMed

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments. PMID:27494746

  5. Access to experimentally infeasible spectra by pure-shift NMR covariance

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.

  6. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    SciTech Connect

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  7. Anisotropy of hyperfine interactions as a tool for interpretation of NMR spectra in magnetic materials.

    PubMed

    Chlan, V; Stěpánková, H; Rezníček, R; Novák, P

    2011-07-01

    Approach for interpretation of nuclear magnetic resonance (NMR) spectra in magnetic materials is presented, consisting in employing the anisotropy of hyperfine interaction. The anisotropic parts of hyperfine magnetic fields on (57)Fe nuclei are calculated ab initio for a model example of lithium ferrite and utilized to assign the experimental NMR spectral lines to iron sites in the crystal structure. PMID:21536415

  8. Proton NMR Spectra: Deceptively Simple and Deceptively Complex Examples.

    ERIC Educational Resources Information Center

    Gurst, J. E.; And Others

    1985-01-01

    Describes relatively simple nuclear magnetic resonance (NMR) experiments that demonstrate unexpected results of the deceptively simple and deceptively complex types. Background information, experimental procedures, and typical results obtained are included. (JN)

  9. Combined ligand-observe 19F and protein-observe 15N,1H-HSQC NMR suggests phenylalanine as the key Δ-somatostatin residue recognized by human protein disulfide isomerase

    PubMed Central

    Richards, Kirsty L.; Rowe, Michelle L.; Hudson, Paul B.; Williamson, Richard A.; Howard, Mark J.

    2016-01-01

    Human protein disulphide isomerase (hPDI) is an endoplasmic reticulum (ER) based isomerase and folding chaperone. Molecular detail of ligand recognition and specificity of hPDI are poorly understood despite the importance of the hPDI for folding secreted proteins and its implication in diseases including cancer and lateral sclerosis. We report a detailed study of specificity, interaction and dissociation constants (Kd) of the peptide-ligand Δ-somatostatin (AGSKNFFWKTFTSS) binding to hPDI using 19F ligand-observe and 15N,1H-HSQC protein-observe NMR methods. Phe residues in Δ-somatostatin are hypothesised as important for recognition by hPDI therefore, step-wise peptide Phe-to-Ala changes were progressively introduced and shown to raise the Kd from 103 + 47 μM until the point where binding was abolished when all Phe residues were modified to Ala. The largest step-changes in Kd involved the F11A peptide modification which implies the C-terminus of Δ-somatostatin is a prime recognition region. Furthermore, this study also validated the combined use of 19F ligand-observe and complimentary 15N,1H-HSQC titrations to monitor interactions from the protein’s perspective. 19F ligand-observe NMR was ratified as mirroring 15N protein-observe but highlighted the advantage that 19F offers improved Kd precision due to higher spectrum resolution and greater chemical environment sensitivity. PMID:26786784

  10. Proton Fingerprints Portray Molecular Structures: Enhanced Description of the 1H NMR Spectra of Small Molecules

    PubMed Central

    Napolitano, José G.; Lankin, David C.; McAlpine, James B.; Niemitz, Matthias; Korhonen, Samuli-Petrus; Chen, Shao-Nong; Pauli, Guido F.

    2013-01-01

    The characteristic signals observed in NMR spectra encode essential information on the structure of small molecules. However, extracting all of this information from complex signal patterns is not trivial. This report demonstrates how computer-aided spectral analysis enables the complete interpretation of 1D 1H NMR data. The effectiveness of this approach is illustrated with a set of organic molecules, for which replicas of their 1H NMR spectra were generated. The potential impact of this methodology on organic chemistry research is discussed. PMID:24007197

  11. 1H, 13C and 15N NMR assignments of the E. coli peptide deformylase in complex with a natural inhibitor called actinonin.

    PubMed

    Larue, Valéry; Seijo, Bili; Tisne, Carine; Dardel, Frédéric

    2009-06-01

    In eubacteria, the formyl group of nascent polypeptides is removed by peptide deformylase protein (PDF). This is the reason why PDF has received special attention in the course of the search for new antibacterial agents. We observed by NMR that actinonin, a natural inhibitor, induced drastic changes in the HSQC spectrum of E. coli PDF. We report here the complete NMR chemical shift assignments of PDF resonances bound to actinonin. PMID:19636969

  12. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  13. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  14. Lattice simulation method to model diffusion and NMR spectra in porous materials.

    PubMed

    Merlet, Céline; Forse, Alexander C; Griffin, John M; Frenkel, Daan; Grey, Clare P

    2015-03-01

    A coarse-grained simulation method to predict nuclear magnetic resonance (NMR) spectra of ions diffusing in porous carbons is proposed. The coarse-grained model uses input from molecular dynamics simulations such as the free-energy profile for ionic adsorption, and density-functional theory calculations are used to predict the NMR chemical shift of the diffusing ions. The approach is used to compute NMR spectra of ions in slit pores with pore widths ranging from 2 to 10 nm. As diffusion inside pores is fast, the NMR spectrum of an ion trapped in a single mesopore will be a sharp peak with a pore size dependent chemical shift. To account for the experimentally observed NMR line shapes, our simulations must model the relatively slow exchange between different pores. We show that the computed NMR line shapes depend on both the pore size distribution and the spatial arrangement of the pores. The technique presented in this work provides a tool to extract information about the spatial distribution of pore sizes from NMR spectra. Such information is difficult to obtain from other characterisation techniques. PMID:25747093

  15. Some plant leaves have orientation-dependent EPR and NMR spectra.

    PubMed

    McCain, D C; Selig, T C; Govindjee; Markley, J L

    1984-02-01

    Proton nuclear magnetic resonance ((1)H NMR) spectra of leaves from 50 plant species were obtained at a spectrometer frequency of 470 MHz. Water present in leaf samples gives rise to characteristic spectral patterns. Most species show only one broad (1)H NMR peak; however, the leaves of some plants display complex, orientation-dependent spectra in which a common three-line pattern is discerned. The pattern varies with the angle between the leaf surface and the external magnetic field. Proton relaxation measurements show the presence of at least two water compartments in the leaves. The compartments are responsible for different components of the spectral pattern. EPR spectra, obtained at 35 GHz and at a temperature of -180 degrees C, of plant leaf sections are dominated by the strong signals of manganous ions. We find that most plant leaves have isotropic Mn(2+) EPR spectra. However, in some species (including ones that exhibit orientation-dependent (1)H NMR spectra) we detect orientation-dependent intensities in the forbidden lines; the spectra indicate that Mn(2+) ions occupy binding sites with axial or lower symmetry on nonrandomly oriented membranes. Both the NMR and the EPR results suggest that the chloroplasts of some plants are preferentially aligned with respect to the leaf surface. PMID:16593413

  16. 1H, 13C, 195Pt and 15N NMR structural correlations in Pd(II) and Pt(II) chloride complexes with various alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pawlak, Tomasz; Pazderski, Leszek; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2011-02-01

    (1)H, (13)C, (195)Pt and (15)N NMR studies of platinide(II) (M = Pd, Pt) chloride complexes with such alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline as LL = 6,6'-dimethyl-bpy, 5,5'-dimethyl-bpy, 4,4'-di-tert-butyl-bpy, 2,9-dimethyl-phen, 2,9-dimethyl-4,7-diphenyl-phen, 3,4,7,8-tetramethyl-phen, having the general [M(LL)Cl(2)] formula were performed and the respective chemical shifts (δ(1H), δ(13C), δ(195Pt), δ(15N)) reported. (1)H high-frequency coordination shifts (Δ(coord)(1H) = δ(complex)(1H)-δ(ligand)(1H)) mostly pronounced for nitrogen-adjacent protons and methyl groups in the nearest adjacency of nitrogen, as well as (15)N low-frequency coordination shifts (Δ(coord)(15H) = δ(complex)(15H)-δ(ligand)(15H)) were discussed in relation to the molecular structures. PMID:21254225

  17. 1H, 13C and 15N NMR coordination shifts in gold(III), cobalt(III), rhodium(III) chloride complexes with pyridine, 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Kozerski, Lech; Marek, Radek; Szłyk, Edward

    2007-01-01

    Au(III), Co(III) and Rh(III) chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) of the general formulae [M1LCl3], trans-[M2L4Cl2]+, mer-[M2L3Cl3], [M1(LL)Cl2]+, cis-[M2(LL)2Cl2]+, where M1=Au; M2=Co, Rh; L=py; LL=bpy, phen, were studied by 1H--13C HMBC and 1H--15N HMQC/HSQC. The 1H, 13C and 15N coordination shifts (the latter from ca-78 to ca-107 ppm) are discussed in relation to the type of metal, electron configuration, coordination sphere geometry and the type of ligand. The 13C and 15N chemical shifts were also calculated by quantum-chemical NMR methods, which reproduced well the experimental tendencies concerning the coordination sphere geometry and the ligand type. PMID:17048265

  18. Effects of instrumental artifacts on triple quantum filtered NMR spectra for spin I = 3/2

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Wang, Xuefeng; Wang, Zhixiao

    2016-07-01

    In this work, the effects of various instrumental artifacts on the triple quantum filtered NMR spectra for spin I = 3/2 nuclei are investigated. The studied artifacts include finite pulse widths, phase errors, radio frequency field inhomogeneity and pulse transients, which are commonly encountered in practice. The triple quantum filtered spectra are numerically simulated, based on the evolution of the spin density operator under the Hamiltonian for the artifacts. The results show that the presence of the artifacts introduces a shape distortion in the spectrum as well as a variation in the peak intensity, compared with the spectrum without any artifacts. This work indicates that the existence of the instrumental artifacts may cause a misunderstanding of the triple quantum filtered NMR spectra in experiments. The results suggest that one be aware of the instrumental artifacts when performing the triple quantum filtered NMR experiments.

  19. Effects of instrumental artifacts on triple quantum filtered NMR spectra for spin I=3/2.

    PubMed

    Sun, Cheng; Wang, Xuefeng; Wang, Zhixiao

    2016-07-01

    In this work, the effects of various instrumental artifacts on the triple quantum filtered NMR spectra for spin I=3/2 nuclei are investigated. The studied artifacts include finite pulse widths, phase errors, radio frequency field inhomogeneity and pulse transients, which are commonly encountered in practice. The triple quantum filtered spectra are numerically simulated, based on the evolution of the spin density operator under the Hamiltonian for the artifacts. The results show that the presence of the artifacts introduces a shape distortion in the spectrum as well as a variation in the peak intensity, compared with the spectrum without any artifacts. This work indicates that the existence of the instrumental artifacts may cause a misunderstanding of the triple quantum filtered NMR spectra in experiments. The results suggest that one be aware of the instrumental artifacts when performing the triple quantum filtered NMR experiments. PMID:27149654

  20. PR-CALC: A program for the reconstruction of NMR spectra from projections

    PubMed Central

    Coggins, Brian E.; Zhou, Pei

    2013-01-01

    Projection-reconstruction NMR (PR-NMR) has attracted growing attention as a method for collecting multidimensional NMR data rapidly. The PR-NMR procedure involves measuring lower-dimensional projections of a higher-dimensional spectrum, which are then used for the mathematical reconstruction of the full spectrum. We describe here the program PR-CALC, for the reconstruction of NMR spectra from projection data. This program implements a number of reconstruction algorithms, highly optimized to achieve maximal performance, and manages the reconstruction process automatically, producing either full spectra or subsets, such as regions or slices, as requested. The ability to obtain subsets allows large spectra to be analyzed by reconstructing and examining only those subsets containing peaks, offering considerable savings in processing time and storage space. PR-CALC is straightforward to use, and integrates directly into the conventional pipeline for data processing and analysis. It was written in standard C++ and should run on any platform. The organization is flexible, and permits easy extension of capabilities, as well as reuse in new software. PR-CALC should facilitate the widespread utilization of PR-NMR in biomedical research. PMID:16604426

  1. RUBIDIUM, a program for computer-aided assignment of two-dimensional NMR spectra of polypeptides.

    PubMed

    Yu, C; Hwang, J F; Chen, T B; Soo, V W

    1992-01-01

    Taking advantage of the rule-based expert system technology, a program named RUBIDIUM (Rule-Based Identification In 2D NMR Spectrum) was developed to accomplish the automatic 1H NMR resonance assignments of polypeptides. Besides noise elimination and peak selection capabilities, RUBIDIUM detects the cross-peak patterns of amino acid residues in the COSY spectrum, assigning these patterns to amino acid types, performing sequential assignments using combined COSY/NOESY spectra, and finally, achieving the total assignment of the 1H NMR spectrum. PMID:1607394

  2. Genetic algorithm-based feature selection in high-resolution NMR spectra

    PubMed Central

    Cho, Hyun-Woo; Jeong, Myong K.; Park, Youngja; Ziegler, Thomas R.; Jones, Dean P.

    2011-01-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy has provided a new means for detection and recognition of metabolic changes in biological systems in response to pathophysiological stimuli and to the intake of toxins or nutrition. To identify meaningful patterns from NMR spectra, various statistical pattern recognition methods have been applied to reduce their complexity and uncover implicit metabolic patterns. In this paper, we present a genetic algorithm (GA)-based feature selection method to determine major metabolite features to play a significant role in discrimination of samples among different conditions in high-resolution NMR spectra. In addition, an orthogonal signal filter was employed as a preprocessor of NMR spectra in order to remove any unwanted variation of the data that is unrelated to the discrimination of different conditions. The results of k-nearest neighbors and the partial least squares discriminant analysis of the experimental NMR spectra from human plasma showed the potential advantage of the features obtained from GA-based feature selection combined with an orthogonal signal filter. PMID:21472035

  3. Application of quantitative artificial neural network analysis to 2D NMR spectra of hydrocarbon mixtures.

    PubMed

    Väänänen, Taito; Koskela, Harri; Hiltunen, Yrjö; Ala-Korpela, Mika

    2002-01-01

    Understanding relationships between the structure and composition of molecular mixtures and their chemical properties is a main industrial aim. One central field of research is oil chemistry where the key question is how the molecular characteristics of composite hydrocarbon mixtures can be associated with the macroscopic properties of the oil products. Apparently these relationships are complex and often nonlinear and therefore call for advanced spectroscopic techniques. An informative and an increasingly used approach is two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. In the case of composite hydrocarbons the application of 2D NMR methodologies in a quantitative manner pose many technical difficulties, and, in any case, the resulting spectra contain many overlapping resonances that challenge the analytical work. Here, we present a general methodology, based on quantitative artificial neural network (ANN) analysis, to resolve overlapping information in 2D NMR spectra and to simultaneously assess the relative importance of multiple spectral variables on the sample properties. The results in a set of 2D NMR spectra of oil samples illustrate, first, that use of ANN analysis for quantitative purposes is feasible also in 2D and, second, that this methodology offers an intrinsic opportunity to assess the complex and nonlinear relationships between the molecular composition and sample properties. The presented ANN methodology is not limited to the analysis of NMR spectra but can also be applied in a manner similar to other (multidimensional) spectroscopic data. PMID:12444730

  4. An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data.

    PubMed

    Jacob, Daniel; Deborde, Catherine; Moing, Annick

    2013-06-01

    The spectra processing step is crucial in metabolomics approaches, especially for proton NMR metabolomics profiling. During this step, noise reduction, baseline correction, peak alignment and reduction of the 1D (1)H-NMR spectral data are required in order to allow biological information to be highlighted through further statistical analyses. Above all, data reduction (binning or bucketing) strongly impacts subsequent statistical data analysis and potential biomarker discovery. Here, we propose an efficient spectra processing method which also provides helpful support for compound identification using a new data reduction algorithm that produces relevant variables, called buckets. These buckets are the result of the extraction of all relevant peaks contained in the complex mixture spectra, rid of any non-significant signal. Taking advantage of the concentration variability of each compound in a series of samples and based on significant correlations that link these buckets together into clusters, the method further proposes automatic assignment of metabolites by matching these clusters with the spectra of reference compounds from the Human Metabolome Database or a home-made database. This new method is applied to a set of simulated (1)H-NMR spectra to determine the effect of some processing parameters and, as a proof of concept, to a tomato (1)H-NMR dataset to test its ability to recover the fruit extract compositions. The implementation code for both clustering and matching steps is available upon request to the corresponding author. PMID:23525538

  5. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  6. The Chemical Shift Baseline for High-Pressure NMR Spectra of Proteins.

    PubMed

    Frach, Roland; Kibies, Patrick; Böttcher, Saraphina; Pongratz, Tim; Strohfeldt, Steven; Kurrmann, Simon; Koehler, Joerg; Hofmann, Martin; Kremer, Werner; Kalbitzer, Hans Robert; Reiser, Oliver; Horinek, Dominik; Kast, Stefan M

    2016-07-18

    High-pressure (HP) NMR spectroscopy is an important method for detecting rare functional states of proteins by analyzing the pressure response of chemical shifts. However, for the analysis of the shifts it is mandatory to understand the origin of the observed pressure dependence. Here we present experimental HP NMR data on the (15) N-enriched peptide bond model, N-methylacetamide (NMA), in water, combined with quantum-chemical computations of the magnetic parameters using a pressure-sensitive solvation model. Theoretical analysis of NMA and the experimentally used internal reference standard 4,4-dimethyl-4-silapentane-1-sulfonic (DSS) reveal that a substantial part of observed shifts can be attributed to purely solvent-induced electronic polarization of the backbone. DSS is only marginally responsive to pressure changes and is therefore a reliable sensor for variations in the local magnetic field caused by pressure-induced changes of the magnetic susceptibility of the solvent. PMID:27282319

  7. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength

    PubMed Central

    Brumm, T.; Möps, A.; Dolainsky, C.; Brückner, S.; Bayerl, T. M.

    1992-01-01

    The partial orientation of multilamellar vesicles (MLV) in high magnetic fields has been studied and a method to prevent such effects is herewith proposed. The orientation effect was measured with 2H-, 31P-NMR and electron microscopy on MLVs of dipalmitoyl phosphatidylcholine with 30 mol% cholesterol. We present the first freeze—etch electron microscopy data obtained from MLV samples that were frozen directly in the NMR magnet at a field strength of 9.4 Tesla. These experiments clearly show that the MLVs adopt an ellipsoidal (but not a cylindrical) shape in the magnetic field. Best fit 31P-NMR lineshape calculations assuming an ellipsoidal distribution of molecular director axes to the experimentally obtained spectra provide a quantitative measure of the average semiaxis ratio of the ellipsoidal MLVs and its change with temperature. The application of so-called spherical supported vesicles (SSV) is found to prevent any partial orientation effects so that undistorted NMR powder pattern of the bilayer can be measured independently of magnetic field strength and temperature. The usefulness of SSVs is further demonstrated by a direct comparison of spectral data such as 31P-and 2H-NMR lineshapes and relaxation times as well as 2H-NMR dePaked spectra obtained for both model systems. These experiments show that spectral data obtained from partially oriented MLVs are not unambiguous to interpret, in particular, if an external parameter such as temperature is varied. ImagesFIGURE 1 PMID:19431822

  8. Molecular dynamics in paramagnetic materials as studied by magic-angle spinning 2H NMR spectra.

    PubMed

    Mizuno, Motohiro; Suzuki, You; Endo, Kazunaka; Murakami, Miwa; Tansho, Masataka; Shimizu, Tadashi

    2007-12-20

    A magic-angle spinning (MAS) 2H NMR experiment was applied to study the molecular motion in paramagnetic compounds. The temperature dependences of 2H MAS NMR spectra were measured for paramagnetic [M(H2O)6][SiF6] (M=Ni2+, Mn2+, Co2+) and diamagnetic [Zn(H2O)6][SiF6]. The paramagnetic compounds exhibited an asymmetric line shape in 2H MAS NMR spectra because of the electron-nuclear dipolar coupling. The drastic changes in the shape of spinning sideband patterns and in the line width of spinning sidebands due to the 180 degrees flip of water molecules and the reorientation of [M(H2O)6]2+ about its C3 axis were observed. In the paramagnetic compounds, paramagnetic spin-spin relaxation and anisotropic g-factor result in additional linebroadening of each of the spinning sidebands. The spectral simulation of MAS 2H NMR, including the effects of paramagnetic shift and anisotropic spin-spin relaxation due to electron-nuclear dipolar coupling and anisotropic g-factor, was performed for several molecular motions. Information about molecular motions in the dynamic range of 10(2) s(-1)NMR spectra when these paramagnetic effects are taken into account. PMID:18027914

  9. Bulk magnetization and 1H NMR spectra of magnetically heterogeneous model systems

    SciTech Connect

    Levin, E M; Bud' ko, S L

    2011-04-28

    Bulk magnetization and ¹H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe₂O₃ nano- or micro-particles have been studied. In LAP+Fe₂O₃, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe₂O₃, due to the higher proton concentration in polystyrene and stronger proton–proton dipolar coupling, an additional broadening is observed, i.e. ¹H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton–magnetic particles and proton–proton dipolar couplings. An increase of the volume magnetization by ~1 emu/cm³ affects the ¹H NMR signal width in a way that is similar to an increase of the proton concentration by ~2×10²²/cm³. ¹H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems.

  10. On the practical aspects of recording wideline QCPMG NMR spectra.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2010-06-01

    The practical aspects of applying CPMG for acquisition of wideline powder patterns are examined. It is shown that most distortions/modulations of spikelet spectra can be traced to the incoherent signal averaging from multiple coherence transfer pathways. A strategy for minimizing these distortions/modulations is described. Also, a few interesting observations regarding the implementation of the wideline WURST-QCPMG experiment are presented, namely the accumulation of second-order signal phase and the effects of varying the sweep rate and rf field of chirp pulses. PMID:20359918

  11. Characterisation of the 1H and 13C NMR spectra of methylcitric acid

    NASA Astrophysics Data System (ADS)

    Krawczyk, Hanna; Martyniuk, Tomasz

    2007-06-01

    Methylcitric acid (MCA) was synthesised in Reformatsky reaction (2 RS, 3 RS stereoisomers) and in the nucleophilic addition (2 RS, 3 SR stereoisomers). The stereoselectivity of these reactions was analysed. 1H and 13C NMR spectra of diastereoisomers of methylcitric acid were recorded and interpreted. The values of 1H chemical shifts and 1H- 1H coupling constants were analysed. Proton-decoupled high-resolution 13C NMR spectra of MCA diastereoisomers were measured in a series of dilute water solutions of various acidities. These data may provide a basis for unequivocal determination of the presence of MCA in the urine samples of patients' suffering from propionic acidemia, methylmalonic aciduria, or holocarboxylase synthetase deficiency. NMR spectroscopy enables determination of MCA diastereoisomers in body fluids and can be a complementary and useful diagnostic tool.

  12. Molecular Structures from [superscript 1]H NMR Spectra: Education Aided by Internet Programs

    ERIC Educational Resources Information Center

    Debska, Barbara; Guzowska-Swider, Barbara

    2007-01-01

    The article presents the way in which freeware Internet programs can be applied to teach [superscript 1]H NMR spectroscopy. The computer programs described in this article are part of the educational curriculum that explores spectroscopy and spectra interpretation. (Contains 6 figures.)

  13. Differential Analysis of 2D NMR Spectra: New Natural Products from a Pilot-Scale Fungal Extract Library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a newly developed protocol for the differential analysis of arrays of 2D NMR spectra, we were able to rapidly identify two previously unreported indole alkaloids from a library of unfractionated fungal extracts. Differential analyses of NMR spectra thus constitute an effective tool for the non...

  14. A new method for the comparison of 1H NMR predictors based on tree-similarity of spectra

    PubMed Central

    2014-01-01

    A methodology based on spectral similarity is presented that allows to compare NMR predictors without the recourse to assigned experimental spectra, thereby making the task of benchmarking NMR predictors less tedious, faster, and less prone to human error. This approach was used to compare four popular NMR predictors using a dataset of 1000 molecules and their corresponding experimental spectra. The results found were consistent with those obtained by directly comparing deviations between predicted and experimental shifts. PMID:24666427

  15. 1H, 13C, 15N NMR coordination shifts in Fe(II), Ru(II) and Os(II) cationic complexes with 2,2':6',2″-terpyridine.

    PubMed

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szlyk, Edward

    2011-05-01

    (1)H, (13)C and (15)N NMR studies of iron(II), ruthenium(II) and osmium(II) bis-chelated cationic complexes with 2,2':6',2″-terpyridine ([M(terpy)(2) ](2+) ; M = Fe, Ru, Os) were performed. Significant shielding of nitrogen-adjacent H(6) and deshielding of H(3'), H(4') protons were observed, both effects being mostly expressed for Fe(II) compounds. The metal-bonded nitrogens were shielded, this effect being much larger for the outer N(1), N(1″) than the inner N(1') atoms, and enhanced in the Fe(II) → Ru(II) → Os(II) series. PMID:21491480

  16. Quadrupolar magic angle spinning NMR spectra fitted using the Pearson IV function.

    PubMed

    Mironenko, Roman M; Belskaya, Olga B; Talsi, Valentin P; Likholobov, Vladimir A

    2014-01-01

    The Pearson IV function was used to fit the asymmetric solid-state (27)Al NMR spectra of alumina based catalysts. A high convergence (correlation coefficient is no less than 0.997) between experimental and simulated spectra was achieved. The decomposition of the (27)Al NMR spectra of zinc/aluminum mixed oxides with different Zn/Al molar ratio revealed an increased fraction (6-9%) of pentacoordinated aluminum atoms in these oxides as compared to γ-Al2O3. As the Zn/Al ratio is raised, the fraction of [AlO6] octahedral units decreases, while the fraction of [AlO4] tetrahedra increases. PMID:25454293

  17. HyperBIRD: a sensitivity-enhanced approach to collecting homonuclear-decoupled proton NMR spectra.

    PubMed

    Donovan, Kevin J; Frydman, Lucio

    2015-01-01

    Samples prepared following dissolution dynamic nuclear polarization (DNP) enable the detection of NMR spectra from low-γ nuclei with outstanding sensitivity, yet have limited use for the enhancement of abundant species like (1)H nuclei. Small- and intermediate-sized molecules, however, show strong heteronuclear cross-relaxation effects: spontaneous processes with an inherent isotopic selectivity, whereby only the (13)C-bonded protons receive a polarization enhancement. These effects are here combined with a recently developed method that delivers homonuclear-decoupled (1)H spectra in natural abundance samples based on heteronuclear couplings to these same, (13)C-bonded nuclei. This results in the HyperBIRD methodology; a single-shot combination of these two effects that can simultaneously simplify and resolve complex, congested (1)H NMR spectra with many overlapping spin multiplets, while achieving 50-100 times sensitivity enhancements over conventional thermal counterparts. PMID:25256418

  18. Line shapes in CP/MAS NMR spectra of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-02-01

    Cross polarization (CP) from 1H to quadrupolar nuclei with S = 3/2 has been carried out under magic-angle-spinning (MAS) conditions for powder samples of Na 2B 4O 7·10H 2O and H 3BO 3. The line shapes in the CP/MAS NMR spectra are different from those in the spectra measured with the single pulse sequence combined with 1H dipolar decoupling. Furthermore, the line shapes are found to be dependent on the measuring conditions such as the pulse amplitude for the quadrupolar nuclei. The spin-locking experiments demonstrate that line shapes in CP/MAS NMR spectra are largely dependent on the spin-locking efficiency.

  19. (1)H-, (13)C- and (15)N-NMR assignment of the N-terminal domain of human cerebral dopamine neurotrophic factor (CDNF).

    PubMed

    Latgé, Cristiane; Cabral, Kátia M S; Almeida, Marcius S; Foguel, Débora

    2013-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder that is caused by the death of midbrain dopaminergic neurons. Current therapies for PD do not halt the neurodegeneration nor repair the affected neurons. Therefore, search for novel neurotrophic factors (NTF) for midbrain dopaminergic neurons, which could be used in novel therapeutic approaches, is highly wanted. In 2007, a potent NTF for dopaminergic neurons was described as the conserved dopamine neurotrophic factor (CDNF). Single doses of this protein protect and restore dopaminergic neurons in experimental models of PD. CDNF has two domains; an N-terminal saposin-like domain, which may bind to membranes; and a presumably intrinsically unstructured C-terminal which contains an internal cysteine bridge in a CXXC motif similar to that of thiol/disulphide oxidoreductases and isomerases, and may thus reduce the endoplasmic reticulum stress caused by incorrectly folded proteins. We show for the first time the nuclear magnetic resonance assignment of N-terminal domain of recombinant CDNF (residues 1-105) by solution 2D and 3D NMR spectroscopy. We were able to obtain a nearly complete resonance assignment, which is the first step toward the solution structure determination of this neurotrophic factor. PMID:22528768

  20. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites.

    PubMed

    He, Hongping; Guo, Jiugao; Zhu, Jianxi; Yuan, Peng; Hu, Cheng

    2004-04-01

    Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica. PMID:15084323

  1. Protein–RNA specificity by high-throughput principal component analysis of NMR spectra

    PubMed Central

    Collins, Katherine M.; Oregioni, Alain; Robertson, Laura E.; Kelly, Geoff; Ramos, Andres

    2015-01-01

    Defining the RNA target selectivity of the proteins regulating mRNA metabolism is a key issue in RNA biology. Here we present a novel use of principal component analysis (PCA) to extract the RNA sequence preference of RNA binding proteins. We show that PCA can be used to compare the changes in the nuclear magnetic resonance (NMR) spectrum of a protein upon binding a set of quasi-degenerate RNAs and define the nucleobase specificity. We couple this application of PCA to an automated NMR spectra recording and processing protocol and obtain an unbiased and high-throughput NMR method for the analysis of nucleobase preference in protein–RNA interactions. We test the method on the RNA binding domains of three important regulators of RNA metabolism. PMID:25586222

  2. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced. PMID:11529420

  3. A system to obtain radiotracer uptake data simultaneously with NMR spectra in a high field magnet

    SciTech Connect

    Buchanan, M.; Marsden, P.K.; Garlick, P.B.; Mielke, C.H.

    1996-06-01

    Radiotracer techniques and nuclear magnetic resonance (NMR) spectroscopy are two complementary methods that are widely used to investigate cardiac metabolism. The authors have now developed a novel gamma photon detector system that will operate within a wide-bore, 9.4 T magnet. With this detector in position, it is possible to acquire radiotracer uptake data while simultaneously collecting NMR spectra. The advantages of this new system are firstly, that it enables correlations between radiotracer and NMR data to be made on individual rat hearts, and secondly that it allows the number of experiments required to obtain results of statistical significance to be greatly decreased. The extension of the system, to one in which positron emission tomography (PET) and magnetic resonance imaging (MRI) data are acquired simultaneously, clearly has enormous clinical potential. The detector consists of a NaI(Tl) scintillation crystal coupled to a magnetic field-insensitive photomultiplier tube by a 72.5 cm long, acrylic light pipe. This detector configuration satisfies the two, conflicting requirements of the crystal being near the sample, and thus in a high magnetic field, and the PMT being in a low magnetic field and thus far from the sample. In this paper the authors present the technical specifications of their new system together with what they believe are the first examples of simultaneously acquired NMR spectra and {sup 18}F-fluorodeoxyglucose ({sup 18}FDG) uptake data, obtained from isolated, perfused rat hearts.

  4. Deuteron and triton magnetic moments from NMR spectra of the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Puchalski, Mariusz; Komasa, Jacek; Pachucki, Krzysztof

    2015-08-01

    We present a theory and calculations of the nuclear magnetic shielding with finite nuclear mass effects and determine the magnetic moments of deuteron and triton using the known NMR spectra of HD and HT molecules. The results μd=0.857 438 234 6 (53 ) μN and μt=2.978 962 471 (10 ) μN are more accurate and in good agreement with the currently accepted values.

  5. High-resolution J-resolved NMR spectra of dilute spins in solids

    NASA Astrophysics Data System (ADS)

    Terao, T.; Miura, H.; Saika, A.

    1981-08-01

    A technique for obtaining J-resolved NMR spectra of dilute spins in solids has been developed. It is based on the observation that a combination of magic-angle irradiation and magic-angle spinning removes dipolar broadening, but leaves indirect spin-spin coupling. A preliminary application of this technique to adamantane clearly reveals the AX (J = 121 Hz) and AX (J = 135 Hz) multiplets in the methylene and methyne 13C spectrum, respectively.

  6. Automated recognition and assessment of cross peaks in two-dimensional NMR spectra of macromolecules

    NASA Astrophysics Data System (ADS)

    Glaser, S.; Kalbitzer, H. R.

    A generally applicable procedure for the automated recognition of cross peaks in two-dimensional NMR spectra is presented which exploits local and global spectral properties. It is mainly based on general symmetry considerations which apply for the two-dimensional homonuclear techniques commonly used for structural determination of macromolecules in solution. The corresponding PASCAL program has been tested on a double-quantumfiltered COSY spectrum of a small protein; the results show that the recognition of cross peaks and their assessment works effectively even on spectra with intense 1 noise and experimental artifacts as are typically obtained for biological macromolecules with relatively low solubility.

  7. 15N NMR coordination shifts in Pd(II), Pt(II), Au(III), Co(III), Rh(III), Ir(III), Pd(IV), and Pt(IV) complexes with pyridine, 2,2'-bipyridine, 1,10-phenanthroline, quinoline, isoquinoline, 2,2'-biquinoline, 2,2':6', 2'-terpyridine and their alkyl or aryl derivatives.

    PubMed

    Pazderski, Leszek

    2008-01-01

    The 15N NMR data for 105 complexes of Pd(II), Pt(II), Au(III), Co(III), Rh(III), Ir(III), Pd(IV), and Pt(IV) complexes with simple azines such as pyridine, 2,2'-bipyridine, 1,10-phenanthroline, quinoline, isoquinoline, 2,2'-biquinoline, 2,2':6', 2''-terpyridine and their alkyl or aryl derivatives have been reviewed. The 15N NMR coordination shifts, i.e. the differences between the 15N chemical shifts of the same nitrogen in the molecules of the complex and the ligand (Delta(15N) (coord) = delta(15N) (compl)--delta(15N) (lig)), have been related to some structural features of the reviewed coordination compounds, like the type of the central ion and the character of auxiliary ligands (mainly in trans position). These Delta(15N) (coord) parameters are negative, their absolute magnitudes (ca 30-150 ppm) generally increasing in the metal order Au(III) < Pd(II) < Pt(II) and Rh(III) < Co(III) < Pt(IV) < Ir(III), as well as with the enhanced trans influence of the other donor atoms (H, C < Cl < N). PMID:18855335

  8. Aggregation of [Au(CN)4]- anions: examination by crystallography and 15N CP-MAS NMR and the structural factors influencing intermolecular Au···N interactions.

    PubMed

    Geisheimer, Andrew R; Wren, John E C; Michaelis, Vladimir K; Kobayashi, Masayuki; Sakai, Ken; Kroeker, Scott; Leznoff, Daniel B

    2011-02-21

    To investigate the factors influencing the formation of intermolecular Au···NC interactions between [Au(CN)(4)](-) units, a series of [cation](n+)[Au(CN)(4)](n) double salts was synthesized, structurally characterized and probed by IR and (15)N{(1)H} CP-MAS NMR spectroscopy. Thus, [(n)Bu(4)N][Au(CN)(4)], [AsPh(4)][Au(CN)(4)], [N(PPh(3))(2)][Au(CN)(4)], [Co(1,10-phenanthroline)(3)][Au(CN)(4)](2), and [Mn(2,2';6',2''-terpyridine)(2)][Au(CN)(4)](2) show [Au(CN)(4)](-) anions that are well-separated from one another; no Au-Au or Au···NC interactions are present. trans-[Co(1,2-diaminoethane)(2)Cl(2)][Au(CN)(4)] forms a supramolecular structure, where trans-[Co(en)(2)Cl(2)](+) and [Au(CN)(4)](-) ions are found in separate layers connected by Au-CN···H-N hydrogen-bonding; weak Au···NC coordinate bonds complete octahedral Au(III) centers, and support a 2-D (4,4) network motif of [Au(CN)(4)](-)-units. A similar structure-type is formed by [Co(NH(3))(6)][Au(CN)(4)](3)·(H(2)O)(4). In [Ni(1,2-diaminoethane)(3)][Au(CN)(4)](2), intermolecular Au···NC interactions facilitate formation of 1-D chains of [Au(CN)(4)](-) anions in the supramolecular structure, which are separated from one another by [Ni(en)(3)](2+) cations. In [1,4-diazabicyclo[2.2.2]octane-H][Au(CN)(4)], the monoprotonated amine cation forms a hydrogen-bond to the [Au(CN)(4)](-) unit on one side, while coordinating to the axial sites of the gold(III) center through the unprotonated amine on the other, thereby generating a 2-D (4,4) net of cations and anions; an additional, uncoordinated [Au(CN)(4)](-)-unit lies in the central space of each grid. This body of structural data indicates that cations with hydrogen-bonding groups can induce intermolecular Au···NC interactions, while the cationic charge, shape, size, and aromaticity have little effect. While the ν(CN) values are poor indicators of the presence or absence of N-cyano bridging between [Au(CN)(4)](-)-units (partly because of the very low

  9. Occurrence of non-hydrolysable amides in the macromolecular constituent of Scenedesmus quadricauda cell wall as revealed by 15N NMR: Origin of n-alkylnitriles in pyrolysates of ultralaminae-containing kerogens

    NASA Astrophysics Data System (ADS)

    Derenne, S.; Largeau, C.; Taulelle, F.

    1993-02-01

    New structures, termed ultralaminae, were recently shown to occur in kerogens from numerous oil shales and source rocks. Morphological and chemical studies revealed that ultralaminae originate from the selective preservation of the non-hydrolysable biomacromolecules (algaenans) building up the thin outer walls of several Chlorophyceae (green microalgae) including the cosmopolitan genera Scenedesmus and Chlorella. The chemical correlation between such algaenans and fossil ultralaminae was mainly based on the production, on pyrolysis, of nitrogen compounds, n-alkylnitriles, with specific distributions depending on the lacustrine or marine origin of the considered samples. In addition, these bioand geopolymers were characterized by quite high N levels. Solid-state 15N NMR was carried out on 15N-enriched algaenan (isolated from Scenesdesmus quadricauda grown with 15NO 3- as sole nitrogen source) and revealed that amides are the most abundant nitrogen groups in this material. Minor amounts of two other nitrogen groups, amines and probably Nalkyl substituted pyrroles (indoles, carbazoles), are also observed. Amines are unlikely to contribute to the macromolecular structure but could simply correspond to trapped compounds. A part of the tentatively identified N-alkyl substituted pyrroles is released during pyrolysis, but a large fraction of these moieties is retained in the insoluble residue while their N-alkyl substituents are eliminated. The predominant amide groups associated with long polymethylenic chains, occurring in S. quadricauda algaenan, are eliminated during pyrolysis and lead, after a fast dehydration, to the formation of n-alkylnitriles. This study provides, to our knowledge, the first example of non-hydrolysable amide moieties in a biomacromolecule. This unusual resistance is probably due to steric protection within the macromolecular network. Such a protection also allows amide groups in chlorophycean algaenans to survive diagenesis and accounts for the

  10. Investigation of structure, vibrational and NMR spectra of oxycodone and naltrexone: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tavakol, Hossein; Esfandyari, Maryam; Taheri, Salman; Heydari, Akbar

    2011-08-01

    In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, 1H NMR and 13C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G** level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm -1, for the 1H NMR peaks are 0.87 and 0.17 ppm and for those of 13C NMR are 5.6 and 5.3 ppm, respectively for naltrexone and oxycodone.

  11. Distinguishing Vaccinium species by chemical fingerprinting based on NMR spectra, validated with spectra collected in different laboratories.

    PubMed

    Markus, Michelle A; Ferrier, Jonathan; Luchsinger, Sarah M; Yuk, Jimmy; Cuerrier, Alain; Balick, Michael J; Hicks, Joshua M; Killday, K Brian; Kirby, Christopher W; Berrue, Fabrice; Kerr, Russell G; Knagge, Kevin; Gödecke, Tanja; Ramirez, Benjamin E; Lankin, David C; Pauli, Guido F; Burton, Ian; Karakach, Tobias K; Arnason, John T; Colson, Kimberly L

    2014-06-01

    A method was developed to distinguish Vaccinium species based on leaf extracts using nuclear magnetic resonance spectroscopy. Reference spectra were measured on leaf extracts from several species, including lowbush blueberry (Vaccinium angustifolium), oval leaf huckleberry (Vaccinium ovalifolium), and cranberry (Vaccinium macrocarpon). Using principal component analysis, these leaf extracts were resolved in the scores plot. Analysis of variance statistical tests demonstrated that the three groups differ significantly on PC2, establishing that the three species can be distinguished by nuclear magnetic resonance. Soft independent modeling of class analogies models for each species also showed discrimination between species. To demonstrate the robustness of nuclear magnetic resonance spectroscopy for botanical identification, spectra of a sample of lowbush blueberry leaf extract were measured at five different sites, with different field strengths (600 versus 700 MHz), different probe types (cryogenic versus room temperature probes), different sample diameters (1.7 mm versus 5 mm), and different consoles (Avance I versus Avance III). Each laboratory independently demonstrated the linearity of their NMR measurements by acquiring a standard curve for chlorogenic acid (R(2) = 0.9782 to 0.9998). Spectra acquired on different spectrometers at different sites classifed into the expected group for the Vaccinium spp., confirming the utility of the method to distinguish Vaccinium species and demonstrating nuclear magnetic resonance fingerprinting for material validation of a natural health product. PMID:24963620

  12. Deuteron NMR spectra of ND4ClO4 single crystal at low temperatures.

    PubMed

    Birczyński, A; Lalowicz, Z T; Ingman, L P; Punkkinen, M; Ylinen, E E

    1993-03-01

    2H NMR spectra of ND4ClO4 single crystal were obtained at v0 = 44 MHz. Orientation and temperature (1.9-75 K) dependences were measured. Fitting the spectra gives the effective quadrupole coupling constants for all deuterons and the ground torsional level structure. The isotope reduction of the (A-T) and (A-E) tunnelling splittings, i.e., the ratios of the respective splittings for NH4+ and ND4+, were found to be different. The splittings at T = 24 K are about 60% of the helium temperature values. The spectrum undergoes intermediate narrowing by reorientations between 26 and 34 K and tunnelling related features in the spectra are eradicated. After reaching the extreme narrowing limit, a doublet with gradually decreasing separation was observed, what was attributed to averaging by torsional oscillations of increasing amplitude. At high temperatures (T > 75 K), the narrow spectrum reflects fast multiaxial reorientation of the ammonium ion. PMID:7834308

  13. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E.; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  14. Chemical shift changes and line narrowing in 13C NMR spectra of hydrocarbon clathrate hydrates.

    PubMed

    Kida, Masato; Sakagami, Hirotoshi; Takahashi, Nobuo; Nagao, Jiro

    2013-05-23

    The solid-state (13)C NMR spectra of various guest hydrocarbons (methane, ethane, propane, adamantane) in clathrate hydrates were measured to elucidate the local structural environments around hydrocarbon molecules isolated in guest-host frameworks of clathrate hydrates. The results show that, depending on the cage environment, the trends in the (13)C chemical shift and line width change as a function of temperature. Shielding around the carbons of the guest normal alkanes in looser cage environments tends to decrease with increasing temperature, whereas shielding in tighter cage environments tends to increase continuously with increasing temperature. Furthermore, the (13)C NMR line widths suggest, because of the reorientation of the guest alkanes, that the local structures in structure II are more averaged than those in structure I. The differences between structures I and II tend to be very large in the lower temperature range examined in this study. The (13)C NMR spectra of adamantane guest molecules in structure H hydrate show that the local structures around adamantane guests trapped in structure H hydrate cages are averaged at the same level as in the α phase of solid adamantane. PMID:23607335

  15. Uncertainty measurement for automated macro program-processed quantitative proton NMR spectra.

    PubMed

    Hays, Patrick A; Schoenberger, Torsten

    2014-11-01

    The evaluation of a fully automated quantitative proton nuclear magnetic resonance spectroscopy (qNMR) processing program, including the determination of its processing uncertainty, and the calculations of the combined uncertainty of the qNMR result, is presented with details on the use of a trimmed purity average. Quantitative NMR spectra (1359) were collected over a 4-month period on various concentrations of pseudoephedrine HCl dissolved in D2O (0.0610 to 93.60 mg/mL) containing maleic acid (the internal standard) to yield signal-to-noise ratios ranging from 3 to 72,000 for analyte integral regions. The resulting 5436 purities exhibited a normal distribution about the best estimate of the true value. The median absolute deviation (MAD) statistical method was used to obtain a model of uncertainty relative to the signal-to-noise of the analyte's integral peaks. The model was then tested using different concentrations of known purity chloroquine diphosphate. qNMR results of numerous illicit heroin HCl samples were compared to those obtained by capillary electrophoresis. PMID:25273593

  16. Alternative approach to the standardization of NMR spectra. Direct measurement of nuclear magnetic shielding in molecules.

    PubMed

    Jackowski, Karol; Jaszuński, Michał; Wilczek, Marcin

    2010-02-25

    Exploring the relation between shielding constants, resonance frequencies and magnetic moments of the nuclei we demonstrate that nuclear magnetic shielding can be directly observed from NMR spectra. In this approach, the absolute shielding constants of all the nuclei can be related to a single reference scale, with atomic (3)He as the primary standard. The accuracy of the data obtained using our method is confirmed comparing the (1)H and (13)C shielding constants for a series of deuterated compounds with those determined analyzing the traditional chemical shifts. Since the use of helium-3 is not in general a practical alternative, we next transfer the reference standard to the (2)H signals of external lock solvents, in this way making the method easy and ready for application with most NMR spectrometers. Finally, we illustrate our new method with the measurements of the (2/1)H primary isotope effects in several liquid deuterated solvents. PMID:20112974

  17. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    PubMed

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  18. Rapid acquisition of multidimensional solid-state NMR spectra of proteins facilitated by covalently bound paramagnetic tags.

    PubMed

    Nadaud, Philippe S; Helmus, Jonathan J; Sengupta, Ishita; Jaroniec, Christopher P

    2010-07-21

    We describe a condensed data collection approach that facilitates rapid acquisition of multidimensional magic-angle spinning solid-state nuclear magnetic resonance (SSNMR) spectra of proteins by combining rapid sample spinning, optimized low-power radio frequency pulse schemes and covalently attached paramagnetic tags to enhance protein (1)H spin-lattice relaxation. Using EDTA-Cu(2+)-modified K28C and N8C mutants of the B1 immunoglobulin binding domain of protein G as models, we demonstrate that high resolution and sensitivity 2D and 3D SSNMR chemical shift correlation spectra can be recorded in as little as several minutes and several hours, respectively, for samples containing approximately 0.1-0.2 micromol of (13)C,(15)N- or (2)H,(13)C,(15)N-labeled protein. This mode of data acquisition is naturally suited toward the structural SSNMR studies of paramagnetic proteins, for which the typical (1)H longitudinal relaxation time constants are inherently a factor of at least approximately 3-4 lower relative to their diamagnetic counterparts. To illustrate this, we demonstrate the rapid site-specific determination of backbone amide (15)N longitudinal paramagnetic relaxation enhancements using a pseudo-3D SSNMR experiment based on (15)N-(13)C correlation spectroscopy, and we show that such measurements yield valuable long-range (15)N-Cu(2+) distance restraints which report on the three-dimensional protein fold. PMID:20583834

  19. Dynamics of a truncated prion protein, PrP(113-231), from (15)N NMR relaxation: order parameters calculated and slow conformational fluctuations localized to a distinct region.

    PubMed

    O'Sullivan, Denis B D; Jones, Christopher E; Abdelraheim, Salama R; Brazier, Marcus W; Toms, Harold; Brown, David R; Viles, John H

    2009-02-01

    Prion diseases are associated with the misfolding of the prion protein (PrP(C)) from a largely alpha-helical isoform to a beta-sheet rich oligomer (PrP(Sc)). Flexibility of the polypeptide could contribute to the ability of PrP(C) to undergo the conformational rearrangement during PrP(C)-PrP(Sc) interactions, which then leads to the misfolded isoform. We have therefore examined the molecular motions of mouse PrP(C), residues 113-231, in solution, using (15)N NMR relaxation measurements. A truncated fragment has been used to eliminate the effect of the 90-residue unstructured tail of PrP(C) so the dynamics of the structured domain can be studied in isolation. (15)N longitudinal (T(1)) and transverse relaxation (T(2)) times as well as the proton-nitrogen nuclear Overhauser effects have been used to calculate the spectral density at three frequencies, 0, omega(N,) and 0.87omega(H). Spectral densities at each residue indicate various time-scale motions of the main-chain. Even within the structured domain of PrP(C), a diverse range of motions are observed. We find that removal of the tail increases T(2) relaxation times significantly indicating that the tail is responsible for shortening of T(2) times in full-length PrP(C). The truncated fragment of PrP has facilitated the determination of meaningful order parameters (S(2)) from the relaxation data and shows for the first time that all three helices in PrP(C) have similar rigidity. Slow conformational fluctuations of mouse PrP(C) are localized to a distinct region that involves residues 171 and 172. Interestingly, residues 170-175 have been identified as a segment within PrP that will form a steric zipper, believed to be the fundamental amyloid unit. The flexibility within these residues could facilitate the PrP(C)-PrP(Sc) recognition process during fibril elongation. PMID:19173221

  20. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.

    PubMed Central

    Schäfer, H; Mädler, B; Sternin, E

    1998-01-01

    The partial orientation of multilamellar vesicles (MLVs) in high magnetic fields is known to affect the shape of 2H NMR spectra. There are numerical methods for extracting either the orientational order parameters of lipid molecules for a random distribution of domain orientations in the sample, or the distribution of orientations for a known set of spectral anisotropies. A first attempt at determining the orientational order parameters in the presence of an unknown nonrandom distribution of orientations is presented. The numerical method is based on the Tikhonov regularization algorithm. It is tested using simulated partially oriented spectra. An experimental spectrum of a phospholipid-ether mixture in water is analyzed as an example. The experimental spectrum is consistent with an ellipsoidal shape of MLVs with a ratio of semiaxes of approximately 3.4. PMID:9533713

  1. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  2. Structures of Si-Carbohydrate Aqueous Complexes: Comparison of NMR Spectra and Molecular Orbital Results

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Heaney, P. J.

    2002-12-01

    Researchers recently have made the discovery that hypercoordinate Si-sorbitol complexes will readily form in biologically relevant fluids, and they have reported the first evidence for a transient organosilicon complex generated within the life cycle of an organism. These interpretations are based upon peak assignments of Si-29 NMR spectra that invoke Si-polyol complexes with Si in five- and six-fold coordination states. However, ab initio analyses of the proposed organosilicon structures do not reproduce the experimentally observed chemical shifts. We have successfully modeled one of the observed Si-29 chemical shifts with a 5-fold Si-disorbitol complex involving 5-membered ring configurations (i.e., Si-O-C-C-O), which yielded Si-29 chemical shifts that closely matched the observed values in the -100 to -102 ppm range. Likewise, Si-29 NMR peaks near -144 ppm were well fit by a model in which a 6-fold Si was complexed to three sorbitol molecules in a 5-membered ring configuration. The ability to simulate observed NMR signals using molecular orbital calculations provides strong support for the controversial role of hypercoordinate organosilicon species in the uptake and transport of silica by biological systems. The existence of such complexes in turn may explain other puzzles in Si biogeochemistry, such as the persistence of monomeric silica in concentrated biological fluids and the biofractionation of Si isotopes and Ge.

  3. Quantification of Human Brain Metabolites from in Vivo1H NMR Magnitude Spectra Using Automated Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Hiltunen, Yrjö; Kaartinen, Jouni; Pulkkinen, Juhani; Häkkinen, Anna-Maija; Lundbom, Nina; Kauppinen, Risto A.

    2002-01-01

    Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.

  4. 1H, 13C, 15N backbone and side chain NMR resonance assignments for the N-terminal RNA recognition motif of the HvGR-RBP1 protein involved in the regulation of barley (Hordeum vulgare L.) senescence

    PubMed Central

    Mason, Katelyn E.; Tripet, Brian P.; Parrott, David; Fischer, Andreas M.; Copié, Valérie

    2013-01-01

    Leaf senescence is an important process in the developmental life of all plant species. Senescence efficiency influences important agricultural traits such as grain protein content and plant growth, which are often limited by nitrogen use. Little is known about the molecular mechanisms regulating this highly orchestrated process. To enhance our understanding of leaf senescence and its regulation, we have undertaken the structural and functional characterization of previously unknown proteins that are involved in the control of senescence in barley (Hordeum vulgare L.). Previous microarray analysis highlighted several barley genes whose transcripts are differentially expressed during senescence, including a specific gene which is greater than 40 fold up-regulated in the flag leaves of early- as compared to late-senescing near-isogenic barley lines at 14 and 21 days past flowering (anthesis). From inspection of its amino acid sequence, this gene is predicted to encode a glycine-rich RNA-binding protein herein referred to as HvGR-RBP1. HvGR-RBP1 has been expressed as a recombinant protein in E. coli, and preliminary NMR data analysis has revealed that its glycine-rich C-terminal region [residues: 93–162] is structurally disordered whereas its N-terminal region [residues: 1–92] forms a well-folded domain. Herein, we report the complete 1H, 13C, and 15N resonance assignments of backbone and sidechain atoms, and the secondary structural topology of the N-terminal RNA Recognition Motif (RRM) domain of HvGR-RBP1, as a first step to unraveling its structural and functional role in the regulation of barley leaf senescence. PMID:23417794

  5. Study of conformations and hydrogen bonds in the configurational isomers of pyrrole-2-carbaldehyde oxime by 1H, 13C and 15N NMR spectroscopy combined with MP2 and DFT calculations and NBO analysis.

    PubMed

    Afonin, Andrei V; Ushakov, Igor A; Pavlov, Dmitry V; Ivanov, Andrei V; Mikhaleva, Al'bina I

    2010-09-01

    The (1)H, (13)C and (15)N NMR studies have shown that the E and Z isomers of pyrrole-2-carbaldehyde oxime adopt preferable conformation with the syn orientation of the oxime group with respect to the pyrrole ring. The syn conformation of E and Z isomers of pyrrole-2-carbaldehyde oxime is stabilized by the N-H...N and N-H...O intramolecular hydrogen bonds, respectively. The N-H...N hydrogen bond in the E isomer causes the high-frequency shift of the bridge proton signal by about 1 ppm and increase the (1)J(N, H) coupling by approximately 3 Hz. The bridge proton shows further deshielding and higher increase of the (1)J(N, H) coupling constant due to the strengthening of the N-H...O hydrogen bond in the Z isomer. The MP2 calculations indicate that the syn conformation of E and Z isomers is by approximately 3.5 kcal/mol energetically less favorable than the anti conformation. The calculations of (1)H shielding and (1)J(N, H) coupling in the syn and anti conformations allow the contribution to these constants from the N-H...N and N-H...O hydrogen bondings to be estimated. The NBO analysis suggests that the N-H...N hydrogen bond in the E isomer is a pure electrostatic interaction while the charge transfer from the oxygen lone pair to the antibonding orbital of the N-H bond through the N-H...O hydrogen bond occurs in the Z isomer. PMID:20623827

  6. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  7. Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.

    PubMed

    Hughes, Travis S; Wilson, Henry D; de Vera, Ian Mitchelle S; Kojetin, Douglas J

    2015-01-01

    Fluorine (19F) NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D) 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC) to objectively determine which model (number of peaks) would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/). PMID:26241959

  8. Cu-NMR spectra in UCu4Ni uncover site disorder

    NASA Astrophysics Data System (ADS)

    Bernal, O. O.; Rose, D. A.; Wu, Hsin-Ju; Chiang, M.; MacLaughlin, D. E.; Stewart, G. R.; Kim, J. S.

    2012-12-01

    Cu-NMR measurements in a random powder of UCu4Ni reveal two types of spectral lines for each of the two isotopes of naturally abundant Cu in the material. These lines, which we label L1 and L2, point to the existence of two inequivalent Cu sites in the sample. We present a study of the NMR line shape in UCu4Ni at three different frequencies (in the range from 40-70 MHz) and two temperature values (10 K and 150 K), that allow us to assign the lines to particular Cu sites. L1 is strongly broadened as the frequency decreases, but changes less with increasing temperature. In contrast, the width of L2 grows in proportion to frequency and decreases noticeably with increasing temperature. This behavior indicates that the crystallographic site corresponding to L1 is exposed to electric field gradients and has lower point symmetry than the site corresponding to L2, which displays some anisotropy but no discernible quadrupole effects. By comparison with the Cu-NMR spectra in UCu4Pd, where only one type of Cu-NMR line has been observed clearly, we can associate L1 with Cu(16e) nuclei: Cu nuclei sitting at the 16e site (Wyckoff notation) in the AuBe5 structure of the parent compound UCu5. This leaves L2 as originating from Cu(4c) nuclei; i.e., those sitting at the 4c site of the same structure. Unlike in UCu4Pd, the appearance of signal from Cu(4c) nuclei in the Ni compound is clear evidence of site disorder in UCu4Ni.

  9. Analysis of the carbon-13 and proton NMR spectra of bovine chromaffin granules.

    PubMed

    Sharp, R R; Richards, E P

    1977-03-29

    Natural abundance carbon-13 and proton NMR spectra of bovine chromaffin granules have been obtained and analyzed using computer simulation techniques. High resolution spectra show the presence of a fluid aqueous phase containing epinephrine, ATP and a random coil protein. The protein spectrum contains unusually intense resonances due to glutamic acid and proline and has been simulated satisfactorily using the known amino acid composition of chromogranin A. The lipid phase of chromaffin granules gives rise to intense, but very broad, resonances in the carbon-13 spectrum. Protons in the lipid phase are also observable as a very rapid component of the proton-free induction decay (T2 approximately equal to 15 microns). Linewidths of the carbon-13 spectra have been used to set upper limits on rotational correlation times and on the motional anisotropy in the aqueous phase. These limits show that the aqueous phase is a simple solution (not a gel) that is isotropic over regions much larger than solute dimensions. No gel transition is observed between -3 and 25 degrees C. The carbon-13 spectra are definitely inconsistent with a lipoprotein matrix model and chromaffin granules previously proposed by Helle and Serck-Hanssen ((1975) Mol. Cell, Biochem. 6, 127-146). Relative carbon-13 intensities of ATP and epinephrine are not consistent with the known 1 : 4 mol ratio of these components. This fact suggests that epinephrine and ATP are not directly complexed in intact chromaffin granules. PMID:849474

  10. Automated data evaluation and modelling of simultaneous (19) F-(1) H medium-resolution NMR spectra for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Paul, Andrea; Engel, Dirk; Guthausen, Gisela; Kraume, Matthias; Maiwald, Michael

    2016-06-01

    Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. In contrast to high-resolution online NMR (HR-NMR), MR-NMR can be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture from the reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by (1) H HR-NMR (500 MHz) and (1) H and (19) F MR-NMR (43 MHz) as a model system. The parallel online measurement is realised by splitting the flow, which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for (1) H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854892

  11. Lineshape-based polarimetry of dynamically-polarized 15N2O in solid-state mixtures

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Håkansson, P.; Pourfathi, M.; Ghosh, R. K.; Kara, H.; Kadlecek, S. J.; Pileio, G.; Levitt, M. H.; Rizi, R. R.

    2013-09-01

    Dynamic nuclear polarization (DNP) of 15N2O, known for its long-lived singlet-state order at low magnetic field, is demonstrated in organic solvent/trityl mixtures at ∼1.5 K and 5 T. Both 15N polarization and intermolecular dipolar broadening are strongly affected by the sample's thermal history, indicating spontaneous formation of N2O clusters. In situ 15N NMR reveals four distinct powder-pattern spectra, attributed to the chemical-shift anisotropy (CSA) tensors of the two 15N nuclei, further split by the intramolecular dipolar coupling between their magnetic moments. 15N polarization is estimated by fitting the free-induction decay (FID) signals to the analytical model of four single-quantum transitions. This analysis implies (10.2±2.2)% polarization after 37 h of DNP, and provides a direct, instantaneous probe of the absolute 15N polarization, without a need for time-consuming referencing to a thermal-equilibrium NMR signal.

  12. Spectroscopic separation of (13) C NMR spectra of complex isomeric mixtures by the CSSF-TOCSY-INEPT experiment.

    PubMed

    Yang, Lu; Moreno, Aitor; Fieber, Wolfgang; Brauchli, Robert; Sommer, Horst

    2015-04-01

    Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)-TOCSY-INEPT, is presented that allows the extraction of (13) C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the (1) H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled (1) H spins, and subsequent relaying of the magnetization from (1) H to (13) C by direct INEPT transfer to generate (13) C NMR subspectra. Simple consolidation of the subspectra yields (13) C NMR spectra for individual isomers. Alternatively, CSSF-INEPT with heteronuclear long-range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the (13) C NMR spectra for isomers containing multiple spin systems. A proof-of-principle validation of the CSSF-TOCSY-INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF-TOCSY-INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. PMID:25616134

  13. Simulation of 2D NMR Spectra of Carbohydrates Using GODESS Software.

    PubMed

    Kapaev, Roman R; Toukach, Philip V

    2016-06-27

    Glycan Optimized Dual Empirical Spectrum Simulation (GODESS) is a web service, which has been recently shown to be one of the most accurate tools for simulation of (1)H and (13)C 1D NMR spectra of natural carbohydrates and their derivatives. The new version of GODESS supports visualization of the simulated (1)H and (13)C chemical shifts in the form of most 2D spin correlation spectra commonly used in carbohydrate research, such as (1)H-(1)H TOCSY, COSY/COSY-DQF/COSY-RCT, and (1)H-(13)C edHSQC, HSQC-COSY, HSQC-TOCSY, and HMBC. Peaks in the simulated 2D spectra are color-coded and labeled according to the signal assignment and can be exported in JCAMP-DX format. Peak widths are estimated empirically from the structural features. GODESS is available free of charge via the Internet at the platform of the Carbohydrate Structure Database project ( http://csdb.glycoscience.ru ). PMID:27227420

  14. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Helmus, Jonathan J.; Nadaud, Philippe S.; Höfer, Nicole; Jaroniec, Christopher P.

    2008-02-01

    We describe three- and four-dimensional semiconstant-time transferred echo double resonance (SCT-TEDOR) magic-angle spinning solid-state nuclear magnetic resonance (NMR) experiments for the simultaneous measurement of multiple long-range N15-Cmethyl13 dipolar couplings in uniformly C13, N15-enriched peptides and proteins with high resolution and sensitivity. The methods take advantage of C13 spin topologies characteristic of the side-chain methyl groups in amino acids alanine, isoleucine, leucine, methionine, threonine, and valine to encode up to three distinct frequencies (N15-Cmethyl13 dipolar coupling, N15 chemical shift, and Cmethyl13 chemical shift) within a single SCT evolution period of initial duration ˜1/JCC1 (where JCC1≈35Hz, is the one-bond Cmethyl13-C13 J-coupling) while concurrently suppressing the modulation of NMR coherences due to C13-C13 and N15-C13 J-couplings and transverse relaxation. The SCT-TEDOR schemes offer several important advantages over previous methods of this type. First, significant (approximately twofold to threefold) gains in experimental sensitivity can be realized for weak N15-Cmethyl13 dipolar couplings (corresponding to structurally interesting, ˜3.5Å or longer, distances) and typical Cmethyl13 transverse relaxation rates. Second, the entire SCT evolution period can be used for Cmethyl13 and/or N15 frequency encoding, leading to increased spectral resolution with minimal additional coherence decay. Third, the experiments are inherently "methyl selective," which results in simplified NMR spectra and obviates the use of frequency-selective pulses or other spectral filtering techniques. Finally, the N15-C13 cross-peak buildup trajectories are purely dipolar in nature (i.e., not influenced by J-couplings or relaxation), which enables the straightforward extraction of N15-Cmethyl13 distances using an analytical model. The SCT-TEDOR experiments are demonstrated on a uniformly C13, N15-labeled peptide, N-acetyl-valine, and a 56

  15. Non-Linear Signal Detection Improvement by Radiation Damping in Single-Pulse NMR Spectra

    PubMed Central

    Schlagnitweit, Judith; Morgan, Steven W; Nausner, Martin; Müller, Norbert; Desvaux, Hervé

    2012-01-01

    When NMR lines overlap and at least one of them is affected by radiation damping, the resonance line shapes of all lines are no longer Lorentzian. We report the appearance of narrow signal distortions, which resemble hole-burnt spectra. This new experimental phenomenon facilitates the detection of tiny signals hidden below the main resonance. Theoretical analysis based on modified Maxwell–Bloch equations shows that the presence of strong transverse magnetization creates a feedback through the coil, which influences the magnetization of all spins with overlapping resonance lines. In the time domain this leads to cross-precession terms between magnetization densities, which ultimately cause non-linear behavior. Numerical simulations corroborate this interpretation. PMID:22266720

  16. An analytical derivation of a popular approximation of the Voigt function for quantification of NMR spectra.

    PubMed

    Bruce, S D; Higinbotham, J; Marshall, I; Beswick, P H

    2000-01-01

    The approximation of the Voigt line shape by the linear summation of Lorentzian and Gaussian line shapes of equal width is well documented and has proved to be a useful function for modeling in vivo (1)H NMR spectra. We show that the error in determining peak areas is less than 0.72% over a range of simulated Voigt line shapes. Previous work has concentrated on empirical analysis of the Voigt function, yielding accurate expressions for recovering the intrinsic Lorentzian component of simulated line shapes. In this work, an analytical approach to the approximation is presented which is valid for the range of Voigt line shapes in which either the Lorentzian or Gaussian component is dominant. With an empirical analysis of the approximation, the direct recovery of T(2) values from simulated line shapes is also discussed. PMID:10617435

  17. Velocity autocorrelation spectra in molten polymers measured by NMR modulated gradient spin-echo

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez; Mohorič, Aleš; Mattea, Carlos; Stapf, Siegfried; Serša, Igor

    2014-04-01

    The segmental dynamics in molten linear polymers is studied by the NMR method of modulated gradient spin-echo, which directly probes a spectrum of molecular velocity autocorrelation function. Diffusion spectra of mono-disperse poly(isoprene-1.4) with different molecular masses, measured in the frequency range 0.1-10 kHz at a temperature of 26\\ ^{\\circ}\\text{C} , have a form similar to the spectrum of Rouse chain dynamics, which implicates the tube-Rouse motion as the dominant dynamic process in this frequency range. The scaling of the center-of-mass diffusion coefficient, given from the fitting parameters, changes from N^{-1} into N^{-2.4} at around N \\approx 3\\text{-}5 Kuhn steps, which is less than predicted by theory and simulations, while the correlation times of the tube-Rouse mode do not follow the anticipated scaling.

  18. Spatially localized sup 1 H NMR spectra of metabolites in the human brain

    SciTech Connect

    Hanstock, C.C. ); Rothman, D.L.; Jue, T.; Shulman, R.G. ); Prichard, J.W. )

    1988-03-01

    Using a surface coil, the authors have obtained {sup 1}H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. {sup 1}H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was {approx}0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM.

  19. Main-chain-directed strategy for the assignment of /sup 1/H NMR spectra of proteins

    SciTech Connect

    Englander, S.W.; Wand, A.J.

    1987-09-22

    A strategy for assigning the resonances in two-dimensional (2D) NMR spectra of proteins is described. The method emphasizes the analysis of through-space relationships between protons by use of the two-dimensional nuclear Overhauser effect (NOE) experiment. NOE patterns used in the algorithm were derived from a statistical analysis of the combinations of short proton-proton distances observed in the high-resolution crystal structures of 21 proteins. One starts with a search for authentic main-chain NH-C/sub ..cap alpha../H-C/sub ..beta../H J-coupled units, which can be found with high reliability. The many main-chain units of a protein are then placed in their proper juxtaposition by recognition of predefined NOE connectivity patterns. To discover these connectivities, the 2D NOE spectrum is examined, in a prescribed order, for the distinct NOE patterns characteristic of helices, sheets, turns, and extended chain. Finally, the recognition of a few amino acid side-chain types places the discovered secondary structure elements within the polypeptide sequences. Unlike the sequential assignment approach, the main-chain-directed strategy does not rely on the difficult task of recognizing many side-chain spin systems in J-correlated spectra, the assignment process is not in general sequential with the polypeptide chain, and the prescribed connectivity patterns are cyclic rather than linear. The latter characteristic avoids ambiguous branch points in the analysis and imposed an internally confirmatory property on each forward step.

  20. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Interesse, F. S.; Cassidei, L.; Sciacovelli, O.

    1980-04-01

    1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -( CH2) n - CH3 ( n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.

  1. The NMR investigation of alkaloids. IX. /sup 13/C NMR spectra and stereochemistry of convolvine, convolamine, convoline, convolidine, subhirsine and 6-hydroxyhyoscyamine

    SciTech Connect

    Yagudaev, M.R.; Aripova, S.F.

    1986-07-01

    A correlation has been made on the basis of the results of a study of the C 13 NMR spectra, of the CSs of the C 13 carbon nuclei with the structure and stereochemistry of the tropane alkaloids convolvine, convolamine, convoline, convolidine, subhirsine, and 6-hydroxyhyoscyamine. It has been established that the N-CH/sub 3/ group in convolamine and the -OH group in convoline are oriented equatorially, and the N-CH/sub 3/ in hydroxyhyoscyamine axially.

  2. Spinning-frequency-dependent linewidths in 1H-decoupled 13C magic-angle spinning NMR spectra

    NASA Astrophysics Data System (ADS)

    Nakai, Toshihito; McDowell, Charles A.

    1994-09-01

    The broadenings observed in 13C MAS NMR spectra, which depend on the sample-spinning speed, were studied, using polycrystalline adamantane. Not only was a monotonic increase of the linewidths with the increase of the spinning frequency observed, but also a novel resonant feature was found. The phenomena were interpreted as originating from rotary-resonance 13C 1H recoupling.

  3. Complete assignment of (1)H and (13)C NMR spectra of standard neo-iota-carrabiose oligosaccharides.

    PubMed

    Jouanneau, Diane; Boulenguer, Patrick; Mazoyer, Jacques; Helbert, William

    2010-02-26

    Standard Eucheuma denticulatum iota-carrageenan was degraded with the Alteromonas fortis iota-carrageenase. The most abundant products, the neo-iota-carratetraose and neo-iota-carrahexaose were purified by permeation gel chromatography, and their corresponding (1)H and (13)C NMR spectra were fully assigned. PMID:20038459

  4. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained. PMID:17985927

  5. Deuteron NMR Spectra of ND4 Tunneling at Low Frequenciesin (ND4)2SnBr6

    NASA Astrophysics Data System (ADS)

    Lalowicz, Z. T.; Serafin, R.; Punkkinen, M.; Vuorimäki, A. H.; Ylinen, E. E.

    1995-05-01

    Deuteron NMR spectra of slowly tunneling ND4+ ions are analysed. Spectra are calculated as functions of the tunneling parameters which are the tunneling frequencies about the symmetry axes C2 and C3 of the tetrahedral ion. The structure and splittings within the ground torsional level (GTL) are obtained by fitting the spectra of (ND4)2SnBr6. Comparison with the GTL structure obtained before for NH4+ in the same compound gives the isotope reduction factor of the tunneling frequency about 200.

  6. Unified and Isomer-Specific NMR Metabolomics Database for the Accurate Analysis of 13C–1H HSQC Spectra

    PubMed Central

    2015-01-01

    A new metabolomics database and query algorithm for the analysis of 13C–1H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) 13C–1H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index. Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from 13C–1H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  7. Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.

    PubMed

    Bingol, Kerem; Li, Da-Wei; Bruschweiler-Li, Lei; Cabrera, Oscar A; Megraw, Timothy; Zhang, Fengli; Brüschweiler, Rafael

    2015-02-20

    A new metabolomics database and query algorithm for the analysis of (13)C-(1)H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) (13)C-(1)H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index . Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from (13)C-(1)H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  8. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    NASA Astrophysics Data System (ADS)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  9. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    PubMed

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. PMID:26895544

  10. NMR Spectra Transformed by Electron-Nuclear Coupling as Indicator of Structural Peculiarities of Magnetically Active Molecular Systems.

    PubMed

    Voronov, Vladimir K

    2016-09-01

    The peculiarities of nuclear spin relaxation in the paramagnetic systems have been analyzed taking into account the exchange processes. The analysis is based on the modified Solomon-Bloembergen equations. In this line, the conditions of detecting of the NMR signals of samples are discussed depending on resonance frequency of the NMR spectrometer and characteristic relaxation time. On this basis, (1)H NMR spectra of cobalt semiquinolate complex have been analyzed. It has been shown that the satellite signals observed in the spectrum are caused by hyperfine coupling of the tert-butyl group protons with α and β states (localized on pz orbital of the aromatic carbon) of unpaired electron spin. The relaxation process of the resonance protons is controlled by paramagnetic dipole-dipole coupling. The contact hyperfine coupling does not contribute to the paramagnetic broadening. A mechanism involving paramagnetic molecular structures, which are responsible for intramolecular exchange processes in the cobalt semiquinolate complex, is given. PMID:27513208

  11. AssignFit: A program for simultaneous assignment and structure refinement from solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Schwieters, Charles D.; Opella, Stanley J.; Marassi, Francesca M.

    2012-01-01

    AssignFit is a computer program developed within the XPLOR-NIH package for the assignment of dipolar coupling (DC) and chemical shift anisotropy (CSA) restraints derived from the solid-state NMR spectra of protein samples with uniaxial order. The method is based on minimizing the difference between experimentally observed solid-state NMR spectra and the frequencies back calculated from a structural model. Starting with a structural model and a set of DC and CSA restraints grouped only by amino acid type, as would be obtained by selective isotopic labeling, AssignFit generates all of the possible assignment permutations and calculates the corresponding atomic coordinates oriented in the alignment frame, together with the associated set of NMR frequencies, which are then compared with the experimental data for best fit. Incorporation of AssignFit in a simulated annealing refinement cycle provides an approach for simultaneous assignment and structure refinement (SASR) of proteins from solid-state NMR orientation restraints. The methods are demonstrated with data from two integral membrane proteins, one α-helical and one β-barrel, embedded in phospholipid bilayer membranes.

  12. 15N solid-state nuclear magnetic resonance study of pyrolyzed metal-polyaniline cathode catalysts for oxygen reduction in fuel cells

    NASA Astrophysics Data System (ADS)

    Kuroki, Shigeki; Hosaka, Yo; Yamauchi, Chiharu; Nagata, Shinsuke; Sonoda, Mayu

    2015-09-01

    The oxygen reduction reaction (ORR) activity of pyrolyzed metal-free and metal (Mn, Fe, Co, Ni and Cu)-containing polyaniline (PANI) in polymer electrolyte fuel cell (PEFC) was studied. The metal-free PANI800 shows quite poor ORR catalytic activity, whilst the metal-containing PANIMe800 display a better ORR activity. The 15N CP/MAS NMR spectra of PANINi800 and PANICu800 show one weak peak at 118 ppm and there is no peak observed in PANIFe800, against that of PANI800, PANIMn800, PANICo800 and PANINi800 show two peaks at 273 and 118 ppm assigned to the pyridinic and pyridinium nitrogens. It is because of the paramagnetic effect of metal ions. The 15N spin-echo NMR spectra of PANIMe800 with fast recycle delay show the peaks at 140 and 270 ppm assigned to the graphitic and pyridinic nitrogens, against that of PANI800 shows no peak. The spectra of PANIMn800, PANICo800, PANINi800 and PANICu600 also contain a very broaden peak at 430 ppm assigned to the nitrogen with Fermi-contact effect from metal ions. The spectra of PANIFe800 show some spinning side bands and the average Fe3+-15N distance can be calculated. The some amount of iron ion are relieved and average Fe3+-15N distance increase after acid washing and the ORR activity decreases.

  13. Experimental and theoretical studies on compositions, structures, and IR and NMR spectra of functionalized protic ionic liquids.

    PubMed

    Cui, Yingna; Yin, Jingmei; Li, Changping; Li, Shenmin; Wang, Ailing; Yang, Guang; Jia, Yingping

    2016-07-20

    The compositions and structures of amine-based functionalized protic ionic liquids (PILs), namely N,N-dimethyl(cyanoethyl)ammonium propionate (DMCEAP) and N,N-dimethyl(hydroxyethyl)ammonium propionate (DMEOAP) have been investigated systematically by IR and (1)H NMR spectroscopy and density functional theory (DFT) calculations. Analysis of the IR spectra suggests that both DMCEAP and DMEOAP are composed of neutral and ionized species in the liquid phase, the former one mainly existing in the state of precursor molecules, and the latter mainly as ion-pairs. The ratio of precursor molecules to ion-pairs in the liquid phase depends on the types of precursors, especially the functional groups of cations. (1)H NMR spectra indicate that there is a dynamic equilibrium between the neutral and ionized species, probably due to the formation of some intermediates in the PILs. The DFT calculations have been carried out to reveal the conformation, and obtain the corresponding IR and (1)H NMR spectra of the neutral and ionized species, so that the theoretical support to the experimental results can be provided. The present study will help understand the properties of PILs and provide guidance for further applications of PILs. PMID:27385035

  14. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra

    NASA Astrophysics Data System (ADS)

    De Sanctis, Silvia; Malloni, Wilhelm M.; Kremer, Werner; Tomé, Ana M.; Lang, Elmar W.; Neidig, Klaus-Peter.; Kalbitzer, Hans Robert

    2011-06-01

    NMR spectroscopy in biology and medicine is generally performed in aqueous solutions, thus in 1H NMR spectroscopy, the dominant signal often stems from the partly suppressed solvent and can be many orders of magnitude larger than the resonances of interest. Strong solvent signals lead to a disappearance of weak resonances of interest close to the solvent artifact and to base plane variations all over the spectrum. The AUREMOL-SSA/ALS approach for automated solvent artifact removal and baseline correction has been originally developed for multi-dimensional NMR spectroscopy. Here, we describe the necessary adaptations for an automated application to one-dimensional NMR spectra. Its core algorithm is still based on singular spectrum analysis (SSA) applied on time domain signals (FIDs) and it is still combined with an automated baseline correction (ALS) in the frequency domain. However, both steps (SSA and ALS) have been modified in order to achieve optimal results when dealing with one-dimensional spectra. The performance of the method has been tested on one-dimensional synthetic and experimental spectra including the back-calculated spectrum of HPr protein and an experimental spectrum of a human urine sample. The latter has been recorded with the typically used NOESY-type 1D pulse sequence including water pre-saturation. Furthermore, the fully automated AUREMOL-SSA/ALS procedure includes the managing of oversampled, digitally filtered and zero-filled data and the correction of the frequency domain phase shift caused by the group delay time shift from the digital finite response filtering.

  15. HN-NCA heteronuclear TOCSY-NH experiment for (1)H(N) and (15)N sequential correlations in ((13)C, (15)N) labelled intrinsically disordered proteins.

    PubMed

    Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine; Herbst, Christian; Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai

    2015-10-01

    A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue 'i' with that of residues 'i-1' and 'i+1' in ((13)C, (15)N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of (1) J CαN and (2) J CαN couplings to transfer the (15)N x magnetisation from amino acid residue 'i' to adjacent residues via the application of a band-selective (15)N-(13)C(α) heteronuclear cross-polarisation sequence of ~100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described. PMID:26282620

  16. Conformational studies of 3-aminomethylene-2,4-pentanedione using vibrational and NMR spectra, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Sümmchen, L.; Salzer, R.

    2007-10-01

    The IR, Raman and NMR spectra of 3-aminomethylene-2,4-pentanedione (AMP) H 2N sbnd CH dbnd C(COCH 3) 2 were measured. According to the NMR spectra in chloroform and more polar DMSO at room temperature, the sample exists as single entity. On the other hand vibrational spectra revealed that in less polar solutions AMP exists as two conformers with EZ or ZZ orientation of acetyl groups whereas in more polar solvent only one EZ conformer is observed. Such interpretation was confirmed also by the temperature-dependent measurements of IR spectra in chloroform. The observed IR and Raman bands were compared with harmonic vibrational frequencies, calculated using ab initio MP2 and B3LYP density functional methods in 6-31G ∗∗ basis set, and assigned on the basis of potential energy distribution. In addition, the geometries and relative energies of possible conformers of AMP were also evaluated at the same levels of theory and compared with the data from X-ray analysis which revealed that AMP exists in solid state as EZ conformer. The influence of environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using PCM, IPCM and ONSAGER models.

  17. NMR Studies of the Li-Mg-N-H Phases.

    NASA Astrophysics Data System (ADS)

    Bowman, Robert; Reiter, J. W.; Kulleck, J. G.; Hwang, S.-J.; Luo, Weifang

    2007-03-01

    Solid state NMR including magic-angle-spinning (MAS) and cross-polarization (CP) MAS experiments have been used to characterize various amide and imide phases containing Li and/or Mg. MAS-NMR spectra for the ^1H, ^6Li, ^7Li, and ^15N nuclei have been obtained to improve understanding on formation, processing, and degradation behavior. Only limited information could be obtained from the proton and ^7Li MAS-NMR spectra to due large dipolar interactions and small chemical shifts. However, more success was obtained from the ^6Li and ^15N nuclei although their very long spin-lattice relaxation times did impact signal acquisition times. For example, three distinct ^6Li peaks were resolved from LiNH2 phases that were clearly separated from the LiH secondary phase in these samples. While the ^15N spectra for LiNH2 phase in isotopically enriched samples exhibited only a single peak at least three distinct ^15N peaks were observed from the similarly enriched Mg amide samples. These differences will be related to crystal structures. The NMR spectra also revealed very little motion in these hydrides upon to nearly 500 K.

  18. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2007-12-01

    1H, 13C and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline [LL=4,4'-dimethyl-2,2'-bipyridine (dmbpy); 4,4'-diphenyl-2,2'-bipyridine (dpbpy); 4,7-dimethyl-1,10-phenanthroline (dmphen); 4,7-diphenyl-1,10-phenanthroline (dpphen)] having a general [M(LL)Cl2] formula were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H high-frequency coordination shifts (Delta1Hcoord=delta1Hcomplex-delta1Hligand) were discussed in relation to the changes of diamagnetic contribution in the relevant 1H shielding constants. The comparison to literature data for similar [M(LL)(XX)], [M(LL)X2] and [M(LL)XY] coordination or organometallic compounds containing various auxiliary ligands revealed a large dependence of delta1H parameters on inductive and anisotropic effects. 15N low-frequency coordination shifts (Delta15Ncoord=delta 15Ncomplex-delta15Nligand) of ca 88-96 ppm for M=Pd and ca 103-111 ppm for M=Pt were attributed to both the decrease of the absolute value of paramagnetic contribution and the increase of the diamagnetic term in the expression for 15N shielding constants. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) transition and by ca 6-7 ppm following dmbpy-->dmphen or dpbpy-->dpphen ligand replacement; variations between analogous complexes containing methyl and phenyl ligands (dmbpy vs dpbpy; dmphen vs dpphen) did not exceed+/-1.5 ppm. Experimental 1H, 13C, 15N NMR chemical shifts were compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in DMSO or DMF solution. PMID:18044804

  19. EASY-GOING deconvolution: Combining accurate simulation and evolutionary algorithms for fast deconvolution of solid-state quadrupolar NMR spectra

    NASA Astrophysics Data System (ADS)

    Grimminck, Dennis L. A. G.; Polman, Ben J. W.; Kentgens, Arno P. M.; Leo Meerts, W.

    2011-08-01

    A fast and accurate fit program is presented for deconvolution of one-dimensional solid-state quadrupolar NMR spectra of powdered materials. Computational costs of the synthesis of theoretical spectra are reduced by the use of libraries containing simulated time/frequency domain data. These libraries are calculated once and with the use of second-party simulation software readily available in the NMR community, to ensure a maximum flexibility and accuracy with respect to experimental conditions. EASY-GOING deconvolution ( EGdeconv) is equipped with evolutionary algorithms that provide robust many-parameter fitting and offers efficient parallellised computing. The program supports quantification of relative chemical site abundances and (dis)order in the solid-state by incorporation of (extended) Czjzek and order parameter models. To illustrate EGdeconv's current capabilities, we provide three case studies. Given the program's simple concept it allows a straightforward extension to include other NMR interactions. The program is available as is for 64-bit Linux operating systems.

  20. An inversion method of 2D NMR relaxation spectra in low fields based on LSQR and L-curve

    NASA Astrophysics Data System (ADS)

    Su, Guanqun; Zhou, Xiaolong; Wang, Lijia; Wang, Yuanjun; Nie, Shengdong

    2016-04-01

    The low-field nuclear magnetic resonance (NMR) inversion method based on traditional least-squares QR decomposition (LSQR) always produces some oscillating spectra. Moreover, the solution obtained by traditional LSQR algorithm often cannot reflect the true distribution of all the components. Hence, a good solution requires some manual intervention, for especially low signal-to-noise ratio (SNR) data. An approach based on the LSQR algorithm and L-curve is presented to solve this problem. The L-curve method is applied to obtain an improved initial optimal solution by balancing the residual and the complexity of the solutions instead of manually adjusting the smoothing parameters. First, the traditional LSQR algorithm is used on 2D NMR T1-T2 data to obtain its resultant spectra and corresponding residuals, whose norms are utilized to plot the L-curve. Second, the corner of the L-curve as the initial optimal solution for the non-negative constraint is located. Finally, a 2D map is corrected and calculated iteratively based on the initial optimal solution. The proposed approach is tested on both simulated and measured data. The results show that this algorithm is robust, accurate and promising for the NMR analysis.

  1. Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra of complex mixtures and biofluids

    NASA Astrophysics Data System (ADS)

    Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino

    2014-05-01

    The quantitative interpretation of 1H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and, furthermore, the spectra may contain unknown components and macromolecular background which cannot be easily separated from baseline. In this work, tools and strategies for quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra from complex mixtures were developed and systematically assessed. In the present approach, the signals of well-defined, stoichiometric components are described by a QM model, while the background is described by a multiterm baseline function and the unknown signals using optimizable and adjustable lines, regular multiplets or any spectral structures which can be composed from spectral lines. Any prior knowledge available from the spectrum can also be added to the model. Fitting strategies for weak and strongly overlapping spectral systems were developed and assessed using two basic model systems, the metabolite mixtures without and with macromolecular (serum) background. The analyses show that if the spectra are measured in high-throughput manner, the consistent absolute quantification demands some calibration to compensate the different response factors of the protons and compounds. On the other hand, the results show that also the T2-edited spectra can be measured so that they obey well the QM rules. In general, qQMSA exploits and interprets the spectral information in maximal way taking full advantage from the QM properties of the spectra and, at the same time, offers chemical confidence which means that individual components can be identified with high confidence on the basis of their accurate spectral parameters.

  2. Constraining Oxygen-17 NMR Spectra of High Pressure Crystals and Glasses: New Data for Jadeite, Pyrope, Grossular, and Mullite

    NASA Astrophysics Data System (ADS)

    Kelsey, K. E.; Stebbins, J. F.; Du, L.; Hankins, B.

    2005-12-01

    17O NMR is a direct way of analyzing the immediate environment around oxygen atoms and can provide information on cation ordering, mixing, and network connectivity in glasses and disordered crystals. Due to overlapping peaks and lack of data on crystalline model compounds, 17O NMR spectra of high pressure glasses have been difficult to interpret. Additionally, data on crystalline model compounds are needed to test the validity of quantum chemical calculations. In this study, 17O NMR spectra were collected for crystalline jadeite, pyrope, grossular, and mullite in order to determine the parameters for oxygen bonded to [6]Al in a variety of environments. Jadeite contains three oxygen sites: oxygen bonded to [4]Si, Na, and two [6]Al atoms (O1), oxygen bonded to [4]Si, Na, and [6]Al atoms (O2), and oxygen bonded to two [4]Si and two Na atoms (O3). The NMR parameters for O1 are CQ = 3.3 MHz, δ = 64 ppm, and ν = 0.9; for O2 are CQ = 4.1 MHz, δ = 59 ppm, and ν = 0.15; and for O3 are CQ = 5.0 MHz, δ = 60 ppm, and ν = 0.15. The parameters for O2 are similar to interpretations of recent data for this kind of site in high pressure sodium aluminosilicate glasses (δ = 59 ppm) and to quantum chemical calculations (Lee et al., 2004, J. Phys. Chem., 108, 5897). Pyrope and grossular each contain one oxygen site, oxygen bonded to [4]Si, [6]Al, and two M2+ cations. The 17O NMR parameters for pyrope are CQ = 3.4 MHz, δ = 84 ppm, and ν = 0.3 and for grossular are CQ = 4.1 MHz, δ = 102 ppm, and ν = 0.4. In grossular, the NMR peak for oxygens bonded to [4]Si, Ca, and high coordinated Al seems to fall between those for "normal" bridging and non bridging oxygens, as reported for high pressure CAS glasses by Allwardt et al. (2005). These data will also be useful to help understand Ca-Mg ordering in the pyrope-grossular solid solutions. Mullite contains four oxygen environments: oxygen bonded to three tetrahedral Al or Si (Oc*), oxygen bonded to two tetrahedral Al or Si (Oc), and

  3. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  4. Ab initio study of 59Co NMR spectra in Co2FeAl1-xSix Heusler alloys

    NASA Astrophysics Data System (ADS)

    Nishihara, H.; Sato, K.; Akai, H.; Takiguchi, C.; Geshi, M.; Kanomata, T.; Sakon, T.; Wada, T.

    2015-05-01

    Ab initio electronic structure calculation of a series of Co2FeAl1-xSix Heusler alloys has been performed, using the Korringa-Kohn-Rostoker-coherent potential approximation method to explain experimental 59Co NMR spectra. Two prominent features are explained semi-quantitatively-a global shift of the 59Co resonance line due to alloying with Al and Si atoms in Co2FeAl1-xSix, and the effect of local disorder in creating distinct satellite lines of 59Co NMR in Co2FeAl. The importance is stressed of the positive contribution to the 59Co hyperfine field from valence electron polarization, which emerges from the half-metallic band structure inherent in Co-based Heusler alloys.

  5. Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.

    PubMed

    Hefke, Frederik; Bagaria, Anurag; Reckel, Sina; Ullrich, Sandra Johanna; Dötsch, Volker; Glaubitz, Clemens; Güntert, Peter

    2011-02-01

    We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273-6279 (1982)), types of amino acids are labeled with (13)C or/and (15)N such that cross peaks between (13)CO(i - 1) and (15)NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with (13)C and the second with (15)N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B(2)R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin. PMID:21170670

  6. Computer-assisted assignment of 2D 1H NMR spectra of proteins: basic algorithms and application to phoratoxin B.

    PubMed

    Kleywegt, G J; Boelens, R; Cox, M; Llinás, M; Kaptein, R

    1991-05-01

    A suite of computer programs (CLAIRE) is described which can be of assistance in the process of assigning 2D 1H NMR spectra of proteins. The programs embody a software implementation of the sequential assignment approach first developed by Wüthrich and co-workers (K. Wüthrich, G. Wider, G. Wagner and W. Braun (1982) J. Mol. Biol. 155, 311). After data-abstraction (peakpicking), the software can be used to detect patterns (spin systems), to find cross peaks between patterns in 2D NOE data sets and to generate assignments that are consistent with all available data and which satisfy a number of constraints imposed by the user. An interactive graphics program called CONPAT is used to control the entire assignment process as well as to provide the essential feedback from the experimental NMR spectra. The algorithms are described in detail and the approach is demonstrated on a set of spectra from the mistletoe protein phoratoxin B, a homolog of crambin. The results obtained compare well with those reported earlier based entirely on a manual assignment process. PMID:1841687

  7. Optimized Spectral Editing of 13C MAS NMR Spectra of Rigid Solids Using Cross-Polarization Methods

    NASA Astrophysics Data System (ADS)

    Sangill, R.; Rastrupandersen, N.; Bildsoe, H.; Jakobsen, H. J.; Nielsen, N. C.

    Combinations of 13C magic-angle spinning (MAS) NMR experiments employing cross polarization (CP), cross polarization-depolarization (CPD), and cross polarization-depolarization-repolarization are analyzed quantitatively to derive simple and general procedures for optimized spectral editing of 13C CP/MAS NMR spectra of rigid solids by separation of the 13C resonances into CH n subspectra ( n = 0, 1, 2, and 3). Special attention is devoted to a differentiation by CPD/MAS of CH and CH 2 resonances since these groups behave quite similarly during spin lock under Hartmann-Hahn match and are therefore generally difficult to distinguish unambiguously. A general procedure for the design of subexperiments and linear combinations of their spectra to provide optimized signal-to-noise ratios for the edited subspectra is described. The technique is illustrated by a series of edited 13C CP/MAS spectra for a number of rigid solids ranging from simple organic compounds (sucrose and l-menthol) to complex pharmaceutical products (calcipotriol monohydrate and vitamin D 3) and polymers (polypropylene, polyvinyl alcohol, polyvinyl chloride, and polystyrene).

  8. Constraining 17O and 27Al NMR spectra of high-pressure crystals and glasses: New data for jadeite, pyrope, grossular, and mullite

    USGS Publications Warehouse

    Kelsey, K.E.; Stebbins, J.F.; Du, L.-S.; Hankins, B.

    2007-01-01

    The 17O NMR spectra of glasses quenched from melts at high pressure are often difficult to interpret due to overlapping peaks and lack of crystalline model compounds. High-pressure aluminosilicate glasses often contain significant amounts of [5]Al and [6]Al, thus these high-pressure glasses must contain oxygen bonded to high-coordinated aluminum. The 17O NMR parameters for the minerals jadeite, pyrope, grossular, and mullite are presented to assist interpretation of glass spectra and to help test quantum chemical calculations. The 17O NMR parameters for jadeite and grossular support previous peak assignments of oxygen bonded to Si and high-coordinated Al in high-pressure glasses as well as quantum chemical calculations. The oxygen tricluster in mullite is very similar to the previously observed tricluster in grossite (CaAl4 O7) and suspected triclusters in glasses. We also present 27Al NMR spectra for pyrope, grossular, and mullite.

  9. Characterisation of the 1H and 13C NMR spectra of N-acetylaspartylglutamate and its detection in urine from patients with Canavan disease.

    PubMed

    Krawczyk, Hanna; Gradowska, Wanda

    2003-03-10

    1H and 13C NMR spectra of N-acetylaspartylglutamate (NAAG) have been recorded and interpreted. The values of the 1H chemical shifts and 1H-(1)H coupling constants at different pH were obtained by iterative computer fitting of 1-D 1H NMR spectra. This provided information on the solution conformation of the investigated molecule. Proton-decoupled high resolution 13C NMR spectra of NAAG have been measured in a series of dilute water solution of various acidity. These data have provided a basis for unequivocal determination of the presence of NAAG in the urine sample of a patient suffering from Canavan disease. NMR spectroscopy provides a possibility of detecting NAAG in body fluids. PMID:12615232

  10. Structural peculiarities of configurational isomers of 1-styrylpyrroles according to 1Н, 13С and 15N NMR spectroscopy and density functional theory calculations: electronic and steric hindrance for planar structure.

    PubMed

    Afonin, Andrei V; Ushakov, Igor A; Pavlov, Dmitry V; Schmidt, Elena Yu; Dvorko, Marina Yu

    2013-06-01

    Comparative analysis of the (1)Н and (13)С NMR data for a series of the E and Z-1-styrylpyrroles, E and Z-1-(1-propenyl)pyrroles, 1-vinylpyrroles and styrene suggests that the conjugation between the unsaturated fragments in the former compounds is reduced. This is the result of the mutual influence of the donor p-π and π-π conjugation having opposite directions. According to the NMR data combined with the density functional theory calculations, the Z isomer of 1-styrylpyrrole has essentially a nonplanar structure because of the steric hindrance. However, the E isomer of 1-styrylpyrrole is also an out-of-plane structure despite the absence of a sterical barrier for the planar one. Deviation of the E isomer from the planar structure seems to be caused by an electronic hindrance produced by a mutual influence of the p-π and π-π conjugation. The structure of the E isomer of the 2-substituted 1-styrylpyrroles is similar to that of the 2-substituted 1-vinylpyrroles. The steric effects in the Z isomer of the 2-substituted 1-styrylpyrroles result in the large increase of the dihedral angle between planes of the pyrrole ring and double bond. PMID:23558848

  11. Probing protein structure by solvent perturbation of NMR spectra: the surface accessibility of bovine pancreatic trypsin inhibitor.

    PubMed Central

    Molinari, H; Esposito, G; Ragona, L; Pegna, M; Niccolai, N; Brunne, R M; Lesk, A M; Zetta, L

    1997-01-01

    In the absence of specific interactions, the relative attenuation of protein NMR signals due to added stable free radicals such as TEMPOL should reflect the solvent accessibility of the molecular surface. The quantitative correlation between observed attenuation and surface accessibility was investigated with a model system, i.e., the small protein bovine pancreatic trypsin inhibitor. A detailed discussion is presented on the reliability and limits of the approach, and guidelines are provided for data acquisition, treatment, and interpretation. The NMR-derived accessibilities are compared with those obtained from x-ray diffraction and molecular dynamics data. Although the time-averaged accessibilities from molecular dynamics are ideally suited to fit the NMR data, better agreement was observed between the paramagnetic attenuations of the fingerprint cross-peaks of homonuclear proton spectra and the total NH and H alpha accessibilities calculated from x-ray coordinates, than from time-averaged molecular dynamics simulations. In addition, the solvent perturbation response appears to be a promising approach for detecting the thermal conformational evolution of secondary structure elements in proteins. PMID:9199802

  12. Fast acquisition of high-resolution NMR spectra in inhomogeneous fields via intermolecular double-quantum coherences

    PubMed Central

    Chen, Zhong; Cai, Shuhui; Chen, Zhiwei; Zhong, Jianhui

    2009-01-01

    A pulse sequence, IDEAL-II, is proposed based on the concept of intermolecular dipolar-interaction enhanced all lines [Z. Chen et al., J. Am. Chem. Soc. 126, 446 (2004)] for obtaining one-dimensional (1D) high-resolution liquid NMR spectra in inhomogeneous fields via two-dimensional acquisitions. With the new acquisition scheme, the range of magnetic field inhomogeneity rather than chemical shift is sampled in the indirect dimension. This enables a great reduction in acquisition time and amount of data, much improved over the original IDEAL implementation. It is applicable to both isolated and J-coupled spin systems in liquid. For the latter, apparent J coupling constants are magnified threefold in spectra obtained with this sequence. This allows a more accurate measurement of J coupling constants in the cases of small J coupling constants or large inhomogeneous fields. Analytical expression was derived based on intermolecular multiple-quantum coherence treatments. Solution samples that were purposely deshimmed and biological samples with intrinsic field inhomogeneities were tested. Experimental results demonstrate that this sequence retains useful structural information including chemical shifts, relative peak areas, and multiplet patterns of J coupling even when the field inhomogeneity is severe enough to almost erase all spectroscopic information with conventional 1D single-quantum coherence techniques. This sequence is more applicable to weakly coupled and uncoupled spin systems, potentially useful for studying metabolites in in vivo NMR spectroscopy and for characterizing technologically important new materials in combinatorial chemistry. PMID:19256612

  13. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  14. Site-resolved (2)H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra.

    PubMed

    Lindh, E L; Stilbs, P; Furó, I

    2016-07-01

    We investigate a way one can achieve good spectral resolution in (2)H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the (2)H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two (2)H spin populations with similar chemical shifts but different quadrupole splittings. In (2)H-exchanged cellulose containing two (2)H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics. PMID:27152833

  15. Inhibition of alanine racemase by alanine phosphonate: detection of an imine linkage to pyridoxal 5'-phosphate in the enzyme-inhibitor complex by solid-state /sup 15/N nuclear magnetic resonance

    SciTech Connect

    Copie, V.; Faraci, W.S.; Walsh, C.T.; Griffin, R.G.

    1988-07-12

    Inhibition of alanine racemase from the Gram-positive bacterium Bacillus stearothermophilus by (1-aminoethyl)phosphonic acid (Ala-P) proceeds via a two-step reaction pathway in which reactivation occurs very slowly. In order to determine the mechanism of inhibition, the authors have recorded low-temperature, solid-state /sup 15/N NMR spectra from microcrystals of the (/sup 15/N)Ala-P-enzyme complex, together with spectra of a series of model compounds that provide the requisite database for the interpretation of the /sup 15/N chemical shifts. Proton-decoupled spectra of the microcrystals exhibit a line at approx. 150 ppm, which conclusively demonstrates the presence of a protonated Ala-P-PLP aldimine and thus clarifies the structure of the enzyme-inhibitor complex. They also report the pH dependence of Ala-P binding to alanine racemase.

  16. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts.

    PubMed

    Ott, Karl-Heinz; Araníbar, Nelly; Singh, Bijay; Stockton, Gerald W

    2003-03-01

    The biochemical mode-of-action (MOA) for herbicides and other bioactive compounds can be rapidly and simultaneously classified by automated pattern recognition of the metabonome that is embodied in the 1H NMR spectrum of a crude plant extract. The ca. 300 herbicides that are used in agriculture today affect less than 30 different biochemical pathways. In this report, 19 of the most interesting MOAs were automatically classified. Corn (Zea mays) plants were treated with various herbicides such as imazethapyr, glyphosate, sethoxydim, and diuron, which represent various biochemical modes-of-action such as inhibition of specific enzymes (acetohydroxy acid synthase [AHAS], protoporphyrin IX oxidase [PROTOX], 5-enolpyruvylshikimate-3-phosphate synthase [EPSPS], acetyl CoA carboxylase [ACC-ase], etc.), or protein complexes (photosystems I and II), or major biological process such as oxidative phosphorylation, auxin transport, microtubule growth, and mitosis. Crude isolates from the treated plants were subjected to 1H NMR spectroscopy, and the spectra were classified by artificial neural network analysis to discriminate the herbicide modes-of-action. We demonstrate the use and refinement of the method, and present cross-validated assignments for the metabolite NMR profiles of over 400 plant isolates. The MOA screen also recognizes when a new mode-of-action is present, which is considered extremely important for the herbicide discovery process, and can be used to study deviations in the metabolism of compounds from a chemical synthesis program. The combination of NMR metabolite profiling and neural network classification is expected to be similarly relevant to other metabonomic profiling applications, such as in drug discovery. PMID:12590124

  17. Magnetism, optical absorbance, and 19F NMR spectra of nafion films with self-assembling paramagnetic networks

    SciTech Connect

    Levin, E. M.; Chen, Q.; Bud'ko, S. L.

    2012-01-15

    Magnetization, optical absorbance, and {sup 19}F NMR spectra of Nafion transparent films as received and doped with Mn{sup 2+}, Co{sup 2+}, Fe{sup 2+}, and Fe{sup 3+} ions with and without treatment in 1H-1,2,4-triazole (trz) have been studied. Doping of Nafion with Fe{sup 2+} and Co{sup 2+} and their bridging to nitrogen of triazole yields a hybrid self-assembling paramagnetic system that exhibits interesting magnetic and optical properties. These include spin crossover phenomena between high-spin (HS) and low-spin (LS) states in Nafion-Fe{sup 2+}-trz and Nafion-Co{sup 2+}-trz accompanied by thermochromic effects in the visible range induced by temperature. A large shift of the magnetization curve induced by a magnetic field in the vicinity of the HS {leftrightarrow} LS, {approx}220 K, observed for Nafion-Fe{sup 2+}-trz has a rate of {approx}6 K/kOe, which is about three orders of magnitude larger than that in bulk spin crossover Fe{sup 2+} materials. Selective response of {sup 19}F NMR signals on doping with paramagnetic ions demonstrates that NMR can be used as spatially resolved method to study Nafion film with paramagnetic network. Both chemical shift and width of {sup 19}F NMR signals show that SO groups of Nafion, Fe or Co ions, and nitrogen of triazole are bonded whereas they form a spin crossover system. Based on a model of nanosize cylinders proposed for Nafion [K. Schmidt-Rohr and Q. Chen, Nat Mater (2008), 75], we suggest that paramagnetic ions are located inside these cylinders, forming self-assembling magnetically and optically active nanoscale networks.

  18. Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 1. Highly protonated molecules

    SciTech Connect

    Alemany, L.B.; Grant, D.M.; Pugmire, R.J.; Alger, T.D.; Zilm, K.W.

    1983-04-20

    CP/MAS /sup 13/C NMR spectra were obtained at various contact times on ten solid organic compounds containing a variety of simple functional groups. The spectra show that signal intensities that agree with atomic ratios can be obtained with a contact time of 2.25 ms and often with a contact time as short as about 1 ms. Computer analysis of signal intensities obtained at a minimum of ten different contact times provides T/sub CH/ data that are consistent with these experimental results. The experimental results are also consistent with the previously reported lack of significant variation in the spectra of complex organic solids obtained with contact times of about 1 to 3 ms. In general, nonprotonated carbon atoms polarize more slowly than protonated carbon atoms. The compounds exhibit a wide range of proton spin lattice relaxation times. Some compounds exhibit more resonances than are found in the /sup 13/C(/sup 1/H) spectra of the compounds in solution because the crystalline environment removes the nominal spatial equivalence found for carbon atoms related to each other by unimolecular symmetry elements.

  19. {sup 1}H and {sup 15}N dynamic nuclear polarization studies of carbazole

    SciTech Connect

    Hu, J.Z.; Solum, M.S.; Wind, R.A.; Nilsson, B.L.; Peterson, M.A.; Pugmire, R.J.; Grant, D.M.

    2000-05-18

    {sup 15}N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3-bisdiphenylene-2-phenylallyl (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that {sup 15}N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% {sup 15}N labeled carbazole with doping levels varying between 0.65 and 5.0 wt {degree} BDPA. A doping level of approximately 1 wt {degree} produced optimal results. DNP enhancement factors of 35 and 930 were obtained for {sup 1}H and {sup 15}N, respectively, making it possible to perform {sup 15}N DNP NMR experiments at the natural abundance level.

  20. 1H and 15N Dynamic Nuclear Polarization Studies of Carbazole

    SciTech Connect

    Hu, Jian Zhi; Solum, Mark S.; Wind, Robert A.; Nilsson, Brad L.; Peterson, Matt A.; Pugmire, Ronald J.; Grant, David M.

    2000-01-01

    15N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3 bisdiphenylene-2 phenylally1 (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that 15 N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% 15N labeled carbazole with doping levels varying between 0.65 and 5.0 wt % BDPA. A doping level of approximately 1 wt % produced optimal results. DNP enhancement factors of 35 and 930 were obtained for 1H and 15N, respectively making it possible to perform 15N DNP NMR experiments at the natural abundance level.

  1. Use of protein trans-splicing to produce active and segmentally 2H, 15N labeled mannuronan C5-epimerase AlgE4

    PubMed Central

    Buchinger, Edith; Aachmann, Finn L; Aranko, A Sesilja; Valla, Svein; Skjåk-BræK, Gudmund; Iwaï, Hideo; Wimmer, Reinhard

    2010-01-01

    Alginate epimerases are large multidomain proteins capable of epimerising C5 on β-d-mannuronic acid (M) turning it into α-l-guluronic acid (G) in a polymeric alginate. Azotobacter vinelandii secretes a family of seven epimerases, each of which is capable of producing alginates with characteristic G distribution patterns. All seven epimerases consist of two types of modules, denoted A and R, in varying numbers. Attempts to study these enzymes with solution-state NMR are hampered by their size—the smallest epimerase, AlgE4, consisting of one A- and one R-module, is 58 kDa, resulting in heavy signal overlap impairing the interpretation of NMR spectra. Thus we obtained segmentally 2H, 15N labeled AlgE4 isotopomeres (A-[2H, 15N]-R and [2H, 15N]-A-R) by protein trans-splicing using the naturally split intein of Nostoc punctiforme. The NMR spectra of native AlgE4 and the ligated versions coincide well proving the conservation of protein structure. The activity of the ligated AlgE4 was verified by two different enzyme activity assays, demonstrating that ligated AlgE4 displays the same catalytic activity as wild-type AlgE4. PMID:20552686

  2. HN(α/β-COCA-J) Experiment for Measurement of 1JC‧Cα Couplings from Two-Dimensional [15N, 1H] Correlation Spectrum

    NASA Astrophysics Data System (ADS)

    Permi, Perttu; Sorsa, Tia; Kilpeläinen, Ilkka; Annila, Arto

    1999-11-01

    Anew method for measurement of one-bond 13C‧-13Cα scalar and dipolar couplings from a two-dimensional [15N, 1H] correlation spectrum is presented. The experiment is based on multiple-quantum coherence, which is created between nitrogen and carbonyl carbon for simultaneous evolution of 15N chemical shift and coupling between 13C‧ and 13Cα. Optional subspectral editing is provided by the spin-state-selective filters. The residual dipolar dipolar contribution to the 13C‧-13Cα coupling can be measured from these simplified [15N, 1H]-HSQC-like spectra. In this way, without explicit knowledge of carbon assignments, conformational changes of proteins dissolved in dilute liquid crystals can be probed conveniently, e.g., in structure activity relationship by NMR studies. The method is demonstrated with human cardiac troponin C.

  3. Cucurbitacins from Cayaponia racemosa: isolation and total assignment of 1H and 13C NMR spectra.

    PubMed

    Chaves, Davina C; Assunção, João Carlos C; Braz-Filho, Raimundo; Lemos, Telma L G; Monte, Francisco J Q

    2007-05-01

    Two new cucurbitane-type triterpenoids, 2beta,3beta,16alpha,20(R),25-pentahydroxy-9-methyl-19-norlanost-5-en-7,22-dione and 2beta,3beta,16alpha,20(R),25-pentahydroxy-9-methyl-19-norlanost-5-en-7,11,22-trione, were isolated from fruits of Cayaponia racemosa. The total (1)H and (13)C chemical shift assignment of these two closely related compounds is described, making use of one- and two-dimensional NMR techniques. PMID:17372957

  4. 1H NMR relaxation in urea

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Bacher, Alfred D.; Dybowski, C.

    2007-11-01

    Proton NMR spin-lattice relaxation times T1 were measured for urea as a function of temperature. An activation energy of 46.3 ± 4.7 kJ/mol was extracted and compared with the range of 38-65 kJ/mol previously reported in the literature as measured by different magnetic resonance techniques. In addition, proton NMR spin-lattice relaxation times in the rotating frame T1 ρ were measured as a function of temperature. These measurements provide acquisition conditions for the 13C and 15N CP/MAS spectra of pure urea in the crystalline phase.

  5. Modified Prony Method to Resolve and Quantify in Vivo31P NMR Spectra of Tumors

    NASA Astrophysics Data System (ADS)

    Barone, P.; Guidoni, L.; Ragona, R.; Viti, V.; Furman, E.; Degani, H.

    Prony's method, successfully used in processing NMR signals, performs poorly at low signal-to-noise ratios. To overcome this problem, a statistical approach has been adopted by using Prony's method as a sampling device from the distribution associated with the true spectrum. Specifically, Prony's method is applied for each regression order p and number of data points n, both considered in a suitable range, and the estimates of frequencies, amplitudes, and decay factors are pooled separately. A histogram of the pooled frequencies is computed and, looking at the histogram, a lower and an upper frequency bound for each line of interest is determined. All frequency estimates in each of the determined intervals as well as associated decay factors and amplitudes are considered to be independent normal variates. A mean value and a corresponding 95% confidence interval are computed for each parameter. 31P NMR signals from MCF7 human breast cancer cells, inoculated into athymic mice and which developed into tumors, have been processed with traditional methods and with this modified Prony's method. The main components of the phosphomonoester peak, namely those deriving from phosphorylcholine and phosphorylethanolamine, are always well resolved with this new approach and their relative amplitudes can be consequently evaluated. Peak intensities of these two signals show different behavior during treatment of tumors with the antiestrogenic drug tamoxifen. The results of this new approach are compared with those obtainable with traditional techniques.

  6. A novel approach to the rapid assignment of (13)C NMR spectra of major components of vegetable oils such as avocado, mango kernel and macadamia nut oils.

    PubMed

    Retief, Liezel; McKenzie, Jean M; Koch, Klaus R

    2009-09-01

    Assignment of (13)C nuclear magnetic resonance (NMR) spectra of major fatty acid components of South African produced vegetable oils was attempted using a method in which the vegetable oil was spiked with a standard triacylglycerol. This proved to be inadequate and therefore a new rapid and potentially generic graphical linear correlation method is proposed for assignment of the (13)C NMR spectra of major fatty acid components of apricot kernel, avocado pear, grapeseed, macadamia nut, mango kernel and marula vegetable oils. In this graphical correlation method, chemical shifts of fatty acids present in a known standard triacylglycerol is plotted against the corresponding chemical shifts of fatty acids present in the vegetable oils. This new approach (under carefully defined conditions and concentrations) was found especially useful for spectrally crowded regions where significant peak overlap occurs and was validated with the well-known (13)C NMR spectrum of olive oil which has been extensively reported in the literature. In this way, a full assignment of the (13)C{1H} NMR spectra of the vegetable oils, as well as tripalmitolein was readily achieved and the resonances belonging to the palmitoleic acid component of the triacylglycerols in the case of macadamia nut and avocado pear oil resonances were also assigned for the first time in the (13)C NMR spectra of these oils. PMID:19544589

  7. Analysis of 31P MAS NMR spectra and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1994-01-01

    Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate. PMID:8038391

  8. Molecular structure, vibrational spectra and DFT molecular orbital calculations (TD-DFT and NMR) of the antiproliferative drug Methotrexate

    NASA Astrophysics Data System (ADS)

    Ayyappan, S.; Sundaraganesan, N.; Aroulmoji, V.; Murano, E.; Sebastian, S.

    2010-09-01

    The FT-IR and FT-Raman spectral studies of the Methotrexate (MTX) were carried out. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of MTX have been investigated with the help of B3LYP density functional theory (DFT) using 6-31G(d) as basis set. Detailed analysis of the vibrational spectra has been made with the aid of theoretically predicted vibrational frequencies. The vibrational analysis confirms the differently acting ring modes, steric repulsion, conjugation and back-donation. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement with the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Good correlations between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated GIAO shielding tensors were found.

  9. Weighted least-squares deconvolution method for discovery of group differences between complex biofluid 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Gipson, Geoffrey T.; Tatsuoka, Kay S.; Sweatman, Brian C.; Connor, Susan C.

    2006-12-01

    Biomarker discovery through analysis of high-throughput NMR data is a challenging, time-consuming process due to the requirement of sophisticated, dataset specific preprocessing techniques and the inherent complexity of the data. Here, we demonstrate the use of weighted, constrained least-squares for fitting a linear mixture of reference standard data to complex urine NMR spectra as an automated way of utilizing current assignment knowledge and the ability to deconvolve confounded spectral regions. Following the least-squares fit, univariate statistics were used to identify metabolites associated with group differences. This method was evaluated through applications on simulated datasets and a murine diabetes dataset. Furthermore, we examined the differential ability of various weighting metrics to correctly identify discriminative markers. Our findings suggest that the weighted least-squares approach is effective for identifying biochemical discriminators of varying physiological states. Additionally, the superiority of specific weighting metrics is demonstrated in particular datasets. An additional strength of this methodology is the ability for individual investigators to couple this analysis with laboratory specific preprocessing techniques.

  10. Importance of Tensor Asymmetry for the Analysis of 2H-NMR Spectra from Deuterated Aromatic Rings

    PubMed Central

    Pulay, Peter; Scherer, Erin M.; van der Wel, Patrick C. A.; Koeppe, Roger E.

    2008-01-01

    We have used ab initio calculations to compute all of the tensor elements of the electric field gradient for each carbon-deuterium bond in the ring of deuterated 3-methyl-indole. Previous analyses have ignored the smaller tensor elements perpendicular to principal component Vzz which is aligned with the C-2H bond (local bond z-axis). At each ring position, the smallest element Vxx is in the molecular plane and Vyy is normal to the plane of the ring. The asymmetry parameter η = (|Vyy|-|Vxx|)/|Vzz| ranges from 0.07 at C4 to 0.11 at C2. We used the perpendicular (off-bond) tensor elements, in concert with an improved understanding of the indole ring geometry1, to analyze prototype 2H-NMR spectra from well-oriented, hydrated peptide/lipid samples. For each of the 4 tryptophans of membrane-spanning gramicidin A (gA)2 channels, the inclusion of the perpendicular elements changes the deduced ring tilt by nearly 10° and increases the ring principal order parameter Szz for overall ‘wobble’ with respect to the membrane normal (molecular z-axis). With the improved analysis, the magnitude of Szz for the outermost indole rings of Trp13 and Trp15 is indistinguishable from that observed previously for backbone atoms (0.93 ± 0.03). For the Trp9 and Trp11 rings, which are slightly more buried within the membrane, Szz is slightly lower (0.86 ± 0.03). The results show that the perpendicular elements are important for the detailed analysis of 2H-NMR spectra from aromatic ring systems. PMID:16332101

  11. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  12. Theory of damped quantum rotation in NMR spectra. I. Fundamental aspects.

    PubMed

    Ratajczyk, T; Szymański, S

    2005-11-22

    The damped quantum rotation (DQR) theory, formulated originally for methyl-like atomic groupings, is now extended to hindered (N>3)-fold molecular rotors, such as the cyclopentadienyl, benzene, and cycloheptatrienyl rings in solid phase environments. It heightens the significance of the Pauli principle in shaping up the stochastic dynamics of such objects, reflected in NMR line shapes. The corresponding NMR line-shape equation is derived; its stochastic part is shown for the first time to have the double commutator form for any values of the quantum-mechanical (coherence-damping) rate constants entering it. Constraints on the relative magnitudes of such constants are determined under which the DQR line-shape equation is converted into the phenomenological Alexander-Binsch equation describing classical jumps of the rotor. When all the quantum rate constants happen to be equal, the phenomenological model of equal jump rates between any two of the N (equivalent) orientations of the rotor is reproduced. On the other hand, the seemingly most plausible (for N>3) nearest-neighbor hopping model does not have any peculiar grounds in the DQR approach. For the special instances of stochastic molecular motions addressed in this work, the extended DQR formalism affords a quantification of the "degree of classicality" represented by a complete set of the relevant quantum rate constants. In view of our earlier experimental findings for the methyl rotors, the very occurrence of the nonclassical DQR effects seems unquestionable even for the objects of the size of benzene. The question of under what circumstances such effects can be big enough to be detected experimentally will be addressed in Part II of this work. PMID:16351283

  13. Sequence-specific sup 1 H and sup 15 N resonance assignments for human dihydrofolate reductase in solution

    SciTech Connect

    Stockman, B.J.; Nirmala, N.R.; Wagner, G. ); Delcamp, T.J.; DeYarman, M.T.; Freisheim, J.H. )

    1992-01-14

    Dihydrofolate reductase is an intracellular target enzyme for folate antagonists, including the anticancer drug methotrexate. In order to design novel drugs with altered binding properties, a detailed description of protein-drug interactions in solution is desirable to understand the specificity of drug binding. As a first step in this process, heteronuclear three-dimensional NMR spectroscopy has been used to make sequential resonance assignments for more than 90% of the residues in human dihydrofolate reductase complexed with methotrexate. Uniform enrichment of the 21.5-kDa protein with {sup 15}N was required to obtain the resonance assignments via heteronuclear 3D NMR spectroscopy since homonuclear 2D spectra did not provide sufficient {sup 1}H resonance dispersion. Medium- and long-range NOE's have been used to characterize the secondary structure of the binary ligand-enzyme complex in solution.

  14. Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Ho; Yang, Chen; Opella, Stanley J.; Mueller, Leonard J.

    2013-12-01

    Two-dimensional 15N chemical shift/1H chemical shift and three-dimensional 1H-15N dipolar coupling/15N chemical shift/1H chemical shift MAS solid-state NMR correlation spectra of the filamentous bacteriophage Pf1 major coat protein show single-site resolution in noncrystalline, intact-phage preparations. The high sensitivity and resolution result from 1H detection at 600 MHz under 50 kHz magic angle spinning using ∼0.5 mg of perdeuterated and uniformly 15N-labeled protein in which the exchangeable amide sites are partially or completely back-exchanged (reprotonated). Notably, the heteronuclear 1H-15N dipolar coupling frequency dimension is shown to select among 15N resonances, which will be useful in structural studies of larger proteins where the resonances exhibit a high degree of overlap in multidimensional chemical shift correlation spectra.

  15. Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel.

    PubMed

    Henry, Pierre-Gilles; Oz, Gülin; Provencher, Stephen; Gruetter, Rolf

    2003-01-01

    The LCModel method was adapted to analyze localized in vivo (13)C NMR spectra obtained from the rat brain in vivo at 9.4 T. Prior knowledge of chemical-shifts, J-coupling constants and J-evolution was included in the analysis. Up to 50 different isotopomer signals corresponding to 10 metabolites were quantified simultaneously in 400 microl volumes in the rat brain in vivo during infusion of [1,6-(13)C(2)]glucose. The analysis remained accurate even at low signal-to-noise ratio of the order of 3:1. The relative distribution of isotopomers in glutamate, glutamine and aspartate determined in vivo in 22 min was in excellent agreement with that measured in brain extracts. Quantitation of time series of (13)C spectra yielded time courses of total (13)C label incorporation into up to 16 carbon positions, as well as time courses of individual isotopomer signals, with a temporal resolution as low as 5 min (dynamic isotopomer analysis). The possibility of measuring in vivo a wealth of information that was hitherto accessible only in extracts is likely to expand the scope of metabolic studies in the intact brain. PMID:14679502

  16. Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4'-Nitrobiphenyl by density functional theory.

    PubMed

    Govindarasu, K; Kavitha, E

    2014-03-25

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of 4-Methoxy-4'-Nitrobiphenyl (abbreviated as 4M4'NBPL) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the 4M4'NBPL have been calculated with the help of density functional theory computations. The FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. Natural Bond Orbital (NBO) analysis is also used to explain the molecular stability. The UV-Vis absorption spectra of the title compound dissolved in chloroform were recorded in the range of 200-800 cm(-1). The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlation between the experimental (1)H and (13)C NMR chemical shifts in chloroform solution and calculated GIAO shielding tensors were found. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The chemical reactivity and thermodynamic properties of 4M4'NBPL at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. PMID:24299985

  17. Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4";-Nitrobiphenyl by density functional theory

    NASA Astrophysics Data System (ADS)

    Govindarasu, K.; Kavitha, E.

    2014-03-01

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of 4-Methoxy-4";-Nitrobiphenyl (abbreviated as 4M4";NBPL) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the 4M4";NBPL have been calculated with the help of density functional theory computations. The FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm-1 and 3500-50 cm-1 respectively. Natural Bond Orbital (NBO) analysis is also used to explain the molecular stability. The UV-Vis absorption spectra of the title compound dissolved in chloroform were recorded in the range of 200-800 cm-1. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlation between the experimental 1H and 13C NMR chemical shifts in chloroform solution and calculated GIAO shielding tensors were found. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The chemical reactivity and thermodynamic properties of 4M4";NBPL at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  18. Towards high resolution ^1H NMR spectra of tannin colloidal aggregates

    NASA Astrophysics Data System (ADS)

    Mirabel, M.; Glories, Y.; Pianet, I.; Dufourc, E. J.

    1999-10-01

    The time dependent colloidal formation of tannins in hydro-alcoholic medium has been studied by 1H-NMR. Line broadening observed with time can be cancelled by making use of magic angle sample spinning (MASS) thus yielding sharp lines that allow structural studies. We used as an example catechin, a constitutive monomer of Bordeaux young red wine tannins. Chemical shift variations of polyphenol protons allow monitoring the time course of aggregation. La formation de tanins colloïdaux au cours du temps, en milieu hydroalcoolique, a été suivie par RMN-^1H. Un élargissement marqué des résonances est observé et peut être supprimé par la rotation de l'échantillon à l'angle magique ce qui ouvre tout un champ d'études structurales sur ces composés colloïdaux. L'exemple proposé est celui de la catéchine, monomère constitutif de tannins présents en grande quantité dans les vins rouges jeunes de Bordeaux. Des variations du déplacement chimique de certains protons polyphénoliques permettent de suivre l'évolution temporelle de l'agrégation.

  19. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min. PMID:25158224

  20. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    PubMed

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27059012

  1. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    ERIC Educational Resources Information Center

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  2. Quantitative analysis of ³¹P NMR spectra of soil extracts--dealing with overlap of broad and sharp signals.

    PubMed

    Doolette, Ashlea L; Smernik, Ronald J

    2015-09-01

    Solution (31)P NMR analysis following extraction with a mixture of sodium hydroxide and ethylenediaminetetraacetic acid is the most widely used method for detailed characterization of soil organic P. However, quantitative analysis of the (31)P NMR spectra is complicated by severe spectral overlap in the monoester region. Various deconvolution procedures have been developed for the task, yet none of these are widely accepted or implemented. In this mini-review, we first describe and compare these varying approaches. We then review approaches to similar issues of spectral overlap in biomedical science applications including NMR-based metabolic profiling and analyzing (31)P magnetic resonance spectra of ex vivo and in vivo intact tissues. The greater maturity and resourcing of this biomedical research means that a wider variety of approaches has been developed. Of particular relevance are approaches to dealing with overlap of broad and sharp signals. Although the existence of this problem is still debated in the context of soil analyses, not only is it well-recognized in biomedical applications, but multiple approaches have been developed to deal with it, including T2 editing and time-domain fitting. Perhaps the most transferable concept is the incorporation of 'prior knowledge' in the fitting of spectra. This is well established in biomedical applications but barely touched in soil analyses. We argue that shortcuts to dealing with overlap in the monoester region (31)P NMR soil spectra are likely to be found in the biomedical literature, although some degree of adaptation will be necessary. PMID:25854619

  3. A General Method for Extracting Individual Coupling Constants from Crowded (1)H NMR Spectra.

    PubMed

    Sinnaeve, Davy; Foroozandeh, Mohammadali; Nilsson, Mathias; Morris, Gareth A

    2016-01-18

    Couplings between protons, whether scalar or dipolar, provide a wealth of structural information. Unfortunately, the high number of (1)H-(1)H couplings gives rise to complex multiplets and severe overlap in crowded spectra, greatly complicating their measurement. Many different methods exist for disentangling couplings, but none approaches optimum resolution. Here, we present a general new 2D J-resolved method, PSYCHEDELIC, in which all homonuclear couplings are suppressed in F2, and only the couplings to chosen spins appear, as simple doublets, in F1. This approaches the theoretical limit for resolving (1)H-(1)H couplings, with close to natural linewidths and with only chemical shifts in F2. With the same high sensitivity and spectral purity as the parent PSYCHE pure shift experiment, PSYCHEDELIC offers a robust method for chemists seeking to exploit couplings for structural, conformational, or stereochemical analyses. PMID:26636773

  4. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    SciTech Connect

    Buckingham, A. David

    2014-01-07

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection.

  5. X-ray and DFT studies of the structure, vibrational and NMR spectra of 2-amino-pyridine betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Szafran, M.; Kowalczyk, I.; Koput, J.; Katrusiak, A.

    2005-06-01

    The effect of hydrogen bonding, inter- and intramolecular electrostatic interactions on the conformation of 2-amino-pyridine betaine hydrochloride (1-carboxymethyl-2-amino-pyridinium chloride), 2-NH 2PBH⋯Cl(c), in the crystal and its isolated molecules has been studied by X-ray diffraction, FT-IR, Raman, 1H and 13C NMR spectroscopies, and by DFT calculations. In the crystal, the Cl - anion is connected with protonated betaine via hydrogen bond, O-H⋯Cl -= 2.975(2) Å, two N(12)-H⋯Cl - hydrogen bonds and two N(1) H⋯Cl - intermolecular electrostatic interactions. Two minima are located in the potential energy surface at the B3LYP/6-31G(d,p) level, 2-NH 2PBH⋯Cl(t) and 2-NH 2PB⋯HCl(c), with the latter being 20,7 kcal/mol higher in energy. The optimized bond lengths and angles of 2-NH 2PBH⋯Cl(t) at B3LYP level of theory are in good agreement with X-ray data, except for the conformation of the COOH group, which is cis ( syn) in the crystal and trans ( anti) in the single molecule. The probable assignments for the anharmonic experimental solid state vibrational spectra of 2-NH 2PBH⋯Cl(c) and 2-ND 2PBD⋯Cl(c) based on the calculated B3LYP/6-31G(d,p) harmonic frequencies have been made. 1H and 13C NMR screening constants for both single molecules have been calculated in the GIAO/B3LYP/6-31G(d,p) approach. Linear correlation between the calculated and experimental 1H chemical shifts holds only for cis conformer. The lack of such a correlation for trans conformer indicates that it is absent in D 2O solution.

  6. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies

    SciTech Connect

    Modi, S.; Behere, D.V.; Mitra, S. )

    1989-05-30

    The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.

  7. Automated Quantification of Human Brain Metabolites by Artificial Neural Network Analysis from in VivoSingle-Voxel 1H NMR Spectra

    NASA Astrophysics Data System (ADS)

    Kaartinen, Jouni; Mierisová, Šarka; Oja, Joni M. E.; Usenius, Jukka-Pekka; Kauppinen, Risto A.; Hiltunen, Yrjö

    1998-09-01

    A real-time automated way of quantifying metabolites fromin vivoNMR spectra using an artificial neural network (ANN) analysis is presented. The spectral training and test sets for ANN containing peaks at the chemical shift ranges resembling long echo time proton NMR spectra from human brain were simulated. The performance of the ANN constructed was compared with an established lineshape fitting (LF) analysis using both simulated and experimental spectral data as inputs. The correspondence between the ANN and LF analyses showed correlation coefficients of order of 0.915-0.997 for spectra with large variations in both signal-to-noise and peak areas. Water suppressed1H NMR spectra from 24 healthy subjects were collected and choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) were quantified with both methods. The ANN quantified these spectra with an accuracy similar to LF analysis (correlation coefficients of 0.915-0.951). These results show that LF and ANN are equally good quantifiers; however, the ANN analyses are more easily automated than LF analyses.

  8. Antioxidant activity, NMR, X-ray, ECD and UV/vis spectra of (+)-terrein: Experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Trabolsy, Zuhra Bashir Khalifa Al; Anouar, El Hassane; Zakaria, Nur Shahidatul Shida; Zulkeflee, Manar; Hasan, Mizaton Hazizul; Zin, Maisarah Mohd; Ahmad, Rohaya; Sultan, Sadia; Weber, Jean-Frédéric F.

    2014-02-01

    Fungal metabolite terrein isolated from Aspergillus terreus is endowed with diverse biological and antioxidant activities. To determine the stereochemistry of the isolated terrein, we combined spectroscopic methods (CD and NMR spectra) and theoretical calculations (DFT and TD-DFT methods). Stereochemistry effects on the antioxidant activity of isolated terrein were evaluated by calculating bond dissociation enthalpies (BDEs), ionization potentials (IPs) and spin density delocalization of terrein and isoterrein stereoisomers with B3P86/6-31+G (d, p) method in gas and polarizable continuum model. The results showed a good agreement between experimental data and theoretical calculations which confirmed the (+)-terrein stereochemistry of isolated metabolite. Theoretical calculations showed that the antioxidant activity is relatively influenced by isomeric geometry of the terrein (a variation of 2 kcal/mol between BDEs of terrein and isoterrein isomers), while chirality has no influence on the antioxidant activity [0.2 kcal/mol difference between BDEs of (+)- and (-)-terrein]. The low antioxidant activity of (+)-terrein with respect to trolox and ascorbic acid was explained by the positive free Gibbs energy of the hydrogen atom transfer (HAT) mechanism and high BDE values of the 2-OH active site.

  9. MetaboID: A graphical user interface package for assignment of 1H NMR spectra of bodyfluids and tissues

    NASA Astrophysics Data System (ADS)

    MacKinnon, Neil; Somashekar, Bagganahalli S.; Tripathi, Pratima; Ge, Wencheng; Rajendiran, Thekkelnaycke M.; Chinnaiyan, Arul M.; Ramamoorthy, Ayyalusamy

    2013-01-01

    Nuclear magnetic resonance based measurements of small molecule mixtures continues to be confronted with the challenge of spectral assignment. While multi-dimensional experiments are capable of addressing this challenge, the imposed time constraint becomes prohibitive, particularly with the large sample sets commonly encountered in metabolomic studies. Thus, one-dimensional spectral assignment is routinely performed, guided by two-dimensional experiments on a selected sample subset; however, a publicly available graphical interface for aiding in this process is currently unavailable. We have collected spectral information for 360 unique compounds from publicly available databases including chemical shift lists and authentic full resolution spectra, supplemented with spectral information for 25 compounds collected in-house at a proton NMR frequency of 900 MHz. This library serves as the basis for MetaboID, a Matlab-based user interface designed to aid in the one-dimensional spectral assignment process. The tools of MetaboID were built to guide resonance assignment in order of increasing confidence, starting from cursory compound searches based on chemical shift positions to analysis of authentic spike experiments. Together, these tools streamline the often repetitive task of spectral assignment. The overarching goal of the integrated toolbox of MetaboID is to centralize the one dimensional spectral assignment process, from providing access to large chemical shift libraries to providing a straightforward, intuitive means of spectral comparison. Such a toolbox is expected to be attractive to both experienced and new metabolomic researchers as well as general complex mixture analysts.

  10. The infrared, Raman, NMR and UV spectra, ab initio calculations and spectral assignments of 2-amino-4-chloro-6-methoxypyrimidine

    NASA Astrophysics Data System (ADS)

    Cinar, Z.; Karabacak, M.; Cinar, M.; Kurt, M.; Chinna babu, P.; Sundaraganesan, N.

    2013-12-01

    The 2-amino-4-chloro-6-methoxypyrimidine abbreviated as ACMP have been investigated by both the experimental and theoretical methods; through this work we provide the essential fact about the structural and vibrational insights. The optimized molecular structure, atomic charges, vibrational frequencies and ultraviolet spectral interpretation of ACMP have been studied by performing DFT/B3LYP/6-311++G(df,pd) level of theory. The FT-IR, FT-Raman spectra were recorded in the region 4000-400 cm-1 and 4000-50 cm-1 respectively. The UV absorption spectrum of the compound that dissolved in ethanol and water solution were recorded in the range of 200-400 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. Based on the UV spectrum and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. The 1H, 13C and DEPT 135 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated using with the Gauge Including Atomic Orbital (GIAO) method and compared with experimental results. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  11. Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro

    2013-09-01

    Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.

  12. Quantitative (13)C Solid-State NMR Spectra by Multiple-Contact Cross-polarization for Drug Delivery: From Active Principles to Excipients and Drug Carriers.

    PubMed

    Saïdi, Fadila; Taulelle, Francis; Martineau, Charlotte

    2016-08-01

    In this contribution, we present an analysis of the main parameters influencing the efficiency of the (1)H → (13)C multiple-contact cross-polarization nuclear magnetic resonance (NMR) experiment in the context of solid pharmaceutical materials. Using the optimum experimental conditions, quantitative (13)C NMR spectra are then obtained for porous metal-organic frameworks (potential drug carriers) and for components present in drug formulations (active principle ingredient and excipients, amorphous or crystalline). Finally, we show that mixtures of components can also be quantified with this method and, hence, that it represents an ideal tool for quantification of pharmaceutical formulations by (13)C cross-polarization under magic-angle spinning NMR in the industry as it is robust and easy to set up, much faster than direct (13)C polarization and is efficient for samples at natural abundance. PMID:27372550

  13. An approach to the simultaneous quantitative analysis of metabolites in table wines by (1)H NMR self-constructed three-dimensional spectra.

    PubMed

    Li, Bao Qiong; Xu, Min Li; Wang, Xue; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2017-02-01

    Wine consists of several hundred components with different concentrations, including water, ethanol, glycerol, organic acids and sugars. Accurate quantification of target compounds in such complex samples is a difficult task based on conventional (1)H NMR spectra due to some challenges. In this paper, the three-dimensional spectrum was constructed firstly by simply repeating (1)H NMR spectrum itself so as to extract the features of target compounds by Tchebichef moment method. A proof-of-concept model system, the determination of five metabolites in wines was utilized to evaluate the performance of the proposed strategy. The results indicate that the proposed approach can provide accurate and reliable concentration predictions, probably the best results ever achieved using PLS and interval-PLS methods. Our novel strategy has not only good performance but also does not require laborious multi-step and subjective pretreatments. Therefore, it is expected that the proposed method could extend the application of conventional (1)H NMR. PMID:27596391

  14. Evaluation of the reliability of the maximum entropy method for reconstructing 3D and 4D NOESY-type NMR spectra of proteins.

    PubMed

    Shigemitsu, Yoshiki; Ikeya, Teppei; Yamamoto, Akihiro; Tsuchie, Yuusuke; Mishima, Masaki; Smith, Brian O; Güntert, Peter; Ito, Yutaka

    2015-02-01

    Despite their advantages in analysis, 4D NMR experiments are still infrequently used as a routine tool in protein NMR projects due to the long duration of the measurement and limited digital resolution. Recently, new acquisition techniques for speeding up multidimensional NMR experiments, such as nonlinear sampling, in combination with non-Fourier transform data processing methods have been proposed to be beneficial for 4D NMR experiments. Maximum entropy (MaxEnt) methods have been utilised for reconstructing nonlinearly sampled multi-dimensional NMR data. However, the artefacts arising from MaxEnt processing, particularly, in NOESY spectra have not yet been clearly assessed in comparison with other methods, such as quantitative maximum entropy, multidimensional decomposition, and compressed sensing. We compared MaxEnt with other methods in reconstructing 3D NOESY data acquired with variously reduced sparse sampling schedules and found that MaxEnt is robust, quick and competitive with other methods. Next, nonlinear sampling and MaxEnt processing were applied to 4D NOESY experiments, and the effect of the artefacts of MaxEnt was evaluated by calculating 3D structures from the NOE-derived distance restraints. Our results demonstrated that sufficiently converged and accurate structures (RMSD of 0.91Å to the mean and 1.36Å to the reference structures) were obtained even with NOESY spectra reconstructed from 1.6% randomly selected sampling points for indirect dimensions. This suggests that 3D MaxEnt processing in combination with nonlinear sampling schedules is still a useful and advantageous option for rapid acquisition of high-resolution 4D NOESY spectra of proteins. PMID:25545060

  15. A study of the molecular conformations and the vibrational, 1H and 13C NMR spectra of the anticancer drug tamoxifen and triphenylethylene

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-08-01

    The structural stability and the vibrational spectra of the anticancer drug tamoxifen and triphenylethylene were investigated by the DFT B3LYP/6-311G (d,p) calculations. Tamoxifen and triphenylethylene were predicted to exist predominantly as non-planar structures. The vibrational frequencies and the 1H and 13C NMR chemical shifts of the low energy structures of tamoxifen and triphenylethylene were computed at the DFT B3LYP level of theory. Complete vibrational assignments were provided by combined theoretical and experimental data of tamoxifen and triphenylethylene. The 1H and 13C NMR spectra of both molecules were interpreted by experimental and DFT calculated chemical shifts of the two molecules. The RMSD between experimental and theoretical 1H and 13C chemical shifts for tamoxifen is 0.29 and 4.72 ppm, whereas for triphenylethylene, it is 0.16 and 2.70 ppm, respectively.

  16. Systematic comparison of sets of (13)C NMR spectra that are potentially identical. Confirmation of the configuration of a cuticular hydrocarbon from the cane beetle Antitrogus parvulus.

    PubMed

    Basar, Norazah; Damodaran, Krishnan; Liu, Hao; Morris, Gareth A; Sirat, Hasnah M; Thomas, Eric J; Curran, Dennis P

    2014-08-15

    A systematic process is introduced to compare (13)C NMR spectra of two (or more) candidate samples of known structure to a natural product sample of unknown structure. The process is designed for the case where the spectra involved can reasonably be expected to be very similar, perhaps even identical. It is first validated by using published (13)C NMR data sets for the natural product 4,6,8,10,16,18-hexamethyldocosane. Then the stereoselective total syntheses of two candidate isomers of the related 4,6,8,10,16-pentamethyldocosane natural product are described, and the process is applied to confidently assign the configuration of the natural product as (4S,6R,8R,10S,16S). This is accomplished even though the chemical shift differences between this isomer and its (16R)-epimer are only ±5-10 ppb (±0.005-0.01 ppm). PMID:25019530

  17. Systematic Comparison of Sets of 13C NMR Spectra That Are Potentially Identical. Confirmation of the Configuration of a Cuticular Hydrocarbon from the Cane Beetle Antitrogus parvulus

    PubMed Central

    2015-01-01

    A systematic process is introduced to compare 13C NMR spectra of two (or more) candidate samples of known structure to a natural product sample of unknown structure. The process is designed for the case where the spectra involved can reasonably be expected to be very similar, perhaps even identical. It is first validated by using published 13C NMR data sets for the natural product 4,6,8,10,16,18-hexamethyldocosane. Then the stereoselective total syntheses of two candidate isomers of the related 4,6,8,10,16-pentamethyldocosane natural product are described, and the process is applied to confidently assign the configuration of the natural product as (4S,6R,8R,10S,16S). This is accomplished even though the chemical shift differences between this isomer and its (16R)-epimer are only ±5–10 ppb (±0.005–0.01 ppm). PMID:25019530

  18. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.

    PubMed

    Cao, Bobo; Du, Jiuyao; Du, Dongmei; Sun, Haitao; Zhu, Xiao; Fu, Hui

    2016-09-20

    Cellulose dissolution mechanism in acetate-based ionic liquids was systematically studied in Nuclear Magnetic Resonance (NMR) spectra and Density Functional Theory (DFT) methods by using cellobiose and 1-butyl-3-methylimidazolium acetate (BmimAc) as a model system. The solubility of cellulose in ionic liquid increased with temperature increase in the range of 90-140°C. NMR spectra suggested OAc(-) preferred to form stronger hydrogen bonds with hydrogen of hydroxyl in cellulose. Electrostatic potential method was employed to predict the most possible reaction sites and locate the most stable configuration. Atoms in molecules (AIM) theory was used to study the features of bonds at bond critical points and the variations of bond types. Simultaneously, noncovalent interactions were characterized and visualized by employing reduced density gradient analysis combined with Visual Molecular Dynamics (VMD) program. Natural bond orbital (NBO) theory was applied to study the noncovalent nature and characterize the orbital interactions between cellobiose and Bmim[OAc]. PMID:27261759

  19. Simplification of the 1H NMR spectra of enantiomers dissolved in chiral liquid crystals, combining variable angle sample spinning and selective refocusing experiments.

    PubMed

    Beguin, Laetitia; Courtieu, Jacques; Ziani, Latifa; Merlet, Denis

    2006-12-01

    This work presents a technique to simplify overcrowded proton spectra in chiral liquid crystal solvents using rotation of the sample near the magic angle, VASS, combined with homonuclear selective refocusing 2D NMR experiments, SERF. This methodology provides a powerful tool to visualise enantiomers out of unresolved proton spectra. A modified SERF sequence is presented where the resulting 2D spectrum can be phased to increase the resolution. Accurate enantiomeric excesses are determined that are not possible to measure on static samples. Two examples are presented. PMID:16991108

  20. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    SciTech Connect

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  1. Mechanism of dilute-spin-exchange in solid-state NMR

    SciTech Connect

    Lu, George J.; Opella, Stanley J.

    2014-03-28

    In the stationary, aligned samples used in oriented sample (OS) solid-state NMR, {sup 1}H-{sup 1}H homonuclear dipolar couplings are not attenuated as they are in magic angle spinning solid-state NMR; consequently, they are available for participation in dipolar coupling-based spin-exchange processes. Here we describe analytically the pathways of {sup 15}N-{sup 15}N spin-exchange mediated by {sup 1}H-{sup 1}H homonuclear dipolar couplings. The mixed-order proton-relay mechanism can be differentiated from the third spin assisted recoupling mechanism by setting the {sup 1}H to an off-resonance frequency so that it is at the “magic angle” during the spin-exchange interval in the experiment, since the “magic angle” irradiation nearly quenches the former but only slightly attenuates the latter. Experimental spectra from a single crystal of N-acetyl leucine confirm that this proton-relay mechanism plays the dominant role in {sup 15}N-{sup 15}N dilute-spin-exchange in OS solid-state NMR in crystalline samples. Remarkably, the “forbidden” spin-exchange condition under “magic angle” irradiation results in {sup 15}N-{sup 15}N cross-peaks intensities that are comparable to those observed with on-resonance irradiation in applications to proteins. The mechanism of the proton relay in dilute-spin-exchange is crucial for the design of polarization transfer experiments.

  2. 4 f-4 f hypersensitivity in the absorption spectra and NMR studies on paramagnetic lanthanide chloride complexes with 1,10-phenanthroline in non-aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hussain, H. A.; Iftikhar, K.

    2003-03-01

    The optical absorption and NMR studies of trivalent lanthanide chloride complexes with 1,10-phenanthroline (phen) are presented and discussed. The 1H NMR spectra of the complexes of La, Pr, Nd, Eu and Yb have been studied in methanol- d4. The resonances of phen in the NMR spectra of the paramagnetic complexes have been shifted to lower as well as higher fields, which is a manifestation of dipolar interaction. The H (2) protons of the heterocyclic amine display broad resonances. The degree of broadening in Pr, Nd, and Yb complexes follows the order Prspectra of Pr, Nd, Ho and Er complexes have been investigated in methanol, pyridine, DMSO and DMF, which reveal that the hypersensitive transitions exhibit larger variation in oscillator strength values and band shapes. The change in the coordination geometry of the complexes and relative basicity of ligand are found responsible for oscillator strength and band shape variation. The interelectronic repulsion and covalency parameters show covalent nature of bonding between the metal and the ligand.

  3. Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy

    SciTech Connect

    Hastings, Adam F.; Otting, Gottfried; Folmer, Rutger H.A.; Duggin, Iain G.; Wake, R. Gerry; Wilce, Matthew C.J.; Wilce, Jacqueline A. . E-mail: Jackie.Wilce@med.monash.edu.au

    2005-09-23

    Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in {sup 1}H-{sup 15}N correlation spectra of a {sup 15}N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the {sup 1}H-{sup 15}N correlations was achieved using a suite of triple resonance NMR experiments with {sup 15}N,{sup 13}C,70% {sup 2}H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbations to {sup 1}H-{sup 15}N spectra revealed that the N-termini, {alpha}3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface.

  4. Synthesis and NMR Spectral Analysis of Amine Heterocycles: The Effect of Asymmetry on the [superscript 1]H and [superscript 13]C NMR Spectra of N,O-Acetals

    ERIC Educational Resources Information Center

    Saba, Shahrokh; Ciaccio, James A.; Espinal, Jennifer; Aman, Courtney E.

    2007-01-01

    The stereochemical investigation is conducted to give students the combined experience of chemical synthesis of amines and N-heterocycles and structural stereochemical analysis using NMR spectroscopy. Students are introduced to the concept of topicity-stereochemical relationships between ligands within a molecule by synthesizing N,O-acetals.

  5. Paramagnetic effects on the NMR spectra of isotropic bicelles with headgroup modified chelator lipids and metal ions.

    PubMed

    Tang, Ming; Mao, Kevin; Li, Stacey; Zhuang, Jianqin; Diallo, Koumba

    2016-06-21

    We characterized the paramagnetic effects of nine metal ions on NMR signals of isotropic bicelles with headgroup-modified lipids. We found that Mn(2+), Gd(3+) and Dy(3+) show evidence for influencing NMR signals on the surface more than inside and on the disc edge, providing distance information in the bilayers. PMID:27240538

  6. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  7. Automated protein fold determination using a minimal NMR constraint strategy

    PubMed Central

    Zheng, Deyou; Huang, Yuanpeng J.; Moseley, Hunter N.B.; Xiao, Rong; Aramini, James; Swapna, G.V.T.; Montelione, Gaetano T.

    2003-01-01

    Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution and biochemical function(s). In this article we describe a largely automatic strategy for rapid determination of medium-accuracy protein backbone structures. Our strategy derives from ideas originally introduced by other groups for determining medium-accuracy NMR structures of large proteins using deuterated, 13C-, 15N-enriched protein samples with selective protonation of side-chain methyl groups (13CH3). Data collection includes acquiring NMR spectra for automatically determining assignments of backbone and side-chain 15N, HN resonances, and side-chain 13CH3 methyl resonances. These assignments are determined automatically by the program AutoAssign using backbone triple resonance NMR data, together with Spin System Type Assignment Constraints (STACs) derived from side-chain triple-resonance experiments. The program AutoStructure then derives conformational constraints using these chemical shifts, amide 1H/2H exchange, nuclear Overhauser effect spectroscopy (NOESY), and residual dipolar coupling data. The total time required for collecting such NMR data can potentially be as short as a few days. Here we demonstrate an integrated set of NMR software which can process these NMR spectra, carry out resonance assignments, interpret NOESY data, and generate medium-accuracy structures within a few days. The feasibility of this combined data collection and analysis strategy starting from raw NMR time domain data was illustrated by automatic analysis of a medium accuracy structure of the Z domain of Staphylococcal protein A. PMID:12761394

  8. Conformational and isomerizational studies of 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile using NMR and vibrational spectra, X-ray analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.

    2008-11-01

    The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile (DMHSP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN) (SO 2CH 3)] as a solid and in different solvents were measured. The spectra and X-ray analysis revealed that DMHSP was prepared as a pure E-isomer and E- syn conformer with the syn orientation of N, N-dimethylhydrazino group towards the C dbnd C double bond in the solid state. Due to the low barrier practically free isomerization process occurred in solutions at room temperature. DMHSP exists in more polar solvents as pure E-isomer in conformational equilibrium between E- syn and E- anti but in a less polar solvent the presence of Z-isomer was observed as well. From the IR and NMR temperature dependence spectra in polar solvents the energy difference between E- anti and E- syn of Δ H = 2.3 ± 0.9 kJ/mol and Δ H = 3.2 ± 0.4 kJ/mol, respectively, was estimated with the syn one being more stable. The geometries and relative energies of possible conformers of DMHSP were evaluated using ab initio MP2 and B3LYP density functional methods in 6-31G ∗∗ basis set and compared with the X-ray data. The interpretation of NMR spectra was supported by ab initio MP2 calculations. The influence of solvent polarity on the conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using PCM model. In addition, the observed IR and Raman bands were compared also with harmonic vibrational frequencies, calculated on the same levels of theory, and assigned on the base of potential energy distribution.

  9. Bond pathway analysis of NMR spectra for Li1.2Mn0.4Co0.4O2: pristine material

    NASA Astrophysics Data System (ADS)

    Iddir, Hakim; Key, Baris; Dogan, Fulya; Russell, John; Long, Brandon; Bareno, Javier; Croy, Jason; Benedek, Roy

    2015-03-01

    NMR has been applied extensively to lithium ion battery cathode materials, of which layered-layered composites xLi2MnO3 . (1 - x) Li MO2 (M = Mn,Co,Ni) are of particular interest, owing to their high energy density. In this work, NMR spectra are measured for the model layered-layered system xLi2MnO3 . (1 - x) LiCoO2 and Bond-Pathway-model analysis is applied to elucidate the atomic arrangement and domain structure of this material (in its pristine state, before electrochemical cycling). The simplest structural element of a domain consists of a stripe of composition LiMn2 parallel to an in-layer crystallographic axis in a metal layer of the composite. A simple model of the composite structure may be constructed by a superposition of such stripes in an LiCoO background. We show that such a model can account for most of the features of the observed NMR spectra. Support from the Vehicle Technologies Program U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy.

  10. Over 20% (15)N Hyperpolarization in Under One Minute for Metronidazole, an Antibiotic and Hypoxia Probe.

    PubMed

    Barskiy, Danila A; Shchepin, Roman V; Coffey, Aaron M; Theis, Thomas; Warren, Warren S; Goodson, Boyd M; Chekmenev, Eduard Y

    2016-07-01

    Direct NMR hyperpolarization of naturally abundant (15)N sites in metronidazole is demonstrated using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). In only a few tens of seconds, nuclear spin polarization P(15)N of up to ∼24% is achieved using parahydrogen with 80% para fraction corresponding to P(15)N ≈ 32% if ∼100% parahydrogen were employed (which would translate to a signal enhancement of ∼0.1-million-fold at 9.4 T). In addition to this demonstration on the directly binding (15)N site (using J(2)H-(15)N), we also hyperpolarized more distant (15)N sites in metronidazole using longer-range spin-spin couplings (J(4)H-(15)N and J(5)H-(15)N). Taken together, these results significantly expand the range of molecular structures and sites amenable to hyperpolarization via low-cost parahydrogen-based methods. In particular, hyperpolarized nitroimidazole and its derivatives have powerful potential applications such as direct in vivo imaging of mechanisms of action or hypoxia sensing. PMID:27321159

  11. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13 NMR study

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    1992-01-01

    The process of ammonia fixation has been studied in three well characterized and structurally diverse fulvic and humic acid samples. The Suwannee River fulvic acid, and the IHSS peat and leonardite humic acids, were reacted with 15N-labelled ammonium hydroxide, and analyzed by liquid phase 15N NMR spectrometry. Elemental analyses and liquid phase 13C NMR spectra also were recorded on the samples before and after reaction with ammonium hydroxide. The largest increase in percent nitrogen occurred with the Suwannee River fulvic acid, which had a nitrogen content of 0.88% before fixation and 3.17% after fixation. The 15N NMR spectra revealed that ammonia reacted similarly with all three samples, indicating that the functional groups which react with ammonia exist in structural configurations common to all three samples. The majority of nitrogcn incorporated into the samples appears to be in the form of indole and pyrrole nitrogen, followed by pyridine, pyrazine, amide and aminohydroquinone nitrogen. Chemical changes in the individual samples upon fixation could not be discerned from the 13C NMR spectra.

  12. Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations.

    PubMed

    Novotný, Jan; Sojka, Martin; Komorovsky, Stanislav; Nečas, Marek; Marek, Radek

    2016-07-13

    Ruthenium-based compounds are potential candidates for use as anticancer metallodrugs. The central ruthenium atom can be in the oxidation state +2 (e.g., RAPTA, RAED) or +3 (e.g., NAMI, KP). In this study we focus on paramagnetic NAMI analogs of a general structure [4-R-pyH](+)trans-[Ru(III)Cl4(DMSO)(4-R-py)](-), where 4-R-py stands for a 4-substituted pyridine. As paramagnetic systems are generally considered difficult to characterize in detail by NMR spectroscopy, we performed a systematic structural and methodological NMR study of complexes containing variously substituted pyridines. The effect of the paramagnetic nature of these complexes on the (1)H and (13)C NMR chemical shifts was systematically investigated by temperature-dependent NMR experiments and density-functional theory (DFT) calculations. To understand the electronic factors influencing the orbital (δ(orb), temperature-independent) and paramagnetic (δ(para), temperature-dependent) contributions to the total NMR chemical shifts, a relativistic two-component DFT approach was used. The paramagnetic contributions to the (13)C NMR chemical shifts are correlated with the distribution of spin density in the ligand moiety and the (13)C isotropic hyperfine coupling constants, Aiso((13)C), for the individual carbon atoms. To analyze the mechanism of spin distribution in the ligand, the contributions of molecular spin-orbitals (MSOs) to the hyperfine coupling constants and the spatial distribution of the z-component of the spin density in the MSOs calculated at the relativistic four-component DFT level are discussed and rationalized. The significant effects of the substituent and the solvent on δ(para), particularly the contact contribution, are demonstrated. This work should contribute to further understanding of the link between the electronic structure and the NMR chemical shifts in open-shell systems, including the ruthenium-based metallodrugs investigated in this account. PMID:27312929

  13. The conformational stability, solvation and the assignments of the experimental infrared, Raman, 1H and 13C NMR spectra of the local anesthetic drug lidocaine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2015-05-01

    The structure, vibrational and 1H and 13C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G∗∗ calculations. The molecule was predicted to have the non-planar cis (NCCN ∼ 0°) structures being about 2-6 kcal/mol lower in energy than the corresponding trans (NCCN ∼ 180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The 1H and 13C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine is 0.47 and 8.26 ppm, respectively.

  14. A study of the experimental and theoretical infrared, Raman, 1H and 13C NMR spectra of the biochemicals valeric and valproic acids

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2014-10-01

    The structural stability, vibrational, 1H and 13C NMR spectra of valeric and valproic acids were investigated by the B3LYP calculations with the 6-311G** basis set. Valeric acid is predicted to exist predominantly in the planar cis form (80% abundance). Valproic acid is predicted to have an equilibrium mixture of 68% gauche-1 and 32% gauche-2 structures at 298.15 K. The spectral feature of the Osbnd H stretching mode in the infrared spectra of both acids suggests the presence of strong H-bonding in the condensed phase of valeric acid and weak H-bonding in the case of valproic acid. The harmonic and anharmonic vibrational wavenumbers were computed at the B3LYP level of theory and tentative vibrational assignments were provided on the basis of combined theoretical and experimental infrared and Raman data of the molecules. Not all of the calculated anharmonic wavenumbers showed a consistent trend with the observed wavenumbers. The 1H and 13C NMR spectra of both acids were interpreted by experimental and DFT calculated chemical shifts of the two acids. The RMSD between experimental and theoretical 1H and 13C chemical shifts for valeric acid is 1.8 and 3.8 ppm, whereas for valproic acid, it is 1.4 and 4.5 ppm, respectively.

  15. Quantum-chemical analyses of aromaticity, UV spectra, and NMR chemical shifts in plumbacyclopentadienylidenes stabilized by Lewis bases.

    PubMed

    Kawamura, Toshiaki; Abe, Minori; Saito, Masaichi; Hada, Masahiko

    2014-04-30

    We carried out a series of zeroth-order regular approximation (ZORA)-density functional theory (DFT) and ZORA-time-dependent (TD)-DFT calculations for molecular geometries, NMR chemical shifts, nucleus-independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2 ((t) BuMe2 Si)2 C4 PbL1 L2 (L1, L2 = tetrahydrofuran, Pyridine, N-heterocyclic carbene), and their model molecules. We mainly discussed the Lewis-base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n-Huckel rule is applied to the fractional π-electron number. The calculated (13)C- and (207)Pb-NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the (13)C-NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the (207)Pb-NMR chemical shifts and J[Pb-C] but also in the (13)C-NMR chemical shifts of carbons adjacent to the lead atom. PMID:24643814

  16. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  17. Absolute nutrient concentration measurements in cell culture media: (1)H q-NMR spectra and data to compare the efficiency of pH-controlled protein precipitation versus CPMG or post-processing filtering approaches.

    PubMed

    Goldoni, Luca; Beringhelli, Tiziana; Rocchia, Walter; Realini, Natalia; Piomelli, Daniele

    2016-09-01

    The NMR spectra and data reported in this article refer to the research article titled "A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using q-NMR" [1]. We provide the (1)H q-NMR spectra of cell culture media (DMEM) after removal of serum proteins, which show the different efficiency of various precipitating solvents, the solvent/DMEM ratios, and pH of the solution. We compare the data of the absolute nutrient concentrations, measured by PULCON external standard method, before and after precipitation of serum proteins and those obtained using CPMG (Carr-Purcell-Meiboom-Gill) sequence or applying post-processing filtering algorithms to remove, from the (1)H q-NMR spectra, the proteins signal contribution. For each of these approaches, the percent error in the absolute value of every measurement for all the nutrients is also plotted as accuracy assessment. PMID:27331118

  18. Influence of inner-sphere processes on the paramagnetic shifts in the {sup 1}H NMR spectra of some mixed-ligand complexes of rare-earth elements

    SciTech Connect

    Khachatryan, A.S.; Vashchuk, A.V.; Panyushkin, V.T.

    1995-12-20

    Concentration dependences of the observed chemical shifts in the NMR spectra of 1:1:1 and 1:2:1 mixed-ligand complexes of rare-earth elements with acetylacetone and acrylic, methacrylic, maleic, and fumaric acids were analyzed. The complexes undergo inner-sphere structural transformations involving different modes of coordination of the unsaturated acid, which is capable of coordination to the central ion through both the carboxylic group and {pi} electrons of the double bond. The possibility of determining equilibrium constants and limiting chemical shifts of the isomeric forms of the complexes was demonstrated. 9 refs., 4 figs.

  19. Bare-Minimum Fluorous Mixture Synthesis of a Stereoisomer Library of 4,8,12-Trimethylnonadecanols and Predictions of NMR Spectra of Saturated Oligoisoprenoid Stereoisomers

    PubMed Central

    Yeh, Edmund A.-H.; Kumli, Eveline; Damodaran, Krishnan; Curran, Dennis P.

    2013-01-01

    All four diastereomers of a typical saturated oligoisoprenoid, 4,8,12-trimethylnonadecanol, are made by an iterative three step cycle with the aid of traceless thionocarbonate fluorous tags to encode configurations. The tags have a minimum number of total fluorine atoms, starting at zero and increasing in increments of one. With suitable acquisition and data processing, each diastereomer exhibited characteristic chemical shifts of methyl resonances in its 1H and 13C NMR spectra. Together, these shifts provide a basis to predict the appearance of the methyl region of the spectrum of every stereoisomer of higher saturated oligoisoprenoids. PMID:23297872

  20. Toward an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Tkáč , Ivan; Provencher, Stephen W.; Gruetter, Rolf

    1999-11-01

    Localized in vivo1H NMR spectroscopy was performed with 2-ms echo time in the rat brain at 9.4 T. Frequency domain analysis with LCModel showed that the in vivo spectra can be explained by 18 metabolite model solution spectra and a highly structured background, which was attributed to resonances with fivefold shorter in vivo T1 than metabolites. The high spectral resolution (full width at half maximum approximately 0.025 ppm) and sensitivity (signal-to-noise ratio approximately 45 from a 63-μL volume, 512 scans) was used for the simultaneous measurement of the concentrations of metabolites previously difficult to quantify in 1H spectra. The strongly represented signals of N-acetylaspartate, glutamate, taurine, myo-inositol, creatine, phosphocreatine, glutamine, and lactate were quantified with Cramér-Rao lower bounds below 4%. Choline groups, phosphorylethanolamine, glucose, glutathione, γ-aminobutyric acid, N-acetylaspartylglutamate, and alanine were below 13%, whereas aspartate and scyllo-inositol were below 22%. Intra-assay variation was assessed from a time series of 3-min spectra, and the coefficient of variation was similar to the calculated Cramér-Rao lower bounds. Interassay variation was determined from 31 pooled spectra, and the coefficient of variation for total creatine was 7%. Tissue concentrations were found to be in very good agreement with neurochemical data from the literature.

  1. Using a Problem Solving-Cooperative Learning Approach to Improve Students' Skills for Interpreting [Superscript 1]H NMR Spectra of Unknown Compounds in an Organic Spectroscopy Course

    ERIC Educational Resources Information Center

    Angawi, Rihab F.

    2014-01-01

    To address third- and fourth-year chemistry students' difficulties with the challenge of interpreting [superscript 1]H NMR spectra, a problem solving-cooperative learning technique was incorporated in a Spectra of Organic Compounds course. Using this approach helped students deepen their understanding of the basics of [superscript 1]H NMR…

  2. Strategy for Enhancement of (13)C-Photo-CIDNP NMR Spectra by Exploiting Fractional (13)C-Labeling of Tryptophan.

    PubMed

    Eisenreich, Wolfgang; Joshi, Monika; Illarionov, Boris; Kacprzak, Sylwia; Lukaschek, Michail; Kothe, Gerd; Budisa, Nediljko; Fischer, Markus; Bacher, Adelbert; Weber, Stefan

    2015-10-29

    The photo-CIDNP effect has proven to be useful to strongly enhance NMR signals of photochemically active proteins simply by irradiation with light. The evolving characteristic patterns of enhanced absorptive and emissive NMR lines can be exploited to elucidate the photochemistry and photophysics of light-driven protein reactions. In particular, by the assignment of (13)C NMR resonances, redox-active amino acids may be identified and thereby electron-transfer pathways unraveled, in favorable cases, even with (13)C at natural abundance. If signal enhancement is weak, uniform (13)C isotope labeling is traditionally applied to increase the signal strength of protein (13)C NMR. However, this typically leads to cross relaxation, which transfers light-induced nuclear-spin polarization to adjacent (13)C nuclei, thereby preventing an unambiguous analysis of the photo-CIDNP effect. In this contribution, two isotope labeling strategies are presented; one leads to specific but ubiquitous (13)C labeling in tryptophan, and the other is based on fractional isotope labeling affording sets of isotopologs with low probability of next-neighbor isotope accumulation within individual tryptophan molecules. Consequently, cross relaxation is largely avoided while the signal enhancement by (13)C enrichment is preserved. This results in significantly simplified polarization patterns that are easier to analyze with respect to the generation of light-generated nuclear-spin polarization. PMID:26244593

  3. (1)H NMR z-spectra of acetate methyl in stretched hydrogels: quantum-mechanical description and Markov chain Monte Carlo relaxation-parameter estimation.

    PubMed

    Shishmarev, Dmitry; Chapman, Bogdan E; Naumann, Christoph; Mamone, Salvatore; Kuchel, Philip W

    2015-01-01

    The (1)H NMR signal of the methyl group of sodium acetate is shown to be a triplet in the anisotropic environment of stretched gelatin gel. The multiplet structure of the signal is due to the intra-methyl residual dipolar couplings. The relaxation properties of the spin system were probed by recording steady-state irradiation envelopes ('z-spectra'). A quantum-mechanical model based on irreducible spherical tensors formed by the three magnetically equivalent spins of the methyl group was used to simulate and fit experimental z-spectra. The multiple parameter values of the relaxation model were estimated by using a Bayesian-based Markov chain Monte Carlo algorithm. PMID:25486634

  4. Structure of pyridine and quinoline vinyl ethers according to data from /sup 1/H and /sup 13/C NMR spectra and quantum-chemical calculations

    SciTech Connect

    Afonin, A.V.; Voronov, V.K.; Andriankov, M.A.; Danovich, D.K.

    1987-08-10

    A systematic investigation of the structure of the vinyl ethers of heterocyclic compounds has not been undertaken. The present work was devoted to investigation of the stereochemical and electronic structure of the vinyl ethers of pyridine and quinoline. The PMR spectra of the samples were recorded for 5% solutions in deuterochloroform on a Tesla BS-497 spectrometer at 100 MHz. The /sup 13/C NMR spectra were recorded on a Tesla BS-567A spectrometer at 25.1 MHz in deuterochloroform with the samples at concentrations of 30%. The internal standard was HMDS. The vinyl ethers of pyridine and quinoline exist preferentially in the nonplanar S-trans conformation. In the vinyl esters of pyridine and quinoline the p-..pi.. conjugation is concurrent in nature and depends on the position of the vinyloxy group in the heterocycle.

  5. Combined experimental (FT-IR, UV-visible spectra, NMR) and theoretical studies on the molecular structure, vibrational spectra, HOMO, LUMO, MESP surfaces, reactivity descriptor and molecular docking of Phomarin

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Srivastava, Ambrish Kumar; Gangwar, Shashi; Misra, Neeraj; Mondal, Avijit; Brahmachari, Goutam

    2015-09-01

    Phomarin is an important natural product belonging to anthraquinone series of compounds. The equilibrium geometry of phomarin has been determined and analyzed at DFT method employing B3LYP/6-311++G(d,p) level of computation. The reactivity of molecule using various descriptors such as Fukui functions, local softness, electrophilicity, electronegativity, Hardness, HOMO-LUMO gap are calculated and discussed. The infrared and UV-vis spectra of phomarin are calculated and compared with the experimentally observed ones. Moreover, 1H and 13C NMR spectra have been calculated by using the gauge independent atomic orbital method. We also notice that phomarin shows remarkable biological activities against malaria parasite. The study suggests further investigation on phomarin for their pharmacological importance.

  6. Dynamic effects in MAS and MQMAS NMR spectra of half-integer quadrupolar nuclei: calculations and an application to the double perovskite cryolite.

    PubMed

    Kotecha, Mrignayani; Chaudhuri, Santanu; Grey, Clare P; Frydman, Lucio

    2005-11-30

    Dynamic processes such as chemical exchange or rotations between inequivalent orientations can affect the magic-angle spinning (MAS) and the multiple-quantum (MQ) MAS NMR spectra of half-integer quadrupolar nuclei. The present paper discusses such dynamic multisite MAS and MQMAS effects and applies them to study the dynamic processes that occur in the double perovskite cryolite, Na3AlF6. Dynamic line shape simulations invoking a second-order broadening of the central transition and relying on the semiclassical Bloch-McConnell formalism for chemical exchange were performed for a variety of exchange models possessing different symmetries. Fitting experimental variable-temperature cryolite 23Na NMR data with this formalism revealed that the two inequivalent sodium sites in this mineral undergo an exchange characterized by a broad distribution of rates. To further assess this dynamic process a variety of 27Al and 19F MAS NMR studies were also undertaken; quantitative 27Al-19F dipolar coupling measurements then revealed a dynamic motion of the AlF6 octahedra that were qualitatively consistent with predictions stemming from molecular dynamic simulations on this double perovskite. PMID:16305261

  7. Conformational and isomerizational studies of 3- N, N-dimethylhydrazino-2-acetyl propenenitrile using X-ray analysis, NMR and vibrational spectra, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.

    2009-12-01

    The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-acetyl propenenitrile (DMHAP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN)(COCH 3)] were measured. X-ray analysis revealed that DMHAP exists in solid state as ZZa conformer. Vibrational and NMR spectra confirmed the existence of only one ZZa conformer with an intramolecular hydrogen bond in less polar solvents and next two EZa and EZs conformers of E-isomer with Z-orientation of acetyl group and anti and syn orientation of dimethylhydrazino group in more polar environments. The observed IR and Raman bands were compared with harmonic vibrational frequencies, calculated using ab initio MP2 and DFT/B3LYP methods in 6-31G∗∗ basis set, and assigned on the basis of potential energy distribution. In addition, the geometries and relative energies of the possible isomers and conformers of DMHAP were also evaluated on the same levels and compared with the X-ray data. The influence of environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using IEFPCM model.

  8. IR and NMR spectra, intramolecular hydrogen bonding and conformations of para-tert-butyl-aminothiacalix[4]arene in solid state and chloroform solution

    NASA Astrophysics Data System (ADS)

    Zvereva, Elena E.; Katsyuba, Sergey A.; Vandyukov, Alexander E.; Chernova, Alla V.; Kovalenko, Valery I.; Solovieva, Svetlana E.; Antipin, Igor S.; Konovalov, Alexander I.

    2010-02-01

    It is demonstrated that dissolution of aminothiacalix[4]arene in chloroform results in transformation of 1,3-alternate conformation, adopted in single-crystal and bulk polycrystalline solids, to the pinched-cone form. This conformer is stabilised by the intramolecular hydrogen bonds of two distal amino-groups acting as H-donors with another two amino moieties that appear as H-acceptors. The H-bonds cause quite small (ca. 10-20 cm -1) red shift of the IR bands of the NH 2 stretching vibrations, which suggests rather weak NH⋯N hydrogen bonding. This latter is sufficient to stabilize the pinched-cone conformation in the chloroform solution, but the energy gap between the pinched-cone and other conformations is small, and solid-state intermolecular forces easily overcome it, leading to realisation of the 1,3-alternate conformer. The comparison of the DFT computed and experimental vibrational and NMR spectra demonstrates good quality of present quantum-chemical computations, allows complete interpretation of the spectra and reveals simple IR and NMR spectroscopic markers of the conformers of aminothiacalix[4]arenes.

  9. IR and NMR spectra, intramolecular hydrogen bonding and conformations of para-tert-butyl-aminothiacalix[4]arene in solid state and chloroform solution.

    PubMed

    Zvereva, Elena E; Katsyuba, Sergey A; Vandyukov, Alexander E; Chernova, Alla V; Kovalenko, Valery I; Solovieva, Svetlana E; Antipin, Igor S; Konovalov, Alexander I

    2010-02-01

    It is demonstrated that dissolution of aminothiacalix[4]arene in chloroform results in transformation of 1,3-alternate conformation, adopted in single-crystal and bulk polycrystalline solids, to the pinched-cone form. This conformer is stabilised by the intramolecular hydrogen bonds of two distal amino-groups acting as H-donors with another two amino moieties that appear as H-acceptors. The H-bonds cause quite small (ca. 10-20 cm(-1)) red shift of the IR bands of the NH(2) stretching vibrations, which suggests rather weak NHcdots, three dots, centeredN hydrogen bonding. This latter is sufficient to stabilize the pinched-cone conformation in the chloroform solution, but the energy gap between the pinched-cone and other conformations is small, and solid-state intermolecular forces easily overcome it, leading to realisation of the 1,3-alternate conformer. The comparison of the DFT computed and experimental vibrational and NMR spectra demonstrates good quality of present quantum-chemical computations, allows complete interpretation of the spectra and reveals simple IR and NMR spectroscopic markers of the conformers of aminothiacalix[4]arenes. PMID:20042365

  10. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    PubMed

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-01

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR. PMID:25102442

  11. Off-resonance effects on 2D NMR nutation spectra of I = 3/2 quadrupolar nuclei in static samples.

    PubMed

    Xia, Y; Deng, F; Ye, C

    1995-12-01

    The off-resonance effects on 2D NMR nutation of I = 3/2 quadrupolar nuclei are demonstrated with perturbation theory and numerical calculation in static samples. The off-resonant (delta omega) rf field (omega 1) enlarges a nutation frequency and consequently increases the measurement range of nuclear quadrupolar interaction parameters. When omega e > omega Qmax, and arctg(omega 1/delta omega) = +/- 54.7 degrees (magic angle), the satellite lines (produced by coherence transfers) in a nutation spectrum are superimposed with the line of central transition, and hence the nutation spectrum is simplified and its sensitivity is enhanced. The nuclear quadrupolar interaction parameters of 23Na nuclei in Na omega molecular sieve are obtained using 2D NMR nutation. PMID:9053113

  12. Improving the efficiency of branch-and-bound complete-search NMR assignment using the symmetry of molecules and spectra

    SciTech Connect

    Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.; González, Fabio; Wist, Julien

    2015-02-21

    Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruning of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.

  13. Simultaneous Acquisition of 2D and 3D Solid-State NMR Experiments for Sequential Assignment of Oriented Membrane Protein Samples

    PubMed Central

    Gopinath, T.; Mote, Kaustubh R; Veglia, Gianluigi

    2016-01-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins aligned in mechanically or magnetically lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living 15N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through 15N-15N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish 15N-15N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments. PMID:25749871

  14. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    PubMed

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments. PMID:25749871

  15. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Castellani, Federica; van Rossum, Barth; Diehl, Annette; Schubert, Mario; Rehbein, Kristina; Oschkinat, Hartmut

    2002-11-01

    The determination of a representative set of protein structures is a chief aim in structural genomics. Solid-state NMR may have a crucial role in structural investigations of those proteins that do not easily form crystals or are not accessible to solution NMR, such as amyloid systems or membrane proteins. Here we present a protein structure determined by solid-state magic-angle-spinning (MAS) NMR. Almost complete 13C and 15N resonance assignments for a micro-crystalline preparation of the α-spectrin Src-homology 3 (SH3) domain formed the basis for the extraction of a set of distance restraints. These restraints were derived from proton-driven spin diffusion (PDSD) spectra of biosynthetically site-directed, labelled samples obtained from bacteria grown using [1,3-13C]glycerol or [2-13C]glycerol as carbon sources. This allowed the observation of long-range distance correlations up to ~7Å. The calculated global fold of the α-spectrin SH3 domain is based on 286 inter-residue 13C-13C and six 15N-15N restraints, all self-consistently obtained by solid-state MAS NMR. This MAS NMR procedure should be widely applicable to small membrane proteins that can be expressed in bacteria.

  16. Complete fusion of 15N+27Al

    NASA Astrophysics Data System (ADS)

    Prosser, F. W., Jr.; Racca, R. A.; Daneshvar, K.; Geesaman, D. F.; Henning, W.; Kovar, D. G.; Rehm, K. E.; Tabor, S. L.

    1980-05-01

    The total fusion cross section for the system 15N + 27Al has been measured over an energy range 27 MeV<=Elab<=70 MeV by detection of the fusion-evaporation residues. In addition elastic scattering was measured at six energies and fitted by optical model calculations. The fusion cross section for the system saturates at 1150+/-50 mb. The data can be well described by the model of Glas and Mosel, using a reasonable set of parameters. The model of Horn and Ferguson also describes the data well if an appropriate charge radius is used. Comparison is made between these results and the fusion cross sections for 16O + 26Mg and 18O + 24Mg, which lead to the same compound nucleus. The results for 15N + 27Al are quite similar to those for 18O + 24Mg, and the differences between the fusion cross sections for these two systems and those for 16O + 26Mg may be evidence for an entrance channel effect. NUCLEAR REACTIONS 15N+27Al, Elab=27-70 MeV; measured σfusion(E) measured dσdΩ elastic scattering; data fitted with Glas and Mosel model, Horn and Ferguson model.

  17. 1H NMR spectra of alcohols and diols in chloroform: DFT/GIAO calculation of chemical shifts.

    PubMed

    Lomas, John S

    2014-12-01

    Proton nuclear magnetic resonance (NMR) shifts of aliphatic alcohols in chloroform have been computed on the basis of density functional theory, the solvent being included by the integral-equation-formalism polarisable continuum model of Gaussian 09. Relative energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6-311+G(d,p) level, and NMR shifts by the gauge-including atomic orbital method with the PBE0/6-311+G(d,p) geometry and the cc-pVTZ basis set. The 208 computed CH proton NMR shifts for 34 alcohols correlate very well with the experimental values, with a gradient of 1.00 ± 0.01 and intercept close to zero; the overall root mean square difference (RMSD) is 0.08 ppm. Shifts for CH protons of diols in chloroform are well correlated with the theoretical values for (isotropic) benzene, with similar gradient and intercept (1.02 ± 0.01, -0.13 ppm), but the overall RMSD is slightly higher, 0.12 ppm. This approach generally gives slightly better results than the CHARGE model of Abraham et al. The shifts of unsaturated alcohols in benzene have been re-examined with Gaussian 09, but the overall fit for CH protons is not improved, and OH proton shifts are worse. Shifts of vinyl protons in alkenols are systematically overestimated, and the correlation of computed shifts against the experimental data for unsaturated alcohols follows a quadratic equation. Splitting the 20 compounds studied into two sets, and applying empirical scaling based on the quadratic for the first set to the second set, gives an RMSD of 0.10 ppm. A multi-standard approach gives a similar result. PMID:25199903

  18. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4'-methylpropiophenone.

    PubMed

    Karunakaran, V; Balachandran, V

    2014-07-15

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4'-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4'-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set. PMID:24657464

  19. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4‧-Methylpropiophenone

    NASA Astrophysics Data System (ADS)

    Karunakaran, V.; Balachandran, V.

    2014-07-01

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4‧-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4‧-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The 1H and 13C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set.

  20. Quantification of the Contribution of Extracellular Sodium to 23Na Multiple-Quantum-Filtered NMR Spectra of Suspensions of Human Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Knubovets, Tatyana; Shinar, Hadassah; Navon, Gil

    1998-03-01

    23Na double-quantum-filtered (DQF) NMR enables the detection of anisotropic motion of sodium ions due to their interaction with ordered structures in biological tissues. Using the technique, anisotropic motion was found for sodium ions in mammalian red blood cell suspensions (RBC) and the effect was shown to correlate with the integrity of membrane cytoskeleton. In the present study relative contributions to the DQF and triple-quantum-filtered (TQF) spectra of sodium bound to anisotropic and isotropic binding sites in the intra- and extracellular sodium pools (Na content being 15 and 150 mM, respectively) of human RBC were quantified for different hematocrits. DQF spectra were measured by a modified Jeener-Broekaert pulse sequence which enabled exclusive detection of anisotropically moving sodium ions. The relative contributions of the extracellular sodium to the TQF and DQF spectra decreased as the hematocrit increased, but their efficiency relative to the sodium content increased. The contribution of the extracellular sodium to the TQF signal was found to dominate the spectrum of the RBC suspension at all hematocrits studied. The contribution of the extracellular sodium to the DQF was significantly smaller than that to the TQF and was only 22% at a high hematocrit of about 90%.

  1. Molecular dynamics and information on possible sites of interaction of intramyocellular metabolites in vivo from resolved dipolar couplings in localized 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl- L-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H- 1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 ( S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 ( δ = 8 ppm) and H4 ( δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 - 3) × 10 -4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 - 137) × 10 -4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model

  2. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Kuzu, Burak; Menges, Nurettin

    2016-06-01

    Indole containing dyes were synthesized via a simple method with high yield. These molecules have different colors and UV-vis spectra of them were recorded. Impact of solvents on absorbances was investigated and it was observed that basic solvent such as DMF and pyridine have blue shift. TD-DFT calculations were done and results were compared with experimental data. NMR data of molecules were analyzed and tautomeric forms of colorants and their ratio were determined. It was find out that two tautomers might be formed in solution, called indole and indolenine form. HOMO-LUMO and energy gaps were calculated and plotted. Furthermore, molecular electrostatic potentials were simulated to find out electrophilic and nucleophilic regions.

  3. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study.

    PubMed

    Kuzu, Burak; Menges, Nurettin

    2016-06-01

    Indole containing dyes were synthesized via a simple method with high yield. These molecules have different colors and UV-vis spectra of them were recorded. Impact of solvents on absorbances was investigated and it was observed that basic solvent such as DMF and pyridine have blue shift. TD-DFT calculations were done and results were compared with experimental data. NMR data of molecules were analyzed and tautomeric forms of colorants and their ratio were determined. It was find out that two tautomers might be formed in solution, called indole and indolenine form. HOMO-LUMO and energy gaps were calculated and plotted. Furthermore, molecular electrostatic potentials were simulated to find out electrophilic and nucleophilic regions. PMID:26985875

  4. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  5. Algal autolysate medium to label proteins for NMR in mammalian cells.

    PubMed

    Fuccio, Carmelo; Luchinat, Enrico; Barbieri, Letizia; Neri, Sara; Fragai, Marco

    2016-04-01

    In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in (15)N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained. PMID:27106902

  6. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2--a free in-house NMR database with integrated LIMS for academic service laboratories.

    PubMed

    Kuhn, Stefan; Schlörer, Nils E

    2015-08-01

    nmrshiftdb2 supports with its laboratory information management system the integration of an electronic lab administration and management into academic NMR facilities. Also, it offers the setup of a local database, while full access to nmrshiftdb2's World Wide Web database is granted. This freely available system allows on the one hand the submission of orders for measurement, transfers recorded data automatically or manually, and enables download of spectra via web interface, as well as the integrated access to prediction, search, and assignment tools of the NMR database for lab users. On the other hand, for the staff and lab administration, flow of all orders can be supervised; administrative tools also include user and hardware management, a statistic functionality for accounting purposes, and a 'QuickCheck' function for assignment control, to facilitate quality control of assignments submitted to the (local) database. Laboratory information management system and database are based on a web interface as front end and are therefore independent of the operating system in use. PMID:25998807

  7. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  8. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  9. Comparison of the solution and crystal structures of staphylococcal nuclease with /sup 13/C and /sup 15/N chemical shifts used as structural fingerprints

    SciTech Connect

    Cole, H.B.R.; Sparks, S.W.; Torchia, D.A.

    1988-09-01

    The authors report high-resolution /sup 13/C and /sup 15/N NMR spectra of crystalline staphylococcal nuclease (Nase) complexed to thymidine 3',5'-diphosphate and Ca/sup 2+/. High sensitivity and resolution are obtained by applying solid-state NMR techniques-high power proton decoupling and cross-polarization magic angle sample spinning (CPMASS)-to protein samples that have been efficiently synthesized and labeled by an overproducing strain of Escherichia coli. A comparison of CPMASS and solution spectra of Nase labeled with either (methyl-/sup 13/C)methionine or (/sup 15/)valine shows that the chemical shifts in the crystalline and solution states are virtually identical. This result is strong evidence that the protein conformations in the solution and crystalline states are nearly the same. Because of the close correspondence of the crystal and solution chemical shifts, sequential assignments obtained in solution apply to the crystal spectra. It should therefore be possible to study the molecular structure and dynamics of many sequentially assigned atomic sites in Nase crystals. Similar experiments are applicable to the growing number of proteins that can be obtained from efficient expression systems.

  10. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures)

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kose, E.; Kurt, M.; Karabacak, M.

    2015-02-01

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The 1H, 13C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The 1H and 13C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  11. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    PubMed

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule. PMID:25305625

  12. Organic Matter Composition, Recycling Susceptibility and the Effectiveness of the Biological Pump - An Evaluation using NMR Spectra of Marine Plankton

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Cade-Menun, B.

    2005-12-01

    The degree of organic matter biodegradation and recycling depends on the "reactivity" of compounds synthesized by the biota, which in turn is controlled by the structural characteristics of these compounds. Thus, abundance of a wide-range of organic compounds in seawater would lend itself to different susceptibility for biodegradation, which in turn is important for estimating the potential for rapid regeneration in the euphotic zone and thus the effectiveness of the biological pump. We employed 13C and 31P NMR spectroscopy on cultures of phytoplankton dominating blooms in the Southern Ocean grown under five light levels at 3oC. We found differences in both C and P compounds synthesized by the different taxa as well as for each species at various light levels. Results suggest variability in synthesized organic compounds by different taxa and by a single species grown in different environmental conditions. understanding of the oceanic C cycle in general and C sequestration effectiveness in particular.

  13. Water proton spin saturation affects measured protein backbone 15 N spin relaxation rates

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Tjandra, Nico

    2011-12-01

    Protein backbone 15N NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measure 15N longitudinal T1 and transversal rotating-frame T1ρ spin relaxation. Unexpectedly the 15N T1 relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDa Escherichiacoli. glutamine binding protein (GlnBP) the T1 values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the two T1ρ data sets are correlated without an apparent offset. The average T1 difference was reduced to 12% when the experimental recycle delay was doubled, while the average T1 values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios ( s/ n) showed the apparent slower 15N relaxation obtained with the water dephasing experiment originated from the differences in 1H N recovery for each relaxation time point. This in turn offset signal reduction from 15N relaxation decay. The artifact becomes noticeable when the measured 15N relaxation time constant is comparable to recycle delay, e.g., the 15N T1 of medium to large proteins. The 15N relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters (< S2> = 0.81) than the non-saturated ones (< S2> = 0.88), indicating such order parameters may be previously underestimated.

  14. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  15. Enzymatic synthesis of guanine nucleotides labeled with 15N at the 2-amino group of the purine ring.

    PubMed

    Bouhss, A; Sakamoto, H; Palibroda, N; Chiriac, M; Sarfati, R; Smith, J M; Craescu, C T; Bârzu, O

    1995-02-10

    GMP and dGMP labeled with 15N at the 2-amino group of the purine ring was obtained enzymatically from NH4Cl (> 99 at.% 15N) and from IMP or dIMP, respectively, by several reactions involving IMP-dehydrogenase, GMP-synthetase, adenylate kinase, and creatine kinase. The first three enzymes were obtained by overexpression in Escherichia coli of the corresponding genes. The isotope content of the primary amino group of guanine determined by mass spectrometry after acid hydrolysis of nucleotides was found higher than 98 at.% 15N. The proton NMR spectrum of [15N]GMP in solution in the absence of nitrogen decoupling showed a doublet with a coupling constant of 92 Hz. When nitrogen decoupling was used during the acquisition time, the doublet was replaced by a single peak at 6.47 ppm, indicating that the corresponding proton is bound to 15N. PMID:7778777

  16. Application of 15N nuclear magnetic resonance spectroscopy to the determination of the stability of aryl nitrogen mustards.

    PubMed

    Wilman, D E; Palmer, B D; Denny, W A

    1995-06-01

    An excellent correlation has been shown to exist between the 15N NMR chemical shifts of a series of aryl nitrogen mustards and the Hammett constant, sigma, which is much improved by the use of sigma-. These chemical shifts also correlate well with the hydrolysis rates of the compounds in 50% aqueous acetone at 66 degrees C and their alkylation of 4-(4'-nitrobenzyl)pyridine under similar conditions. Thus 15N NMR is a straightforward and material-conserving method for estimating the relative stabilities of aryl nitrogen mustards. PMID:7783158

  17. NMR of 133Cs+ in stretched hydrogels: One-dimensional, z- and NOESY spectra, and probing the ion's environment in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Shishmarev, Dmitry; Puckeridge, Max; Levitt, Malcolm H.; Naumann, Christoph; Chapman, Bogdan E.

    2015-12-01

    133Cs nuclear magnetic resonance (NMR) spectroscopy was conducted on 133Cs+ in gelatin hydrogels that were either relaxed or stretched. Stretching generated a septet from this spin-7/2 nucleus, and its nuclear magnetic relaxation was studied via z-spectra, and two-dimensional nuclear Overhauser (NOESY) spectroscopy. Various spectral features were well simulated by using Mathematica and the software package SpinDynamica. Spectra of CsCl in suspensions of human erythrocytes embedded in gelatin gel showed separation of the resonances from the cation inside and outside the cells. Upon stretching the sample, the extracellular 133Cs+ signal split into a septet, while the intracellular peak was unchanged, revealing different alignment/ordering properties of the environment inside and around the cells. Differential interference contrast light microscopy confirmed that the cells were stretched when the overall sample was elongated. Analysis of the various spectral features of 133Cs+ reported here opens up applications of this K+ congener for studies of cation-handling by metabolically-active cells and tissues in aligned states.

  18. Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR

    PubMed Central

    Bayro, Marvin J.; Debelouchina, Galia T.; Eddy, Matthew T.; Birkett, Neil R.; MacPhee, Catherine E.; Rosay, Melanie; Maas, Werner E.; Dobson, Christopher M.

    2011-01-01

    We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two being based on the analysis of long-range 13C-13C correlation spectra and a third based on the identification of intermolecular interactions in 13C-15N spectra. We show, in studies of fibrils formed by the 86-residue SH3 domain of PI3 kinase (PI3-SH3), that efficient 13C-13C correlation spectra display a resonance degeneracy that establishes a parallel, in-register alignment of the proteins in the amyloid fibrils. In addition, this degeneracy can be circumvented to yield direct intermolecular constraints. The 13C-13C experiments are corroborated by 15N-13C correlation spectrum obtained from a mixed [15N,12C]/[14N,13C] sample which directly quantifies interstrand distances. Furthermore, when the spectra are recorded with signal enhancement provided by dynamic nuclear polarization (DNP) at 100 K, we demonstrate a dramatic increase (from 23 to 52) in the number of intermolecular 15N-13C constraints present in the spectra. The increase in the information content is due to the enhanced signal intensities and to the fact that dynamic processes, leading to spectral intensity losses, are quenched at low temperatures. Thus, acquisition of low temperature spectra addresses a problem that is frequently encountered in MAS spectra of proteins. In total the experiments provide 111 intermolecular 13C-13C and 15N-13C constraints that establish that the PI3-SH3 protein strands are aligned in a parallel, in-register arrangement within the amyloid fibril. PMID:21774549

  19. Effect of protein restriction on (15)N transfer from dietary [(15)N]alanine and [(15)N]Spirulina platensis into urea.

    PubMed

    Hamadeh, M J; Hoffer, L J

    2001-08-01

    Six normal men consumed a mixed test meal while adapted to high (1.5 g. kg(-1) x day(-1)) and low (0.3 g. kg(-1) x day(-1)) protein intakes. They completed this protocol twice: when the test meals included 3 mg/kg of [(15)N]alanine ([(15)N]Ala) and when they included 30 mg/kg of intrinsically labeled [(15)N]Spirulina platensis ([(15)N]SPI). Six subjects with insulin-dependent diabetes mellitus (IDDM) receiving conventional insulin therapy consumed the test meal with added [(15)N]Ala while adapted to their customary high-protein diet. Protein restriction increased serum alanine, glycine, glutamine, and methionine concentrations and reduced those of leucine. Whether the previous diet was high or low in protein, there was a similar increase in serum alanine, methionine, and branched-chain amino acid concentrations after the test meal and a similar pattern of (15)N enrichment in serum amino acids for a given tracer. When [(15)N]Ala was included in the test meal, (15)N appeared rapidly in serum alanine and glutamine, to a minor degree in leucine and isoleucine, and not at all in other circulating amino acids. With [(15)N]SPI, there was a slow appearance of the label in all serum amino acids analyzed. Despite the different serum amino acid labeling, protein restriction reduced the postmeal transfer of dietary (15)N in [(15)N]Ala or [(15)N]SPI into [(15)N]urea by similar amounts (38 and 43%, respectively, not significant). The response of the subjects with IDDM was similar to that of the normal subjects. Information about adaptive reductions in dietary amino acid catabolism obtained by adding [(15)N]Ala to a test meal appears to be equivalent to that obtained using an intrinsically labeled protein tracer. PMID:11440912

  20. Studies on vibrational, NMR spectra and quantum chemical calculations of N-Succinopyridine: An organic nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Kannan, V.; Thirupugalmani, K.; Brahadeeswaran, S.

    2013-10-01

    Single crystals of N-Succinopyridine (NSP) have been grown from water using solution growth method by isothermal solvent evaporation technique. The solid state Fourier Transform Infrared (FTIR) spectrum of the grown crystal shows a broad absorption extending from 3450 down to 400 cm-1, due to H-bond vibrations and other characteristic vibrations. Fourier Transform Raman (FT-Raman) spectrum of NSP single crystal shows Raman intensities ranging from 3100 to 100 cm-1 due the characteristics vibrations of functional groups present in NSP. The proton and carbon positions of NSP have been described by 1H and 13C NMR spectrum respectively. Ab initio quantum chemical calculations on NSP have been performed by density functional theory (DFT) calculations using B3LYP method with 6-311++G(d,p) basis set. The predicted first hyperpolarizability is found to be 1.29 times greater than that of urea and suggests that the title compound could be an attractive material for nonlinear optical applications. The calculated HOMO-LUMO energies show that charge transfers occur within the molecule and other related molecular properties. Molecular properties such as Mulliken population analysis, thermodynamic functions and perturbation theory energy analysis have also been reported. Electrostatic potential map (ESP) of NSP obtained by electron density isosurface provided the information about the size, shape, charge density distribution and site of chemical reactivity of the title molecule. The molecular stability and bond strength have been investigated through the Natural Bond Orbital (NBO) analysis.

  1. Removal of t1 noise from metabolomic 2D 1H- 13C HSQC NMR spectra by Correlated Trace Denoising

    NASA Astrophysics Data System (ADS)

    Poulding, Simon; Charlton, Adrian J.; Donarski, James; Wilson, Julie C.

    2007-12-01

    The presence of t1 noise artefacts in 2D phase-cycled Heteronuclear Single Quantum Coherence (HSQC) spectra constrains the use of this experiment despite its superior sensitivity. This paper proposes a new processing algorithm, working in the frequency-domain, for reducing t1 noise. The algorithm has been developed for use in contexts, such as metabolomic studies, where existing denoising techniques cannot always be applied. Two test cases are presented that show the algorithm to be effective in improving the SNR of peaks embedded within t1 noise by a factor of more than 2, while retaining the intensity and shape of genuine peaks.

  2. The NMR study of biologically active metallated alkanol ammoinium ionic liquids

    NASA Astrophysics Data System (ADS)

    Ushakov, I. A.; Voronov, V. K.; Adamovich, S. N.; Mirskov, R. G.; Mirskova, A. N.

    2016-01-01

    The 1H, 13C, 15N, and 111Cd NMR spectra of a series of metallated alkanol ammonium ionic liquids (MAIL) series [n N(CH2CH2OH;)3M]+ · mX-, where M = Cd, Mg, Zn, Fe, Rh; X = Cl, OOCCH3, obtained in a wide range of temperatures of the studied samples, have been analyzed. It is found that, under biomimetic conditions (H2O, 25 °C), the compounds studied exist as mono- bi- and the tricyclic structures, which are in equilibrium. Shift of the equilibrium depends upon nature of a metal and effects all the parameters of the NMR spectra. Peculiarities of ligand exchange, typical for the studied compounds, have been studied in a wide range of temperatures. It is found that the NMR data can be used to control structure of the compounds formed in the course of synthesis.

  3. Apoflavodoxin (un)folding followed at the residue level by NMR.

    PubMed Central

    van Mierlo, C. P.; van den Oever, J. M.; Steensma, E.

    2000-01-01

    The denaturant-induced (un)folding of apoflavodoxin from Azotobacter vinelandii has been followed at the residue level by NMR spectroscopy. NH groups of 21 residues of the protein could be followed in a series of 1H-15N heteronuclear single-quantum coherence spectra recorded at increasing concentrations of guanidinium hydrochloride despite the formation of protein aggregate. These NH groups are distributed throughout the whole apoflavodoxin structure. The midpoints of unfolding determined by NMR coincide with the one obtained by fluorescence emission spectroscopy. Both techniques give rise to unfolding curves with transition zones at significantly lower denaturant concentrations than the one obtained by circular dichroism spectroscopy. The NMR (un)folding data support a mechanism for apoflavodoxin folding in which a relatively stable intermediate is involved. Native apoflavodoxin is shown to cooperatively unfold to a molten globule-like state with extremely broadened NMR resonances. This initial unfolding step is slow on the NMR chemical shift timescale. The subsequent unfolding of the molten globule is faster on the NMR chemical shift timescale and the limited appearance of 1H-15N HSQC cross peaks of unfolded apoflavodoxin in the denaturant range studied indicates that it is noncooperative. PMID:10739257

  4. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Elamurugu Porchelvi, E.

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed.

  5. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule.

    PubMed

    Muthu, S; Elamurugu Porchelvi, E

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed. PMID:23845985

  6. Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation.

    PubMed

    Ge, Xinmin; Fan, Yiren; Chen, Hua; Deng, Shaogui; Cao, Yingchang; Zahid, Muhammad Aleem

    2015-11-01

    The low field nuclear magnetic resonance (NMR) spectroscopy has been widely used to characterize the longitudinal and transversal relaxation (T1-T2) spectrum of unconventional resources such as shale gas and tight oil containing significant proportions of kerogen and bitumen. However, it requires exquisite design of the acquisition model and the inversion algorithm due to the fast relaxation nature of the kerogen and bitumen. A new direct two dimensional (2D) inversion algorithm combined the iterative truncated singular value decomposition (TSVD) and the Akaiake Information Criterion (AIC) is presented to perform the data inversion efficiently. The fluid component decomposition (FCD) is applied to construct the forward T1-T2 model of the kerogen, and numerical simulations are conducted to investigate factors which may influence inversion results including echo spacing, recovery time series, signal to noise ratio (SNR), and the maximal iteration time. Results show that the T2 component is heavily impaired by the echo spacing, whereas the T1 component is influenced by the recovery time series but with limited effects. The inversion precision is greatly affected by the quality of the data. The inversed spectrum deviates from the model seriously when the SNR of the artificial noise is lower than 50, and the T2 component is more sensitive to the noise than the T1 component. What's more, the maximal iteration time can also affect the inversion result, especially when the maximal iteration time is smaller than 500. Proper acquisition and inversion parameters for the characterization of the kerogen are obtained considering the precision and the computational cost. PMID:26397220

  7. Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Chen, Hua; Deng, Shaogui; Cao, Yingchang; Zahid, Muhammad Aleem

    2015-11-01

    The low field nuclear magnetic resonance (NMR) spectroscopy has been widely used to characterize the longitudinal and transversal relaxation (T1-T2) spectrum of unconventional resources such as shale gas and tight oil containing significant proportions of kerogen and bitumen. However, it requires exquisite design of the acquisition model and the inversion algorithm due to the fast relaxation nature of the kerogen and bitumen. A new direct two dimensional (2D) inversion algorithm combined the iterative truncated singular value decomposition (TSVD) and the Akaiake Information Criterion (AIC) is presented to perform the data inversion efficiently. The fluid component decomposition (FCD) is applied to construct the forward T1-T2 model of the kerogen, and numerical simulations are conducted to investigate factors which may influence inversion results including echo spacing, recovery time series, signal to noise ratio (SNR), and the maximal iteration time. Results show that the T2 component is heavily impaired by the echo spacing, whereas the T1 component is influenced by the recovery time series but with limited effects. The inversion precision is greatly affected by the quality of the data. The inversed spectrum deviates from the model seriously when the SNR of the artificial noise is lower than 50, and the T2 component is more sensitive to the noise than the T1 component. What's more, the maximal iteration time can also affect the inversion result, especially when the maximal iteration time is smaller than 500. Proper acquisition and inversion parameters for the characterization of the kerogen are obtained considering the precision and the computational cost.

  8. Structural characterization, solvent effects on nuclear magnetic shielding tensors, experimental and theoretical DFT studies on the vibrational and NMR spectra of 3-(acrylamido)phenylboronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Kaya, Mehmet Fatih; Dikmen, Gökhan

    2015-12-01

    Structural elucidation of 3-(acrylamido)phenylboronic acid (C9H10BNO3) was carried out with 1H, 13C and HETCOR NMR techniques. Solvent effects on nuclear magnetic shielding tensors were examined with deuterated dimethyl sulfoxide, acetone, methanol and water solvents. The correct order of appearance of carbon and hydrogen atoms on NMR scale from highest magnetic field region to the lowest one were investigated using different types of theoretical levels and the details of the levels were presented in this study. Stable structural conformers and vibrational band analysis of the title molecule (C9H10BNO3) were studied both experimental and theoretical viewpoints using FT-IR, Raman spectroscopic methods and density functional theory (DFT). FT-IR and Raman spectra were obtained in the region of 4000-400 cm-1, and 3700-10 cm-1, respectively. Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d, p) basis set was included in the search for optimized structures and vibrational wavenumbers. Experimental and theoretical results show that after application of a suitable scaling factor density functional B3LYP method resulted in acceptable results for predicting vibrational wavenumbers except OH and NH stretching modes which is most likely arising from increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges those of which are not fully taken into consideration in theoretical processes. To make a more quantitative vibrational assignments, potential energy distribution (PED) values were calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  9. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  10. Quadrupolar transients, cosine correlation functions, and two-dimensional exchange spectra of non-selectively excited spin-3/2 nuclei: A 7Li NMR study of the superionic conductor lithium indium phosphate

    NASA Astrophysics Data System (ADS)

    Storek, M.; Böhmer, R.

    2015-11-01

    Cos-cos stimulated echoes of non-selectively excited spin-3/2 nuclei were not exploited in studies of slow motional processes in solids and solid-like samples, so far. Based on a theoretical analysis of the quadrupolar transients which hitherto obviously precluded the application of such echoes, their utility is demonstrated for the example of 7Li NMR on the polycrystalline fast ion conductor lithium indium phosphate. Quadrupolar transients can adversely affect the shape of two- and three-pulse echo spectra and strategies are successfully tested that mitigate their impact. Furthermore, by means of suitably adapted cos-cos echo sequences an effective suppression of central-line contributions to the NMR spectra is achieved. By combining cos-cos and sin-sin datasets static two-dimensional exchange spectra were recorded that display quadrupolarly modulated off-diagonal intensity indicative of ionic motion.

  11. Crystal versus solution structure of enzymes: NMR spectroscopy of a peptide boronic acid-serine protease complex in the crystalline state.

    PubMed

    Farr-Jones, S; Smith, S O; Kettner, C A; Griffin, R G; Bachovchin, W W

    1989-09-01

    The effectiveness of boronic acids as inhibitors of serine proteases has been widely ascribed to the ability of the boronyl group to form a tetrahedral adduct with the active-site serine that closely mimics the putative tetrahedral intermediate or transition state formed with substrates. However, recent 15N NMR studies of alpha-lytic protease (EC 3.4.21.12) in solution have shown that some boronic acids and peptide boronic acids form adducts with the active-site histidine instead of with the serine. Such histidine-boron adducts have not thus far been reported in x-ray diffraction studies of boronic acid-serine protease complexes. Here, we report an 15N NMR study of the MeOSuc-Ala-Ala-Pro-boroPhe complex of alpha-lytic protease in the crystalline state using magic-angle spinning. Previous 15N NMR studies have shown this complex involves the formation of a histidine-boron bond in solution. The 15N NMR spectra of the crystalline complex are essentially identical to those of the complex in solution, thereby showing that the structure of this complex is the same in solution and in the crystal and that both involve formation of a histidine-boron adduct. PMID:2780549

  12. NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of nicotinic acid N-oxide: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Atac, Ahmet; Karabacak, Mehmet; Karaca, Caglar; Kose, Etem

    2012-01-01

    In this work, the experimental and theoretical UV, NMR, and vibrational features of nicotinic acid N-oxide (abbreviated as NANO, C 6H 5NO 3) were studied. The ultraviolet (UV) absorption spectrum of studied compound that dissolved in water was examined in the range of 200-800 nm. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400 cm -1 and 3500-50 cm -1, respectively. The 1H and 13C NMR spectra in DMSO were recorded. The geometrical parameters, energies and the spectroscopic properties of NANO were obtained for all four conformers from density functional theory (DFT) B3LYP/6-311++G(d,p) basis set calculations. There are four conformers, C n, n = 1-4 for this molecule. The computational results identified the most stable conformer of title molecule as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by CIS approach. Finally the calculation results were applied to simulate infrared, Raman, and UV spectra of the title compound which show good agreement with observed spectra.

  13. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut

    2016-04-01

    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  14. Alanine check points in HNN and HN(C)N spectra

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amarnath; Kumar, Ashutosh; Hosur, Ramakrishna V.

    2006-07-01

    Rapid resonance assignment is a key requirement in structural genomics research by NMR. In this context we present here two new pulse sequences, namely, HNN-A and HN(C)N-A that have been developed by simple modification of the previously described pulse sequences, HNN and HN(C)N [S.C. Panchal, N.S. Bhavesh, R.V. Hosur, Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins, J. Biomol. NMR, 20 (2001) 135-147]. These increase the number of start/check points in HNN and/or HN(C)N spectra and hence help in pacing up resonance assignment in proteins.

  15. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    -MAS-13C-NMR spectrum of HA. The CP-MAS- 13C-NMR spectra of the HA were quite similar to each other. These spectra exhibited signals for alkyl (0~50 ppm), O-alkyl (50~110 ppm), aromatic (110~160 ppm) and carbonyl (160~200 ppm) regions. The signals in carbonyl C region concentrated between 172 ppm and 173 ppm, and with a small signal occurred in the region of 190~200 ppm, indicating that there was carbonyl C of carboxylic acid, ester and amide, but a little amount carbonyl C of ketonic compounds. In the region of aromatic C, the most obvious peaks were the absorption at 131~133 ppm and 114~117 ppm. The former was mainly the aromatic C substituted by -COOH or -COOMe and the unsubstituted aromatic meta to carbons bearing an oxygen or nitrogen atom; the latter was mainly the unsubstituted aromatic C ortho and para to carbons bearing an oxygen and nitrogen atom. There was a small peak at 152-154ppm, which was the signal of phenolic OH. The signal at 55~56 ppm was methoxyl C. The signals at 71~73 ppm were due to the -CH(OH)- in carbohydrate. The peak at 102~103 ppm was generally assigned to double oxygen-C in polysaccharide (possibly acetal). The maximum absorption at 30 ppm was the contribution of the polymethylene chain -(CH2)n- in saturated hydrocarbons (Wilson, 1981). After OM application, the contents of alkyl C and O-alkyl C increased and the contents of aromatic C and carbonxyl C except to 1986 decreased. Compared with 1986, the contents of O-alkyl C increased and the contents of alkyl C decreased for the same treatment CKbr and O2. Aromaticity decreased significantly in OM treatments, indicating that the OM decreased the content of aromatic C and was simplified the molecular structure. The relative content of O-alkyl C increased indicating that OM application increased the content of methoxyl C and -CH(OH)- in carbohydrate. Alkyl C was probably derived from compounds of plants with high resistance to degradation, such as cutin and suberin (Baldock et al., 1992; Preston

  16. Nitrogen Isotopic Ratios in Cometary NH2: Implication for 15N-fractionation in Ammonia

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Jehin, Emmanuël; Decock, Alice; Hutsemékers, Damien; Manfroid, Jean; Arai, Akira

    2015-11-01

    Isotopic ratios in cometary molecules are diagnostic for the physico-chemical conditions where molecules formed and are processed, from the interstellar medium to the solar nebula. Usually temperatures at the molecular formation control the fractionation of the heavier element in molecular species, e.g., D-fractionation in water.In cometary volatiles, the 14N/15N ratios in CN have been well observed (Manfroid et al. 2009, A&A, 503, 613, and reference therein) and is consistent with the ratio in HCN (a most probable parent of CN) measured in few comets (Bockelée-Morvan et al. 2008, ApJ, 679, L49). Those ratios are enriched compared to the proto-solar value by a factor of ~3. In contrast to those Nitriles, there are only few reports on 14N/15N ratios in Ammonia (as Amine) (Rousselot et al. 2014, ApJ, 780, L17; Shinnaka et al. 2014, ApJ, 782, L16). Ammonia (NH3) is usually the most abundant and HCN is the second most abundant N-bearing volatiles in cometary ice. Especially, recent observations of 15NH2 revealed the 14N/15N ratios in NH3 are comparable to those of CN. However, from the viewpoint of theoretical work, the enrichment of 15N in cometary NH3 cannot be reproduced by current chemical network models. Information about the diversity of the 14N/15N ratios in NH3 of individual comets is needed to understand the formation mechanisms/environments of NH3 in the early solar system.To clarify the diversity of the 14N/15N ratios in cometary NH3, we determine the 14N/15N ratios in NH3 for more than ten comets individually which include not only Oort cloud comets but also short period comets by using the high-resolution optical spectra of NH2. These spectra were obtained with both the UVES mounted on the VLT in Chile and the HDS on the Subaru Telescope in Hawaii.The derived 14N/15N ratios in NH3 for more than ten comets show high 15N-enrichment compared with the elemental abundances of nitrogen in the Sun by about factor of ~3 and has no large diversity depending on

  17. Ferroelastic phase transitions by 14N NMR spectra in [N(CH3)4]2CoCl4 and [N(CH3)4]2ZnCl4 single crystals

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-09-01

    Changes in the structural geometry of [N(CH3)4]2BCl4 (B=Co and Zn) crystals near the phase transition temperatures were studied by analyzing the 14N nuclear magnetic resonance (NMR) spectra. Two physically inequivalent a-N(1)(CH3)4 and b-N(2)(CH3)4 groups were observed in these spectra. Abrupt changes in the resonance frequency and splitting of 14N NMR signals near the phase transition temperatures were attributed to structural phase transitions, and the primary mechanism of these phase transitions exhibited ferroelastic characteristics. In addition, ferroelasticity of [N(CH3)4]2BCl4 was identified at low temperatures using optical polarizing microscopy.

  18. Multi-dimensional NMR without coherence transfer: minimizing losses in large systems.

    PubMed

    Liu, Yizhou; Prestegard, James H

    2011-10-01

    Most multi-dimensional solution NMR experiments connect one dimension to another using coherence transfer steps that involve evolution under scalar couplings. While experiments of this type have been a boon to biomolecular NMR the need to work on ever larger systems pushes the limits of these procedures. Spin relaxation during transfer periods for even the most efficient (15)N-(1)H HSQC experiments can result in more than an order of magnitude loss in sensitivity for molecules in the 100 kDa range. A relatively unexploited approach to preventing signal loss is to avoid coherence transfer steps entirely. Here we describe a scheme for multi-dimensional NMR spectroscopy that relies on direct frequency encoding of a second dimension by multi-frequency decoupling during acquisition, a technique that we call MD-DIRECT. A substantial improvement in sensitivity of (15)N-(1)H correlation spectra is illustrated with application to the 21 kDa ADP ribosylation factor (ARF) labeled with (15)N in all alanine residues. Operation at 4°C mimics observation of a 50 kDa protein at 35°C. PMID:21835658

  19. Vibrational spectra, molecular structure, NBO, NMR, UV, first order hyperpolarizability, analysis of (S)-(-)-N-(5-Nitro-2-pyridyl) alaninol by Density functional theory.

    PubMed

    Govindarasu, K; Kavitha, E

    2014-06-01

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of (S)-(-)-N-(5-Nitro-2-pyridyl) alaninol (abbreviated as SN5N2PLA) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The Fourier transform infrared (FT-IR) and FT-Raman spectra of SN5N2PLA were recorded in the region 4000-400cm(-1) and 3500-50cm(-1), respectively. Complete vibrational assignments, analysis and correlation of the fundamental modes for the title compound were carried out. UV-Visible spectrum of the compound that dissolved in methanol were recorded in the region 200-800nm and the electronic properties HOMO and LUMO energies were measured by TD-DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The molecular stability and bond strength have been investigated by applying the Natural Bond Orbital (NBO) analysis. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of SN5N2PLA were calculated using the GIAO method in methanol solution and compared with the measured experimental data. The dipole moment, polarizability and first order hyperpolarizability values were also computed. The polarizability and first hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The Chemical reactivity and Thermodynamic properties of SN5N2PLA at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs) analysis were investigated using theoretical calculations. PMID:24657932

  20. Phosphorus-31 NMR spectra of ethidium, quinacrine, and daunomycin complexes with poly(adenylic acid)ter dot poly(uridylic acid) RNA duplex and calf thymus DNA

    SciTech Connect

    Gorenstein, D.G.; Lai, K. )

    1989-04-04

    {sup 31}P NMR provides a convenient monitor of the phosphate ester backbone conformational changes upon binding of the intercalating drugs ethidium, quinacrine, and daunomycin to sonicated poly(A){center dot}poly(U) and calf thymus DNA. {sup 31}P chemical shifts can also be used to assess differences in the duplex unwinding angles in the presence of the drug. Thus a new {sup 31}P signal, 1.8-2.2 ppm downfield from the double-stranded helix signals, is observed in the ethidium ion-poly(A){center dot}poly(U) complex. This signal arises from phosphates which are in perturbed environments due to intercalation of the drug. This is in keeping with the hypothesis that the P-O ester torsional angle in phosphates linking the intercalated base pairs is more trans-like. Similar though smaller deshielding of the {sup 31}P signals is observed in sonicated poly(A){center dot}poly(U)-quinacrine complexes as well as in the daunomycin complexes. The effect of added ethidium ion, quinacrine, and daunomycin on the {sup 31}P spectra of sonicated calf thymus DNA is consistent with Wilson and Jones' (1982) earlier study. In these drug-DNA complexes the drug produces a gradual downfield shift in the DNA {sup 31}P signal without the appearance of a separate downfield peak. These differences are attributed to differences in the rate of chemical exchange of the drug between free and bound duplex states. The previous correlation of {sup 31}P chemical shift with drug duplex unwinding angle is confirmed for both the RNA and DNA duplexes.

  1. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    -MAS-13C-NMR spectrum of HA. The CP-MAS- 13C-NMR spectra of the HA were quite similar to each other

  2. 1H, 13C and 15N resonance assignments of URNdesign, a computationally redesigned RRM protein

    SciTech Connect

    Dobson, Neil; Dantas, Gautam; Varani, Gabriele

    2005-10-01

    Protein design represents one of the great challenges of computational structural biology. The ability to successfully design new proteins would allow us to generate new reagents and enzymes, while at the same time providing us with an understanding of the principles of protein stability. Here we report 1H, 15N and 13C resonance assignments of a redesigned U1A protein, URNdesign. U1A has been studied extensively by our group and hence was chosen as a design target. For the assignments we sued 2D and 3D heteronuclearNMR experiments with uniformly 13C, 15N-labeled URNdesign. The assignments for the backbone NH, CO,Ca and Cb nuclei are 94%complete. Sidechain 1Hand13C, aromatic andQ/NNH2 resonances are essentially complete with guanidinium and K NH3 residues unassigned. BMRB deposit with accession number 6493

  3. LINE LISTS FOR THE A {sup 2}Π-X {sup 2}Σ{sup +} (RED) AND B {sup 2}Σ{sup +}-X {sup 2}Σ{sup +} (VIOLET) SYSTEMS OF CN, {sup 13}C{sup 14}N, AND {sup 12}C{sup 15}N, AND APPLICATION TO ASTRONOMICAL SPECTRA

    SciTech Connect

    Sneden, Christopher; Lucatello, Sara; Ram, Ram S.; Brooke, James S. A.; Bernath, Peter E-mail: sara.lucatello@oapd.inaf.it E-mail: jsabrooke@gmail.com

    2014-10-01

    New red and violet system line lists for the CN isotopologues {sup 13}C{sup 14}N and {sup 12}C{sup 15}N have been generated. These new transition data are combined with those previously derived for {sup 12}C{sup 14}N, and applied to the determination of CNO abundances in the solar photosphere and in four red giant stars: Arcturus, the bright, very low-metallicity star HD 122563, and the carbon-enhanced metal-poor stars HD 196944 and HD 201626. When both red and violet system lines are detectable in a star, their derived N abundances are in good agreement. The mean N abundances determined in this work are also generally in accord with published values.

  4. Quantum Chemical Calculations of Amide-15N Chemical Shift Anisotropy Tensors for a Membrane-Bound Cytochrome b5

    PubMed Central

    Pandey, Manoj Kumar; Ramamoorthy, Ayyalusamy

    2013-01-01

    There is considerable interest in determining amide-15N chemical shift anisotropy (CSA) tensors from biomolecules and understanding their variation for structural and dynamics studies using solution and solid-state NMR spectroscopy and also by quantum chemical calculations. Due to the difficulties associated with the measurement of CSA tensors from membrane proteins, NMR-based structural studies heavily relied on the CSA tensors determined from model systems, typically single crystals of model peptides. In the present study, the principal components of backbone amide-15N CSA tensor have been determined using density functional theory for a 16.7-kDa membrane-bound paramagnetic heme containing protein, cytochrome b5 (cytb5). All the calculations were performed by taking residues within 5Å distance from the backbone amide-15N nucleus of interest. The calculated amide-15N CSA spans agree less well with our solution NMR data determined for an effective internuclear distance rN-H = 1.023 Å and a constant angle β = 18° that the least shielded component (δ11) makes with the N-H bond. The variation of amide-15N CSA span obtained using quantum chemical calculations is found to be smaller than that obtained from solution NMR measurements, whereas the trends of the variations are found to be in close agreement. We believe that the results reported in this study will be useful in studying the structure and dynamics of membrane proteins and heme-containing proteins, and also membrane-bound protein-protein complexes such as cytochromes-b5-P450. PMID:23268659

  5. Box-modeling of 15N/14N in mammals.

    PubMed

    Balter, Vincent; Simon, Laurent; Fouillet, Hélène; Lécuyer, Christophe

    2006-03-01

    The 15N/14N signature of animal proteins is now commonly used to understand their physiology and quantify the flows of nutrient in trophic webs. These studies assume that animals are predictably 15N-enriched relative to their food, but the isotopic mechanism which accounts for this enrichment remains unknown. We developed a box model of the nitrogen isotope cycle in mammals in order to predict the 15N/14N ratios of body reservoirs as a function of time, N intake and body mass. Results of modeling show that a combination of kinetic isotope fractionation during the N transfer between amines and equilibrium fractionation related to the reversible conversion of N-amine into ammonia is required to account for the well-established approximately 4 per thousand 15N-enrichment of body proteins relative to the diet. This isotopic enrichment observed in proteins is due to the partial recycling of 15N-enriched urea and the urinary excretion of a fraction of the strongly 15N-depleted ammonia reservoir. For a given body mass and diet delta15N, the isotopic compositions are mainly controlled by the N intake. Increase of the urea turnover combined with a decrease of the N intake lead to calculate a delta15N increase of the proteins, in agreement with the observed increase of collagen delta15N of herbivorous animals with aridity. We further show that the low delta15N collagen values of cave bears cannot be attributed to the dormancy periods as it is commonly thought, but inversely to the hyperphagia behavior. This model highlights the need for experimental investigations performed with large mammals in order to improve our understanding of natural variations of delta15N collagen. PMID:16328553

  6. Synthesis of 7-15N-Oroidin and Evaluation of Utility for Biosynthetic Studies of Pyrrole-Imidazole Alkaloids by Microscale1H-15N HSQC and FTMS†

    PubMed Central

    Wang, Yong-Gang; Morinaka, Brandon I.; Reyes, Jeremy Chris P.; Wolff, Jeremy H.; Romo, Daniel; Molinski, Tadeusz F.

    2010-01-01

    Numerous marine-derived pyrrole-imidazole alkaloids (PIAs), ostensibly derived from the simple precursor oroidin, 1a, have been reported and have garnered intense synthetic interest due to their complex structures and in some cases biological activity; however very little is known regarding their biosynthesis. We describe a concise synthesis of 7-15N-oroidin (1d) from urocanic acid and a direct method for measurement of 15N incorporation by pulse labeling and analysis by 1D 1H-15N HSQC NMR and FTMS. Using a mock pulse labeling experiment, we estimate the limit of detection (LOD) for incorporation of newly biosynthesized PIA by 1D 1H-15N HSQC to be 0.96 μg equivalent of 15N oroidin (2.4 nmole) in a background of 1500 μg unlabeled oroidin (about 1 part per 1600). 7-15N-Oroidin will find utility in biosynthetic feeding experiments with live sponges to provide direct information to clarify the pathways leading to more complex pyrrole-imidazole alkaloids. PMID:20095632

  7. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts.

    PubMed

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-07-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor. PMID:26070442

  8. Site-Selective Synthesis of (15)N- and (13)C-Enriched Flavin Mononucleotide Coenzyme Isotopologues.

    PubMed

    Neti, Syam Sundar; Poulter, C Dale

    2016-06-17

    Flavin mononucleotide (FMN) is a coenzyme for numerous proteins involved in key cellular and physiological processes. Isotopically labeled flavin is a powerful tool for studying the structure and mechanism of flavoenzyme-catalyzed reactions by a variety of techniques, including NMR, IR, Raman, and mass spectrometry. In this report, we describe the preparation of labeled FMN isotopologues enriched with (15)N and (13)C isotopes at various sites in the pyrazine and pyrimidine rings of the isoalloxazine core of the cofactor from readily available precursors by a five-step chemo-enzymatic synthesis. PMID:27176708

  9. A General Assignment Method for Oriented Sample (OS) Solid-state NMR of Proteins Based on The Correlation of Resonances through Heteronuclear Dipolar Couplings in Samples Aligned Parallel and Perpendicular to the Magnetic Field

    PubMed Central

    Lu, George J.; Son, Woo Sung; Opella, Stanley J.

    2011-01-01

    A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly 15N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly 15N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches. PMID:21316275

  10. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    SciTech Connect

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P.

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  11. FT-IR, FT-Raman, UV, NMR spectra and molecular structure investigation of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.

    2015-11-01

    This work presents the characterization of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine (HDE) by quantum chemical calculations and spectral techniques. The structure was investigated by FT-IR, FT-Raman, UV-vis and NMR techniques. The geometrical parameters and energies have been obtained from Density functional theory (DFT) B3LYP (6-31G (d, p)) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). The electronic properties such as excitation energies, wavelength, HOMO, LUMO energies performed by Time dependent density functional theory (TD-DFT) results complements with the experimental findings. NBO analysis has been performed for analyzing charge delocalization throughout the molecule. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.

  12. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    SciTech Connect

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W.

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  13. Isolation and measurement of 15N2 from respiratory gases of animals administered 15N-labeled substances.

    PubMed

    Springer, D L; Reed, D J; Dost, F N

    1981-01-01

    A method is described for collection of metabolic 15N2 from in vitro preparations or intact rats administered 15N-containing compounds. The methods enables routine collection and mass spectrometric measurement of as little as 10 mumol 15N2 respired by a rat over a 24-h period. A device is described that includes either an animal chamber or a tissue reaction vessel in a closed recycling atmosphere, with automatic O2 replenishment and removal of CO2 and water. It is capable of sustaining moderate vacuum and is coupled to a high-vacuum manifold designed to process the contained atmosphere and respiratory gases. The starting atmosphere is an 80:20 mix of sulfur hexafluoride and O2. Recovery of 15N2 gas from the system without an animal present was 101.3 +/- 5.75%. When 15N2 gas was very slowly infused iv into an animal, recovery was 89.1 +/- 5.38%. Use of the method in studies of the fate of [15N]hydrazine in rats indicated that about 15% of the administered hydrazine is rapidly converted to 15N2, followed by slower conversion of an additional 7-10% over the next several hours. PMID:7328697

  14. PIC microcontroller based external fast analog to digital converter to acquire wide-lined solid NMR spectra by BRUKER DRX and Avance-I spectrometers.

    PubMed

    Koczor, Bálint; Rohonczy, János

    2015-01-01

    Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin. PMID:25727157

  15. NMR conformational properties of an Anthrax Lethal Factor domain studied by multiple amino acid-selective labeling

    SciTech Connect

    Vourtsis, Dionysios J.; Chasapis, Christos T.; Pairas, George; Bentrop, Detlef; Spyroulias, Georgios A.

    2014-07-18

    Highlights: • A polypeptide, N-ALF{sub 233}, was overexpressed in E. coli and successfully isolated. • We produced {sup 2}H/{sup 15}N/{sup 13}C labeled protein samples. • Amino acid selective approaches were applied. • We acquired several heteronuclear NMR spectra, to complete the backbone assignment. • Prediction of the secondary structure was performed. - Abstract: NMR-based structural biology urgently needs cost- and time-effective methods to assist both in the process of acquiring high-resolution NMR spectra and their subsequent analysis. Especially for bigger proteins (>20 kDa) selective labeling is a frequently used means of sequence-specific assignment. In this work we present the successful overexpression of a polypeptide of 233 residues, corresponding to the structured part of the N-terminal domain of Anthrax Lethal Factor, using Escherichia coli expression system. The polypeptide was subsequently isolated in pure, soluble form and analyzed structurally by solution NMR spectroscopy. Due to the non-satisfying quality and resolution of the spectra of this 27 kDa protein, an almost complete backbone assignment became feasible only by the combination of uniform and novel amino acid-selective labeling schemes. Moreover, amino acid-type selective triple-resonance NMR experiments proved to be very helpful.

  16. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  17. δ15N Value Does Not Reflect Fasting in Mysticetes

    PubMed Central

    Aguilar, Alex; Giménez, Joan; Gómez–Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue δ15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indicatior of nutritive condition. PMID:24651388

  18. NMR doesn't lie or how solid-state NMR spectroscopy contributed to a better understanding of the nature and function of soil organic matter (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    for organo-mineral interactions. Since decent solid-state NMR spectra cannot be obtained from graphenic components, the successful acquisition of solid-state 13C and 15N NMR spectra of charcoals challenged the well accepted model of their chemical nature. Application of advanced 2D NMR approaches confirmed the new view of charcoal as a heterogeneous material, the composition of which depends upon the feedstock and charring condition. The respective consequences of this alternative for the understanding of C sequestration are still matter of ongoing debates. Although the sensitivity of 15N for NMR spectroscopy is 50 times lower than that of 13C, first solid-state 15N NMR spectra of soils with natural 15N abundance were already published in the 1990's. They clearly identified peptide-like structures as the main organic N form in unburnt soils. However, in spite of their high contribution to SOM, the role of peptides in soils is far from understood. Considering the new technological developments in the field of NMR spectroscopy, this technique will certainly not stop to contribute to unexpected results.

  19. Automated structure verification based on a combination of 1D (1)H NMR and 2D (1)H - (13)C HSQC spectra.

    PubMed

    Golotvin, Sergey S; Vodopianov, Eugene; Pol, Rostislav; Lefebvre, Brent A; Williams, Antony J; Rutkowske, Randy D; Spitzer, Timothy D

    2007-10-01

    A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. PMID:17694570

  20. High-resolution solid-state 13C CP MAS NMR spectra of some β-cyclodextrin inclusion complexes with nitriles

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; McDowell, C. A.

    1983-11-01

    β-cyclodextrin inclusion complexes of 3-aminobenzonitrile, 4-aminobenzonitrile, and adamantane-1-carbonitrile were studied by means of high-resolution solid-state CP MAS 13C NMR spectroscopy. The interactions between the host and guest molecules are discussed.

  1. A new approach to the optimisation of non-uniform sampling schedules for use in the rapid acquisition of 2D NMR spectra of small molecules.

    PubMed

    Sidebottom, Philip J

    2016-08-01

    Non-uniform sampling allows the routine, rapid acquisition of 2D NMR data. When the number of points in the NUS schedule is low, the quality of the data obtained is very dependent of the schedule used. A simple proceedure for finding optimium schedules has been developed and is demonstrated for the multiplicity edited HSQC experiment. PMID:27160788

  2. High resolution structural characterization of Aβ42 amyloid fibrils by magic angle spinning NMR.

    PubMed

    Colvin, Michael T; Silvers, Robert; Frohm, Birgitta; Su, Yongchao; Linse, Sara; Griffin, Robert G

    2015-06-17

    The presence of amyloid plaques composed of amyloid beta (Aβ) fibrils is a hallmark of Alzheimer's disease (AD). The Aβ peptide is present as several length variants with two common alloforms consisting of 40 and 42 amino acids, denoted Aβ1-40 and Aβ1-42, respectively. While there have been numerous reports that structurally characterize fibrils of Aβ1-40, very little is known about the structure of amyloid fibrils of Aβ1-42, which are considered the more toxic alloform involved in AD. We have prepared isotopically (13)C/(15)N labeled AβM01-42 fibrils in vitro from recombinant protein and examined their (13)C-(13)C and (13)C-(15)N magic angle spinning (MAS) NMR spectra. In contrast to several other studies of Aβ fibrils, we observe spectra with excellent resolution and a single set of chemical shifts, suggesting the presence of a single fibril morphology. We report the initial structural characterization of AβM01-42 fibrils utilizing (13)C and (15)N shift assignments of 38 of the 43 residues, including the backbone and side chains, obtained through a series of cross-polarization based 2D and 3D (13)C-(13)C, (13)C-(15)N MAS NMR experiments for rigid residues along with J-based 2D TOBSY experiments for dynamic residues. We find that the first ∼5 residues are dynamic and most efficiently detected in a J-based TOBSY spectrum. In contrast, residues 16-42 are easily observed in cross-polarization experiments and most likely form the amyloid core. Calculation of ψ and φ dihedral angles from the chemical shift assignments indicate that 4 β-strands are present in the fibril's secondary structure. PMID:26001057

  3. High Resolution Structural Characterization of Aβ42 Amyloid Fibrils by Magic Angle Spinning NMR

    PubMed Central

    2015-01-01

    The presence of amyloid plaques composed of amyloid beta (Aβ) fibrils is a hallmark of Alzheimer’s disease (AD). The Aβ peptide is present as several length variants with two common alloforms consisting of 40 and 42 amino acids, denoted Aβ1–40 and Aβ1–42, respectively. While there have been numerous reports that structurally characterize fibrils of Aβ1–40, very little is known about the structure of amyloid fibrils of Aβ1–42, which are considered the more toxic alloform involved in AD. We have prepared isotopically 13C/15N labeled AβM01–42 fibrils in vitro from recombinant protein and examined their 13C–13C and 13C–15N magic angle spinning (MAS) NMR spectra. In contrast to several other studies of Aβ fibrils, we observe spectra with excellent resolution and a single set of chemical shifts, suggesting the presence of a single fibril morphology. We report the initial structural characterization of AβM01–42 fibrils utilizing 13C and 15N shift assignments of 38 of the 43 residues, including the backbone and side chains, obtained through a series of cross-polarization based 2D and 3D 13C–13C, 13C–15N MAS NMR experiments for rigid residues along with J-based 2D TOBSY experiments for dynamic residues. We find that the first ∼5 residues are dynamic and most efficiently detected in a J-based TOBSY spectrum. In contrast, residues 16–42 are easily observed in cross-polarization experiments and most likely form the amyloid core. Calculation of ψ and φ dihedral angles from the chemical shift assignments indicate that 4 β-strands are present in the fibril’s secondary structure. PMID:26001057

  4. Quantitating Metabolites in Protein Precipitated Serum Using NMR Spectroscopy

    PubMed Central

    2015-01-01

    Quantitative NMR-based metabolite profiling is challenged by the deleterious effects of abundant proteins in the intact blood plasma/serum, which underscores the need for alternative approaches. Protein removal by ultrafiltration using low molecular weight cutoff filters thus represents an important step. However, protein precipitation, an alternative and simple approach for protein removal, lacks detailed quantitative assessment for use in NMR based metabolomics. In this study, we have comprehensively evaluated the performance of protein precipitation using methanol, acetonitrile, perchloric acid, and trichloroacetic acid and ultrafiltration approaches using 1D and 2D NMR, based on the identification and absolute quantitation of 44 human blood metabolites, including a few identified for the first time in the NMR spectra of human serum. We also investigated the use of a “smart isotope tag,” 15N-cholamine for further resolution enhancement, which resulted in the detection of a number of additional metabolites. 1H NMR of both protein precipitated and ultrafiltered serum detected all 44 metabolites with comparable reproducibility (average CV, 3.7% for precipitation; 3.6% for filtration). However, nearly half of the quantified metabolites in ultrafiltered serum exhibited 10–74% lower concentrations; specifically, tryptophan, benzoate, and 2-oxoisocaproate showed much lower concentrations compared to protein precipitated serum. These results indicate that protein precipitation using methanol offers a reliable approach for routine NMR-based metabolomics of human blood serum/plasma and should be considered as an alternative to ultrafiltration. Importantly, protein precipitation, which is commonly used by mass spectrometry (MS), promises avenues for direct comparison and correlation of metabolite data obtained from the two analytical platforms to exploit their combined strength in the metabolomics of blood. PMID:24796490

  5. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine.

    PubMed

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-15

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results. PMID:24813280

  6. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-01

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 4000-10 cm-1, respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results.

  7. Using NMR to Develop New Allosteric and Allo-Network Drugs.

    PubMed

    Smith, Robert E; Tran, Kevin; Richards, Kristy M; Luo, Rensheng

    2015-01-01

    NMR is becoming an important tool for developing new allosteric and allo-network drugs that bind to allosteric sites on enzymes, partially inhibiting them and causing fewer side effects than drugs already developed that target active sites. This is based on systems thinking, in which active enzymes and other proteins are known to be flexible and interact with each other. In other words, proteins can exist in an ensemble of different conformations whose populations are tunable. NMR is being used to find the pathways through which the effects of binding of an allosteric ligand propagate. There are NMR screening assays for studying ligand binding. This includes determining the changes in the spin lattice relaxation due to changes in the mobility of atoms involved in the binding, measuring magnetization transfer from the protein to the ligand by saturation difference transfer NMR (STD-NMR) and the transfer of bulk magnetization to the ligand by water-Ligand Observed via Gradient Spectroscopy, or waterLOGSY. The chemical shifts of (1)H and (15)N of some of the atoms in amino acids change when an allosteric ligand binds to a protein. So, (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra can be used to identify key amino acids and ligand binding sites. The NMR chemical shifts of amino acids affected by ligand binding form a network that can be characterized. Allosteric networks can be identified by chemical shift covariance analysis (CHESCA). This approach has been used recently to study the binding of new molecular entities (NMEs) to potentially therapeutic drug targets. PMID:26577663

  8. Synthesis, experimental spectra (IR & Raman and NMR), vibrational analysis and theoretical DFT investigations of N-(5-(4-methylbenzoyl)-2-oxo-4-(4-methylphenyl)pyrimidine-1(2H)-yl)-4-methylbenzamide

    NASA Astrophysics Data System (ADS)

    Aydın, Lütfiye; Şahan, Emine; Önal, Zülbiye; Özpozan, Talat

    2014-08-01

    The title molecule, N-(5-(4-methylbenzoyl)-2-oxo-4-(4-methylphenyl)pyrimidine-1(2H)-yl)-4-methylbenzamide (C27H23N3O3), was synthesized and characterized by elemental analysis, IR, Raman, 1H and 13C NMR spectral data. To determine conformational flexibility, potential energy surfaces of the title compound were obtained by DFT regarding the selected degree of torsional freedom, which was varied from 0° to 360° in 6° and 20° steps. The ten conformers of the title compound were determined and it was found that the conformer 1 basis the most stable one. All conformers were also optimized by using the density functional theory (DFT/B3LYP) method with the 6-31G(d,p), 6-311G(d,p) and cc-pVDZ basis sets in the ground state. Potential energy distribution was calculated with the 6-31G(d,p) basis set. The vibrational spectra were recorded in solid phase IR and Raman spectra were compared based on the results of the theoretical calculations. The formation of hydrogen bonds was explained using natural bond orbital (NBO) analysis and spectroscopic analysis. NMR analysis and frontier molecular orbitals (FMOs) were also investigated by DFT.

  9. In vivo activity of glutaminase in the brain of hyperammonaemic rats measured by 15N nuclear magnetic resonance.

    PubMed Central

    Kanamori, K; Ross, B D

    1995-01-01

    The in vivo activity of phosphate-activated glutaminase (PAG) was measured in the brain of hyperammonaemic rat by 15N n.m.r. Brain glutamine was 15N-enriched by intravenous infusion of 15NH4+ until the concentration of [5-15N]glutamine reached 6.1 mumol/g. Further glutamine synthesis was inhibited by intraperitoneal injection of methionine-DL-sulphoximine, an inhibitor of glutamine synthetase, and the infusate was changed to 14NH4+ during observation of decrease in brain [5-15N]glutamine due to PAG and other glutamine utilization pathways. Progressive decrease in brain [5-15N]glutamine, PAG-catalysed production of 15NH4+ and its subsequent assimilation into glutamate by glutamate dehydrogenase were monitored in vivo by 15N n.m.r. Brain [5-15N]glutamine (15N enrichment of 0.35-0.50) decreased at a rate of 1.2 mumol/h per g of brain. The in vivo PAG activity, determined from the observed rate and the quantity of 15NH4+ produced and subsequently assimilated into glutamate and aspartate, was 0.9-1.3 mumol/h per g. This activity is less than 1.1% of the reported activity in vitro measured in rat brain homogenate at a 10 mM concentration of the activator Pi. Inhibition by ammonia (brain level 1.4 mumol/g) alone does not account for the observed low activity in vivo. The result strongly suggests that, in intact brain, PAG activity is maintained at a low level by a suboptimal in situ concentration of Pi and the strong inhibitory effect of glutamate. The observed PAG activity in vivo is lower than the reported in vivo activity of glutamate decarboxylase which converts glutamate into gamma-aminobutyrate (GABA). The result suggests that PAG-catalysed hydrolysis of glutamine is not the sole provider of glutamate used for GABA synthesis. PMID:7826349

  10. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  11. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: A combined experimental and density functional methods

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Xueliang

    2015-01-01

    The title compounds, rabdosinate and rabdosin B, were isolated from the leaves of Isodon japonica, and characterized by IR-NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO-13C) chemical shift values of the title compounds have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set. In addition, obtained results were related to the linear regression of experimental 13C NMR chemical shifts values. The integral equation formalism polarized continuum model (IEFPCM) was used in treating chloroform solvation effects on optimized structural parameters and 13C chemical shifts. Besides, molecular electrostatic potential (MEP), HOMO-LUMO analysis were performed by the B3LYP method.

  12. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: a combined experimental and density functional methods.

    PubMed

    Wang, Tao; Wang, Xueliang

    2015-01-25

    The title compounds, rabdosinate and rabdosin B, were isolated from the leaves of Isodon japonica, and characterized by IR-NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO-13C) chemical shift values of the title compounds have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set. In addition, obtained results were related to the linear regression of experimental 13C NMR chemical shifts values. The integral equation formalism polarized continuum model (IEFPCM) was used in treating chloroform solvation effects on optimized structural parameters and 13C chemical shifts. Besides, molecular electrostatic potential (MEP), HOMO-LUMO analysis were performed by the B3LYP method. PMID:25123947

  13. Vibrational spectra of β-lactams—III. potassium 2-azetidinone-1-sulfonate and its isotopic compounds

    NASA Astrophysics Data System (ADS)

    Hanai, Kazuhiko; Maki, Yoshifumi; Kuwae, Akio

    1993-07-01

    The IR and Raman spectra of potassium 2-azetidinone-1-sulfonate and its three deuterated and two 15N-substituted compounds have been recorded, and the observed bands have been assigned on the basis of the isotope effects and the normal coordinate analysis. Comparison of the force constants for the amide group among 2-azetidinone, 1-methyl-2-azetidinone and potassium 2-azetidinone-1-sulfonate indicates that there is a correlation between these constants and the ease of hydrolysis which was determined by NMR spectroscopy, depending on the amide resonance.

  14. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. PMID:22615146

  15. Solution NMR of large molecules and assemblies†

    PubMed Central

    Foster, Mark P.; McElroy, Craig A.; Amero, Carlos D.

    2008-01-01

    Solution NMR spectroscopy represents a powerful tool for examining the structure and function of biological macromolecules. The advent of multidimensional (2D–4D) NMR, together with the widespread use of uniform isotopic labeling of proteins and RNA with the NMR-active isotopes, 15N and 13C, opened the door to detailed analyses of macromolecular structure, dynamics and interactions of smaller macromolecules (< ~25 kDa). Over the past 10 years, advances in NMR and isotope labeling methods have expanded the range of NMR-tractable targets by at least an order of magnitude. Here we briefly describe the methodological advances that allow NMR spectroscopy of large macromolecules and their complexes, and provide a perspective on the wide range of applications of NMR to biochemical problems. PMID:17209543

  16. Relationships Between Base-Catalyzed Hydrolysis Rates or Glutathione Reactivity for Acrylates and Methacrylates and Their NMR Spectra or Heat of Formation

    PubMed Central

    Fujisawa, Seiichiro; Kadoma, Yoshinori

    2012-01-01

    The NMR chemical shift, i.e., the π-electron density of the double bond, of acrylates and methacrylates is related to the reactivity of their monomers. We investigated quantitative structure-property relationships (QSPRs) between the base-catalyzed hydrolysis rate constants (k1) or the rate constant with glutathione (GSH) (log kGSH) for acrylates and methacrylates and the 13C NMR chemical shifts of their α,β-unsaturated carbonyl groups (δCα and δCβ) or heat of formation (Hf) calculated by the semi-empirical MO method. Reported data for the independent variables were employed. A significant linear relationship between k1 and δCβ, but not δCα, was obtained for methacrylates (r2 = 0.93), but not for acrylates. Also, a significant relationship between k1 and Hf was obtained for both acrylates and methacrylates (r2 = 0.89). By contrast, log kGSH for acrylates and methacrylates was linearly related to their δCβ (r2 = 0.99), but not to Hf. These findings indicate that the 13C NMR chemical shifts and calculated Hf values for acrylates and methacrylates could be valuable for estimating the hydrolysis rate constants and GSH reactivity of these compounds. Also, these data for monomers may be an important tool for examining mechanisms of reactivity. PMID:22754331

  17. Moving NMR

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard; Casanova, Federico; Danieli, Ernesto; Gong, Qingxia; Greferath, Marcus; Haber, Agnes; Kolz, Jürgen; Perlo, Juan

    2008-12-01

    Initiated by the use of NMR for well logging, portable NMR instruments are being developed for a variety of novel applications in materials testing and process analysis and control. Open sensors enable non-destructive testing of large objects, and small, cup-size magnets become available for high throughput analysis by NMR relaxation and spectroscopy. Some recent developments of mobile NMR are reviewed which delineate the direction into which portable NMR is moving.

  18. Refining cotton-wick method for 15N plant labelling.

    NASA Astrophysics Data System (ADS)

    Fustec, Joëlle; Mahieu, Stéphanie

    2010-05-01

    The symbiosis Fabaceae/Rhizobiaceae plays a critical role in the nitrogen cycle. It gives the plant the ability to fix high amounts of atmospheric N. A part of this N can be transferred to the soil via rhizodeposition. The contribution of Fabaceae to the soil N pool is difficult to measure, since it is necessary for assessing N benefits for other crops, for soil biological activity, and for reducing water pollution in sustainable agriculture (Fustec, 2009). The aim of this study was to test and improve the reliability of the 15N cotton-wick method for measuring the soil N derived from plant rhizodeposition (Mahieu et al., 2007). The effects of the concentration of the 15N-urea labelling solution and of the feeding frequency (continuous or pulses) on the assessment of nitrogen rhizodeposition were studied in two greenhouse experiments using the field pea (Pisum sativum L.) and the non-nodulating isoline P2. The plant parts and the soil were prepared for 15N:14N measurements for assessing N rhizodeposition (Mahieu et al., 2009). The fraction of plants' belowground nitrogen allocated to rhizodeposition in both Frisson pea and P2 was 20 to more than 50% higher when plants were labelled continuously than when they were labelled using fortnightly pulses. Our results suggested that when 15N root enrichment was high, nitrogen rhizodeposition was underestimated only for plants that were 15N-fed by fortnightly pulses, and not in plants 15N-fed continuously. This phenomenon was especially observed for plants relying on symbiotic N fixation for N acquisition; it may be linked to the concentration of the labelling solution. In conclusion, N rhizodeposition assessment was strongly influenced by the 15N-feeding frequency and the concentration of the labelling solution. The estimation of N rhizodeposition was more reliable when plants were labelled continuously with a dilute solution of 15N urea. Fustec et al. 2009. Agron. Sustain. Dev., DOI 10.1051/agro/2009003, in press. Mahieu

  19. Catalytic roles of βLys87 in tryptophan synthase: (15)N solid state NMR studies.

    PubMed

    Caulkins, Bethany G; Yang, Chen; Hilario, Eduardo; Fan, Li; Dunn, Michael F; Mueller, Leonard J

    2015-09-01

    The proposed mechanism for tryptophan synthase shows βLys87 playing multiple catalytic roles: it bonds to the PLP cofactor, activates C4' for nucleophilic attack via a protonated Schiff base nitrogen, and abstracts and returns protons to PLP-bound substrates (i.e. acid-base catalysis). ε-¹⁵N-lysine TS was prepared to access the protonation state of βLys87 using ¹⁵N solid-state nuclear magnetic resonance (SSNMR) spectroscopy for three quasi-stable intermediates along the reaction pathway. These experiments establish that the protonation state of the ε-amino group switches between protonated and neutral states as the β-site undergoes conversion from one intermediate to the next during catalysis, corresponding to mechanistic steps where this lysine residue has been anticipated to play alternating acid and base catalytic roles that help steer reaction specificity in tryptophan synthase catalysis. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Guest Editors: Andrea Mozzarelli and Loredano Pollegioni. PMID:25688830

  20. Modeling (15)N NMR chemical shift changes in protein backbone with pressure.

    PubMed

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence. PMID:27586953

  1. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    USGS Publications Warehouse

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  2. Combined experimental and computational NMR study of crystalline and amorphous zeolitic imidazolate frameworks.

    PubMed

    Baxter, Emma F; Bennett, Thomas D; Mellot-Draznieks, Caroline; Gervais, Christel; Blanc, Frédéric; Cheetham, Anthony K

    2015-10-14

    Zeolitic imidazolate frameworks (ZIFs) have attracted great interest in recent years due to their high chemical and thermal stability with promising applications in gas storage and separations. We investigate the structures of three different crystalline ZIFs - ZIF-4, ZIF-8, ZIF-zni - and their amorphous counterparts using high field (13)C and (15)N CP MAS NMR. The high field (20 T) allows for the observation of all crystallographically independent carbon and nitrogen atoms in the crystalline ZIFs. Combining our experimental results with density functional theory calculations enabled the assignment of all chemical shifts. The crystalline spectra reveal the potential of high field NMR to distinguish between two ZIF polymorphs, ZIF-4 and ZIF-zni, with identical [Zn(C3H3N2)2] chemical compositions. (13)C and (15)N CP MAS NMR data obtained for the amorphous ZIFs clearly showed signal broadening upon amorphization, confirming the retention of chemical composition and the structural similarity of amorphous ZIF-4 and ZIF-zni. In the case of amorphous ZIF-8, we present evidence for the partial de-coordination of the 2-methyl imidazole linker. PMID:26351979

  3. A Monte Carlo/Simulated Annealing Algorithm for Sequential Resonance Assignment in Solid State NMR of Uniformly Labeled Proteins with Magic-Angle Spinning

    PubMed Central

    Tycko, Robert; Hu, Kan-Nian

    2010-01-01

    We describe a computational approach to sequential resonance assignment in solid state NMR studies of uniformly 15N,13C-labeled proteins with magic-angle spinning. As input, the algorithm uses only the protein sequence and lists of 15N/13Cα crosspeaks from 2D NCACX and NCOCX spectra that include possible residue-type assignments of each crosspeak. Assignment of crosspeaks to specific residues is carried out by a Monte Carlo/simulated annealing algorithm, implemented in the program MC_ASSIGN1. The algorithm tolerates substantial ambiguity in residue-type assignments and coexistence of visible and invisible segments in the protein sequence. We use MC_ASSIGN1 and our own 2D spectra to replicate and extend the sequential assignments for uniformly labeled HET-s(218-289) fibrils previously determined manually by Siemer et al. (J. Biomolec. NMR, vol. 34, pp. 75-87, 2006) from a more extensive set of 2D and 3D spectra. Accurate assignments by MC_ASSIGN1 do not require data that are of exceptionally high quality. Use of MC_ASSIGN1 (and its extensions to other types of 2D and 3D data) is likely to alleviate many of the difficulties and uncertainties associated with manual resonance assignments in solid state NMR studies of uniformly labeled proteins, where spectral resolution and signal-to-noise are often sub-optimal. PMID:20547467

  4. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites. PMID:25641013

  5. Assessment of the effects of pH, formulation and deformulation on the conformation of interferon alpha-2 by NMR.

    PubMed

    Panjwani, Naim; Hodgson, Derek J; Sauvé, Simon; Aubin, Yves

    2010-08-01

    This article reports the results of our investigation of the effects of pH and various formulations on the conformation of interferon (IFN) alpha-2a and IFN alpha-2b using the NMR fingerprinting assay. Samples of (15)N-IFN alpha-2 were produced and their activity was inferred by comparing their NMR spectra with those recorded for the corresponding European Directorate for the Quality of Medicines (EDQM) reference standards. The proteins were then mixed with appropriate excipients to reproduce formulations used in innovator products of Roferon-A and Intron-A and deformulated via cation-exchange chromatography. The conformation of IFN alpha-2 was monitored by two-dimensional (2D)-NMR spectroscopy at various pHs, after formulation and deformulation procedures. Our results show that the process does not alter the conformation of IFN alpha-2 and that the optimal pH for deformulation is 4.0 +/- 0.5. Variation in pH below 3.0 causes the protein to unfold, whereas above pH 4.5, the three-dimensional (3D) fold is maintained, but the NMR spectra indicate a propensity to oligomerize. This behaviour is reversible upon readjusting the pH to 3.5-4.5. Here, we demonstrate the applicability of NMR to assess the structure of protein therapeutics. The proposed method can assist in validating analytical methods that require deformulation of IFN-based products. PMID:20186942

  6. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    PubMed

    Dabundo, Richard; Lehmann, Moritz F; Treibergs, Lija; Tobias, Craig R; Altabet, Mark A; Moisander, Pia H; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L(-1) d(-1), to 530 nmoles N L(-1) d(-1), contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2

  7. Implications of scaled δ15N fractionation for community predator-prey body mass ratio estimates in size-structured food webs.

    PubMed

    Reum, Jonathan C P; Jennings, Simon; Hunsicker, Mary E

    2015-11-01

    Nitrogen stable isotope ratios (δ(15) N) may be used to estimate community-level relationships between trophic level (TL) and body size in size-structured food webs and hence the mean predator to prey body mass ratio (PPMR). In turn, PPMR is used to estimate mean food chain length, trophic transfer efficiency and rates of change in abundance with body mass (usually reported as slopes of size spectra) and to calibrate and validate food web models. When estimating TL, researchers had assumed that fractionation of δ(15) N (Δδ(15) N) did not change with TL. However, a recent meta-analysis indicated that this assumption was not as well supported by data as the assumption that Δδ(15) N scales negatively with the δ(15) N of prey. We collated existing fish community δ(15) N-body size data for the Northeast Atlantic and tropical Western Arabian Sea with new data from the Northeast Pacific. These data were used to estimate TL-body mass relationships and PPMR under constant and scaled Δδ(15) N assumptions, and to assess how the scaled Δδ(15) N assumption affects our understanding of the structure of these food webs. Adoption of the scaled Δδ(15) N approach markedly reduces the previously reported differences in TL at body mass among fish communities from different regions. With scaled Δδ(15) N, TL-body mass relationships became more positive and PPMR fell. Results implied that realized prey size in these size-structured fish communities are less variable than previously assumed and food chains potentially longer. The adoption of generic PPMR estimates for calibration and validation of size-based fish community models is better supported than hitherto assumed, but predicted slopes of community size spectra are more sensitive to a given change or error in realized PPMR when PPMR is small. PMID:26046788

  8. NMR-Based Amide Hydrogen-Deuterium Exchange Measurements for Complex Membrane Proteins: Development and Critical Evaluation

    NASA Astrophysics Data System (ADS)

    Czerski, Lech; Vinogradova, Olga; Sanders, Charles R.

    2000-01-01

    A method for measuring site-specific amide hydrogen-deuterium exchange rates for membrane proteins in bilayers is reported and evaluated. This method represents an adaptation and extension of the approach of Dempsey and co-workers (Biophys. J. 70, 1777-1788 (1996)) and is based on reconstituting 15N-labeled membrane proteins into phospholipid bilayers, followed by lyophilization and rehydration with D2O or H2O (control). Following incubation for a time t under hydrated conditions, samples are again lyophilized and then solubilized in an organic solvent system, where 1H-15N HSQC spectra are recorded. Comparison of spectra from D2O-exposed samples to spectra from control samples yields the extent of the H-D exchange which occurred in the bilayers during time t. Measurements are site specific if specific 15N labeling is used. The first part of this paper deals with the search for a suitable solvent system in which to solubilize complex membrane proteins in an amide "exchange-trapped" form for NMR quantitation of amide peak intensities. The second portion of the paper documents application of the overall procedure to measuring site-specific amide exchange rates in diacylglycerol kinase, a representative integral membrane protein. Both the potential usefulness and the significant limitations of the new method are documented.

  9. The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions.

    PubMed

    Kirk, K; Kuchel, P W

    1988-01-01

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single 31P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular 31P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied), it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference in the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved. PMID:3275636

  10. /sup 13/C and /sup 1/H NMR spectra and structure of the products from the condensation of 1,3-dicarbonyl compounds with aldehydes

    SciTech Connect

    Emelina, E.E.; Gindin, V.A.; Ershov, B.A.

    1988-05-20

    The structure of the diadducts formed in the reaction of 1,3-dicarbonyl compounds with aldehydes in a ratio of 2:1 under the conditions of the Knoevenagel condensation was studied by /sup 13/C and /sup 1/H NMR spectroscopy. It was shown that acyclic tetracarbonyl compounds are formed in the absence of a catalyst while substituted cyclohexanones are formed in the presence of piperidine. The acyclic tetracarbonyl compounds exist mainly in the tetraketo form in solution, and the presence of the monoenol form was established for dimethyl 2,4-diacetylpentanedioate in CD/sub 2/Cl/sub 2/. The most characteristic signals which distinguish between the cyclic diadducts and the acyclic products are the signals of the C/sup 5/ (delta 72 ppm) and C/sup 6/ (delta 52 ppm) atoms. The presence of a keto-enol equilibrium in 2,4-diacetyl-5-hydroxy-3-(p-methoxyphenyl)-5-methylcyclohexanone was demonstrated by /sup 13/C NMR.

  11. Contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the /sup 31/P NMR spectra of oxygenated erythrocyte suspensions

    SciTech Connect

    Kirk, K.; Kuchel, P.W.

    1988-01-05

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single /sup 31/P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular /sup 31/P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied) it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference is the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved.

  12. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age

    NASA Astrophysics Data System (ADS)

    Minagawa, Masao; Wada, Eitaro

    1984-05-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average δ15Nversus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from the East China Sea show an average -0.55%. (-0.8 to +1.2). All consumers, Zooplankton, fish and bird exhibited Stepwise enrichment of 15N with increasing trophic level. The 15N enrichment at a single feeding process ranged from +1.3 to +5.3 averaging +3.4 ± 1.1%.. This isotopic fractionation seems to be independent of habitat. The effect of age in animals was obtained by analyzing two marine mussels. The soft tissue nitrogen showed +2.0%. enrichment relative to that of primary producers, and the magnitude was almost constant with shell ages ranging from 0 to 8 years. A similar 15N enrichment occurs in all Molluscs, Crustaceans, Insecta, Amphibia, Fish, Ave and Mammal species regardless of the difference in the form of excreted nitrogen and in laboratory cultured fish, brine shrimp and mice (+2.9 to +4.9%.). The excreted ammonia from guppy was sufficiently light to balance the concentration of 15N to animal body.

  13. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR.

    PubMed

    Thorn, Kevin A; Cox, Larry G

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected. PMID:26556054

  14. Probing the carbonyl functionality of a petroleum resin and asphaltene through oximation and schiff base formation in conjunction with N-15 NMR

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.

  15. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR

    PubMed Central

    Thorn, Kevin A.; Cox, Larry G.

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected. PMID:26556054

  16. Nitrogen input 15N-signatures are reflected in plant 15N natural abundances of N-rich tropical forest in China

    NASA Astrophysics Data System (ADS)

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Yunting, Fang; Mo, Jiangming

    2016-04-01

    In this study, we tested the measurement of natural abundance of 15N15N) for its ability to assess changes in N cycling due to increased N deposition in two forest types; namely, an old-growth broadleaved forest and a pine forest, in southern China. We measured δ15N values of inorganic N in input and output fluxes under ambient N deposition, and N concentration and δ15N of major ecosystem compartments under ambient and increased N deposition. Our results showed that N deposition to the forests was 15N-depleted, and was dominated by NH4-N. Plants were 15N-depleted due to imprint from the 15N-depleted atmospheric N deposition. The old-growth forest had larger N concentration and was more 15N-enriched than the pine forest. Nitrogen addition did not significantly affect N concentration, but it significantly increased δ15N values of plants, and slightly more so in the pine forest, toward the 15N signature of the added N in both forests. The result indicates that the pine forest may rely more on the 15N-depleted deposition N. Soil δ15N values were slightly decreased by the N addition. Our result suggests that ecosystem δ15N is more sensitive to the changes in ecosystem N status and N cycling than N concentration in N-saturated sub-tropical forests.

  17. Structure Determination of a Membrane Protein with Two Trans-membrane Helices in Aligned Phospholipid Bicelles by Solid-state NMR Spectroscopy

    PubMed Central

    De Angelis, Anna A.; Howell, Stanley C.; Nevzorov, Alexander A.; Opella, Stanley J.

    2011-01-01

    The structure of the membrane protein MerFt was determined in magnetically aligned phospholipid bicelles by solid-state NMR spectroscopy. With two trans-membrane helices and a 10-residue inter-helical loop, this truncated construct of the mercury transport membrane protein MerF has sufficient structural complexity to demonstrate the feasibility of determining the structures of polytopic membrane proteins in their native phospholipid bilayer environment under physiological conditions. PISEMA, SAMMY, and other double-resonance experiments were applied to uniformly and selectively 15N labeled samples to resolve and assign the backbone amide resonances, and to measure the associated 15N chemical shift and 1H-15N heteronuclear dipolar coupling frequencies as orientation constraints for structure calculations. 1H/13C/15N triple-resonance experiments were applied to selectively 13C′ and 15N labeled samples to complete the resonance assignments, especially for residues in the non-helical regions of the protein. A single resonance is observed for each labeled site in one- and two-dimensional spectra. Therefore, each residue has a unique conformation, and all protein molecules in the sample have the same three-dimensional structure and are oriented identically in planar phospholipid bilayers. Combined with the absence of significant intensity near the isotropic resonance frequency, this demonstrates that the entire protein, including the loop and terminal regions, has a well-defined, stable structure in phospholipid bilayers. PMID:16967977

  18. Cytochrome-P450-Cytochrome-b5 Interaction in a Membrane Environment Changes 15N Chemical Shift Anisotropy Tensors

    PubMed Central

    Pandey, Manoj Kumar; Vivekanandan, Subramanian; Ahuja, Shivani; Huang, Rui; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2013-01-01

    It has been well realized that the dependence of chemical shift anisotropy (CSA) tensors on the amino acid sequence, secondary structure, dynamics and electrostatic interactions can be utilized in the structural and dynamic studies of proteins by NMR spectroscopy. In addition, CSA tensors could also be utilized to measure the structural interactions between proteins in a protein-protein complex. To this end, here we report the experimentally measured backbone amide-15N CSA tensors for a membrane-bound 16.7-kDa full-length rabbit cytochrome-b5 (cytb5), in complexation with a 55.8-kDa microsomal rabbit cytochrome P450 2B4 (cytP4502B4). The 15N-CSAs, determined using the 15N CSA/15N-1H dipolar coupling transverse cross-correlated rates, for free cytb5 are compared with that for the cytb5 bound to cytP4502B4. An overall increase in backbone amide-15N transverse cross-correlated rates for the cytb5 residues in the cytb5-cytP450 complex was observed as compared to the free cytb5 residues. Due to fast spin-spin relaxation (T2) and subsequent broadening of the signals in the complex, we were able to measure amide-15N CSAs only for 48 residues of cytb5 as compared to 84 residues of free cytb5. We observed a change in 15N CSA for most residues of cytb5 in the complex, when compared to free cytb5, suggesting a dynamic interaction between the oppositely charged surfaces of anionic cytb5 and cationic cytP450. The mean values of 15N CSA determined for residues in helical, sheet and turn regions of cytb5 in the complex are −184.5, −146.8, and −146.2 ppm, respectively, with an overall average value of −165.5 ppm (excluding the values from residues in more flexible termini). The measured CSA value for residues in helical conformation is slightly larger as compared to previously reported values. This may be attributed to the paramagnetic effect from Fe(III) of the heme in cytb5, which is similar to our previously reported values for the free cytb5. PMID:24107224

  19. Marking Drosophila suzukii (Diptera: Drosophilidae) With Rubidium or 15N.

    PubMed

    Klick, J; Yang, W Q; Bruck, D J

    2015-06-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) has caused significant economic damage to berry and stone fruit production regions. Markers that are systemic in plants and easily transferred to target organisms are needed to track D. suzukii exploitation of host resources and trophic interactions. High and low concentrations of the trace element, rubidium (Rb), and the stable isotope, 15N, were tested to mark D. suzukii larvae feeding on fruits of enriched strawberry plants grown in containers under greenhouse conditions. Fly marker content and proportion of flies marked 1, 7, and 14 d after emergence from enriched fruits and fly dry mass were analyzed. Nearly 100% of the flies analyzed 14 d after emerging from 15N-enriched plants were marked, whereas only 30-75% and 0-3% were marked 14 d after emerging from high and low Rb concentration plants, respectively. Rapid Rb decay, strong 15N persistence, and the economics of using these markers in the field to elucidate D. suzukii pest ecology are discussed. PMID:26470275

  20. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  1. Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling.

    PubMed Central

    Castillo, L; Beaumier, L; Ajami, A M; Young, V R

    1996-01-01

    The rates of whole body nitric oxide (NO) synthesis, plasma arginine flux, and de novo arginine synthesis and their relationships to urea production, were examined in a total of seven healthy adults receiving an L-amino acid diet for 6 days. NO synthesis was estimated by the rate of conversion of the [15N] guanidino nitrogen of arginine to plasma [15N] ureido citrulline and compared with that based on urinary nitrite (NO2-)/nitrate (NO3-) excretion. Six subjects received on dietary day 7, a 24-hr (12-hr fed/12-hr fasted) primed, constant, intravenous infusion of L-[guanidino-15N2]arginine and [13C]urea. A similar investigation was repeated with three of these subjects, plus an additional subject, in which they received L-[ureido-13C]citrulline, to determine plasma citrulline fluxes. The estimated rates (mean +/- SD) of NO synthesis over a period of 24 hr averaged 0.96 +/- 0.1 mumol .kg-1.hr-1 and 0.95 +/- 0.1 mumol.kg-1.hr-1, for the [15N]citrulline and the nitrite/nitrate methods, respectively. About 15% of the plasma arginine turnover was associated with urea formation and 1.2% with NO formation. De novo arginine synthesis averaged 9.2 +/- 1.4 mumol. kg-1.hr-1, indicating that approximately 11% of the plasma arginine flux originates via conversion of plasma citrulline to arginine. Thus, the fraction of the plasma arginine flux associated with NO and also urea synthesis in healthy humans is small, although the plasma arginine compartment serves as a significant precursor pool (54%) for whole body NO formation. This tracer model should be useful for exploring these metabolic relationships in vivo, under specific pathophysiologic states where the L-arginine-NO pathway might be altered. Images Fig. 4 PMID:8876157

  2. Measuring (13)C/(15)N chemical shift anisotropy in [(13)C,(15)N] uniformly enriched proteins using CSA amplification.

    PubMed

    Hung, Ivan; Ge, Yuwei; Liu, Xiaoli; Liu, Mali; Li, Conggang; Gan, Zhehong

    2015-11-01

    Extended chemical shift anisotropy amplification (xCSA) is applied for measuring (13)C/(15)N chemical shift anisotropy (CSA) of uniformly labeled proteins under magic-angle spinning (MAS). The amplification sequence consists of a sequence of π-pulses that repetitively interrupt MAS averaging of the CSA interaction. The timing of the pulses is designed to generate amplified spinning sideband manifolds which can be fitted to extract CSA parameters. The (13)C/(13)C homonuclear dipolar interactions are not affected by the π-pulses due to the bilinear nature of the spin operators and are averaged by MAS in the xCSA experiment. These features make the constant evolution-time experiment suitable for measuring CSA of uniformly labeled samples. The incorporation of xCSA with multi-dimensional (13)C/(15)N correlation is demonstrated with a GB1 protein sample as a model system for measuring (13)C/(15)N CSA of all backbone (15)NH, (13)CA and (13)CO sites. PMID:26404770

  3. Cumulative “roof effect” in high-resolution in vivo 31P NMR spectra of human calf muscle and the Clebsch Gordan coefficients of ATP at 1.5 T

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2005-05-01

    NMR spectra of non-weakly coupled spin systems exhibit asymmetries in line intensities known as "roof effect" in 1D spectroscopy. Due to limited spectral resolution, this effect has not been paid much attention so far in in vivo spectroscopy. But when high-quality spectra are obtained, this effect should be taken into account to explain the quantum-mechanical fine structure of the system. Adenosine 5'-triphosphate (ATP) represents a 31P spin system with multiple line splittings which are caused by J-couplings of medium strength at 1.5 T. We analyzed the ATP roof effect in vivo, especially for the β-ATP multiplet. The intensities of its outer resonances deviate by ca. 12.5% from a symmetrical triplet. As this asymmetry reflects the transition from Paschen-Back to Zeeman effect with total spin that is largely broken up, the Clebsch-Gordan coefficients of the system can be indicated in analogy to the hyperfine structure of hydrogen. Taking the roof effect into account, the χ2 of fitting in vivo ATP resonances is reduced by ca. 9% ( p < 0.005).

  4. Vibrational analysis using FT-IR, FT-Raman spectra and HF-DFT methods and NBO, NLO, NMR, HOMO-LUMO, UV and electronic transitions studies on 2,2,4-trimethyl pentane

    NASA Astrophysics Data System (ADS)

    Suvitha, A.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-03-01

    In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm-1and 50-4000 cm-1, respectively, for 2,2,4-Trimethyl Pentane, TMP (C8H18) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and geometrical parameter calculations based on Hartree Fock (HF) and density functional theory (DFT) method with 6-311++G(d,p) basis set. The scaled B3LYP/6-311++G(d,p) results shows the best agreement with the experimental values over the other method. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The physical reactions of single bond hydrocarbon TMP were investigated. The results of the calculations were applied to simulate spectra of the title compound, which shows the excellent agreement with observed spectra. Besides, Mulliken atomic charges, UV, frontier molecular orbital (FMO), MEP, NLO activity, Natural Bond-Orbital (NBO) analysis, NMR and thermodynamic properties of title molecule were also performed.

  5. FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2014-04-01

    Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.

  6. Hydrothermal synthesis, X-ray structure refinement, 31P NMR spectra and vibrational study of NaLa(HPO4)2

    NASA Astrophysics Data System (ADS)

    Ben Hassen, C.; Boujelbene, M.; Mhiri, T.

    2013-10-01

    NaLa(HPO4)2 was obtained by hydrothermal synthesis. The structure of NaLa(HPO4)2 was determined by X-ray powder diffraction methods. The results of Rietveld refinement revealed a space group P21/c (No. 14), with lattice parameters of a = 9.7151(17) Å, b = 8.320(12) Å, c = 9.83(2) Å, beta = 114.65(17)°, V = 722 (8) Å3 and Z = 4. Final refinement led to RF = 4.86% and RB = 12.35%.The existence of bound O-H and bound P-O in the structure has been confirmed by IR and Raman spectroscopy. The existence of two crystallographically independent phosphorus atoms in the structure has been confirmed by NMR spectrum. The structure is characterized by LaO6 octahedra which are solely connected to six adjacent HPO4 tetrahedra via common O-corners. This structure contains twelve- and four-membered rings forming channels along [1 1¯ 1]. The cross sections of the channels are given by twelve-membered rings consisting of four lanthanum coordination octahedral and eight hydrogenphosphate groups as well as four-membered rings consisting of two lanthanum coordination octahedra and two hydrogenphosphate tetrahedra. Sodium ions are located within those channels of the twelve-membered rings.

  7. Minimalist Relativistic Force Field: Prediction of Proton-Proton Coupling Constants in (1)H NMR Spectra Is Perfected with NBO Hybridization Parameters.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-05-15

    We previously developed a reliable method for multiparametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. We now report that utilization of NBO hybridization coefficients for carbon atoms in the involved C-H bonds allows for a significant simplification of this parametric scheme, requiring only four general types of SSCCs: geminal, vicinal, 1,3-, and long-range constants. The method is optimized for inexpensive B3LYP/6-31G(d) molecular geometries. A new DU8 basis set, based on a training set of 475 experimental spin-spin coupling constants, is developed for hydrogen and common non-hydrogen atoms (Li, B, C, N, O, F, Si, P, S, Cl, Se, Br, I) to calculate Fermi contacts. On a test set of 919 SSCCs from a diverse collection of natural products and complex synthetic molecules the method gave excellent accuracy of 0.29 Hz (rmsd) with the maximum unsigned error not exceeding 1 Hz. PMID:25885091

  8. A sequential assignment procedure for proteins that have intermediate line widths in MAS NMR spectra: amyloid fibrils of human CA150.WW2.

    PubMed

    Becker, Johanna; Ferguson, Neil; Flinders, Jeremy; van Rossum, Barth-Jan; Fersht, Alan R; Oschkinat, Hartmut

    2008-08-11

    The second WW domain (WW2) of CA150, a human transcriptional activator, forms amyloid fibrils in vitro under physiological conditions. Based on experimental constraints from MAS NMR spectroscopy experiments, alanine scanning and electron microscopy, a structural model of CA150.WW2 amyloid fibrils was calculated earlier. Here, the assignment strategy is presented and suggested as a general approach for proteins that show intermediate line width. The (13)C,(13)C correlation experiments were recorded on fully or partially (13)C-labelled fibrils. The earlier (13)C assignment (26 residues) was extended to 34 of the 40 residues by direct (13)C-excitation experiments by using a deuterated sample that showed strongly improved line width. A 3D HNC-TEDOR (transferred-echo double-resonance) experiment with deuterated CA150.WW2 fibrils yielded 14 amide nitrogen and proton resonance assignments. The obtained chemical shifts were compared with the chemical shifts determined with the natively folded WW domain. TALOS (Torsion angle likelihood obtained from shift and sequence similarity) predictions confirmed that, under physiological conditions, the fibrillar form of CA150.WW2 adopts a significantly different beta structure than the native WW-domain fold. PMID:18642254

  9. Solid-state NMR in the analysis of drugs and naturally occurring materials.

    PubMed

    Paradowska, Katarzyna; Wawer, Iwona

    2014-05-01

    This article presents some of the solid-state NMR (SSNMR) techniques used in the pharmaceutical and biomedical research. Solid-state magic angle spinning (MAS) NMR provides structural information on powder amorphous solids for which single-crystal diffraction structures cannot be obtained. NMR is non-destructive; the powder sample may be used for further studies. Quantitative results can be obtained, although solid-state NMR spectra are not normally quantitative. As compared with other techniques, MAS NMR is insensitive and requires a significant amount of the powder sample (2-100mg) to fill the 1.3-7 mm ZrO2 rotor. This is its main drawback, since natural compounds isolated from plants, microorganisms or cell cultures are difficult to obtain in quantities higher than a few milligrams. Multinuclear MAS NMR routinely uses (1)H and (13)C nuclei, less frequently (15)N, (19)F, (31)P, (77)Se, (29)Si, (43)Ca or (23)Na. The article focuses on the pharmaceutical applications of SSNMR, the studies were aimed to control over manufacturing processes (e.g. crystallization and milling) investigation of chemical and physical stability of solid forms both as pure drug and in a formulated product. SSNMR is used in combination with some other analytical methods (DSC, XRD, FT-IR) and theoretical calculations of NMR parameters. Biologically active compounds, such as amino acids and small peptides, steroids and flavonoids were studied by SSNMR methods (part 4) providing valuable structural information. The SSNMR experiments performed on biopolymers and large natural products like proteins, cellulose and lipid layers are commented upon briefly in part 5. PMID:24173236

  10. High-Speed Magic-Angle Spinning 13C MAS NMR Spectra of Adamantane: Self-Decoupling of the Heteronuclear Scalar Interaction and Proton Spin Diffusion

    NASA Astrophysics Data System (ADS)

    Ernst, Matthias; Verhoeven, Aswin; Meier, Beat H.

    1998-02-01

    We have investigated the carbon line shape of solid adamantane under high-speed magic-angle sample spinning (MAS) acquired without proton decoupling. The CH-group shows a spinning-speed-dependent line broadening while the CH2-group consists of a spinning-speed-independent sharp component and a spinning-speed-dependent broader part. These phenomena can be explained by self-decoupling of theJ-interaction due to proton spin diffusion. Such a self-decoupling process can be described by a magnetization exchange process between the multiplet lines. Changing the spin-diffusion rate constant by off-resonance irradiation of the protons allows us to observe the full range from slow exchange to coalescence to fast exchange of the carbon spectra. One of the multiplet components in the CH2-group corresponds to a group spin of the protons of zero and therefore does not couple to the other protons. This gives rise to the sharp central line. The magnetization exchange rate constant between the different multiplet lines can be determined from the spectra and is a measure for the spinning-speed-dependent proton spin-diffusion rate constant. Even at an MAS speed of 30 kHz, proton spin diffusion is still observable despite the relatively weak intermolecular proton dipolar-coupling network in adamantane which results in a static proton line width of only 14 kHz (full width at half height).

  11. The relationship between environmental abundant electromagnetic fields and packaging shape to their effects on the 17O NMR and Raman spectra of H2O-NaCl

    NASA Astrophysics Data System (ADS)

    Abdelsamie, Maher A. A.; Rahman, Russly B. Abdul; Mustafa, Shuhaimi; Hashim, Dzulkifly

    2015-07-01

    In this study, two identical groups of four containers with different packaging shapes made of polymethyl methacrylate (PMMA) were used to store H2O-NaCl solution for seven days at ambient room temperature (25 °C). Faraday shield was used to shield one group. The surrounding electromagnetic fields were measured during the storage period by using R&S®TS-EMF EMF measurement system. Samples of H2O-NaCl were collected at the end of the storage period and examined by 17Oxygene nuclear magnetic resonance spectroscopy (17O NMR) and Raman spectroscopy. Electromagnetic simulation was used to explore the relationship between the packaging shape of H2O-NaCl containers and the environmentally abundant electromagnetic fields to their effects on the cluster size of water. The study showed variations in the cluster size of water stored inside the two groups of containers. It was observed that the cluster size of water stored in the unshielded containers was lower than that of the shielded containers. The cluster size of water stored in the unshielded pyramidal container was lower than the cluster size of water stored in the unshielded rectangular, square, and cylindrical containers. The EM simulation results showed significant variations in the total specific absorption rate SAR and maximum point SAR values induced in the H2O-NaCl solution in the unshielded container models at 2400 MHz for both vertical and horizontal polarization. It can be concluded that the variations in the values of SAR induced in H2O-NaCl solution are directly related to the variations in the cluster size of the stored water.

  12. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which spectral…

  13. Experimental plant for simultaneous production of (14)N and (15)N by (15)N/(14)N exchange in NO, NO(2)-HNO(3) system under pressure.

    PubMed

    Axente, Damian; Marcu, Cristina; Muresan, Ancuţa; Kaucsar, Martin; Misan, Ioan; Popeneciu, Gabriel; Gligan, Nicolae; Cristea, Gabriela

    2010-06-01

    An experimental study on (14)N and (15)N simultaneous separation using the chemical exchange in NO, NO(2)-HNO(3) system under pressure is presented. The influence of the pressure and of the interstage 10 M HNO(3) flow rate on the separation of (14)N and (15)N was measured on a packed column with product and waste refluxers. At steady state and 1.8 atm (absolute), the isotopic concentration at the bottom of the separation column was 0.563 at% (15)N, and in the top of the column was 0.159 at% (15)N. The height equivalent to a theoretical plate and interstage 10 M HNO(3) flow rate values, obtained in these experimental conditions, allows the separation of (14)N highly depleted of (15)N and of (15)N at 99 at% (15)N concentration. PMID:20582793

  14. Solid-State NMR Studies of HIV-1 Capsid Protein Assemblies

    PubMed Central

    Han, Yun; Ahn, Jinwoo; Concel, Jason; Byeon, In-Ja L.; Gronenborn, Angela M.; Yang, Jun; Polenova, Tatyana

    2010-01-01

    In mature HIV-1 virions, a 26.6 kDa CA protein is assembled into a characteristic cone shaped core (capsid) that encloses the RNA viral genome. The assembled capsid structure is best described by a fullerene cone model that is made up from a hexameric lattice containing a variable number of CA pentamers, thus allowing for closure of tubular or conical structures. In this report, we present a solid-state NMR analysis of the wild type HIV-1 CA protein, prepared as conical and spherical assemblies that are stable and are not affected by magic angle spinning of the samples at frequencies between 10 and 25 kHz. Multidimensional homo- and heteronuclear correlation spectra of CA assemblies of uniformly 13C,15N-labelled CA exhibit narrow lines, indicative of conformational homogeneity of the protein in these assemblies. For the conical assemblies, partial residue-specific resonance assignments were obtained. Analysis of the NMR spectra recorded for the conical and spherical assemblies indicates that the CA protein structure is not significantly different in the different morphologies. The present results demonstrate that the assemblies of CA protein are amenable to detailed structural analysis by solid-state NMR spectroscopy. PMID:20092249

  15. A Method for Systematic Assessment of Intrinsically Disordered Protein Regions by NMR.

    PubMed

    Goda, Natsuko; Shimizu, Kana; Kuwahara, Yohta; Tenno, Takeshi; Noguchi, Tamotsu; Ikegami, Takahisa; Ota, Motonori; Hiroaki, Hidekazu

    2015-01-01

    Intrinsically disordered proteins (IDPs) that lack stable conformations and are highly flexible have attracted the attention of biologists. Therefore, the development of a systematic method to identify polypeptide regions that are unstructured in solution is important. We have designed an "indirect/reflected" detection system for evaluating the physicochemical properties of IDPs using nuclear magnetic resonance (NMR). This approach employs a "chimeric membrane protein"-based method using the thermostable membrane protein PH0471. This protein contains two domains, a transmembrane helical region and a C-terminal OB (oligonucleotide/oligosaccharide binding)-fold domain (named NfeDC domain), connected by a flexible linker. NMR signals of the OB-fold domain of detergent-solubilized PH0471 are observed because of the flexibility of the linker region. In this study, the linker region was substituted with target IDPs. Fifty-three candidates were selected using the prediction tool POODLE and 35 expression vectors were constructed. Subsequently, we obtained 15N-labeled chimeric PH0471 proteins with 25 IDPs as linkers. The NMR spectra allowed us to classify IDPs into three categories: flexible, moderately flexible, and inflexible. The inflexible IDPs contain membrane-associating or aggregation-prone sequences. This is the first attempt to use an indirect/reflected NMR method to evaluate IDPs and can verify the predictions derived from our computational tools. PMID:26184172

  16. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelleher, Brian P.; Simpson, Myrna J.; Simpson, Andre J.

    2006-08-01

    Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO 2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D) 13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H- 15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell

  17. Identification of the magnesium-histidine stretching vibration of the bacteriochlorophyll cofactors in photosynthetic reaction centers via {sup 15}N-labeling of the histidines

    SciTech Connect

    Czarnecki, K.; Bocian, D.F.; Chynwat, V.; Erickson, J.P.; Frank, H.A.

    1997-03-12

    In this communication, we report low-frequency, near-infrared-exciation RR spectra of bacterial RCs in which the histidine residues of the protein are selectively labeled with {sup 15}N. For practical reasons, the studies were conducted by comparing the vibrational signatures of RCs in which {sup 15}N was universally incorporated (all cofactors and all protein residues) (designated all-{sup 15}N RCs) with those in which [{sup 14}N]histidine was introduced as a reverse label (disignated {sup 14}N-His RCs) into the all {sup 15}N-labeled RCs. The studies of the histidine-labeled RCs reveal that the vibrational characteristics of the BChl core are far more complicated than originally anticipated. These results have clear implications for the photoexcitation dynamics of the BChls in RCs and may also have significant consequences for the dynamics of exogenous ligand binding to heme-based oxygen carriers. 12 refs., 2 figs.

  18. 1H NMR, electronic-absorption and resonance-Raman spectra of isomeric okenone as compared with those of isomeric β-carotene, canthaxanthin, β-apo-8'-carotenal and spheroidene

    NASA Astrophysics Data System (ADS)

    Fujii, Ritsuko; Chen, Chun-Hai; Mizoguchi, Tadashi; Koyama, Yasushi

    1998-05-01

    Eleven cis- trans isomers of okenone were isolated by means of HPLC using a silica-gel column from an isomeric mixture which was obtained by iodine-sensitized photo-isomerization of the all- trans isomer. The configurations of eight isomers among them were determined by NMR spectroscopy using the isomerization shifts of the olefinic 1Hs and the 1H- 1H NOE correlations to be all- trans, 7- cis, 7- cis,8-s- cis, 9- cis, 9'- cis, 13- cis, 13'- cis and 9,9'-di- cis, and their electronic-absorption and resonance-Raman spectra were recorded. Based on the results: (1) the chemical shifts of the olefinic 1Hs in NMR; (2) the wavelength of the A g-→B u+ transition; and (3) the relative intensity of the A g-→A g+ versus the A g-→B u+ transition in electronic absorption; (4) the CC stretching frequency; and (5) the relative intensity of the C10-C11 (C10'-C11') versus the C14-C15 (C14'-C15') stretching vibration in resonance Raman were compared among the all- trans, 7- cis, 9- cis (9'- cis) and 13- cis (13'- cis) isomers of β-carotene, canthaxanthin, β-apo-8'-carotenal, neurosporene, spheroidene and okenone. Relevance of the systematic changes in the above five different parameters originally found in β-carotene was examined in the rest of the carotenoids, and the effects of the peripheral groups on them were explained in terms of the length and asymmetry of the conjugated system consisting of the CC and CO bonds.

  19. MUSIC in Triple-Resonance Experiments: Amino Acid Type-Selective 1H- 15N Correlations

    NASA Astrophysics Data System (ADS)

    Schubert, Mario; Smalla, Maika; Schmieder, Peter; Oschkinat, Hartmut

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective 1H-15N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH2 or XH3 (X can be 15N or 13C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains.

  20. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    PubMed

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press. PMID:10527741

  1. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  2. Simulations of molecular dynamics in solid-state NMR spectra of spin-1 nuclei including effects of CSA- and EFG-terms up to second order.

    PubMed

    Larsen, Flemming H

    2007-04-01

    By numerical simulations MAS and QCPMG methods for acquiring spectra of spin-1 nuclei were compared in order to determine the most sensitive experiment for analysis of molecular dynamics. To comply with the large quadrupolar constants for 14N and the CSA reported for 6Li both of these interactions are included up to second order. For 2H and 6Li both QCPMG and single-pulse MAS experiments were suitable for dynamics studies whereas the single-pulse MAS experiment were the method of choice for investigation of 14N dynamics for C(Q)'s larger than 750kHz at 14.1T. This property prohibits excitation of the 14N lineshape using either single hard or softer composite rf-pulses. Focusing on 14N it was demonstrated that the centerband lineshape is sensitive toward both off-MAS and CSA effects. In addition, excitation by real-time pulses showed that proper lineshapes corresponding to a site with a C(Q) of 3MHz may be excited by a very short pulse. PMID:17418539

  3. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts.

    PubMed

    Neal, Stephen; Nip, Alex M; Zhang, Haiyan; Wishart, David S

    2003-07-01

    A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts--RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 A) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of approximately 20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (<1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1Halpha), 0.980 (13Calpha), 0.996 (13Cbeta), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http

  4. A Solution NMR Investigation into the Early Events of Amelogenin Nanosphere Self-Assembly Initiated with Sodium Chloride or Calcium Chloride

    SciTech Connect

    Buchko, Garry W.; Tarasevich, Barbara J.; Bekhazi, Jacky G.; Snead, Malcolm L.; Shaw, Wendy J.

    2008-12-08

    Using solution-state NMR spectroscopy, new insights into the early intermolecular interactions stabilizing amelogenin supramolecular assembly and the potential role of calcium ions have been discovered. Two-dimensional 1H-15N spectra were recorded for 15N-labeled amelogenin as a function of increasing Ca2+ concentration starting from monomeric conditions. Evidence for protein-protein interactions were observed between residues E18 and E40 in the N-terminus. At higher Ca2+ concentrations there was concurrent involvement of residues in both the N- (Y12-Q56) and the C-terminus (Q144-T171). Neither specific residues nor their stepwise interaction have previously been identified in the initial stages of nanosphere assembly.

  5. Robust, integrated computational control of NMR experiments to achieve optimal assignment by ADAPT-NMR.

    PubMed

    Bahrami, Arash; Tonelli, Marco; Sahu, Sarata C; Singarapu, Kiran K; Eghbalnia, Hamid R; Markley, John L

    2012-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [(13)C,(15)N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches. PMID:22427982

  6. Observation of a Low-Temperature, Dynamically Driven, Structural Transition in a Polypeptide by Solid State NMR Spectroscopy

    PubMed Central

    Bajaj, Vikram S.; van der Wel, Patrick C.A.; Griffin, Robert G.

    2009-01-01

    At reduced temperatures, proteins and other biomolecules are generally found to exhibit dynamic as well as structural transitions. This includes a so-called protein glass transition that is universally observed in systems cooled between 200–230K, and which is generally attributed to interactions between hydrating solvent molecules and protein side chains. However, there is also experimental and theoretical evidence for a low-temperature transition in the intrinsic dynamics of the protein itself, absent any solvent. Here, we use low-temperature solid state NMR to examine site specific fluctuations in atomic structure and dynamics in the absence of solvents. In particular, we employ magic angle spinning NMR to examine a structural phase transition associated with dynamic processes in a solvent-free polypeptide, N-f-MLF-OH, lattice at temperatures as low as 90K. This transition is characterized by the appearance of an extra set of lines in 1D 15N spectra as well as additional cross peaks in 2D 13C-13C and 13C-15N spectra. Interestingly, the gradual, temperature-dependent appearance of the new spectral component is not accompanied by the line broadening typical of dynamic transitions. A direct comparison between the spectra of N-f-MLF-OH and the analog N-f-MLF-OMe, which does not display this transition, indicates a correlation of the structural transition to the temperature dependent motion of the aromatic phenylalanine side chain. Several quantitative solid state NMR experiments were employed to provide site-specific measurements of structural and motional features of the observed transition. PMID:19067520

  7. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  8. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY.

    PubMed

    Fushman, D; Cowburn, D

    1999-02-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site-specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D parallel/D perpendicular - 1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D parallel/D perpendicular > or = 1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems. PMID:10070755

  9. Magic-angle-spinning NMR of the drug resistant S31N M2 proton transporter from influenza A.

    PubMed

    Andreas, Loren B; Eddy, Matthew T; Chou, James J; Griffin, Robert G

    2012-05-01

    We report chemical shift assignments of the drug-resistant S31N mutant of M2(18-60) determined using 3D magic-angle-spinning (MAS) NMR spectra acquired with a (15)N-(13)C ZF-TEDOR transfer followed by (13)C-(13)C mixing by RFDR. The MAS spectra reveal two sets of resonances, indicating that the tetramer assembles as a dimer of dimers, similar to the wild-type channel. Helicies from the two sets of chemical shifts are shown to be in close proximity at residue H37, and the assignments reveal a difference in the helix torsion angles, as predicted by TALOS+, for the key resistance residue N31. In contrast to wild-type M2(18-60), chemical shift changes are minimal upon addition of the inhibitor rimantadine, suggesting that the drug does not bind to S31N M2. PMID:22480220

  10. Tracking the incorporation of 15N from labeled beech litter into mineral-organic associations

    NASA Astrophysics Data System (ADS)

    Kleber, M.; Hatton, P.; Derrien, D.; Lajtha, K.; Zeller, B.

    2008-12-01

    Nitrogen containing organic compounds are thought to have a role in the complex web of processes that control the turnover time of soil organic matter. The sequential density fractionation technique is increasingly used for the purpose of investigating the association of organic materials with the mineral matrix. Organic materials in the denser fractions (>2.0 kg L-1) typically show 13C NMR signals indicative of carbohydrate and aliphatic structures, an absence of lignin and tannin structures and a narrow C:N ratio, suggesting a microbial origin of organic matter in these fractions. Here we take advantage of a labeling experiment conducted at two different sites in Germany and in France to investigate the incorporation of organic nitrogen into physical fractions of increasing density, representing a proximity gradient to mineral surfaces. 15N labeled beech litter was applied to two acidic forest topsoils 8 and 12 years ago. Although there are differences in the distribution patterns between the two soils, and the majority of the organic nitrogen was recovered in fractions representing organic matter of plant origin and not bound to the mineral matrix, our data clearly show that after a decade, significant amounts of the nitrogen had been incorporated in mineral-organic fractions of supposedly slow turnover. It remains to be shown to which extent the N in the densest fractions was incorporated by soil microbiota and associated with mineral surfaces in organic form or adsorbed to mineral surfaces in inorganic form (NH4+).

  11. A Set of Efficient nD NMR Protocols for Resonance Assignments of Intrinsically Disordered Proteins.

    PubMed

    Wiedemann, Christoph; Bellstedt, Peter; Häfner, Sabine; Herbst, Christian; Bordusa, Frank; Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai

    2016-07-01

    The RF pulse scheme RN[N-CA HEHAHA]NH, which provides a convenient approach to the acquisition of different multidimensional chemical shift correlation NMR spectra leading to backbone resonance assignments, including those of the proline residues of intrinsically disordered proteins (IDPs), is experimentally demonstrated. Depending on the type of correlation data required, the method involves the generation of in-phase ((15) N)(x) magnetisation via different magnetisation transfer pathways such as H→N→CO→N, HA→CA→CO→N, H→N→CA→N and H→CA→N, the subsequent application of (15) N-(13) C(α) heteronuclear Hartmann-Hahn mixing over a period of ≈100 ms, chemical-shift labelling of relevant nuclei before and after the heteronuclear mixing step and amide proton detection in the acquisition dimension. It makes use of the favourable relaxation properties of IDPs and the presence of (1) JCαN and (2) JCαN couplings to achieve efficient correlation of the backbone resonances of each amino acid residue "i" with the backbone amide resonances of residues "i-1" and "i+1". It can be implemented in a straightforward way through simple modifications of the RF pulse schemes commonly employed in protein NMR studies. The efficacy of the approach is demonstrated using a uniformly ((15) N,(13) C) labelled sample of α-synuclein. The different possibilities for obtaining the amino-acid-type information, simultaneously with the connectivity data between the backbone resonances of sequentially neighbouring residues, have also been outlined. PMID:27061973

  12. NMR structural studies of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes

    PubMed Central

    Mahalakshmi, Radhakrishnan; Franzin, Carla M.; Choi, Jungyuen; Marassi, Francesca M.

    2008-01-01

    SUMMARY The β-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane β-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5° tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to α-helical membrane proteins. PMID:17916325

  13. Sample Optimization and Identification of Signal Patterns of Amino Acid Side Chains in 2D RFDR Spectra of the α-Spectrin SH3 Domain

    NASA Astrophysics Data System (ADS)

    Pauli, Jutta; van Rossum, Barth; Förster, Hans; de Groot, Huub J. M.; Oschkinat, Hartmut

    2000-04-01

    Future structural investigations of proteins by solid-state CPMAS NMR will rely on uniformly labeled protein samples showing spectra with an excellent resolution. NMR samples of the solid α-spectrin SH3 domain were generated in four different ways, and their 13C CPMAS spectra were compared. The spectrum of a [u-13C, 15N]-labeled sample generated by precipitation shows very narrow 13C signals and resolved scalar carbon-carbon couplings. Linewidths of 16-19 Hz were found for the three alanine Cβ signals of a selectively labeled [70% 3-13C]alanine-enriched SH3 sample. The signal pattern of the isoleucine, of all prolines, valines, alanines, and serines, and of three of the four threonines were identified in 2D 13C-13C RFDR spectra of the [u-13C,15N]-labeled SH3 sample. A comparison of the 13C chemical shifts of the found signal patterns with the 13C assignment obtained in solution shows an intriguing match.

  14. Application of Natural Isotopic Abundance ¹H-¹³C- and ¹H-¹⁵N-Correlated Two-Dimensional NMR for Evaluation of the Structure of Protein Therapeutics.

    PubMed

    Arbogast, Luke W; Brinson, Robert G; Marino, John P

    2016-01-01

    Methods for characterizing the higher-order structure of protein therapeutics are in great demand for establishing consistency in drug manufacturing, for detecting drug product variations resulting from modifications in the manufacturing process, and for comparing a biosimilar to an innovator reference product. In principle, solution NMR can provide a robust approach for characterization of the conformation(s) of protein therapeutics in formulation at atomic resolution. However, molecular weight limitations and the perceived need for stable isotope labeling have to date limited its practical applications in the biopharmaceutical industry. Advances in NMR magnet and console technologies, cryogenically cooled probes, and new rapid acquisition methodologies, particularly selective optimized flip-angle short transient pulse schemes and nonuniform sampling, have greatly ameliorated these limitations. Here, we describe experimental methods for the collection and analysis of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra applied to protein drug products at natural isotopic abundance, including representatives from the rapidly growing class of monoclonal antibody (mAb) therapeutics. Practical aspects of experimental setup and data acquisition for both standard and rapid acquisition NMR techniques are described. Furthermore, strategies for the statistical comparison of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra are detailed. PMID:26791974

  15. Solid-state 109Ag CP/MAS NMR spectroscopy of some diammine silver(I) complexes.

    PubMed

    Bowmaker, Graham A; Harris, Robin K; Assadollahzadeh, Behnam; Apperley, David C; Hodgkinson, Paul; Amornsakchai, Pornsawan

    2004-09-01

    Solid-state cross-polarization magic-angle spinning (CP/MAS) NMR spectra were recorded for the compounds [Ag(NH3)2]2SO4, [Ag(NH3)2]2SeO4 and [Ag(NH3))]NO3, all of which contain the linear or nearly linear two-coordinate [Ag(NH3)2]+ ion. The 109Ag CP/MAS NMR spectra show centrebands and associated spinning sideband manifolds typical for systems with moderately large shielding anisotropy, and splittings due to indirect 1J(109Ag,14N) spin-spin coupling. Spinning sideband analysis was used to determine the 109Ag shielding anisotropy and asymmetry parameters Deltasigma and eta from these spectra, yielding anisotropies in the range 1500-1600 ppm and asymmetry parameters in the range 0-0.3. Spectra were also recorded for 15N and (for the selenate) 77Se. In all cases the number of resonances observed is as expected for the crystallographic asymmetric units. The crystal structure of the selenate is reported for the first time. One-bond (107, 109Ag,15N) coupling constants are found to have magnitudes in the range 60-65 Hz. Density functional calculations of the Ag shielding tensor for model systems yield results that are in good agreement with the experimentally determined shielding parameters, and suggest that in the solid compounds Deltasigma and eta are reduced and increased, respectively, from the values calculated for the free [Ag(NH3)2]+ ion (1920 ppm and 0, respectively), primarily as a result of cation-cation interactions, for which there is evidence from the presence of metal-over-metal stacks of [Ag(NH3)2]+ ions in the solid-state structures of these compounds. PMID:15307067

  16. New flaxseed orbitides: Detection, sequencing, and (15)N incorporation.

    PubMed

    Okinyo-Owiti, Denis P; Young, Lester; Burnett, Peta-Gaye G; Reaney, Martin J T

    2014-03-01

    Three new orbitides (cyclolinopeptides 17, 18, and 19) were identified in flaxseed (Linum usitatissimum L.) extracts without any form of purification. Their structures were elucidated by a combination of (15) N-labeling experiments and extensive tandem mass spectrometry (MS/MS) with electrospray ionization (ESI). Putative linear peptide sequences of the new orbitides were used as the query in the Basic Local Alignment Search Tool (BLAST) searches of flax genome database. These searches returned linear sequences for the putative precursors of cyclolinopeptides 17 and 19 among others. Cyclolinopeptide 18 contains MetO (O) and is not directly encoded, but is a product of post-translation modification of the Met present in 17. The identification of precursor proteins in flax mRNA transcripts and DNA sequences confirmed the occurrence and amino acid sequences of these orbitides as [1-9-NαC]-MLKPFFFWI, [1-9-NαC]-OLKPFFFWI, and [1-9-NαC]-GIPPFWLTL for cyclolinopeptides 17, 18, and 19, respectively. PMID:24408479

  17. 15N2 formation and fast oxygen isotope exchange during pulsed 15N18O exposure of MnOx/CeO2

    SciTech Connect

    Kwak, Ja Hun; Szanyi, Janos

    2014-12-23

    Pulsing 15N18O onto an annealed 1% Mn16Ox/Ce16O2 catalyst resulted in very fast oxygen isotope exchange and 15N2 formation at 295 K. In the 1st 15N18O pulse, due to the presence of large number of surface oxygen defects, extensive 15N218O and 15N2 formations were observed. In subsequent pulses oxygen isotope exchange dominated as a result of highly labile oxygen in the oxide. We gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  18. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis.

    PubMed

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian; Ulrich, Anne S

    2015-06-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly (13)C/(15)N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive (13)C/(15)N-labeled amino acids. The most cost-effective production of (13)C/(15)N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% (13)C-glycerol and 0.5% (15)N-ammonium sulfate, supplemented with only 0.025% of (13)C/(15)N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  19. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  20. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  1. Studies with 15N-labeled ammonia and urea in the malnourished child

    PubMed Central

    Read, W. W. C.; McLaren, D. S.; Tchalian, Marie; Nassar, Siham

    1969-01-01

    Investigations using ammonium citrate-15N and urea-15N showed that children in the acute stage of kwashiorkor and marasmus receiving a diet of adequate protein content retained a considerable percentage of the label from both compounds. Excretion of both total 15N and urea-15N was subnormal and elimination was virtually completed 36 hr after administration of the isotope. During recovery from kwashiorkor total 15N excretion had approached normal a month after commencement of rehabilitation. Urea-15N excretion was still slightly subnormal after 3 months. In marasmus urea-15N formed a normal proportion of total 15N excretion after 1 month, although total 15N excretion then was still low. Ammonia nitrogen was retained to a greater extent than urea nitrogen in all cases. As it is known that a considerable amount of urea is degraded to ammonia in the gastrointestinal tract, it seems probable that urea nitrogen became available for use after this degradation. Examination of blood from one marasmic child after feeding ammonia-15N and from another after intravenous injection of urea-15N showed incorporation of the label into blood cells and plasma proteins. This did not occur in well nourished controls. It is concluded that ammonia and urea as sources of nonessential nitrogen may play an important part in protein metabolism in the malnourished child. PMID:5771193

  2. Automated protein NMR resonance assignments.

    PubMed

    Wan, Xiang; Xu, Dong; Slupsky, Carolyn M; Lin, Guohui

    2003-01-01

    NMR resonance peak assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents (1) a new scoring system for mapping spin systems to residues, (2) an automated adjacency information extraction procedure from NMR spectra, and (3) a very fast assignment algorithm based on our previous proposed greedy filtering method and a maximum matching algorithm to automate the assignment process. The computational tests on 70 instances of (pseudo) experimental NMR data of 14 proteins demonstrate that the new score scheme has much better discerning power with the aid of adjacency information between spin systems simulated across various NMR spectra. Typically, with automated extraction of adjacency information, our method achieves nearly complete assignments for most of the proteins. The experiment shows very promising perspective that the fast automated assignment algorithm together with the new score scheme and automated adjacency extraction may be ready for practical use. PMID:16452794

  3. Detection of 15NNH+ in L1544: non-LTE modelling of dyazenilium hyperfine line emission and accurate 14N/15N values

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Caselli, P.; Leonardo, E.; Dore, L.

    2013-07-01

    Context. Samples of pristine solar system material found in meteorites and interplanetary dust particles are highly enriched in 15N. Conspicuous nitrogen isotopic anomalies have also been measured in comets, and the 14N/15N abundance ratio of the Earth is itself higher than the recognised presolar value by almost a factor of two. Low-temperature ion/molecule reactions in the proto-solar nebula have been repeatedly indicated as being responsible for these 15N-enhancements. Aims: We have searched for 15N variants of the N2H+ ion in L1544, a prototypical starless cloud core that is one of the best candidate sources for detection owing to its low central core temperature and high CO depletion. The goal is to evaluate accurate and reliable 14N/15N ratio values for this species in the interstellar gas. Methods: A deep integration of the 15NNH+(1-0) line at 90.4 GHz was obtained with the IRAM 30 m telescope. Non-LTE radiative transfer modelling was performed on the J = 1-0 emissions of the parent and 15N-containing dyazenilium ions, using a Bonnor-Ebert sphere as a model for the source. Results: A high-quality fit of the N2H+(1-0) hyperfine spectrum has allowed us to derive a revised value of the N2H+ column density in L1544. Analysis of the observed N15NH+ and 15NNH+ spectra yielded an abundance ratio N(N15NH+)/N(15NNH+) = 1.1 ± 0.3. The obtained 14N/15N isotopic ratio is ~1000 ± 200, suggestive of a sizeable 15N depletion in this molecular ion. Such a result is not consistent with the prediction of the current nitrogen chemical models. Conclusions: Since chemical models predict high 15N fractionation of N2H+, we suggest that 15N14N, or 15N in some other molecular form, tends to deplete onto dust grains. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Full Tables B.1-B.6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  4. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization–enhanced solid-state NMR

    PubMed Central

    Bajaj, Vikram S.; Mak-Jurkauskas, Melody L.; Belenky, Marina; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    Observation and structural studies of reaction intermediates of proteins are challenging because of the mixtures of states usually present at low concentrations. Here, we use a 250 GHz gyrotron (cyclotron resonance maser) and cryogenic temperatures to perform high-frequency dynamic nuclear polarization (DNP) NMR experiments that enhance sensitivity in magic-angle spinning NMR spectra of cryo-trapped photocycle intermediates of bacteriorhodopsin (bR) by a factor of ≈90. Multidimensional spectroscopy of U-13C,15N-labeled samples resolved coexisting states and allowed chemical shift assignments in the retinylidene chromophore for several intermediates not observed previously. The correlation spectra reveal unexpected heterogeneity in dark-adapted bR, distortion in the K state, and, most importantly, 4 discrete L substates. Thermal relaxation of the mixture of L's showed that 3 of these substates revert to bR568 and that only the 1 substate with both the strongest counterion and a fully relaxed 13-cis bond is functional. These definitive observations of functional and shunt states in the bR photocycle provide a preview of the mechanistic insights that will be accessible in membrane proteins via sensitivity-enhanced DNP NMR. These observations would have not been possible absent the signal enhancement available from DNP. PMID:19474298

  5. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR.

    PubMed

    Bajaj, Vikram S; Mak-Jurkauskas, Melody L; Belenky, Marina; Herzfeld, Judith; Griffin, Robert G

    2009-06-01

    Observation and structural studies of reaction intermediates of proteins are challenging because of the mixtures of states usually present at low concentrations. Here, we use a 250 GHz gyrotron (cyclotron resonance maser) and cryogenic temperatures to perform high-frequency dynamic nuclear polarization (DNP) NMR experiments that enhance sensitivity in magic-angle spinning NMR spectra of cryo-trapped photocycle intermediates of bacteriorhodopsin (bR) by a factor of approximately 90. Multidimensional spectroscopy of U-(13)C,(15)N-labeled samples resolved coexisting states and allowed chemical shift assignments in the retinylidene chromophore for several intermediates not observed previously. The correlation spectra reveal unexpected heterogeneity in dark-adapted bR, distortion in the K state, and, most importantly, 4 discrete L substates. Thermal relaxation of the mixture of L's showed that 3 of these substates revert to bR(568) and that only the 1 substate with both the strongest counterion and a fully relaxed 13-cis bond is functional. These definitive observations of functional and shunt states in the bR photocycle provide a preview of the mechanistic insights that will be accessible in membrane proteins via sensitivity-enhanced DNP NMR. These observations would have not been possible absent the signal enhancement available from DNP. PMID:19474298

  6. 1H and 13C NMR spectra, structure and physicochemical features of phenyl acridine-9-carboxylates and 10-methyl-9-(phenoxycarbonyl)acridinium trifluoromethanesulphonates--alkyl substituted in the phenyl fragment.

    PubMed

    Krzymiński, K; Malecha, P; Zadykowicz, B; Wróblewska, A; Błażejowski, J

    2011-01-01

    The 1H and 13C NMR spectra of twelve phenyl acridine-9-carboxylates--alkyl-substituted in the phenyl fragment--and their 10-methyl-9-(phenoxycarbonyl)acridinium salts dissolved in CD3CN, CD3OD, CDCl3 and DMSO-d6 were recorded in order to examine the influence of the structure of these compounds and the properties of the solvents on chemical shifts and 1H-(1)H coupling constants. Experimental data were compared with 1H and 13C chemical shifts predicted at the GIAO/DFT level of theory for DFT(B3LYP)/6-31G** optimised geometries of molecules, as well as with values of 1H chemical shifts and 1H-(1)H coupling constants, estimated using ACD/HNMR database software to ensure that the assignment was correct. To investigate the relations between chemical shifts and selected structural or physicochemical characteristics of the target compounds, the values of several of these parameters were determined at the DFT or HF levels of theory. The HOMO and LUMO energies obtained at the HF level yielded the ionisation potentials and electron affinities of molecules. The DFT method provided atomic partial charges, dipole moments, LCAO coefficients of pz LUMO of selected C atoms, and angles reflecting characteristic structural features of the compounds. It was found that the experimentally determined 1H and 13C chemical shifts of certain atoms relate to the predicted dipole moments, the angles between the acridine and phenyl moieties, and the LCAO coefficients of the pz LUMO of the C atoms believed to participate in the initial step of the oxidation of the target compounds. The spectral and physicochemical characteristics of the target compounds were investigated in the context of their chemiluminogenic ability. PMID:21134782

  7. Improved mass analysis of oligoribonucleotides by 13C, 15N double depletion and electrospray ionization FT-ICR mass spectrometry.

    PubMed

    Xiong, Ying; Schroeder, Kersten; Greenbaum, Nancy L; Hendrickson, Christopher L; Marshall, Alan G

    2004-03-15

    13C, 15N doubly depleted 32-ribonucleotide was synthesized enzymatically by in vitro transcription from nucleoside triphosphates isolated from E. coli grown in a minimal medium containing 12C, 14N-enriched glucose and ammonium sulfate. Following purification and desalting by reversed-phase HPLC, buffer exchange with Microcon YM-3, and ethanol precipitation, electrospray ionization Fourier transform ion cyclotron resonance mass spectra revealed greatly enhanced abundance of monoisotopic ions (by a factor of approximately 100) and a narrower isotopic distribution with higher signal-to-noise ratio. The abrupt onset and high magnitude of the monoisotopic species promise to facilitate accurate mass measurement of RNA's. PMID:15018587

  8. NMR investigation of the interaction of the inhibitor protein Im9 with its partner DNase.

    PubMed

    Boetzel, R; Czisch, M; Kaptein, R; Hemmings, A M; James, R; Kleanthous, C; Moore, G R

    2000-09-01

    The bacterial toxin colicin E9 is secreted by producing Escherichia coli cells with its 9.5 kDa inhibitor protein Im9 bound tightly to its 14.5 kDa C-terminal DNase domain. Double- and triple-resonance NMR spectra of the 24 kDa complex of uniformly 13C and 15N labeled Im9 bound to the unlabeled DNase domain have provided sufficient constraints for the solution structure of the bound Im9 to be determined. For the final ensemble of 20 structures, pairwise RMSDs for residues 3-84 were 0.76 +/- 0.14 A for the backbone atoms and 1.36 +/- 0.15 A for the heavy atoms. Representative solution structures of the free and bound Im9 are highly similar, with backbone and heavy atom RMSDs of 1.63 and 2.44 A, respectively, for residues 4-83, suggesting that binding does not cause a major conformational change in Im9. The NMR studies have also allowed the DNase contact surface on Im9 to be investigated through changes in backbone chemical shifts and NOEs between the two proteins determined from comparisons of 1H-1H-13C NOESY-HSQC spectra with and without 13C decoupling. The NMR-defined interface agrees well with that determined in a recent X-ray structure analysis with the major difference being that a surface loop of Im9, which is at the interface, has a different conformation in the solution and crystal structures. Tyr54, a key residue on the interface, is shown to exhibit NMR characteristics indicative of slow rotational flipping. A mechanistic description of the influence binding of Im9 has on the dynamic behavior of E9 DNase, which is known to exist in two slowly interchanging conformers in solution, is proposed. PMID:11045617

  9. NMR investigation of the interaction of the inhibitor protein Im9 with its partner DNase.

    PubMed Central

    Boetzel, R.; Czisch, M.; Kaptein, R.; Hemmings, A. M.; James, R.; Kleanthous, C.; Moore, G. R.

    2000-01-01

    The bacterial toxin colicin E9 is secreted by producing Escherichia coli cells with its 9.5 kDa inhibitor protein Im9 bound tightly to its 14.5 kDa C-terminal DNase domain. Double- and triple-resonance NMR spectra of the 24 kDa complex of uniformly 13C and 15N labeled Im9 bound to the unlabeled DNase domain have provided sufficient constraints for the solution structure of the bound Im9 to be determined. For the final ensemble of 20 structures, pairwise RMSDs for residues 3-84 were 0.76 +/- 0.14 A for the backbone atoms and 1.36 +/- 0.15 A for the heavy atoms. Representative solution structures of the free and bound Im9 are highly similar, with backbone and heavy atom RMSDs of 1.63 and 2.44 A, respectively, for residues 4-83, suggesting that binding does not cause a major conformational change in Im9. The NMR studies have also allowed the DNase contact surface on Im9 to be investigated through changes in backbone chemical shifts and NOEs between the two proteins determined from comparisons of 1H-1H-13C NOESY-HSQC spectra with and without 13C decoupling. The NMR-defined interface agrees well with that determined in a recent X-ray structure analysis with the major difference being that a surface loop of Im9, which is at the interface, has a different conformation in the solution and crystal structures. Tyr54, a key residue on the interface, is shown to exhibit NMR characteristics indicative of slow rotational flipping. A mechanistic description of the influence binding of Im9 has on the dynamic behavior of E9 DNase, which is known to exist in two slowly interchanging conformers in solution, is proposed. PMID:11045617

  10. Synthesis of 5-aryl-4-(2-acetylaminobenzoyl)-1,2,3-triazoles with the /sup 15/N isotope at the terminal positions of the triazole rings and the tautomeric composition

    SciTech Connect

    Kurkovskaya, L.N.; Velezheva, V.S.; Sorokina, I.K.; Dmitrevskaya, L.I.; Zhil'nikov, V.G.

    1988-12-20

    A mixture of 4-(2-acetylaminobenzoyl)-5-phenyl(p-cumenyl)-1-/sup 15/N,2,3- and 4-(2-acetylaminobenzoyl)-5-phenyl(p-cumenyl)-1,2,3-/sup 15/N-triazoles was obtained from 1-acetyl-2-arylmethylene-3-indolinones and Na/sup 15/N/sub 3/ with the label at the terminal position. The tautomeric composition of the mixture, which corresponds to a state of equilibrium between the 2H and 3H forms of the triazole ring, was established by /sup 1/H (at low temperatures) and /sup 15/N NMR spectroscopy. The 4-(2-acetylaminobenzoyl)-5-aryl-1,2,3-triazoles are acylated at the sterically less hindered position 2 of the triazole ring.

  11. Parallel β-Sheet Structure of Alanine Tetrapeptide in the Solid State As Studied by Solid-State NMR Spectroscopy.

    PubMed

    Asakura, Tetsuo; Horiguchi, Kumiko; Aoki, Akihiro; Tasei, Yugo; Naito, Akira

    2016-09-01

    The structural analysis of alanine oligopeptides is important for understanding the crystalline region in silks from spiders and wild silkworms and also the mechanism of cellular toxicity of human diseases arising from expansion in polyalanine sequences. The atomic-level structures of alanine tripeptide and tetrapeptide with antiparallel β-sheet structures (AP-Ala3 and AP-Ala4, respectively) together with alanine tripeptide with parallel β-sheet structures (P-Ala3) have been determined, but alanine tetrapeptide with a parallel β-sheet structure (P-Ala4) has not been reported yet. In this article, first, we established the preparation protocol of P-Ala4 from more stable AP-Ala4. Second, complete assignments of the (13)C, (15)N, and (1)H solid-state NMR spectra were performed with (13)C- and (15)N-labeled Ala4 samples using several solid-state NMR techniques. Then, the structural constraints were obtained, for example, the amide proton peaks of P-Ala4 in the (1)H double-quantum magic-angle spinning NMR spectrum were heavily overlapped and observed at about 7.4 ppm, which was a much higher field than that of 8.7-9.1 ppm observed for AP-Ala4, indicating that the intermolecular hydrogen-bond lengths across strands (N-H···O═C) were considerably longer for P-Ala4, that is, 2.21-2.34 Å, than those reported for AP-Ala4, that is, 1.8-1.9 Å. The structural model was proposed for P-Ala4 by NMR results and MD calculations. PMID:27482868

  12. Multi-dimensional NMR without coherence transfer: Minimizing losses in large systems

    PubMed Central

    Liu, Yizhou; Prestegard, James H.

    2011-01-01

    Most multi-dimensional solution NMR experiments connect one dimension to another using coherence transfer steps that involve evolution under scalar couplings. While experiments of this type have been a boon to biomolecular NMR the need to work on ever larger systems pushes the limits of these procedures. Spin relaxation during transfer periods for even the most efficient 15N–1H HSQC experiments can result in more than an order of magnitude loss in sensitivity for molecules in the 100 kDa range. A relatively unexploited approach to preventing signal loss is to avoid coherence transfer steps entirely. Here we describe a scheme for multi-dimensional NMR spectroscopy that relies on direct frequency encoding of a second dimension by multi-frequency decoupling during acquisition, a technique that we call MD-DIRECT. A substantial improvement in sensitivity of 15N–1H correlation spectra is illustrated with application to the 21 kDa ADP ribosylation factor (ARF) labeled with 15N in all alanine residues. Operation at 4 °C mimics observation of a 50 kDa protein at 35 °C. PMID:21835658

  13. NMR studies of two spliced leader RNAs using isotope labeling

    SciTech Connect

    Lapham, J.; Crothers, D.M.

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  14. Dihydrofolate reductase: Sequential resonance assignments using 2D and 3D NMR and secondary structure determination in solution

    SciTech Connect

    Carr, M.D.; Birdsall, B.; Jimenez-Barbero, J.; Polshakov, V.I.; McCormick, J.E.; Feeney, J.; Frenkiel, T.A.; Bauer, C.J. ); Roberts, G.C.K. )

    1991-06-25

    Three-dimensional (3D) heteronuclear NMR techniques have been used to make sequential {sup 1}H and {sup 15}H resonance assignments for most of the residues of Lactobacillus casei dihydrofolate reductase (DHFR), a monomeric protein of molecular mass 18,300 Da. A uniformly {sup 15}N-labeled sample of the protein was prepared and its complex with methotrexate (MTX) studied by 3D {sup 15}N/{sup 1}H nuclear Overhauserheteronuclear multiple quantum coherence (NOESY-HMQC), Harmann-Hahn-heteronuclear multiple quantum coherence (HOHAHA-HMQC), and HMQC-NOESY-HMQC experiments. These experiments overcame most of the spectral overlap problems caused by chemical shift degeneracies in 2D spectra and allowed the {sup 1}H-{sup 1}H through-space and through-bond connectivities to be identified unambiguously, leading to the resonance assignments. The novel HMQC-NOESY-HMQC experiment allows NOE cross peaks to be detected between NH protons even when their {sup 1}H chemical shifts are degenerate as long as the amide {sup 15}N chemical shifts are nondegenerate. The 3D experiments, in combination with conventional 2D NOESY, COSY, and HOHAHA experiments on unlabelled and selectively deuterated DHFR, provide backbone assignments for 146 of the 162 residues and side-chain assignments for 104 residues of the protein. Data from the NOE-based experiments and identification of the slowly exchanging amide protons provide detailed information about the secondary structure of the binary complex of the protein with methotrexate.

  15. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca2+ concentration in HeLa cells.

    PubMed

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki; Mikawa, Tsutomu; Hayashi, Nobuhiro; Shirakawa, Masahiro; Ito, Yutaka

    2013-09-01

    Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca(2+)-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca(2+) concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca(2+) concentration during experiments, human calbindin D9k (P47M+C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D (1)H-(15)N SOFAST-HMQC experiments of calbindin D9k (P47M+C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D9k (P47M+C80) is initially in the Mg(2+)-bound state, and then gradually converted to the Ca(2+)-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca(2+) into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of proteins involved in the intracellular signalling systems. Our method provides a very useful tool for in situ monitoring of the "healthiness" of the cells in various in-cell NMR studies. PMID:23933251

  16. Isolation and measurement of /sup 15/N/sub 2/ from respiratory gases of animals administered /sup 15/N-labeled substances

    SciTech Connect

    Springer, D.L.; Reed, D.J.; Dost, F.N.

    1981-07-01

    A method is described for collection of metabolic /sup 15/N/sub 2/ from in vitro preparations or intact rats administered /sup 15/N-containing compounds. The method enables routine collection and mass spectrometric measurement of as little as 10 ..mu..mol /sup 15/N/sub 2/ respired by a rat over a 24-h period. A device is described that includes either an animal chamber or a tissue reaction vessel in a closed recycling atmosphere, with automatic O/sub 2/ replenishment and removal of CO/sub 2/ and water. It is capable of sustaining moderate vacuum and is coupled to a high-vacuum manifold designed to process the contained atmosphere and respiratory gases. The starting atmosphere is an 80:20 mix of sulfur hexafluoride and O/sub 2/. Recovery of /sup 15/N/sub 2/ gas from the system without an animal present was 101.3 +/- 5.75%. When /sup 15/N/sub 2/ gas was very slowly infused iv into an animal, recovery was 89.1 +/- 5.38%. Use of the method in studies of the fate of (/sup 15/N)hydrazine in rats indicated that about 15% of the administered hydrazine is rapidly converted to /sup 15/N/sub 2/, followed by slower conversion of an additional 7-10% over the next several hours.

  17. Numerical evaluation of subsoil diffusion of (15) N labelled denitrification products during employment of the (15) N gas flux method in the field

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Lewicka-Szczebak, Dominika; Ruoss, Nicolas

    2016-04-01

    Common methods for measuring soil denitrification in situ include monitoring the accumulation of 15N labelled N2 and N2O evolved from 15N labelled soil nitrate pool in soil surface chambers. Gas diffusion is considered to be the main accumulation process. Because accumulation of the gases decreases concentration gradients between soil and chamber over time, gas production rates are underestimated if calculated from chamber concentrations. Moreover, concentration gradients to the non-labelled subsoil exist, inevitably causing downward diffusion of 15N labelled denitrification products. A numerical model for simulating gas diffusion in soil was used in order to determine the significance of this source of error. Results show that subsoil diffusion of 15N labelled N2 and N2O - and thus potential underestimation of denitrification derived from chamber fluxes - increases with cover closure time as well as with increasing diffusivity. Simulations based on the range of typical gas diffusivities of unsaturated soils show that the fraction of subsoil diffusion after chamber closure for 1 hour is always significant with values up to >30 % of total production of 15N labelled N2 and N2O. Field experiments for measuring denitrification with the 15N gas flux method were conducted. The ability of the model to predict the time pattern of gas accumulation was evaluated by comparing measured 15N2 concentrations and simulated values.

  18. Rapid solid-state NMR of deuterated proteins by interleaved cross-polarization from 1H and 2H nuclei

    NASA Astrophysics Data System (ADS)

    Bjerring, Morten; Paaske, Berit; Oschkinat, Hartmut; Akbey, Ümit; Nielsen, Niels Chr.

    2012-01-01

    We present a novel sampling strategy, interleaving acquisition of multiple NMR spectra by exploiting initial polarization subsequently from 1H and 2H spins, taking advantage of their different T1 relaxation times. Different 1H- and 2H-polarization based spectra are in this way simultaneously recorded improving either information content or sensitivity by adding spectra. The so-called Relaxation-optimized Acquisition of Proton Interleaved with Deuterium (RAPID) 1H → 13C/ 2H → 13C CP/MAS multiple-acquisition method is demonstrated by 1D and 2D experiments using a uniformly 2H, 15N, 13C-labeled α-spectrin SH3 domain sample with all or 30% back-exchanged labile 2H to 1H. It is demonstrated how 1D 13C CP/MAS or 2D 13C- 13C correlation spectra initialized with polarization from either 1H or 2H may be recorded simultaneously with flexibility to be added or used individually for spectral editing. It is also shown how 2D 13C- 13C correlation spectra may be recorded interleaved with 2H- 13C correlation spectra to obtain 13C- 13C correlations along with information about dynamics from 2H sideband patterns.

  19. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  20. (1)H, (13)C and (15)N backbone assignment of the EC-1 domain of human E-cadherin.

    PubMed

    Prasasty, Vivitri D; Krause, Mary E; Tambunan, Usman S F; Anbanandam, Asokan; Laurence, Jennifer S; Siahaan, Teruna J

    2015-04-01

    The Extracellular 1 (EC1) domain of E-cadherin has been shown to be important for cadherin-cadherin homophilic interactions. Cadherins are responsible for calcium-mediated cell-cell adhesion located at the adherens junction of the biological barriers (i.e., intestinal mucosa and the blood-brain barrier (BBB)). Cadherin peptides can modulate cadherin interactions to improve drug delivery through the BBB. However, the mechanism of modulating the E-cadherin interactions by cadherin peptides has not been fully elucidated. To provide a basis for subsequent examination of the structure and peptide-binding properties of the EC1 domain of human E-cadherin using solution NMR spectroscopy, the (1)H, (13)C and (15)N backbone resonance of the uniformly labeled-EC1 were assigned and the secondary structure was determined based on the chemical shift values. These resonance assignments are essential for assessing protein-ligand interactions and are reported here. PMID:24510398

  1. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    PubMed

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  2. Lactoperoxidase-catalyzed oxidation of thiocyanate by hydrogen peroxide: sup 15 N nuclear magnetic resonance and optical spectral studies

    SciTech Connect

    Modi, S.; Deodhar, S.S.; Behere, D.V.; Mitra, S. )

    1991-01-01

    To establish the agent(s) responsible for the activity of the lactoperoxidase (LPO)/SCN{sup {minus}}/H{sub 2}O{sub 2} system, the oxidation of thiocyanate with hydrogen peroxide, catalyzed by lactoperoxidase, has been studied by {sup 15}N NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pHs. The formation of hypothiocyanite ion (OSCN{sup {minus}}) as one of the oxidation products correlated well with activity of the LPO/SCN{sup {minus}}/H{sub 2}O{sub 2} system and was maximum when the concentrations of the H{sub 2}O{sub 2} and SCN{sup {minus}} were nearly the same and the pH was <6.0. At (H{sub 2}O{sub 2})/(SCN{sup {minus}}) = 1, OSCN{sup {minus}} decomposed very slowly back to thiocyanate. When the ratio (H{sub 2}O{sub 2})/(SCN{sup {minus}}) was above 2, formation of CN{sup {minus}} was observed, which was confirmed by {sup 15}N NMR and also by changes in the optical spectrum of LPO. The oxidation of thiocyanate by H{sub 2}O{sub 2} in the presence of LPO does not take place at pH >8.0. Since thiocyanate does not bind to LPO above this pH, the binding of thiocyanate to LPO is considered to be prerequisite for the oxidation of thiocyanate. Maximum inhibition of oxygen uptake by Streptococcus cremoris 972 bacteria was observed when hydrogen peroxide and thiocyanate were present in equimolar amounts and the pH was below 6.0.

  3. Ner protein of phage Mu: Assignments using {sup 13}C/{sup 15}N-labeled protein

    SciTech Connect

    Strzelecka, T.; Gronenborn, A.M.; Clore, G.M.

    1994-12-01

    The Ner protein is a small (74-amino acid) DNA-binding protein that regulates a switch between the lysogenic and lytic stages of phage Mu. It inhibits expression of the C repressor gene and down-regulates its own expression. Two-dimensional NMR experiments on uniformly {sup 15}N-labeled protein provided most of the backbone and some of the sidechain proton assignments. The secondary structure determination using two-dimensional NOESY experiments showed that Ner consists of five {alpha}-helices. However, because most of the sidechain protons could not be assigned, the full structure was not determined. Using uniformly {sup 13}C/{sup 15}N-labeled Ner and a set of three-dimensional experiments, we were able to assign all of the backbone and 98% of the sidechain protons. In particular, the CBCANH and CBCA(CO)NH experiments were used to sequentially assign the C{alpha} and C{beta} resonances; the HCCH-CTOCSY and HCCH-COSY were used to assign sidechain carbon and proton resonances.

  4. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR