Science.gov

Sample records for 15n resonance assignments

  1. 1H, 13C and 15N resonance assignments of URNdesign, a computationally redesigned RRM protein

    SciTech Connect

    Dobson, Neil; Dantas, Gautam; Varani, Gabriele

    2005-10-01

    Protein design represents one of the great challenges of computational structural biology. The ability to successfully design new proteins would allow us to generate new reagents and enzymes, while at the same time providing us with an understanding of the principles of protein stability. Here we report 1H, 15N and 13C resonance assignments of a redesigned U1A protein, URNdesign. U1A has been studied extensively by our group and hence was chosen as a design target. For the assignments we sued 2D and 3D heteronuclearNMR experiments with uniformly 13C, 15N-labeled URNdesign. The assignments for the backbone NH, CO,Ca and Cb nuclei are 94%complete. Sidechain 1Hand13C, aromatic andQ/NNH2 resonances are essentially complete with guanidinium and K NH3 residues unassigned. BMRB deposit with accession number 6493

  2. Secondary structure and (1)H, (13)C, (15)N resonance assignments of the endosomal sorting protein sorting nexin 3.

    PubMed

    Overduin, Michael; Rajesh, Sandya; Gruenberg, Jean; Lenoir, Marc

    2015-10-01

    Sorting nexin 3 (SNX3) belongs to a sub-family of sorting nexins that primarily contain a single Phox homology domain capable of binding phosphoinositides and membranes. We report the complete (1)H, (13)C and (15)N resonance assignments of the full-length human SNX3 protein and identification of its secondary structure elements, revealing a canonical fold and unstructured termini. PMID:25893673

  3. Sequence-specific sup 1 H and sup 15 N resonance assignments for human dihydrofolate reductase in solution

    SciTech Connect

    Stockman, B.J.; Nirmala, N.R.; Wagner, G. ); Delcamp, T.J.; DeYarman, M.T.; Freisheim, J.H. )

    1992-01-14

    Dihydrofolate reductase is an intracellular target enzyme for folate antagonists, including the anticancer drug methotrexate. In order to design novel drugs with altered binding properties, a detailed description of protein-drug interactions in solution is desirable to understand the specificity of drug binding. As a first step in this process, heteronuclear three-dimensional NMR spectroscopy has been used to make sequential resonance assignments for more than 90% of the residues in human dihydrofolate reductase complexed with methotrexate. Uniform enrichment of the 21.5-kDa protein with {sup 15}N was required to obtain the resonance assignments via heteronuclear 3D NMR spectroscopy since homonuclear 2D spectra did not provide sufficient {sup 1}H resonance dispersion. Medium- and long-range NOE's have been used to characterize the secondary structure of the binary ligand-enzyme complex in solution.

  4. Sequence-specific 1H, 15N and 13C resonance assignments of the 23.7-kDa homodimeric toxin CcdB from Vibrio fischeri.

    PubMed

    Respondek, Michal; Buts, Lieven; De Jonge, Natalie; Haesaerts, Sarah; Loris, Remy; Van Melderen, Laurence; Wyns, Lode; Zangger, Klaus

    2009-06-01

    CcdB is the toxic component of a bacterial toxin-antitoxin system. It inhibits DNA gyrase (a type II topoisomerase), and its toxicity can be neutralized by binding of its antitoxin CcdA. Here we report the sequential backbone and sidechain (1)H, (15)N and (13)C resonance assignments of CcdB(Vfi) from the marine bacterium Vibrio fischeri. The BMRB accession number is 16135. PMID:19636967

  5. Sequence-specific (1)H, (13)C and (15)N backbone resonance assignments of the plakin repeat domain of human envoplakin.

    PubMed

    Jeeves, Mark; Fogl, Claudia; Al-Jassar, Caezar; Chidgey, Martyn; Overduin, Michael

    2016-04-01

    The plakin repeat domain is a distinctive hallmark of the plakin superfamily of proteins, which are found within all epithelial tissues. Plakin repeat domains mediate the interactions of these proteins with the cell cytoskeleton and are critical for the maintenance of tissue integrity. Despite their biological importance, no solution state resonance assignments are available for any homologue. Here we report the essentially complete (1)H, (13)C and (15)N backbone chemical shift assignments of the singular 22 kDa plakin repeat domain of human envoplakin, providing the means to investigate its interactions with ligands including intermediate filaments. PMID:26590577

  6. (1)H, (15)N and (13)C resonance assignments of translationally-controlled tumor protein from photosynthetic microalga Nannochloropsis oceanica.

    PubMed

    Yao, Xingzhe; Xiao, Yan; Cui, Qiu; Feng, Yingang

    2015-10-01

    Translationally-controlled tumor protein (TCTP) is a eukaryote-conserved protein with crucial roles in cellular growth. It has also been proposed that plant TCTP has functions specific to plant, while no structure of TCTP from photosynthetic organism has been reported. Nannochloropsis is a photosynthetic microalga with high yield of lipid and high-value polyunsaturated fatty acid, which is promising for biodiesel production. Study of growth-related proteins may provide new clue for improving the yield of lipid. TCTP from Nannochloropsis oceanica shares low sequence identity with structure-known TCTPs. Here we reported the NMR resonance assignments of TCTP from N. oceanica for further structural and functional studies. PMID:25680850

  7. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A

    SciTech Connect

    Holliday, Michael; Zhang, Fengli; Isern, Nancy G.; Armstrong, Geoffrey S.; Eisenmesser, Elan Z.

    2014-04-01

    Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins {Lee, 2010 #1167}, but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover {Eisenmesser, 2002 #20;Eisenmesser, 2005 #203}. Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment {Takami, 2004 #1384}. This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.

  8. (1)H, (13)C and (15)N resonance assignment of the cytosolic dithiol glutaredoxin 1 from the pathogen Trypanosoma brucei.

    PubMed

    Stefani, Monica; Sturlese, Mattia; Manta, Bruno; Löhr, Frank; Mammi, Stefano; Comini, Marcelo; Bellanda, Massimo

    2016-04-01

    Trypanosomatids are parasites responsible for several tropical and subtropical diseases, such as Chaga's disease, sleeping sickness and Leishmaniasis. In contrast to the mammalian host, the thiol-redox metabolism of these pathogens depends on trypanothione [bis-glutathionylspermidine, T(SH)2] instead of glutathione (GSH) providing a set of lineage-specific proteins as drug target candidates. Glutaredoxins (Grx) are ubiquitous small thiol-disulfide oxidoreductases that belong to the thioredoxin-fold family. They play a central role in redox homeostasis and iron sulfur-cluster biogenesis. Each species, including trypanosomes, possesses its own set of isoforms distributed in different subcellular compartments. The genome of trypanosomatids encodes for two class I (dithiolic) Grxs named 2-C-Grx1 and 2-C-Grx2. Both proteins were shown to efficiently reduce different disulfides at the expenses of T(SH)2 using a mechanism that involves the two cysteines in the active site. Moreover, the cytosolic Trypanosoma brucei 2-C-Grx1 but not the mitochondrial 2-C-Grx2 was able to coordinate an iron-sulfur cluster with T(SH)2 or GSH as ligand. As a first step to unravel the structural basis for the specificity observed in the trypanosomal glutaredoxins, we present here the NMR resonance assignment of 2-C-Grx1 from the parasite T. brucei brucei. PMID:26386962

  9. 1H, 13C, and 15N resonance assignments for the protein coded by gene locus BB0938 of Bordetella bronchiseptica

    SciTech Connect

    Rossi, Paolo; Ramelot, Theresa A.; Xiao, Rong; Ho, Chi K.; Ma, LiChung; Acton, Thomas; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    The product of gene locus BB0938 from Bordetella bronchiseptica (Swiss-Prot ID: Q7WNU7-BORBR; NESG target ID: BoR11; Wunderlich et al., 2004; Pfam ID: PF03476) is a 128-residue protein of unknown function. This broadly conserved protein family is found in eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 98% of backbone and 94% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a b topology with a seven-residue helical insert, ??????????. BMRB deposit with accession number 6693. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  10. 1H, 13C, and 15N resonance assignments for Escherichia coli ytfP, a member of the broadly conserved UPF0131 protein domain family

    SciTech Connect

    Aramini, James M.; Swapna, G.V.T.; Huang, Yuanpeng; Rajan, Paranji K.; Xiao, Rong; Shastry, Ritu; Acton, Thomas; Cort, John R.; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    Protein ytfP from Escherichia coli (Swiss-Prot ID: YTFP-ECOLI; NESG target ID: ER111; Wunderlich et al., 2004) is a 113-residue member of the UPF0131 protein family (Pfam ID: PF03674) of unknown function. This domain family is found in organisms from all three kingdoms, archaea, eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 97% of backbone and 91% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a mixed a/b topology,????????. BMRB deposit with Accession No. 6448. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  11. Near-complete 1H, 13C, 15N resonance assignments of dimethylsulfoxide-denatured TGFBIp FAS1-4 A546T.

    PubMed

    Kulminskaya, Natalia V; Yoshimura, Yuichi; Runager, Kasper; Sørensen, Charlotte S; Bjerring, Morten; Andreasen, Maria; Otzen, Daniel E; Enghild, Jan J; Nielsen, Niels Chr; Mulder, Frans A A

    2016-04-01

    The transforming growth factor beta induced protein (TGFBIp) is a major protein component of the human cornea. Mutations occurring in TGFBIp may cause corneal dystrophies, which ultimately lead to loss of vision. The majority of the disease-causing mutations are located in the C-terminal domain of TGFBIp, referred as the fourth fascilin-1 (FAS1-4) domain. In the present study the FAS1-4 Ala546Thr, a mutation that causes lattice corneal dystrophy, was investigated in dimethylsulfoxide using liquid-state NMR spectroscopy, to enable H/D exchange strategies for identification of the core formed in mature fibrils. Isotope-labeled fibrillated FAS1-4 A546T was dissolved in a ternary mixture 95/4/1 v/v/v% dimethylsulfoxide/water/trifluoroacetic acid, to obtain and assign a reference 2D (1)H-(15)N HSQC spectrum for the H/D exchange analysis. Here, we report the near-complete assignments of backbone and aliphatic side chain (1)H, (13)C and (15)N resonances for unfolded FAS1-4 A546T at 25 °C. PMID:26275916

  12. Backbone 1H, 13C and 15N resonance assignments of the 39 kDa staphylococcal hemoglobin receptor IsdH.

    PubMed

    Spirig, Thomas; Clubb, Robert T

    2012-10-01

    During infections Stahpylococcus aureus preferentially uses heme as an iron source, which it captures from human hemoglobin using the Iron regulated surface determinant (Isd) system. On the cell surface two related staphylococcal surface receptors called IsdH and IsdB bind to hemoglobin and extract its heme. Both receptors contain multiple NEAr iron Transporter (NEAT) domains that either bind to hemoglobin, or to heme. All previous structural studies have investigated individual NEAT domains and have not explored how the domains might interact with one another to synergistically extract heme from hemoglobin. Here, we report the near complete (1)H, (13)C and (15)N backbone resonance assignments of a bi-domain unit from IsdH that contains the N2 and N3 NEAT domains, which bind to hemoglobin and heme, respectively (IsdH(N2N3), residues 326-660, 39 kDa). The assigned backbone resonances lay the foundation for future NMR studies that will explore the molecular basis of IsdH function. PMID:22101872

  13. Sequence-specific (1)H, (15)N, and (13)C resonance assignments of the autophagy-related protein LC3C.

    PubMed

    Krichel, Carsten; Weiergräber, Oliver H; Pavlidou, Marina; Mohrlüder, Jeannine; Schwarten, Melanie; Willbold, Dieter; Neudecker, Philipp

    2016-04-01

    Autophagy is a versatile catabolic pathway for lysosomal degradation of cytoplasmic material. While the phenomenological and molecular characteristics of autophagic non-selective (bulk) decomposition have been investigated for decades, the focus of interest is increasingly shifting towards the selective mechanisms of autophagy. Both, selective as well as bulk autophagy critically depend on ubiquitin-like modifiers belonging to the Atg8 (autophagy-related 8) protein family. During evolution, Atg8 has diversified into eight different human genes. While all human homologues participate in the formation of autophagosomal membrane compartments, microtubule-associated protein light chain 3C (LC3C) additionally plays a unique role in selective autophagic clearance of intracellular pathogens (xenophagy), which relies on specific protein-protein recognition events mediated by conserved motifs. The sequence-specific (1)H, (15)N, and (13)C resonance assignments presented here form the stepping stone to investigate the high-resolution structure and dynamics of LC3C and to delineate LC3C's complex network of molecular interactions with the autophagic machinery by NMR spectroscopy. PMID:26280529

  14. 1H, 15N and 13C resonance assignments of light organ-associated fatty acid-binding protein of Taiwanese fireflies.

    PubMed

    Tseng, Kai-Li; Lee, Yi-Zong; Chen, Yun-Ru; Lyu, Ping-Chiang

    2016-04-01

    Fatty acid-binding proteins (FABPs) are a family of proteins that modulate the transfer of various fatty acids in the cytosol and constitute a significant portion in many energy-consuming cells. The ligand binding properties and specific functions of a particular type of FABP seem to be diverse and depend on the respective binding cavity as well as the cell type from which this protein is derived. Previously, a novel FABP (lcFABP; lc: Luciola cerata) was identified in the light organ of Taiwanese fireflies. The lcFABP was proved to possess fatty acids binding capabilities, especially for fatty acids of length C14-C18. However, the structural details are unknown, and the structure-function relationship has remained to be further investigated. In this study, we finished the (1)H, (15)N and (13)C chemical shift assignments of (15)N/(13)C-enriched lcFABP by solution NMR spectroscopy. In addition, the secondary structure distribution was revealed based on the backbone N, H, Cα, Hα, C and side chain Cβ assignments. These results can provide the basis for further structural exploration of lcFABP. PMID:26373428

  15. (1)H, (13)C and (15)N backbone and side-chain resonance assignment of the LAM-RRM1 N-terminal module of La protein from Dictyostelium discoideum.

    PubMed

    Chasapis, Christos T; Argyriou, Aikaterini I; Apostolidi, Maria; Konstantinidou, Parthena; Bentrop, Detlef; Stathopoulos, Constantinos; Spyroulias, Georgios A

    2015-10-01

    The N-terminal half of La protein consists of two concatenated motifs: La motif (LAM) and the N-terminal RNA recognition motif (RRM1) both of which are responsible for poly(U) RNA binding. Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 191-residue LAM-RRM1 region of the La protein from the lower eukaryote Dictyostelium discoideum and its secondary structure prediction. PMID:25687647

  16. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    SciTech Connect

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P.

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  17. Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins.

    PubMed

    Pintacuda, Guido; Keniry, Max A; Huber, Thomas; Park, Ah Young; Dixon, Nicholas E; Otting, Gottfried

    2004-03-10

    A novel strategy for fast NMR resonance assignment of (15)N HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively (15)N-labeled samples. Comparison of sensitive undecoupled (15)N HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia coli DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy. PMID:14995214

  18. 1H, 13C and 15N resonance assignments and secondary structure analysis of CmPI-II, a serine protease inhibitor isolated from marine snail Cenchritis muricatus.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Alonso-del-Rivero Antigua, Maday; Pires, José Ricardo

    2016-04-01

    A protease inhibitor (CmPI-II) (UNIPROT: IPK2_CENMR) from the marine mollusc Cenchritis muricatus, has been isolated and characterized. It is the first member of a new group (group 3) of non-classical Kazal-type inhibitors. CmPI-II is a tight-binding inhibitor of serine proteases: trypsin, human neutrophil elastase (HNE), subtilisin A and pancreatic elastase. This specificity is exceptional in the members of Kazal-type inhibitor family. Several models of three-dimensional structure of CmPI-II have been constructed by homology with other inhibitors of the family but its structure has not yet been solved experimentally. Here we report the (1)H, (15)N and (13)C chemical shift assignments of CmPI-II as basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified three β-strands β1: residues 14-19, β2: 23-35 and β3: 43-45 and one helix α1: 28-37 arranged in the sequential order β1-β2-α1-β3. These secondary structure elements suggest that CmPI-II adopts the typical scaffold of a Kazal-type inhibitor. PMID:26547437

  19. 1H, 13C and 15N resonance assignments of a highly-soluble murine interleukin-3 analogue with wild-type bioactivity.

    PubMed

    Yao, Shenggen; Murphy, James M; Low, Andrew; Norton, Raymond S

    2010-04-01

    Interleukin-3 (IL-3) is a cytokine that acts as a critical mediator of inflammation and immune responses to infections. IL-3, like interleukin-5 (IL-5) and granulocyte-macrophage colony stimulating factor (GM-CSF), exerts its effects on target cells via receptors composed of cytokine-specific alpha-subunits and a common beta-subunit (betac-subunit, shared with IL-5 and GM-CSF). In contrast to humans, mice also possess an additional beta-receptor, beta(IL-3), that can specifically bind IL-3. Except for a study carried out on an analogue of human IL-3 that contains 14 mutations, structure-related studies of IL-3 have been very limited, largely because of its poor solution behaviour. Here we report (1)H, (13)C, and (15)N chemical shift assignments of murine IL-3 comprising residues 33-156 (SWISS-PROT accession number: P01586), in which the only mutation is an alanine substitution of Cys105. The mIL-3 construct used in the present study was engineered by eliminating residues 27-32 of the N-terminus (the first 26 residues of the primary sequence of mIL-3 are cleaved in vivo during secretion), the C-terminal 10 residues (157-166), and a disulfide bond between Cys105 and Cys166 that is poorly conserved in orthologue sequences. The new construct vastly improves the solubility of murine IL-3 while maintaining its wild-type biological activity. PMID:20174897

  20. Backbone 1H, 15N, and 13C resonance assignments and secondary structure of a novel protein OGL-20P(T)-358 from hyperthermophile Thermococcus thioreducens sp. nov.

    PubMed

    Wilson, Randall; Hughes, Ronny; Curto, Ernest; Ng, Joseph; Twigg, Pamela

    2007-12-31

    OGL-20P(T)-358 is a novel 66 amino acid residue protein from the hyperthermophile Thermococcus thioreducens sp. nov., strain OGL-20PT, which was collected from the wall of the hydrothermal black smoker in the Rainbow Vent along the mid-Atlantic ridge. This protein, which has no detectable sequence homology with proteins or domains of known function, has a calculated pI of 4.76 and a molecular mass of 8.2 kDa. We report here the backbone 1H, 15N, and 13C resonance assignments of OGL-20PT-358. Assignments are 97.5% (316/324) complete. Chemical shift index was used to determine the secondary structure of the protein, which appears to consist of primarily alpha-helical regions. This work is the foundation for future studies to determine the three-dimensional solution structure of the protein. PMID:18182861

  1. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    PubMed

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains. PMID:26154586

  2. Backbone and sidechain 1H, 15N and 13C assignments of the KSR1 CA1 domain

    PubMed Central

    Koveal, Dorothy; Pinheiro, Anderson S.; Peti, Wolfgang; Page, Rebecca

    2014-01-01

    The backbone and side chain resonance assignments of the murine KSR1 CA1 domain have been determined based on triple-resonance experiments using uniformly [13C, 15N]-labeled protein. This assignment is the first step towards the determination of the three-dimensional structure of the unique KSR1 CA1 domain. PMID:20737253

  3. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    PubMed

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  4. 1H, 13C, 15N backbone and side chain NMR resonance assignments for the N-terminal RNA recognition motif of the HvGR-RBP1 protein involved in the regulation of barley (Hordeum vulgare L.) senescence

    PubMed Central

    Mason, Katelyn E.; Tripet, Brian P.; Parrott, David; Fischer, Andreas M.; Copié, Valérie

    2013-01-01

    Leaf senescence is an important process in the developmental life of all plant species. Senescence efficiency influences important agricultural traits such as grain protein content and plant growth, which are often limited by nitrogen use. Little is known about the molecular mechanisms regulating this highly orchestrated process. To enhance our understanding of leaf senescence and its regulation, we have undertaken the structural and functional characterization of previously unknown proteins that are involved in the control of senescence in barley (Hordeum vulgare L.). Previous microarray analysis highlighted several barley genes whose transcripts are differentially expressed during senescence, including a specific gene which is greater than 40 fold up-regulated in the flag leaves of early- as compared to late-senescing near-isogenic barley lines at 14 and 21 days past flowering (anthesis). From inspection of its amino acid sequence, this gene is predicted to encode a glycine-rich RNA-binding protein herein referred to as HvGR-RBP1. HvGR-RBP1 has been expressed as a recombinant protein in E. coli, and preliminary NMR data analysis has revealed that its glycine-rich C-terminal region [residues: 93–162] is structurally disordered whereas its N-terminal region [residues: 1–92] forms a well-folded domain. Herein, we report the complete 1H, 13C, and 15N resonance assignments of backbone and sidechain atoms, and the secondary structural topology of the N-terminal RNA Recognition Motif (RRM) domain of HvGR-RBP1, as a first step to unraveling its structural and functional role in the regulation of barley leaf senescence. PMID:23417794

  5. A new strategy for sequential assignment of intrinsically unstructured proteins based on 15N single isotope labelling

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Ahuja, Puneet; Gerard, Melanie; Wieruszeski, Jean-Michel; Lippens, Guy

    2013-11-01

    We describe a new efficient strategy for the sequential assignment of amide resonances of a conventional 15N-1H HSQC spectrum of intrinsically unfolded proteins, based on composite NOESY-TOCSY and TOCSY-NOESY mixing times. These composite mixing times lead to a Hα-proton mediated unidirectional transfer of amide to amide proton. We have implemented the composite mixing times in an HSQC-NOESY-HSQC manner to obtain directional connectivity between amides of neighbouring residues. We experimentally determine the optimal mixing times for both transfer schemes, and demonstrate its use in the assignment for both a fragment of the neuronal tau protein and for α-synuclein.

  6. Ner protein of phage Mu: Assignments using {sup 13}C/{sup 15}N-labeled protein

    SciTech Connect

    Strzelecka, T.; Gronenborn, A.M.; Clore, G.M.

    1994-12-01

    The Ner protein is a small (74-amino acid) DNA-binding protein that regulates a switch between the lysogenic and lytic stages of phage Mu. It inhibits expression of the C repressor gene and down-regulates its own expression. Two-dimensional NMR experiments on uniformly {sup 15}N-labeled protein provided most of the backbone and some of the sidechain proton assignments. The secondary structure determination using two-dimensional NOESY experiments showed that Ner consists of five {alpha}-helices. However, because most of the sidechain protons could not be assigned, the full structure was not determined. Using uniformly {sup 13}C/{sup 15}N-labeled Ner and a set of three-dimensional experiments, we were able to assign all of the backbone and 98% of the sidechain protons. In particular, the CBCANH and CBCA(CO)NH experiments were used to sequentially assign the C{alpha} and C{beta} resonances; the HCCH-CTOCSY and HCCH-COSY were used to assign sidechain carbon and proton resonances.

  7. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    SciTech Connect

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W.

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  8. (1)H, (13)C and (15)N backbone assignment of the EC-1 domain of human E-cadherin.

    PubMed

    Prasasty, Vivitri D; Krause, Mary E; Tambunan, Usman S F; Anbanandam, Asokan; Laurence, Jennifer S; Siahaan, Teruna J

    2015-04-01

    The Extracellular 1 (EC1) domain of E-cadherin has been shown to be important for cadherin-cadherin homophilic interactions. Cadherins are responsible for calcium-mediated cell-cell adhesion located at the adherens junction of the biological barriers (i.e., intestinal mucosa and the blood-brain barrier (BBB)). Cadherin peptides can modulate cadherin interactions to improve drug delivery through the BBB. However, the mechanism of modulating the E-cadherin interactions by cadherin peptides has not been fully elucidated. To provide a basis for subsequent examination of the structure and peptide-binding properties of the EC1 domain of human E-cadherin using solution NMR spectroscopy, the (1)H, (13)C and (15)N backbone resonance of the uniformly labeled-EC1 were assigned and the secondary structure was determined based on the chemical shift values. These resonance assignments are essential for assessing protein-ligand interactions and are reported here. PMID:24510398

  9. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry. PMID:15625718

  10. Assignment of the sup 1 H and sup 15 N NMR spectra of Rhodobacter capsulatus ferrocytochrome c sub 2

    SciTech Connect

    Gooley, P.R.; Caffrey, M.S.; Cusanovich, M.A.; MacKenzie, N.E. )

    1990-03-06

    The peptide resonances of the {sup 1}H and {sup 15}N nuclear magnetic resonance spectra of ferrocytochrome c{sub 2} from Rhodobacter capsulatus are sequentially assigned by a combination of 2D {sup 1}H-{sup 1}H and {sup 1}H-{sup 15}N spectroscopy, the latter performed on {sup 15}N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show {alpha}-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two {alpha}-helices, there are three single 3{sub 10} turns, 70-72, 76-78, and 107-109. In addition {alpha}H-NH{sub i+1} and {alpha}H-NH{sub i+2} NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c{sub 2} of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c{sub 2}. The NOE data show that this insertion forms a loop, probably an {Omega} loop. {sup 1}H-{sup 15}N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c{sub 2} of R. capsulatus with the highly homologous horse heart cytochrome c shows that this helix is less stable in cytochrome c{sub 2}.

  11. Automated protein NMR resonance assignments.

    PubMed

    Wan, Xiang; Xu, Dong; Slupsky, Carolyn M; Lin, Guohui

    2003-01-01

    NMR resonance peak assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents (1) a new scoring system for mapping spin systems to residues, (2) an automated adjacency information extraction procedure from NMR spectra, and (3) a very fast assignment algorithm based on our previous proposed greedy filtering method and a maximum matching algorithm to automate the assignment process. The computational tests on 70 instances of (pseudo) experimental NMR data of 14 proteins demonstrate that the new score scheme has much better discerning power with the aid of adjacency information between spin systems simulated across various NMR spectra. Typically, with automated extraction of adjacency information, our method achieves nearly complete assignments for most of the proteins. The experiment shows very promising perspective that the fast automated assignment algorithm together with the new score scheme and automated adjacency extraction may be ready for practical use. PMID:16452794

  12. Complete 1H, 15N and 13C assignment of trappin-2 and 1H assignment of its two domains, elafin and cementoin.

    PubMed

    Loth, Karine; Alami, Soha Abou Ibrahim; Habès, Chahrazed; Garrido, Solène; Aucagne, Vincent; Delmas, Agnès F; Moreau, Thierry; Zani, Marie-Louise; Landon, Céline

    2016-04-01

    Trappin-2 is a serine protease inhibitor with a very narrow inhibitory spectrum and has significant anti-microbial activities. It is a 10 kDa cationic protein composed of two distinct domains. The N-terminal domain (38 residues) named cementoin is known to be intrinsically disordered when it is not linked to the elafin. The C-terminal domain (57 residues), corresponding to elafin, is a cysteine-rich domain stabilized by four disulfide bridges and is characterized by a flat core and a flexible N-terminal part. To our knowledge, there is no structural data available on trappin-2. We report here the complete (1)H, (15)N and (13)C resonance assignment of the recombinant trappin-2 and the (1)H assignments of cementoin and elafin, under the same experimental conditions. This is the first step towards the 3D structure determination of the trappin-2. PMID:26878852

  13. MUSIC in Triple-Resonance Experiments: Amino Acid Type-Selective 1H- 15N Correlations

    NASA Astrophysics Data System (ADS)

    Schubert, Mario; Smalla, Maika; Schmieder, Peter; Oschkinat, Hartmut

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective 1H-15N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH2 or XH3 (X can be 15N or 13C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains.

  14. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    PubMed

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press. PMID:10527741

  15. 1H, 13C and 15N Backbone Assignment of the EC-1 Domain of Human E-Cadherin

    PubMed Central

    Prasasty, Vivitri D.; Krause, Mary E.; Tambunan, Usman S. F.; Anbanandam, Asokan; Laurence, Jennifer S.; Siahaan, Teruna J.

    2014-01-01

    The EC1 domain of E-cadherin has been shown to be important for cadherin-cadherin homophilic interactions. Cadherins are responsible for calcium-mediated cell-cell adhesion located at the adherens junction of the biological barriers (i.e., intestinal mucosa and the blood-brain barrier (BBB). Cadherin peptides can modulate cadherin interactions to improve drug delivery through the blood-brain barriers (BBB). However, the mechanism of modulating the E-cadherin interactions by cadherin peptides has not been fully elucidated. To provide a basis for subsequent examination of the structure and peptide-binding properties of the EC1 domain of human E-cadherin using solution NMR spectroscopy, the 1H, 13C and 15N backbone resonance of the uniformly labeled-EC1 were assigned and the secondary structure was determined based on the chemical shift values. These resonance assignments are essential for assessing protein-ligand interactions and are reported here. PMID:24510398

  16. A New Tool for NMR Crystallography: Complete (13)C/(15)N Assignment of Organic Molecules at Natural Isotopic Abundance Using DNP-Enhanced Solid-State NMR.

    PubMed

    Märker, Katharina; Pingret, Morgane; Mouesca, Jean-Marie; Gasparutto, Didier; Hediger, Sabine; De Paëpe, Gaël

    2015-11-01

    NMR crystallography of organic molecules at natural isotopic abundance (NA) strongly relies on the comparison of assigned experimental and computed NMR chemical shifts. However, a broad applicability of this approach is often hampered by the still limited (1)H resolution and/or difficulties in assigning (13)C and (15)N resonances without the use of structure-based chemical shift calculations. As shown here, such difficulties can be overcome by (13)C-(13)C and for the first time (15)N-(13)C correlation experiments, recorded with the help of dynamic nuclear polarization. We present the complete de novo (13)C and (15)N resonance assignment at NA of a self-assembled 2'-deoxyguanosine derivative presenting two different molecules in the asymmetric crystallographic unit cell. This de novo assignment method is exclusively based on aforementioned correlation spectra and is an important addition to the NMR crystallography approach, rendering firstly (1)H assignment straightforward, and being secondly a prerequisite for distance measurements with solid-state NMR. PMID:26485326

  17. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    PubMed

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27059012

  18. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies

    SciTech Connect

    Modi, S.; Behere, D.V.; Mitra, S. )

    1989-05-30

    The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.

  19. (1)H, (13)C and (15)N NMR assignments of a calcium-binding protein from Entamoeba histolytica.

    PubMed

    Verma, Deepshikha; Bhattacharya, Alok; Chary, Kandala V R

    2016-04-01

    We report almost complete sequence specific (1)H, (13)C and (15)N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization. PMID:26377206

  20. (1)H, (15)N and (13)C chemical shift assignment of the Gram-positive conjugative transfer protein TraHpIP501.

    PubMed

    Fercher, Christian; Keller, Walter; Zangger, Klaus; Helge Meyer, N

    2016-04-01

    Conjugative transfer of DNA represents the most important transmission pathway in terms of antibiotic resistance and virulence gene dissemination among bacteria. TraH is a putative transfer protein of the type IV secretion system (T4SS) encoded by the Gram-positive (G+) conjugative plasmid pIP501. This molecular machine involves a multi-protein core complex spanning the bacterial envelope thereby serving as a macromolecular secretion channel. Here, we report the near complete (1)H, (13)C and (15)N resonance assignment of a soluble TraH variant comprising the C-terminal domain. PMID:26559076

  1. Contribution of 19F resonances on 18O( p, α)15N reaction rate

    NASA Astrophysics Data System (ADS)

    Benmeslem, Meriem; Chafa, Azzedine; Barhoumi, Slimane; Tribeche, Mouloud

    2014-08-01

    The 18O( p, α)15N reaction influences the isotopes production such as 19F, 18O, and 15N which can be used to test the models of stellar evolution. 19F is synthesized in both asymptotic giant branch (AGB) and metal-rich Wolf-Rayet (WR) stars. Using R-matrix theory we allow new values of resonances parameters in 19F. We show that the most important contribution to the differential and total cross section at low energies, comes from the levels in 19F situated at resonances energies E R =151, 680 and 840 keV with spin and parity 1/2+. The total width of the 680 keV resonance is badly known. So, we have focused on this broad resonance corresponding to the 8.65 MeV level in 19F. We delimit the temperature range in which each resonance contribution to the total reaction rate occurs by analyzing the ratio ( N A < σν> i / N A < σν>). This allowed us to show that the 680 and 840 keV broad resonances strongly dominate the reaction rate over the stellar temperature range T 9=0.02-0.06 and T 9=0.5-5. Finally, these results were compared to NACRE and Iliadis astrophysical compilations.

  2. Interaction of thiocyanate with horseradish peroxidase. 1H and 15N nuclear magnetic resonance studies.

    PubMed

    Modi, S; Behere, D V; Mitra, S

    1989-11-25

    Interaction of thiocyanate with horseradish peroxidase (HRP) was investigated by relaxation rate measurements (at 50.68 MHz) of the 15N resonance of thiocyanate nitrogen and by following the hyperfine shifted ring methyl proton resonances (at 500 MHz) of the heme group of SCN-.HRP solutions. At pH 4.0, the apparent dissociation constant (KD) for thiocyanate binding to HRP was deduced to be 158 mM from the relaxation rate measurements. Chemical shift changes of 1- and 8-ring methyl proton resonances in the presence of various amounts of thiocyanate at pH 4.0 yielded KD values of 166 and 136 mM, respectively. From the pH dependence of KD and the 15N resonance line width, it was observed that thiocyanate binds to HRP only under acidic conditions (pH less than 6). The binding was found to be facilitated by protonation of an acid group on the enzyme with pKa 4.0. The pH dependence of the 15N line width as well as the apparent dissociation constant were quantitatively analyzed on the basis of a reaction scheme in which thiocyanate in deprotonated ionic form binds to the enzyme in protonated acidic form. The KD for thiocyanate binding to HRP was also evaluated in the presence of an excess of exogenous substrates such as resorcinol, cyanide, and iodide ions. It was found that the presence of cyanide (which binds to heme iron at the sixth coordination position) and resorcinol did not have any effect on the binding of thiocyanate, indicating that the binding site of the thiocyanate ion is located away from the ferric center as well as from the aromatic donor binding site. The KD in the presence of iodide, however, showed that iodide competes with thiocyanate for binding at the same site. The distance of the bound thiocyanate ion from the ferric center was deduced from the 15N relaxation time measurements and was found to be a 6.8 A. From the distance as well as the change in the chemical shifts and line width of 1- and 8-methyl proton resonances, it is suggested that the

  3. Backbone and Ile-δ1, Leu, Val Methyl 1H, 13C and 15N NMR chemical shift assignments for human interferon-stimulated gene 15 protein

    SciTech Connect

    Yin, Cuifeng; Aramini, James M.; Ma, LiChung; Cort, John R.; Swapna, G.V.T.; Krug, R. M.; Montelione, Gaetano

    2011-10-01

    Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing two ubiquitin-like domains fused in tandem. The active form of ISG15 is conjugated to target proteins via the C-terminal glycine residue through an isopeptide bond in a manner similar to ubiquitin. The biological role of ISG15 is strongly associated with the modulation of cell immune function, and there is mounting evidence suggesting that many viral pathogens evade the host innate immune response by interfering with ISG15 conjugation to both host and viral proteins in a variety of ways. Here we report nearly complete backbone 1HN, 15N, 13CO, and 13Ca, as well as side chain 13Cb, methyl (Ile-d1, Leu, Val), amide (Asn, Gln), and indole NH (Trp) NMR resonance assignments for the 157-residue human ISG15 protein. These resonance assignments provide the basis for future structural and functional solution NMR studies of the biologically important human ISG15 protein.

  4. Proton resonance assignments of horse ferricytochrome c

    SciTech Connect

    Feng, Y.; Roder, H.; Englander, S.W.; Wand, A.J.; Di Stefano, D.L. )

    1989-01-10

    Two-dimensional nuclear magnetic resonance spectroscopy (2D NMR) was used to obtain extensive resonance assignments in the {sup 1}H NMR spectrum of horse ferricytochrome c. Assignments were made for the main-chain and C{sub {beta}} protons of 102 residues (all except Pro-44 and Gly-84) and the majority of side-chain protons. As starting points for the assignment of the oxidized protein, a limited set of protons was initially assigned by use of 2D NMR magnetization transfer methods to correlate resonances in the oxidized form with assigned resonances in the reduced form. Given the complexity of the spectrum due to the size of this protein (104 residues) and its paramagnetic center, the initial search for side-chain spin systems in J-correlated spectra was successful only for the simplest side chains, but the majority of NH-C{sub {alpha}}H-C{sub {beta}}H subspin systems (NAB sets) could be identified at this stage. The subsequent search for sequential NOE connectivities focused on NAB sets, with use of previously assigned residues to place NOE-connected segments within the amino acid sequence. Selective proton labeling of either the slowly or the rapidly exchanging amide sites was used to simplify the spectra, and systematic work at two temperatures was used to resolve ambiguities in the 2D NMR spectra. These approaches, together with the use of magnetization transfer methods to correlate reduced and oxidized cytochrome c spectra, provide multiple cross-checks to verify assignments.

  5. HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in 13C/15N-labeled proteins.

    PubMed

    Sudmeier, J L; Ash, E L; Günther, U L; Luo, X; Bullock, P A; Bachovchin, W W

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from 1H to 13C to 15N and reverse through direct spin couplings 1JCH and 1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain 1H, 13C, and 15N resonances in uniformly 13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay tau 3 were employed for determination of optimal tau 3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the 1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the 13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 12 1H and 13C chemical shifts and 10 of the 12 15N chemical shifts were determined. The 13C dimension proved essential in assignment of the multiply overlapping 1H and 15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mM sample of phenylmethanesulfonyl fluoride (PMSF)-inhibited alpha-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited alpha-lytic protease after 18 h at various temperatures ranging from 5 to 55 degrees C, probably due to efficient relaxation of active-site imidazole 1H and/or 15N nuclei. PMID:8995843

  6. A mutagenesis-free approach to assignment of (19)F NMR resonances in biosynthetically labeled proteins.

    PubMed

    Kitevski-LeBlanc, Julianne L; Al-Abdul-Wahid, M Sameer; Prosser, R Scott

    2009-02-18

    Solution NMR studies of protein structure and dynamics using fluorinated amino acid probes are a valuable addition to the repertoire of existing (13)C, (15)N, and (1)H experiments. Despite the numerous advantages of the (19)F nucleus in NMR, protein studies are complicated by the dependence of resonance assignments on site-directed mutagenesis methods which are laborious and often problematic. Here we report an NMR-based route to the assignment of fluorine resonances in (13)C,(15)N-3-fluoro-l-tyrosine labeled calmodulin. The assignment begins with the correlation of the fluorine nucleus to the delta proton in the novel (13)C,(15)N-enriched probe which is achieved using a CT-HCCF-COSY experiment. Connection to the backbone is made through two additional solution NMR experiments, namely the (H(beta))C(beta)(C(gamma)C(delta))H(delta) and HNCACB. Assignments are completed using either previously published backbone chemical shift data or obtained experimentally provided uniform (13)C,(15)N labeling procedures are employed during protein expression. Additional benefits of the (13)C,(15)N-3-fluoro-l-tyrosine probe include the reduction of spectral overlap through ((13)C(19)F) CT-HSQCs, as well as the ability to monitor side chain dynamics using (19)F T(1), T(2), and the (13)C-(19)F NOE. PMID:19173647

  7. Proton resonance assignments of horse ferrocytochrome c

    SciTech Connect

    Wand, A.J.; Di Stefano, D.L.; Feng, Y.; Roder, H.; Englander, S.W. )

    1989-01-10

    Two-dimensional nuclear magnetic resonance (NMR) spectroscopy was used to assign the proton resonances of horse ferrocytochrome c. Assignments were based on the main chain directed (MCD) and sequential assignment procedures. The fundamental units of the MCD approach, the main-chain NH-C{sub {alpha}}H-C{sub {beta}}H J-coupled subspin systems of each amino acid residue (NAB sets), were defined by analysis of direct and relayed coherence transfer spectra. Recognition of main-chain NOE connectivity patterns specified in the MCD algorithm them allowed NAB sets to be aligned in their proper juxtaposition within secondary structural units. The units of secondary structure were placed within the polypeptide sequence of identification of a small number of side-chain J-coupled spin systems, found by direct recognition in 2D spectra of some J-coupled spin systems and by pairwise comparisons of the J-correlated spectra of six homologous cytochromes c having a small number of known amino acid differences. The placement of a given segment in this way defines the amino acid identity of all its NAB sets. This foreknowledge allowed the vast majority of the side-chain resonances to be discerned in J-correlated spectra. Extensive confirmation of the assignments derives internally from multiple main-chain NOE connectivities and their consistency following temperature-induced changes of the chemical shifts of NOE-correlated protons. The observed patterns of main-chain NOEs provide some structural information and suggest small but potentially significant differences between the solution structure observed by NMR and that defined earlier in crystallographic studies at 2.8-{angstrom} resolution.

  8. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains in 13C/ 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Ash, Elissa L.; Günther, Ulrich L.; Luo, Xuelian; Bullock, Peter A.; Bachovchin, William W.

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from1H to13C to15N and reverse through direct spin couplings1JCHand1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain1H,13C, and15N resonances in uniformly13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay τ3were employed for determination of optimal τ3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 121H and13C chemical shifts and 10 of the 1215N chemical shifts were determined. The13C dimension proved essential in assignment of the multiply overlapping1H and15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mMsample of phenylmethanesulfonyl fluoride (PMSF)-inhibited α-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited α-lytic protease after 18 h at various temperatures ranging from 5 to 55°C, probably due to efficient relaxation of active-site imidazole1H and/or15N nuclei.

  9. Backbone 1H, 13C, and 15N assignments for the tandem ubiquitin binding domains of signal transducing adapter molecule 1.

    PubMed

    Lim, Jongsoo; Hong, Yoon-Hun; Lee, Bong-Jin; Ahn, Hee-Chul

    2011-04-01

    Signal transducing adapter molecule (STAM) forms the endosomal sorting complex required for transport-0 (ESCRT-0) complex with hepatocyte growth factor-regulated substrate (Hrs) to sort the ubiquitinated cargo proteins from the early endosomes to the ESCRT-1 complex. ESCRT-0 complex, STAM and Hrs, contains multiple ubiquitin binding domains, in which STAM has two ubiquitin binding domains, Vps27/Hrs/Stam (VHS) and ubiquitin interacting motif (UIM) at its N-terminus. By the cooperation of the multiple ubiquitin binding domains, the ESCRT-0 complex recognizes poly-ubiquitin, especially Lys63-linked ubiquitin. Here, we report the backbone resonance assignments and the secondary structure of the N-terminal 191 amino acids of the human STAM1 which includes the VHS domain and UIM. The {(1)H}-(15)N heteronuclear NOE experiments revealed that an unstructured and flexible loop region connects the VHS domain and UIM. Our work provides the basic information for the further NMR investigation of the interaction between STAM1 and poly-ubiquitin. PMID:20927613

  10. Novel 2D Triple-Resonance NMR Experiments for Sequential Resonance Assignments of Proteins

    NASA Astrophysics Data System (ADS)

    Ding, Keyang; Gronenborn, Angela M.

    2002-06-01

    We present 2D versions of the popular triple resonance HN(CO) CACB, HN(COCA)CACB, HN(CO)CAHA, and HN(COCA) CAHA experiments, commonly used for sequential resonance assignments of proteins. These experiments provide information about correlations between amino proton and nitrogen chemical shifts and the α- and β-carbon and α-proton chemical shifts within and between amino acid residues. Using these 2D spectra, sequential resonance assignments of H N, N, C α, C β, and H α nuclei are easily achieved. The resolution of these spectra is identical to the well-resolved 2D 15N- 1H HSQC and H(NCO)CA spectra, with slightly reduced sensitivity compared to their 3D and 4D versions. These types of spectra are ideally suited for exploitation in automated assignment procedures and thereby constitute a fast and efficient means for NMR structural determination of small and medium-sized proteins in solution in structural genomics programs.

  11. 1H, 15N and 13C assignment of the amyloidogenic protein medin using fast-pulsing NMR techniques.

    PubMed

    Davies, H A; Phelan, M M; Madine, J

    2016-04-01

    Thirty-one proteins are known to form extracellular fibrillar amyloid in humans. Molecular information about many of these proteins in their monomeric, intermediate or fibrillar form and how they aggregate and interact to form the insoluble fibrils is sparse. This is because amyloid proteins are notoriously difficult to study in their soluble forms, due to their inherent propensity to aggregate. Using recent developments in fast NMR techniques, band-selective excitation short transient and band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence we have been able to assign a 5 kDa full-length amyloidogenic protein called medin. Medin is the key protein component of the most common form of localised amyloid with a proposed role in aortic aneurysm and dissection. This assignment will now enable the study of the early interactions that could influence initiation and progression of medin aggregation. The chemical shifts have been deposited in the BioMagRes-Bank accession Nos. 25399 and 26576. PMID:26377205

  12. Absolute hydrogen depth profiling using the resonant 1H(15N, αγ)12C nuclear reaction

    NASA Astrophysics Data System (ADS)

    Reinhardt, Tobias P.; Akhmadaliev, Shavkat; Bemmerer, Daniel; Stöckel, Klaus; Wagner, Louis

    2016-08-01

    Resonant nuclear reactions are a powerful tool for the determination of the amount and profile of hydrogen in thin layers of material. Usually, this tool requires the use of a standard of well-known composition. The present work, by contrast, deals with standard-less hydrogen depth profiling. This approach requires precise nuclear data, e.g. on the widely used 1 H(15 N, αγ)12 C reaction, resonant at 6.4 MeV 15 N beam energy. Here, the strongly anisotropic angular distribution of the emitted γ -rays from this resonance has been re-measured, resolving a previous discrepancy. Coefficients of (0.38 ± 0.04) and (0.80 ± 0.04) have been deduced for the second and fourth order Legendre polynomials, respectively. In addition, the resonance strength has been re-evaluated to (25.0 ± 1.5) eV, 10% higher than previously reported. A simple working formula for the hydrogen concentration is given for cases with known γ -ray detection efficiency. Finally, the absolute approach is illustrated using two examples.

  13. A 15N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Yu, Binhan; Zhang, Xu; Liu, Maili; Yang, Daiwen

    2015-08-01

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is a powerful NMR method to study protein dynamics on the microsecond-millisecond time scale. J-coupling, resonance offset, radio frequency field inhomogeneity, and pulse imperfection often introduce systematic errors into the measured transverse relaxation rates. Here we proposed a modified continuous wave decoupling CPMG experiment, which is more unaffected by resonance offset and pulse imperfection. We found that it is unnecessary to match the decoupling field strength with the delay between CPMG refocusing pulses, provided that decoupling field is strong enough. The performance of the scheme proposed here was shown by simulations and further demonstrated experimentally on a fatty acid binding protein.

  14. Automated resonance assignment of the 21 kDa stereo-array isotope labeled thioldisulfide oxidoreductase DsbA

    NASA Astrophysics Data System (ADS)

    Schmidt, Elena; Ikeya, Teppei; Takeda, Mitsuhiro; Löhr, Frank; Buchner, Lena; Ito, Yutaka; Kainosho, Masatsune; Güntert, Peter

    2014-12-01

    The automated chemical shift assignment algorithm FLYA has been extended for use with stereo-array isotope labeled (SAIL) proteins to determine the sequence-specific resonance assignments of large proteins. Here we present the assignment of the backbone and sidechain chemical shifts of the 21 kDa thioldisulfide oxidoreductase DsbA from Escherichia coli that were determined with the SAIL-FLYA algorithm in conjunction with automated peak picking. No manual corrections of peak lists or assignments were applied. The assignments agreed with manually determined reference assignments in 95.4% of the cases if 16 input spectra were used, 94.1% if only 3D 13C/15N-resolved NOESY, CBCA(CO)NH, and 2D [13C/15N,1H]-HSQC were used, and 86.8% if exclusively 3D 13C/15N-resolved NOESY spectra were used. Considering only the assignments that are classified as reliable by the SAIL-FLYA algorithm, the degrees of agreement increased to 97.5%, 96.5%, and 94.2%, respectively. With our approach it is thus possible to automatically obtain almost complete and correct assignments of proteins larger than 20 kDa.

  15. A (15)N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection.

    PubMed

    Jiang, Bin; Yu, Binhan; Zhang, Xu; Liu, Maili; Yang, Daiwen

    2015-08-01

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is a powerful NMR method to study protein dynamics on the microsecond-millisecond time scale. J-coupling, resonance offset, radio frequency field inhomogeneity, and pulse imperfection often introduce systematic errors into the measured transverse relaxation rates. Here we proposed a modified continuous wave decoupling CPMG experiment, which is more unaffected by resonance offset and pulse imperfection. We found that it is unnecessary to match the decoupling field strength with the delay between CPMG refocusing pulses, provided that decoupling field is strong enough. The performance of the scheme proposed here was shown by simulations and further demonstrated experimentally on a fatty acid binding protein. PMID:26037134

  16. Towards Automated Structure-Based NMR Resonance Assignment

    NASA Astrophysics Data System (ADS)

    Jang, Richard; Gao, Xin; Li, Ming

    We propose a general framework for solving the structure-based NMR backbone resonance assignment problem. The core is a novel 0-1 integer programming model that can start from a complete or partial assignment, generate multiple assignments, and model not only the assignment of spins to residues, but also pairwise dependencies consisting of pairs of spins to pairs of residues. It is still a challenge for automated resonance assignment systems to perform the assignment directly from spectra without any manual intervention. To test the feasibility of this for structure-based assignment, we integrated our system with our automated peak picking and sequence-based resonance assignment system to obtain an assignment for the protein TM1112 with 91% recall and 99% precision without manual intervention. Since using a known structure has the potential to allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data, we work towards the goal of automated structure-based assignment using only such labeled data. Our system reduced the assignment error of Xiong-Pandurangan-Bailey-Kellogg's contact replacement (CR) method, which to our knowledge is the most error-tolerant method for this problem, by 5 folds on average. By using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for Ubiquitin, where the type prediction accuracy is 83%, we achieved 91% assignment accuracy, compared to the 59% accuracy that was obtained without correcting for typing errors.

  17. 1H, 13C and 15N NMR assignments of the E. coli peptide deformylase in complex with a natural inhibitor called actinonin.

    PubMed

    Larue, Valéry; Seijo, Bili; Tisne, Carine; Dardel, Frédéric

    2009-06-01

    In eubacteria, the formyl group of nascent polypeptides is removed by peptide deformylase protein (PDF). This is the reason why PDF has received special attention in the course of the search for new antibacterial agents. We observed by NMR that actinonin, a natural inhibitor, induced drastic changes in the HSQC spectrum of E. coli PDF. We report here the complete NMR chemical shift assignments of PDF resonances bound to actinonin. PMID:19636969

  18. Identifying the African Wintering Grounds of Hybrid Flycatchers Using a Multi–Isotope (δ2H, δ13C, δ15N) Assignment Approach

    PubMed Central

    Van Wilgenburg, Steven L.; Hobson, Keith A.; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher. PMID:24847717

  19. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. PMID:22615146

  20. Dihydrofolate reductase: Sequential resonance assignments using 2D and 3D NMR and secondary structure determination in solution

    SciTech Connect

    Carr, M.D.; Birdsall, B.; Jimenez-Barbero, J.; Polshakov, V.I.; McCormick, J.E.; Feeney, J.; Frenkiel, T.A.; Bauer, C.J. ); Roberts, G.C.K. )

    1991-06-25

    Three-dimensional (3D) heteronuclear NMR techniques have been used to make sequential {sup 1}H and {sup 15}H resonance assignments for most of the residues of Lactobacillus casei dihydrofolate reductase (DHFR), a monomeric protein of molecular mass 18,300 Da. A uniformly {sup 15}N-labeled sample of the protein was prepared and its complex with methotrexate (MTX) studied by 3D {sup 15}N/{sup 1}H nuclear Overhauserheteronuclear multiple quantum coherence (NOESY-HMQC), Harmann-Hahn-heteronuclear multiple quantum coherence (HOHAHA-HMQC), and HMQC-NOESY-HMQC experiments. These experiments overcame most of the spectral overlap problems caused by chemical shift degeneracies in 2D spectra and allowed the {sup 1}H-{sup 1}H through-space and through-bond connectivities to be identified unambiguously, leading to the resonance assignments. The novel HMQC-NOESY-HMQC experiment allows NOE cross peaks to be detected between NH protons even when their {sup 1}H chemical shifts are degenerate as long as the amide {sup 15}N chemical shifts are nondegenerate. The 3D experiments, in combination with conventional 2D NOESY, COSY, and HOHAHA experiments on unlabelled and selectively deuterated DHFR, provide backbone assignments for 146 of the 162 residues and side-chain assignments for 104 residues of the protein. Data from the NOE-based experiments and identification of the slowly exchanging amide protons provide detailed information about the secondary structure of the binary complex of the protein with methotrexate.

  1. A Set of Efficient nD NMR Protocols for Resonance Assignments of Intrinsically Disordered Proteins.

    PubMed

    Wiedemann, Christoph; Bellstedt, Peter; Häfner, Sabine; Herbst, Christian; Bordusa, Frank; Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai

    2016-07-01

    The RF pulse scheme RN[N-CA HEHAHA]NH, which provides a convenient approach to the acquisition of different multidimensional chemical shift correlation NMR spectra leading to backbone resonance assignments, including those of the proline residues of intrinsically disordered proteins (IDPs), is experimentally demonstrated. Depending on the type of correlation data required, the method involves the generation of in-phase ((15) N)(x) magnetisation via different magnetisation transfer pathways such as H→N→CO→N, HA→CA→CO→N, H→N→CA→N and H→CA→N, the subsequent application of (15) N-(13) C(α) heteronuclear Hartmann-Hahn mixing over a period of ≈100 ms, chemical-shift labelling of relevant nuclei before and after the heteronuclear mixing step and amide proton detection in the acquisition dimension. It makes use of the favourable relaxation properties of IDPs and the presence of (1) JCαN and (2) JCαN couplings to achieve efficient correlation of the backbone resonances of each amino acid residue "i" with the backbone amide resonances of residues "i-1" and "i+1". It can be implemented in a straightforward way through simple modifications of the RF pulse schemes commonly employed in protein NMR studies. The efficacy of the approach is demonstrated using a uniformly ((15) N,(13) C) labelled sample of α-synuclein. The different possibilities for obtaining the amino-acid-type information, simultaneously with the connectivity data between the backbone resonances of sequentially neighbouring residues, have also been outlined. PMID:27061973

  2. (1)H-, (13)C- and (15)N-NMR assignment of the N-terminal domain of human cerebral dopamine neurotrophic factor (CDNF).

    PubMed

    Latgé, Cristiane; Cabral, Kátia M S; Almeida, Marcius S; Foguel, Débora

    2013-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder that is caused by the death of midbrain dopaminergic neurons. Current therapies for PD do not halt the neurodegeneration nor repair the affected neurons. Therefore, search for novel neurotrophic factors (NTF) for midbrain dopaminergic neurons, which could be used in novel therapeutic approaches, is highly wanted. In 2007, a potent NTF for dopaminergic neurons was described as the conserved dopamine neurotrophic factor (CDNF). Single doses of this protein protect and restore dopaminergic neurons in experimental models of PD. CDNF has two domains; an N-terminal saposin-like domain, which may bind to membranes; and a presumably intrinsically unstructured C-terminal which contains an internal cysteine bridge in a CXXC motif similar to that of thiol/disulphide oxidoreductases and isomerases, and may thus reduce the endoplasmic reticulum stress caused by incorrectly folded proteins. We show for the first time the nuclear magnetic resonance assignment of N-terminal domain of recombinant CDNF (residues 1-105) by solution 2D and 3D NMR spectroscopy. We were able to obtain a nearly complete resonance assignment, which is the first step toward the solution structure determination of this neurotrophic factor. PMID:22528768

  3. Exploiting Image Registration for Automated Resonance Assignment in NMR

    PubMed Central

    Strickland, Madeleine; Stephens, Thomas; Liu, Jian; Tjandra, Nico

    2015-01-01

    Summary Analysis of protein NMR data involves the assignment of resonance peaks in a number of multidimensional data sets. To establish resonance assignment a three-dimensional search is used to match a pair of common variables, such as chemical shifts of the same spin system, in different NMR spectra. We show that by displaying the variables to be compared in two-dimensional plots the process can be simplified. Moreover, by utilizing a fast Fourier transform (FFT) cross-correlation algorithm, more common to the field of image registration or pattern matching, we can automate this process. Here, we use sequential NMR backbone assignment as an example to show that the combination of correlation plots and segmented pattern matching establishes fast backbone assignment in fifteen proteins of varying sizes. For example, the 265-residue RalBP1 protein was 95.4% correctly assigned in 10 seconds. The same concept can be applied to any multidimensional NMR data set where analysis comprises the comparison of two variables. This modular and robust approach offers high efficiency with excellent computational scalability and could be easily incorporated into existing assignment software. PMID:25828257

  4. 15N solid-state nuclear magnetic resonance study of pyrolyzed metal-polyaniline cathode catalysts for oxygen reduction in fuel cells

    NASA Astrophysics Data System (ADS)

    Kuroki, Shigeki; Hosaka, Yo; Yamauchi, Chiharu; Nagata, Shinsuke; Sonoda, Mayu

    2015-09-01

    The oxygen reduction reaction (ORR) activity of pyrolyzed metal-free and metal (Mn, Fe, Co, Ni and Cu)-containing polyaniline (PANI) in polymer electrolyte fuel cell (PEFC) was studied. The metal-free PANI800 shows quite poor ORR catalytic activity, whilst the metal-containing PANIMe800 display a better ORR activity. The 15N CP/MAS NMR spectra of PANINi800 and PANICu800 show one weak peak at 118 ppm and there is no peak observed in PANIFe800, against that of PANI800, PANIMn800, PANICo800 and PANINi800 show two peaks at 273 and 118 ppm assigned to the pyridinic and pyridinium nitrogens. It is because of the paramagnetic effect of metal ions. The 15N spin-echo NMR spectra of PANIMe800 with fast recycle delay show the peaks at 140 and 270 ppm assigned to the graphitic and pyridinic nitrogens, against that of PANI800 shows no peak. The spectra of PANIMn800, PANICo800, PANINi800 and PANICu600 also contain a very broaden peak at 430 ppm assigned to the nitrogen with Fermi-contact effect from metal ions. The spectra of PANIFe800 show some spinning side bands and the average Fe3+-15N distance can be calculated. The some amount of iron ion are relieved and average Fe3+-15N distance increase after acid washing and the ORR activity decreases.

  5. EFFECT OF HIGH-ENERGY RESONANCES ON THE {sup 18}O(p, {alpha}){sup 15}N REACTION RATE AT AGB AND POST-AGB RELEVANT TEMPERATURES

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Mukhamedzhanov, A. M.

    2010-11-10

    The {sup 18}O(p, {alpha}){sup 15}N reaction is of great importance in several astrophysical scenarios, as it influences the production of key isotopes such as {sup 19}F, {sup 18}O, and {sup 15}N. Fluorine is synthesized in the intershell region of asymptotic giant branch (AGB) stars, together with s-elements, by {alpha} radiative capture on {sup 15}N, which in turn is produced in the {sup 18}O proton-induced destruction. Peculiar {sup 18}O abundances are observed in R-Coronae Borealis stars, having {sup 16}O/{sup 18}O {approx}< 1, hundreds of times smaller than the galactic value. Finally, there is no definite explanation of the {sup 14}N/{sup 15}N ratio in pre-solar grains formed in the outer layers of AGB stars. Again, such an isotopic ratio is influenced by the {sup 18}O(p, {alpha}){sup 15}N reaction. In this work, a high accuracy {sup 18}O(p, {alpha}){sup 15}N reaction rate is proposed, based on the simultaneous fit of direct measurements and of the results of a new Trojan Horse experiment. Indeed, current determinations are uncertain because of the poor knowledge of the resonance parameters of key levels of {sup 19}F. In particular, we have focused on the study of the broad 660 keV 1/2{sup +} resonance corresponding to the 8.65 MeV level of {sup 19}F. Since {Gamma} {approx} 100-300 keV, it determines the low-energy tail of the resonant contribution to the cross section and dominates the cross section at higher energies. Here, we provide a reaction rate that is a factor of two larger above T {approx} 0.5 10{sup 9} K based on our new improved determination of its resonance parameters, which could strongly influence present-day astrophysical model predictions.

  6. 1H, 13C and 15N nuclear magnetic resonance coordination shifts in Au(III), Pd(II) and Pt(II) chloride complexes with phenylpyridines.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2009-08-01

    1H, 13C and 15N nuclear magnetic resonance studies of gold(III), palladium(II) and platinum(II) chloride complexes with phenylpyridines (PPY: 4-phenylpyridine, 4ppy; 3-phenylpyridine, 3ppy; and 2-phenylpyridine, 2ppy) having the general formulae [Au(PPY)Cl3], trans-/cis-[Pd(PPY)2Cl2] and trans-/cis-[Pt(PPY)2Cl2] were performed and the respective chemical shifts (delta1H, delta13C and delta15N) reported. 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Delta(coord)(1H) = delta(complex)(1H)-delta(ligand)(1H), Delta(coord)(13C) = delta(complex)(13C)-delta(ligand)(13C), Delta(coord)(15N) = delta(complex)(15N)-delta(ligand)(15N)) were discussed in relation to the type of the central atom (Au(III), Pd(II) and Pt(II)), geometry (trans-/cis-) and the position of a phenyl group in the pyridine ring system. PMID:19472306

  7. Contribution of proteolysis and de novo synthesis to alanine production in diabetic rat skeletal muscle: a 15N/1H nuclear magnetic resonance study.

    PubMed

    Meynial-Denis, D; Chavaroux, A; Foucat, L; Mignon, M; Prugnaud, J; Bayle, G; Renou, J P; Arnal, M

    1997-10-01

    To assess the role of leucine as a precursor of alanine alpha-amino nitrogen in skeletal muscle during diabetes, extensor digitorum longus muscles from control (n = 7 experiments) and streptozotocin-diabetic rats (n = 8 experiments) were isolated and superfused with [15N]leucine (3 mmol/l) in the presence of glucose (10 mmol/l) for 2 h. Muscle perchloric acid extraction was performed at the end of superfusion in order to quantify newly synthesized alanine by 15N/1H nuclear magnetic resonance. Release of [15N]alanine in the superfusion medium was also measured. The pool of newly synthesized [15N]alanine was significantly increased (approximately 40%) in extensor digitorum longus muscles from streptozotocin-diabetic rats. Whereas a significant enhancement of total alanine release from muscle was induced by diabetes (20%), only a slight increase in [15N]alanine release was detectable under our experimental conditions. Consequently, we conclude that streptozotocin-diabetes in growing rats induces in skeletal muscle: 1) an increase in nitrogen exchange between leucine and alanine leading to newly synthesized [15N]alanine; and 2) an increase of total alanine release from muscle originating from both proteolysis and de novo synthesis. PMID:9349596

  8. A Monte Carlo/Simulated Annealing Algorithm for Sequential Resonance Assignment in Solid State NMR of Uniformly Labeled Proteins with Magic-Angle Spinning

    PubMed Central

    Tycko, Robert; Hu, Kan-Nian

    2010-01-01

    We describe a computational approach to sequential resonance assignment in solid state NMR studies of uniformly 15N,13C-labeled proteins with magic-angle spinning. As input, the algorithm uses only the protein sequence and lists of 15N/13Cα crosspeaks from 2D NCACX and NCOCX spectra that include possible residue-type assignments of each crosspeak. Assignment of crosspeaks to specific residues is carried out by a Monte Carlo/simulated annealing algorithm, implemented in the program MC_ASSIGN1. The algorithm tolerates substantial ambiguity in residue-type assignments and coexistence of visible and invisible segments in the protein sequence. We use MC_ASSIGN1 and our own 2D spectra to replicate and extend the sequential assignments for uniformly labeled HET-s(218-289) fibrils previously determined manually by Siemer et al. (J. Biomolec. NMR, vol. 34, pp. 75-87, 2006) from a more extensive set of 2D and 3D spectra. Accurate assignments by MC_ASSIGN1 do not require data that are of exceptionally high quality. Use of MC_ASSIGN1 (and its extensions to other types of 2D and 3D data) is likely to alleviate many of the difficulties and uncertainties associated with manual resonance assignments in solid state NMR studies of uniformly labeled proteins, where spectral resolution and signal-to-noise are often sub-optimal. PMID:20547467

  9. Measurement of the 20 and 90 keV Resonances in the {sup 18}O(p,{alpha}){sup 15}N Reaction via the Trojan Horse Method

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Mukhamedzhanov, A. M.; Tribble, R. E.; Banu, A.; Goldberg, V. Z.; Tabacaru, G.; Trache, L.; Irgaziev, B.; Coc, A.

    2008-10-10

    The {sup 18}O(p,{alpha}){sup 15}N reaction is of primary importance in several astrophysical scenarios, including fluorine nucleosynthesis inside asymptotic giant branch stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus the indirect measurement of the low energy region of the {sup 18}O(p,{alpha}){sup 15}N reaction has been performed to reduce the nuclear uncertainty on theoretical predictions. In particular the strength of the 20 and 90 keV resonances has been deduced and the change in the reaction rate evaluated.

  10. Measurement of the 20 and 90 keV resonances in the 18O(p,alpha)15N reaction via the Trojan horse method.

    PubMed

    La Cognata, M; Spitaleri, C; Mukhamedzhanov, A M; Irgaziev, B; Tribble, R E; Banu, A; Cherubini, S; Coc, A; Crucillà, V; Goldberg, V Z; Gulino, M; Kiss, G G; Lamia, L; Mrazek, J; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L; Tabacaru, G; Trache, L; Trzaska, W; Tumino, A

    2008-10-10

    The 18O(p,alpha)15N reaction is of primary importance in several astrophysical scenarios, including fluorine nucleosynthesis inside asymptotic giant branch stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus the indirect measurement of the low energy region of the 18O(p,alpha)15N reaction has been performed to reduce the nuclear uncertainty on theoretical predictions. In particular the strength of the 20 and 90 keV resonances has been deduced and the change in the reaction rate evaluated. PMID:18999593

  11. iHADAMAC: A complementary tool for sequential resonance assignment of globular and highly disordered proteins

    NASA Astrophysics Data System (ADS)

    Feuerstein, Sophie; Plevin, Michael J.; Willbold, Dieter; Brutscher, Bernhard

    2012-01-01

    An experiment, iHADAMAC, is presented that yields information on the amino-acid type of individual residues in a protein by editing the 1H- 15N correlations into seven different 2D spectra, each corresponding to a different class of amino-acid types. Amino-acid type discrimination is realized via a Hadamard encoding scheme based on four different spin manipulations as recently introduced in the context of the sequential HADAMAC experiment. Both sequential and intra-residue HADAMAC experiments yield highly complementary information that greatly facilitate resonance assignment of proteins with high frequency degeneracy, as demonstrated here for a 188-residue intrinsically disordered protein fragment of the hepatitis C virus protein NS5A.

  12. Resonance strengths in the {sup 14}N(p,gamma){sup 15}O and {sup 15}N(p,alphagamma){sup 12}C reactions

    SciTech Connect

    Marta, Michele; Trompler, Erik; Bemmerer, Daniel; Beyer, Roland; Grosse, Eckart; Hannaske, Roland; Junghans, Arnd R.; Nair, Chithra; Schwengner, Ronald; Wagner, Andreas; Yakorev, Dmitry; Broggini, Carlo; Caciolli, Antonio; Erhard, Martin; Menegazzo, Roberto; Fueloep, Zsolt; Gyuerky, Gyoergy; Szuecs, Tamas; Vezzu, Simone

    2010-05-15

    The {sup 14}N(p,gamma){sup 15}O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The {sup 15}N(p,alphagamma){sup 12}C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The {sup 14}N(p,gamma){sup 15}O and {sup 15}N(p,alphagamma){sup 12}C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at E{sub p} = 1058 keV in {sup 14}N(p,gamma){sup 15}O and at E{sub p} = 897 and 430 keV in {sup 15}N(p,alphagamma){sup 12}C have been determined with improved precision, relative to the well-known resonance at E{sub p} = 278 keV in {sup 14}N(p,gamma){sup 15}O. The new recommended values are omegagamma=0.353+-0.018, 362+-20, and 21.9+-1.0 eV for their respective strengths. In addition, the branching ratios for the decay of the E{sub p} = 1058 keV resonance in {sup 14}N(p,gamma){sup 15}O have been redetermined. The data reported here should facilitate future studies of off-resonant capture in the {sup 14}N(p,gamma){sup 15}O reaction that are needed for an improved R-matrix extrapolation of the cross section. In addition, the data on the 430 keV resonance in {sup 15}N(p,alphagamma){sup 12}C may be useful for hydrogen depth profiling.

  13. In vivo activity of glutaminase in the brain of hyperammonaemic rats measured by 15N nuclear magnetic resonance.

    PubMed Central

    Kanamori, K; Ross, B D

    1995-01-01

    The in vivo activity of phosphate-activated glutaminase (PAG) was measured in the brain of hyperammonaemic rat by 15N n.m.r. Brain glutamine was 15N-enriched by intravenous infusion of 15NH4+ until the concentration of [5-15N]glutamine reached 6.1 mumol/g. Further glutamine synthesis was inhibited by intraperitoneal injection of methionine-DL-sulphoximine, an inhibitor of glutamine synthetase, and the infusate was changed to 14NH4+ during observation of decrease in brain [5-15N]glutamine due to PAG and other glutamine utilization pathways. Progressive decrease in brain [5-15N]glutamine, PAG-catalysed production of 15NH4+ and its subsequent assimilation into glutamate by glutamate dehydrogenase were monitored in vivo by 15N n.m.r. Brain [5-15N]glutamine (15N enrichment of 0.35-0.50) decreased at a rate of 1.2 mumol/h per g of brain. The in vivo PAG activity, determined from the observed rate and the quantity of 15NH4+ produced and subsequently assimilated into glutamate and aspartate, was 0.9-1.3 mumol/h per g. This activity is less than 1.1% of the reported activity in vitro measured in rat brain homogenate at a 10 mM concentration of the activator Pi. Inhibition by ammonia (brain level 1.4 mumol/g) alone does not account for the observed low activity in vivo. The result strongly suggests that, in intact brain, PAG activity is maintained at a low level by a suboptimal in situ concentration of Pi and the strong inhibitory effect of glutamate. The observed PAG activity in vivo is lower than the reported in vivo activity of glutamate decarboxylase which converts glutamate into gamma-aminobutyrate (GABA). The result suggests that PAG-catalysed hydrolysis of glutamine is not the sole provider of glutamate used for GABA synthesis. PMID:7826349

  14. Application of 15N nuclear magnetic resonance spectroscopy to the determination of the stability of aryl nitrogen mustards.

    PubMed

    Wilman, D E; Palmer, B D; Denny, W A

    1995-06-01

    An excellent correlation has been shown to exist between the 15N NMR chemical shifts of a series of aryl nitrogen mustards and the Hammett constant, sigma, which is much improved by the use of sigma-. These chemical shifts also correlate well with the hydrolysis rates of the compounds in 50% aqueous acetone at 66 degrees C and their alkylation of 4-(4'-nitrobenzyl)pyridine under similar conditions. Thus 15N NMR is a straightforward and material-conserving method for estimating the relative stabilities of aryl nitrogen mustards. PMID:7783158

  15. 15N electron nuclear double resonance of the primary donor cation radical P+.865 in reaction centers of Rhodopseudomonas sphaeroides: additional evidence for the dimer model.

    PubMed Central

    Lubitz, W; Isaacson, R A; Abresch, E C; Feher, G

    1984-01-01

    Four 15N hyperfine coupling constants, including signs, have been measured by electron nuclear double resonance (ENDOR) and electron nuclear nuclear triple resonance (TRIPLE) for the bacteriochlorophyll a radical cation, BChla+., in vitro and for the light-induced primary donor radical cation, P+.865, in reaction centers of Rhodopseudomonas sphaeroides R-26. A comparison of the data shows that the hyperfine coupling constants have the same sign in both radicals and are, on the average, smaller by a factor of 2 in P+.865. These results provide additional evidence that P+.865 is a bacteriochlorophyll dimer and are in contradiction with the monomer structure of P+.865 recently proposed by O'Malley and Babcock. The reduction factors of the individual 15N couplings, together with the evidence from proton ENDOR data and molecular orbital calculations, indicate a dimer structure in which only two rings (either I and I or III and III) of the bacteriochlorophyll macrocycles overlap. PMID:6096857

  16. Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.

    PubMed

    Hefke, Frederik; Bagaria, Anurag; Reckel, Sina; Ullrich, Sandra Johanna; Dötsch, Volker; Glaubitz, Clemens; Güntert, Peter

    2011-02-01

    We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273-6279 (1982)), types of amino acids are labeled with (13)C or/and (15)N such that cross peaks between (13)CO(i - 1) and (15)NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with (13)C and the second with (15)N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B(2)R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin. PMID:21170670

  17. Identification of novel hydrazine metabolites by 15N-NMR.

    PubMed

    Preece, N E; Nicholson, J K; Timbrell, J A

    1991-05-01

    15N-NMR has been used to study the metabolism of hydrazine in rats in vivo. Single doses of [15N2]hydrazine (2.0 mmol/kg: 98.6% g atom) were administered to rats and urine collected for 24 hr over ice. A number of metabolites were detected by 15N-NMR analysis of lyophilized urine. Ammonia was detected as a singlet at 0 ppm and unchanged [15N2]hydrazine was present in the urine detectable as a singlet at 32 ppm. Peaks were observed at 107 and 110 ppm which were identified as being due to the hydrazido nitrogen of acetylhydrazine and diacetylhydrazine, respectively. A resonance at 85 ppm was ascribed to carbazic acid, resulting from reaction of hydrazine with carbon dioxide. A singlet detected at 316 ppm was thought to be due to the hydrazono nitrogen of the pyruvate hydrazone. The resonance at 56 ppm was assigned to 15N-enriched urea, this together with the presence of ammonia indicates that the N-N bond of hydrazine is cleaved in vivo, possibly by N-oxidation, and the resultant ammonia is incorporated into urea. A doublet centred at 150 ppm and a singlet at 294 ppm were assigned to a metabolite which results from cyclization of the 2-oxoglutarate hydrazone. Therefore 15N-NMR spectroscopic analysis of urine has yielded significant new information on the metabolism of hydrazine. PMID:2018564

  18. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis.

    PubMed

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian; Ulrich, Anne S

    2015-06-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly (13)C/(15)N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive (13)C/(15)N-labeled amino acids. The most cost-effective production of (13)C/(15)N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% (13)C-glycerol and 0.5% (15)N-ammonium sulfate, supplemented with only 0.025% of (13)C/(15)N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  19. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  20. Backbone chemical shift assignments for the sensor domain of the Burkholderia pseudomallei histidine kinase RisS: "missing" resonances at the dimer interface.

    PubMed

    Buchko, Garry W; Edwards, Thomas E; Hewitt, Stephen N; Phan, Isabelle Q H; Van Voorhis, Wesley C; Miller, Samuel I; Myler, Peter J

    2015-10-01

    Using a deuterated sample, all the observable backbone (1)H(N), (15)N, (13)C(a), and (13)C' chemical shifts for the dimeric, periplasmic sensor domain of the Burkholderia pseudomallei histidine kinase RisS were assigned. Approximately one-fifth of the amide resonances are "missing" in the (1)H-(15)N HSQC spectrum and map primarily onto α-helices at the dimer interface observed in a crystal structure suggesting this region either undergoes intermediate timescale motion (μs-ms) and/or is heterogeneous. PMID:25957069

  1. NMR resonance assignments of the lantibiotic immunity protein NisI from Lactococcus lactis.

    PubMed

    Hacker, Carolin; Christ, Nina Alexandra; Duchardt-Ferner, Elke; Korn, Sophie; Berninger, Lucija; Kötter, Peter; Entian, Karl-Dieter; Wöhnert, Jens

    2015-10-01

    The lantibiotic nisin is a small antimicrobial peptide which acts against a wide range of Gram-positive bacteria. Nisin-producing Lactococcus lactis strains express four genes for self-protection against their own antimicrobial compound. This immunity system consists of the lipoprotein NisI and the ABC transporter NisFEG. NisI is attached to the outside of the cytoplasmic membrane via a covalently linked diacylglycerol anchor. Both the lipoprotein and the ABC transporter are needed for full immunity but the exact immunity mechanism is still unclear. To gain insights into the highly specific immunity mechanism of nisin producing strains on a structural level we present here the backbone resonance assignment of NisI (25.8 kDa) as well as the virtually complete (1)H,(15)N,(13)C chemical shift assignments for the isolated 12.7 kDa N-terminal and 14.6 kDa C-terminal domains of NisI. PMID:25613223

  2. Resonance assignment of PsbP: an extrinsic protein from photosystem II of Spinacia oleracea.

    PubMed

    Rathner, Adriana; Chandra, Kousik; Rathner, Petr; Horničáková, Michaela; Schlagnitweit, Judith; Kohoutová, Jaroslava; Ettrich, Rüdiger; Müller, Norbert

    2015-10-01

    PsbP (23 kDa) is an extrinsic eukaryotic protein of photosystem II found in the thylakoid membrane of higher plants and green algae. It has been proven to be indispensable for proper functioning of the oxygen evolving complex. By interaction with other extrinsic proteins (PsbQ, PsbO and PsbR), it modulates the concentration of two cofactors of the water splitting reaction, Ca(2+) and Cl(-). The crystallographic structure of PsbP from Spinacia oleracea lacks the N-terminal part as well as two inner regions which were modelled as loops. Those unresolved parts are believed to be functionally crucial for the binding of PsbP to the thylakoid membrane. In this NMR study we report (1)H, (15)N and (13)C resonance assignments of the backbone and side chain atoms of the PsbP protein. Based on these data, an estimate of the secondary structure has been made. The structural motifs found fit the resolved parts of the crystallographic structure very well. In addition, the complete assignment set provides preliminary insight into the dynamic regions. PMID:25903141

  3. Resonance assignments for latherin, a natural surfactant protein from horse sweat.

    PubMed

    Vance, Steven J; McDonald, Rhona E; Cooper, Alan; Kennedy, Malcolm W; Smith, Brian O

    2014-04-01

    Latherin is an intrinsically surfactant protein of ~23 kDa found in the sweat and saliva of horses. Its function is probably to enhance the translocation of sweat water from the skin to the surface of the pelt for evaporative cooling. Its role in saliva may be to enhance the wetting, softening and maceration of the dry, fibrous food for which equines are adapted. Latherin is unusual in its relatively high content of aliphatic amino acids (~25% leucines) that might contribute to its surfactant properties. Latherin is related to the palate, lung, and nasal epithelium carcinoma-associated proteins (PLUNCs) of mammals, at least one of which is now known to exhibit similar surfactant activity to latherin. No structures of any PLUNC protein are currently available. (15)N,(13)C-labelled recombinant latherin was produced in Escherichia coli, and essentially all of the resonances were assigned despite the signal overlap due to the preponderance of leucines. The most notable exceptions include a number of residues located in an apparently dynamic loop region between residues 145 and 154. The assignments have been deposited with BMRB accession number 19067. PMID:23708874

  4. (1)H NMR assignment corrections and (1)H, (13)C, (15)N NMR coordination shifts structural correlations in Fe(II), Ru(II) and Os(II) cationic complexes with 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2010-06-01

    (1)H, (13)C and (15)N NMR studies of iron(II), ruthenium(II) and osmium(II) tris-chelated cationic complexes with 2,2'-bipyridine and 1,10-phenanthroline of the general formula [M(LL)(3)](2+) (M = Fe, Ru, Os; LL = bpy, phen) were performed. Inconsistent literature (1)H signal assignments were corrected. Significant shielding of nitrogen-adjacent protons [H(6) in bpy, H(2) in phen] and metal-bonded nitrogens was observed, being enhanced in the series Ru(II) --> Os(II) --> Fe(II) for (1)H, Fe(II) --> Ru(II) --> Os(II) for (15)N and bpy --> phen for both nuclei. The carbons are deshielded, the effect increasing in the order Ru(II) --> Os(II) --> Fe(II). PMID:20474023

  5. Backbone and side-chain (1)H, (15)N, (13)C assignment and secondary structure of BPSL1445 from Burkholderia pseudomallei.

    PubMed

    Quilici, Giacomo; Berardi, Andrea; Gaudesi, Davide; Gourlay, Louise J; Bolognesi, Martino; Musco, Giovanna

    2015-10-01

    BPSL1445 is a lipoprotein produced by the Gram-negative bacterium Burkholderia pseudomallei (B. pseudomallei), the etiological agent of melioidosis. Immunodetection assays against sera patients using protein microarray suggest BPSL1445 involvement in melioidosis. Herein we report backbone, side chain NMR assignment and secondary structure for the recombinant protein. PMID:25893672

  6. Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction

    NASA Astrophysics Data System (ADS)

    Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael

    2015-05-01

    A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100-250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation.

  7. Lactoperoxidase-catalyzed oxidation of thiocyanate by hydrogen peroxide: sup 15 N nuclear magnetic resonance and optical spectral studies

    SciTech Connect

    Modi, S.; Deodhar, S.S.; Behere, D.V.; Mitra, S. )

    1991-01-01

    To establish the agent(s) responsible for the activity of the lactoperoxidase (LPO)/SCN{sup {minus}}/H{sub 2}O{sub 2} system, the oxidation of thiocyanate with hydrogen peroxide, catalyzed by lactoperoxidase, has been studied by {sup 15}N NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pHs. The formation of hypothiocyanite ion (OSCN{sup {minus}}) as one of the oxidation products correlated well with activity of the LPO/SCN{sup {minus}}/H{sub 2}O{sub 2} system and was maximum when the concentrations of the H{sub 2}O{sub 2} and SCN{sup {minus}} were nearly the same and the pH was <6.0. At (H{sub 2}O{sub 2})/(SCN{sup {minus}}) = 1, OSCN{sup {minus}} decomposed very slowly back to thiocyanate. When the ratio (H{sub 2}O{sub 2})/(SCN{sup {minus}}) was above 2, formation of CN{sup {minus}} was observed, which was confirmed by {sup 15}N NMR and also by changes in the optical spectrum of LPO. The oxidation of thiocyanate by H{sub 2}O{sub 2} in the presence of LPO does not take place at pH >8.0. Since thiocyanate does not bind to LPO above this pH, the binding of thiocyanate to LPO is considered to be prerequisite for the oxidation of thiocyanate. Maximum inhibition of oxygen uptake by Streptococcus cremoris 972 bacteria was observed when hydrogen peroxide and thiocyanate were present in equimolar amounts and the pH was below 6.0.

  8. (1)H, (13)C, and (15)N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state.

    PubMed

    Lim, Sunghyuk; Yu, Qinhong; Rockwell, Nathan C; Martin, Shelley S; Lagarias, J Clark; Ames, James B

    2016-04-01

    Cyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins with a tetrapyrrole (bilin) chromophore that belong to the phytochrome superfamily. Like phytochromes, CBCRs photoconvert between two photostates with distinct spectral properties. NpR6012g4 from Nostoc punctiforme is a model system for widespread CBCRs with conserved red/green photocycles. Atomic-level structural information for the photoproduct state in this subfamily is not known. Here, we report NMR backbone chemical shift assignments of the light-activated state of NpR6012g4 (BMRB no. 26577) as a first step toward determining its atomic resolution structure. PMID:26537963

  9. Vibrational Assignments of Six-Coordinate Ferrous Heme Nitrosyls: New Insight From Nuclear Resonance Vibrational Spectroscopy

    SciTech Connect

    Paulat, F.; Berto, T.C.; George, S.DeBeer; Goodrich, L.; Praneeth, V.K.K.; Sulok, C.D.; Lehnert, N.

    2009-05-21

    This Communication addresses a long-standing problem: the exact vibrational assignments of the low-energy modes of the Fe-N-O subunit in six-coordinate ferrous heme nitrosyl model complexes. This problem is addressed using nuclear resonance vibrational spectroscopy (NRVS) coupled to {sup 15}N{sup 18}O isotope labeling and detailed simulations of the obtained data. Two isotope-sensitive features are identified at 437 and 563 cm{sup -1}. Normal coordinate analysis shows that the 437 cm{sup -1} mode corresponds to the Fe-NO stretch, whereas the 563 cm{sup -1} band is identified with the Fe-N-O bend. The relative NRVS intensities of these features determine the degree of vibrational mixing between the stretch and the bend. The implications of these results are discussed with respect to the trans effect of imidazole on the bound NO. In addition, a comparison to myoglobin-NO (Mb-NO) is made to determine the effect of the Mb active site pocket on the bound NO.

  10. Reduced dimensionality tailored HN(C)N experiments for facile backbone resonance assignment of proteins through unambiguous identification of sequential HSQC peaks

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh

    2013-12-01

    Two novel reduced dimensionality (RD) tailored HN(C)N [S.C. Panchal, N.S. Bhavesh, R.V. Hosur, Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins, J. Biomol. NMR 20 (2001) 135-147] experiments are proposed to facilitate the backbone resonance assignment of proteins both in terms of its accuracy and speed. These experiments - referred here as (4,3)D-hNCOcaNH and (4,3)D-hNcoCANH - exploit the linear combination of backbone 15N and 13C‧/13Cα chemical shifts simultaneously to achieve higher peak dispersion and randomness along their respective F1 dimensions. Simply, this has been achieved by modulating the backbone 15N(i) chemical shifts with that of 13C‧ (i - 1)/13Cα (i - 1) spins following the established reduced dimensionality NMR approach [T. Szyperski, D.C. Yeh, D.K. Sukumaran, H.N. Moseley, G.T. Montelione, Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment, Proc. Natl. Acad. Sci. USA 99 (2002) 8009-8014]. Though the modification is simple it has resulted an ingenious improvement of HN(C)N both in terms of peak dispersion and easiness of establishing the sequential connectivities. The increased dispersion along F1 dimension solves two purposes here: (i) resolves the ambiguities arising because of degenerate 15N chemical shifts and (ii) reduces the signal overlap in F2(15N)-F3(1H) planes (an important requisite in HN(C)N based assignment protocol for facile and unambiguous identification of sequentially connected HSQC peaks). The performance of both these experiments and the assignment protocol has been demonstrated using bovine apo Calbindin-d9k (75 aa) and urea denatured UNC60B (a 152 amino acid ADF/cofilin family protein of Caenorhabditis elegans), as representatives of folded and unfolded protein systems, respectively.

  11. Reduced dimensionality tailored HN(C)N experiments for facile backbone resonance assignment of proteins through unambiguous identification of sequential HSQC peaks.

    PubMed

    Kumar, Dinesh

    2013-12-01

    Two novel reduced dimensionality (RD) tailored HN(C)N [S.C. Panchal, N.S. Bhavesh, R.V. Hosur, Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins, J. Biomol. NMR 20 (2001) 135-147] experiments are proposed to facilitate the backbone resonance assignment of proteins both in terms of its accuracy and speed. These experiments - referred here as (4,3)D-hNCOcaNH and (4,3)D-hNcoCANH - exploit the linear combination of backbone (15)N and (13)C'/(13)C(α) chemical shifts simultaneously to achieve higher peak dispersion and randomness along their respective F1 dimensions. Simply, this has been achieved by modulating the backbone (15)N(i) chemical shifts with that of (13)C' (i-1)/(13)C(α) (i-1) spins following the established reduced dimensionality NMR approach [T. Szyperski, D.C. Yeh, D.K. Sukumaran, H.N. Moseley, G.T. Montelione, Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment, Proc. Natl. Acad. Sci. USA 99 (2002) 8009-8014]. Though the modification is simple it has resulted an ingenious improvement of HN(C)N both in terms of peak dispersion and easiness of establishing the sequential connectivities. The increased dispersion along F1 dimension solves two purposes here: (i) resolves the ambiguities arising because of degenerate (15)N chemical shifts and (ii) reduces the signal overlap in F2((15)N)-F3((1)H) planes (an important requisite in HN(C)N based assignment protocol for facile and unambiguous identification of sequentially connected HSQC peaks). The performance of both these experiments and the assignment protocol has been demonstrated using bovine apo Calbindin-d9k (75 aa) and urea denatured UNC60B (a 152 amino acid ADF/cofilin family protein of Caenorhabditis elegans), as representatives of folded and unfolded protein systems, respectively. PMID:24161682

  12. A Markov Random Field Framework for Protein Side-Chain Resonance Assignment

    NASA Astrophysics Data System (ADS)

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-relevant solution conditions. The current speed of protein structure determination via NMR is limited by the lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in the primary sequence. Although numerous algorithms have been developed to address the backbone resonance assignment problem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR experiments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR experiments measuring through-space interactions between protons in the protein, which also provide crucial distance restraints and are normally required in high-resolution structure determination. We cast the side-chain resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combinatorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF framework captures the contact map information of the protein derived from NMR spectra, and exploits the structural information available from the backbone conformations determined by orientational restraints and a set of discretized side-chain conformations (i.e., rotamers). A Hausdorff

  13. Backbone and side-chain resonance assignment of the A147T polymorph of mouse TSPO in complex with a high-affinity radioligand.

    PubMed

    Jaremko, Mariusz; Jaremko, Łukasz; Giller, Karin; Becker, Stefan; Zweckstetter, Markus

    2016-04-01

    The integral polytopic membrane protein TSPO is the target for numerous endogenous and synthetic ligands. However, the affinity of many ligands is influenced by a common polymorphism in TSPO, in which an alanine at position 147 is replaced by threonine, thereby complicating the use of several radioligands for clinical diagnosis. In contrast, the best-characterized TSPO ligand (R)-PK11195 binds with similar affinity to both variants of mitochondrial TSPO (wild-type and A147T variant). Here we report the (1)H, (13)C, (15)N backbone and side-chain resonance assignment of the A147T polymorph of TSPO from Mus Musculus in complex with (R)-PK11195 in DPC detergent micelles. More than 90 % of all resonances were sequence-specifically assigned, demonstrating the ability to obtain high-quality spectral data for both the backbone and the side-chains of medically relevant integral membrane proteins. PMID:26364056

  14. The Trojan Horse Method as a tool to investigate low-energy resonances: the {sup 18}O(p, {alpha}){sup 15}N and {sup 17}O(p, {alpha}){sup 14}N cases

    SciTech Connect

    La Cognata, M.; Sergi, M. L.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Kiss, G.; Lamia, L.; Pizzone, R. G.; Romano, S.; Mukhamedzhanov, A.; Goldberg, V.; Tribble, R.; Coc, A.; Hammache, F.; Sereville, N. de; Tumino, A.

    2010-08-12

    The {sup 18}O(p, {alpha}){sup 15}N and {sup 17}O(p, {alpha}){sup 14}N reactions are of primary importance in several as-trophysical scenarios, including nucleosynthesis inside Asymptotic Giant Branch stars and oxygen and nitrogen isotopic ratios in meteorite grains. They are also key reactions to understand exotic systems such as R-Coronae Borealis stars and novae. Thus, the measurement of their cross sections in the low energy region can be crucial to reduce the nuclear uncertainty on theoretical predictions, because the resonance parameters are poorly determined. The Trojan Horse Method, in its newly developed form particularly suited to investigate low-energy resonances, has been applied to the {sup 2}H({sup 18}O, {alpha}{sup 15}N)n and {sup 2}H({sup 17}O, {alpha}{sup 14}N)n reactions to deduce the {sup 18}O(p, {alpha}){sup 15}N and {sup 17}O(p, {alpha}){sup 14}N cross sections at low energies. Resonances in the {sup 18}O(p, {alpha}){sup 15}N and {sup 17}O(p, {alpha}){sup 14}N excitation functions have been studied and the resonance parameters deduced.

  15. Assignment of 1H and 13C hyperfine-shifted resonances for tuna ferricytochrome c.

    PubMed Central

    Sukits, S F; Satterlee, J D

    1996-01-01

    Tuna ferricytochrome c has been used to demonstrate the potential for completely assigning 1H and 13C strongly hyperfine-shifted resonances in metalloprotein paramagnetic centers. This was done by implementation of standard two-dimensional NMR experiments adapted to take advantage of the enhanced relaxation rates of strongly hyperfine-shifted nuclei. The results show that complete proton assignments of the heme and axial ligands can be achieved, and that assignments of several strongly shifted protons from amino acids located close to the heme can also be made. Virtually all proton-bearing heme 13C resonances have been located, and additional 13C resonances from heme vicinity amino acids are also identified. These results represent an improvement over previous proton resonance assignment efforts that were predicated on the knowledge of specific assignments in the diamagnetic protein and relied on magnetization transfer experiments in heterogeneous solutions composed of mixtures of diamagnetic ferrocytochrome c and paramagnetic ferricytochrome c. Even with that more complicated procedure, complete heme proton assignments for ferricytochrome c have never been demonstrated by a single laboratory. The results presented here were achieved using a more generally applicable strategy with a solution of the uniformly oxidized protein, thereby eliminating the requirement of fast electron self-exchange, which is a condition that is frequently not met. PMID:8913622

  16. Confirmation of the assignment of the low-field proton resonance of serine proteases by using specifically nitrogen-15 labeled enzyme.

    PubMed

    Bachovchin, W W

    1985-12-01

    Proton NMR spectra of serine proteases in 1H2O solutions typically show a single resonance at very low magnetic field--i.e., 14-18 ppm from dimethylsilylapentanesulfonate. This resonance has been assigned to the proton hydrogen bonded between aspartic acid-102 and histidine-57 (chymotrypsin numbering system) of the "charge-relay system" or catalytic triad of serine proteases [Robillard, G. & Shulman, R. G. (1972) J. Mol. Biol. 71, 507-511]. Since then, there have been a number of reports that have cast doubt on its correctness. In the present work we have tested this assignment using alpha-lytic protease (EC 3.4.21.12, Myxobacter alpha-lytic proteinase), a bacterial serine protease homologous to elastase, which is specifically labeled with nitrogen-15 at N delta 1 of its single histidine residue. The low-field region of the proton spectra of this labeled enzyme shows a single resonance having the properties reported [Robillard, G. & Shulman, R. G. (1974) J. Mol. Biol. 86, 519-540], which, in addition, exhibits spin-spin splitting to the nitrogen-15 label. The observation of this 15N delta 1-H coupling makes the assignment of this resonance to the charge-relay proton unequivocal. PMID:3934665

  17. Confirmation of the assignment of the low-field proton resonance of serine proteases by using specifically nitrogen-15 labeled enzyme

    SciTech Connect

    Bachovchin, W.W.

    1985-12-01

    Proton NMR spectra of serine proteases in /sup 1/H/sub 2/O solutions typically show a single resonance at very low magnetic field i.e., 14-18 ppm from dimethylsilylapentanesulfonate. This resonance has been assigned to the proton hydrogen bonded between aspartic acid-102 and histidine-57 (chymotrypsin numbering system) of the charge-relay system or catalytic triad of serine proteases. There have been a number of reports that have cast doubt on its correctness. In the present work the authors have tested this assignment using ..cap alpha..-lytic protease, a bacterial serine protease homologous to elastase, which is specifically labeled with nitrogen-15 at N/sup delta/sub 1// of its single histidine residue. The low-field region of the proton spectra of this labeled enzyme shows a single resonance having the properties reported which, in addition, exhibits spin-spin splitting to the nitrogen-15 label. The observation of this /sup 15/N-/sup delta/sub 1//-H coupling makes the assignment of this resonance to the charge-relay proton unequivocal.

  18. THE EFFECTS OF PARAMAGNETIC RELAXATION REAGENTS ON 15N SPIN RELAXATION AND THE USE OF GD(DPM)3 AS A NITROGEN-15 NUCLEAR MAGNETIC RESONANCE SPIN LABEL

    EPA Science Inventory

    Electron-nuclear relaxation times (T(1) sup e's) for (15)N and (13)C in natural abundance are measured for a series of amines of a wide range of pK(a)s using four paramagnetic relaxation reagents that are soluable in organic solutions. Cr(acac)3 and Cr(dpm)3 are seen to affect th...

  19. EZ-ASSIGN, a program for exhaustive NMR chemical shift assignments of large proteins from complete or incomplete triple-resonance data

    PubMed Central

    Zuiderweg, Erik R.P.; Bagai, Ireena; Rossi, Paolo; Bertelsen, Eric B.

    2013-01-01

    For several of the proteins in the BioMagResBank larger than 200 residues, 60% or fewer of the backbone resonances were assigned. But how reliable are those assignments? In contrast to complete assignments, where it is possible to check whether every triple-resonance Generalized Spin System (GSS) is assigned once and only once, with incomplete data one should compare all possible assignments and pick the best one. But that is not feasible: For example, for 200 residues and an incomplete set of 100 GSS, there are 1.6*10260 possible assignments. In “EZ-ASSIGN”, the protein sequence is divided in smaller unique fragments. Combined with intelligent search approaches, an exhaustive comparison of all possible assignments is now feasible using a laptop computer. The program was tested with experimental data of a 388-residue domain of the Hsp70 chaperone protein DnaK and for a 351-residue domain of a type III secretion ATPase. EZ-ASSIGN reproduced the hand assignments. It did slightly better than the computer program PINE (Bahrami et al., PLoS Comput Biol. 2009 5 (3): e1000307) and significantly outperformed SAGA (Crippen et al, (2010) J Biomol NMR 46, 281–298), AUTOASSIGN (Zimmerman et al., (1997) J Mol Biol 269:592–610), and IBIS (Hyberts and Wagner (2003) J Biomol NMR 26:335–344). Next, EZ-ASSIGN was used to investigate how well NMR data of decreasing completeness can be assigned. We found that the program could confidently assign fragments in very incomplete data. Here, EZ-ASSIGN dramatically outperformed all the other assignment programs tested. PMID:24022834

  20. Spin and parity assignments for {sup 94,95}Mo neutron resonances

    SciTech Connect

    Sheets, S. A.; Agvaanluvsan, U.; Becker, J. A.; Parker, W. E.; Wu, C. Y.; Becvar, F.; Krticka, M.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Wilhelmy, J. B.; Mitchell, G. E.; Sharapov, E. I.; Tomandl, I.

    2007-12-15

    The {gamma} rays following the {sup 94,95}Mo(n,{gamma}) reactions were measured as a function of incident neutron energy by the time-of-flight method with the DANCE (Detector for Advanced Neutron Capture Experiments) array of 160 BaF{sub 2} scintillation detectors at the Los Alamos Neutron Science Center. The targets were enriched samples: 91.59% {sup 94}Mo and 96.47% {sup 95}Mo. The {gamma}-ray multiplicities and energy spectra for different multiplicities were measured in s- and p-wave resonances up to E{sub n}=10 keV for {sup 94}Mo and up to E{sub n}=2 keV for {sup 95}Mo. Definite spins and parities were assigned in {sup 96}Mo for about 60% of the resonances, and tentative spins and parities were assigned for the remaining resonances. In {sup 95}Mo the parities were determined for the observed resonances, confirming previously known assignments.

  1. Proton nuclear magnetic resonance studies on the variant-3 neurotoxin from Centruroides sculpturatus Ewing: Sequential assignment of resonances

    SciTech Connect

    Nettesheim, D.G.; Klevit, R.E.; Drobny, G.; Watt, D.D.; Krishna, N.R. )

    1989-02-21

    The authors report the sequential assignment of resonances to specific residues in the proton nuclear magnetic resonance spectrum of the variant-3 neurotoxin from the scorpion Centruroides sculpturatus Ewing (range southwestern U.S.A.). A combination of two-dimensional NMR experiments such as 2D-COSY, 2D-NOESY, and single- and double-RELAY coherence transfer spectroscopy has been employed on samples of the protein dissolved in D{sub 2}O and in H{sub 2}O for assignment purposes. These studies provide a basis for the determination of the solution-phase conformation of this protein and for undertaking detailed structure-function studies of these neurotoxins that modulate the flow of sodium current by binding to the sodium channels of excitable membranes.

  2. Assignment of Oriented Sample NMR Resonances from a Three Transmembrane Helix Protein

    PubMed Central

    Murray, D. T.; Hung, I.; Cross, T. A.

    2014-01-01

    Oriented sample solid state NMR techniques have been routinely employed to determine the structures of membrane proteins with one or two transmembrane helices. For larger proteins the technique has been limited by spectral resolution and lack of assignment strategies. Here, a strategy for resonance assignment is devised and applied to a three transmembrane helix protein. Sequence specific assignments for all labeled transmembrane amino acid sites are obtained, which provide a set of orientational restraints and helix orientation in the bilayer. Our experiments expand the utility of solid state NMR in membrane protein structure characterization to three transmembrane helix proteins and represent a straightforward strategy for routinely characterizing multiple transmembrane helix protein structures. PMID:24509383

  3. Assignment of oriented sample NMR resonances from a three transmembrane helix protein.

    PubMed

    Murray, D T; Hung, I; Cross, T A

    2014-03-01

    Oriented sample solid state NMR techniques have been routinely employed to determine the structures of membrane proteins with one or two transmembrane helices. For larger proteins the technique has been limited by spectral resolution and lack of assignment strategies. Here, a strategy for resonance assignment is devised and applied to a three transmembrane helix protein. Sequence specific assignments for all labeled transmembrane amino acid sites are obtained, which provide a set of orientational restraints and helix orientations in the bilayer. Our experiments expand the utility of solid state NMR in membrane protein structure characterization to three transmembrane helix proteins and represent a straightforward strategy for routinely characterizing multiple transmembrane helix protein structures. PMID:24509383

  4. Spectroscopic labeling of A, S/T in the 1H- 15N HSQC spectrum of uniformly ( 15N- 13C) labeled proteins

    NASA Astrophysics Data System (ADS)

    Chugh, Jeetender; Hosur, Ramakrishna V.

    2008-10-01

    A new triple resonance two-dimensional experiment, termed (HC)NH, has been described to generate specific labels on the peaks of alanines and serines/threonines, separately, in the 1H- 15N HSQC spectrum of a protein. The performance of the pulse sequence has been demonstrated with a 151 residue protein. The method permits the investigation of local environments around those specific residues without actually having to obtain complete resonance assignments for the entire protein. With this one can envisage use of the technique for studying large protein systems from different points of view.

  5. A General Assignment Method for Oriented Sample (OS) Solid-state NMR of Proteins Based on The Correlation of Resonances through Heteronuclear Dipolar Couplings in Samples Aligned Parallel and Perpendicular to the Magnetic Field

    PubMed Central

    Lu, George J.; Son, Woo Sung; Opella, Stanley J.

    2011-01-01

    A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly 15N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly 15N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches. PMID:21316275

  6. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.

    PubMed

    Wei, Qingtao; Chen, Jiajing; Mi, Juan; Zhang, Jiahai; Ruan, Ke; Wu, Jihui

    2016-07-01

    Nuclear magnetic resonance (NMR) is a powerful tool to interrogate protein structure and dynamics residue by residue. However, the prerequisite chemical-shift assignment remains a bottleneck for large proteins due to the fast relaxation and the frequency degeneracy of the (13) Cα nuclei. Herein, we present a covariance NMR strategy to assign the backbone chemical shifts by using only HN(CO)CA and HNCA spectra that has a high sensitivity even for large proteins. By using the peak linear correlation coefficient (LCC), which is a sensitive probe even for tiny chemical-shift displacements, we correctly identify the fidelity of approximately 92 % cross-peaks in the covariance spectrum, which is thus a significant improvement on the approach developed by Snyder and Brüschweiler (66 %) and the use of spectral derivatives (50 %). Thus, we calculate the 4D covariance spectrum from HN(CO)CA and HNCA experiments, in which cross-peaks with LCCs above a universal threshold are considered as true correlations. This 4D covariance spectrum enables the sequential assignment of a 42 kDa maltose binding protein (MBP), in which about 95 % residues are successfully assigned with a high accuracy of 98 %. Our LCC approach, therefore, paves the way for a residue-by-residue study of the backbone structure and dynamics of large proteins. PMID:27276173

  7. A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids.

    PubMed

    Ehlert, Christopher; Holzweber, Markus; Lippitz, Andreas; Unger, Wolfgang E S; Saalfrank, Peter

    2016-03-16

    In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC1im](+)[NTf2](-) and [C4C1im](+)[I](-)). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra. PMID:26948544

  8. AutoLink: Automated sequential resonance assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic

    NASA Astrophysics Data System (ADS)

    Masse, James E.; Keller, Rochus

    2005-05-01

    We have developed a new computer algorithm for determining the backbone resonance assignments for biopolymers. The approach we have taken, relative hypothesis prioritization, is implemented as a Lua program interfaced to the recently developed computer-aided resonance assignment (CARA) program. Our program can work with virtually any spectrum type, and is especially good with NOESY data. The results of the program are displayed in an easy-to-read, color-coded, graphic representation, allowing users to assess the quality of the results in minutes. Here we report the application of the program to two RNA recognition motifs of Apobec-1 Complementation Factor. The assignment of these domains demonstrates AutoLink's ability to deliver accurate resonance assignments from very minimal data and with minimal user intervention.

  9. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  10. HN-NCA heteronuclear TOCSY-NH experiment for (1)H(N) and (15)N sequential correlations in ((13)C, (15)N) labelled intrinsically disordered proteins.

    PubMed

    Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine; Herbst, Christian; Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai

    2015-10-01

    A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue 'i' with that of residues 'i-1' and 'i+1' in ((13)C, (15)N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of (1) J CαN and (2) J CαN couplings to transfer the (15)N x magnetisation from amino acid residue 'i' to adjacent residues via the application of a band-selective (15)N-(13)C(α) heteronuclear cross-polarisation sequence of ~100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described. PMID:26282620

  11. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  12. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids. PMID:26203019

  13. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  14. Spin and Parity Assignment of Neutron Resonances using Gamma-ray Multiplicity

    SciTech Connect

    Agvaanluvsan, U.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Dashdorj, D.; Becker, J. A.; Parker, W. E.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krticka, M.; Becvar, F.

    2009-03-31

    Decay gamma rays following neutron capture on various isotopes are collected by the Detector for Advanced Neutron Capture Experiments (DANCE) array, which is located at flight path 14 at the Lujan Neutron Scattering Center at Los Alamos National Laboratory. The high segmentation (160 detectors) and close packing of the detector array enable gamma-ray multiplicity measurements. The calorimetric properties of the DANCE array coupled with the neutron time-of-flight technique enables one to gate on a specific resonance of a given isotope in the time-of-flight spectrum and obtain the summed energy spectrum for that isotope. The singles gamma-ray spectrum for each multiplicity can be separated by their DANCE cluster multiplicity. The multiplicity distribution contains the signatures of spin and parity of the capture state. Under suitable circumstances where the difference between spins of the initial (capture) and final (ground) state is large enough, the signatures in the multiplicity distribution can be used in improving the spin assignment of the initial state. The spin assignment is applied with varying degree of success to difference isotopes and description of this application for {sup 95}Mo, {sup 151,153}Eu, and {sup 155,157}Gd is reviewed briefly.

  15. Fast and accurate resonance assignment of small-to-large proteins by combining automated and manual approaches.

    PubMed

    Niklasson, Markus; Ahlner, Alexandra; Andresen, Cecilia; Marsh, Joseph A; Lundström, Patrik

    2015-01-01

    The process of resonance assignment is fundamental to most NMR studies of protein structure and dynamics. Unfortunately, the manual assignment of residues is tedious and time-consuming, and can represent a significant bottleneck for further characterization. Furthermore, while automated approaches have been developed, they are often limited in their accuracy, particularly for larger proteins. Here, we address this by introducing the software COMPASS, which, by combining automated resonance assignment with manual intervention, is able to achieve accuracy approaching that from manual assignments at greatly accelerated speeds. Moreover, by including the option to compensate for isotope shift effects in deuterated proteins, COMPASS is far more accurate for larger proteins than existing automated methods. COMPASS is an open-source project licensed under GNU General Public License and is available for download from http://www.liu.se/forskning/foass/tidigare-foass/patrik-lundstrom/software?l=en. Source code and binaries for Linux, Mac OS X and Microsoft Windows are available. PMID:25569628

  16. FLAMEnGO 2.0: An enhanced fuzzy logic algorithm for structure-based assignment of methyl group resonances

    NASA Astrophysics Data System (ADS)

    Chao, Fa-An; Kim, Jonggul; Xia, Youlin; Milligan, Michael; Rowe, Nancy; Veglia, Gianluigi

    2014-08-01

    We present an enhanced version of the FLAMEnGO (Fuzzy Logic Assignment of Methyl Group) software, a structure-based method to assign methyl group resonances in large proteins. FLAMEnGO utilizes a fuzzy logic algorithm coupled with Monte Carlo sampling to obtain a probability-based assignment of the methyl group resonances. As an input, FLAMEnGO requires either the protein X-ray structure or an NMR structural ensemble including data such as methyl-methyl NOESY, paramagnetic relaxation enhancement (PRE), methine-methyl TOCSY data. Version 2.0 of this software (FLAMEnGO 2.0) has a user-friendly graphic interface and presents improved modules that enable the input of partial assignments and additional NMR restraints. We tested the performance of FLAMEnGO 2.0 on maltose binding protein (MBP) as well as the C-subunit of the cAMP-dependent protein kinase A (PKA-C). FLAMEnGO 2.0 can be used as a standalone method or to assist in the completion of partial resonance assignments and can be downloaded at www.chem.umn.edu/groups/veglia/forms/flamengo2-form.html.

  17. TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra.

    PubMed

    Zawadzka-Kazimierczuk, Anna; Koźmiński, Wiktor; Billeter, Martin

    2012-09-01

    While NMR studies of proteins typically aim at structure, dynamics or interactions, resonance assignments represent in almost all cases the initial step of the analysis. With increasing complexity of the NMR spectra, for example due to decreasing extent of ordered structure, this task often becomes both difficult and time-consuming, and the recording of high-dimensional data with high-resolution may be essential. Random sampling of the evolution time space, combined with sparse multidimensional Fourier transform (SMFT), allows for efficient recording of very high dimensional spectra (≥4 dimensions) while maintaining high resolution. However, the nature of this data demands for automation of the assignment process. Here we present the program TSAR (Tool for SMFT-based Assignment of Resonances), which exploits all advantages of SMFT input. Moreover, its flexibility allows to process data from any type of experiments that provide sequential connectivities. The algorithm was tested on several protein samples, including a disordered 81-residue fragment of the δ subunit of RNA polymerase from Bacillus subtilis containing various repetitive sequences. For our test examples, TSAR achieves a high percentage of assigned residues without any erroneous assignments. PMID:22806130

  18. Nuclear Resonance Vibrational Spectroscopy applied to [Fe(OEP)(NO)]: The Vibrational Assignments of Five-Coordinate Ferrous Heme Nitrosyls and Implications for Electronic Structure

    PubMed Central

    Lehnert, Nicolai; Galinato, Mary Grace I.; Paulat, Florian; Richter-Addo, George B.; Sturhahn, Wolfgang; Xu, Nan; Zhao, Jiyong

    2010-01-01

    This study presents Nuclear Resonance Vibrational Spectroscopy (NRVS) data on the five-coordinate (5C) ferrous heme nitrosyl complex [Fe(OEP)(NO)] (1, OEP2− = octaethylporphyrinato dianion) and the corresponding 15N18O labeled complex. The obtained spectra identify two isotope sensitive features at 522 and 388 cm−1, which shift to 508 and 381 cm−1, respectively, upon isotope labeling. These features are assigned to the Fe-NO stretch ν(Fe-NO) and the in-plane Fe-N-O bending mode δip(Fe-N-O), the latter has been unambiguously assigned for the first time for 1. The obtained NRVS data were simulated using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Since complex 1 can potentially exist in 12 different conformations involving the FeNO and peripheral ethyl orientations, extended DFT calculations and QCC-NCA simulations were performed to determine how these conformations affect the NRVS properties of [Fe(OEP)NO]. These results show that the properties and force constants of the FeNO unit are hardly affected by the conformational changes involving the ethyl substituents. On the other hand, the NRVS-active porphyrin-based vibrations around 340 – 360, 300 –320, and 250 – 270 cm−1 are sensitive to the conformational changes. The spectroscopic changes observed in these regions are due to selective mechanical couplings of one component of Eu-type (in ideal D4h symmetry) porphyrin-based vibrations with the in-plane Fe-N-O bending mode. This leads to the observed variations in Fe(OEP) core mode energies and NRVS intensities without affecting the properties of the FeNO unit. The QCC-NCA simulated NRVS spectra of 1 show excellent agreement with experiment, and indicate that conformer F is likely present in the samples of this complex investigated here. The observed porphyrin-based vibrations in the NRVS spectra of 1 are also assigned based on the QCC-NCA results. The obtained force constants of the Fe-NO and N-O bonds are 2.83 – 2

  19. Extension of transverse relaxation-optimized spectroscopy techniques to allosteric proteins: CO- and paramagnetic fluoromet-hemoglobin [beta (15N-valine)].

    PubMed

    Nocek, J M; Huang, K; Hoffman, B M

    2000-03-14

    We present the first steps in applying transverse relaxation-optimized spectroscopy (TROSY) techniques to the study of allosterism. Each beta-chain of the hemoglobin (Hb) tetramer has 17 valine residues. We have (15)N-labeled the beta-chain Val residues and detected 16 of the 17 (1)H-(15)N correlation peaks for beta-chain Val of the R state CO-Hb structure by using the TROSY technique. Sequence-specific assignments are suggested, based mainly on analysis of the (1)H pseudocontact-shift increments produced by oxidizing the diamagnetic R state HbCO to the paramagnetic R state fluoromet form. When possible, we support these assignments with sequential nuclear Overhauser effect (NOE) information obtained from a two-dimensional [(1)H,(1)H]-NOESY-TROSY experiment (NOESY, NOE spectroscopy). We have induced further the R-T conformational change by adding the allosteric effector, inositol hexaphosphate, to the fluoromet-Hb sample. This change induces substantial increments in the (1)H and (15)N chemical shifts, and we discuss the implication of these findings in the context of the tentative sequence assignments. These preliminary results suggest that amide nitrogen and amide proton chemical shifts in a selectively labeled sample are site-specific probes for monitoring the allosteric response of the ensemble-averaged solution structure of Hb. More important, the chemical-shift dispersion obtained is adequate to permit a complete assignment of the backbone (15)N/(13)C resonances upon nonselective labeling. PMID:10716987

  20. Resonance assignments of non-exchangeable protons in B type DNA oligomers, an overview.

    PubMed Central

    van de Ven, F J; Hilbers, C W

    1988-01-01

    The chemical shifts of 1H resonances of non exchangeable protons (except H5', H5" and adenine H2) of over six hundred nucleotides have been collected. The influence which the base of the nucleotide itself as well as the bases on its 5' and 3' side exert on the chemical shifts of the various resonances has been investigated. Most of the resonances appear to be predominantly influenced by only one base. For H2', H2", H3', H4' and H6/H8 this is the base of the central nucleotide, for H5(C) and CH3(T) it is the one on the 5' side and for H1' it is the one on the 3' side. Chemical shift distribution profiles are presented which allow an estimation of the probability of finding a particular resonance at a particular position in the spectrum. PMID:2840632

  1. Solution structural characterization of cyanometmyoglobin: Resonance assignment of heme cavity residues by two-dimensional NMR

    SciTech Connect

    Emerson, S.D.; La Mar, G.N. )

    1990-02-13

    Steady-state nuclear Overhauser effects (NOE), two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY), and 2D spin correlation spectroscopy (COSY) have been applied to the fully paramagnetic low-spin, cyanide-ligated complex of sperm whale ferric myoglobin to assign the majority of the heme pocket side-chain proton signals and the remainder of the heme signals. It is shown that the 2D NOESY map reveals essentially all dipolar connectivities observed in ordinary 1D NOE experiments and expected on the basis of crystal coordinates, albeit often more weakly than in a diamagnetic analogue. For extremely broad ({approximately}600-Hz) and rapidly relaxing (T{sub 1} {approximately} 3 ms) signals which show no NOESY peaks, the authors demonstrate that conventional steady-state NOEs obtained under very rapid pulsing conditions still allow detection of the critical dipolar connectivities that allow unambiguous assignments. Numerous critical COSY cross peaks between strongly hyperfine-shifted peaks were resolved and assigned. In all, 95% (53 of 56 signals) of the total proton sets within {approximately}7.5 {angstrom} of the iron, the region experiencing the strongest hyperfine shifts and paramagnetic relaxation, are now unambiguously assigned. Hence it is clear that the 2D methods can be profitably applied to paramagnetic proteins. The scope and limitations of such application are discussed. The resulting hyperfine shift pattern for the heme confirmed expectations based on model compounds.

  2. Complete Proton and Carbon Assignment of Triclosan via One- and Two- Dimensional Nuclear Magnetic Resonance Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Students from an upper-division undergraduate spectroscopy class analyzed one- and two-dimensional 400 MHz NMR spectroscopic data from triclosan in CDCl3. Guided assignment of all proton and carbon signals was completed via 1D proton and carbon, nuclear Overhauser effect (nOe), distortionless enhanc...

  3. Inhibition of alanine racemase by alanine phosphonate: detection of an imine linkage to pyridoxal 5'-phosphate in the enzyme-inhibitor complex by solid-state /sup 15/N nuclear magnetic resonance

    SciTech Connect

    Copie, V.; Faraci, W.S.; Walsh, C.T.; Griffin, R.G.

    1988-07-12

    Inhibition of alanine racemase from the Gram-positive bacterium Bacillus stearothermophilus by (1-aminoethyl)phosphonic acid (Ala-P) proceeds via a two-step reaction pathway in which reactivation occurs very slowly. In order to determine the mechanism of inhibition, the authors have recorded low-temperature, solid-state /sup 15/N NMR spectra from microcrystals of the (/sup 15/N)Ala-P-enzyme complex, together with spectra of a series of model compounds that provide the requisite database for the interpretation of the /sup 15/N chemical shifts. Proton-decoupled spectra of the microcrystals exhibit a line at approx. 150 ppm, which conclusively demonstrates the presence of a protonated Ala-P-PLP aldimine and thus clarifies the structure of the enzyme-inhibitor complex. They also report the pH dependence of Ala-P binding to alanine racemase.

  4. Optimized {gamma}-Multiplicity Based Spin Assignments of s-Wave Neutron Resonances

    SciTech Connect

    Becvar, F.; Koehler, Paul Edward; Krticka, Milan; Mitchell, G. E.; Ullmann, J. L.

    2011-01-01

    The multiplicity of -ray emission following neutron capture at isolated resonances carries valuable information on the resonance spin. Several methods utilizing this information have been developed. The latest method was recently introduced for analyzing the data from time-of-flight measurements with 4 -calorimetric detection systems. The present paper describes a generalization of this method. The goal is the separation of the -emission yields belonging to the two neutron capturing state spins of isolated (or even unresolved) s-wave neutron resonances on targets with non-zero spin. The formalism for performing this separation is described and then tested on artificially generated data. This new method was applied to the -multiplicity data obtained for the 147Sm(n, )148Sm reaction using the DANCE detector system at the LANSCE facility at Los Alamos National Laboratory. The analyzing power of the upgraded method is supported by combined dicebox and geant4 simulations of the fluctuation properties of the multiplicity distributions.

  5. 1H nuclear-magnetic-resonance investigation of oxidized Fe4S4 ferredoxin from Thermotoga maritima. Hyperfine-shifted resonances, sequence-specific assignments and secondary structure.

    PubMed

    Wildegger, G; Bentrop, D; Ejchart, A; Alber, M; Hage, A; Sterner, R; Rösch, P

    1995-05-01

    The oxidized Fe4S4 ferredoxin from the hyperthermophilic bacterium Thermotoga maritima has been investigated by one- and two-dimensional NMR in order to characterize its hyperfine-shifted resonances originating from the cysteinyl cluster ligands and to assign its resonances in the diamagnetic shift range. The chemical shift and relaxation time pattern of the hyperfine-shifted signals is very similar to other oxidized Fe4S4 ferredoxins. A tentative sequence-specific assignment of these resonances according to a general pattern of chemical shift of cysteine protons versus sequence position of cluster ligand is presented. Furthermore, sequence-specific assignments for 85% of the amino acid residues that were obtained without any guidance by known X-ray structures of ferredoxins are given. They reveal the formation of at least two elements of secondary structure by the polypeptide chain of T. maritima ferredoxin: an alpha-helix comprising residues C43-D49 and a double-stranded antiparallel beta-sheet consisting of the N- and C-terminal parts of the protein. This folding pattern is very similar to that of the crystallographically characterized ferredoxin from the mesophile Desulfovibrio gigas [Kissinger, C.R., Sieker, L.C., Adman E.T. & Jensen, L.H. (1991) J. Mol. Biol. 219, 693-715] and therefore suggesting different mechanisms of stabilization for T. maritima ferredoxin and the ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus that was recently investigated by NMR [Teng, Q., Zhou, Z.H., Smith, E.T., Busse, S. C., Howard, J.B., Adams M.W.W. & La Mar, G.N. (1994) Biochemistry 33, 6316-6326]. PMID:7758460

  6. Solution structural characteristics of cyanometmyoglobin: resonance assignment of heme cavity residues by two-dimensional NMR.

    PubMed

    Emerson, S D; La Mar, G

    1990-02-13

    Steady-state nuclear Overhauser effects (NOE), two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY), and 2D spin correlation spectroscopy (COSY) have been applied to the fully paramagnetic low-spin, cyanide-ligated complex of sperm whale ferric myoglobin to assign the majority of the heme pocket side-chain proton signals and the remainder of the heme signals. It is shown that the 2D NOESY map reveals essentially all dipolar connectivities observed in ordinary 1D NOE experiments and expected on the basis of crystal coordinates, albeit often more weakly than in a diamagnetic analogue. For extremely broad (approximately 600-Hz) and rapidly relaxing (Tf1 approximately 3 ms) signals which show no NEOSY peaks, we demonstrate that conventional steady-state NOEs obtained under very rapid pulsing conditions still allow detection of the critical dipoar connectivities that allow unambiguous assignments. The COSY map was found to be generally less useful for the hyperfine-shifted residues, with cross peaks detected only for protons greater than 6 A from the iron. Nevertheless, numerous critical COSY cross peaks between strongly hyperfine-shifted peaks were resolved and assigned. In all, 95% (53 of 56 signals) of the total proton sets within approximately 7.5 A of the iron, the region experiencing the strongest hyperfine shifts and paramagnetic relaxation, are now unambiguously assigned. Hence it is clear that the 2D methods can be profitably applied to paramagnetic proteins. The scope and limitations of such application are discussed. The resulting hyperfine shift pattern for the heme confirmed expectations based on model compounds. In contrast, while exhibiting fortuitous 1H NMR spectral similarities, a major discrepancy was uncovered between the hyperfine shift pattern of the axially bound (F8 histidyl) imidazole in the protein and that of the imidazole in a relevant model compound [Chacko, V.P., & La Mar, G. N. (1982) J. Am. Chem. Soc. 104, 7002

  7. Simultaneous cross polarization to 13C and 15N with 1H detection at 60 kHz MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Das, Bibhuti B.; Opella, Stanley J.

    2016-01-01

    We describe high resolution MAS solid-state NMR experiments that utilize 1H detection with 60 kHz magic angle spinning; simultaneous cross-polarization from 1H to 15N and 13C nuclei; bidirectional cross-polarization between 13C and 15N nuclei; detection of both amide nitrogen and aliphatic carbon 1H; and measurement of both 13C and 15N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide 1H and alpha 1H selectively with 13C or 15N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating 1Hα/13Cα/1HN and 1HN/15N/1Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable. Spectral editing using bidirectional coherence transfer pathways enables simultaneous magnetization transfers between 15N, 13Cα(i) and 13C‧(i-1), facilitating intra- and inter-residue correlations for sequential resonance assignment. Non-uniform sampling is integrated into the experiments, further reducing the length of experimental time.

  8. Assignment of 1H NMR resonances of histidine and other aromatic residues in met-, cyano-, oxy-, and (carbon monoxy)myoglobins.

    PubMed

    Carver, J A; Bradbury, J H

    1984-10-01

    The resolved 1H NMR resonances of the aromatic region in the 270-MHz NMR spectrum of sperm whale, horse, and pig metmyoglobin (metMb) have been assigned, including the observable H-2 and H-4 histidine resonances, the tryptophan H-2 resonances, and upfield-shifted resonances from one tyrosine residue. The use of different Mb species, carboxymethylation, and matching of pK values allows the assignment of the H-4 resonances, which agree in only three cases out of seven with scalar-correlated two-dimensional NMR spectroscopy assignments by others. The conversion to hydroxymyoglobin at high pH involves rearrangements throughout the molecule and is observed by many assigned residues. In sperm whale ferric cyanomyoglobin, nine H-2 and eight H-4 histidine resonances have been assigned, including the His-97 H-2 resonance and tyrosine resonances from residues 103 and 146. The hyperfine-shifted resonances from heme and near-heme protons observe a shift with a pK = 5.3 +/- 0.3 (probably due to deprotonation of His-97, pK = 5.6) and another shift at pK = 10.8 +/- 0.3. The spectrum of high-spin ferrous sperm whale deoxymyoglobin is very similar to that of metMb, which allows the assignment of seven surface histidine H-2 and H-4 resonances and also resonances from the two tryptophan residues and one tyrosine. In diamagnetic sperm whale (carbon monoxy)myoglobin (COMb), 10 His H-2 and 11 His H-4 resonances are observed, and 8 H-2 and 9 H-4 resonances are assigned, including His-64 H-4, the distal histidine. This important resonance is not observed in sperm whale oxymyoglobin, which in general shows very similar titration curves to COMb. Histidine-36 shows unusual titration behavior in the paramagnetic derivatives but normal behavior in the diamagnetic derivatives, which is discussed in the accompanying paper [Bradbury, J. H., & Carver, J. A. (1984) Biochemistry (following paper in this issue)]. PMID:6498166

  9. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies.

    PubMed

    Nikonowicz, E P; Sirr, A; Legault, P; Jucker, F M; Baer, L M; Pardi, A

    1992-09-11

    A procedure is described for the efficient preparation of isotopically enriched RNAs of defined sequence. Uniformly labelled nucleotide 5'triphosphates (NTPs) were prepared from E.coli grown on 13C and/or 15N isotopically enriched media. These procedures routinely yield 180 mumoles of labelled NTPs per gram of 13C enriched glucose. The labelled NTPs were then used to synthesize RNA oligomers by in vitro transcription. Several 13C and/or 15N labelled RNAs have been synthesized for the sequence r(GGCGCUUGCGUC). Under conditions of high salt or low salt, this RNA forms either a symmetrical duplex with two U.U base pairs or a hairpin containing a CUUG loop respectively. These procedures were used to synthesize uniformly labelled RNAs and a RNA labelled only on the G and C residues. The ability to generate milligram quantities of isotopically labelled RNAs allows application of multi-dimensional heteronuclear magnetic resonance experiments that enormously simplify the resonance assignment and solution structure determination of RNAs. Examples of several such heteronuclear NMR experiments are shown. PMID:1383927

  10. Sequential backbone resonance assignments of the E. coli dihydrofolate reductase Gly67Val mutant: folate complex.

    PubMed

    Puthenpurackal Narayanan, Sunilkumar; Maeno, Akihiro; Wada, Yuji; Tate, Shin-Ichi; Akasaka, Kazuyuki

    2016-04-01

    Occasionally, a mutation in an exposed loop region causes a significant change in protein function and/or stability. A single mutation Gly67Val of E. coli dihydrofolate reductase (DHFR) in the exposed CD loop is such an example. We have carried out the chemical shift assignments for H(N), N(H), C(α) and C(β) atoms of the Gly67Val mutant of E. coli DHFR complexed with folate at pH 7.0, 35 °C, and then evaluated the H(N), N(H), C(α) and C(β) chemical shift changes caused by the mutation. The result indicates that, while the overall secondary structure remains the same, the single mutation Gly67Val causes site-specific conformational changes of the polypeptide backbone restricted around the adenosine-binding subdomain (residues 38-88) and not in the distant catalytic domain. PMID:26482924

  11. Assignment of protein backbone resonances using connectivity, torsion angles and 13Calpha chemical shifts.

    PubMed

    Morris, Laura C; Valafar, Homayoun; Prestegard, James H

    2004-05-01

    A program is presented which will return the most probable sequence location for a short connected set of residues in a protein given just (13)C(alpha) chemical shifts (delta((13)C(alpha))) and data restricting the phi and psi backbone angles. Data taken from both the BioMagResBank and the Protein Data Bank were used to create a probability density function (PDF) using a multivariate normal distribution in delta((13)C(alpha)), phi, and psi space for each amino acid residue. Extracting and combining probabilities for particular amino acid residues in a short proposed sequence yields a score indicative of the correctness of the proposed assignment. The program is illustrated using several proteins for which structure and (13)C(alpha) chemical shift data are available. PMID:15017135

  12. Proton nuclear magnetic resonance study of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata: Sequential and stereospecific resonance assignment and secondary structure

    SciTech Connect

    Driscoll, P.C.; Clore, G.M.; Beress, L.; Gronenborn, A.M. )

    1989-03-07

    The sequential resonance assignment of the {sup 1}H NMR spectrum of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata is presented. This is carried out with two-dimensional NMR techniques to identify through-bond and through-space (< 5{angstrom}) connectivities. Added spectral complexity arises from the fact that the sample is an approximately 1:1 mixture of two BDS-I isoproteins, (Leu-18)-BDS-I and (Phe-18)-BDS-I. Complete assignments, however, are obtained, largely due to the increased resolution and sensitivity afforded at 600 MHz. In addition, the stereospecific assignment of a large number of {beta}-methylene protons is achieved from an analysis of the pattern of {sup 3}J{sub {alpha}{beta}} coupling constants and the relative magnitudes of intraresidue NOEs involving the NH, C{sup {alpha}}H, and C{sup {beta}}H protons. Regular secondary structure elements are deduced from a qualitative interpretation of the nuclear Overhauser enhancement, {sup 3}J{sub HN{alpha}} coupling constant, and amide NH exchange data. A triple-stranded antiparallel {beta}-sheet is found to be related to that found in partially homologous sea anemone polypeptide toxins.

  13. The vibrational spectra of [ 15N 2]-succinonitrile

    NASA Astrophysics Data System (ADS)

    Fengler, O. I.

    2001-07-01

    For the first time, the infrared and Raman spectra of [ 15N 2]-succinonitrile are presented and discussed in detail. Assignments of the vibrational bands of its two rotational conformers gauche and trans, respectively, have been made for both infrared and Raman spectra. The assignments were based on a recent ab-initio force field calculation for succinonitrile, taking into account the vibrational frequencies of other succinonitrile isotopomers. There are differences in the frequencies of the vibrational bands due to the mass increase in the cyanide groups, which have been analysed in depth.

  14. The vibrational spectra of [15N2]-succinonitrile.

    PubMed

    Fengler, O I

    2001-07-01

    For the first time, the infrared and Raman spectra of [15N2]-succinonitrile are presented and discussed in detail. Assignments of the vibrational bands of its two rotational conformers gauche and trans, respectively, have been made for both infrared and Raman spectra. The assignments were based on a recent ab-initio force field calculation for succinonitrile, taking into account the vibrational frequencies of other succinonitrile isotopomers. There are differences in the frequencies of the vibrational bands due to the mass increase in the cyanide groups, which have been analysed in depth. PMID:11471715

  15. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  16. Differentiation of histidine tautomeric states using 15N selectively filtered 13C solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C, 15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture.

  17. Differentiation of histidine tautomeric states using (15)N selectively filtered (13)C solid-state NMR spectroscopy.

    PubMed

    Miao, Yimin; Cross, Timothy A; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional (15)N selectively filtered (13)C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all (13)C resonances of the individual imidazole rings in a mixture of tautomeric states. When (15)N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the (13)C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of (13)C, (15)N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture. PMID:25026459

  18. Differentiation of Histidine Tautomeric States using 15N Selectively Filtered 13C Solid-State NMR Spectroscopy

    PubMed Central

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-01-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C,15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture. PMID:25026459

  19. Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster.

    PubMed

    Schaal, Daniel; Bauer, Joschka; Schweimer, Kristian; Scheibel, Thomas; Rösch, Paul; Schwarzinger, Stephan

    2016-04-01

    Spider dragline fibers are predominantly made out of the major ampullate spidroins (MaSp) 1 and 2. The assembly of dissolved spidroin into a stable fiber is highly controlled for example by dimerization of its amino-terminal domain (NRN) upon acidification, as well as removal of sodium chloride along the spinning duct. Clustered residues D39, E76 and E81 are the most highly conserved residues of the five-helix bundle, and they are hypothesized to be key residues for switching between a monomeric and a dimeric conformation. Simultaneous replacement of these residues by their non-titratable analogues results in variant D39N/E76Q/E81Q, which is supposed to fold into an intermediate conformation between that of the monomeric and the dimeric state at neutral pH. Here we report the resonance assignment of Latrodectus hesperus NRN variant D39N/E76Q/E81Q at pH 7.2 obtained by high-resolution triple resonance NMR spectroscopy. PMID:26892754

  20. Backbone and ILV methyl resonance assignments of E. coli thymidylate synthase bound to cofactor and a nucleotide analogue

    PubMed Central

    Sapienza, Paul J.; Lee, Andrew L.

    2013-01-01

    Thymidylate synthase (TSase) is a 62 kDa homodimeric enzyme required for de novo synthesis of thymidine monophosphate (dTMP) in most organisms. This makes the enzyme an excellent target for anticancer and microbial antibiotic drugs. In addition, TSase has been shown to exhibit negative cooperativity and half-the-sites reactivity. For these collective reasons, TSase is widely studied, and much is known about its kinetics and structure as it progresses through a multi-step catalytic cycle. Recently, nuclear magnetic resonance (NMR) spin relaxation has been instrumental in demonstrating the critical role of dynamics in enzyme function in small model systems. These studies raise questions about how dynamics affect function in larger enzymes with more complex reaction coordinates. TSase is an ideal candidate given its size, oligomeric state, cooperativity, and status as a drug target. Here, as a pre-requisite to spin relaxation studies, we present the backbone and ILV methyl resonance assignments of TSase from Escherichia coli bound to a substrate analogue and cofactor. PMID:23653343

  1. Resonance Assignments and Secondary Structure Analysis of Dynein Light Chain 8 by Magic-angle Spinning NMR Spectroscopy

    SciTech Connect

    Sun, Shangjin; Butterworth, Andrew H.; Paramasivam, Sivakumar; Yan, Si; Lightcap, Christine M.; Williams, John C.; Polenova, Tatyana E.

    2011-08-04

    Dynein light chain LC8 is the smallest subunit of the dynein motor complex and has been shown to play important roles in both dynein-dependent and dynein-independent physiological functions via its interaction with a number of its binding partners. It has also been linked to pathogenesis including roles in viral infections and tumorigenesis. Structural information for LC8-target proteins is critical to understanding the underlying function of LC8 in these complexes. However, some LC8-target interactions are not amenable to structural characterization by conventional structural biology techniques owing to their large size, low solubility, and crystallization difficulties. Here, we report magic-angle spinning (MAS) NMR studies of the homodimeric apo-LC8 protein as a first effort in addressing more complex, multi-partner, LC8-based protein assemblies. We have established site-specific backbone and side-chain resonance assignments for the majority of the residues of LC8, and show TALOS+-predicted torsion angles ø and ψ in close agreement with most residues in the published LC8 crystal structure. Data obtained through these studies will provide the first step toward using MAS NMR to examine the LC8 structure, which will eventually be used to investigate protein–protein interactions in larger systems that cannot be determined by conventional structural studies.

  2. Resonance assignment of the ligand-free cyclic nucleotide-binding domain from the murine ion channel HCN2.

    PubMed

    Börger, Claudia; Schünke, Sven; Lecher, Justin; Stoldt, Matthias; Winkhaus, Friederike; Kaupp, U Benjamin; Willbold, Dieter

    2015-10-01

    Hyperpolarization activated and cyclic nucleotide-gated (HCN) ion channels as well as cyclic nucleotide-gated (CNG) ion channels are essential for the regulation of cardiac cells, neuronal excitability, and signaling in sensory cells. Both classes are composed of four subunits. Each subunit comprises a transmembrane region, intracellular N- and C-termini, and a C-terminal cyclic nucleotide-binding domain (CNBD). Binding of cyclic nucleotides to the CNBD promotes opening of both CNG and HCN channels. In case of CNG channels, binding of cyclic nucleotides to the CNBD is sufficient to open the channel. In contrast, HCN channels open upon membrane hyperpolarization and their activity is modulated by binding of cyclic nucleotides shifting the activation potential to more positive values. Although several high-resolution structures of CNBDs from HCN and CNG channels are available, the gating mechanism for murine HCN2 channel, which leads to the opening of the channel pore, is still poorly understood. As part of a structural investigation, here, we report the complete backbone and side chain resonance assignments of the murine HCN2 CNBD with part of the C-linker. PMID:25324217

  3. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  4. Sequential assignment of proton resonances in the NMR spectrum of Zn-substituted alpha chains from human hemoglobin. Ligand-induced tertiary changes in the heme pocket.

    PubMed

    Martineau, L; Craescu, C T

    1993-06-01

    We constructed an artificial holoprotein as a complex between alpha globin from human adult hemoglobin and the protoporphyrin IX-Zn(II). The prosthetic group is bound in a single conformation to the apoglobin via a coordinative bond between Zn(II) ion and the proximal histidine (His87). The complex is diamagnetic and does not bind either CO nor O2 thus representing a diamagnetic model of deoxygenated alpha chains. In the present paper we report extensive resonance assignment in the proton nuclear magnetic resonance spectrum of the Zn-substituted alpha chains in phosphate buffer pH 5.6. A large number of aromatic and aliphatic side chain spin systems were identified in the two-dimensional homonuclear COSY spectra. Based on the assigned resonances of heme substituent protons and their NOE cross-peaks, we assigned the majority of resonances representing the heme pocket side chains. Using the main-chain-directed assignment strategy, we could establish several continuous patterns of sequential assignment and identify partial or total spin systems for a large number of side chains. The final assignment corresponds to 73% of the amino acids. Analysis of chemical shift of assigned resonances and of nuclear Overhauser enhancement connectivities provides structural information on the global and local tertiary conformation in solution and on the ligand-induced conformational changes. Comparison of observed and calculated ring current shifts enabled us to compare the solution structure with the X-ray crystal structure of alpha subunits in deoxy and carbonmonoxy hemoglobin. The global tertiary structure of unliganded chains is highly similar to both ligand and unliganded counterparts in the crystalline state. On the distal side of the heme pocket. Val62 is significantly closer to the heme center, in agreement with its conformation in the crystallographic structure. In contrast, the position of the proximal histidine (His87) relative to the heme is clearly more closely related

  5. Cytotoxic Properties and Complete Nuclear Magnetic Resonance Assignment of Isolated Xanthones from the Root of Garcinia cowa Roxb.

    PubMed Central

    Wahyuni, Fatma Sri; Shaari, Khozirah; Stanslas, Johnson; Lajis, Nordin HJ; Hamidi, Dachriyanus

    2016-01-01

    Objective: To isolate compounds from the roots of Garcinia cowa and to evaluated their cytotoxic activity against breast (MCF-7), prostate (DU-145), and lung (H-460) cell lines. Materials and Methods: The ground air-dried root was sequentially macerated with hexane, dichloromethane (DCM), ethyl acetate (EtOAc), and methanol. The DCM soluble extract was fractionated by vacuum liquid chromatography, column chromatography, and radial chromatography over silica gel with hexane, EtOAc and methanol as eluent in progressively increasing polarity manner; to yield three compounds. Their structures were elucidated based on their spectroscopic data and their comparison with those of the literature. The cytotoxicity of isolated compounds was carried out against human cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. The extract was added at various concentrations (0.1, 1, 10 and 100 mg/ml). The level of cytotoxicity was determined by calculating the level of IC50 that was based on the percentage of the cell death following the 24 h incubation with the extract. Results: Phytochemical study on the roots of G. cowa yielded rubraxanthone (3), cowanine (4) and 1,5-dihydroxyxanthone (5). Compound 4 with an IC50 value of 4.1 ± 1.0 μM, 5.4 ± 2.3 μM and 11.3 ± 10.0 μM against MCF-7, H-460, and DU-145, respectively while compound 3 was found to be in active. Conclusion: The results indicate that G. cowa roots could be important sources of natural cytotoxic compounds. SUMMARY Isolation of cytotoxic compounds from Garcinia cowaCowanine is the active constituent from the roots of Garcinia cowaComplete nuclear magnetic resonance assignment of isolated compoundsMS fragmentation of rubraxanthone. PMID:27041859

  6. Nuclear magnetic resonance studies on yeast tRNAPhe. III. Assignments of the iminoproton resonances of the tertiary structure by means of nuclear Overhauser effect experiments at 500 MHz.

    PubMed Central

    Heerschap, A; Haasnoot, C A; Hilbers, C W

    1983-01-01

    Resonances of the water exchangeable iminoprotons of the tertiary structure of yeast tRNAPhe were studied by experiments involving Nuclear Overhauser Effects (NOE's). Direct NOE evidence is presented for the assignment of all resonances of iminoprotons participating in tertiary basepairing (except that of G19C56 which was assigned by an elimination procedure). The present results in conjunction with our previous assignment of secondary iminoprotons constitute for the first time a complete spectral assignment of all iminoprotons participating in basepairing in yeast tRNAPhe. In addition we have been able to assign the non(internally) hydrogen bonded N1 proton of psi 55 as well as the N3 proton of this residue, which is one of the two iminoprotons hydrogen bonded to a phosphate group according to X-ray results. No evidence could be obtained for the existence in solution of the other iminoproton-phosphate interaction: that between U33 N3H and P36 located in the anticodon loop. Remarkable is the assignment of a resonance at 12.4 - 12.5 ppm to the iminoproton of the tertiary basepair T54m1A58. The resonance positions obtained for the iminoprotons of G18 (9.8 ppm) and m2(2)G26 (10.4 ppm) are surprisingly far upfield considering that these protons are involved in hydrogen bonds according to X-ray diffraction results. As far as reported by changes in chemical shifts of iminoproton resonances the main structural event induced by Mg++ ions takes place near the tertiary interactions U8A14 and G22m7G46. PMID:6346269

  7. Characterizing the Microstructure of Heparin and Heparan Sulfate using N-sulfoglucosamine 1H and 15N NMR Chemical Shift Analysis

    PubMed Central

    Langeslay, Derek J.; Beecher, Consuelo N.; Naggi, Annamaria; Guerrini, Marco; Torri, Giangiacomo; Larive, Cynthia K.

    2014-01-01

    Heparin and heparan sulfate (HS) are members of a biologically important group of highly anionic linear polysaccharides called glycosaminoglycans (GAGs). Because of their structural complexity, the molecular-level characterization of heparin and HS continues to be a challenge. The work presented herein describes an emerging approach for the analysis of unfractionated and low molecular weight heparins as well as porcine and human-derived HS. This approach utilizes the untapped potential of 15N NMR to characterize these preparations through detection of the NH resonances of N-sulfo-glucosamine residues. The sulfamate group 1H and 15N chemical shifts of six GAG microenvironments were assigned based on the critical comparison of selectively modified heparin derivatives, NMR measurements for a library of heparin-derived oligosaccharide standards, and an in-depth NMR analysis of the low molecular weight heparin enoxaparin through systematic investigation of the chemical exchange properties of NH resonances and residue-specific assignments using the [1H, 15N] HSQC-TOCSY experiment. The sulfamate microenvironments characterized in this study include GlcNS(6S)-UA(2S), ΔUA(2S)-GlcNS(6S), GlcNS(3S)(6S)-UA(2S), GlcNS-UA, GlcNS(6S)-redα, and 1,6-anhydro GlcNS demonstrate the utility of [1H, 15N] HSQC NMR spectra to provide a spectroscopic fingerprint reflecting the composition of intact GAGs and low molecular weight heparin preparations. PMID:23240897

  8. Single-crystal electron paramagnetic resonance study of cytochrome c3 from Desulfovibrio desulfuricans Norway Strain. Assignment of the heme midpoint redox potentials.

    PubMed

    Guigliarelli, B; Bertrand, P; More, C; Haser, R; Gayda, J P

    1990-11-01

    A single crystal of cytochrome c3 from Desulfovibrio desulfuricans Norway is studied by electron paramagnetic resonance at low temperature. The orientation of the principal axis corresponding to the largest g value is determined for the 12 heme groups in the crystal unit cell. The comparison of these directions to the normals to the heme planes, determined from the crystallographic data at 2.5 A resolution, gives strong evidence for the following assignment of the midpoint redox potentials to the heme groups H1 to H4, defined in the three-dimensional structure: -150 mV is assigned to H3, -300 mV to H4, -330 mV to H1 and -355 mV to H2. This assignment is in agreement with a partial correspondence previously established from an independent study performed on cytochrome c3 in solution. PMID:2172551

  9. ¹H, ¹³C and ¹⁵N resonance assignment of the soluble form of the lipid-modified Azurin from Neisseria gonorrhoeae.

    PubMed

    Nóbrega, Cláudia S; Matzapetakis, Manolis; Pauleta, Sofia R

    2013-10-01

    Lipid-modified azurin (Laz) from Neisseria gonorrhoeae is a type 1 copper protein proposed to be the electron donor to several enzymes involved in the resistance mechanism to reactive oxygen and nitrogen species. Here we report the backbone and side-chain resonance assignment of Laz in the reduced form, which has been complete at 97%. The predicted secondary structure indicates that this protein belongs to the azurin subfamily of type 1 copper proteins. PMID:23070845

  10. Assignment of the 1H nuclear magnetic resonance spectrum of the trypsin inhibitor homologue K from Dendroaspis polylepis polylepis. Two-dimensional nuclear magnetic resonance at 360 and 500 MHz.

    PubMed

    Keller, R M; Baumann, R; Hunziker-Kwik, E H; Joubert, F J; Wüthrich, K

    1983-02-01

    The assignment of the 1H nuclear magnetic resonance (n.m.r.) spectrum of the trypsin inhibitor homologue K from the venom of Dendroaspis polylepis polylepis is described and documented. The assignments are based entirely on the amino acid sequence and on 2-dimensional n.m.r. experiments at 360 and 500 M Hz. Individual assignments were obtained for the backbone and C beta protons of all 57 residues of the inhibitor homologue K, with the exceptions of the N-terminal amino group, the amide protons of Arg16, Gly37 and Gly40 and the C beta protons of Arg16 and Pro19. The assignments for the non-labile protons of the amino acid side-chains are complete, with the exception of Gln29, Glu49 and all the proline, lysine and arginine residues. For Asn and Trp the labile side-chain protons have also been assigned. The chemical shifts for the assigned resonances are listed for an aqueous solution at 50 degrees C and pH 3.4. PMID:6842589

  11. Two- and three-dimensional sup 1 H NMR studies of a wheat phospholipid transfer protein: Sequential resonance assignments and secondary structure

    SciTech Connect

    Simorre, J.P.; Caille, A. ); Marion, D. ); Marion, D. ); Ptak, M. Univ. d'Orleans )

    1991-12-10

    Two- and three-dimensional {sup 1}H NMR experiments have been used to sequentially assign nearly all proton resonances of the 90 residues of wheat phospholipid transfer protein. Only a few side-chain protons were not identified because of degeneracy or overlapping. The identification of spin systems and the sequential assignment were made at the same time by combining the data of the two- and three-dimensional experiments. The classical two-dimensional COSY, HOHAHA, and NOESY experiments benefit from both good resolution and high sensitivity, allowing the detection of long-range dipolar connectivities. The three-dimensional HOHAHA-NOESY experiment offers the advantage of a faster and unambiguous assignment. As a matter of fact, homonuclear three-dimensional NMR spectroscopy prove to be a very efficient method for resonance assignments of protein {sup 1}H NMR spectra which cannot be unraveled by 2D methods. An assignment strategy which overcomes most of the ambiguities has been proposed, in which each individual assignment toward the C-terminal end is supported by another in the opposite direction originating from a completely different part of the spectrum. Location of secondary structures of the phospholipid transfer protein was determined by using the method of analysis introduced here and was confirmed by {sup 3}J{sub {alpha}NH} coupling and NH exchange rates. Except for the C-terminal part, the polypeptide chain appears to be organized mainly as helical fragments connected by disulfide bridges. Further modeling will display the overall folding of the protein and should provide a better understanding of its interactions with lipids.

  12. Radiative p 15N Capture in the Region of Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.; Burtebaev, N.; Dzhazairov-Kakhramanov, A. V.; Alimov, D. K.

    2016-06-01

    Within the framework of the modified potential cluster model with classification of orbital states according to the Young schemes, the possibility of describing experimental data for the astrophysical S-factor of p 15N radiative capture at energies from 50 to 1500 keV is considered. It is shown that on the basis of M1 and E1 transitions from various p 15N scattering states to the ground state of the 16O nucleus in the p 15N channel it is entirely possible to successfully explain the overall behavior of the S-factor in the considered energy region in the presence of two resonances.

  13. Complete fusion of 15N+27Al

    NASA Astrophysics Data System (ADS)

    Prosser, F. W., Jr.; Racca, R. A.; Daneshvar, K.; Geesaman, D. F.; Henning, W.; Kovar, D. G.; Rehm, K. E.; Tabor, S. L.

    1980-05-01

    The total fusion cross section for the system 15N + 27Al has been measured over an energy range 27 MeV<=Elab<=70 MeV by detection of the fusion-evaporation residues. In addition elastic scattering was measured at six energies and fitted by optical model calculations. The fusion cross section for the system saturates at 1150+/-50 mb. The data can be well described by the model of Glas and Mosel, using a reasonable set of parameters. The model of Horn and Ferguson also describes the data well if an appropriate charge radius is used. Comparison is made between these results and the fusion cross sections for 16O + 26Mg and 18O + 24Mg, which lead to the same compound nucleus. The results for 15N + 27Al are quite similar to those for 18O + 24Mg, and the differences between the fusion cross sections for these two systems and those for 16O + 26Mg may be evidence for an entrance channel effect. NUCLEAR REACTIONS 15N+27Al, Elab=27-70 MeV; measured σfusion(E) measured dσdΩ elastic scattering; data fitted with Glas and Mosel model, Horn and Ferguson model.

  14. Isotope effects and spectroscopic assignments in the non-dissociative photoionization spectrum of N2

    NASA Astrophysics Data System (ADS)

    Randazzo, John B.; Croteau, Philip; Kostko, Oleg; Ahmed, Musahid; Boering, Kristie A.

    2014-05-01

    Photoionization efficiency spectra of 14N2, 15N14N, and 15N2 from 15.5 to 18.9 eV were measured using synchrotron radiation at the Advanced Light Source at Lawrence Berkeley National Laboratory with a resolution of 6 meV, and significant changes in peak energies and intensities upon isotopic substitution were observed. Previously, we reported the isotope shifts and their applications to Titan's atmosphere. Here, we report more extensive experimental details and tabulate the isotope shifts of many transitions in the N2 spectrum, including those for 15N14N, which have not been previously reported. The isotope shifts are used to address several long-standing ambiguities in spectral peak assignments just above the ionization threshold of N2. The feature at 15.677 eV (the so-called second "cathedral" peak) is of particular interest in this respect. The measured isotope shifts for this peak relative to 14N2 are 0.015 ± 0.001 eV for 15N2 and 0.008 ± 0.001 eV for 15N14N, which match most closely with the isotope shifts predicted for transitions to the (A 2Πu v' = 2)4sσg 1Πu state using Herzberg equations for the isotopic differences in harmonic oscillator energy levels plus the first anharmonic correction of 0.0143 eV for 15N2 and 0.0071 eV for 15N14N. More generally, the isotope shifts measured for both 15N2 and 15N14N relative to 14N2 provide new benchmarks for theoretical calculations of interferences between direct and indirect autoionization states which can interact to produce intricate resonant structures in molecular photoionization spectra in regions near ionization thresholds.

  15. Millimeter-wave optical double resonance schemes for rapid assignment of perturbed spectra, with applications to the C̃ (1)B(2) state of SO2.

    PubMed

    Park, G Barratt; Womack, Caroline C; Whitehill, Andrew R; Jiang, Jun; Ono, Shuhei; Field, Robert W

    2015-04-14

    Millimeter-wave detected, millimeter-wave optical double resonance (mmODR) spectroscopy is a powerful tool for the analysis of dense, complicated regions in the optical spectra of small molecules. The availability of cavity-free microwave and millimeter wave spectrometers with frequency-agile generation and detection of radiation (required for chirped-pulse Fourier-transform spectroscopy) opens up new schemes for double resonance experiments. We demonstrate a multiplexed population labeling scheme for rapid acquisition of double resonance spectra, probing multiple rotational transitions simultaneously. We also demonstrate a millimeter-wave implementation of the coherence-converted population transfer scheme for background-free mmODR, which provides a ∼10-fold sensitivity improvement over the population labeling scheme. We analyze perturbations in the C̃ state of SO2, and we rotationally assign a b2 vibrational level at 45,328 cm(-1) that borrows intensity via a c-axis Coriolis interaction. We also demonstrate the effectiveness of our multiplexed mmODR scheme for rapid acquisition and assignment of three predissociated vibrational levels of the C̃ state of SO2 between 46,800 and 47,650 cm(-1). PMID:25877571

  16. Solution 1H, 15N NMR spectroscopic characterization of substrate-bound, cyanide-inhibited human heme oxygenase: water occupation of the distal cavity.

    PubMed

    Li, Yiming; Syvitski, Ray T; Auclair, Karine; Ortiz de Montellano, Paul; La Mar, Gerd N

    2003-11-01

    A solution NMR spectroscopic study of the cyanide-inhibited, substrate-bound complex of uniformly (15)N-labeled human heme oxygenase, hHO, has led to characterization of the active site with respect to the nature and identity of strong hydrogen bonds and the occupation of ordered water molecules within both the hydrogen bonding network and an aromatic cluster on the distal side. [(1)H-(15)N]-HSQC spectra confirm the functionalities of several key donors in particularly robust H-bonds, and [(1)H-(15)N]HSQC-NOESY spectra lead to the identification of three additional robust H-bonds, as well as the detection of two more relatively strong H-bonds whose identities could not be established. The 3D NMR experiments provided only a modest, but important, extension of assignments because of the loss of key TOCSY cross-peaks due to the line broadening from a dynamic heterogeneity in the active site. Steady-state NOEs upon saturating the water signal locate nine ordered water molecules in the immediate vicinity of the H-bond donors, six of which are readily identified in the crystal structure. The additional three are positioned in available spaces to account for the observed NOEs. (15)N-filtered steady-state NOEs upon saturating the water resonances and (15)N-filtered NOESY spectra demonstrate significant negative NOEs between water molecules and the protons of five aromatic rings. Many of the NOEs can be rationalized by water molecules located in the crystal structure, but strong water NOEs, particularly to the rings of Phe47 and Trp96, demand the presence of at least an additional two immobilized water molecules near these rings. The H-bond network appears to function to order water molecules to provide stabilization for the hydroperoxy intermediate and to serve as a conduit to the active site for the nine protons required per HO turnover. PMID:14583035

  17. Multinuclear magnetic resonance studies of the 2Feter dot 2S sup * ferredoxin from Anabaena species strain PCC 7120. 1. Sequence-specific hydrogen-1 resonance assignments and secondary structure in solution of the oxidized form

    SciTech Connect

    Oh, Byung-Ha; Markley, J.L. )

    1990-04-24

    Complete sequence-specific assignments were determined for the diamagnetic {sup 1}H resonances from Anabaena 7120 ferredoxin. A novel assignment procedure was followed whose first step was the identification of the {sup 13}C spin systems of the amino acids by a {sup 13}C({sup 13}C) double quantum correlation experiment. Then, the {sup 1}H spin systems of the amino acids were identified from the {sup 13}C spin systems by means of direct and relayed {sup 1}H({sup 13}C) single-bond correlations. The sequential resonance assignments were based mainly on conventional interresidue {sup 1}H{sup {alpha}}{sub i}-{sup 1}H{sup N}{sub i+1} NOE connectivities. Resonances from 18 residues were not resolved in two-dimensional {sup 1}H NMR spectra. When these residues were mapped onto the X-ray crystal structure of the homologous ferredoxin from Spirulina platensis, it was found that they correspond to amino acids close to the paramagnetic 2Fe{center dot}2S cluster. Cross peaks in two-dimensional homonuclear {sup 1}H NMR spectra were not observed for any protons closer than about 7.8 {angstrom} to both iron atoms. Secondary structural features identified in solution include two antiparallel {beta}-sheets, one parallel {beta}-sheet, and one {alpha}-helix.

  18. Resonance assignment of DVU2108 that is part of the Orange Protein complex in Desulfovibrio vulgaris Hildenborough.

    PubMed

    Neca, António J; Soares, Rui; Carepo, Marta S P; Pauleta, Sofia R

    2016-04-01

    We report the 94 % assignment of DVU2108, a protein belonging to the Orange Protein family, that in Desulfovibrio vulgaris Hildenborough forms a protein complex named the Orange Protein complex. This complex has been shown to be implicated in the cell division of this organism. DVU2108 is a conserved protein in anaerobic microorganisms and in Desulfovibrio gigas the homologous protein was isolated with a novel Mo-Cu cluster non-covalently attached to the polypeptide chain. However, the heterologously produced DVU2108 did not contain any bound metal. These assignments provide the means to characterize the interaction of DVU2108 with the proteins that form the Orange Protein complex using NMR methods. PMID:26373427

  19. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  20. Effect of protein restriction on (15)N transfer from dietary [(15)N]alanine and [(15)N]Spirulina platensis into urea.

    PubMed

    Hamadeh, M J; Hoffer, L J

    2001-08-01

    Six normal men consumed a mixed test meal while adapted to high (1.5 g. kg(-1) x day(-1)) and low (0.3 g. kg(-1) x day(-1)) protein intakes. They completed this protocol twice: when the test meals included 3 mg/kg of [(15)N]alanine ([(15)N]Ala) and when they included 30 mg/kg of intrinsically labeled [(15)N]Spirulina platensis ([(15)N]SPI). Six subjects with insulin-dependent diabetes mellitus (IDDM) receiving conventional insulin therapy consumed the test meal with added [(15)N]Ala while adapted to their customary high-protein diet. Protein restriction increased serum alanine, glycine, glutamine, and methionine concentrations and reduced those of leucine. Whether the previous diet was high or low in protein, there was a similar increase in serum alanine, methionine, and branched-chain amino acid concentrations after the test meal and a similar pattern of (15)N enrichment in serum amino acids for a given tracer. When [(15)N]Ala was included in the test meal, (15)N appeared rapidly in serum alanine and glutamine, to a minor degree in leucine and isoleucine, and not at all in other circulating amino acids. With [(15)N]SPI, there was a slow appearance of the label in all serum amino acids analyzed. Despite the different serum amino acid labeling, protein restriction reduced the postmeal transfer of dietary (15)N in [(15)N]Ala or [(15)N]SPI into [(15)N]urea by similar amounts (38 and 43%, respectively, not significant). The response of the subjects with IDDM was similar to that of the normal subjects. Information about adaptive reductions in dietary amino acid catabolism obtained by adding [(15)N]Ala to a test meal appears to be equivalent to that obtained using an intrinsically labeled protein tracer. PMID:11440912

  1. Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines

    NASA Astrophysics Data System (ADS)

    Jehle, Stefan; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan

    2006-12-01

    Amino-acid selective magic-angle spinning (MAS) NMR experiments can aid the assignment of ambiguous cross-peaks in crowded spectra of solid proteins. In particular for larger proteins, data analysis can be hindered by severe resonance overlap. In such cases, filtering techniques may provide a good alternative to site-specific spin-labeling to obtain unambiguous assignments that can serve as starting points in the assignment procedure. In this paper we present a simple pulse sequence that allows selective excitation of arginine and lysine residues. To achieve this, we make use of a combination of specific cross-polarization for selective excitation [M. Baldus, A.T. Petkova, J. Herzfeld, R.G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys. 95 (1998) 1197-1207.] and spin diffusion for transfer along the amino-acid side-chain. The selectivity of the filter is demonstrated with the excitation of lysine and arginine side-chain resonances in a uniformly 13C and 15N labeled protein preparation of the α-spectrin SH3 domain. It is shown that the filter can be applied as a building block in a 13C- 13C lysine-only correlation experiment.

  2. Studies of individual carbon sites of proteins in solution by natural abundance carbon 13 nuclear magnetic resonance spectroscopy. Strategies for assignments.

    PubMed

    Oldfield, E; Norton, R S; Allerhand, A

    1975-08-25

    Natural abundance 13C Fourier transform NMR spectra (at 15.18 MHz, in 20-mm sample tubes) of aqueous native proteins yield numerous narrow single carbon resonances of nonprotonated aromatic carbons. Techniques for the assignment of these resonances are presented. Each technique is applied to one or more of the following proteins: ferricytochrome c from horse heart and Candida krusei, ferrocytochrome c and cyanoferricytochrome c from horse heart, lysozyme from hen egg white, cyanoferrimyoglobins from horse and sperm whale skeletal muscle, and carbon monoxide myoglobin from horse. In all of the protein spectra we have examined, methine aromatic carbons give rise to broad bands. Studies of the narrow resonances of nonprotonated aromatic carbons of proteins are facilitated by removal of these broad bands by means of the convolution-difference method, preferably from spectra recorded under conditions of noise-modulated off-resonance proton decoupling. We present a summary of the chemical shift ranges for the various types of nonprotonated aromatic carbons of amino acid residues and hemes of diamagnetic proteins, based on our results for hen egg white lysozyme, horse heart ferrocytochrome c, horse carbon monoxide myoglobin, and carbon monoxide hemoglobins from various species... PMID:169240

  3. Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment.

    PubMed

    Wijmenga, S S; Heus, H A; Leeuw, H A; Hoppe, H; van der Graaf, M; Hilbers, C W

    1995-01-01

    A new 1H-13C-31P triple resonance experiment is described which allows unambiguous sequential backbone assignment in 13C-labeled oligonucleotides via through-bond coherence transfer from 31P via 13C to 1H. The approach employs INEPT to transfer coherence from 31P to 13C and homonuclear TOCSY to transfer the 13C coherence through the ribose ring, followed by 13C to 1H J-cross-polarisation. The efficiencies of the various possible transfer pathways are discussed. The most efficient route involves transfer of 31Pi coherence via C4'i and C4'i-1, because of the relatively large JPC4' couplings involved. Via the homonuclear and heteronuclear mixing periods, the C4'i and C4'i-1 coherences are subsequently transferred to, amongst others, H1'i and H1'i-1, respectively, leading to a 2D 1H-31P spectrum which allows a sequential assignment in the 31P-1H1' region of the spectrum, i.e. in the region where the proton resonances overlap least. The experiment is demonstrated on a 13C-labeled RNA hairpin with the sequence 5'(GGGC-CAAA-GCCU)3'. PMID:7533569

  4. Robust, integrated computational control of NMR experiments to achieve optimal assignment by ADAPT-NMR.

    PubMed

    Bahrami, Arash; Tonelli, Marco; Sahu, Sarata C; Singarapu, Kiran K; Eghbalnia, Hamid R; Markley, John L

    2012-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [(13)C,(15)N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches. PMID:22427982

  5. Resonance assignments and secondary structure prediction of the As(III) metallochaperone ArsD in solution

    PubMed Central

    Ye, Jun; He, Yanan; Skalicky, Jack; Rosen, Barry P.; Stemmler, Timothy L.

    2012-01-01

    ArsD is a metallochaperone that delivers As(III) to the ArsA ATPase, the catalytic subunit of the ArsAB pump encoded by the arsRDABC operon of Escherichia coli plasmid R773. Conserved ArsD cysteine residues (Cys12, Cys13 and Cys18) construct the As(III) binding site of the protein, however a global structural understanding of this arsenic binding remains unclear. We have obtained NMR assignments for ArsD as a starting point for probing structural changes on the protein that occur in response to metalloid binding and upon formation of a complex with ArsA. The predicted solution structure of ArsD is in agreement with recently published crystallographic structural results. PMID:21063813

  6. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C <--> (15)N HSQC-IMPEACH and (13)C <--> (15)N HMBC-IMPEACH correlation spectra.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. PMID:17729230

  7. Secondary structure and side-chain sup 1 H and sup 13 C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy

    SciTech Connect

    Ikura, Mitsuhiko; Spera, S.; Barbato, G.; Kay, L.E.; Bax, A. ); Krinks, M. )

    1991-09-24

    Heteronuclear 2D and 3D NMR experiments were carried out on recombinant Drosophila calmodulin (CaM), a protein of 148 residues and with molecular mass of 16.7 kDa, that is uniformly labeled with {sup 15}N and {sup 13}C to a level of > 95%. Nearly complete {sup 1}H and {sup 13}C side-chain assignments for all amino acid residues are obtained by using the 3D HCCH-COSY and HCCH-TOCSY experiments that rely on large heteronuclear one-bond scalar couplings to transfer magnetization and establish through-bond connectivities. The secondary structure of this protein in solution has been elucidated by a qualitative interpretation of nuclear Overhauser effects, hydrogen exchange data, and {sup 3}J{sub HNH{alpha}} coupling constants. A clear correlation between the {sup 13}C{alpha} chemical shift and secondary structure is found. The secondary structure in the two globular domains of Drosophila CaM in solution is essentially identical with that of the X-ray crystal structure of mammalian CaM which consists of two pairs of a helix-loop-helix motif in each globular domain. The existence of a short antiparallel {beta}-sheet between the two loops in each domain has been confirmed. The eight {alpha}-helix segments identified from the NMR data are located at Glu-6 to Phe-19, thr-29 to Ser-38, Glu-45 to Glu-54, Phe-65 to Lys-77, Glu-82 to Asp-93, Ala-102 to Asn-111, Asp-118 to Glu-127, and Tyr-138 to Thr-146. Although the crystal structure has a long central helix from Phe-65 to Phe-92 that connects the two globular domains, NMR data indicate that residues Asp-78 to Ser-81 of this central helix adopt a nonhelical conformation with considerable flexibility.

  8. Water proton spin saturation affects measured protein backbone 15 N spin relaxation rates

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Tjandra, Nico

    2011-12-01

    Protein backbone 15N NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measure 15N longitudinal T1 and transversal rotating-frame T1ρ spin relaxation. Unexpectedly the 15N T1 relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDa Escherichiacoli. glutamine binding protein (GlnBP) the T1 values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the two T1ρ data sets are correlated without an apparent offset. The average T1 difference was reduced to 12% when the experimental recycle delay was doubled, while the average T1 values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios ( s/ n) showed the apparent slower 15N relaxation obtained with the water dephasing experiment originated from the differences in 1H N recovery for each relaxation time point. This in turn offset signal reduction from 15N relaxation decay. The artifact becomes noticeable when the measured 15N relaxation time constant is comparable to recycle delay, e.g., the 15N T1 of medium to large proteins. The 15N relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters (< S2> = 0.81) than the non-saturated ones (< S2> = 0.88), indicating such order parameters may be previously underestimated.

  9. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    PubMed

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-01

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR. PMID:25102442

  10. Proton NMR studies on the covalently linked RNA-DNA hybrid r(GCG)d(TATACGC). Assignment of proton resonances by application of the nuclear Overhauser effect.

    PubMed Central

    Mellema, J R; Haasnoot, C A; van der Marel, G A; Wille, G; van Boeckel, C A; van Boom, J H; Altona, C

    1983-01-01

    Proton NMR spectra of a covalently linked self-complementary RNA X DNA hybrid, r(GCG)-d(TATACGC), are recorded in H2O and D2O. Imino proton resonances as well as the non-exchangeable base and H-1' resonances are unambiguously assigned by means of nuclear. Overhauser effect measurements. Additional information was obtained by 31P NMR and circular dichroism spectra. The RNA parts in the duplex attain full conformational purity and adopt the usual A-RNA conformation. The DNA residues opposite the RNA tract do not adopt an A-type structure completely. Their respective sugar rings still appear to possess a certain conformational freedom. The same holds true for the central d(-TATA-) sequence which forms a DNA X DNA duplex. There appears to be a structural break in this part: the first two residues, T(4) and A(5), are clearly influenced by the adjacent RNA structure, whereas residues T(6) and A(7) behave quite similar to what usually is found in DNA duplexes in aqueous solution. PMID:6193486

  11. An NMR study of the interaction of 15N-labelled bradykinin with an antibody mimic of the bradykinin B2 receptor.

    PubMed

    Ottleben, H; Haasemann, M; Ramachandran, R; Görlach, M; Müller-Esterl, W; Brown, L R

    1997-03-01

    An isotope-edited NMR study of the peptide hormone bradykinin (RPPGFSPFR) bound to the Fab fragment of a monoclonal antibody against bradykinin (MBK3) is reported. MBK3 was previously shown to provide a binding site model of the B2 bradykinin receptor [Haasemann, M., Buschko, J., Faussner, A., Roscher, A. A., Hoebeke, J., Burch, R. M. & Muller-Esterl, W. (1991) Anti-idiotypic antibodies bearing the internal image of a bradykinin epitope, J. Immunol. 147, 3882-3892]. Bradykinin was obtained in a uniformly 15N-labelled form using recombinant expression of a fusion protein consisting of the glutathione-binding domain of glutathione S-transferase fused to residues 354-375 of the high-molecular-mass kininogen from which bradykinin was released by proteolytic digestion with its natural protease plasma kallikrein. Bradykinin forms a complex with the Fab fragment of MBK3 which exchanges slowly on the NMR time scale. The 15N and 1H resonances of the tightly bound residues of bradykinin show appreciable changes in chemical shift with respect to the free form, while the 15N and 1H linewidths indicate that the hydrodynamic behaviour of bound bradykinin is dominated by the high-molecular-mass Fab fragment. The NMR data indicate that essentially the entire nonapeptide is involved in binding. The kinetics of the ligand-exchange process, together with resonance assignments obtained via exchange spectroscopy. indicate that bradykinin binds to MBK3 only in the all-trans conformation at all three Xaa-Pro amide bonds. NH-NH NOE connectivities suggest that bradykinin is bound in an extended conformation. The spectroscopic data obtained from this study are compared to recently proposed computational models of the conformation of bradykinin bound to the B2 receptor. PMID:9119014

  12. Proton and nitrogen sequential assignments and secondary structure determination of the human FK506 and rapamycin binding protein

    SciTech Connect

    Rosen, M.K.; Michnick, S.W.; Karplus, M.; Schreiber, S.L. )

    1991-05-14

    Sequential {sup 1}H and {sup 15}N assignments of human FKBP, a cytosolic binding protein for the immunosuppressive agents FK506 and rapamycin, are reported. A combination of homonuclear and relayed heteronuclear experiments has enabled assignment of 98 of 99 backbone amide NHs, 119 of 120 C{sup {alpha}}Hs, 97 of 99 non-proline amide {sup 15}Ns, and 375 of 412 side-chain resonances of this 107-residue protein. Long-range NOEs are used to demonstrate that FKBP has a novel folding topology consisting of a five-stranded antiparallel {beta} sheet with +3, +1, {minus}3, +1 loop connectivity.

  13. Box-modeling of 15N/14N in mammals.

    PubMed

    Balter, Vincent; Simon, Laurent; Fouillet, Hélène; Lécuyer, Christophe

    2006-03-01

    The 15N/14N signature of animal proteins is now commonly used to understand their physiology and quantify the flows of nutrient in trophic webs. These studies assume that animals are predictably 15N-enriched relative to their food, but the isotopic mechanism which accounts for this enrichment remains unknown. We developed a box model of the nitrogen isotope cycle in mammals in order to predict the 15N/14N ratios of body reservoirs as a function of time, N intake and body mass. Results of modeling show that a combination of kinetic isotope fractionation during the N transfer between amines and equilibrium fractionation related to the reversible conversion of N-amine into ammonia is required to account for the well-established approximately 4 per thousand 15N-enrichment of body proteins relative to the diet. This isotopic enrichment observed in proteins is due to the partial recycling of 15N-enriched urea and the urinary excretion of a fraction of the strongly 15N-depleted ammonia reservoir. For a given body mass and diet delta15N, the isotopic compositions are mainly controlled by the N intake. Increase of the urea turnover combined with a decrease of the N intake lead to calculate a delta15N increase of the proteins, in agreement with the observed increase of collagen delta15N of herbivorous animals with aridity. We further show that the low delta15N collagen values of cave bears cannot be attributed to the dormancy periods as it is commonly thought, but inversely to the hyperphagia behavior. This model highlights the need for experimental investigations performed with large mammals in order to improve our understanding of natural variations of delta15N collagen. PMID:16328553

  14. Reduced dimensionality (4,3)D-hnCOCANH experiment: an efficient backbone assignment tool for NMR studies of proteins.

    PubMed

    Kumar, Dinesh

    2013-09-01

    Sequence specific resonance assignment of proteins forms the basis for variety of structural and functional proteomics studies by NMR. In this context, an efficient standalone method for rapid assignment of backbone ((1)H, (15)N, (13)C(α) and (13)C') resonances of proteins has been presented here. Compared to currently available strategies used for the purpose, the method employs only a single reduced dimensionality experiment--(4,3)D-hnCOCANH and exploits the linear combinations of backbone ((13)C(α) and (13)C') chemical shifts to achieve a dispersion relatively better compared to those of individual chemical shifts (see the text). The resulted increased dispersion of peaks--which is different in sum (CA + CO) and difference (CA - CO) frequency regions--greatly facilitates the analysis of the spectrum by resolving the problems (associated with routine assignment strategies) arising because of degenerate amide (15)N and backbone (13)C chemical shifts. Further, the spectrum provides direct distinction between intra- and inter-residue correlations because of their opposite peak signs. The other beneficial feature of the spectrum is that it provides: (a) multiple unidirectional sequential (i→i + 1) (15)N and (13)C correlations and (b) facile identification of certain specific triplet sequences which serve as check points for mapping the stretches of sequentially connected HSQC cross peaks on to the primary sequence for assigning the resonances sequence specifically. On top of all this, the F₂-F₃ planes of the spectrum corresponding to sum (CA + CO) and difference (CA - CO) chemical shifts enable rapid and unambiguous identification of sequential HSQC peaks through matching their coordinates in these two planes (see the text). Overall, the experiment presented here will serve as an important backbone assignment tool for variety of structural and functional proteomics and drug discovery research programs by NMR involving well behaved small folded proteins (MW

  15. Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations.

    PubMed

    Longhini, Andrew P; LeBlanc, Regan M; Becette, Owen; Salguero, Carolina; Wunderlich, Christoph H; Johnson, Bruce A; D'Souza, Victoria M; Kreutz, Christoph; Dayie, T Kwaku

    2016-04-01

    Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides usingin vitrotranscription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch fromBacillus anthracis(48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure μs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB. PMID:26657632

  16. 1H resonance assignments and secondary structure of the carbon monoxide complex of soybean leghemoglobin determined by homonuclear two-dimensional and three-dimensional NMR spectroscopy.

    PubMed

    Morikis, D; Lepre, C A; Wright, P E

    1994-01-15

    Homonuclear two-dimensional and three-dimensional 1H-NMR spectroscopy has been utilized to study the 15.9-kDa protein soybean leghemoglobin. NMR experiments were performed on the diamagnetic carbon monoxide complex at two temperatures and two pH values. Sequence-specific assignments have been made for 94% of the backbone and approximately 70% of the expected side-chain resonances. The secondary structure of leghemoglobin in solution has been determined on the basis of NOE connectivity patterns, hydrogen exchange and chemical-shift analyses. Leghemoglobin consists of seven helices and, unlike mammalian myoglobins, is missing the D helix. Instead an extended loop, the CE loop, is observed which might have importance for ligand entry into and exit from the protein interior. The hydrogen exchange behavior for the F helix and at the beginning of the A helix suggests different dynamic stability compared to other helical regions in leghemoglobin. Population of a second protein conformation, in which there is perturbation at the A-G-H helix interface, is observed at low pH. PMID:8307026

  17. Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations

    PubMed Central

    Longhini, Andrew P.; LeBlanc, Regan M.; Becette, Owen; Salguero, Carolina; Wunderlich, Christoph H.; Johnson, Bruce A.; D'Souza, Victoria M.; Kreutz, Christoph; Dayie, T. Kwaku

    2016-01-01

    Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides using in vitro transcription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch from Bacillus anthracis (48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure μs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB. PMID:26657632

  18. (15)N NMR studies of a nitrile-modified nucleoside.

    PubMed

    Gillies, Anne T; Gai, Xin Sonia; Buckwalter, Beth L; Fenlon, Edward E; Brewer, Scott H

    2010-12-30

    Nitrile-modified molecules have proven to be excellent probes of local environments in biomolecules via both vibrational and fluorescence spectroscopy. The utility of the nitrile group as a spectroscopic probe has been expanded here to (15)N NMR spectroscopy by selective (15)N incorporation. The (15)N NMR chemical shift (δ((15)N)) of the (15)N-labeled 5-cyano-2'-deoxyuridine (C(15)NdU, 1a) was found to change from 153.47 to 143.80 ppm in going from THF-d(8) to D(2)O. A 0.81 ppm downfield shift was measured upon formation of a hydrogen-bond-mediated heterodimer between 2,6-diheptanamidopyridine and a silyl ether analogue of 1a in chloroform, and the small intrinsic temperature dependence of δ((15)N) of C(15)NdU was measured as a 0.38 ppm downfield shift from 298 to 338 K. The experiments were complemented with density functional theory calculations exploring the effect of solvation on the (15)N NMR chemical shift. PMID:21126044

  19. Mechanism of the bisphosphatase reaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase probed by (1)H-(15)N NMR spectroscopy.

    PubMed

    Okar, D A; Live, D H; Devany, M H; Lange, A J

    2000-08-15

    The histidines in the bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were labeled with (15)N, both specifically at N1' and globally, for use in heteronuclear single quantum correlation (HSQC) NMR spectroscopic analyses. The histidine-associated (15)N resonances were assigned by correlation to the C2' protons which had been assigned previously [Okar et al., Biochemistry 38, 1999, 4471-79]. Acquisition of the (1)H-(15)N HSQC from a phosphate-free sample demonstrated that the existence of His-258 in the rare N1' tautomeric state is dependent upon occupation of the phosphate binding site filled by the O2 phosphate of the substrate, fructose-2,6-bisphosphate, and subsequently, the phosphohistidine intermediate. The phosphohistidine intermediate is characterized by two hydrogen bonds involving the catalytic histidines, His-258 and His-392, which are directly observed at the N1' positions of the imidazole rings. The N1' of phospho-His-258 is protonated ((1)H chemical shift, 14.0 ppm) and hydrogen bonded to the backbone carbonyl of Gly-259. The N1' of cationic His-392 is hydrogen bonded ((1)H chemical shift, 13.5 ppm) to the phosphoryl moiety of the phosphohistidine. The existence of a protonated phospho-His-258 intermediate and the observation of a fairly strong hydrogen bond to the same phosphohistidine implies that hydrolysis of the covalent intermediate proceeds without any requirement for an "activated" water. Using the labeled histidines as probes of the catalytic site mutation of Glu-327 to alanine revealed that, in addition to its function as the proton donor to fructose-6-phosphate during formation of the transient phosphohistidine intermediate at the N3' of His-258, this residue has a significant role in maintaining the structural integrity of the catalytic site. The (1)H-(15)N HSQC data also provide clear evidence that despite being a surface residue, His-446 has a very acidic pK(a), much less than 6.0. On the basis of

  20. 15N-labeled tRNA. Identification of 4-thiouridine in Escherichia coli tRNASer1 and tRNATyr2 by 1H-15N two-dimensional NMR spectroscopy.

    PubMed

    Griffey, R H; Davis, D R; Yamaizumi, Z; Nishimura, S; Hawkins, B L; Poulter, C D

    1986-09-15

    Uridine is uniquely conserved at position 8 in elongator tRNAs and binds to A14 to form a reversed Hoogsteen base pair which folds the dihydrouridine loop back into the core of the L-shaped molecule. On the basis of 1H NMR studies, Hurd and co-workers (Hurd, R. E., Robillard, G. T., and Reid, B. R. (1977) Biochemistry 16, 2095-2100) concluded that the interaction between positions 8 and 14 is absent in Escherichia coli tRNAs with only 3 base pairs in the dihydrouridine stem. We have taken advantage of the unique 15N chemical shift of N3 in thiouridine to identify 1H and 15N resonances for the imino units of S4U8 and s4U9 in E. coli tRNASer1 and tRNATyr2. Model studies with chloroform-soluble derivatives of uridine and 4-thiouridine show that the chemical shifts of the protons in the imino moieties move downfield from 7.9 to 14.4 ppm and from 9.1 to 15.7 ppm, respectively; whereas, the corresponding 15N chemical shifts move downfield from 157.5 to 162.5 ppm and from 175.5 to 180.1 ppm upon hydrogen bonding to 5'-O-acetyl-2',3'-isopropylidene adenosine. The large difference in 15N chemical shifts for U and s4U allows one to unambiguously identify s4U imino resonances by 15N NMR spectroscopy. E. coli tRNASer1 and tRNATyr2 were selectively enriched with 15N at N3 of all uridines and modified uridines. Two-dimensional 1H-15N chemical shift correlation NMR spectroscopy revealed that both tRNAs have resonances with 1H and 15N chemical shifts characteristic of s4UA pairs. The 1H shift is approximately 1 ppm upfield from the typical s4U8 resonance at 14.8 ppm, presumably as a result of local diamagnetic anisotropies. An additional s4U resonance with 1H and 15N shifts typical of interaction of a bound water or a sugar hydroxyl group with s4U9 was discovered in the spectrum of tRNATyr2. Our NMR results for tRNAs with 3-base pair dihydrouridine stems suggest that these molecules have an U8A14 tertiary interaction similar to that found in tRNAs with 4-base pair dihydrouridine

  1. Isolation and measurement of 15N2 from respiratory gases of animals administered 15N-labeled substances.

    PubMed

    Springer, D L; Reed, D J; Dost, F N

    1981-01-01

    A method is described for collection of metabolic 15N2 from in vitro preparations or intact rats administered 15N-containing compounds. The methods enables routine collection and mass spectrometric measurement of as little as 10 mumol 15N2 respired by a rat over a 24-h period. A device is described that includes either an animal chamber or a tissue reaction vessel in a closed recycling atmosphere, with automatic O2 replenishment and removal of CO2 and water. It is capable of sustaining moderate vacuum and is coupled to a high-vacuum manifold designed to process the contained atmosphere and respiratory gases. The starting atmosphere is an 80:20 mix of sulfur hexafluoride and O2. Recovery of 15N2 gas from the system without an animal present was 101.3 +/- 5.75%. When 15N2 gas was very slowly infused iv into an animal, recovery was 89.1 +/- 5.38%. Use of the method in studies of the fate of [15N]hydrazine in rats indicated that about 15% of the administered hydrazine is rapidly converted to 15N2, followed by slower conversion of an additional 7-10% over the next several hours. PMID:7328697

  2. Multinuclear magnetic resonance studies of the 2Fe-2S sup * ferredoxin from Anabaena species strain PCC 7120. 3. Detection and characterization of hyperfine-shifted nitrogen-15 and hydrogen-1 resonances of the oxidized form

    SciTech Connect

    Oh, Byung-Ha; Markley, J.L. )

    1990-04-24

    All the nitrogen signals from the amino acid side chains and 80 of the total of 98 backbone nitrogen signals of the oxidized form of the 2Fe{center dot}2S* ferredoxin from Anabaena sp. strain PCC 7120 were assigned by means of a series of heteronuclear two-dimensional experiments. Two additional nitrogen signals were observed in the one-dimensional {sup 15}N NMR spectrum and classified as backbone amide resonances from residues whose proton resonances experience paramagnetic broadening. The one-dimensional {sup 15}N NMR spectrum shows nine resonances that are hyperfine shifted and broadened. From this inventory of diamagnetic nitrogen signals and the available X-ray coordinates of the related ferredoxin, the resolved hyperfine-shifted {sup 15}N peaks were attributed to backbone amide nitrogens of two other amino acids that share electrons with the 2Fe{center dot}2S* center to backbone amide nitrogens of two other amino acids that are close to the 2Fe{center dot}2S* center. The seven {sup 15}N signals that are missing and unaccounted for probably are buried under the envelope of amide signals. {sup 1}H NMR signals from all the amide protons directly bonded to the seven missing and nine hyperfine-shifted nitrogens were too broad to be resolved in conventional 2D NMR spectra. From their dependence on the magnetogyric ratio, a {sup 1}H resonance should be up to 100 times broader than a {sup 15}N resonance that experiences a similar hyperfine interaction. This appears to be the reason why more well-resolved hyperfine-shifted {sup 15}N resonances were observed than corresponding {sup 1}H resonances. The result suggest that hyperfine-shifted {sup 15}N peaks can provide a unique window on the electronic structure and environment of this and other paramagnetic centers.

  3. δ15N Value Does Not Reflect Fasting in Mysticetes

    PubMed Central

    Aguilar, Alex; Giménez, Joan; Gómez–Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue δ15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indicatior of nutritive condition. PMID:24651388

  4. Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of bromobenzene and its perdeuterated isotopologue: Assignment of the vibrations of the S(0), S(1), and D(0)(+) states of bromobenzene and the S(0) and D(0)(+) states of iodobenzene.

    PubMed

    Andrejeva, Anna; Tuttle, William D; Harris, Joe P; Wright, Timothy G

    2015-12-28

    We report vibrationally resolved spectra of the S1←S0 transition of bromobenzene using resonance-enhanced multiphoton ionization spectroscopy. We study bromobenzene-h5 as well as its perdeuterated isotopologue, bromobenzene-d5. The form of the vibrational modes between the isotopologues and also between the S0 and S1 electronic states is discussed for each species, allowing assignment of the bands to be achieved and the activity between states and isotopologues to be established. Vibrational bands are assigned utilizing quantum chemical calculations, previous experimental results, and isotopic shifts. Previous work and assignments of the S1 spectra are discussed. Additionally, the vibrations in the ground state cation, D0 (+), are considered, since these have also been used by previous workers in assigning the excited neutral state spectra. We also examine the vibrations of iodobenzene in the S0 and D0 (+) states and comment on the previous assignments of these. In summary, we have been able to assign the corresponding vibrations across the whole monohalobenzene series of molecules, in the S0, S1, and D0 (+) states, gaining insight into vibrational activity and vibrational couplings. PMID:26723684

  5. Catalytic Roles of βLys87 in Tryptophan Synthase: 15N Solid State NMR Studies

    PubMed Central

    Caulkins, Bethany G.; Yang, Chen; Hilario, Eduardo; Fan, Li; Dunn, Michael F.; Mueller, Leonard J.

    2015-01-01

    The proposed mechanism for tryptophan synthase shows βLys87 playing multiple catalytic roles: it bonds to the PLP cofactor, activates C4′ for nucleophilic attack via a protonated Schiff base nitrogen, and abstracts and returns protons to PLP-bound substrates (i.e. acid-base catalysis). ε-15N-lysine TS was prepared to access the protonation state of βLys87 using 15N solid-state nuclear magnetic resonance (SSNMR) spectroscopy for three quasi-stable intermediates along the reaction pathway. These experiments establish that the protonation state of the ε-amino group switches between protonated and neutral states as the β-site undergoes conversion from one intermediate to the next during catalysis, corresponding to mechanistic steps where this lysine residue has been anticipated to play alternating acid and base catalytic roles that help steer reaction specificity in tryptophan synthase catalysis. PMID:25688830

  6. First Experimental Measurement of the {sup 18}O(p,{alpha}){sup 15}N Reaction at Astrophysical Energies

    SciTech Connect

    La Cognata, M.; Sergi, M. L.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Kiss, G.; Lamia, L.; Pizzone, R. G.; Romano, S.; Mukhamedzhanov, A.; Goldberg, V.; Tribble, R.; Coc, A.; Hammache, F.; Sereville, N. de; Tumino, A.

    2010-11-24

    The {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N reactions are of primary importance in several as-trophysical scenarios, including nucleosynthesis inside Asymptotic Giant Branch stars and oxygen and nitrogen isotopic ratios in meteorite grains. They are also key reactions to understand exotic systems such as R-Coronae Borealis stars and novae. Thus, the measurement of their cross sections in the low energy region can be crucial to reduce the nuclear uncertainty on theoretical predictions, because the resonance parameters are poorly determined. The Trojan Horse Method, in its newly developed form particularly suited to investigate low-energy resonances, has been applied to the {sup 2}H({sup 18}O,{alpha}{sup 15}N)n and {sup 2}H({sup 17}O,{alpha}{sup 14}N)n reactions to deduce the {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N cross sections at low energies. Resonances in the {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N excitation functions have been studied and the resonance parameters deduced.

  7. Global Fold of Human Cannabinoid Type 2 Receptor Probed by Solid-State 13C-, 15N-MAS NMR and Molecular Dynamics Simulations

    PubMed Central

    Kimura, Tomohiro; Vukoti, Krishna; Lynch, Diane L.; Hurst, Dow P.; Grossfield, Alan; Pitman, Michael C.; Reggio, Patricia H.; Yeliseev, Alexei A.; Gawrisch, Klaus

    2014-01-01

    The global fold of human cannabinoid type 2 (CB2) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state 13C- and 15N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly 13C-, and 15N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. 13C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C=O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the 13C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular loop 2 and the second half of intracellular loop 3, change their chemical shifts significantly (≥1.5 ppm for carbons and ≥5.0 ppm for nitrogens). Simulated two-dimensional 13Cα(i)-13C=O(i) and 13C=O(i)-15NH(i+1) dipolar-interaction correlation spectra provide guidance for selective amino-acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid-state MAS NMR. PMID:23999926

  8. Refining cotton-wick method for 15N plant labelling.

    NASA Astrophysics Data System (ADS)

    Fustec, Joëlle; Mahieu, Stéphanie

    2010-05-01

    The symbiosis Fabaceae/Rhizobiaceae plays a critical role in the nitrogen cycle. It gives the plant the ability to fix high amounts of atmospheric N. A part of this N can be transferred to the soil via rhizodeposition. The contribution of Fabaceae to the soil N pool is difficult to measure, since it is necessary for assessing N benefits for other crops, for soil biological activity, and for reducing water pollution in sustainable agriculture (Fustec, 2009). The aim of this study was to test and improve the reliability of the 15N cotton-wick method for measuring the soil N derived from plant rhizodeposition (Mahieu et al., 2007). The effects of the concentration of the 15N-urea labelling solution and of the feeding frequency (continuous or pulses) on the assessment of nitrogen rhizodeposition were studied in two greenhouse experiments using the field pea (Pisum sativum L.) and the non-nodulating isoline P2. The plant parts and the soil were prepared for 15N:14N measurements for assessing N rhizodeposition (Mahieu et al., 2009). The fraction of plants' belowground nitrogen allocated to rhizodeposition in both Frisson pea and P2 was 20 to more than 50% higher when plants were labelled continuously than when they were labelled using fortnightly pulses. Our results suggested that when 15N root enrichment was high, nitrogen rhizodeposition was underestimated only for plants that were 15N-fed by fortnightly pulses, and not in plants 15N-fed continuously. This phenomenon was especially observed for plants relying on symbiotic N fixation for N acquisition; it may be linked to the concentration of the labelling solution. In conclusion, N rhizodeposition assessment was strongly influenced by the 15N-feeding frequency and the concentration of the labelling solution. The estimation of N rhizodeposition was more reliable when plants were labelled continuously with a dilute solution of 15N urea. Fustec et al. 2009. Agron. Sustain. Dev., DOI 10.1051/agro/2009003, in press. Mahieu

  9. Paramagnetic Inversion of the Sign of the Interference Contribution to the Transverse Relaxation of the Imido Protons of the Coordinated Imidazoles in the Uniformly 15N-Labeled Cytochrome c3

    NASA Astrophysics Data System (ADS)

    Ohmura, Tomoaki; Harada, Erisa; Fujiwara, Toshimichi; Kawai, Gota; Watanabe, Kimitsuna; Akutsu, Hideo

    1998-04-01

    In the spectrum of uniformly15N-labeled cytochromec3, the relative linewidths of the doublet peaks of the15N-coupled imido proton of the coordinated imidazole group were reversed on oxidation. This inversion was explained by the interference relaxation process between the electron-proton dipolar and15N-1H dipolar interactions. The inversion can be used to assign the imido protons of the coordinated imidazole groups in heme proteins.

  10. Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by 1H-detected 15N NMR

    PubMed Central

    Lane, Andrew N.; Arumugam, Sengodagounder; Lorkiewicz, Pawel K.; Higashi, Richard M.; Laulhé, Sébastien; Nantz, Michael H.; Moseley, Hunter N.B.; Fan, Teresa W.-M.

    2015-01-01

    NMR spectra of mixtures of metabolites extracted from cells or tissues are extremely complex, reflecting the large number of compounds that are present over a wide range of concentrations. Although multidimensional NMR can greatly improve resolution as well as improve reliability of compound assignments, lower abundance metabolites often remain hidden. We have developed a carbonyl selective aminooxy probe that specifically reacts with free keto and aldehyde functions, but not carboxylates. By incorporating 15N in the aminooxy functional group, 15N-edited NMR was used to select exclusively those metabolites that contain a free carbonyl function while all other metabolites are rejected. Here we demonstrate that the chemical shifts of the aminooxy adducts of ketones and aldehydes are very different, which can be used to discriminate between aldoses and ketoses for example. Utilizing the 2 or 3 bond 15N-1H couplings, the 15N-edited NMR analysis was optimized first with authentic standards and then applied to an extract of the lung adenocarcinoma cell line A549. More than 30 carbonyl containing compounds at NMR detectable levels, 6 of which we have assigned by reference to our database. As the aminooxy probe contains a permanently charged quaternary ammonium group, the adducts are also optimized for detection by mass spectrometry. Thus, this sample preparation technique provides a better link between the two structural determination tools, thereby paving the way to faster and more reliable identification of both known and unknown metabolites directly in crude biological extracts. PMID:25616249

  11. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    PubMed

    Dabundo, Richard; Lehmann, Moritz F; Treibergs, Lija; Tobias, Craig R; Altabet, Mark A; Moisander, Pia H; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L(-1) d(-1), to 530 nmoles N L(-1) d(-1), contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2

  12. Two-dimensional sup 1 H nuclear magnetic resonance study of AaH IT, an anti-insect toxin from the scorpion Androctonus australis Hector. Sequential resonance assignments and folding of the polypeptide chain

    SciTech Connect

    Darbon, H. ); Weber, C.; Braun, W. )

    1991-02-19

    Sequence-specific nuclear magnetic resonance assignments for the polypeptide backbone and for most of the amino acid side-chain protons, as well as the general folding of AaH IT, are described. AaH IT is a neurotoxin purified from the venom of the scorpion Androctonus australis Hector and is specifically active on the insect nervous system. The secondary structure and the hydrogen-bonding patterns in the regular secondary structure elements are deduced from nuclear Overhauser effects and the sequence locations of the slowly exchanging amide protons. The backbone folding is determined by distance geometry calculations with the DISMAN program. The regular secondary structure includes two and a half turns of {alpha}-helix running from residues 21 to 30 and a three-stranded antiparallel {beta}-sheet including peptides 3-5, 34-38, and 41-46. Two tight turns are present, one connecting the end of the {alpha}-helix to an external strand of the {beta}-sheet, i.e., turn 31-34, and another connecting this same strand to the central one, i.e., turn 38-41. The differences in the specificity of these related proteins, which are able to discriminate between mammalian and insect voltage-dependent sodium channels of excitable tissues, are most probably brought about by the position of the C-terminal peptide with regard to a hydrophobic surface common to all scorpion toxins examined thus far. Thus, the interaction of a given scorpion toxin with its receptor might well be governed by the presence of this solvent-exposed hydrophobic surface, whereas adjacent areas modulate the specificity of the interaction.

  13. Asymptotic Normalization Coefficients from the {sup 15}N({sup 3}He,d){sup 16}O Reaction and the Astrophysical Factor for the {sup 15}N(p,{gamma}){sup 16}O Capture

    SciTech Connect

    Burjan, V.; Bem, P.; Hons, Z.; Kroha, V.; Mrazek, J.; Novak, J.; Piskor, S.; Simeckova, E.; Vincour, J.; Cherubini, S.; La Cognata, M.; Pizzone, R. G.; Romano, S.; Spitaleri, C.; Tumino, A.; Gagliardi, C. A.; Mukhamedzhanov, A. M.; Plunkett, A.; Trache, L.; Tribble, R. E.

    2008-05-12

    The angular distributions of the {sup 15}N({sup 3}He,d){sup 16}O reaction were measured with the aim to determine the direct capture rate of the astrophysical reaction {sup 15}N(p, {gamma}){sup 16}O by deducing asymptotic normalization coefficients (ANC). The {sup 15}N(p,{gamma}){sup 16}O reaction is a part of the CNO cycle having importance in the nucleosynthesis of the N and O isotopes. The measurement was carried out on the cyclotron U120M of NPI CAS at the energy 25.74 MeV of {sup 3}He ions in a gas chamber containing the high purity {sup 15}N isotope. The preliminary results of corresponding spectroscopic factors and ANC's were used for the estimation of the S-factor for the direct capture {sup 15}N(p,{gamma}){sup 16}O. Using the widths of the resonances E{sub R} = 312 and 962 keV, the total S-factor was determined within the framework of the R-matrix approach.

  14. sup 15 N NMR study on cyanide (C sup 15 N sup minus ) complex of cytochrome P-450 sub cam. Effects of d-camphor and putidaredoxin on the iron-ligand structure

    SciTech Connect

    Shiro, Yoshitsugu; Iizuka, Tetsutaro ); Makino, Ryu; Ishimura, Yuzuru ); Morishima, Isao )

    1989-11-27

    The cyanide (C{sup 15}N{sup {minus}}) complex of Pseudomonas putida cytochrome P-450 (P-450{sub cam}) exhibited well-resolved and hyperfine-shifted {sup 15}N NMR resonances arising from the iron-bound C{sup 15}N{sup {minus}} at 423 and 500 ppm in the absence and presence of the substrate, d-camphor, respectively. The values were smaller than those for cyanide complexes of myoglobin and hemoglobin ({approx} 1000 ppm) but fell into the same range as those for the cyanide complexes of peroxidases ({approx} 500 ppm). The {sup 15}N shift values of P-450{sub cam} were not incompatible with the existence of anionic ligand, such as cysteinyl thiolate anion, at the fifth coordination site of heme iron. The difference in the {sup 15}N chemical shift values between camphor-free and bound enzymes was inferred by the increase in the steric constraint to the Fe-C-N bond upon substrate binding.

  15. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age

    NASA Astrophysics Data System (ADS)

    Minagawa, Masao; Wada, Eitaro

    1984-05-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average δ15Nversus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from the East China Sea show an average -0.55%. (-0.8 to +1.2). All consumers, Zooplankton, fish and bird exhibited Stepwise enrichment of 15N with increasing trophic level. The 15N enrichment at a single feeding process ranged from +1.3 to +5.3 averaging +3.4 ± 1.1%.. This isotopic fractionation seems to be independent of habitat. The effect of age in animals was obtained by analyzing two marine mussels. The soft tissue nitrogen showed +2.0%. enrichment relative to that of primary producers, and the magnitude was almost constant with shell ages ranging from 0 to 8 years. A similar 15N enrichment occurs in all Molluscs, Crustaceans, Insecta, Amphibia, Fish, Ave and Mammal species regardless of the difference in the form of excreted nitrogen and in laboratory cultured fish, brine shrimp and mice (+2.9 to +4.9%.). The excreted ammonia from guppy was sufficiently light to balance the concentration of 15N to animal body.

  16. Cerebral glutamine metabolism under hyperammonemia determined in vivo by localized 1H and 15N NMR spectroscopy

    PubMed Central

    Cudalbu, Cristina; Lanz, Bernard; Duarte, João MN; Morgenthaler, Florence D; Pilloud, Yves; Mlynárik, Vladimir; Gruetter, Rolf

    2012-01-01

    Brain glutamine synthetase (GS) is an integral part of the glutamate–glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. 15N MRS is an alternative approach to 13C MRS. Incorporation of labeled 15N from ammonia in cerebral glutamine allows to measure several metabolic reactions related to nitrogen metabolism, including the glutamate–glutamine cycle. To measure 15N incorporation into the position 5N of glutamine and position 2N of glutamate and glutamine, we developed a novel 15N pulse sequence to simultaneously detect, for the first time, [5-15N]Gln and [2-15N]Gln+Glu in vivo in the rat brain. In addition, we also measured for the first time in the same experiment localized 1H spectra for a direct measurement of the net glutamine accumulation. Mathematical modeling of 1H and 15N MRS data allowed to reduce the number of assumptions and provided reliable determination of GS (0.30±0.050 μmol/g per minute), apparent neurotransmission (0.26±0.030 μmol/g per minute), glutamate dehydrogenase (0.029±0.002 μmol/g per minute), and net glutamine accumulation (0.033±0.001 μmol/g per minute). These results showed an increase of GS and net glutamine accumulation under hyperammonemia, supporting the concept of their implication in cerebral ammonia detoxification. PMID:22167234

  17. Millimeter-wave optical double resonance schemes for rapid assignment of perturbed spectra, with applications to the C{sup ~} {sup 1}B{sub 2} state of SO{sub 2}

    SciTech Connect

    Park, G. Barratt E-mail: barratt.park@gmail.com; Womack, Caroline C.; Jiang, Jun; Field, Robert W.; Whitehill, Andrew R.; Ono, Shuhei

    2015-04-14

    Millimeter-wave detected, millimeter-wave optical double resonance (mmODR) spectroscopy is a powerful tool for the analysis of dense, complicated regions in the optical spectra of small molecules. The availability of cavity-free microwave and millimeter wave spectrometers with frequency-agile generation and detection of radiation (required for chirped-pulse Fourier-transform spectroscopy) opens up new schemes for double resonance experiments. We demonstrate a multiplexed population labeling scheme for rapid acquisition of double resonance spectra, probing multiple rotational transitions simultaneously. We also demonstrate a millimeter-wave implementation of the coherence-converted population transfer scheme for background-free mmODR, which provides a ∼10-fold sensitivity improvement over the population labeling scheme. We analyze perturbations in the C{sup ~} state of SO{sub 2}, and we rotationally assign a b{sub 2} vibrational level at 45 328 cm{sup −1} that borrows intensity via a c-axis Coriolis interaction. We also demonstrate the effectiveness of our multiplexed mmODR scheme for rapid acquisition and assignment of three predissociated vibrational levels of the C{sup ~} state of SO{sub 2} between 46 800 and 47 650 cm{sup −1}.

  18. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  19. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  20. High resolution (13)C MRI with hyperpolarized urea: in vivo T(2) mapping and (15)N labeling effects.

    PubMed

    Reed, Galen D; von Morze, Cornelius; Bok, Robert; Koelsch, Bertram L; Van Criekinge, Mark; Smith, Kenneth J; Hong Shang; Larson, Peder E Z; Kurhanewicz, John; Vigneron, Daniel B

    2014-02-01

    (13)C steady state free precession (SSFP) magnetic resonance imaging and effective spin-spin relaxation time (T2) mapping were performed using hyperpolarized [(13)C] urea and [(13) C,(15)N2] urea injected intravenously in rats. (15)N labeling gave large T2 increases both in solution and in vivo due to the elimination of a strong scalar relaxation pathway. The T2 increase was pronounced in the kidney, with [(13) C,(15) N2] urea giving T2 values of 6.3±1.3 s in the cortex and medulla, and 11±2 s in the renal pelvis. The measured T2 in the aorta was 1.3±0.3 s. [(13)C] urea showed shortened T2 values in the kidney of 0.23±0.03 s compared to 0.28±0.03 s measured in the aorta. The enhanced T2 of [(13)C,(15)N2] urea was utilized to generate large signal enhancement by SSFP acquisitions with flip angles approaching the fully refocused regime. Projection images at 0.94 mm in-plane resolution were acquired with both urea isotopes, with [(13)C,(15) N2] urea giving a greater than four-fold increase in signal-to-noise ratio over [(13)C] urea. PMID:24235273

  1. Isotope effects and spectroscopic assignments in the non-dissociative photoionization spectrum of N{sub 2}

    SciTech Connect

    Randazzo, John B.; Croteau, Philip; Kostko, Oleg; Ahmed, Musahid; Boering, Kristie A.

    2014-05-21

    Photoionization efficiency spectra of {sup 14}N{sub 2}, {sup 15}N{sup 14}N, and {sup 15}N{sub 2} from 15.5 to 18.9 eV were measured using synchrotron radiation at the Advanced Light Source at Lawrence Berkeley National Laboratory with a resolution of 6 meV, and significant changes in peak energies and intensities upon isotopic substitution were observed. Previously, we reported the isotope shifts and their applications to Titan's atmosphere. Here, we report more extensive experimental details and tabulate the isotope shifts of many transitions in the N{sub 2} spectrum, including those for {sup 15}N{sup 14}N, which have not been previously reported. The isotope shifts are used to address several long-standing ambiguities in spectral peak assignments just above the ionization threshold of N{sub 2}. The feature at 15.677 eV (the so-called second “cathedral” peak) is of particular interest in this respect. The measured isotope shifts for this peak relative to {sup 14}N{sub 2} are 0.015 ± 0.001 eV for {sup 15}N{sub 2} and 0.008 ± 0.001 eV for {sup 15}N{sup 14}N, which match most closely with the isotope shifts predicted for transitions to the (A {sup 2}Π{sub u} v{sup ′} = 2)4sσ{sub g} {sup 1}Π{sub u} state using Herzberg equations for the isotopic differences in harmonic oscillator energy levels plus the first anharmonic correction of 0.0143 eV for {sup 15}N{sub 2} and 0.0071 eV for {sup 15}N{sup 14}N. More generally, the isotope shifts measured for both {sup 15}N{sub 2} and {sup 15}N{sup 14}N relative to {sup 14}N{sub 2} provide new benchmarks for theoretical calculations of interferences between direct and indirect autoionization states which can interact to produce intricate resonant structures in molecular photoionization spectra in regions near ionization thresholds.

  2. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use. PMID:24091140

  3. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  4. Nitrogen input 15N-signatures are reflected in plant 15N natural abundances of N-rich tropical forest in China

    NASA Astrophysics Data System (ADS)

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Yunting, Fang; Mo, Jiangming

    2016-04-01

    In this study, we tested the measurement of natural abundance of 15N15N) for its ability to assess changes in N cycling due to increased N deposition in two forest types; namely, an old-growth broadleaved forest and a pine forest, in southern China. We measured δ15N values of inorganic N in input and output fluxes under ambient N deposition, and N concentration and δ15N of major ecosystem compartments under ambient and increased N deposition. Our results showed that N deposition to the forests was 15N-depleted, and was dominated by NH4-N. Plants were 15N-depleted due to imprint from the 15N-depleted atmospheric N deposition. The old-growth forest had larger N concentration and was more 15N-enriched than the pine forest. Nitrogen addition did not significantly affect N concentration, but it significantly increased δ15N values of plants, and slightly more so in the pine forest, toward the 15N signature of the added N in both forests. The result indicates that the pine forest may rely more on the 15N-depleted deposition N. Soil δ15N values were slightly decreased by the N addition. Our result suggests that ecosystem δ15N is more sensitive to the changes in ecosystem N status and N cycling than N concentration in N-saturated sub-tropical forests.

  5. Theoretical and experimental study of 15N NMR protonation shifts.

    PubMed

    Semenov, Valentin A; Samultsev, Dmitry O; Krivdin, Leonid B

    2015-06-01

    A combined theoretical and experimental study revealed that the nature of the upfield (shielding) protonation effect in 15N NMR originates in the change of the contribution of the sp(2)-hybridized nitrogen lone pair on protonation resulting in a marked shielding of nitrogen of about 100 ppm. On the contrary, for amine-type nitrogen, protonation of the nitrogen lone pair results in the deshielding protonation effect of about 25 ppm, so that the total deshielding protonation effect of about 10 ppm is due to the interplay of the contributions of adjacent natural bond orbitals. A versatile computational scheme for the calculation of 15N NMR chemical shifts of protonated nitrogen species and their neutral precursors is proposed at the density functional theory level taking into account solvent effects within the supermolecule solvation model. PMID:25891386

  6. 2D NMR studies of aminoglycoside antibiotics. Use of relayed coherence transfer for /sub 1/H resonance assignment and in situ structure elucidation of amikacin derivatives in reaction mixtures

    SciTech Connect

    Andersen, N.H.; Eaton, H.L.; Nguyen, K.T.; Hartzell, C.; Nelson, R.J.; Priest, J.H.

    1988-04-19

    Phase-sensitive 2D /sup 1/H//sup 1/H COSY spectra can be used to identify the structures of individual pure specimens of the aminoglycoside antibiotic amikacin and its N-hemisuccinyl derivatives. However, even at 500 MHz the 2D chemical shift dispersion does not allow for unambiguous assignment of all cross-peaks. By use of 2D relayed coherence transfer experiments (RELAY) optimized to detect two-step /sup 1/H//sup 1/H scalar interactions in which one of the J-values is small, sufficient additional correlations can be obtained from the frequency-isolated resonances to allow facile tracing of all scalar connectivities. Complete assignments of the /sup 1/H NMR spectra of amikacin, its 6'-N-hemisuccinamide, and a novel bis(acylate) (..gamma..-N-(p-vinylbenzoyl)amikacin 6'-N-hemisuccinamide) were obtained for aqueous media. The NMR spectrum of amikacin free base was also assigned in dimethyl sulfoxide solution. The RELAY experiment can be extended to the analysis of reaction mixtures, which allows for the identification and resonance assignment of regioisomeric amikacin haptens in the mixture state. All of the N-monohemisuccinyl isomers of amikacin have been identified in reaction mixtures through the RELAY experiment. The relative reactivities of the amino functions of amikacin toward acylating agents were found to be 6'-N > 3-N greater than or equal to 3''-N greater than or equal to ..gamma..-N. However, this reactivity order is altered after the initial acylation event.

  7. Marking Drosophila suzukii (Diptera: Drosophilidae) With Rubidium or 15N.

    PubMed

    Klick, J; Yang, W Q; Bruck, D J

    2015-06-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) has caused significant economic damage to berry and stone fruit production regions. Markers that are systemic in plants and easily transferred to target organisms are needed to track D. suzukii exploitation of host resources and trophic interactions. High and low concentrations of the trace element, rubidium (Rb), and the stable isotope, 15N, were tested to mark D. suzukii larvae feeding on fruits of enriched strawberry plants grown in containers under greenhouse conditions. Fly marker content and proportion of flies marked 1, 7, and 14 d after emergence from enriched fruits and fly dry mass were analyzed. Nearly 100% of the flies analyzed 14 d after emerging from 15N-enriched plants were marked, whereas only 30-75% and 0-3% were marked 14 d after emerging from high and low Rb concentration plants, respectively. Rapid Rb decay, strong 15N persistence, and the economics of using these markers in the field to elucidate D. suzukii pest ecology are discussed. PMID:26470275

  8. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported. PMID:24746715

  9. ADAPT-NMR 3.0: utilization of BEST-type triple-resonance NMR experiments to accelerate the process of data collection and assignment

    PubMed Central

    Dashti, Hesam; Tonelli, Marco

    2015-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) is a software package whose Bayesian core uses on-the-fly chemical shift assignments to guide data acquisition by non-uniform sampling from a panel of through-bond NMR experiments. The new version of ADAPT-NMR (ADAPT-NMR v3.0) has the option of utilizing 2D tilted-plane versions of 3D fast spectral acquisition with BEST-type pulse sequences, while also retaining the capability of acquiring and processing data from tilted-plane versions of conventional sensitivity-enhanced experiments. The use of BEST experiments significantly reduces data collection times and leads to enhanced performance by ADAPT-NMR. PMID:26021595

  10. ADAPT-NMR 3.0: utilization of BEST-type triple-resonance NMR experiments to accelerate the process of data collection and assignment.

    PubMed

    Dashti, Hesam; Tonelli, Marco; Markley, John L

    2015-07-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) is a software package whose Bayesian core uses on-the-fly chemical shift assignments to guide data acquisition by non-uniform sampling from a panel of through-bond NMR experiments. The new version of ADAPT-NMR (ADAPT-NMR v3.0) has the option of utilizing 2D tilted-plane versions of 3D fast spectral acquisition with BEST-type pulse sequences, while also retaining the capability of acquiring and processing data from tilted-plane versions of conventional sensitivity-enhanced experiments. The use of BEST experiments significantly reduces data collection times and leads to enhanced performance by ADAPT-NMR. PMID:26021595

  11. Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling.

    PubMed Central

    Castillo, L; Beaumier, L; Ajami, A M; Young, V R

    1996-01-01

    The rates of whole body nitric oxide (NO) synthesis, plasma arginine flux, and de novo arginine synthesis and their relationships to urea production, were examined in a total of seven healthy adults receiving an L-amino acid diet for 6 days. NO synthesis was estimated by the rate of conversion of the [15N] guanidino nitrogen of arginine to plasma [15N] ureido citrulline and compared with that based on urinary nitrite (NO2-)/nitrate (NO3-) excretion. Six subjects received on dietary day 7, a 24-hr (12-hr fed/12-hr fasted) primed, constant, intravenous infusion of L-[guanidino-15N2]arginine and [13C]urea. A similar investigation was repeated with three of these subjects, plus an additional subject, in which they received L-[ureido-13C]citrulline, to determine plasma citrulline fluxes. The estimated rates (mean +/- SD) of NO synthesis over a period of 24 hr averaged 0.96 +/- 0.1 mumol .kg-1.hr-1 and 0.95 +/- 0.1 mumol.kg-1.hr-1, for the [15N]citrulline and the nitrite/nitrate methods, respectively. About 15% of the plasma arginine turnover was associated with urea formation and 1.2% with NO formation. De novo arginine synthesis averaged 9.2 +/- 1.4 mumol. kg-1.hr-1, indicating that approximately 11% of the plasma arginine flux originates via conversion of plasma citrulline to arginine. Thus, the fraction of the plasma arginine flux associated with NO and also urea synthesis in healthy humans is small, although the plasma arginine compartment serves as a significant precursor pool (54%) for whole body NO formation. This tracer model should be useful for exploring these metabolic relationships in vivo, under specific pathophysiologic states where the L-arginine-NO pathway might be altered. Images Fig. 4 PMID:8876157

  12. Measuring (13)C/(15)N chemical shift anisotropy in [(13)C,(15)N] uniformly enriched proteins using CSA amplification.

    PubMed

    Hung, Ivan; Ge, Yuwei; Liu, Xiaoli; Liu, Mali; Li, Conggang; Gan, Zhehong

    2015-11-01

    Extended chemical shift anisotropy amplification (xCSA) is applied for measuring (13)C/(15)N chemical shift anisotropy (CSA) of uniformly labeled proteins under magic-angle spinning (MAS). The amplification sequence consists of a sequence of π-pulses that repetitively interrupt MAS averaging of the CSA interaction. The timing of the pulses is designed to generate amplified spinning sideband manifolds which can be fitted to extract CSA parameters. The (13)C/(13)C homonuclear dipolar interactions are not affected by the π-pulses due to the bilinear nature of the spin operators and are averaged by MAS in the xCSA experiment. These features make the constant evolution-time experiment suitable for measuring CSA of uniformly labeled samples. The incorporation of xCSA with multi-dimensional (13)C/(15)N correlation is demonstrated with a GB1 protein sample as a model system for measuring (13)C/(15)N CSA of all backbone (15)NH, (13)CA and (13)CO sites. PMID:26404770

  13. Cross sections for n+{sup 14}N from an R-matrix analysis of the {sup 15}N system

    SciTech Connect

    Hale, G.M.; Young, P.G.; Chadwick, M.B.

    1994-06-01

    As part of the Hiroshima-Nagasaki Dose Reevaluation Program, a new evaluation of the neutron cross sections for {sup 14}N was made for ENDF/B-VI, based at energies below 2.5 MeV on a multichannel R-matrix analysis of reactions in the {sup 15}N system. The types of data used in the analysis, and the resulting cross sections and resonance structure for {sup 15}N are briefly described. The resonant features of the neutron cross sections were especially well determined by including precise, high-resolution neutron total cross section measurements from ORNL. While the new evaluated cross section appear to be significant improvements over the earlier ones, they still need to be tested more extensively against recent measurements of the differential elastic cross section from Oak Ridge.

  14. 15N NMR chemical shifts in papaverine decomposition products

    NASA Astrophysics Data System (ADS)

    Czyrski, Andrzej; Girreser, Ulrich; Hermann, Tadeusz

    2013-03-01

    Papaverine can be easily oxidized to papaverinol, papaveraldine and 2,3,9,10-tetramethoxy-12-oxo-12H-indolo[2,1-a]isoquinolinium chloride. On addition of alkali solution the latter compound forms 2-(2-carboxy-4,5-dimethoxyphenyl)-6,7-dimethoxyisoquinolinium inner salt. Together with these structures the interesting 13-(3,4-dimethoxyphenyl)-2,3,8,9-tetramethoxy-6a-12a-diazadibenzo[a,g]fluorenylium chloride is discussed, which is formed in the Gadamer-Schulemann reaction of papaverine as a side product. This letter reports the 15N NMR spectra of the above mentioned compounds.

  15. Experimental plant for simultaneous production of (14)N and (15)N by (15)N/(14)N exchange in NO, NO(2)-HNO(3) system under pressure.

    PubMed

    Axente, Damian; Marcu, Cristina; Muresan, Ancuţa; Kaucsar, Martin; Misan, Ioan; Popeneciu, Gabriel; Gligan, Nicolae; Cristea, Gabriela

    2010-06-01

    An experimental study on (14)N and (15)N simultaneous separation using the chemical exchange in NO, NO(2)-HNO(3) system under pressure is presented. The influence of the pressure and of the interstage 10 M HNO(3) flow rate on the separation of (14)N and (15)N was measured on a packed column with product and waste refluxers. At steady state and 1.8 atm (absolute), the isotopic concentration at the bottom of the separation column was 0.563 at% (15)N, and in the top of the column was 0.159 at% (15)N. The height equivalent to a theoretical plate and interstage 10 M HNO(3) flow rate values, obtained in these experimental conditions, allows the separation of (14)N highly depleted of (15)N and of (15)N at 99 at% (15)N concentration. PMID:20582793

  16. Assignment of selected hyperfine proton NMR resonances in the met forms of Glycera dibranchiata monomer hemoglobins and comparisons with sperm whale metmyoglobin

    SciTech Connect

    Constantinidis, I.; Satterlee, J.D.; Pandey, R.K.; Leung, H.K.; Smith, K.M.

    1988-04-19

    This work indicates a high degree of purity for our preparations of all three of the primary Glycera dibranchiata monomer hemoglobins and details assignments of the heme methyl and vinyl protons in the hyperfine shift region of the ferric (aquo.) protein forms. The assignments were carried out by reconstituting the apoproteins of each component with selectively deuteriated hemes. The results indicate that even though the individual component preparations consist of essentially a single protein, the proton NMR spectra indicate spectroscopic heterogeneity. Evidence is presented for identification and classification of major and minor protein forms that are present in solutions of each component. Finally, in contrast to previous results, a detailed analysis of the proton hyperfine shift patterns of the major and minor forms of each component, in comparison to the major and minor forms of metmyoglobin, leads to the conclusions that the corresponding forms of the proteins from each species have strikingly similar heme-globin contacts and display nearly identical heme electronic structures and coordination numbers.

  17. Secondary structure determination for alpha-neurotoxin from Dendroaspis polylepis polylepis based on sequence-specific 1H-nuclear-magnetic-resonance assignments.

    PubMed

    Labhardt, A M; Hunziker-Kwik, E H; Wüthrich, K

    1988-11-01

    Sequence-specific assignments are presented for the polypeptide backbone protons and a majority of the amino-acid-side-chain protons of alpha-neurotoxin from Dendroaspis polylepis polylepis, and individual amide proton-exchange rates with the solvent are reported. The secondary structure and the hydrogen-bonding patterns in the regular secondary structure elements are deduced from nuclear Overhauser effects and the sequence locations of the slowly exchanging amide protons. The molecule includes a three-stranded antiparallel beta-sheet, and there are indications that two additional short chain segments are arranged in an antiparallel beta-sheet. These structural elements are similar, but not identical, to either the secondary structure reported for erabutoxin b in single crystals, or the solution structure of cytotoxin CTXIIb from Naja mossambica mossambica. PMID:2847926

  18. Negotiating Assignment Pathways: Students and Academic Assignments

    ERIC Educational Resources Information Center

    McDowell, Liz

    2008-01-01

    Existing research identifies that students' approaches to assignments are related to their general approaches to study. It is suggested that students need to better understand the requirements of assignments and acquire new concepts such as "argument". This fine-grained study proposes four qualitatively distinct assignment pathways: gathering,…

  19. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  20. Resonance

    NASA Astrophysics Data System (ADS)

    Perozzi, E.; Murdin, P.

    2000-11-01

    A resonance in CELESTIAL MECHANICS occurs when some of the quantities characterizing the motion of two or more celestial bodies can be considered as commensurable, i.e. their ratio is close to an integer fraction. In a simplified form, this can be expressed as ...

  1. /sup 15/N and /sup 13/C NMR determination of methionine metabolism in developing soybean cotyledons

    SciTech Connect

    Coker, G.T. III; Garbow, J.R.; Schaefer, J.

    1987-03-01

    The metabolism of D- and L-methionine by immature cotyledons of soybean (Glycine max, L. cv Elf) grown in culture has been investigated using solid-state /sup 13/C and /sup 15/N nuclear magnetic resonance. D-Methionine is taken up by the cotyledons and converted to an amide, most likely by N-malonylation. About 16% of the L-methionine taken up is incorporated intact into protein, and 25% remains as soluble methionine. Almost two-thirds of the L-methionine that enters the cotyledons is degraded. The largest percentage of this is used in transmethylation of the carboxyl groups of pectin. Methionine is not extensively converted to polyamines. The authors attribute the stimulation of growth of the cotyledons by exogenous methionine to the bypassing of a rate-limiting methyl-transfer step in the synthesis of methionine itself, and subsequently of pectins and proteins.

  2. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    PubMed

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-01

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. PMID:25843843

  3. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    SciTech Connect

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms

  4. ¹H, ¹³C and ¹⁵N resonance assignment for the human K-Ras at physiological pH.

    PubMed

    Vo, Uybach; Embrey, Kevin J; Breeze, Alexander L; Golovanov, Alexander P

    2013-10-01

    K-Ras, a member of the Ras family of small GTPases, is involved in cell growth, proliferation, differentiation and apoptosis and is frequently mutated in cancer. The activity of Ras is mediated by the inter-conversion between GTP- and GDP- bound states. This conversion is regulated by binding of effector proteins such as guanine nucleotide exchange factors and GTPase activating proteins. Previously, NMR signals from these effector-binding regions of Ras often remained unassigned and largely unobservable due to conformational exchange and polysterism inherent to this protein. In this paper, we report the complete backbone and C(β), as well as partial H(α), H(β) and C(γ), NMR assignment for human K-Ras (residues 1-166) in the GDP-bound form at a physiological pH of 7.4. These data thereby make possible detailed monitoring of the functional cycle of Ras and its interactions with nucleotides and effector proteins through the observation of fingerprint signals from all the functionally important regions of the protein. PMID:22886485

  5. The Nifty Assignments Site.

    ERIC Educational Resources Information Center

    Parlante, Nick

    2001-01-01

    Describes a Web site called Nifty Assignments that offers assignments for computer science education. Topics include programming assignments; student appeal; appropriateness for high school classes; and links to other related Web sites. (LRW)

  6. ¹H, ¹³C and ¹⁵N backbone and side-chain resonance assignments of a family 36 carbohydrate binding module of xylanase from Paenibacillus campinasensis.

    PubMed

    Wang, Yu-Sheng; Ko, Chun-Han; Chang, Hao-Ting; Yang, Kai-Jay; Chen, Yu-Jen; Huang, Shing-Jong; Fang, Pei-Ju; Chang, Chi-Fon; Tzou, Der-Lii M

    2014-10-01

    Paenibacillus campinasensis BL11 isolated from black liquor secretes multiple glycoside hydrolases (GHs) against all kinds of polysaccharides. GH consists of a catalytic module and non-catalytic carbohydrate-binding modules (CBMs), in which CBMs append to the catalytic module, mediating specific interactions with insoluble carbohydrates to promote the hydrolysis efficiency of the cognate enzyme. Endo-β-1,4-xylanase (XylX) is one of the GHs reveals high enzymatic activity in a wide range of pH and thermal endurance, suitable for bioconversion and bio-refinement applications. In this work, we report the resonance assignments of a family 36 CBM (characterized as CBM36) derived from XylX. Our investigations will facilitate molecular structure determination and molecular dynamics analysis of CBMs. PMID:23835623

  7. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY.

    PubMed

    Fushman, D; Cowburn, D

    1999-02-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site-specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D parallel/D perpendicular - 1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D parallel/D perpendicular > or = 1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems. PMID:10070755

  8. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  9. NMR assignments, secondary structure, and global fold of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea.

    PubMed Central

    Aitio, H.; Annila, A.; Heikkinen, S.; Thulin, E.; Drakenberg, T.; Kilpeläinen, I.

    1999-01-01

    Calerythrin is a 20 kDa calcium-binding protein isolated from gram-positive bacterium Saccharopolyspora erythraea. Based on amino acid sequence homology, it has been suggested that calerythrin belongs to the family of invertebrate sarcoplasmic EF-hand calcium-binding proteins (SCPs), and therefore it is expected to function as a calcium buffer. NMR spectroscopy was used to obtain structural information on the protein in solution. Backbone and side chain 1H, 13C, and 15N assignments were obtained from triple resonance experiments HNCACB, HN(CO)CACB, HNCO, CC(CO)NH, and [15N]-edited TOCSY, and HCCH-TOCSY. Secondary structure was determined by using secondary chemical shifts and characteristic NOEs. In addition, backbone N-H residual dipolar couplings were measured from a spin-state selective [1H, 15N] correlation spectrum acquired from a sample dissolved in a dilute liquid crystal. Four EF-hand motifs with characteristic helix-loop-helix patterns were observed. Three of these are typical calcium-binding EF-hands, whereas site 2 is an atypical nonbinding site. The global fold of calerythrin was assessed by dipolar couplings. Measured dipolar couplings were compared with values calculated from four crystal structures of proteins with sequence homology to calerythrin. These data allowed us to recognize an overall similarity between the folds of calerythrin and sarcoplasmic calcium-binding proteins from the sandworm Nereis diversicolor and the amphioxus Branchiostoma lanceolatum. PMID:10631973

  10. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    PubMed

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm. PMID:19019638

  11. New flaxseed orbitides: Detection, sequencing, and (15)N incorporation.

    PubMed

    Okinyo-Owiti, Denis P; Young, Lester; Burnett, Peta-Gaye G; Reaney, Martin J T

    2014-03-01

    Three new orbitides (cyclolinopeptides 17, 18, and 19) were identified in flaxseed (Linum usitatissimum L.) extracts without any form of purification. Their structures were elucidated by a combination of (15) N-labeling experiments and extensive tandem mass spectrometry (MS/MS) with electrospray ionization (ESI). Putative linear peptide sequences of the new orbitides were used as the query in the Basic Local Alignment Search Tool (BLAST) searches of flax genome database. These searches returned linear sequences for the putative precursors of cyclolinopeptides 17 and 19 among others. Cyclolinopeptide 18 contains MetO (O) and is not directly encoded, but is a product of post-translation modification of the Met present in 17. The identification of precursor proteins in flax mRNA transcripts and DNA sequences confirmed the occurrence and amino acid sequences of these orbitides as [1-9-NαC]-MLKPFFFWI, [1-9-NαC]-OLKPFFFWI, and [1-9-NαC]-GIPPFWLTL for cyclolinopeptides 17, 18, and 19, respectively. PMID:24408479

  12. HN(α/β-COCA-J) Experiment for Measurement of 1JC‧Cα Couplings from Two-Dimensional [15N, 1H] Correlation Spectrum

    NASA Astrophysics Data System (ADS)

    Permi, Perttu; Sorsa, Tia; Kilpeläinen, Ilkka; Annila, Arto

    1999-11-01

    Anew method for measurement of one-bond 13C‧-13Cα scalar and dipolar couplings from a two-dimensional [15N, 1H] correlation spectrum is presented. The experiment is based on multiple-quantum coherence, which is created between nitrogen and carbonyl carbon for simultaneous evolution of 15N chemical shift and coupling between 13C‧ and 13Cα. Optional subspectral editing is provided by the spin-state-selective filters. The residual dipolar dipolar contribution to the 13C‧-13Cα coupling can be measured from these simplified [15N, 1H]-HSQC-like spectra. In this way, without explicit knowledge of carbon assignments, conformational changes of proteins dissolved in dilute liquid crystals can be probed conveniently, e.g., in structure activity relationship by NMR studies. The method is demonstrated with human cardiac troponin C.

  13. 15N2 formation and fast oxygen isotope exchange during pulsed 15N18O exposure of MnOx/CeO2

    SciTech Connect

    Kwak, Ja Hun; Szanyi, Janos

    2014-12-23

    Pulsing 15N18O onto an annealed 1% Mn16Ox/Ce16O2 catalyst resulted in very fast oxygen isotope exchange and 15N2 formation at 295 K. In the 1st 15N18O pulse, due to the presence of large number of surface oxygen defects, extensive 15N218O and 15N2 formations were observed. In subsequent pulses oxygen isotope exchange dominated as a result of highly labile oxygen in the oxide. We gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  14. Studies with 15N-labeled ammonia and urea in the malnourished child

    PubMed Central

    Read, W. W. C.; McLaren, D. S.; Tchalian, Marie; Nassar, Siham

    1969-01-01

    Investigations using ammonium citrate-15N and urea-15N showed that children in the acute stage of kwashiorkor and marasmus receiving a diet of adequate protein content retained a considerable percentage of the label from both compounds. Excretion of both total 15N and urea-15N was subnormal and elimination was virtually completed 36 hr after administration of the isotope. During recovery from kwashiorkor total 15N excretion had approached normal a month after commencement of rehabilitation. Urea-15N excretion was still slightly subnormal after 3 months. In marasmus urea-15N formed a normal proportion of total 15N excretion after 1 month, although total 15N excretion then was still low. Ammonia nitrogen was retained to a greater extent than urea nitrogen in all cases. As it is known that a considerable amount of urea is degraded to ammonia in the gastrointestinal tract, it seems probable that urea nitrogen became available for use after this degradation. Examination of blood from one marasmic child after feeding ammonia-15N and from another after intravenous injection of urea-15N showed incorporation of the label into blood cells and plasma proteins. This did not occur in well nourished controls. It is concluded that ammonia and urea as sources of nonessential nitrogen may play an important part in protein metabolism in the malnourished child. PMID:5771193

  15. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella.

    PubMed

    Crowhurst, Karin A; Horn, James V C; Weers, Paul M M

    2016-04-01

    Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain (1)H, (13)C and (15)N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein. PMID:26493308

  16. 1H, 13C, 15N and 195Pt NMR studies of Au(III) and Pt(II) chloride organometallics with 2-phenylpyridine.

    PubMed

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2009-11-01

    (1)H, (13)C, (15)N and (195)Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2')-chelated, deprotonated 2-phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl(2)], trans(N,N)-[Pt(2ppy*)(2ppy)Cl] and trans(S,N)-[Pt(2ppy*)(DMSO-d(6))Cl] (formed in situ upon dissolving [Pt(2ppy*)(micro-Cl)](2) in DMSO-d(6)) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective (1)H, (13)C and (15)N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Delta(1H)(coord) = delta(1H)(complex) - delta(1H)(ligand), Delta(13C)(coord) = delta(13C)(complex) - delta(13C)(ligand), Delta(15N)(coord) = delta(15N)(complex) - delta(15N)(ligand)), as well as (195)Pt chemical shifts and (1)H-(195)Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen-adjacent H(6) protons and metallated C(2') atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds. PMID:19691018

  17. Isolation and measurement of /sup 15/N/sub 2/ from respiratory gases of animals administered /sup 15/N-labeled substances

    SciTech Connect

    Springer, D.L.; Reed, D.J.; Dost, F.N.

    1981-07-01

    A method is described for collection of metabolic /sup 15/N/sub 2/ from in vitro preparations or intact rats administered /sup 15/N-containing compounds. The method enables routine collection and mass spectrometric measurement of as little as 10 ..mu..mol /sup 15/N/sub 2/ respired by a rat over a 24-h period. A device is described that includes either an animal chamber or a tissue reaction vessel in a closed recycling atmosphere, with automatic O/sub 2/ replenishment and removal of CO/sub 2/ and water. It is capable of sustaining moderate vacuum and is coupled to a high-vacuum manifold designed to process the contained atmosphere and respiratory gases. The starting atmosphere is an 80:20 mix of sulfur hexafluoride and O/sub 2/. Recovery of /sup 15/N/sub 2/ gas from the system without an animal present was 101.3 +/- 5.75%. When /sup 15/N/sub 2/ gas was very slowly infused iv into an animal, recovery was 89.1 +/- 5.38%. Use of the method in studies of the fate of (/sup 15/N)hydrazine in rats indicated that about 15% of the administered hydrazine is rapidly converted to /sup 15/N/sub 2/, followed by slower conversion of an additional 7-10% over the next several hours.

  18. Numerical evaluation of subsoil diffusion of (15) N labelled denitrification products during employment of the (15) N gas flux method in the field

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Lewicka-Szczebak, Dominika; Ruoss, Nicolas

    2016-04-01

    Common methods for measuring soil denitrification in situ include monitoring the accumulation of 15N labelled N2 and N2O evolved from 15N labelled soil nitrate pool in soil surface chambers. Gas diffusion is considered to be the main accumulation process. Because accumulation of the gases decreases concentration gradients between soil and chamber over time, gas production rates are underestimated if calculated from chamber concentrations. Moreover, concentration gradients to the non-labelled subsoil exist, inevitably causing downward diffusion of 15N labelled denitrification products. A numerical model for simulating gas diffusion in soil was used in order to determine the significance of this source of error. Results show that subsoil diffusion of 15N labelled N2 and N2O - and thus potential underestimation of denitrification derived from chamber fluxes - increases with cover closure time as well as with increasing diffusivity. Simulations based on the range of typical gas diffusivities of unsaturated soils show that the fraction of subsoil diffusion after chamber closure for 1 hour is always significant with values up to >30 % of total production of 15N labelled N2 and N2O. Field experiments for measuring denitrification with the 15N gas flux method were conducted. The ability of the model to predict the time pattern of gas accumulation was evaluated by comparing measured 15N2 concentrations and simulated values.

  19. Improved mass analysis of oligoribonucleotides by 13C, 15N double depletion and electrospray ionization FT-ICR mass spectrometry.

    PubMed

    Xiong, Ying; Schroeder, Kersten; Greenbaum, Nancy L; Hendrickson, Christopher L; Marshall, Alan G

    2004-03-15

    13C, 15N doubly depleted 32-ribonucleotide was synthesized enzymatically by in vitro transcription from nucleoside triphosphates isolated from E. coli grown in a minimal medium containing 12C, 14N-enriched glucose and ammonium sulfate. Following purification and desalting by reversed-phase HPLC, buffer exchange with Microcon YM-3, and ethanol precipitation, electrospray ionization Fourier transform ion cyclotron resonance mass spectra revealed greatly enhanced abundance of monoisotopic ions (by a factor of approximately 100) and a narrower isotopic distribution with higher signal-to-noise ratio. The abrupt onset and high magnitude of the monoisotopic species promise to facilitate accurate mass measurement of RNA's. PMID:15018587

  20. Climbing up the vibrational ladder of HC15N: High-temperature near-infrared emission measurements

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, A.; Johnson, E.; Hemsing, D.; Rozario, H.; Mellau, Georg Ch.

    2013-11-01

    The near-infrared (NIR) emission spectrum of H12C15N was measured in the 6050-6500 cm-1 range at a resolution of 0.044 cm-1 using an emission setup available at the Justus-Liebig Universität, Giessen, Germany. The rich emission spectrum showing numerous overlapped spectral profiles was analyzed with the spectrum analysis software SyMath running using Mathematica as a platform. This approach allowed us to retrieve the vibrational-rotational constants for 32 bands. Many spectroscopic transitions have been observed for the first time in a lab environment. We quantified four newly observed Coriolis resonances.

  1. Assignment strategy for fast relaxing signals: complete aminoacid identification in thulium substituted calbindin D 9K.

    PubMed

    Balayssac, Stéphane; Jiménez, Beatriz; Piccioli, Mario

    2006-02-01

    Paramagnetic proteins generally contain regions with diverse relaxation properties. Nuclei in regions far from the metal center may behave like those in diamagnetic proteins, but those closer to the metal experience rapid relaxation with accompanying line broadening. We have used a set of NMR experiments optimized to capture data from these various concentric regions in assigning the signals from a paramagnetic Calbindin D 9K derivative in which one of the two calcium ions has been replaced by thulium(III). Normal double- and triple-resonance experiments with 1H detection were used in collecting data from nuclei in the diamagnetic-like region; these approaches identified signals from fewer than 50% of the amino acid residues (those with d > 17.5 A from thulium(III)). Paramagnetism-optimized two-dimensional NMR experiments with 1H detection were used in collecting data from nuclei in the next nearer region (d > 15 A). Standard (d > 14 A) and optimized (d > 9 A) 13C direct-detection experiments were used to capture data from nuclei in the next layer. Finally nuclei closest to the metal were detected by one-dimensional 13C (d > 5 A) and one-dimensional 15N data collection (d > 4.2 A). NMR signals were assigned on the basis of through-bond correlations and, for signals closest to the metal, pseudocontact shifts. The latter were determined from chemical shift differences between assigned signals in thulium(III) and lanthanum(III) derivatives of Calbindin D 9K and they were interpreted on the basis of a structural model for the lanthanide-substituted protein. This approach yielded assignments of at least one resonance per amino acid residue, including those in the thulium(III) coordination sphere. PMID:16518694

  2. Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: a theoretical and experimental study.

    PubMed

    Infante-Castillo, Ricardo; Pacheco-Londoño, Leonardo; Hernández-Rivera, Samuel P

    2010-07-01

    Unambiguous vibrational band assignments have been made to cyclic nitramine hexahydro-1,3,5-trinitro-s-triazine, commonly known as the alpha-phase of RDX or alpha-RDX, with the use of (13)C and (15)N (on ring) enriched isotopic RDX analogues. Vibrational spectra were collected using Raman and IR spectroscopy in solid state and ab initio normal mode calculations were performed using density functional theory (DFT) and a 6-311G++** basis set. The calculated isotopic frequency shifts, induced by (13)C and (15)N labeling, are in very good accordance with measures ones. The changes in vibrational modes associated with the isotopic substitutions are well modeled by the calculation and previous assignments of the vibrational spectra have been revised, especially where the exact nature of the vibrational modes had been either vague or contradictory. PMID:20381411

  3. Recent developments in solid-state magic-angle spinning, nuclear magnetic resonance of fully and significantly isotopically labelled peptides and proteins.

    PubMed Central

    Straus, Suzana K

    2004-01-01

    In recent years, a large number of solid-state nuclear magnetic resonance (NMR) techniques have been developed and applied to the study of fully or significantly isotopically labelled ((13)C, (15)N or (13)C/(15)N) biomolecules. In the past few years, the first structures of (13)C/(15)N-labelled peptides, Gly-Ile and Met-Leu-Phe, and a protein, Src-homology 3 domain, were solved using magic-angle spinning NMR, without recourse to any structural information obtained from other methods. This progress has been made possible by the development of NMR experiments to assign solid-state spectra and experiments to extract distance and orientational information. Another key aspect to the success of solid-state NMR is the advances made in sample preparation. These improvements will be reviewed in this contribution. Future prospects for the application of solid-state NMR to interesting biological questions will also briefly be discussed. PMID:15306412

  4. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  5. Time-shared experiments for efficient assignment of triple-selectively labeled proteins

    PubMed Central

    Löhr, Frank; Laguerre, Aisha; Bock, Christoph; Reckel, Sina; Connolly, Peter J.; Abdul-Manan, Norzehan; Tumulka, Franz; Abele, Rupert; Moore, Jonathan M.; Dötsch, Volker

    2014-01-01

    Combinatorial triple-selective labeling facilitates the NMR assignment process for proteins that are subject to signal overlap and insufficient signal-to-noise in standard triple-resonance experiments. Aiming at maximum amino-acid type and sequence-specific information, the method represents a trade-off between the number of selectively labeled samples that have to be prepared and the number of spectra to be recorded per sample. In order to address the demand of long measurement times, we here propose pulse sequences in which individual phase-shifted transients are stored separately and recombined later to produce several 2D HN(CX) type spectra that are usually acquired sequentially. Sign encoding by the phases of 13C 90° pulses allows to either select or discriminate against 13C’ or 13Cα spins coupled to 15N. As a result, 1H-15N correlation maps of the various isotopomeric species present in triple-selectively labeled proteins are deconvoluted which in turn reduces problems due to spectral overlap. The new methods are demonstrated with four different membrane proteins with rotational correlation times ranging from 18 to 52 ns. PMID:25442777

  6. Assignments That Work.

    ERIC Educational Resources Information Center

    Hashimoto, I.

    1986-01-01

    Suggests, on a humorous note, a game-plan for assignment justification and elaboration that utilizes, in a constructive and professional manner, the best of what is known about assignment-making. (EL)

  7. Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal 15N2-diazirine molecular tags

    PubMed Central

    Theis, Thomas; Ortiz, Gerardo X.; Logan, Angus W. J.; Claytor, Kevin E.; Feng, Yesu; Huhn, William P.; Blum, Volker; Malcolmson, Steven J.; Chekmenev, Eduard Y.; Wang, Qiu; Warren, Warren S.

    2016-01-01

    Conventional magnetic resonance (MR) faces serious sensitivity limitations which can be overcome by hyperpolarization methods, but the most common method (dynamic nuclear polarization) is complex and expensive, and applications are limited by short spin lifetimes (typically seconds) of biologically relevant molecules. We use a recently developed method, SABRE-SHEATH, to directly hyperpolarize 15N2 magnetization and long-lived 15N2 singlet spin order, with signal decay time constants of 5.8 and 23 minutes, respectively. We find >10,000-fold enhancements generating detectable nuclear MR signals that last for over an hour. 15N2-diazirines represent a class of particularly promising and versatile molecular tags, and can be incorporated into a wide range of biomolecules without significantly altering molecular function. PMID:27051867

  8. Improved 1H amide resonance line narrowing in oriented sample solid-state NMR of membrane proteins in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Lu, George J.; Park, Sang Ho; Opella, Stanley J.

    2012-07-01

    We demonstrate 1H amide resonance line widths <300 Hz in 1H/15N heteronuclear correlation (HETCOR) spectra of membrane proteins in aligned phospholipid bilayers. This represents a substantial improvement over typically observed line widths of ˜1 kHz. Furthermore, in a proton detected local field (PDLF) version of the experiment that measures heteronuclear dipolar couplings, line widths <130 Hz are observed. This dramatic line narrowing of 1H amide resonances enables many more individual signals to be resolved and assigned from uniformly 15N labeled membrane proteins in phospholipid bilayers under physiological conditions of temperature and pH. Finding that the decrease in line widths occurs only for membrane proteins that undergo fast rotational diffusion around the bilayer normal, but not immobile molecules, such as peptide single crystals, identifies a potential new direction for pulse sequence development that includes overall molecular dynamics in their design.

  9. ¹H, ¹³C and ¹⁵N chemical shift assignments of Na-FAR-1, a helix-rich fatty acid and retinol binding protein of the parasitic nematode Necator americanus.

    PubMed

    Rey-Burusco, M Florencia; Ibañez-Shimabukuro, Marina; Cooper, Alan; Kennedy, Malcolm W; Córsico, Betina; Smith, Brian O

    2014-04-01

    The fatty acid and retinol-binding (FAR) proteins are a family of unusual helix-rich lipid binding proteins found exclusively in nematodes, and are secreted by a range of parasites of humans, animals and plants. Na-FAR-1 is from the parasitic nematode Necator americanus, an intestinal blood-feeding parasite of humans. Sequence-specific (1)H, (13)C and (15)N resonance assignments have been obtained for the recombinant 170 amino acid protein, using three-dimensional triple-resonance heteronuclear magnetic resonance experiments. Backbone assignments have been obtained for 99.3% of the non-proline HN/N pairs (146 out of 147). The amide resonance of T45 was not observed, probably due to rapid exchange with solvent water. A total of 96.9% of backbone resonances were identified, while 97.7% assignment of amino acid sidechain protons is complete. All Hα(166), Hβ(250) and Hγ(160) and 98.4% of the Hδ (126 out of 128) atoms were assigned. In addition, 99.4% Cα (154 out of 155) and 99.3% Cβ (143 out of 144) resonances have been assigned. No resonances were observed for the NH(n) groups of R93 NεHε, arginine, N(η1)H2, N(η2)H2, histidine N(δ1)H(δ1), N(ε1)H(ε1) and lysine N(ζ3)H3. Na-FAR-1 has a similar overall arrangement of α-helices to Ce-FAR-7 of the free-living Caeorhabditis elegans, but with an extra C-terminal helix. PMID:23179061

  10. Assignment of the Ferriheme Resonances of the High-Spin Forms of Nitrophorins 1 and 4 by 1H NMR Spectroscopy: Comparison to Structural Data Obtained from X-ray Crystallography

    PubMed Central

    Shokhireva, Tatiana Kh.; Smith, Kevin M.; Berry, Robert E.; Shokhirev, Nikolai V.; Balfour, Celia A.; Zhang, Hongjun; Walker, F. Ann

    2008-01-01

    In this work we report the assignment of the majority of the ferriheme resonances of high-spin nitrophorins (NP) 1 and 4 and compare them to those of NP2, published previously. It is found that the structure of the ferriheme complexes of NP1 and NP4, in terms of the orientation of the histidine imidazole ligand can be described with good accuracy by NMR techniques, and that the angle plot proposed previously for the high-spin form of the nitrophorins (Shokhireva, T. Kh.; Shokhirev, N. V.; Walker, F. A. Biochemistry 2003, 42, 679-693) describes the angle of the effective nodal plane of the axial histidine imidazole in solution. There is an equilibrium between the two heme orientations (A and B), that depends on the heme cavity shape, which can be altered by mutation of amino acids with side chains (phenyl vs. tyrosyl) near the potential position where a heme vinyl group would be in one of the isomers. The A:B ratio can be much more accurately measured by NMR spectroscopy than by X-ray crystallography. PMID:17198425