Science.gov

Sample records for 15n-labed glycine synthesis

  1. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    SciTech Connect

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  2. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    SciTech Connect

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-04-15

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.

  3. Unlike pregnant adult women, pregnant adolescent girls cannot maintain glycine flux during late pregnancy because of decreased synthesis from serine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During pregnancy, glycine and serine become more important because they are the primary suppliers of methyl groups for the synthesis of fetal DNA, and more glycine is required for fetal collagen synthesis as pregnancy progresses. In an earlier study, we reported that glycine flux decreased by 39% fr...

  4. Unlike pregnant adult women, pregnant adolescent girls cannot maintain glycine flux during late pregnancy because of decreased synthesis from serine.

    PubMed

    Hsu, Jean W; Thame, Minerva M; Gibson, Raquel; Baker, Tameka M; Tang, Grace J; Chacko, Shaji K; Jackson, Alan A; Jahoor, Farook

    2016-03-14

    During pregnancy, glycine and serine become more important because they are the primary suppliers of methyl groups for the synthesis of fetal DNA, and more glycine is required for fetal collagen synthesis as pregnancy progresses. In an earlier study, we reported that glycine flux decreased by 39% from the first to the third trimester in pregnant adolescent girls. As serine is a primary precursor for glycine synthesis, the objective of this study was to measure and compare glycine and serine fluxes and inter-conversions in pregnant adolescent girls and adult women in the first and third trimesters. Measurements were made after an overnight fast by continuous intravenous infusions of 2H2-glycine and 15N-serine in eleven adolescent girls (17·4 (se 0·1) years of age) and in ten adult women (25·8 (se 0·5) years of age) for 4 h. Adolescent girls had significantly slower glycine flux and they made less glycine from serine in the third (P<0·05) than in the first trimester. Baby birth length was significantly shorter of adolescent girls (P=0·04) and was significantly associated with third trimester glycine flux. These findings suggest that the pregnant adolescent cannot maintain glycine flux in late pregnancy compared with early pregnancy because of decreased synthesis from serine. It is possible that the inability to maintain glycine synthesis makes her fetus vulnerable to impaired cartilage synthesis, and thus linear growth. PMID:26785702

  5. Glycine as a regulator of tryptophan-dependent pigment synthesis in Malassezia furfur.

    PubMed

    Barchmann, Thorsten; Hort, Wiebke; Krämer, Hans-Joachim; Mayser, Peter

    2011-01-01

    The effects of the addition of different amino nitrogens on growth, morphology and secondary metabolism of Malassezia furfur were investigated. After primary culture on Dixon agar, M. furfur CBS 1878 was transferred into a fluid medium together with the nitrogen sources, glycine (Gly) or tryptophan (Trp), or a combination of both. Growth was measured by means of a direct cell counting method and pigment synthesis was photometrically assessed. Addition of glycine resulted in an exponential increase in biomass, but not in pigment production. Tryptophan as the sole nitrogen source caused distinct brown staining of the medium, without increasing biomass. Simultaneous equimolar addition of both amino acids resulted in an initial increase in biomass as a sign of preferential metabolism of glycine, followed by a growth plateau and pigment production which, caused by higher biomass, occurred more rapidly than after addition of tryptophan alone. The yeast-cell morphology changed from round to oval. Addition of glycine to the tryptophan-containing liquid culture stopped pigment formation with simultaneous growth induction. These in vitro on-off phenomena depending on the nitrogen source might be significant in the pathogenesis of pityriasis versicolor: hyperhidrosis followed by preferential consumption of individual nitrogen sources such as glycine with exponential growth and thereafter transamination of tryptophan and TRP-dependent pigment synthesis. PMID:19702622

  6. Synthesis of alumina powders by the glycine-nitrate combustion process

    SciTech Connect

    Toniolo, J.C. . E-mail: jtoniolo@zipmail.com.br; Lima, M.D.; Takimi, A.S.; Bergmann, C.P.

    2005-03-08

    The combustion synthesis technique using glycine as fuel and aluminum nitrate as an oxidizer is able to produce alumina powders. Thermodynamic modeling of the combustion reaction shows that as the fuel-to-oxidant ratio increases, the amount of gases produced and adiabatic flame temperatures also increases. X-ray diffractions showed the amorphous structure for as-synthesized powder and presence of well-crystallized {alpha}-Al{sub 2}O{sub 3} after calcination at 1100 deg. C during soaking time of 1 h. Alumina's largest measured specific surface area was 15 m{sup 2}/g with BET method and 0.51 glycine-to-nitrate ratio.

  7. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    NASA Astrophysics Data System (ADS)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A “Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700” is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  8. Protein synthesis in cancer patients with inflammatory response: investigations with [15N]glycine.

    PubMed

    McMillan, D C; Preston, T; Fearon, K C; Burns, H J; Slater, C; Shenkin, A

    1994-01-01

    It has been proposed that the increase in amino acid flux and derived protein synthesis rates observed in weight-losing cancer patients may contribute to an ongoing negative energy balance. The mediators and tissues responsible for such apparent increased protein synthesis have not been clearly identified. The aim of this study was to examine the relationship between protein synthetic rates in whole-body, skeletal muscle, and circulating cortisol concentrations in healthy subjects (n = 6) and cancer patients with evidence of an inflammatory response (n = 6). Protein synthetic rates were measured with a primed continuous 20-h infusion of [15N]glycine. Skeletal muscle was biopsied at laparotomy. Serum cortisol, resting energy expenditure, plasma proteins, nitrogen metabolites in urine, and skeletal muscle free amino acids were also measured. Derived whole-body and skeletal muscle protein synthetic rates in the cancer group were increased significantly (by 70 and 93%, respectively, p < 0.05). Circulating concentrations of cortisol, fibrinogen, and C-reactive protein were also significantly increased in the cancer group and indicated the presence of an inflammatory response. However, there was no significant increase in resting energy expenditure. Mechanisms by which apparent increases in whole-body and skeletal protein synthesis do not result in an increase in resting energy expenditure are discussed. We conclude that glycine utilization is increased in cancer patients but that rates of protein synthesis derived from [15N]glycine kinetics may not be valid in such patients. PMID:7919675

  9. Measuring DNA synthesis rates with [1-13C]glycine.

    PubMed

    Chen, P; Abramson, F P

    1998-05-01

    We have devised and evaluated a stable-isotopic method for measuring DNA synthesis rates. The probe is [1-13C]-glycine that is incorporated into purines via de novo biosynthesis. The human hepatoma cell line HEP G2 was grown in medium containing [1-13C]glycine, the cells were harvested at various times, and the DNA was extracted. Following hydrolysis to the nucleosides, a reversed-phase HPLC separation was used to provide separate peaks for deoxythymidine (dT), deoxyadenosine (dA), and deoxyguanosine (dG). The HPLC effluent was continuously fed into a chemical reaction interface and an isotope ratio mass spectrometer (HPLC/CRI/IRMS). The isotope ratio of the CO2 produced in the CRI was used to monitor for enrichment. The cells were grown continuously for 5 days in labeled medium and also in a 1-day pulse labeling experiment where the washout of label was observed for the subsequent 9 days. As predicted from the role of glycine in de novo purine biosynthesis, the isotope ratio of the pyrimidine dT did not change. However, for the two purines, dA and dG, the characteristic log growth behavior of the cells was observed in their 13C/12C ratios and good agreement in the doubling time was obtained for each type of experiment. Parallel experiments that measured the HEP G2 doubling time in culture using tritiated thymidine incorporation and direct cell counts were carried out compare to our new method with established ones. We believe that the use of [1-13C]-glycine and the HPLC/CRI/IRMS is a highly sensitive and selective approach that forms the basis of a method that can measure DNA synthesis rates using a nonradioactive, nontoxic tracer. PMID:9599574

  10. Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder

    SciTech Connect

    Peng Tianyou . E-mail: typeng@whu.edu.cn; Liu Xun; Dai Ke; Xiao Jiangrong; Song Haibo

    2006-09-14

    Nanocrystalline alumina powders were prepared by combustion synthesis using glycine as fuel and nitrate as an oxidizer. The effect of the pH values in the precursor solutions on crystallite sizes, surface areas and morphologies of the synthesized alumina powder has been investigated by X-ray diffractometry, thermal analysis, nitrogen adsorption-desorption, and transmission electron microscopy. With decreasing the pH values in the precursor solutions, the obtained materials could be modified from segregated nanoparticles (pH 10.5) to aggregates of nanoparticles (pH 6.0), and finally to a flaky morphology (pH 2.5). The rates of decomposition, the interaction of coordination as well as the hydrogen bonding of the glycine and the Al-hydroxides species at different pH values were found to be responsible for the generation of flake and/or segregated nanoparticles during auto-ignition reactions. The as-prepared combustion ashes were converted into pure nanocrystalline alumina after calcination at elevated temperatures. The specific surface areas of the products calcined at 800 deg. C ranged from 96 to 39 m{sup 2}/g with the pH decreased from 10.5 to 2.5.

  11. Synthesis of Glycine and Other Prebiotic Compounds in the Interstellar Medium - An Example of Radiation Chemistry.

    NASA Astrophysics Data System (ADS)

    Mason, N. J.; Sivaraman, B.; Jeetha, S.; Dawes, A.; Hunniford, A.; McCullough, R. W.

    2007-08-01

    To understand how life can begin on a habitable planet such as the Earth, it is essential to know what organic compounds were likely to have been available, and how they interacted with the planetary environment. Therefore an understanding of the mechanisms by which organic chemical compounds are formed (so called /prebiotic chemistry/) is essential. Recent data from space based telescopes are revealing the interstellar medium as a rich 'chemical factory' in which many hydrocarbon speices are present (e.g. formic and acetic acid, alcohols and esters). Whether larger more complex species such as amino acids can form remains unknown since they can not, at present, be detected. However laboratory experiments that recreate the conditions of the ISM and the conditions under which stars and planets evolve have recently shown that such 'prebiotic compounds' may be formed through radiation induced chemistry. Details of these experiments will be discussed with the example of glycine formation used as an exemplar for such molecular synthesis.

  12. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase

    PubMed Central

    McNeil, Scott D.; Nuccio, Michael L.; Ziemak, Michael J.; Hanson, Andrew D.

    2001-01-01

    Choline (Cho) is the precursor of the osmoprotectant glycine betaine and is itself an essential nutrient for humans. Metabolic engineering of Cho biosynthesis in plants could therefore enhance both their resistance to osmotic stresses (drought and salinity) and their nutritional value. The key enzyme of the plant Cho-synthesis pathway is phosphoethanolamine N-methyltransferase, which catalyzes all three of the methylations required to convert phosphoethanolamine to phosphocholine. We show here that overexpressing this enzyme in transgenic tobacco increased the levels of phosphocholine by 5-fold and free Cho by 50-fold without affecting phosphatidylcholine content or growth. Moreover, the expanded Cho pool led to a 30-fold increase in synthesis of glycine betaine via an engineered glycine betaine pathway. Supplying the transgenics with the Cho precursor ethanolamine (EA) further enhanced Cho levels even though the supplied EA was extensively catabolized. These latter results establish that there is further scope for improving Cho synthesis by engineering an increased endogenous supply of EA and suggest that this could be achieved by enhancing EA synthesis and/or by suppressing its degradation. PMID:11481443

  13. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase.

    PubMed

    McNeil, S D; Nuccio, M L; Ziemak, M J; Hanson, A D

    2001-08-14

    Choline (Cho) is the precursor of the osmoprotectant glycine betaine and is itself an essential nutrient for humans. Metabolic engineering of Cho biosynthesis in plants could therefore enhance both their resistance to osmotic stresses (drought and salinity) and their nutritional value. The key enzyme of the plant Cho-synthesis pathway is phosphoethanolamine N-methyltransferase, which catalyzes all three of the methylations required to convert phosphoethanolamine to phosphocholine. We show here that overexpressing this enzyme in transgenic tobacco increased the levels of phosphocholine by 5-fold and free Cho by 50-fold without affecting phosphatidylcholine content or growth. Moreover, the expanded Cho pool led to a 30-fold increase in synthesis of glycine betaine via an engineered glycine betaine pathway. Supplying the transgenics with the Cho precursor ethanolamine (EA) further enhanced Cho levels even though the supplied EA was extensively catabolized. These latter results establish that there is further scope for improving Cho synthesis by engineering an increased endogenous supply of EA and suggest that this could be achieved by enhancing EA synthesis and/or by suppressing its degradation. PMID:11481443

  14. Magnetic characteristics of MgFe2O4 nanoparticles obtained by glycine-nitrate synthesis

    NASA Astrophysics Data System (ADS)

    Zhernovoi, A. I.; Komlev, A. A.; D'yachenko, S. V.

    2016-02-01

    The magnetic properties of magnesium-iron spinel (MgFe2O4) powdered nanoparticles obtained by glycine-nitrate synthesis are investigated by X-ray phase analysis and the NMR method. According to the results of X-ray phase analysis, the average size of the crystalline part of nanoparticles of the powder under investigation is 45 ± 4 nm. Magnetization J is determined using the formula J = (B/μ0)- H, where B and H are the induction and strength of the magnetic field in the sample, which are measured by the NMR method. The magnetic characteristics of MgFe2O4 are as follows: specific saturation magnetization J sat = 17.52 A m2/kg, specific residual magnetization J r = 5.73 A m2/kg, coercive force H c = 4600 A/m, and magnetic moment P sat = 371 × 10-20 A m2 in the magnetic saturation state and P r = 121 × 10-20 A m2 in the residual magnetization state.

  15. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation1234

    PubMed Central

    Patel, Sanjeet G; Guthikonda, Anuradha P; Reid, Marvin; Balasubramanyam, Ashok; Taffet, George E; Jahoor, Farook

    2011-01-01

    Background: Aging is associated with oxidative stress, but underlying mechanisms remain poorly understood. Objective: We tested whether glutathione deficiency occurs because of diminished synthesis and contributes to oxidative stress in aging and whether stimulating glutathione synthesis with its precursors cysteine and glycine could alleviate oxidative stress. Design: Eight elderly and 8 younger subjects received stable-isotope infusions of [2H2]glycine, after which red blood cell (RBC) glutathione synthesis and concentrations, plasma oxidative stress, and markers of oxidant damage (eg, F2-isoprostanes) were measured. Elderly subjects were restudied after 2 wk of glutathione precursor supplementation. Results: Compared with younger control subjects, elderly subjects had markedly lower RBC concentrations of glycine (486.7 ± 28.3 compared with 218.0 ± 23.7 μmol/L; P < 0.01), cysteine (26.2 ± 1.4 compared with 19.8 ± 1.3 μmol/L; P < 0.05), and glutathione (2.08 ± 0.12 compared with 1.12 ± 0.18 mmol/L RBCs; P < 0.05); lower glutathione fractional (83.14 ± 6.43% compared with 45.80 ± 5.69%/d; P < 0.01) and absolute (1.73 ± 0.16 compared with 0.55 ± 0.12 mmol/L RBCs per day; P < 0.01) synthesis rates; and higher plasma oxidative stress (304 ± 16 compared with 346 ± 20 Carratelli units; P < 0.05) and plasma F2-isoprostanes (97.7 ± 8.3 compared with 136.3 ± 11.3 pg/mL; P < 0.05). Precursor supplementation in elderly subjects led to a 94.6% higher glutathione concentration, a 78.8% higher fractional synthesis rate, a 230.9% higher absolute synthesis rate, and significantly lower plasma oxidative stress and F2-isoprostanes. No differences in these measures were observed between younger subjects and supplemented elderly subjects. Conclusions: Glutathione deficiency in elderly humans occurs because of a marked reduction in synthesis. Dietary supplementation with the glutathione precursors cysteine and glycine fully restores glutathione synthesis and

  16. Glutathione Synthesis Is Diminished in Patients With Uncontrolled Diabetes and Restored by Dietary Supplementation With Cysteine and Glycine

    PubMed Central

    Sekhar, Rajagopal V.; McKay, Siripoom V.; Patel, Sanjeet G.; Guthikonda, Anuradha P.; Reddy, Vasumathi T.; Balasubramanyam, Ashok; Jahoor, Farook

    2011-01-01

    OBJECTIVE Sustained hyperglycemia is associated with low cellular levels of the antioxidant glutathione (GSH), which leads to tissue damage attributed to oxidative stress. We tested the hypothesis that diminished GSH in adult patients with uncontrolled type 2 diabetes is attributed to decreased synthesis and measured the effect of dietary supplementation with its precursors cysteine and glycine on GSH synthesis rate and oxidative stress. RESEARCH DESIGN AND METHODS We infused 12 diabetic patients and 12 nondiabetic control subjects with [2H2]-glycine to measure GSH synthesis. We also measured intracellular GSH concentrations, reactive oxygen metabolites, and lipid peroxides. Diabetic patients were restudied after 2 weeks of dietary supplementation with the GSH precursors cysteine and glycine. RESULTS Compared with control subjects, diabetic subjects had significantly higher fasting glucose (5.0 ± 0.1 vs. 10.7 ± 0.5 mmol/l; P < 0.001), lower erythrocyte concentrations of glycine (514.7 ± 33.1 vs. 403.2 ± 18.2 μmol/l; P < 0.01), and cysteine (25.2 ± 1.5 vs. 17.8 ± 1.5 μmol/l; P < 0.01); lower concentrations of GSH (6.75 ± 0.47 vs. 1.65 ± 0.16 μmol/g Hb; P < 0.001); diminished fractional (79.21 ± 5.75 vs. 44.86 ± 2.87%/day; P < 0.001) and absolute (5.26 ± 0.61 vs. 0.74 ± 0.10 μmol/g Hb/day; P < 0.001) GSH synthesis rates; and higher reactive oxygen metabolites (286 ± 10 vs. 403 ± 11 Carratelli units [UCarr]; P < 0.001) and lipid peroxides (2.6 ± 0.4 vs. 10.8 ± 1.2 pg/ml; P < 0.001). Following dietary supplementation in diabetic subjects, GSH synthesis and concentrations increased significantly and plasma oxidative stress and lipid peroxides decreased significantly. CONCLUSIONS Patients with uncontrolled type 2 diabetes have severely deficient synthesis of glutathione attributed to limited precursor availability. Dietary supplementation with GSH precursor amino acids can restore GSH synthesis and lower oxidative stress and oxidant damage in the face

  17. Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons.

    PubMed

    Weretilnyk, E A; Bednarek, S; McCue, K F; Rhodes, D; Hanson, A D

    1989-06-01

    Members of the Chenopodiaceae can accumulate high levels (>100 μmol·(g DW)(-1)) of glycine betaine (betaine) in leaves when salinized. Chenopodiaceae synthesize betaine by a two-step oxidation of choline (choline→betaine aldehyde→ betaine), with the second step catalyzed by betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8). High betaine levels have also been reported in leaves of species from several distantly-related families of dicotyledons, raising the question of whether the same betaine-synthesis pathway is used in all cases.Fast atom bombardment mass spectrometry showed that betaine levels of >100 μmol·(g DW)(-1) are present in Lycium ferocissimum Miers (Solanaceae), Helianthus annuus L. (Asteraceae), Convolvulus arvensis L. (Convolvulaceae), and Amaranthus caudatus L. (Amaranthaceae), that salinization promotes betaine accumulation in these plants, and that they can convert supplied choline to betaine aldehyde and betaine. Nicotiana tabacum L. and Lycopersicon lycopersicum (L.) Karst. ex Farw. (Solanaceae), Lactuca sativa L. (Asteraceae) and Ipomoea purpurea L. (Convolvulaceae) also contained betaine, but at a low level (0.1-0.5 μmol·(g DW)(-1). Betaine aldehyde dehydrogenase activity assays, immunotitration and immunoblotting demonstrated that the betaine-accumulating species have a BADH enzyme recognized by antibodies raised against BADH from Spinacia oleracea L. (Chenopodiaceae), and that the Mr of the BADH monomer is in all cases close to 63 000. These data indicate that the choline→betaine aldehyde→betaine pathway may have evolved by vertical descent from an early angiosperm ancestor, and might be widespread (albeit not always strongly expressed) among flowering plants. Consistent with these suggestions, Magnolia x soulangiana was found to have a low level of betaine, and to express a protein of Mr 63 000 which cross-reacted with antibodies to BADH from Spinacia oleracea. PMID:24212901

  18. Polyamine synthesis in plants. Purification and properties of amidinotransferase from soybean (Glycine max) axes.

    PubMed

    Lee, Geun Taek; Kim, Woo Jeung; Cho, Young Dong

    2002-12-01

    Three-day-old soybean (Glycine max) seedlings were exposed to 0.4 M sorbitol solution for 4 h to induce amidinotransferase activity, with the corresponding enzyme being purified to homogeneity by chromatographic separation on DEAE-Sephacel, Sephacryl S-300 and L-arginine Sepharose 4B. The purified enzyme used L-arginine and L-glycine as the major donor/acceptor of the amidino group, respectively, with formation of guanidinoacetic acid and ornithine products being confirmed by ESI-MS. The enzyme is a tetrameric protein having a molecular mass of 240,000 Da, whose thiol group is needed for enzymatic activity. The K(M)s for arginine and glycine were 3.8 and 0.89 mM, respectively, with optimal temperature and pH being 37 degrees C and 9.5, respectively. The soybean amidinotransferase could be indirectly involved in nitrogen metabolism, as suggested by the observation that arginine:glycine amidinotransferase in soybean axes is indirectly involved in putrescine biosynthesis and displays feedback control at high levels of an endogenous regulator, putrescine. PMID:12453570

  19. Synthesis, growth and characterization of γ-glycine - A promising material for optical applications

    NASA Astrophysics Data System (ADS)

    Sivakumar, N.; Jayaramakrishnan, V.; Baskar, K.; Anbalagan, G.

    2014-11-01

    Single crystals of γ-glycine have been grown by a slow evaporation solution growth technique (SEST) in presence of barium nitrate. The single crystal XRD confirms the hexagonal structure with the non-centrosymmetric space group P31. A high-resolution X-ray diffraction (HRXRD) rocking curve measurement reveals the good crystalline perfection. The linear refractive index estimated from the UV-Vis spectral data were fitted with Sellmeier's equation and the refractive index was found to be constant (n ≈ 2.55) over a wide range of wavelength. Hence, γ-glycine crystal can be used for optical waveguide applications. The relative SHG efficiency of γ-glycine crystal was studied by Kurtz and Perry powder technique. The third order nonlinear optical susceptibility was measured by Z-scan technique and the value was found to be χ(3) = 9.06 × 10-6 esu. The dispersion behavior of the linear refractive index was analyzed using the single oscillator model. The laser damage threshold value of γ-glycine crystal was estimated in single and multiple shot methods by using Nd:YAG laser.

  20. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus.

    PubMed

    Xie, Shiwei; Zhou, Weiwen; Tian, Lixia; Niu, Jin; Liu, Yongjian

    2016-08-01

    An 8-week feeding trial was conducted to evaluate the effect of N-acetyl cysteine (NAC) and glycine supplementation on growth performance, glutathione (GSH) synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus. Four practical diets were formulated, control, control +0.2% NAC, control +0.5% glycine, control +0.2% NAC +0.5% glycine. Each diet was randomly assigned to quadruplicate groups of 30 fish (approximately 9.5 g). The weight gain and specific growth rate were significantly increased with the supplementation of NAC and glycine. While they had no effect on feed efficiency feed intake and survival. Glutathion peroxidase (GPx) was increased by NAC and γ-glutamine cysteine synthase (γ-GCS) in plasma were increased by glycine. After the feeding trail, fish were challenged by Streptococcus iniae, fish fed the diet supplemented with NAC obtained significantly higher survival rate after 72 h challenge test. NAC also decreased malonaldehyde (MDA) in liver, increased glutathione S-transferase (GST) activity in plasma, up-regulated mRNA expression of Superoxide dismutase (SOD) and GPx in liver and headkidney. Dietary supplementation of glycine increased the anti-oxidative ability of tilapia through increase anti-oxidative enzyme activity (SOD, glutathione reductase, myeloperoxidase) and up-regulate anti-oxidative gene expression (SOD). Immune ability only enhanced by the supplementation of NAC through increased interleukin-1β (IL-1β) mRNA expression. These results clearly indicated that the supplementation of NAC and glycine can significantly improve the growth performance of tilapia, and NAC also enhance the anti-oxidative and immune capacity of tilapia, glycine could only enhance the anti-oxidative ability. PMID:27235905

  1. The discovery of potent glycine transporter type-2 inhibitors: design and synthesis of phenoxymethylbenzamide derivatives.

    PubMed

    Takahashi, Eiki; Arai, Tadamasa; Akahira, Masato; Nakajima, Mayumi; Nishimura, Kazumi; Omori, Yu; Kumagai, Hiroki; Suzuki, Tomohiko; Hayashi, Ryoji

    2014-09-15

    We describe the discovery of phenoxymethylbenzamide derivatives as a novel class of glycine transporter type-2 (GlyT-2) inhibitors. We found hit compound 1 (human GlyT-2, IC50=4040 nM) in our library and converted its 1-(1-(naphthalen-2-ylmethyl)piperidin-4-yl)pyrrolidin-3-yl group to an 1-(N,N-dimethylaminopropyl)piperidyl group and its tert-butyl group to a trifluoromethyl group to obtain N-(1-(3-(dimethylamino)propyl)piperidin-4-yl)-4-((4-(trifluoromethyl)phenoxy)methyl)benzamide (20). Compound 20 showed good inhibitory activity against human GlyT-2 (IC50=15.3 nM) and exhibited anti-allodynia effects in a mouse neuropathic pain model. PMID:25176190

  2. Synthesis, growth and characterisations of semi-organic nonlinear optical crystal glycine barium nitrate (GBN)

    NASA Astrophysics Data System (ADS)

    Varalakshmi, S.; Ravi Kumar, S. M.; Elango, G.; Ravisankar, R.

    2014-12-01

    Transparent crystal of glycine barium nitrate (GBN) has been grown from aqueous solution by slow evaporation technique at room temperature. Powder XRD study reveals the crystalline nature of the grown sample. Single crystal XRD study shows that the GBN belongs to orthorhombic crystal system. FTIR spectral study confirms the presence of the functional groups in the grown crystal. The presence of wide transparency window in the UV-visible region makes GBN crystal suitable for opto-electronic device applications. The grown sample has SHG efficiency is 0.8 times that of standard KDP crystal. Dielectric studies reveal that both dielectric constant and dielectric loss decreases with increase in frequency. Photoconductivity study confirms the negative photoconducting nature of the crystal.

  3. Effect of polynucleotides on the dimerization of glycine. [abiological protein synthesis in primitive earth conditions

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1981-01-01

    Results from experiments to determine the effect of polynucleotides on abiological formation of peptide bonds are reported. The reaction between glycine molecules in an aqueous phase in the presence of a condensing agent was chosen as a model, with polyphosphates being selected as the condensing agent for biologically relevant peptide formation. Four types of polynucleotides were used: polygluanic acid (G), polyuridic acid (U), polyadenylic acid (A), and polycytidylic acid (C); the effects of small anions, acetate, chloride, and phosphate, were also studied. Procedures are given, including concentrations, pH, and incubation time, and the type of amino acid analyzer. The diglycine yields were, in order of most to least: G, C, A, U, and are diagrammed as a function of time; rate of formation followed the same order of magnitude as the final yields. Anion presence displayed no discernible effect. The results are taken to indicate that polynucleotides do have an effect on the formation of peptide bonds, an effect significant in the understanding of chemical evolution.

  4. The glycine deportation system and its pharmacological consequences☆

    PubMed Central

    Beyoğlu, Diren; Idle, Jeffrey R.

    2013-01-01

    The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800 mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine. PMID:22584143

  5. The glycine deportation system and its pharmacological consequences.

    PubMed

    Beyoğlu, Diren; Idle, Jeffrey R

    2012-08-01

    The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine. PMID:22584143

  6. Flow and Microwave-Assisted Synthesis of N-(Triethylene glycol)glycine Oligomers and Their Remarkable Cellular Transporter Activities.

    PubMed

    Jong, ThingSoon; Pérez-López, Ana M; Johansson, Emma M V; Lilienkampf, Annamaria; Bradley, Mark

    2015-08-19

    Peptidomimetics, such as oligo-N-alkylglycines (peptoids), are attractive alternatives to traditional cationic cell-penetrating peptides (such as R9) due to their robust proteolytic stability and reduced cellular toxicity. Here, monomeric N-alkylglycines, incorporating amino-functionalized hexyl or triethylene glycol (TEG) side chains, were synthesized via a three-step continuous-flow reaction sequence, giving the monomers N-Fmoc-(6-Boc-aminohexyl)glycine and N-Fmoc-((2-(2-Boc-aminoethoxy)ethoxy)ethyl)glycine in 49% and 41% overall yields, respectively. These were converted into oligomers (5, 7, and 9-mers) using an Fmoc-based solid-phase protocol and evaluated as cellular transporters. Hybrid oligomers, constructed of alternating units of the aminohexyl and amino-TEG monomers, were non-cytotoxic and exhibited remarkable cellular uptake activity compared to the analogous fully TEG or lysine-like compounds. PMID:26155805

  7. Serine and glycine metabolism in cancer☆

    PubMed Central

    Amelio, Ivano; Cutruzzolá, Francesca; Antonov, Alexey; Agostini, Massimiliano; Melino, Gerry

    2014-01-01

    Serine and glycine are biosynthetically linked, and together provide the essential precursors for the synthesis of proteins, nucleic acids, and lipids that are crucial to cancer cell growth. Moreover, serine/glycine biosynthesis also affects cellular antioxidative capacity, thus supporting tumour homeostasis. A crucial contribution of serine/glycine to cellular metabolism is through the glycine cleavage system, which refuels one-carbon metabolism; a complex cyclic metabolic network based on chemical reactions of folate compounds. The importance of serine/glycine metabolism is further highlighted by genetic and functional evidence indicating that hyperactivation of the serine/glycine biosynthetic pathway drives oncogenesis. Recent developments in our understanding of these pathways provide novel translational opportunities for drug development, dietary intervention, and biomarker identification of human cancers. PMID:24657017

  8. Glycine Betaine Biosynthesized from Glycine Provides an Osmolyte for Cell Growth and Spore Germination during Osmotic Stress in Myxococcus xanthus▿

    PubMed Central

    Kimura, Yoshio; Kawasaki, Shinji; Yoshimoto, Hinae; Takegawa, Kaoru

    2010-01-01

    Glycine sarcosine methyltransferase (Gsm) and sarcosine dimethylglycine methyltransferase (Sdm) catalyze glycine betaine synthesis from glycine. Disruption of the M. xanthus gsmA (MXAN 7068) or sdmA (MXAN 3190) gene, encoding Gsm or Sdm homologue proteins, respectively, generated mutants that exhibited a longer lag period of growth and delayed spore germination under osmostress. PMID:20023011

  9. Zinc Oxide-Containing Porous Boron-Carbon-Nitrogen Sheets from Glycine-Nitrate Combustion: Synthesis, Self-Cleaning, and Sunlight-Driven Photocatalytic Activity.

    PubMed

    Bharathidasan, T; Mandalam, Aditya; Balasubramanian, M; Dhandapani, P; Sathiyanarayanan, S; Mayavan, Sundar

    2015-08-26

    We developed a single-step thermal method that enables successful inclusion of ZnO components in the porous boron-carbon-nitrogen (BCN) framework to form a new class of functional hybrid. ZnO-containing BCN hybrids were prepared by treating a mixture of B2O3, glycine, and zinc nitrate at 500 °C. Glycine-nitrate decomposition along with B2O3 acts as a source for ZnO-BCN formation. The incorporation of ZnO onto BCN has extended the photoresponse of ZnO in the visible region, which makes ZnO-BCN a preferable photocatalyst relative to ZnO upon sunlight exposure. It is interesting to note that as-prepared 2D ZnO-BCN sheets dispersed in PDMS form a stable coating over aluminum alloys. The surface exhibited a water contact angle (CA) of 157.6° with 66.6 wt % ZnO-BCN in polydimethylsiloxane (PDMS) and a water droplet (7 μL) roll-off angle of <6° and also demonstrates oil fouling resistant superhydrophobicity. In brief, the present study focuses on the gram scale synthesis of a new class of sunlight-driven photocatalyst and also its application toward the development of superhydrophobic and oleophobic coating. PMID:26252873

  10. Synthesis, characterization and biological activity of transition metal complexes with Schiff bases derived from 2-nitrobenzaldehyde with glycine and methionine

    NASA Astrophysics Data System (ADS)

    Singh, Bibhesh K.; Rajour, Hemant K.; Prakash, Anant

    Schiff bases derived from 2-nitrobenzaldehyde with amino acids (glycine, methionine) and their Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized by various physico-chemical techniques. From spectral studies, it has been concluded that the ligands acts as bidentate molecule, coordinates metal through azomethine nitrogen and carboxylate oxygen. Mass spectrum explains the successive degradation of the molecular species in solution and justifies ML2 complexes. X-ray powder diffraction helps to determine the cell parameters of the complexes. Molecular structure of the complexes has been optimized by MM2 calculations and suggests a square planar geometry. The ligands and their metal complexes have been tested in vitro against Streptococcus, Staph, Staphylococcus aureus and Escherchia coli bacteria in order to assess their antibacterial potential. The results indicate that the biological activity increases on complexation.

  11. Abiotic peptide synthesis of glycine adsorbed on saponite at various pH and dry-thermal conditions

    NASA Astrophysics Data System (ADS)

    Mizuno, Y.; Fuchida, S.; Masuda, H.

    2012-12-01

    Amino acids are the most fundamental substances of life, and the stability of amino acids and the polymerization process on the primitive earth are important to the origin of life. The heat of submarine hydrothermal systems would be the driving force of amino acids polymerization, and the clay minerals in the system may be a field of polymerization. The polymerization of amino acids must be promoted under dry condition, since it is dehydration reaction, which is promoted at high pressure and temperature condition appearing in deep sediments. Adsorption behavior of amino acids on clay minerals depends on pH. In hydrothermal, there are various pH conditions and it would be effective in amino acids behavior. To observe the role of clay minerals and effect of pH on peptide formation under dehydration environments, glycine (Gly) was heated with saponite at 150 degree C, and observed the peptization reaction. Gly was adsorbed on saponite in Gly solutions (100mM), of which the pH was controlled at 3, 8, 12 by HCl and NaOH. After drying in a vacuum oven, the saponite was heated at 150 degree C for 72 hrs. The concentrations of DKP, GlyGly and GlyGlyGly remaining in the saponite controlled at pH3 were 193.39μmol/g, 28.32μmol/g and 22.13μmol/g respectively. Those controlled at pH8 and 12 were 141.22μmol/g, 25.00μmol/g and 18.82μmol/g, and the concentrations of DKP, GlyGly in the saponite controlled at pH12 were 2.47μmol/g, 43.07μmol/g and GlyGlyGly was not detected. The observation indicated that the DKP formation is promoted under acidic condition rather than neutral. GlyGly is abundantly formed under basic condition, although the following peptization to form the trimer does not occur. Polymerization of tri and/or the heavier glycine would be passed through the formation of cyclic peptides. Thus, the condensation of DKP must be important for the polymerization of amino acids as the precursor of life. Also, the pH, acidic to neutral condition, must be important to

  12. Synthesis, Spectroscopic, Molecular Structure, and Antibacterial Studies of Dibutyltin(IV) Schiff Base Complexes Derived from Phenylalanine, Isoleucine, and Glycine

    PubMed Central

    Singh, Har Lal; Singh, Jangbhadur

    2014-01-01

    New series of organotin(IV) complexes and Schiff bases derived from amino acids have been designed and synthesized from condensation of 1H-indole-2,3-dione, 5-chloro-1H-indole-2,3-dione, and α-amino acids (phenylalanine, isoleucine, and glycine). All compounds are characterized by elemental analyses, molar conductance measurements, and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance (1H, 13C, and 119Sn NMR) spectral studies. The results suggest that Schiff bases behave as monobasic bidentate ligands and coordinate with dibutyltin(IV) in octahedral geometry according to the general formula [Bu2Sn(L)2]. Elemental analyses and NMR spectral data of the ligands with their dibutyltin(IV) complexes agree with their proposed distorted octahedral structures. Few representative compounds are tested for their in vitro antibacterial activity against Gram-positive (B. cereus, Staphylococcus spp.) and Gram-negative (E. coli, Klebsiella spp.) bacteria. The results show that the dibutyltin complexes are more reactive with respect to their corresponding Schiff base ligands. PMID:25525422

  13. Carbonic anhydrase inhibitors: Design, synthesis, kinetic, docking and molecular dynamics analysis of novel glycine and phenylalanine sulfonamide derivatives.

    PubMed

    Fidan, İsmail; Salmas, Ramin Ekhteiari; Arslan, Mehmet; Şentürk, Murat; Durdagi, Serdar; Ekinci, Deniz; Şentürk, Esra; Coşgun, Sedat; Supuran, Claudiu T

    2015-12-01

    The inhibition of two human cytosolic carbonic anhydrase isozymes I and II, with some novel glycine and phenylalanine sulfonamide derivatives were investigated. Newly synthesized compounds G1-4 and P1-4 showed effective inhibition profiles with KI values in the range of 14.66-315μM for hCA I and of 18.31-143.8μM against hCA II, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico docking studies were applied. Atomistic molecular dynamic simulations were performed for docking poses which utilize to illustrate the inhibition mechanism of used inhibitors into active site of CAII. These sulfonamide containing compounds generally were competitive inhibitors with 4-nitrophenylacetate as substrate. Some investigated compounds here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide, sulfanilamide or mafenide and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents. PMID:26534780

  14. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustained hyperglycemia is associated with low cellular levels of the antioxidant glutathione (GSH), which leads to tissue damage attributed to oxidative stress. We tested the hypothesis that diminished GSH in adult patients with uncontrolled type 2 diabetes is attributed to decreased synthesis and ...

  15. Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base.

    PubMed

    Kawashima, Aki; Shu, Shuangjie; Takeda, Ryosuke; Kawamura, Akie; Sato, Tatsunori; Moriwaki, Hiroki; Wang, Jiang; Izawa, Kunisuke; Aceña, José Luis; Soloshonok, Vadim A; Liu, Hong

    2016-04-01

    Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is in extremely high demand due to the pharmaceutical importance of this tailor-made, sterically constrained α-amino acid. Here we report the development of an advanced procedure for preparation of the target amino acid via two-step SN2 and SN2' alkylation of novel axially chiral nucleophilic glycine equivalent. Excellent yields and diastereoselectivity coupled with reliable and easy scalability render this method of immediate use for practical synthesis of (1R,2S)-vinyl-ACCA. PMID:26661034

  16. Exploring the evolutionary route of the acquisition of betaine aldehyde dehydrogenase activity by plant ALDH10 enzymes: implications for the synthesis of the osmoprotectant glycine betaine

    PubMed Central

    2014-01-01

    Background Plant ALDH10 enzymes are aminoaldehyde dehydrogenases (AMADHs) that oxidize different ω-amino or trimethylammonium aldehydes, but only some of them have betaine aldehyde dehydrogenase (BADH) activity and produce the osmoprotectant glycine betaine (GB). The latter enzymes possess alanine or cysteine at position 441 (numbering of the spinach enzyme, SoBADH), while those ALDH10s that cannot oxidize betaine aldehyde (BAL) have isoleucine at this position. Only the plants that contain A441- or C441-type ALDH10 isoenzymes accumulate GB in response to osmotic stress. In this work we explored the evolutionary history of the acquisition of BAL specificity by plant ALDH10s. Results We performed extensive phylogenetic analyses and constructed and characterized, kinetically and structurally, four SoBADH variants that simulate the parsimonious intermediates in the evolutionary pathway from I441-type to A441- or C441-type enzymes. All mutants had a correct folding, average thermal stabilities and similar activity with aminopropionaldehyde, but whereas A441S and A441T exhibited significant activity with BAL, A441V and A441F did not. The kinetics of the mutants were consistent with their predicted structural features obtained by modeling, and confirmed the importance of position 441 for BAL specificity. The acquisition of BADH activity could have happened through any of these intermediates without detriment of the original function or protein stability. Phylogenetic studies showed that this event occurred independently several times during angiosperms evolution when an ALDH10 gene duplicate changed the critical Ile residue for Ala or Cys in two consecutive single mutations. ALDH10 isoenzymes frequently group in two clades within a plant family: one includes peroxisomal I441-type, the other peroxisomal and non-peroxisomal I441-, A441- or C441-type. Interestingly, high GB-accumulators plants have non-peroxisomal A441- or C441-type isoenzymes, while low-GB accumulators

  17. An approach towards azafuranomycin analogs by gold-catalyzed cycloisomerization of allenes: synthesis of (αS,2R)-(2,5-dihydro-1H-pyrrol-2-yl)glycine

    PubMed Central

    Erdsack, Jörg

    2013-01-01

    Summary The synthesis of (αS,2R)-(2,5-dihydro-1H-pyrrol-2-yl)glycine (22, normethylazafuranomycin) by the gold-catalyzed cycloisomerization of α-aminoallene 17 is described. The target molecule was synthesized in 13 linear steps from Cbz-protected Garner aldehyde (R)-2 in an overall yield of 2.4%. The approach was first examined in model studies, which afforded the alkylated azafuranomycin derivative 13a in 2.9% yield over 12 steps. PMID:24204404

  18. Synthesis and biological evaluation of a new set of pyrazolo[1,5-c]quinazolines as glycine/N-methyl-D-aspartic acid receptor antagonists.

    PubMed

    Varano, Flavia; Catarzi, Daniela; Colotta, Vittoria; Poli, Daniela; Filacchioni, Guido; Galli, Alessandro; Costagli, Chiara

    2009-08-01

    Previous studies have shown that 8-chloro-5,6-dihydro-5-oxo-pyrazolo[1,5-c]quinazoline-2-carboxylates (PQZ series) represent a family of glycine/N-methyl-D-aspartic acid (NMDA) and/or (R,S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and/or kainic acid (KA) receptor antagonists. Moreover, some groups have been identified that introduced in suitable positions of the PQZ 2-carboxylate framework shift affinity and selectivity toward glycine/NMDA receptor. These substituents are a carboxylate function at position-1 and/or a chlorine atom at position-9. In this paper we report a study on some new 5,6-dihydro-5-oxo-pyrazolo[1,5-c]quinazoline-1-carboxylates bearing at position-2 a lipophilic amide group or lacking substituent at this same position. All the newly synthesised compounds were evaluated for their binding at glycine/NMDA, AMPA and KA receptors. These studies led to the identification of some new PQZ derivatives endowed with good glycine/NMDA receptor affinity and selectivity and to better definition of the structure-activity relationship (SAR) of this class of compounds. PMID:19652407

  19. Hetero [6+3] cycloaddition of fulvenes with N-alkylidene glycine esters: a facile synthesis of the delavayine and incarvillateine framework.

    PubMed

    Hong, Bor-Cherng; Gupta, Arun Kumar; Wu, Ming-Fun; Liao, Ju-Hsiou; Lee, Gene-Hsiang

    2003-05-15

    [reaction: see text] In contrast to the [3+2] or [4+3] cycloaddition of N-metalated azomethine ylides and various alkenes, N-benzylidene glycine ethyl ester reacts with fulvenes to give the hetero [6+3] cycloaddition adducts with high stereoselectivity, constituting an efficient and novel route to [2]pyrindines. PMID:12735753

  20. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica.

    PubMed

    Waditee, Rungaroon; Tanaka, Yoshito; Aoki, Kenji; Hibino, Takashi; Jikuya, Hiroshi; Takano, Jun; Takabe, Tetsuko; Takabe, Teruhiro

    2003-02-14

    Glycine betaine (N,N,N-trimethylglycine) is an important osmoprotectant and is synthesized in response to abiotic stresses. Although almost all known biosynthetic pathways of betaine are two-step oxidation of choline, here we isolated two N-methyltransferase genes from a halotolerant cyanobacterium Aphanothece halophytica. One of gene products (ORF1) catalyzed the methylation reactions of glycine and sarcosine with S-adenosylmethionine acting as the methyl donor. The other one (ORF2) specifically catalyzed the methylation of dimethylglycine to betaine. Both enzymes are active as monomers. Betaine, a final product, did not show the feed back inhibition for the methyltransferases even in the presence of 2 m. A reaction product, S-adenosyl homocysteine, inhibited the methylation reactions with relatively low affinities. The co-expressing of two enzymes in Escherichia coli increased the betaine level and enhanced the growth rates. Immunoblot analysis revealed that the accumulation levels of both enzymes in A. halophytica cells increased with increasing the salinity. These results indicate that A. halophytica cells synthesize betaine from glycine by a three-step methylation. The changes of amino acids Arg-169 to Lys or Glu in ORF1 and Pro-171 to Gln and/or Met-172 to Arg in ORF2 significantly decreased V(max) and increased K(m) for methyl acceptors (glycine, sarcosine, and dimethylglycine) but modestly affected K(m) for S-adenosylmethionine, indicating the importance of these amino acids for the binding of methyl acceptors. Physiological and functional properties of methyltransferases were discussed. PMID:12466265

  1. An economical synthesis of substituted quinoline-2-carboxylates through the potassium persulfate-mediated cross-dehydrogenative coupling of N-aryl glycine derivatives with olefins.

    PubMed

    Liu, Guoliang; Qian, Jiarui; Hua, Jing; Cai, Feng; Li, Xia; Liu, Lei

    2016-01-21

    A practical and economical K2S2O8-mediated oxidative cross-dehydrogenative coupling of N-aryl glycine derivatives with olefins has been established, affording structurally diverse quinoline-2-carboxylates in good to high efficiency. The low cost, negligible toxicity, and ease of handling of K2S2O8 combined with the absence of hazardous byproducts and the easy workup consisting of simple filtration are attractive based on economic and environmental factors. PMID:26645648

  2. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

    PubMed Central

    Dufay, J. Noelia; Steele, Shelby L.; Gaston, Daniel; Nasrallah, Gheyath K.; Coombs, Andrew J.; Liwski, Robert S.; Fernandez, Conrad V.; Berman, Jason N.; McMaster, Christopher R.

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  3. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    PubMed

    Fernández-Murray, J Pedro; Prykhozhij, Sergey V; Dufay, J Noelia; Steele, Shelby L; Gaston, Daniel; Nasrallah, Gheyath K; Coombs, Andrew J; Liwski, Robert S; Fernandez, Conrad V; Berman, Jason N; McMaster, Christopher R

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  4. Genetics Home Reference: glycine encephalopathy

    MedlinePlus

    ... a molecule called glycine. This molecule is an amino acid , which is a building block of proteins. Glycine ... Additional Information & Resources MedlinePlus (3 links) Health Topic: Amino Acid Metabolism Disorders Health Topic: Genetic Brain Disorders Health ...

  5. Zinc Modulation of Glycine Receptors

    PubMed Central

    Trombley, Paul Q.; Blakemore, Laura J.; Hill, Brook J.

    2011-01-01

    Glycine receptors are widely expressed in the mammalian central nervous system, and previous studies have demonstrated that glycine receptors are modulated by endogenous zinc. Zinc is concentrated in synaptic vesicles in several brain regions but is particularly abundant in the hippocampus and olfactory bulb. In the present study, we used patch-clamp electrophysiology of rat hippocampal and olfactory bulb neurons in primary culture to examine the effects of zinc on glycine receptors. Although glycine has been reported to reach millimolar concentrations during synaptic transmission, most previous studies on the effects of zinc on glycine receptors have used relatively low concentrations of glycine. High concentrations of glycine cause receptor desensitization. Our current results extend our previous demonstration that the modulatory actions of zinc are largely prevented when co-applied with desensitizing concentrations of glycine (300 μM), suggesting that the effects of zinc are dependent on the state of the receptor. In contrast, pre-application of 300 μM zinc, prior to glycine (300 μM) application, causes a slowly developing inhibition with a slow rate of recovery, suggesting that the timing of zinc and glycine release also influences the effects of zinc. Furthermore, previous evidence suggests that synaptically released zinc can gain intracellular access, and we provide the first demonstration that low concentrations of intracellular zinc can potentiate glycine receptors. These results support the notion that zinc has complex effects on glycine receptors and multiple factors may interact to influence the efficacy of glycinergic transmission. PMID:21530619

  6. Regulation of Serine, Glycine, and One-Carbon Biosynthesis.

    PubMed

    Stauffer, George V

    2004-12-01

    The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins. PMID:26443363

  7. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  8. Mode of Action of Glycine on the Biosynthesis of Peptidoglycan

    PubMed Central

    Hammes, W.; Schleifer, K. H.; Kandler, O.

    1973-01-01

    The mechanism of glycine action in growth inhibition was studied on eight different species of bacteria of various genera representing the four most common peptidoglycan types. To inhibit the growth of the different organisms to 80%, glycine concentrations from 0.05 to 1.33 M had to be applied. The inhibited cells showed morphological aberrations. It has been demonstrated that glycine is incorporated into the nucleotide-activated peptidoglycan precursors. The amount of incorporated glycine was equivalent to the decrease in the amount of alanine. With one exception glycine is also incorporated into the peptidoglycan. Studies on the primary structure of both the peptidoglycan precursors and the corresponding peptidoglycan have revealed that glycine can replace l-alanine in position 1 and d-alanine residues in positions 4 and 5 of the peptide subunit. Replacement of l-alanine in position 1 of the peptide subunit together with an accumulation of uridine diphosphate-muramic acid (UDP-MurNAc), indicating an inhibition of the UDP-MurNAc:l-Ala ligase, has been found in three bacteria (Staphylococcus aureus, Lactobacillus cellobiosus and L. plantarum). However, discrimination against precursors with glycine in position 1 in peptidoglycan synthesis has been observed only in S. aureus. Replacement of d-alanine residues was most common. It occurred in the peptidoglycan with one exception in all strains studied. In Corynebacterium sp., C. callunae, L. plantarum, and L. cellobiosus most of the d-alanine replacing glycine occurs C-terminal in position 4, and in C. insidiosum and S. aureus glycine is found C-terminal in position 5. It is suggested that the modified peptidoglycan precursors are accumulated by being poor substrates for some of the enzymes involved in peptidoglycan synthesis. Two mechanisms leading to a more loosely cross-linked peptidoglycan and to morphological changes of the cells are considered. First, the accumulation of glycine-containing precursors may lead to

  9. Glycine, a new regulator of glutamine metabolism in isolated rat-liver cells.

    PubMed

    Vincent, N; Martin, G; Baverel, G

    1992-12-15

    Glycine (0.1-10 mM) caused a dose-dependent increase in the removal of 5 mM [1-14C]glutamine by isolated rat-liver cells; at low concentrations of glycine, an increase in the formation of 14CO2, urea and glucose from glutamine occurred. At 2-10 mM, glycine also caused an accumulation of ammonia, a well-established activator of glutaminase (E.C. 3.5.1.2) and, at concentrations found in the presence of glutamine plus glycine, ammonia stimulated glutamine removal. The inhibition of urea synthesis from glutamine observed with 10 mM glycine was relieved by the addition of ornithine, suggesting that this inhibition occurred by reducing the availability of ornithine for the ornithine transcarbamoylase reaction. The metabolism of glycine as sole substrate led to a small increase in the accumulation of ammonia. Glycine did not alter hepatic glutaminase activity but swelling of rat hepatocytes, a factor considered to stimulate glutamine metabolism, was observed in the presence of glycine (1 mM). It is concluded that stimulation by glycine of hepatic utilization of glutamine is mediated by the accumulation of ammonia arising from both glycine and glutamine metabolism and by hepatocyte osmotic swelling secondary to glycine transport. PMID:1482692

  10. Synthesis, X-Ray Structure, and Characterization of Catena-bis(benzoate)bis{N,N-bis(2-hydroxyethyl)glycinate}cadmium(II)

    PubMed Central

    Katsoulakou, Eugenia; Konidaris, Konstantis F.; Raptopoulou, Catherine P.; Psyharis, Vassilis; Manessi-Zoupa, Evy; Perlepes, Spyros P.

    2010-01-01

    The reaction of N, N-bis(2-hydroxyethyl)glycine (bicine; bicH3) with Cd(O2CPh)2 · 2H2O in MeOH yielded the polymeric compound [Cd2(O2CPh)2(bicH2)2]n(1). The complex crystallizes in the tetragonal space group P41212. The lattice constants are a = b = 12.737(5) and c = 18.288(7) Å. The compound contains chains of repeating {Cd2(O2CPh)2(bicH2)2} units. One CdII atom is coordinated by two carboxylate oxygen, four hydroxyl oxygen, and two nitrogen atoms from two symmetry-related 2.21111 (Harris notation) bicH2− ligands. The other CdII atom is coordinated by six carboxylate oxygen atoms, four from two bicH2− ligands and two from the monodentate benzoate groups. Each bicinate(-1) ligand chelates the 8-coordinate, square antiprismatic CdII atom through one carboxylate oxygen, the nitrogen, and both hydroxyl oxygen atoms and bridges the second, six-coordinate trigonal prismatic CdII center through its carboxylate oxygen atoms. Compound 1 is the first structurally characterized cadmium(II) complex containing any anionic form of bicine as ligand. IR data of 1 are discussed in terms of the coordination modes of the ligands and the known structure. PMID:20976297

  11. Synthesis, X-Ray Structure, and Characterization of Catena-bis(benzoate)bis{N,N-bis(2-hydroxyethyl)glycinate}cadmium(II).

    PubMed

    Katsoulakou, Eugenia; Konidaris, Konstantis F; Raptopoulou, Catherine P; Psyharis, Vassilis; Manessi-Zoupa, Evy; Perlepes, Spyros P

    2010-01-01

    The reaction of N, N-bis(2-hydroxyethyl)glycine (bicine; bicH(3)) with Cd(O(2)CPh)(2) · 2H(2)O in MeOH yielded the polymeric compound [Cd(2)(O(2)CPh)(2)(bicH(2))(2)](n)(1). The complex crystallizes in the tetragonal space group P4(1)2(1)2. The lattice constants are a = b = 12.737(5) and c = 18.288(7) Å. The compound contains chains of repeating {Cd(2)(O(2)CPh)(2)(bicH(2))(2)} units. One Cd(II) atom is coordinated by two carboxylate oxygen, four hydroxyl oxygen, and two nitrogen atoms from two symmetry-related 2.21111 (Harris notation) bicH(2) (-) ligands. The other Cd(II) atom is coordinated by six carboxylate oxygen atoms, four from two bicH(2) (-) ligands and two from the monodentate benzoate groups. Each bicinate(-1) ligand chelates the 8-coordinate, square antiprismatic Cd(II) atom through one carboxylate oxygen, the nitrogen, and both hydroxyl oxygen atoms and bridges the second, six-coordinate trigonal prismatic Cd(II) center through its carboxylate oxygen atoms. Compound 1 is the first structurally characterized cadmium(II) complex containing any anionic form of bicine as ligand. IR data of 1 are discussed in terms of the coordination modes of the ligands and the known structure. PMID:20976297

  12. A new iron(III) complex of glycine derivative of amine-chloro substituted phenol ligand: Synthesis, characterization and catechol dioxygenase activity

    NASA Astrophysics Data System (ADS)

    Saberikia, Iraj; Safaei, Elham; Kowsari, Mohammad Hossein; Lee, Yong-Ill; Cotic, Patricia; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2012-12-01

    A new iron(III) complex of the glycine derivative of amine-chloro substituted phenol ligand (H3LGDC) has been prepared and characterized by IR, 1H NMR, UV-Vis spectroscopic techniques, cyclic voltammetry, ESI-MS and magnetic susceptibility studies. X-ray analysis reveals that in iron complex of FeLGDC the iron(III) center has a distorted trigonal bipyramidal coordination sphere and is surrounded by an amine nitrogen, a carboxylate, a water and two phenolate oxygen atoms. The DFT calculations with the UB3LYP/6-311++G** level optimized structure of the complex are in good agreement with experimental X-ray structural data. The variable-temperature magnetic susceptibility indicates that FeLGDC is the paramagnetic high spin iron(III) complex. It has been shown that electrochemical oxidation of this complex is ligand-centered due to the oxidation of phenolate to the phenoxyl radicals. This enzyme mimic utilized molecular oxygen in carrying out the oxidative cleavage of catechols with complete conversion at room temperature.

  13. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    SciTech Connect

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura; Rayon, Victor M.; Largo, Antonio

    2012-04-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the higher energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.

  14. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  15. Glycine metabolism in rat kidney cortex slices.

    PubMed

    Rowsell, E V; Al-Naama, M M; Rowsell, K V

    1982-04-15

    When rat kidney cortex slices were incubated with glycine or [1-14C]glycine, after correcting for metabolite changes with control slices, product formation and glycine utilization fitted the requirements of the equation: 2 Glycine leads to ammonia + CO2 + serine. Evidence is presented that degradation via glyoxylate, by oxidation or transamination, is unlikely to have any significant role in kidney glycine catabolism. It is concluded that glycine metabolism in rat kidney is largely via glycine cleavage closely coupled with serine formation. 1-C decarboxylation and urea formation with glycine in rat hepatocyte suspensions were somewhat greater than decarboxylation or ammonia formation in kidney slices, showing that in the rat, potentially, the liver is quantitatively the more important organ in glycine catabolism. There was no evidence of ammonia formation from glycine with rat brain cortex, heart, spleen or diaphragm and 1-C decarboxylation was very weak. PMID:6810880

  16. Comparing the in vivo glycine fluxes of adolescent girls and adult women during early and late pregnancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During pregnancy, growth of the fetus depends on an adequate glycine supply because it is needed for synthesis of fetal DNA, collagen, and serine. Since pregnant adolescent girls give birth to lower birth weight babies, it is possible that they do not produce sufficient glycine to meet overall deman...

  17. Glycine Cleavage Powers Photoheterotrophic Growth of Chloroflexus aurantiacus in the Absence of H2

    PubMed Central

    He, Lian; Wang, Yaya; You, Le; Khin, Yadana; Tang, Joseph K.-H.; Tang, Yinjie J.

    2015-01-01

    Chloroflexus aurantiacus is an anoxygenic phototrophic bacterium. Its unique CO2 fixation pathway and primitive light-harvesting antenna complexes have attracted extensive research attentions. In this work, we investigated the photoheterotrophic growth of C. aurantiacus J-10-fl using acetate [at 55°C and without H2(g)]. The results indicate that glycine can promote anaerobic biomass production in a minimal medium by threefold to fivefold. Via 13C-metabolite analysis, we observed that glycine was involved in serine synthesis. Instead of being used as a major carbon source, glycine was degraded to produce C1 units and NAD(P)H. Tracer experiments also suggest that photoheterotrophic cultures growing with a exogenous glycine source exhibited capabilities of assimilating CO2 via multiple routes (including the 3-hydroxypropionate pathway). Finally, glycylglycine, a commonly used culture buffer, also significantly enhanced photoheterotrophic growth of C. aurantiacus, probably due to its thermal or enzymatic breakdown to glycine. PMID:26732979

  18. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    SciTech Connect

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-05-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. /sup 14/CO/sub 2/ production from the catabolism of /sup 14/C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. /sup 14/CO/sub 2/ formation from (1-/sup 14/C)- and (2-/sup 14/C)glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate.

  19. Preferential Pathway for Glycine Formation in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Boechat-Roberty, H. M.; Baptista, L.; Santos A. C., F.

    Interstellar clouds, similar to that from which the solar system was formed, contain many organic molecules including aldehydes, acids, ketones, and sugars Ehrenfreund & Charnley (2000). Those organic compounds have important functions in terrestrial biochemistry and could also have been important in prebiotic synthesis. The simplest amino acid, glycine (NH2CH2COOH), was recently detected in the hot molecular cores Sgr B2(N-LMH), Orion KL, and W51 e1/e2 Kuan et al. (2003). The formic acid (HCOOH) and acetic acid(CH3COOH) have also been detected in those regions Liu et al. (2002), Remijan et al. (2004). The goal of this work is to study experimentally photoionization and photodissociation processes of glycine precursor molecules, acetic acid and formic acid to elucidate a possible preferentially in the glycine synthesis between ice and gas phase. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator TGM) beamline (100 - 310 eV). The experimental set up consists of a high vacuum chamber with a Time-Of-Flight Mass Spectrometer (TOF-MS). Mass spectra were obtained using PhotoElectron PhotoIon Coincidence (PEPICO) technique. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Dissociative and non-dissociative photoionization cross sections for both molecules were also determined Boechat-Roberty, Pilling & Santos (2005). Due to the high photodissociation cross section of formic acid it is possible that in PDRs regions, just after molecules evaporation from the grains surface, it is almost destructed by soft X-rays, justifying the observed low abundance of HCOOH in gaseous phase Ehrenfreund et al. (2001). Acetic acid have shown to be more stable to the ionizing field, and its main outcomes from dissociation process were the reactive ionic fragments COOH+ and CH3CO+. To

  20. Electronic structure analysis of glycine oligopeptides and glycine-tryptophan oligopeptides

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yu, Shuai; Yang, Mengshi; Xu, Can; Wang, Yu; Chen, Liang

    2014-03-01

    Using the density functional theory (DFT), we have studied the energy gap, charge distribution, density of states and chemical activity of glycine (Gn) oligopeptides and glycine-tryptophan (GWn) oligopeptides. The results show that: (1) with the increasing of Gn residues, the chemical activity of Gn oligopeptides focuses on the terminal amino and carboxyl groups, which may be the main cause of self-assembly behaviors in Gn oligopeptide chains; (2) the chemical reaction activity has size effect. The size effect disappears when the residue number exceeds 7. The Gn oligopeptides with 7 residues is the shortest chain which has the same reaction activity as that of longer size peptide; (3) the activity of GWn oligopeptides presents size effect and odd-even effect. However, the size effect and odd-even effect both vanish when the chain of GWn oligopeptides is longer than 12 residues. (4) It is difficult in self-assembly for GWn oligopeptide chains, because its activity mainly focuses on the indole ring and the Gn residues at the end of oligopeptides. (5) The big side groups result in the very near energy level of LUMO and LUMO+1 of GWn oligopeptide chains. It shows that the electron-accepting ability of oligopeptide chainsis composed of two orbitals addition. The results in the paper may help us understand the changes of physical and chemical properties of peptide synthesis process.

  1. Synthesis and stereochemical assignments of diastereomeric Ni(II) complexes of glycine Schiff base with (R)-2-(N-{2-[N-alkyl-N-(1-phenylethyl)amino]acetyl}amino)benzophenone; a case of configurationally stable stereogenic nitrogen

    PubMed Central

    Resch, Daniel; Li, Hengguang; Ojima, Iwao; Takeda, Ryosuke; Aceña, José Luis

    2014-01-01

    Summary A family of chiral ligands derived from α-phenylethylamine and 2-aminobenzophenone were prepared by alkylation of the nitrogen atom. Upon reaction with glycine and a Ni(II) salt, these ligands were transformed into diastereomeric complexes, as a result of the configurational stability of the stereogenic nitrogen atom. Different diastereomeric ratios were observed depending on the substituent R introduced in the starting ligand, and stereochemical assignments were based on X-ray analysis, along with NMR studies and optical rotation measurements. PMID:24605164

  2. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    SciTech Connect

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W.

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  3. Synthesis, characterization and equilibrium studies of some potential antimicrobial and antitumor complexes of Cu(II), Ni(II), Zn(II) and Cd(II) ions involving 2-aminomethylbenzimidazole and glycine

    NASA Astrophysics Data System (ADS)

    Aljahdali, M.

    2013-08-01

    The ternary complexes of Cu(II), Zn(II), Ni(II) and Cd(II) with 2-aminomethylbenzimidazole (AMBI) and glycine as a representative example of amino acids have been isolated and characterized by elemental analyses, IR, ESR, UV-vis, magnetic moment, molar conductance and 1H NMR spectra. AMBI behaves as neutral bidentate ligands with coordination through imidazole and amino group nitrogens while the glycine amino acid behaves as a monodenate anion with coordination involving the amino group and carboxylate oxygen after deprotonation. The magnetic and spectral data indicates a square planar geometry for both Cu2+ and Ni2+ complexes and a tetrahedral geometry for both Zn2+ and Cd2+ complexes. The isolated chelates have been screened for their antifungal and antibacterial activities using the disc diffusion method. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. The stability constants of ternary M-AMBI-Gly complexes were determined potentiometrically in aqueous solution at I = 0.1 mol dm-3 NaCl.

  4. Glycine improves biochemical and biomechanical properties following inflammation of the achilles tendon.

    PubMed

    Vieira, Cristiano Pedrozo; De Oliveira, Letícia Prado; Da Ré Guerra, Flávia; Dos Santos De Almeida, Marcos; Marcondes, Maria Cristina Cintra Gomes; Pimentel, Edson Rosa

    2015-03-01

    Tendinopathy of the Achilles tendon is a clinical problem that motivates the scientific community to search for treatments that assist in restoring its functional properties. Glycine has broad biological effects, acting as a modulator of the inflammatory cascade, and is the predominant amino acid in collagen. A 5% glycine diet provided beneficial effects against toxicity and inflammation since glycine may restructure the collagen molecules faster due to its broad anti-inflammatory effects. The purpose was analyze the effects of a 5% glycine diet in rats as a treatment for the inflammatory process. The experimental groups were as follows: C (control group), G1 and G3 (inflammatory group), and G2 and G4 (glycine+inflammatory group). G1 and G2 were euthanized 8 days following injury, and G3 and G4 were euthanized 22 days following injury. The concentrations of hydroxyproline, non-collagenous proteins, and glycosaminoglycans, as well as the activity of MMP-2 and -9 were analyzed. Biomechanical and morphological tests were employed. Higher concentrations of hydroxyproline and glycosaminoglycans were found in G4 and an increased activity of MMP-2 was found in G2. Higher birefringence was noted in group G2. The biomechanical results indicated that the tendon was more resistant to loading to rupture upon treatment with a glycine diet in group G4. Glycine induced the synthesis of important components of the tendon. A rapid remodeling was noted when compared with the inflamed-only groups. These data suggest that glycine may be a beneficial supplement for individuals with inflammation of the Achilles tendon. PMID:25156668

  5. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  6. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  7. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  8. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  9. 75 FR 62141 - Glycine From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... glycine from China (60 FR 16116). Following first five-year reviews by Commerce and the Commission... from China (65 FR 45752). Following second five-year reviews by Commerce and the Commission, effective... glycine from China (70 FR 69316). The Commission is now conducting a third review to determine...

  10. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  11. Glycine restores the anabolic response to leucine in a mouse model of acute inflammation.

    PubMed

    Ham, Daniel J; Caldow, Marissa K; Chhen, Victoria; Chee, Annabel; Wang, Xuemin; Proud, Christopher G; Lynch, Gordon S; Koopman, René

    2016-06-01

    Amino acids, especially leucine, potently stimulate protein synthesis and reduce protein breakdown in healthy skeletal muscle and as a result have received considerable attention as potential treatments for muscle wasting. However, the normal anabolic response to amino acids is impaired during muscle-wasting conditions. Although the exact mechanisms of this anabolic resistance are unclear, inflammation and ROS are believed to play a central role. The nonessential amino acid glycine has anti-inflammatory and antioxidant properties and preserves muscle mass in calorie-restricted and tumor-bearing mice. We hypothesized that glycine would restore the normal muscle anabolic response to amino acids under inflammatory conditions. Relative rates of basal and leucine-stimulated protein synthesis were measured using SUnSET methodology 4 h after an injection of 1 mg/kg lipopolysaccharide (LPS). Whereas leucine failed to stimulate muscle protein synthesis in LPS-treated mice pretreated with l-alanine (isonitrogenous control), leucine robustly stimulated protein synthesis (+51%) in mice pretreated with 1 g/kg glycine. The improvement in leucine-stimulated protein synthesis was accompanied by a higher phosphorylation status of mTOR, S6, and 4E-BP1 compared with l-alanine-treated controls. Despite its known anti-inflammatory action in inflammatory cells, glycine did not alter the skeletal muscle inflammatory response to LPS in vivo or in vitro but markedly reduced DHE staining intensity, a marker of oxidative stress, in muscle cross-sections and attenuated LPS-induced wasting in C2C12 myotubes. Our observations in male C57BL/6 mice suggest that glycine may represent a promising nutritional intervention for the attenuation of skeletal muscle wasting. PMID:27094036

  12. Synthesis of 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides and their evaluation as ligands for NMDA receptor glycine binding site.

    PubMed

    Bluke, Zanda; Paass, Einars; Sladek, Meik; Abel, Ulrich; Kauss, Valerjans

    2016-08-01

    A series of 2-substituted 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides were synthesized and evaluated for their affinity to the glycine binding site of the N-methyl-d-aspartate (NMDA) receptor. The binding affinity was determined by the displacement of radioligand [(3)H]MDL-105,519 from rat cortical membrane preparations. The most attractive structures in the search for prospective NMDA receptor ligands were identified to be 2-arylcarbonylmethyl substituted 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides. It has been demonstrated for the first time that the replacement of NH group in the ligand by sp(3) CH2 is tolerated. This finding may pave the way for previously unexplored approaches for designing new ligands of the NMDA receptor. PMID:26114309

  13. The Infrared Spectrum of Matrix Isolated Aminoacetonitrile: A Precursor to the Amino Acid Glycine

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Bauschlicher, Charles W., Jr.; Sandford, Scott A.

    2003-01-01

    We present infrared (IR) spectral data from matrix isolation experiments and density functional theory calculations on the pre-biologically interesting molecule aminoacetonitrile, a precursor to glycine. We find that this nitrile has an unusually weak nitrile (C=N) stretch in the infrared, in contrast to expectations based on measurements and models of other nitriles under astrophysical conditions. The absence of an observable nitrile absorption feature in the infrared will make the IR search for this molecule considerably more difficult, and will raise estimates of upper limits on nitriles in interstellar and outer Solar System ices. This is also of relevance to assessing the formation routes of the amino acid glycine, since aminoacetonitrile is the putative precursor to glycine via the Strecker synthesis, the mechanism postulated to have produced the amino acids in meteorites.

  14. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes

    PubMed Central

    Carvajal-González, Alexander; Leite, M. Isabel; Waters, Patrick; Woodhall, Mark; Coutinho, Ester; Balint, Bettina; Lang, Bethan; Pettingill, Philippa; Carr, Aisling; Sheerin, Una-Marie; Press, Raomand; Lunn, Michael P.; Lim, Ming; Maddison, Paul; Meinck, H.-M.; Vandenberghe, Wim

    2014-01-01

    The clinical associations of glycine receptor antibodies have not yet been described fully. We identified prospectively 52 antibody-positive patients and collated their clinical features, investigations and immunotherapy responses. Serum glycine receptor antibody endpoint titres ranged from 1:20 to 1:60 000. In 11 paired samples, serum levels were higher than (n = 10) or equal to (n = 1) cerebrospinal fluid levels; there was intrathecal synthesis of glycine receptor antibodies in each of the six pairs available for detailed study. Four patients also had high glutamic acid decarboxylase antibodies (>1000 U/ml), and one had high voltage-gated potassium channel-complex antibody (2442 pM). Seven patients with very low titres (<1:50) and unknown or alternative diagnoses were excluded from further study. Three of the remaining 45 patients had newly-identified thymomas and one had a lymphoma. Thirty-three patients were classified as progressive encephalomyelitis with rigidity and myoclonus, and two as stiff person syndrome; five had a limbic encephalitis or epileptic encephalopathy, two had brainstem features mainly, two had demyelinating optic neuropathies and one had an unclear diagnosis. Four patients (9%) died during the acute disease, but most showed marked improvement with immunotherapies. At most recent follow-up, (2–7 years, median 3 years, since first antibody detection), the median modified Rankin scale scores (excluding the four deaths) decreased from 5 at maximal severity to 1 (P < 0.0001), but relapses have occurred in five patients and a proportion are on reducing steroids or other maintenance immunotherapies as well as symptomatic treatments. The glycine receptor antibodies activated complement on glycine receptor-transfected human embryonic kidney cells at room temperature, and caused internalization and lysosomal degradation of the glycine receptors at 37°C. Immunoglobulin G antibodies bound to rodent spinal cord and brainstem co-localizing with

  15. GABA and glycine in the developing brain.

    PubMed

    Ito, Susumu

    2016-09-01

    GABA and glycine are major inhibitory neurotransmitters in the CNS and act on receptors coupled to chloride channels. During early developmental periods, both GABA and glycine depolarize membrane potentials due to the relatively high intracellular Cl(-) concentration. Therefore, they can act as excitatory neurotransmitters. GABA and glycine are involved in spontaneous neural network activities in the immature CNS such as giant depolarizing potentials (GDPs) in neonatal hippocampal neurons, which are generated by the synchronous activity of GABAergic interneurons and glutamatergic principal neurons. GDPs and GDP-like activities in the developing brains are thought to be important for the activity-dependent functiogenesis through Ca(2+) influx and/or other intracellular signaling pathways activated by depolarization or stimulation of metabotropic receptors. However, if GABA and glycine do not shift from excitatory to inhibitory neurotransmitters at the birth and in maturation, it may result in neural disorders including autism spectrum disorders. PMID:26951057

  16. Organic foliar Milstop shows efficacy against soybean aphid (Aphis glycines) on soybean (Glycine max)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) has been produced in the United States since 1765. Soybean aphids (Aphis glycines Matsumura) were first detected on soybean in the United States in 2000 and now cause an estimated yield loss of up to US$4.9 billion annually. Organic soybean producers have few insecti...

  17. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  18. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  19. A Rigorous Attempt to Verify Interstellar Glycine

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Lovas, F. J.; Hollis, J. M.; Friedel, D. N.; Jewell, P. R.; Remijan, A.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.

    2004-01-01

    In 2003, Kuan, Charnley, and co-workers reported the detection of interstellar glycine (NH2CH2COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr BP(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper, we present essential criteria which can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published SEST data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify several common molecular candidates that should be examined further as more likely carriers of the lines reported as glycine. Finally, we illustrate that rotational temperature diagrams used without the support of correct spectroscopic assignments are not a reliable tool for the identification of interstellar molecules. Subject headings: ISM: abundances - ISM: clouds - ISM: individual (Sagittarius B2[N-

  20. GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1

    PubMed Central

    Sarwar, Zaara; Lundgren, Benjamin R.; Grassa, Michael T.; Wang, Michael X.; Gribble, Megan; Moffat, Jennifer F.

    2016-01-01

    ABSTRACT Glycine serves as a major source of single carbon units for biochemical reactions within bacterial cells. Utilization of glycine is tightly regulated and revolves around a key group of proteins known as the glycine cleavage system (GCS). Our lab previously identified the transcriptional regulator GcsR (PA2449) as being required for catabolism of glycine in the opportunistic pathogen Pseudomonas aeruginosa PAO1. In an effort to clarify and have an overall better understanding of the role of GcsR in glycine metabolism, a combination of transcriptome sequencing and electrophoretic mobility shift assays was used to identify target genes of this transcriptional regulator. It was found that GcsR binds to an 18-bp consensus sequence (TGTAACG-N4-CGTTCCG) upstream of the gcs2 operon, consisting of the gcvH2, gcvP2, glyA2, sdaA, and gcvT2 genes. The proteins encoded by these genes, namely, the GCS (GcvH2-GcvP2-GcvT2), serine hydroxymethyltransferase (GlyA2), and serine dehydratase (SdaA), form a metabolic pathway for the conversion of glycine into pyruvate, which can enter the central metabolism. GcsR activates transcription of the gcs2 operon in response to glycine. Interestingly, GcsR belongs to a family of transcriptional regulators known as TyrR-like enhancer-binding proteins (EBPs). Until this study, TyrR-like EBPs were only known to function in regulating aromatic amino acid metabolism. GcsR is the founding member of a new class of TyrR-like EBPs that function in the regulation of glycine metabolism. Indeed, homologs of GcsR and its target genes are present in almost all sequenced genomes of the Pseudomonadales order, suggesting that this genetic regulatory mechanism is a common theme for pseudomonads. IMPORTANCE Glycine is required for various cellular functions, including cell wall synthesis, protein synthesis, and the biosynthesis of several important metabolites. Regulating levels of glycine metabolism allows P. aeruginosa to maintain the metabolic flux

  1. Synthesis and structural characterization of ternary Cu (II) complexes of glycine with 2,2'-bipyridine and 2,2'-dipyridylamine. The DNA-binding studies and biological activity

    NASA Astrophysics Data System (ADS)

    Mohamed, Mervat S.; Shoukry, Azza A.; Ali, Ayat G.

    2012-02-01

    In this study two new complexes [Cu(bpy)(Gly)Cl]·2H 2O ( 1) and [Cu(dpa)(Gly)Cl]·2H 2O ( 2) (bpy = 2,2'-bipyridine; dpa = 2,2'-dipyridylamine, Gly = glycine) have been synthesized and characterized by elemental analysis, IR, TGA, UV-vis and magnetic susceptibility measurements. The binding properties of the complexes with CT-DNA were investigated by electronic absorption spectra. The intrinsic binding constants ( Kb) calculated from UV-vis absorption studies were 1.84 × 10 3 M -1 and 3.1 × 10 3 M -1 for complexes 1 and 2 respectively. Thermal denaturation has been systematically studied by spectrophotometric method and the calculated Δ Tm was nearly 5 °C for each complex. All the results suggest that the interaction modes between the complexes and CT-DNA were electrostatic and/or groove binding. The redox behavior of the two complexes was investigated by cyclic voltammetry. Both complexes, in presence and absence of CT-DNA show a quasi-reversible wave corresponding to Cu II/Cu I redox couple. The change in E1/2, Δ E and Ipc/ Ipa ascertain the interaction of complexes 1 and 2 with CT-DNA. Further insight into the binding of complexes with CT-DNA has been made by gel electrophoresis, where the binding of complexes is confirmed through decreasing the mobility and intensity of DNA bands. In addition, the antitumor activity of the complexes was tested on two cancer cell lines; the breast cancer (MCF7) and the human hepatocellular carcinoma (HEPG2), as well as one normal cell line; the human normal melanocytes (HFB4). The results showed that complex 1 was more potent antitumor agent than complex 2. The in-vitro antimicrobial activity of the two complexes was carried out using the disc diffusion method against different species of pathogenic bacteria and fungi. The activity data showed that complex 2 was more active in inhibiting the growth of the tested organisms.

  2. Antidepressants modulate glycine action in rat hippocampus.

    PubMed

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-12-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  3. Antidepressants modulate glycine action in rat hippocampus

    PubMed Central

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-01-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  4. Chemical basis of glycine riboswitch cooperativity

    PubMed Central

    Kwon, Miyun; Strobel, Scott A.

    2008-01-01

    The glycine binding riboswitch forms a unique tandem aptamer structure that binds glycine cooperatively. We employed nucleotide analog interference mapping (NAIM) and mutagenesis to explore the chemical basis of glycine riboswitch cooperativity. Based on the interference pattern, at least two sites appear to facilitate cooperative tertiary interactions, namely, the minor groove of the P1 helix from aptamer 1 and the major groove of the P3a helix from both aptamers. Mutation of these residues altered both the cooperativity and binding affinity of the riboswitch. The data support a model in which the P1 helix of the first aptamer participates in a tertiary interaction important for cooperativity, while nucleotides in the P1 helix of the second aptamer interface with the expression platform. These data have direct analogy to well-characterized mutations in hemoglobin, which provides a framework for considering cooperativity in this RNA-based system. PMID:18042658

  5. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective.

    PubMed Central

    Schell, Michael J

    2004-01-01

    The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics. PMID:15306409

  6. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  7. A rare case of glycine encephalopathy unveiled by valproate therapy.

    PubMed

    Subramanian, Velusamy; Kadiyala, Pramila; Hariharan, Praveen; Neeraj, E

    2015-01-01

    Glycine encephalopathy (GE) or nonketotic hyperglycinemia is an autosomal recessive disorder due to a primary defect in glycine cleavage enzyme system. It is characterized by elevated levels of glycine in plasma and cerebrospinal fluid usually presenting with seizures, hypotonia, and developmental delay. In our case, paradoxical increase in seizure frequency on starting sodium valproate led us to diagnose GE. PMID:26167219

  8. Bioinformatics analysis of the serine and glycine pathway in cancer cells

    PubMed Central

    Morello, Maria; Minieri, Marilena; Melino, Gerry; Amelio, Ivano

    2014-01-01

    Serine and glycine are amino acids that provide the essential precursors for the synthesis of proteins, nucleic acids and lipids. Employing 3 subsequent enzymes, phosphoglycerate dehydrogenase (PHGDH), phosphoserine phosphatase (PSPH), phosphoserine aminotransferase 1 (PSAT1), 3-phosphoglycerate from glycolysis can be converted in serine, which in turn can by converted in glycine by serine methyl transferase (SHMT). Besides proving precursors for macromolecules, serine/glycine biosynthesis is also required for the maintenance of cellular redox state. Therefore, this metabolic pathway has a pivotal role in proliferating cells, including cancer cells. In the last few years an emerging literature provides genetic and functional evidences that hyperactivation of serine/glycine biosynthetic pathway drives tumorigenesis. Here, we extend these observations performing a bioinformatics analysis using public cancer datasets. Our analysis highlighted the relevance of PHGDH and SHMT2 expression as prognostic factor for breast cancer, revealing a substantial ability of these enzymes to predict patient survival outcome. However analyzing patient datasets of lung cancer our analysis reveled that some other enzymes of the pathways, rather than PHGDH, might be associated to prognosis. Although these observations require further investigations they might suggest a selective requirement of some enzymes in specific cancer types, recommending more cautions in the development of novel translational opportunities and biomarker identification of human cancers. PMID:25436979

  9. Engineering and characterization of fluorogenic glycine riboswitches.

    PubMed

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-07-01

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (k(on)), and dissociation (k(off)) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. k(on) and k(off) were in the order of 10(-3)s(-1) and 10(-2)s(-1), respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. PMID:27220466

  10. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES... food additive glycine may be safely used for technological purposes in food in accordance with the following prescribed conditions: (a) The additive meets the specifications of the Food Chemicals Codex,...

  11. Identification of Rotylenchulus reniformis resistant Glycine lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the Mid South. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen....

  12. Glycine production in severe childhood undernutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Although nutritionally dispensable amino acids are not essential in the diet, from a biochemical standpoint, dispensable amino acids such as glycine are essential for life. This is especially true under unique circumstances, such as when the availability of labile nitrogen for dispensabl...

  13. Engineering and characterization of fluorogenic glycine riboswitches

    PubMed Central

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-01-01

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (kon), and dissociation (koff) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. kon and koff were in the order of 10−3s−1 and 10−2s−1, respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. PMID:27220466

  14. A Novel Glycinate-based Body Wash

    PubMed Central

    Regan, Jamie; Ananthapadmanabhan, K.P.

    2013-01-01

    Objective: To assess the properties of a novel body wash containing the mild surfactant glycinate. Design: Biochemical and clinical assays. Setting: Research laboratories and clinical sites in the United States and Canada. Participants: Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Measurements: Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. Results: The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores <3 and erythema scores <2 (both on a 0-6 scale) indicated an initial reduction in visual dryness. In subjects with eczema, normal use resulted in significant improvements (p<0.05) at Week 4 compared with baseline in skin dryness (change from baseline = −0.73), rash (−0.56), itch (−0.927), tightness (−0.585), and all eczema (−0.756). The glycinate-based body wash removed 56 percent of a long-lasting cosmetic foundation from skin compared with less than 30 percent removed by two competitive products tested. The glycinate-based body wash was preferred over a competitive mild cleansing product overall. Conclusion: The patented glycinate-containing body wash demonstrated better product mildness and patient-preferred attributes and clinical benefits. PMID:23882306

  15. The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions.

    PubMed

    Pilling, Sergio; Mendes, Luiz A V; Bordalo, Vinicius; Guaman, Christian F M; Ponciano, Cássia R; da Silveira, Enio F

    2013-01-01

    Glycine is the simplest proteinaceous amino acid and is present in all life-forms on Earth. In aqueous solutions, it appears mainly as zwitterion glycine (+NH3CH2COO-); however, in solid phase, it may be found in amorphous or crystalline (α, β, and γ) forms. The crystalline forms differ from each other by the packing of zwitterions in the unitary cells and by the number of intermolecular hydrogen bonds. This molecular species has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, glycine is exposed to several radiation fields at different temperatures. We present an experimental study on the destruction of zwitterionic glycine crystals at room temperature by 1 MeV protons, in which the dependence of the destruction rates of the α-glycine and β-glycine crystals on bombardment fluence is investigated. The samples were analyzed in situ by Fourier transform infrared spectrometry at different proton fluences. The experiments occurred under ultrahigh vacuum conditions at the Van de Graaff accelerator lab at the Pontifical Catholic University at Rio de Janeiro (PUC-Rio), Brazil. For low fluences, the dissociation cross section of α-glycine was observed to be 2.5×10(-14) cm2, a value roughly 5 times higher than the dissociation cross section found for β-glycine. The estimated half-lives of α-glycine and β-glycine zwitterionic forms extrapolated to the Earth orbit environment are 9×10(5) and 4×10(6) years, respectively. In the diffuse interstellar medium the estimated values are 1 order of magnitude lower. These results suggest that pristine interstellar β-glycine is the one most likely to survive the hostile environments of space radiation. A small feature around 1650-1700 cm(-1), tentatively attributed to an amide functional group, was observed in the IR spectra of irradiated samples, suggesting that cosmic rays may induce peptide bond synthesis in

  16. Compositions containing poly (.gamma.-glutamylcysteinyl)glycines

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1992-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  17. Aza-Glycine Induces Collagen Hyperstability.

    PubMed

    Zhang, Yitao; Malamakal, Roy M; Chenoweth, David M

    2015-10-01

    Hydrogen bonding is fundamental to life on our planet, and nature utilizes H-bonding in nearly all biomolecular interactions. Often, H-bonding is already maximized in natural biopolymer systems such as nucleic acids, where Watson-Crick H-bonds are fully paired in double-helical structures. Synthetic chemistry allows molecular editing of biopolymers beyond nature's capability. Here we demonstrate that substitution of glycine (Gly) with aza-glycine in collagen may increase the number of interfacial cross-strand H-bonds, leading to hyperstability in the triple-helical form. Gly is the only amino acid that has remained intolerant to substitution in collagen. Our results highlight the vital importance of maximizing H-bonding in higher order biopolymer systems using minimally perturbing alternatives to nature's building blocks. PMID:26368649

  18. Compositions containing poly ([gamma]glutamylcysteinyl)glycines

    DOEpatents

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1992-02-18

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and the apparatus used in effecting the removal are described. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 figs.

  19. Evaluation of mechanical properties of some glycine complexes

    SciTech Connect

    Nagaraju, D.; Raja Shekar, P. V.; Chandra, Ch. Sateesh; Rao, K. Kishan; Krishna, N. Gopi

    2014-04-24

    The variation of Vickers hardness with load for (101) glycine zinc chloride (GZC), (001) glycine lithium sulphate (GLS), (001) triglycine sulphate (TGS) and (010) glycine phosphite (GPI) crystals was studied. From the cracks initiated along the corners of the indentation impression, crack lengths were measured and the fracture toughness value and brittle index number were determined. The hardness related parameters viz. yield strength and Young’s modulus were also estimated. The anisotropic nature of the crystals was studied using Knoop indentation technique.

  20. Evaluation of mechanical properties of some glycine complexes

    NASA Astrophysics Data System (ADS)

    Nagaraju, D.; Raja Shekar, P. V.; Chandra, Ch. Sateesh; Rao, K. Kishan; Krishna, N. Gopi

    2014-04-01

    The variation of Vickers hardness with load for (101) glycine zinc chloride (GZC), (001) glycine lithium sulphate (GLS), (001) triglycine sulphate (TGS) and (010) glycine phosphite (GPI) crystals was studied. From the cracks initiated along the corners of the indentation impression, crack lengths were measured and the fracture toughness value and brittle index number were determined. The hardness related parameters viz. yield strength and Young's modulus were also estimated. The anisotropic nature of the crystals was studied using Knoop indentation technique.

  1. Identification and characterization of heptapeptide modulators of the glycine receptor.

    PubMed

    Cornelison, Garrett L; Pflanz, Natasha C; Tipps, Megan E; Mihic, S John

    2016-06-01

    The glycine receptor is a member of the Cys-loop receptor superfamily of ligand-gated ion channels and is implicated as a possible therapeutic target for the treatment of diseases such as alcoholism and inflammatory pain. In humans, four glycine receptor subtypes (α1, α2, α3, and β) co-assemble to form pentameric channel proteins as either α homomers or αβ heteromers. To date, few agents have been identified that can selectively modulate the glycine receptor, especially those possessing subtype specificity. We used a cell-based method of phage display panning, coupled with two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes, to identify novel heptapeptide modulators of the α1β glycine receptor. This involved a panning procedure in which the phage library initially underwent subtractive panning against Human Embryonic Kidney (HEK) 293 cells expressing alternative glycine receptor subtypes before panning the remaining library over HEK 293 cells expressing the target, the α1β glycine receptor. Peptides were identified that act with selectivity on α1β and α3β, compared to α2β, glycine receptors. In addition, peptide activity at the glycine receptor decreased when zinc was chelated by tricine, similar to previous observations of a decrease in ethanol's enhancing actions at the receptor in the absence of zinc. Comparisons of the amino acid sequences of heptapeptides capable of potentiating glycine receptor function revealed several consensus sequences that may be predictive of a peptide's enhancing ability. PMID:27038522

  2. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    SciTech Connect

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  3. Linear free energy relationship rate constants and basicities of N-substituted phenyl glycines in positronium-glycine complex formation

    NASA Astrophysics Data System (ADS)

    Chen, Rongti; Liang, Jiachang; Du, Youming; Cao, Chun; Yin, Dinzhen; Wang, Shuying; Zhang, Tianbao

    1987-06-01

    Complex formation between positronium and glycine derivatives in solution is discussed and the complex reaction rate constants obtained by means of a positron annihilation lifetime spectrometer with BaF 2 detectors. Rate constants mainly depend on the conjugation effect at the benzene ring and the induction effect of the substituents at the phenyl. There is a linear free energy relationship between rate constants and basicities of N-substituted phenyl glycines in orthopositronium-glycine complex formation.

  4. Oligo(N-aryl glycines): a new twist on structured peptoids.

    PubMed

    Shah, Neel H; Butterfoss, Glenn L; Nguyen, Khanh; Yoo, Barney; Bonneau, Richard; Rabenstein, Dallas L; Kirshenbaum, Kent

    2008-12-10

    We explore strategies to enhance conformational ordering of N-substituted glycine peptoid oligomers. Peptoids bearing bulky N-alkyl side chains have previously been studied as important examples of biomimetic "foldamer" compounds, as they exhibit a capacity to populate helical structures featuring repeating cis-amide bonds. Substantial cis/trans amide bond isomerization, however, gives rise to conformational heterogeneity. Here, we report the use of N-aryl side chains as a tool to enforce the presence of trans-amide bonds, thereby engendering structural stability. Aniline derivatives and bromoacetic acid are used in the facile solid-phase synthesis of a diverse family of sequence-specific N-aryl glycine oligomers. Quantum mechanics calculations yield a detailed energy profile of the folding landscape and substantiate the hypothesis that the presence of anilide groups establishes a strong energetic preference for trans-amide bonds. X-ray crystallographic analysis and solution NMR studies verify this preference. Molecular modeling indicates that the linear oligomers can adopt helical structures resembling a polyproline type II helix. High resolution structures of macrocyclic oligomers incorporating both N-alkyl and N-aryl glycine units confirm the ability to direct the presence of trans-amide bonds specifically at N-aryl positions. These results are an important step in developing strategies for the rational de novo design of new structural motifs in biomimetic oligopeptoid systems. PMID:19049458

  5. Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells

    SciTech Connect

    Jackson, P.J.; Unkefer, C.J.; Doolen, J.A.; Watt, K.; Robinson, N.J.

    1987-10-01

    Angiosperms can be selected for the ability to grow in the presence of normally toxic concentrations of certain trace metal ions. Addition of Cd and Cu to Cd-resistant Datura innoxia cell cultures results in the rapid synthesis and accumulation of sulfur-rich, metal-binding polypeptides. The structure of these compounds was determined using amino acid analysis, /sup 13/C NMR, and site-specific enzymic digestion. These compounds are poly(gamma-glutamylcysteinyl)glycines. Greater than 80% of the cellular Cd is bound to the bis and tris forms in Cd-resistant cells. There is a direct correlation between the maximum accumulation of the metal-binding polypeptides and the concentration of toxic ions to which the cells are resistant. In the presence of metal ions, the polypeptides form multimeric aggregates that can be resolved by gel chromatography. Cd binds to both the high and low molecular weight aggregates, whereas Cu preferentially binds to the higher molecular weight forms. The presence of gamma-carboxamide linkages between glutamyl and adjacent cysteinyl residues indicates that these polypeptides are products of biosynthetic pathways. Poly(gamma-glutamylcysteinyl)glycines bind metals and, in this respect, appear to be functional analogs of the protein metallothionein. However, in the absence of supraoptimal concentrations of trace metal ions, the functions of metallothionein in animals and microorganisms and poly(gamma-glutamylcysteinyl)glycines in plants may differ.

  6. Stoichiometry of the heparin-Cu2+-glycine mixed-ligand complex according to differential thermal analysis and IR spectroscopy data

    NASA Astrophysics Data System (ADS)

    Feofanova, M. A.; Frantseva, Yu. V.; Zhuravlev, E. V.; Baranova, N. V.; Ryasenskii, S. S.

    2015-02-01

    A method or the synthesis, isolation, and purification of a mixed-ligand complex of heparin with copper and glycine cations was suggested. The complex was studied by elemental, thermal, and spectral analyses. The elemental and crystalline hydrate compositions of the complex were determined and the molecular formula was suggested to be Na3CuHepGly · 2H2O.

  7. Pharmacological PPARα Activation Markedly Alters Plasma Turnover of the Amino Acids Glycine, Serine and Arginine in the Rat

    PubMed Central

    Ericsson, Anette; Turner, Nigel; Hansson, Göran I.; Wallenius, Kristina; Oakes, Nicholas D.

    2014-01-01

    The current study extends previously reported PPARα agonist WY 14,643 (30 µmol/kg/day for 4 weeks) effects on circulating amino acid concentrations in rats fed a 48% saturated fat diet. Steady-state tracer experiments were used to examine in vivo kinetic mechanisms underlying altered plasma serine, glycine and arginine levels. Urinary urea and creatinine excretion were measured to assess whole-body amino acid catabolism. WY 14,643 treated animals demonstrated reduced efficiency to convert food consumed to body weight gain while liver weight was increased compared to controls. WY 14,643 raised total amino acid concentration (38%), largely explained by glycine, serine and threonine increases. 3H-glycine, 14C-serine and 14C-arginine tracer studies revealed elevated rates of appearance (Ra) for glycine (45.5±5.8 versus 17.4±2.7 µmol/kg/min) and serine (21.0±1.4 versus 12.0±1.0) in WY 14,643 versus control. Arginine was substantially decreased (−62%) in plasma with estimated Ra reduced from 3.1±0.3 to 1.2±0.2 µmol/kg/min in control versus WY 14,643. Nitrogen excretion over 24 hours was unaltered. Hepatic arginase activity was substantially decreased by WY 14,643 treatment. In conclusion, PPARα agonism potently alters metabolism of several specific amino acids in the rat. The changes in circulating levels of serine, glycine and arginine reflected altered fluxes into the plasma rather than changes in clearance or catabolism. This suggests that PPARα has an important role in modulating serine, glycine and arginine de novo synthesis. PMID:25486018

  8. Evidence from glycine transfer RNA of a frozen accident at the dawn of the genetic code

    PubMed Central

    Bernhardt, Harold S; Tate, Warren P

    2008-01-01

    Background Transfer RNA (tRNA) is the means by which the cell translates DNA sequence into protein according to the rules of the genetic code. A credible proposition is that tRNA was formed from the duplication of an RNA hairpin half the length of the contemporary tRNA molecule, with the point at which the hairpins were joined marked by the canonical intron insertion position found today within tRNA genes. If these hairpins possessed a 3'-CCA terminus with different combinations of stem nucleotides (the ancestral operational RNA code), specific aminoacylation and perhaps participation in some form of noncoded protein synthesis might have occurred. However, the identity of the first tRNA and the initial steps in the origin of the genetic code remain elusive. Results Here we show evidence that glycine tRNA was the first tRNA, as revealed by a vestigial imprint in the anticodon loop sequences of contemporary descendents. This provides a plausible mechanism for the missing first step in the origin of the genetic code. In 448 of 466 glycine tRNA gene sequences from bacteria, archaea and eukaryote cytoplasm analyzed, CCA occurs immediately upstream of the canonical intron insertion position, suggesting the first anticodon (NCC for glycine) has been captured from the 3'-terminal CCA of one of the interacting hairpins as a result of an ancestral ligation. Conclusion That this imprint (including the second and third nucleotides of the glycine tRNA anticodon) has been retained through billions of years of evolution suggests Crick's 'frozen accident' hypothesis has validity for at least this very first step at the dawn of the genetic code. Reviewers This article was reviewed by Dr Eugene V. Koonin, Dr Rob Knight and Dr David H Ardell. PMID:19091122

  9. Activation of presynaptic glycine receptors facilitates glycine release from presynaptic terminals synapsing onto rat spinal sacral dorsal commissural nucleus neurons

    PubMed Central

    Jeong, Hyo-Jin; Jang, Il-Sung; Moorhouse, Andrew J; Akaike, Norio

    2003-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Here we report the novel finding that presynaptic glycine autoreceptors modulate release from terminals synapsing onto rat spinal sacral dorsal commissural nucleus (SDCN) neurons. In mechanically dissociated SDCN neurons, in which functional presynaptic nerve terminals remain adherent to the isolated neurons, exogenously applied glycine (3 μM) increased the frequency of glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) without affecting their amplitudes or decay times. This suggests that glycine acts presynaptically to increase glycine release probability. Picrotoxin, at a concentration that had little direct effect on sIPSC frequency and amplitude (30 μM), significantly attenuated glycine-induced presynaptic sIPSC facilitation. The glycine-induced sIPSC frequency facilitation was completely abolished either in a Ca2+-free external solution or in the presence of 100 μM Cd2+, suggesting the involvement of extracellular Ca2+ influx into the nerve terminals. The glycine action was also completely occluded in the presence of 300 nM tetrodotoxin. In recordings from SDCN neurons in spinal cord slices, glycine (10 μM) increased evoked IPSC (eIPSC) amplitude and decreased the extent of paired-pulse facilitation. In response to brief high frequency stimulus trains the eIPSCs displayed a profound frequency-dependent facilitation that was greatly reduced by picrotoxin (30 μM). These results indicate that glycine acts at presynaptic autoreceptors, causing depolarization of the glycinergic nerve terminals, the subsequent activation of voltage-dependent Na+ and Ca2+ channels, and facilitation of glycine release. Furthermore, this presynaptic facilitation was observed under more physiological conditions, suggesting that these glycinergic autoreceptors may contribute to the integration of local inhibitory inputs to SDCN neurons. PMID:12754315

  10. Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.).

    PubMed

    Watkins, Andrew J; Roussel, Erwan G; Parkes, R John; Sass, Henrik

    2014-01-01

    Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners. PMID:24162571

  11. Glycine receptor mechanism elucidated by electron cryo-microscopy.

    PubMed

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-10-01

    The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders, including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of glycine receptors has been hindered by a lack of high-resolution structures. Here we report electron cryo-microscopy structures of the zebrafish α1 GlyR with strychnine, glycine, or glycine and ivermectin (glycine/ivermectin). Strychnine arrests the receptor in an antagonist-bound closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain 'wrist' interface, and leads to rotation of the transmembrane domain towards the pore axis, occluding the ion conduction pathway. These structures illuminate the GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  12. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520.550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine/electrolyte. (a) Specifications. The product...

  13. Glycine transporter2 inhibitors: Getting the balance right.

    PubMed

    Vandenberg, Robert J; Mostyn, Shannon N; Carland, Jane E; Ryan, Renae M

    2016-09-01

    Neurotransmitter transporters are targets for a wide range of therapeutically useful drugs. This is because they have the capacity to selectively manipulate the dynamics of neurotransmitter concentrations and thereby enhance or diminish signalling through particular brain pathways. High affinity glycine transporters (GlyTs) regulate extracellular concentrations of glycine and provide novel therapeutic targets for neurological disorders. PMID:26723543

  14. New soybean accessions identified with resistance to Heterodera glycines populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean Cyst Nematode (SCN, Heterodera glycines Ichinohe) is a serious root-parasite of soybean [Glycine max (L.) Merr.], in USA and worldwide. Annual yield losses in USA are estimated to be nearly $1 billion. These losses have remained stable at current levels with the use of resistant cultivars bu...

  15. New soybean accessions evaluated for reaction to Heterodera glycines populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean Cyst Nematode (SCN, Heterodera glycines Ichinohe) is a serious pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. Annual yield losses in the USA are estimated to be over $1 billion. These losses have remained stable with the use of resistant cultivars but over time nematode...

  16. Population genetic structure of the soybean aphid, Aphis glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid (Aphis glycines Matsumura) is an invasive pest of cultivated soybean [Glycine max (L.)] in North America. After the initial invasion in 2000, the aphid has quickly spread across most of the U.S. and Canada, suggesting large scale dispersals and rapid adaptations to new environment...

  17. Glycine Betaine as a Direct Substrate for Methanogens (Methanococcoides spp.)

    PubMed Central

    Watkins, Andrew J.; Roussel, Erwan G.; Parkes, R. John

    2014-01-01

    Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners. PMID:24162571

  18. NECTAR COMPOSITION OF WILD PERENNIAL GLYCINE (SOYBEAN) SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Glycine contains the cultivated annual soybean G. max, the wild annual, G. soja, and about 21 wild perennial Glycine species. The perennials are largely indigenous to Australia, but are found in Papua New Guinea, Timor, Philippines, Japan and Taiwan. Outcrossing rates in the cultivated s...

  19. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile. PMID:26474598

  20. Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales

    PubMed Central

    Youssef, Noha H; Savage-Ashlock, Kristen N; McCully, Alexandra L; Luedtke, Brandon; Shaw, Edward I; Hoff, Wouter D; Elshahed, Mostafa S

    2014-01-01

    We investigated the mechanisms of osmoadaptation in the order Halobacteriales, with special emphasis on Haladaptatus paucihalophilus, known for its ability to survive in low salinities. H. paucihalophilus genome contained genes for trehalose synthesis (trehalose-6-phosphate synthase/trehalose-6-phosphatase (OtsAB pathway) and trehalose glycosyl-transferring synthase pathway), as well as for glycine betaine uptake (BCCT family of secondary transporters and QAT family of ABC transporters). H. paucihalophilus cells synthesized and accumulated ∼1.97–3.72 μmol per mg protein of trehalose in a defined medium, with its levels decreasing with increasing salinities. When exogenously supplied, glycine betaine accumulated intracellularly with its levels increasing at higher salinities. RT-PCR analysis strongly suggested that H. paucihalophilus utilizes the OtsAB pathway for trehalose synthesis. Out of 83 Halobacteriales genomes publicly available, genes encoding the OtsAB pathway and glycine betaine BCCT family transporters were identified in 38 and 60 genomes, respectively. Trehalose (or its sulfonated derivative) production and glycine betaine uptake, or lack thereof, were experimentally verified in 17 different Halobacteriales species. Phylogenetic analysis suggested that trehalose synthesis is an ancestral trait within the Halobacteriales, with its absence in specific lineages reflecting the occurrence of gene loss events during Halobacteriales evolution. Analysis of multiple culture-independent survey data sets demonstrated the preference of trehalose-producing genera to saline and low salinity habitats, and the dominance of genera lacking trehalose production capabilities in permanently hypersaline habitats. This study demonstrates that, contrary to current assumptions, compatible solutes production and uptake represent a common mechanism of osmoadaptation within the Halobacteriales. PMID:24048226

  1. Positive Modulation of the Glycine Receptor by Means of Glycine Receptor–Binding Aptamers

    PubMed Central

    Aneiros, Eduardo; Blank, Michael; Mueller, Johan; Nyman, Eva; Blind, Michael; Dabrowski, Michael A.; Andersson, Christin V.; Sandberg, Kristian

    2015-01-01

    According to the gate control theory of pain, the glycine receptors (GlyRs) are putative targets for development of therapeutic analgesics. A possible approach for novel analgesics is to develop a positive modulator of the glycine-activated Cl− channels. Unfortunately, there has been limited success in developing drug-like small molecules to study the impact of agonists or positive modulators on GlyRs. Eight RNA aptamers with low nanomolar affinity to GlyRα1 were generated, and their pharmacological properties analyzed. Cytochemistry using fluorescein-labeled aptamers demonstrated GlyRα1-dependent binding to the plasma membrane but also intracellular binding. Using a fluorescent membrane potential assay, we could identify five aptamers to be positive modulators. The positive modulation of one of the aptamers was confirmed by patch-clamp electrophysiology on L(tk) cells expressing GlyRα1 and/or GlyRα1β. This aptamer potentiated whole-cell Cl− currents in the presence of low concentrations of glycine. To our knowledge, this is the first demonstration ever of RNA aptamers acting as positive modulators for an ion channel. We believe that these aptamers are unique and valuable tools for further studies of GlyR biology and possibly also as tools for assay development in identifying small-molecule agonists and positive modulators. PMID:26071243

  2. DETECTABILITY OF GLYCINE IN SOLAR-TYPE SYSTEM PRECURSORS

    SciTech Connect

    Jiménez-Serra, Izaskun; Testi, Leonardo; Caselli, Paola; Viti, Serena E-mail: ltesti@eso.org E-mail: sv@star.ucl.ac.uk

    2014-06-01

    Glycine (NH{sub 2}CH{sub 2}COOH) is the simplest amino acid relevant to life. Its detection in the interstellar medium is key to understanding the formation mechanisms of pre-biotic molecules and their subsequent delivery onto planetary systems. Glycine has been extensively searched for toward hot molecular cores, although these studies did not yield any firm detection. In contrast to hot cores, low-mass star forming regions, in particular their earliest stages represented by cold pre-stellar cores, may be better suited for the detection of glycine as well as more relevant to the study of pre-biotic chemistry in young solar system analogs. We present one-dimensional spherically symmetric radiative transfer calculations of the glycine emission expected to arise from the low-mass pre-stellar core L1544. Water vapor has recently been reported toward this core, indicating that a small fraction of the grain mantles in L1544 (∼0.5%) has been injected into the gas phase. Assuming that glycine is photo-desorbed together with water in L1544, and considering a solid abundance of glycine on ices of ∼10{sup –4} with respect to water, our calculations reveal that several glycine lines between 67 GHz and 80 GHz have peak intensities larger than 10 mK. These results show for the first time that glycine could reach detectable levels in cold objects such as L1544. This opens up the possibility of detecting glycine, and other pre-biotic species, at the coldest and earliest stages in the formation of solar-type systems with near-future instrumentation such as the Band 2 receivers of ALMA.

  3. Accumulation of 52 kDa glycine rich protein in auxin-deprived strawberry fruits and its role in fruit growth. [Fragaria ananassa

    SciTech Connect

    Reddy, A.S.N.; Poovaiah, B.W.

    1987-04-01

    Growth of strawberry (Fragaria ananassa Duch) receptacles can be stopped at any stage by deachening the fruits and can be resumed by exogenous application of auxin. In their earlier studies they demonstrated auxin regulated polypeptide changes at different stages of strawberry fruit development. Removal of achenes from fruits to deprive auxin resulted in the accumulation of 52 KDa polypeptide. This polypeptide is associated with cell wall and its concentration is increased in a time-dependent manner in auxin deprived receptacles. Incorporation studies with (/sup 35/S) methionine showed the promotion of labelling of 52 kDa polypeptide in the auxin-deprived receptacles within 12 h after removal of the achenes. Amino acid analysis revealed that the 52 KDa polypeptide is rich in glycine. Their studies, with normal and mutant strawberry receptacles, indicate that the synthesis and accumulation of this glycine rich protein correlates with cessation of receptacle growth. These results suggest a role for the glycine rich protein in growth.

  4. Benzyl isothiocyanate affects development, hatching and reproduction of the soybean cyst nematode Heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzyl isothiocyanate (BITC) applied at micromolar doses decreased Heterodera glycines J2 movement, H. glycines hatching, and reproduction of H. glycines on soybean, Glycine max. Direct exposure of J2 to 30 microM BITC caused an immediate decrease (17%; P < 0.05) in J2 movement relative to 1% methan...

  5. Roles of the GcvA and PurR proteins in negative regulation of the Escherichia coli glycine cleavage enzyme system.

    PubMed Central

    Wilson, R L; Stauffer, L T; Stauffer, G V

    1993-01-01

    When Escherichia coli was grown in medium containing both inosine and glycine, the PurR repressor protein was shown to be responsible for a twofold reduction from the fully induced glycine cleavage enzyme levels. This twofold repression was also seen by measuring beta-galactosidase levels in cells carrying a lambda gcvT-lacZ gene fusion. In this fusion, the synthesis of beta-galactosidase is under the control of the gcv regulatory region. A DNA fragment carrying the gcv control region was shown by gel mobility shift assay and DNase I footprinting to bind purified PurR protein, suggesting a direct involvement of the repressor in gcv regulation. A separate mechanism of purine-mediated regulation of gcv was shown to be independent of the purR gene product and resulted in an approximately 10-fold reduction of beta-galactosidase levels when cells were grown in medium containing inosine but lacking the inducer glycine. This additional repression was dependent upon a functional gcvA gene, a positive activator for the glycine cleavage enzyme system. A dual role for the GcvA protein as both an activator in the presence of glycine and a repressor in the presence of inosine is suggested. Images PMID:8349552

  6. Spectral Luminescent Properties of the Glycine Molecule in a Gas Discharge

    NASA Astrophysics Data System (ADS)

    General, A. A.; Migovich, M. I.; Kelman, V. A.; Zhmenyak, Yu. V.; Zvenigorodsky, V. V.

    2016-01-01

    We have experimentally studied the luminescence spectra of glycine powder in the plasma of a repetitively pulsed longitudinal discharge in argon-glycine and helium-glycine mixtures. We have identified the main fragments of the glycine molecule emitting in the 200-1000 nm region. The emitting molecules due to fragmentation of glycine and dissociation of the carboxyl (-COOH) and amino (-NH2) groups are nitrogen, carbon monoxide, and cyanogen molecules.

  7. Biosynthesis of the Osmoprotectant Ectoine, but Not Glycine Betaine, Is Critical for Survival of Osmotically Stressed Vibrio parahaemolyticus Cells

    PubMed Central

    Ongagna-Yhombi, Serge Y.

    2013-01-01

    Vibrio parahaemolyticus is a halophile present in marine and estuarine environments, ecosystems characterized by fluctuations in salinity and temperature. One strategy to thrive in such environments is the synthesis and/or uptake of compatible solutes. The V. parahaemolyticus genome contains biosynthesis systems for both ectoine and glycine betaine, which are known to act as compatible solutes in other species. We showed that V. parahaemolyticus had a 6% NaCl tolerance when grown in M9 minimal medium with 0.4% glucose (M9G) with a >5-h lag phase. By using 1H nuclear magnetic resonance spectroscopy (1H-NMR) analysis, we determined that cells synthesized ectoine and glutamate in a NaCl-dependent manner. The most effective compatible solutes as measured by a reduction in lag-phase growth in M9G with 6% NaCl (M9G 6% NaCl) were in the order glycine betaine > choline > proline = glutamate > ectoine. However, V. parahaemolyticus could use glutamate or proline as the sole carbon source, but not ectoine or glycine betaine, which suggests that these are bona fide compatible solutes. Expression analysis showed that the ectA and betA genes were more highly expressed in log-phase cells, and expression of both genes was induced by NaCl up-shock. Under all conditions examined, the ectA gene was more highly expressed than the betA gene. Analysis of in-frame deletions in betA and ectB and in a double mutant showed that the ectB mutant was defective for growth, and this defect was rescued by the addition of glycine betaine, proline, ectoine, and glutamate, indicating that these compounds are compatible solutes for this species. The presence of both synthesis systems was the predominant distribution pattern among members of the Vibrionaceae family, suggesting this is the ancestral state. PMID:23770911

  8. Glycine receptor mechanism illuminated by electron cryo-microscopy

    PubMed Central

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-01-01

    Summary The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of GlyRs has been hindered by a dearth of high-resolution structures. Here we report electron cryo-microscopy structures of the α1 GlyR with strychnine, glycine, or glycine/ivermectin. Strychnine arrests the receptor in an antagonist-bound, closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain ‘wrist’ interface, and leads to rotation of the transmembrane domain toward the pore axis, occluding the ion conduction pathway. These structures illuminate GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  9. Effect of temperature and pressure on the protonation of glycine

    PubMed Central

    Izatt, R. M.; Oscarson, J. L.; Gillespie, S. E.; Grimsrud, H.; Renuncio, J. A. R.; Pando, C.

    1992-01-01

    Flow calorimetry has been used to study the interaction of glycine with protons in water at temperatures of 298.15, 323.15, and 348.15 K and pressures up to 12.50 MPa. By combining the measured heat for glycine solutions titrated with NaOH with the heat of ionization for water, the enthalpy of protonation of glycine is obtained. The reaction is exothermic at all temperatures and pressures studied. The effect of pressure on the enthalpy of reaction is very small. The experimental heat data are analyzed to yield equilibrium constant (K), enthalpy change (ΔH), and entropy change (ΔS) values for the protonation reaction as a function of temperature. These values are compared with those reported previously at 298.15 K. The ΔH and ΔS values increase (become more positive), whereas log K values decrease, as temperature increases. The trends for ΔH and ΔS with temperature are opposite to those reported previously for the protonation of several alkanolamines. However, log K values for proton interaction with both glycine and the alkanolamines decrease with increasing temperature. The effect of the nitrogen atom substituent on log K for protonation of glycine and alkanolamines is discussed in terms of changes in long-range and short-range solvent effects. These effects are used to explain the difference in ΔH and ΔS trends between glycine protonation and those found earlier for alkanolamine protonation. PMID:19431832

  10. Glycine crystallization during spray drying: the pH effect on salt and polymorphic forms.

    PubMed

    Yu, Lian; Ng, Kingman

    2002-11-01

    Spray drying of aqueous solutions of glycine revealed a strong pH effect on the salt and polymorphic forms of the resulting powders. Adjusting pH by aqueous HCl or NaOH between 1.7 and 10.0 caused the glycine solutions to crystallize as two polymorphs (alpha and gamma) of the neutral glycine ((+)H(3)NCH(2)CO(2) (-)) and as three salts (diglycine HCl, (+)H(3)NCH(2)CO(2) (-). (+)H(3)NCH(2)CO(2)H. C1(-); glycine HCl, (+)H(3)NCH(2)CO(2)H. C1(-); and sodium glycinate, H(2)NCH(2)CO(2) (-). Na(+)). Although alpha-glycine crystallized from solutions without pH adjustment (pH 6.2), changing the pH to 4.0 and 8.0 caused gamma-glycine to crystallize as the preferred polymorph. This phenomenon is attributed to the pH effect on the dimeric growth unit of alpha-glycine. The formation of alpha-glycine by spray drying solutions of neutral glycine contrasts the outcome of freeze drying, which yields beta-glycine. Because gamma-glycine is thermodynamically more stable than alpha-glycine, the crystallization of gamma-glycine by pH adjustment provides a way to improve the physical stability of glycine-containing formulations. Spray drying at low pH yielded various mixtures of neutral glycine and its HCl salts: pH 3.0, gamma-glycine and diglycine HCl; pH 2.0, diglycine HCl; and pH 1.7 (the natural pH of glycine HCl), diglycine HCl (major component) and glycine HCl (minor component). Spray drying glycine HCl solutions (pH 1.7) yielded the same diglycine HCl/glycine HCl mixture as did spray drying neutral glycine solutions acidified to pH 1.7. Obtaining diglycine HCl by spray drying glycine HCl solutions indicates a 50% loss of HCl during processing. The extent of HCl loss could be altered by changing the inlet temperature of the spray drier. Spray drying glycine solutions at pH 9.0 and 10.0 gave predominantly gamma-glycine and an additional crystalline product, possibly sodium glycinate. The glycine powders spray dried at different pH had different particle morphologies and sizes, which

  11. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.

    PubMed

    Chang, Sungyul; Thurber, Carrie S; Brown, Patrick J; Hartman, Glen L; Lambert, Kris N; Domier, Leslie L

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production. PMID

  12. Blockade of glycine transporter 1 by SSR-504734 promotes cognitive flexibility in glycine/NMDA receptor-dependent manner.

    PubMed

    Nikiforuk, Agnieszka; Kos, Tomasz; Rafa, Dominik; Behl, Berthold; Bespalov, Anton; Popik, Piotr

    2011-01-01

    Accumulating evidence suggests that cognitive processes may be regulated by glycine concentration in the local environment of glutamate N-methyl-d-aspartate receptor (NMDAR). The concentration of glycine is controlled, among other factors, by the glycine transporter 1 (GlyT1). While GlyT1 inhibitors are developed for a number of indications including cognitive improvement, little is known about their effects in tasks depending on prefrontal cortical function. We examined the effect of GlyT1 inhibitor SSR-504734 on cognitive flexibility assessed in the attentional set-shifting task in rats (ASST). The second goal was to elucidate whether SSR-504734 effect has been due to the compound's action at glycine/NMDAR site. Rats treated with SSR-504734 (3 and 10 mg/kg, IP) required significantly less trials to criteria during extra-dimensional shift (EDs) phase of the ASST. The effect of SSR-504734 (3 mg/kg) was completely prevented by the glycine/NMDAR site antagonist, L-687,414 (30 mg/kg, IP) that by itself exerted no effect on cognitive flexibility. Present study demonstrates that the elevation of glycine concentration through the blockade of its reuptake facilitates cognitive flexibility. As this effect was fully blocked by glycine/NMDAR antagonist, SSR-504734-induced cognitive improvement is likely mediated through glycine action at NMDAR. It is suggested that GlyT1 inhibitors like SSR-504734 may represent a useful pharmacological approach for cognitive enhancement, especially in domains critically affected in schizophrenia. PMID:21530555

  13. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  14. A Role for Accumbal Glycine Receptors in Modulation of Dopamine Release by the Glycine Transporter-1 Inhibitor Org25935

    PubMed Central

    Lidö, Helga Höifödt; Ericson, Mia; Marston, Hugh; Söderpalm, Bo

    2010-01-01

    Accumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc) as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935–ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol's effects within this system. PMID:21556278

  15. Rapid Multistep Synthesis of a Bioactive Peptidomimetic Oligomer for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Utku, Yeliz; Rohatgi, Abhinav; Yoo, Barney; Kirshenbaum, Kent; Zuckermann, Ronald N.; Pohl, Nicola L.

    2010-01-01

    Peptidomimetic compounds are increasingly important in drug-discovery applications. We introduce the synthesis of an N-substituted glycine oligomer, a bioactive "peptoid" trimer. The six-step protocol is conducted on solid-phase resin, enabling the synthesis to be performed by undergraduate organic chemistry students. This synthesis lab was…

  16. Glycine Betaine, Carnitine, and Choline Enhance Salinity Tolerance and Prevent the Accumulation of Sodium to a Level Inhibiting Growth of Tetragenococcus halophila

    PubMed Central

    Robert, Hervé; Le Marrec, Claire; Blanco, Carlos; Jebbar, Mohamed

    2000-01-01

    Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila. PMID:10653711

  17. Cometary Glycine Detected in Samples Returned by Stardust

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    Our previous analysis of cometary samples returned to Earth by NASA's Stardust spacecraft showed several amines and amino acids, but the or igin of these compounds could not be firmly established. Here, we pre sent the stable carbon isotopic ratios of glycine and E-amino-n-caproic acid (EACA), the two most abundant amino acids identified in Stardu st-returned foil samples measured by gas chromatography-mass spectrom etry coupled with isotope ratio mass spectrometry. The Delta C-13 value for glycine of +29 +/- ? 6%: strongly suggests an extraterrestrial origin For glycine, while the Delta C-13 value for EACA of -25 +/-2 % indicates terrestrial contamination by Nylon-6 during curation. This represents the first detection of a cometary amino acid.

  18. Positron Binding Properties of Glycine and Its Aqueous Complexes.

    PubMed

    Nummela, Mikko; Raebiger, Hannes; Yoshida, Daisuke; Tachikawa, Masanori

    2016-06-16

    We investigate positron binding to glycine and its aqueous complexes by first-principles calculation. We show that while glycine in its ground state (Gly) does not bind positrons, several of its strongly polar conformers do, and in particular, its zwitterion form (GlyZI) binds positrons strongly. Aqueous complexes Gly·nH2O and GlyZI·nH2O also bind positrons, if their dipole moment μ > μcr. However, μ is not a sufficient quantity to describe positron binding to these complexes. We show that in addition to μ, positron binding strongly depends on the intramolecular bonding of glycine. In Gly·nH2O, positrons are weakly bound to the nitrogen in Gly, whereas in GlyZI·nH2O, the ionic oxygen in GlyZI is a strong "positron attractor". PMID:27232201

  19. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine.

    PubMed

    Yamada, Nana; Takahashi, Hiroyuki; Kitou, Kunihide; Sahashi, Kosuke; Tamagake, Hideto; Tanaka, Yoshito; Takabe, Teruhiro

    2015-11-01

    Glycine betaine (GB) is an important osmoprotectant and synthesized by two-step oxidation of choline. Choline monooxygenase (CMO) catalyzes the first step of the pathway and is believed to be a rate limiting step for GB synthesis. Recent studies have shown the importance of choline-precursor supply for GB synthesis. In order to investigate the role of CMO for GB accumulation in sugar beet (Beta vulgaris), transgenic plants carrying the antisense BvCMO gene were developed. The antisense BvCMO plants showed the decreased activity of GB synthesis from choline compared to wild-type (WT) plants which is well related to the suppressed level of BvCMO protein. However, GB contents were similar between transgenic and WT plants with the exception of young leaves and storage roots. Transgenic plants showed enhanced susceptibility to salt stress than WT plants. These results suggest the importance of choline-precursor-supply for GB accumulation, and young leaves and storage root are sensitive sites for GB accumulation. PMID:26302482

  20. Calculating chemical equilibria in the heparin-Co2+ ion-glycine system

    NASA Astrophysics Data System (ADS)

    Feofanova, M. A.; Frantseva, Yu. V.; Zhuravlev, E. V.; Ryasensky, S. S.; Baranova, N. V.

    2013-08-01

    Results from investigating interactions in the heparin-Co2+ ion-glycine system are presented. The stoichiometry of cobalt complexes with heparin and glycine compositions CoOHHtpGly4- and CoHepGly3- is established.

  1. Some Operational Characteristics of Glycine Release in Rat Retina: The Role of Reverse Mode Operation of Glycine Transporter Type-1 (GlyT-1) in Ischemic Conditions.

    PubMed

    Hanuska, Adrienn; Szénási, Gábor; Albert, Mihaly; Koles, Laszlo; Varga, Agoston; Szabo, Andras; Matyus, Peter; Harsing, Laszlo G

    2016-02-01

    Rat posterior eyecups containing the retina were prepared, loaded with [(3)H]glycine and superfused in order to determine its release originated from glycinergic amacrine cells and/or glial cells. Deprivation of oxygen and glucose from the Krebs-bicarbonate buffer used for superfusion evoked a marked increase of [(3)H]glycine release, an effect that was found to be external Ca(2+)-independent. Whereas oxygen and glucose deprivation increased [(3)H]glycine release, its uptake was reduced suggesting that energy deficiency shifts glycine transporter type-1 operation from normal to reverse mode. The increased release of [(3)H]glycine evoked by oxygen and glucose deprivation was suspended by addition of the non-competitive glycine transporter type-1 inhibitor NFPS and the competitive inhibitor ACPPB further suggesting the involvement of this transporter in the mediation of [(3)H]glycine release. Oxygen and glucose deprivation also evoked [(3)H]glutamate release from rat retina and the concomitantly occurring release of the NMDA receptor agonist glutamate and the coagonist glycine makes NMDA receptor pathological overstimulation possible in hypoxic conditions. [(3)H]Glutamate release was suspended by addition of the excitatory amino acid transporter inhibitor TBOA. Sarcosine, a substrate inhibitor of glycine transporter type-1, also increased [(3)H]glycine release probably by heteroexchange shifting transporter operation into reverse mode. This effect of sarcosine was also external Ca(2+)-independent and could be suspended by NFPS. Energy deficiency in retina induced by ouabain, an inhibitor of the Na(+)-K(+)-dependent ATPase, and by rotenone, a mitochondrial complex I inhibitor added with the glycolytic inhibitor 2-deoxy-D-glucose, led to increase of retinal [(3)H]glycine efflux. These effects of ouabain and rotenone/2-deoxy-D-glucose could also be blocked by NFPS pointed to the preferential reverse mode operation of glycine transporter type-1 as a consequence of

  2. A plastidial localization and origin of L-glutamate dehydrogenase in a soybean cell culture. [Glycine max

    SciTech Connect

    Bhadula, S.K.; Shargool, P.D. )

    1991-01-01

    The subcellular distribution of L-glutamate dehydrogenase (GDH, EC 1.4.1.3.) was studied in SB3 soybean (Glycine max) cells using subcellular fractionation techniques. Compounds that inhibit protein synthesis either on 80s or 70s ribosomes were also used to give a preliminary idea of which subcellular fraction is involved in GDH synthesis. It was found that whereas cycloheximide and puromycin considerably reduced the total amount of protein synthesized by the cells, they did not appear to inhibit the synthesis of GDH. In the presence of chloramphenicol, both GDH activity and protein level in the cells were considerably reduced, suggesting that this enzyme was synthesized in organelles and not in the cytosol. Streptomycin, which inhibits plastid protein synthesis, also inhibited synthesis of GDH, indicating that a fraction of GDH activity was plastidial in origin. This is supported by the data on subcellular distribution of the enzyme, which showed that a major fraction of GDH is found in the plastidial fraction, although some activity is found associated with the mitochondrial fraction also. Since a major fraction of GDH activity was found in the plastidial fraction, the authors studied protein synthesis using isolated plastids and {sup 35}S-methionine. Using antibodies raised against purified GDH, they identified a {sup 35}S-labeled 41-kilodalton polypeptide synthesized by plastids as GDH.

  3. Infrared laser induced conformational and structural changes of glycine and glycine·water complex in low-temperature matrices

    NASA Astrophysics Data System (ADS)

    Coussan, Stéphane; Tarczay, György

    2016-01-01

    Conformational and structural changes of matrix-isolated glycine and glycine·water complexes induced by the selective MIR excitation of the fundamental OH and NH stretching vibrational modes were studied. The observed spectral changes are consistent with the former assignments based on matrix-isolation IR spectroscopy combined with NIR laser irradiation. Since fewer conformational barriers can be reached by MIR than by NIR excitations, fewer processes are promoted effectively by MIR radiation. The comparison of spectral changes induced by selective MIR and NIR excitations can facilitate the conformational analysis of complex molecular systems and it can also yield information on the barrier heights.

  4. The total synthesis of pantocin B.

    PubMed

    Sutton, A E; Clardy, J

    2000-02-10

    [reaction: see text] Pantocin B, an unusual antibiotic produced by Erwinia herbicola, effectively controls E. amylovora, the pathogen causing the plant disease fire blight. A total synthesis of pantocin B from L-alanine, glycine, and L-malic acid is reported. PMID:10814312

  5. Spectroscopic studies on covalent functionalization of single-walled carbon nanotubes with glycine.

    PubMed

    Deborah, M; Jawahar, A; Mathavan, T; Kumara Dhas, M; Benial, A Milton Franklin

    2014-10-22

    Single-walled carbon nanotubes (SWCNTs) have a great potential in a wide range of applications, but faces limitation in terms of dispersion feasibility. The functionalization process of SWCNTs with the amino acid, glycine involves oxidation reaction using a mild aqueous acid mixture of HNO3 and H2SO4 (1:3), via ultrasonication technique and the resulted oxidized SWCNTs were again treated with the amino acid glycine suspension. The resulted glycine functionalized carbon nanotubes have been characterized by XRD, UV-Vis, FTIR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for glycine functionalized SWCNTs compared with oxidized SWCNTs, which is likely due to sample purification by acid washing. The red shift was observed in the UV-Vis spectra of glycine functionalized SWCNTs, which reveals that the covalent bond formation between glycine molecule and SWCNTs. The functional groups of oxidized SWCNTs and glycine functionalized SWCNTs were identified and assigned. EPR results indicate that the unpaired electron undergoes reduction process in glycine functionalized SWCNTs. SEM images show that the increase in the diameter of the SWCNTs was observed for glycine functionalized SWCNTs, which indicates that the adsorption of glycine molecule on the sidewalls of oxidized SWCNTs. EDX elemental micro analysis confirms that the nitrogen element exists in glycine functionalized SWCNTs. The functionalization has been chosen due to CONH bioactive sites in glycine functionalized SWCNTs for future applications. PMID:25448929

  6. Glycine max (soybean) roots and syncytia isolated by laser capture microdissection (LCM) exhibit differential gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean cyst nematode (Heterodera glycines) is an obligate parasite of soybean (Glycine max). It is the most destructive pathogen of G. max, accounting for approximately 0.46-0.82 billion dollars in crop losses, annually, in the U.S. Part of the infection process involves H. glycines establishin...

  7. 77 FR 21532 - Glycine From the People's Republic of China: Preliminary Partial Affirmative Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... find that Paras is not circumventing the Order because it is producing glycine from raw materials of... find that there is no record evidence that AICO self produces glycine from Indian raw materials... exported to the United States glycine that it produced only from Indian raw materials. For a...

  8. Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine-nitrate combustion process

    NASA Astrophysics Data System (ADS)

    Hajarpour, S.; Gheisari, Kh.; Honarbakhsh Raouf, A.

    2013-03-01

    In this study, Mg-Zn ferrite with the chemical formula of Mg0.6Zn0.4Fe2O4 is synthesized through a modified combustion synthesis using glycine as fuel and metal (Mg, Zn and Fe) nitrates as reactants. The technique, known as glycine-nitrate process, involves exothermic decomposition of a viscous liquid, prepared by thermal dehydration of an aqueous solution containing metal nitrates and glycine. The product powders produced at seven different molar ratios of glycine to nitrate (G/N ratio), varying from 0.37 to 0.75, are agglomerates of fine particles whose typical diameter are several tens of nanometers. Thermodynamic modeling of the combustion reaction indicates that as the fuel-to-oxidant ratio increases, the amount of gases produced and the adiabatic flame temperature rise. X-ray diffraction shows that samples crystallize in a spinel-type structure in all reactions. The morphology of the powders is examined using field emission scanning electron microscopy and transmission electron microscopy. Through magnetic measurements conducted by a vibrating sample magnetometer, the maximum saturation magnetization (46 emu/g) is found to occur at the highest G/N ratio.

  9. Heterodera glycines Population Development on Soybean Treated with Glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cyst nematode (Heterodera glycines) is a major yield limiting pest in all major soybean producing countries. In the last decade genetically modified soybean tolerant to glyphosate has become widely planted and postemergence application of glyphosate has increased exponentially. Genetically m...

  10. Pathway of Glycine Betaine Biosynthesis in Aspergillus fumigatus

    PubMed Central

    Lambou, Karine; Pennati, Andrea; Valsecchi, Isabel; Tada, Rui; Sherman, Stephen; Sato, Hajime; Beau, Remi

    2013-01-01

    The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD+ to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom. PMID:23563483

  11. Variable temperature NMR characterization of α-glycine

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Dybowski, C.

    2008-10-01

    Proton NMR spin-lattice relaxation times in the laboratory frame ( T1) and in the rotating frame ( T1ρ) were measured as a function of temperature for a static sample of α-glycine. Both T1 and T1ρ data can be fit quantitatively by a single thermally-activated motion (the modulation of the dipolar coupling by random hopping about the threefold axis of the -NH 3 group), with no addition of other mechanisms at any temperature between 173 and 415 K. An activation energy of 21.7 ± 1 kJ/mol was extracted and is compared with previously reported values for both α- and γ-glycine. Such comparisons allow the correction of glycine polymorphs misidentified in the literature. The minimum in T1 at 325 K corresponds to a correlation time of 0.53 ns. Chemical shifts as a function of temperature were measured by 1H CRAMPS and by 13C and 15N CP/MAS experiments. These results are discussed relative to a previous report of anomalous electrical behavior in α-glycine within this temperature range.

  12. Evaluation of Soybean [Glycine max (L.) Merr.] F1 Hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterosis is an important factor in development of hybrid cultivars. Few heterosis studies have been done in soybean [Glycine max (L.) Merr.]. This is because manual cross-pollination is difficult and time consuming, and not conducive as an economical way to produce large quantities of hybrid seed...

  13. Lignin Degradation by Fusarium solani f. sp. glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sudden death syndrome (SDS), caused by the soilborne fungal pathogen Fusarium solani f. sp. glycines, is one of the most important diseases of soybean. Lignin degradation may play a role in the infection, colonization, and survival of the fungus in root tissue . Lignin degradation by F. solani f. sp...

  14. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ingredients: Sodium chloride 8.82 grams, potassium phosphate 4.20 grams, citric acid anhydrous 0.5 gram, potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  15. Electrophysiological Signature of Homomeric and Heteromeric Glycine Receptor Channels.

    PubMed

    Raltschev, Constanze; Hetsch, Florian; Winkelmann, Aline; Meier, Jochen C; Semtner, Marcus

    2016-08-19

    Glycine receptors are chloride-permeable, ligand-gated ion channels and contribute to the inhibition of neuronal firing in the central nervous system or to facilitation of neurotransmitter release if expressed at presynaptic sites. Recent structure-function studies have provided detailed insights into the mechanisms of channel gating, desensitization, and ion permeation. However, most of the work has focused only on comparing a few isoforms, and among studies, different cellular expression systems were used. Here, we performed a series of experiments using recombinantly expressed homomeric and heteromeric glycine receptor channels, including their splice variants, in the same cellular expression system to investigate and compare their electrophysiological properties. Our data show that the current-voltage relationships of homomeric channels formed by the α2 or α3 subunits change upon receptor desensitization from a linear to an inwardly rectifying shape, in contrast to their heteromeric counterparts. The results demonstrate that inward rectification depends on a single amino acid (Ala(254)) at the inner pore mouth of the channels and is closely linked to chloride permeation. We also show that the current-voltage relationships of glycine-evoked currents in primary hippocampal neurons are inwardly rectifying upon desensitization. Thus, the alanine residue Ala(254) determines voltage-dependent rectification upon receptor desensitization and reveals a physio-molecular signature of homomeric glycine receptor channels, which provides unprecedented opportunities for the identification of these channels at the single cell level. PMID:27382060

  16. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ingredients: Sodium chloride 8.82 grams, potassium phosphate 4.20 grams, citric acid anhydrous 0.5 gram, potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  17. Dietary glycine and threonine interactive effects in broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is little information regarding the interaction of dietary threonine and glycine on potential metabolic sparing effects, live production, or breast meat yield of broilers. To test these potential interactions, 432 one-day-old Ross 308 male broilers were fed a common diet up to 21 days of age a...

  18. SSR diversity of vegetable soybean [Glycine max (L.) Merr.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edamame [Glycine max (L.) Merr.] is a type of soybean selected for fresh or frozen vegetable use at an immature stage. Since edamame has a similar protein content, milder flavor, nuttier texture, and is easier to cook when compared to grain soybean, it is being promoted as a new vegetable for global...

  19. 21 CFR 522.518 - Cupric glycinate injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cupric glycinate injection. 522.518 Section 522.518 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS §...

  20. Phenotypic characterization of roots responding to Heterodera glycines CLE peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parasitism genes coding for secreted CLAVATA3/ESR(CLE)-like peptides are expressed in the dorsal gland cell of the soybean cyst nematode (SCN), Heterodera glycines, during syncytium induction and maintenance. Recent data indicate that there are two predominant forms of SCN CLEs, HgCLEA and HgCLEB, ...

  1. About the detectability of glycine in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Pauzat, F.; Pilmé, J.; Ellinger, Y.; Ceccarelli, C.

    2011-08-01

    Context. Glycine, the simplest of aminoacids, has been found in several carbonaceous meteorites. It remains unclear, however, wether glycine is formed in the interstellar medium (ISM) and therefore available everywhere in the Universe. For this reason, radioastronomers have searched for many years unsuccessfully to detect glycine in the ISM. Aims: We provide possible guidelines to optimize the return of these searches. Since, for most of the species observed so far in the ISM, the most abundant isomer of a given generic chemical formula is the most stable one (minimum energy principle (MEP)), we assess whether neutral glycine is the best molecule to search for or whether one of its isomers/conformers or ionic, protonated, or zwitterionic derivatives would have a higher probability of being detected. Methods: The question of the relative stability of these different species is addressed by means of quantum density functional theory (DFT) simulations within the hybrid B3LYP formalism. Each fully optimized structure is verified as a stationary point by means of a vibrational analysis. A comprehensive screening of 32 isomers/conformers of the C2H5O2N chemical formula (neutral, negative, and positive ions together with the corresponding protonated species and the possible zwitterionic structures) is carried out. In the sensitive case of the neutral compounds, more accurate relative energies were obtained by means of high level post Hartree-Fock coupled cluster calculations with large basis sets (CCSD(T)/cc-pVQZ). Results: We find that neutral glycine is not the most stable isomer and, therefore, probably not the most abundant one, which might explain why it has escaped detection so far. We find instead that N-methyl carbamic acid and methyl carbamate are the two most stable isomers and, therefore, probably the two most abundant ones. Among the non-neutral forms, we found that glycine is the most stable isomer only if protonated or zwitterionic if present in interstellar

  2. Syncytium gene expression in Glycine max [PI88788} roots undergoing a resistant reaction of the parasitic nematode Heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laser capture microdissection (LCM) was used to isolate Heterodera glycines feeding sites (syncytia) from the (G. max) genotype PI 88788. Syncytia at various stages of the resistant response were isolated from roots 3, 6 and 9 days post infection (dpi). At 3 dpi, the analyses revealed highly induced...

  3. Genotype Response of Soybean (Glycine max) Whole Plants and Hairy Roots to Fusarium solani f. sp. glycines Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium solani f. sp. Glycines, a soilborne fungus, infects soybean roots and causes sudden death syndrome. The response of 13 soybean genotypes to the pathogen infection was tested with potted greenhouse grown plants and with cultured hairy roots. The taproots of all genotypes grown plants measure...

  4. Proteomic analysis of pakchoi leaves and roots under glycine-nitrogen conditions.

    PubMed

    Wang, Xiaoli; Tang, Dongmei; Huang, Danfeng

    2014-02-01

    The physiological and differential proteomic responses of pakchoi leaves and roots to glycine-nitrogen (Gly-N) treatments were determined. Two pakchoi (Brassica campestris ssp. chinensis L. Makino. var. communis Tsen et Lee) cultivars, 'Huawang' and 'Wuyueman', were grown under sterile hydroponic conditions with different N forms (Gly-N and nitrate-N). Gly-N-treated pakchoi exhibited decreased fresh weights, total N uptake, leaf areas, and net photosynthetic rates than those treated with nitrate-N. Differentially regulated proteins were selected after image analysis and identified using MALDI-TOF MS. A total of 23 proteins was up- or down-regulated following Gly-N treatment. These spots are involved in several processes, such as energy synthesis, N metabolism, photosynthesis, and active antioxidant defense mechanisms, that could enhance plant adaptation to Gly-N. The superior Gly tolerance of 'Huawang' was predominantly associated with a less severe down-regulation of proteins that are involved in the electron transport chain and N metabolism. Other factors could include less ribulose-1,5-bisphosphate carboxylase/oxygenase turnover or a higher up-regulation of stress defense proteins. These characteristics demonstrated that maintaining ATP synthesis, N metabolism, photosynthesis, and active defense mechanisms play a critical role in pakchoi adaptation to Gly-N. PMID:24429133

  5. Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.

    PubMed

    Oven, Matjaz; Page, Jonathan E; Zenk, Meinhart H; Kutchan, Toni M

    2002-02-15

    The phytochelatin homologs homo-phytochelatins are heavy metal-binding peptides present in many legumes. To study the biosynthesis of these compounds, we have isolated and functionally expressed a cDNA GmhPCS1 encoding homo-phytochelatin synthase from Glycine max, a plant known to accumulate homo-phytochelatins rather than phytochelatins upon the exposure to heavy metals. The catalytic properties of GmhPCS1 were compared with the phytochelatin synthase AtPCS1 from Arabidopsis thaliana. When assayed only in the presence of glutathione, both enzymes catalyzed phytochelatin formation. GmhPCS1 accepted homoglutathione as the sole substrate for the synthesis of homo-phytochelatins whereas AtPCS1 did not. Homo-phytochelatin synthesis activity of both recombinant enzymes was significantly higher when glutathione was included in the reaction mixture. The incorporation of both glutathione and homoglutathione into homo-phytochelatin, n = 2, was demonstrated using GmhPCS1 and AtPCS1. In addition to bis(glutathionato)-metal complexes, various other metal-thiolates were shown to contribute to the activation of phytochelatin synthase. These complexes were not accepted as substrates by the enzyme, thereby suggesting that a recently proposed model of activation cannot fully explain the catalytic mechanism of phytochelatin synthase (Vatamaniuk, O. K., Mari, S., Lu, Y. P., and Rea, P. A. (2000) J. Biol. Chem. 275, 31451-31459). PMID:11706029

  6. Expression of the soybean (Glycine max) glutamate 1-semialdehyde aminotransferase gene in symbiotic root nodules.

    PubMed

    Sangwan, I; O'Brian, M R

    1993-07-01

    Extracts of soybean (Glycine max) root nodules and greening etiolated leaves catalyzed radiolabeled delta-aminolevulinic acid (ALA) formation from 3,4-[3H]glutamate but not from 1-[14C]glutamate. Nevertheless, those tissue extracts expressed the activity of glutamate 1-semialdehyde (GSA) aminotransferase, the C5 pathway enzyme that catalyzes ALA synthesis from GSA for tetrapyrrole formation. A soybean nodule cDNA clone that conferred ALA prototrophy, GSA aminotransferase activity, and glutamate-dependent ALA formation activity on an Escherichia coli GSA aminotransferase mutant was isolated. The deduced product of the nodule cDNA shared 79% identity with the GSA aminotransferase expressed in barley leaves, providing, along with the complementation data, strong evidence that the cDNA encodes GSA aminotransferase. GSA aminotransferase mRNA and enzyme activity were expressed in nodules but not in uninfected roots, indicating that the Gsa gene is induced in the symbiotic tissue. The Gsa gene was strongly expressed in leaves of etiolated plantlets independently of light treatment and, to a much lesser extent, in leaves of mature plants. We conclude that GSA aminotransferase, and possibly the C5 pathway, is expressed in a nonphotosynthetic plant organ for nodule heme synthesis and that Gsa is a regulated gene in soybean. PMID:8278535

  7. Estrogen-like osteoprotective effects of glycine in in vitro and in vivo models of menopause.

    PubMed

    Kim, Min-Ho; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-03-01

    Recently, the placenta mesotherapy has been widely used to treat menopause. Placenta contains amino acids, peptides, minerals, and estrogen. Here, we investigated the estrogen-like osteoprotective effects of glycine (a main ingredient of placenta) in in vitro and in vivo models of menopause. We assessed the effect of glycine on MG-63 osteoblast cell line, MCF-7 estrogen-dependent cell line, and ovariectomized (OVX) mice. Glycine significantly increased the MG-63 cell proliferation in a dose-dependent manner. Activity of alkaline phosphatase (ALP) and phosphorylation of extracellular-signal-regulated kinase were increased by glycine in MG-63 cells. Glycine also increased the BrdU-incorporation and Ki-67 mRNA expression in MCF-7 cells. Glycine induced the up-regulation of estrogen receptor-β mRNA expression and estrogen-response element-luciferase activity in MG-63 and MCF-7 cells. In OVX mice, glycine was administered orally at a daily dose of 10 mg/kg per day for 8 weeks. Glycine resulted in the greatest decrease in weight gain caused by ovariectomy. Meanwhile, vaginal weight reduced by ovariectomy was increased by glycine. Glycine significantly increased the ALP activity in OVX mice. MicroCT-analysis showed that glycine significantly enhanced bone mineral density, trabecular number, and connectivity density in OVX mice. Moreover, glycine significantly increased the serum 17β-estradiol levels reduced by ovariectomy. Glycine has an estrogen-like osteoprotective effect in menopause models. Therefore, we suggest that glycine may be useful for the treatment of menopause. PMID:26563333

  8. Dissociation of gaseous zwitterion glycine-betaine by slow electrons.

    PubMed

    Kopyra, J; Abdoul-Carime, H

    2010-05-28

    In this work, we investigate dissociation processes induced by low-energy electrons to gas phase N,N,N-trimethylglycine [glycine-betaine, (CH(3))(3)N(+)CH(2)COO(-)] molecules. Glycine-betaine represents a model system for zwitterions. All negative fragments are observed to be produced only at subelectronic excitation energies (<4 eV). With the exception of the loss of a neutral H atom that could arise from any C[Single Bond]H bond breaking, we tentatively suggest that the zwitterion dissociates exclusively from the fragmentation of the cation site of the molecule, subsequent to the attachment of the excess electron. Within the context of radiation induced damage to biological systems, the present findings contribute to a more complete description of the fragmentation mechanism occurring to amino acids, peptides, and proteins since they adopt usually a zwitterion structure. PMID:20515090

  9. Soft x-ray ionization induced fragmentation of glycine

    SciTech Connect

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C–C{sub α} bond and the presence of the CNH{sub 2}{sup +} fragment.

  10. Soft x-ray ionization induced fragmentation of glycine

    NASA Astrophysics Data System (ADS)

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-01

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C-Cα bond and the presence of the CNH_2^+ fragment.

  11. Sodium tris(glycinium) bis(hexafluorosilicate) glycine trisolvate.

    PubMed

    Narayana, Moolya B; Rai, Chitharanjan; Dharmaprakash, S M; Harrison, William T A

    2007-07-01

    The title compound, Na(+) x 3C(2)H(6)NO(2)(+) x 2SiF(6)(2-) x 3C(2)H(5)NO(2), arose from an unexpected reaction of glycine and HF with the glass container. It is an unusual hybrid organic-inorganic network built up from chains of vertex-sharing NaF(4)O(2) and SiF(6) octahedra. A pair of glycinium/glycine molecules bridges the chains into a sheet via a centrosymmetric O...H...O link. The other organic species interact with the network by an extensive N-H...F hydrogen-bond network, including bifurcated and trifurcated bonds. Finally, an extremely short C-H...O interaction (H...O = 2.25 Angstrom) is seen in the crystal structure. The Na atom has site symmetry overline1. PMID:17609553

  12. [Molecular physiology of glycine receptors in nervous system of vertebrates].

    PubMed

    2014-03-01

    Glycine receptor is the anion-selective channel, providing fast synaptic transmission in the central nervous system of vertebrates. Together with the nicotinic acetylcholine, GABA and serotonin (5-HT3R) receptors, it belongs to the superfamily of pentameric cys-loop receptors. It has been cloned one beta and four alpha subunits of glycine receptor, which are specifically distributed in different areas of the nervous system. Due to their specific molecular properties and distribution, different subunits ensure important physiological functions: from control of motor activity and regulation of neuronal differentiation to sensory information processing and modulation of pain sensitivity. In this review we briefly describe main functions of these transmembrane proteins, their distribution and molecular architecture. Special attention is paid to recent studies on the molecular physiology of these receptors, as well as on presenting of molecular domains responsible for their modulation and dysfunction. PMID:25508361

  13. [Molecular physiology of glycine receptors in nervous system of vertebrates].

    PubMed

    Maleeva, G V; Brezhestovskiĭ, P D

    2014-03-01

    Glycine receptor is the anion-selective channel, providing fast synaptic transmission in the central nervous system of vertebrates. Together with the nicotinic acetylcholine, GABA and serotonin (5-HT3R) receptors, it belongs to the superfamily of pentameric cys-loop receptors. It has been cloned one beta and four alpha subunits of glycine receptor, which are specifically distributed in different areas of the nervous system. Due to their specific molecular properties and distribution, different subunits ensure important physiological functions: from control of motor activity and regulation of neuronal differentiation to sensory information processing and modulation of pain sensitivity. In this review we briefly describe main functions of these transmembrane proteins, their distribution and molecular architecture. Special attention is paid to recent studies on the molecular physiology of these receptors, as well as on presenting of molecular domains responsible for their modulation and dysfunction. PMID:25464730

  14. Restricticin, a novel glycine-containing antifungal agent.

    PubMed

    Schwartz, R E; Dufresne, C; Flor, J E; Kempf, A J; Wilson, K E; Lam, T; Onishi, J; Milligan, J; Fromtling, R A; Abruzzo, G K

    1991-05-01

    Restricticin (1) is a naturally-occurring antifungal agent which contains triene, pyran and glycine ester functionalities and is unrelated to any previously known family of natural products. This unstable compound, as well as its corresponding N,N-dimethyl derivative (2), have been produced and isolated from both solid and liquid fermentations of Penicillium restrictum. The desglycyl hydrolysis product, restrictinol (3), was produced via the hydrolysis of pure restricticin and as an artifact of the isolation of restricticin. PMID:2061189

  15. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    NASA Astrophysics Data System (ADS)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  16. Ruthenium-nitrosyl complexes with glycine, L-alanine, L-valine, L-proline, D-proline, L-serine, L-threonine, and L-tyrosine: synthesis, X-ray diffraction structures, spectroscopic and electrochemical properties, and antiproliferative activity.

    PubMed

    Rathgeb, Anna; Böhm, Andreas; Novak, Maria S; Gavriluta, Anatolie; Dömötör, Orsolya; Tommasino, Jean Bernard; Enyedy, Eva A; Shova, Sergiu; Meier, Samuel; Jakupec, Michael A; Luneau, Dominique; Arion, Vladimir B

    2014-03-01

    The reactions of [Ru(NO)Cl5](2-) with glycine (Gly), L-alanine (L-Ala), L-valine (L-Val), L-proline (L-Pro), D-proline (D-Pro), L-serine (L-Ser), L-threonine (L-Thr), and L-tyrosine (L-Tyr) in n-butanol or n-propanol afforded eight new complexes (1-8) of the general formula [RuCl3(AA-H)(NO)](-), where AA = Gly, L-Ala, L-Val, L-Pro, D-Pro, L-Ser, L-Thr, and L-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), (1)H NMR, UV-visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA-H)(NO)], as was also recently reported for osmium analogues with Gly, L-Pro, and D-Pro (see Z. Anorg. Allg. Chem. 2013, 639, 1590-1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  17. Ruthenium-Nitrosyl Complexes with Glycine, l-Alanine, l-Valine, l-Proline, d-Proline, l-Serine, l-Threonine, and l-Tyrosine: Synthesis, X-ray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity

    PubMed Central

    2014-01-01

    The reactions of [Ru(NO)Cl5]2– with glycine (Gly), l-alanine (l-Ala), l-valine (l-Val), l-proline (l-Pro), d-proline (d-Pro), l-serine (l-Ser), l-threonine (l-Thr), and l-tyrosine (l-Tyr) in n-butanol or n-propanol afforded eight new complexes (1–8) of the general formula [RuCl3(AA–H)(NO)]−, where AA = Gly, l-Ala, l-Val, l-Pro, d-Pro, l-Ser, l-Thr, and l-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), 1H NMR, UV–visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA–H)(NO)], as was also recently reported for osmium analogues with Gly, l-Pro, and d-Pro (see Z. Anorg. Allg. Chem.2013, 639, 1590–1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  18. Coating Soybean Seed with Oxamyl for Control of Heterodera glycines

    PubMed Central

    Townshend, J. L.

    1990-01-01

    Oxamyl coated on soybean (Glycine max (L.) Merr. cv. Elgin) seeds in solutions of 20, 40, 80, and 160 mg/ml had no serious deleterious effects on seedling emergence and growth when planted in sterile soil. Seedling emergence on day 3 was less than that of the uncoated control, but by day 7 emergence was equal to, or greater than, the control. Shoot and root growth from seed coated with oxamyl in 40 and 80 mg/ml solutions was greater than that of the control. In soil infested with soybean cyst nematode, Heterodera glycines, shoot weight of soybean plants from seeds coated with oxamyl in 80 mg/ml solution was 11 and 9% greater at weeks 3 and 7, respectively, than from uncoated seeds. Numbers of juveniles (J3 and J4) and adults of H. glycines observed on the roots of plants from oxamyl-coated seeds were 83, 42, and 49% less at weeks 3, 5, and 7, respectively, than numbers on the roots of the untreated control. Numbers of J2 extracted from the roots of plants from oxamyl-coated seeds were 75% less at weeks 5 and 7 than those extracted from roots of uncoated seeds. The numbers of J2 extracted from the soil planted to oxamyl-coated seeds were 51 and 33% less at weeks 5 and 7, respectively, than from soil planted to uncoated seed. PMID:19287713

  19. Glycine induced culture-harvesting strategy for Botryococcus braunii.

    PubMed

    Shen, Ying; Zhu, Wenzhe; Chen, Chaozhou; Nie, Yilei

    2016-04-01

    The objective of this study was to investigate the effects of culture conditions, including carbon sources and concentration, culture period, and precondition time, on the production of extracellular polymeric substances (EPS) and its influence on microalgal flocculation. EPS are natural high molecule polymer, excreted by microalgae themselves. EPS can accelerate the formation of microbial aggregates through binding cells closely. Organic carbon sources, such as glucose, glycerol, acetate and glycine were compared to select the optimal source to stimulate EPS accumulation. Subsequently, the effect of culture period, glycine dose and precondition time on EPS production and its influence on biomass growth and flocculation efficiency were investigated. As the main parts of EPS, tightly bound EPS were found positively related to suspended solids concentration. However, the loosely bound EPS may weaken the floc structure, leading to poor water-cells separation. Under the optimal condition with culture period of 16 days, glycine dose of 0.5 g l(-1) and precondition time of 5 days, the biomass concentration increased from 1.49 to 2 g l(-1), and the maximum suspended solids concentration of 7.06% with biomass recovery rate of 70.6% was achieved. PMID:26553477

  20. The mitochondrial genome of the soybean cyst nematode, Heterodera glycines.

    PubMed

    Gibson, Tracey; Farrugia, Daniel; Barrett, Jeff; Chitwood, David J; Rowe, Janet; Subbotin, Sergei; Dowton, Mark

    2011-07-01

    We sequenced the entire coding region of the mitochondrial genome of Heterodera glycines. The sequence obtained comprised 14.9 kb, with PCR evidence indicating that the entire genome comprised a single, circular molecule of approximately 21-22 kb. The genome is the most T-rich nematode mitochondrial genome reported to date, with T representing over half of all nucleotides on the coding strand. The genome also contains the highest number of poly(T) tracts so far reported (to our knowledge), with 60 poly(T) tracts ≥ 12 Ts. All genes are transcribed from the same mitochondrial strand. The organization of the mitochondrial genome of H. glycines shows a number of similarities compared with Radopholus similis, but fewer similarities when compared with Meloidogyne javanica. Very few gene boundaries are shared with Globodera pallida or Globodera rostochiensis. Partial mitochondrial genome sequences were also obtained for Heterodera cardiolata (5.3 kb) and Punctodera chalcoensis (6.8 kb), and these had identical organizations compared with H. glycines. We found PCR evidence of a minicircular mitochondrial genome in P. chalcoensis, but at low levels and lacking a noncoding region. Such circularised genome fragments may be present at low levels in a range of nematodes, with multipartite mitochondrial genomes representing a shift to a condition in which these subgenomic circles predominate. PMID:21745140

  1. Cometary Glycine Detected in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, D. P.; Dworkin, J. P.

    2010-01-01

    In January 2006, NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth. The Stardust cometary collector consisted of aerogel cells lined with aluminum foils designed to capture impacting particles and facilitate removal of the aerogel. Preliminary examinations of these comet-exposed materials revealed a suite of organic compounds, including several amines and amino acids which were later examined in more detail. Methylamine (NH2CH3) and ethylamine (NH2C2H5) were detected in the exposed aerogel at concentrations greatly exceeding those found in control samples, while the amino acid glycine (NH2CH2COOH) was detected in several foil samples as well as in the comet-exposed aerogel. None of these three compounds had been previously detected in comets, although methylamine had been observed in the interstellar medium. Although comparison with control samples suggested that the detected glycine was cometary. the previous work was not able to conclusively identify its origin. Here, we present the results of compound-specific carbon isotopic analysis of glycine in Stardust cometary collector foils. Several foils from the interstellar side of the Stardust collector were also analyzed for amino acid abundance, but concentrations were too low to perform isotopic ana!ysis.

  2. Interaction between ATP, metal ions, glycine, and several minerals

    NASA Technical Reports Server (NTRS)

    Rishpon, J.; Ohara, P. J.; Lawless, J. G.; Lahav, N.

    1982-01-01

    Interactions between ATP, glycine and montmorillonite and kaolinite clay minerals in the presence of various metal cations are investigated. The adsorption of adenine nucleotides on clays and Al(OH)3 was measured as a function of pH, and glycine condensation was followed in the presence of ATP, ZnCl2, MgCl2 and either kaolinite or montmorillonite. The amounts of ATP and ADP adsorbed are found to decrease with increasing Ph, and to be considerably enhanced in experiments with Mg(2+)- and Zn(2+)-montmorillonite with respect to Na(+)-montmorillonite. The effects of divalent cations are less marked in kaolinite. Results for Al(OH)3 show the importance of adsorption at clay platelet edges at high pH. The decomposition of ATP during drying at high temperature is observed to be inhibited by small amounts of clay, vacuum, or Mg(2+) or Zn(2+) ions, and to be accompanied by peptide formation in the presence of glycine. Results suggest the importance of Zn(2+) and Mg(2+) in chemical evolution.

  3. Total Synthesis of (-)-Daphenylline.

    PubMed

    Yamada, Ryosuke; Adachi, Yohei; Yokoshima, Satoshi; Fukuyama, Tohru

    2016-05-10

    Total synthesis of (-)-daphenylline, a hexacyclic Daphniphyllum alkaloid, was achieved. Construction of the tricyclic DEF ring system was initiated by asymmetric Negishi coupling followed by an intramolecular Friedel-Crafts reaction. Installation of a side chain onto the tricyclic core was carried out through Sonogashira coupling, stereocontrolled Claisen rearrangement by taking advantage of the characteristic conformation of the tricyclic DEF core, and the stereoselective alkylation of a lactone. After the introduction of a glycine unit, the ABC ring system was stereoselectively constructed through intramolecular cycloaddition of the cyclic azomethine ylide. PMID:27062676

  4. Heterodera glycines cysts contain an extensive array of endoproteases as well as inhibitors of proteases in H. glycines and Meloidogyne incognita infective juvenile stages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterodera glycines cysts contain proteases, and inhibitors of protease activities in various nematode species. In this investigation, proteases in H. glycines cysts were identified using a commercially available FRET-peptide library comprising 512 peptide pools qualified to detect up to 4 endoprot...

  5. Resveratrol, tryptophanum, glycine and vitamin E: a nutraceutical approach to sleep disturbance and irritability in peri- and post-menopause.

    PubMed

    Parazzini, F

    2015-02-01

    The climacteric syndrome is characterized by several symptoms: hot flashes are the most common and reported by about 70% of peri- post-menopausal women. Sleep disorders, particularly decreased sleep quality, and irritability are also commonly reported. There is a clinical and epidemiological relationship between these symptoms. Common biological mechanisms may explain in part the relationship between hot flushes, sleep disorders and irritability. For example, withdrawal of hormones causes change in the serotonin levels. Tryptophan is an essential amino acid. it is the precursor for the serotonin synthesis and is naturally found in food such as turkey, cheese, and nuts. The serotonergic system is implicated in sleep, mood, and hot flashes. Glycine is an amino acid found mainly in protein-rich food such as meat, fish, dairy products, cheese and vegetables. It is an inhibitory neurotransmitter in the central nervous system. Studies have shown that glycine can promote a deeper level of sleep. Resveratrol has a similar chemical structure to the diethylstilbestrol and 17-beta estradiol and acts as a phytoestrogen. Resveratrol at doses of 3-10 micromoles inhibited the estradiol-estrogen receptor binding and showed an estrogen-like activity. Vitamin E is found naturally in some food and available as a dietary supplement. It has an antioxidant activity. It has been suggested that the oxidative stress may also play a role in sleep disorders. Some studies have shown protective effect of vitamins E on sleep quality. In conclusion, hot flashes, sleep disturbances and mood disorders may represent a continuum in the climacteric syndrome, which recognize in the hormonal changes and the neurotrasmettitors level alteration a potential common pathway. The nutraceutical approach may be useful in a preventive perspective. Among the large choice of functional food available, the combination of resveratrol, tryptophanum, glycine and vitamin E may represent an interesting opportunity in

  6. The hyperpolarizing impact of glycine on endothelial cells may be anti-atherogenic.

    PubMed

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2009-08-01

    Studies to date indicate that endothelial cells express glycine-activated chloride channels, which promote hyperpolarization of the endothelial plasma membrane. If such channels are expressed by endothelial cells lining conduit arteries, glycine is likely to have anti-atherogenic activity. This reflects the fact that endothelial hyperpolarization promotes calcium influx, activating the endothelial isoform of nitric oxide synthase, while also down-regulating the activity of the membrane-bound NADPH oxidase, chief endothelial source of superoxide. Since macrophages express glycine-activated chloride channels that suppress production of oxidants and cytokines, glycine may also oppose atherogenesis by influencing intimal macrophage function. In rats, supplemental glycine exerts anti-inflammatory and anti-angiogenic effects attributed to chloride channel activation. Administration of large daily doses of glycine would appear to be practical and safe, and has already been shown to inhibit protein glycation in human diabetics. PMID:19232835

  7. Branch-point stoichiometry can generate weak links in metabolism: the case of glycine biosynthesis.

    PubMed

    Melendez-Hevia, Enrique; Paz-Lugo, Patricia De

    2008-12-01

    Although the metabolic network permits conversion between almost any pair of metabolites,this versatility fails at certain sites because of chemical constraints (kinetic,thermodynamic and stoichiometric) that seriously restrict particular conversions. We call these sites weak links in metabolism,as they can interfere harmfully with management of matter and energy if the network as a whole does not include adequate safeguards. A critical weak link is created in glycine biosynthesis by the stoichiometry of the reaction catalyzed by glycine hydroxymethyltransferase (EC 2.1.2.1), which converts serine into glycine plus one C1 unit: this produces an absolute dependence of the glycine production flux on the utilization of C1 units for other metabolic pathways that do not work coordinately with glycine use. It may not be possible,therefore,to ensure that glycine is always synthesized in sufficient quantities to meet optimal metabolic requirements. PMID:19179765

  8. Glycine's radiolytic destruction in ices: first in situ laboratory measurements for Mars.

    PubMed

    Gerakines, Perry A; Hudson, Reggie L

    2013-07-01

    We report new laboratory studies of the radiation-induced destruction of glycine-containing ices for a range of temperatures and compositions that allow extrapolation to martian conditions. In situ infrared spectroscopy was used to study glycine decay rates as a function of temperature (from 15 to 280 K) and initial glycine concentrations in six mixtures whose compositions ranged from dry glycine to H2O+glycine (300:1). Results are presented in several systems of units, with cautions concerning their use. The half-life of glycine under the surface of Mars is estimated as an extrapolation of this data set to martian conditions, and trends in decay rates are described as are applications to Mars' near-surface chemistry. PMID:23848469

  9. Derivation of glycine from threonine in Escherichia coli K-12 mutants.

    PubMed Central

    Fraser, J; Newman, E B

    1975-01-01

    Escherichia coli AT2046 has been shown previously to lack the enzyme serine transhydroxymethylase and to require exogenous glycine for growth as a consequence. Strains JEV73 and JEV73R, mutants derived from strain AT2046, are shown here to be serine transhydroxymethylase deficient, but able to derive their glycine from endogenously synthesized threonine. Leucine is shown to be closely involved in the regulation of biosynthesis of glycine, to spare glycine in strain AT2046T, to replace glycine in strain JEV73, and to increase threonine conversion to glycine in a representative prototroph of E. coli. An interpretation of strains JEV73 and JEV73R as regulatory mutants of strain AT2046 is given. A hypothesis as to the role of leucine as a signal for nitrogen scavenging is suggested. PMID:1097400

  10. Principal role of NR3 subunits in NR1/NR3 excitatory glycine receptor function.

    PubMed

    Madry, Christian; Mesic, Ivana; Bartholomäus, Ingo; Nicke, Annette; Betz, Heinrich; Laube, Bodo

    2007-03-01

    Calcium-permeable N-methyl-d-aspartate (NMDA) receptors are tetrameric cation channels composed of glycine-binding NR1 and glutamate-binding NR2 subunits, which require binding of both glutamate and glycine for efficient channel gating. In contrast, receptors assembled from NR1 and NR3 subunits function as calcium-impermeable excitatory glycine receptors that respond to agonist application only with low efficacy. Here, we show that antagonists of and substitutions within the glycine-binding site of NR1 potentiate NR1/NR3 receptor function up to 25-fold, but inhibition or mutation of the NR3 glycine binding site reduces or abolishes receptor activation. Thus, glycine bound to the NR1 subunit causes auto-inhibition of NR1/NR3 receptors whereas glycine binding to the NR3 subunits is required for opening of the ion channel. Our results establish differential roles of the high-affinity NR3 and low-affinity NR1 glycine-binding sites in excitatory glycine receptor function. PMID:17214961

  11. Active transport of. gamma. -aminobutyric acid and glycine into synaptic vesicles

    SciTech Connect

    Kish, P.E.; Fischer-Bovenkerk, C.; Ueda, T. )

    1989-05-01

    Although {gamma}-aminobutyric acid (GABA) and glycine are recognized as major amino acid inhibitory neurotransmitters in the central nervous system, their storage is poorly understood. In this study the authors have characterized vesicular GABA and glycine uptakes in the cerebrum and spinal cord, respectively. They present evidence that GABA and glycine are each taken up into isolated synaptic vesicles in an ATP-dependent manner and that the uptake is driven by an electrochemical proton gradient. Uptake for both amino acids exhibited kinetics with low affinity similar to a vesicular glutamate uptake. The ATP-dependent GABA uptake was not inhibited by the putative amino acid neurotransmitters glycine, taurine, glutamate, or aspartate or by GABA analogs, agonists, and antagonists. Similarly, ATP-dependent glycine uptake was hardly affected by GABA, taurine, glutamate, or aspartate or by glycine analogs or antagonists. The GABA uptake was not affected by chloride, which is in contrast to the uptake of the excitatory neurotransmitter glutamate, whereas the glycine uptake was slightly stimulated by low concentrations of chloride. Tissue distribution studies indicate that the vesicular uptake systems for GABA, glycine, and glutamate are distributed in different proportions in the cerebrum and spinal cord. These results suggest that the vesicular uptake systems for GABA, glycine, and glutamate are distinct from each other.

  12. Converting enzyme inhibition and the glomerular hemodynamic response to glycine in diabetic rats.

    PubMed

    Slomowitz, L A; Peterson, O W; Thomson, S C

    1999-07-01

    GFR normally increases during glycine infusion. This response is absent in humans and rats with established diabetes mellitus. In diabetic patients, angiotensin-converting enzyme inhibition (ACEI) restores the effect of glycine on GFR. To ascertain the glomerular hemodynamic basis for this effect of ACEI, micropuncture studies were performed in male Wistar-Froemter rats after 5 to 6 wk of insulin-treated streptozotocin diabetes. The determinants of single-nephron GFR (SNGFR) were assessed in each rat before and during glycine infusion. Studies were performed in diabetics, diabetics after 5 d of ACEI (enalapril in the drinking water), and weight-matched controls. Diabetic rats manifest renal hypertrophy and glomerular hyperfiltration but not glomerular capillary hypertension. ACEI reduced glomerular capillary pressure, increased glomerular ultrafiltration coefficient, and did not mitigate hyperfiltration. In controls, glycine increased SNGFR by 30% due to increased nephron plasma flow. In diabetics, glycine had no effect on any determinant of SNGFR. In ACEI-treated diabetics, the SNGFR response to glycine was indistinguishable from nondiabetics, but the effect of glycine was mediated by greater ultrafiltration pressure rather than by greater plasma flow. These findings demonstrate that: (1) The absent response to glycine in established diabetes does not indicate that renal functional reserve is exhausted by hyperfiltration; and (2) ACEI restores the GFR response to glycine in established diabetes, but this response is mediated by increased ultrafiltration pressure rather than by increased nephron plasma flow. PMID:10405200

  13. Selective potentiation of alpha 1 glycine receptors by ginkgolic acid

    PubMed Central

    Maleeva, Galyna; Buldakova, Svetlana; Bregestovski, Piotr

    2015-01-01

    Glycine receptors (GlyRs) belong to the superfamily of pentameric cys-loop receptor-operated channels and are involved in numerous physiological functions, including movement, vision, and pain. In search for compounds performing subunit-specific modulation of GlyRs we studied action of ginkgolic acid, an abundant Ginkgo biloba product. Using patch-clamp recordings, we analyzed the effects of ginkgolic acid in concentrations from 30 nM to 25 μM on α1–α3 and α1/β, α2/β configurations of GlyR and on GABAARs expressed in cultured CHO-K1 cells and mouse neuroblastoma (N2a) cells. Ginkgolic acid caused an increase in the amplitude of currents mediated by homomeric α1 and heteromeric α1/β GlyRs and provoked a left-shift of the concentration-dependent curves for glycine. Even at high concentrations (10–25 μM) ginkgolic acid was not able to augment ionic currents mediated by α2, α2/β, and α3 GlyRs, or by GABAAR consisting of α1/β2/γ2 subunits. Mutation of three residues (T59A/A261G/A303S) in the α2 GlyR subunit to the corresponding ones from the α1 converted the action of ginkgolic acid to potentiation with a distinct decrease in EC50 for glycine, suggesting an important role for these residues in modulation by ginkgolic acid. Our results suggest that ginkgolic acid is a novel selective enhancer of α1 GlyRs. PMID:26578878

  14. Deep-space glycine formation via Strecker-type reactions activated by ice water dust mantles. A computational approach.

    PubMed

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2010-01-01

    A Strecker-type synthesis of glycine by reacting NH(3), H(2)C=O and HCN in presence of ice water (H(2)O-ice) as a catalyst has been theoretically studied at B3LYP/6-31+G(d,p) level within a cluster approach in order to mimic reactions occurring in the interstellar and circumstellar medium (ICM). Results indicate that, despite the exoergonic character of the considered reactions occurring at the H(2)O-ice surface, the kinetics are slow due to relatively high electronic energy barriers (ΔU(0)(≠)=15-45 kcal mol(-1)). Reactions occurring within H(2)O-ice cavities, in which ice bulk effects have been modeled by assuming a dielectric continuum (ε=78), show energy barriers low enough to allow NH(2)CH(2)OH formation but not NH=CH2 (ΔU(0)(≠)= 2 and 21 kcal mol(-1), respectively) thus hindering the NH(2)CH(2)CN formation, i.e. the precursor of glycine, through Strecker channels. Moreover, hydrolysis of NH(2)CH(2)CN to give glycine is characterized by high electronic energy barriers (ΔU(0)(≠)=27-34 kcal mol(-1)) and cannot readily occur at cryogenic temperatures. Nevertheless, the facts that NH=CH(2) formation can readily be achieved through the radical-radical HCN+2H - NH−−>CH2 reaction [D. E. Woon, Astrophys. J., 2002, 571, L177-L180], and that present results indicate that the Strecker step of NH=CH(2)+HCN−−>NH(2)CH(2)CN exhibits a relative low energy barrier (ΔU(0)(≠)=8–9 kcal mol(-1)), suggest that a combination of these two mechanisms allows for the formation of NH(2)CH(2)CN in the ICM. These results strengthen the thesis that NH(2)CH(2)CN could have been formed and protected by icy dust particles, and then delivered through micro-bombardments onto the early Earth, leading to glycine formation upon contact with the primordial ocean. PMID:20358044

  15. Gas-phase lithium cation affinity of glycine.

    PubMed

    Bourcier, Sophie; Chiaa, Ru Xuan; Mimbong, Rosa Ngo Biboum; Bouchoux, Guy

    2015-01-01

    The gas-phase lithium cation binding thermochemistry of glycine has been determined theoretically by quantum chemical calculations at the G4 level and experimentally by the extended kinetic method using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. The lithium cation affinity of glycine, ∆(Li)H°(298)(GLY), i.e. the∆(Li)H°(298) of the reaction GlyLi(+)→ Gly + Li(+)) given by the G4 method is equal to 241.4 kJ.mol(-1) if only the most stable conformer of glycine is considered or to 242.3 kJ.mol(-1) if the 298K equilibrium mixture of neutral conformers is included in the calculation. The ∆(Li)H°(298)(GLY) deduced from the extended kinetic method is obviously dependent on the choice of the Li(+) affinity scale, thus∆(Li)H°(298)(GLY) is equal to 228.7±0.9(2.0) kJ.mol(- 1) if anchored to the recently re-evaluated lithium cation affinity scale but shifted to 235.4±1.0 kJ.mol(-1) if G4 computed lithium cation affinities of the reference molecules is used. This difference of 6.3 kJ.mol(-1) may originate from a compression of the experimental lithium affinity scale in the high ∆(Li)H°(298) region. The entropy change associated with the reaction GlyLi(+)→Gly + Li(+) reveals a gain of approximately 15 J.mol(-) 1.K(-1) with respect to monodentate Li(+) acceptors. The origin of this excess entropy is attributed to the bidentate interaction between the Li(+) cation and both the carbonyl oxygen and the nitrogen atoms of glycine. The computed G4 Gibbs free energy,∆(Li)G°(298)(GLY) is equal to 205.3 kJ.mol(-1), a similar result, 201.0±3.4 kJ.mol(-1), is obtained from the experiment if the∆(Li)G°(298) of the reference molecules is anchored on the G4 results. PMID:26307695

  16. N-[[(Mercaptoacetyl)amino]benzoyl]glycines as mucolytic agents.

    PubMed

    Martin, T A; Comer, W T

    1985-07-01

    m- and p-aminobenzoic acids were converted to the title compounds by sequential use of ClCH2COCl, SOCl2, glycine methyl or ethyl ester, AcSK, and hydrolysis. The title compounds and a number of salts were compared for mucolytic activity, toxicity, stability, and hygroscopicity. When compared to N-acetyl-L-cysteine (NAC), the compounds exhibit several times the in vitro mucolytic activity of NAC on a molar basis. The most promising candidate appears to be the sodium salt 3.5H2O 2 of the meta series. PMID:4009614

  17. Felbamate increases [3H]glycine binding in rat brain and sections of human postmortem brain.

    PubMed

    McCabe, R T; Sofia, R D; Layer, R T; Leiner, K A; Faull, R L; Narang, N; Wamsley, J K

    1998-08-01

    The anticonvulsant compound felbamate (2-phenyl-1,3-propanediol dicarbamate; FBM) appears to inhibit the function of the N-methyl-D-aspartate (NMDA) receptor complex through an interaction with the strychnine-insensitive glycine recognition site. Since we have demonstrated previously that FBM inhibits the binding of [3H]5, 7-dichlorokynurenic acid (DCKA), a competitive antagonist at the glycine site, we assessed the ability of FBM to modulate the binding of an agonist, [3H]glycine, to rat forebrain membranes and human brain sections. In contrast to its ability to inhibit [3H]5,7-DCKA binding, FBM increased [3H]glycine binding (20 nM; EC50 = 485 microM; Emax = 211% of control; nH = 1.8). FBM, but not carbamazepine, phenytoin, valproic acid or phenobarbital, also increased [3H]glycine binding (50 nM; EC50 = 142 microM; Emax = 157% of control; nH = 1.6) in human cortex sections. Autoradiographic analysis of human brain slices demonstrated that FBM produced the largest increases in [3H]glycine binding in the cortex, hippocampus and the parahippocampal gyrus. Because various ions can influence the binding of glycine-site ligands, we assessed their effects on FBM-modulation of [3H]glycine binding. FBM-enhanced [3H]glycine binding was attenuated by Zn++ and not inhibited by Mg++ in human brain. These results suggest that FBM increases [3H]glycine binding in a manner sensitive to ions which modulate the NMDA receptor. These data support the hypothesis that FBM produces anticonvulsant and neuroprotective effects by inhibiting NMDA receptor function, likely through an allosteric modulation of the glycine site. PMID:9694960

  18. Phosphatidylcholine Synthesis

    PubMed Central

    Datko, Anne H.; Mudd, S. Harvey

    1988-01-01

    The methylation steps in the biosynthesis of phosphatidylcholine by tissue culture preparations of carrot (Daucus carota L.) and soybean (Glycine max), and by soybean leaf discs, have been studied. Preparations were incubated with tracer concentrations of l-[3H3C]methionine and the kinetics of appearance of radioactivity in phosphomethylethanolamine, phosphodimethylethanolamine, phosphocholine, phosphatidylmethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, methylethanolamine, dimethylethanolamine, and choline followed at short incubation times. With soybean (tissue culture or leaves), an initial methylation utilizes phosphoethanolamine as substrate, forming phosphomethylethanolamine. The latter is converted to phosphatidylmethylethanolamine, which is successively methylated to phosphatidyldimethyethanolamine and to phosphatidylcholine. With carrot, again, an initial methylation is of phosphoethanolamine. Subsequent methylations occur at both the phospho-base and phosphatidyl-base levels. Both of these patterns differ qualitatively from that previously demonstrated in Lemna (SH Mudd, AH Datko 1986 Plant Physiol 82: 126-135) in which all three methylations occur at the phospho-base level. For soybean and carrot, some added contribution from initial methylation of phosphatidylethanolamine has not been excluded. These results, together with those from similar experiments carried out with water-stressed barley leaves (WD Hitz, D Rhodes, AD Hanson 1981 Plant Physiol 68: 814-822) and salinized sugarbeet leaves (AD Hanson, D Rhodes 1983 Plant Physiol 71: 692-700) suggest that in higher plants some, perhaps all, phosphatidylcholine synthesis occurs via a common committing step (conversion of phosphoethanolamine to phosphomethylethanolamine) followed by a methylation pattern which differs from plant to plant. PMID:16666397

  19. Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors.

    PubMed

    Burgos, Carlos F; Yévenes, Gonzalo E; Aguayo, Luis G

    2016-09-01

    Glycine receptors (GlyR) are inhibitory Cys-loop ion channels that contribute to the control of excitability along the central nervous system (CNS). GlyR are found in the spinal cord and brain stem, and more recently they were reported in higher regions of the CNS such as the hippocampus and nucleus accumbens. GlyR are involved in motor coordination, respiratory rhythms, pain transmission, and sensory processing, and they are targets for relevant physiologic and pharmacologic modulators. Several studies with protein crystallography and cryoelectron microscopy have shed light on the residues and mechanisms associated with the activation, blockade, and regulation of pentameric Cys-loop ion channels at the atomic level. Initial studies conducted on the extracellular domain of acetylcholine receptors, ion channels from prokaryote homologs-Erwinia chrysanthemi ligand-gated ion channel (ELIC), Gloeobacter violaceus ligand-gated ion channel (GLIC)-and crystallized eukaryotic receptors made it possible to define the overall structure and topology of the Cys-loop receptors. For example, the determination of pentameric GlyR structures bound to glycine and strychnine have contributed to visualizing the structural changes implicated in the transition between the open and closed states of the Cys-loop receptors. In this review, we summarize how the new information obtained in functional, mutagenesis, and structural studies have contributed to a better understanding of the function and regulation of GlyR. PMID:27401877

  20. Transcriptional responses of tolerant and susceptible soybeans to soybean aphid (Aphis glycines Matsumura) herbivory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid, Aphis glycines Matsumura, was introduced in 2000 to North America and has become one of the most significant pests to soybean, Glycine max (L.) Merrill, production. Possible solutions to this problem are the use of resistant plants and the understanding of the genes involved in pl...

  1. Benzo(A)pyrene induced glycine N-methyltransferase messenger rna expression in Fundulus heteroclitus embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycine N-methyltransferase (GNMT) is a mediator in the methionine and folate cycles, and is responsible for the transfer of a methyl group from S-adenosylmethionine (SAM) to glycine forming S-adenosylhomocysteine (SAH) and sarcosine. All the known DNA methyltransferases use SAM as a methyl donor th...

  2. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.50 Glycine...

  3. Increased production of alpha-amylase by Bacillus amyloliquefaciens in the presence of glycine

    SciTech Connect

    Zhang, Q.; Tsukagoshi, N.; Miyashiro, S.; Udaka, S.

    1983-07-01

    The production of alpha-amylase by Bacillus amyloliquefaciens increased by a factor of 300 when glycine was added to a chemically defined simple medium at the early-logarithmic phase of growth. Glycine was not metabolized to a significant extent under the conditions used, but it considerably prevented the lowering of the pH of the culture. (Refs. 10).

  4. 76 FR 57951 - Glycine From the People's Republic of China: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Antidumping Duty Order: Glycine From the People's Republic of China, 60 FR 16116 (March 29, 1995). On October... of Five-Year (``Sunset'') Review, 75 FR 60731 (October 1, 2010). As a result of this sunset review... Expedited Sunset Review of the Antidumping Duty Order: Glycine From the People's Republic of China, 76...

  5. Cloning and characterization of mariner-like elements in the soybean aphid, Aphis glycines Matsumura

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) is currently the most important insect pest of soybean (Glycine max (L.) Merr.) in the United States and it causes significant economic damage worldwide. The adaptation to host plant resistance can lead to the evolution of soybean aphid ...

  6. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  7. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  8. Protease inhibition by Heterodera glycines cyst content: evidence for effects on the Meloidogyne incognita proteasome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteases from Heterodera glycines and Meloidogyne incognita juveniles were inhibited by heat-stable content of H. glycines female cysts (HglCE), and by the plant polyphenol epigallocatechin gallate (EGCG). General protease activities detected using the nematode peptide KSAYMRFa were inhibited by EG...

  9. RESPONSES OF HETERODERA GLYCINES AND MELOIDOGYNE INCOGNITA TO EXOGENOUSLY APPLIED NEUROMODULATORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biogenic amines dopamine, octopamine and serotonin each have significant but differing effects on behavior in juveniles of the plant-parasitic nematodes Heterodera glycines and Meloidogyne incognita. Body movement frequency was increased 2-fold in H. glycines by 5mM dopamine (P = 0.00013), while...

  10. Heterodera glycines hatching behavior in field collections, laboratory culture and exposure to low temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterodera glycines collected from fields in Maryland exhibited very low hatch and reproduction rates in the laboratory. When such eggs were used to establish a laboratory culture on Glycine max, low reproductive rates continued for 2 generations. However, after 2 generations, the field egg derived ...

  11. Life history and morphological plasticity of three biotypes of soybean aphid (Aphis glycines)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a pest of soybean, Glycine max (L.) Merr. (Fabaceae), from eastern Asia that was first reported in North America in 2000. The influence of temperature on plasticity of life history and morphological traits of the soybean aphid ha...

  12. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    NASA Astrophysics Data System (ADS)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  13. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  14. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  15. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  16. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.).

    PubMed

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-01-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m(-2) s(-1)) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower (15)N-nitrate in root but higher in shoot and the higher (15)N-glycine in root but lower in shoot suggested that most (15)N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution. PMID:26882864

  17. 77 FR 73426 - Glycine From the People's Republic of China: Final Partial Affirmative Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... raw materials of Indian origin and exporting such merchandise to the United States. \\1\\ See Antidumping Duty Order: Glycine From the People's Republic of China, 60 FR 16116 (March 29, 1995) (Order... Department found that Paras was not circumventing the Order because it produced glycine from raw materials...

  18. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    PubMed Central

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-01-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m−2 s−1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution. PMID:26882864

  19. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Incharoensakdi, Aran

    2015-02-01

    Alkaliphilic halotolerant cyanobacterium Aphanothece halophytica showed optimal growth in the medium containing 0.5 M NaCl. The increase of exogenously added glycine to the medium up to 10 mM significantly promoted cell growth under both normal (0.5 M NaCl) and salt stress (2.0 M NaCl) conditions. Salt stress imposed by either 2.0 or 3.0 M NaCl retarded cell growth; however, exogenously added glycine at 10 mM concentration to salt-stress medium resulted in the reduction of growth inhibition particularly under 3.0 M NaCl condition. The uptake of glycine by intact A. halophytica was shown to exhibit saturation kinetics with an apparent K s of 160 μM and V max of 3.9 nmol/min/mg protein. The optimal pH for glycine uptake was at pH 8.0. The uptake activity was decreased in the presence of high concentration of NaCl. Both metabolic inhibitors and ionophores decreased glycine uptake in A. halophytica suggesting an energy-dependent glycine uptake. Several neutral amino acids showed considerable inhibition of glycine uptake with higher than 50 % inhibition observed with serine, cysteine and alanine whereas acidic, basic and aromatic amino acids showed only slight inhibition of glycine uptake. PMID:25536900

  20. Determination of glycine in biofluid by hydrophilic interaction chromatography coupled with tandem mass spectrometry and its application to the quantification of glycine released by embryonal carcinoma stem cells.

    PubMed

    Tang, Ya-Bin; Teng, Lin; Sun, Fan; Wang, Xiao-Lin; Peng, Liang; Cui, Yong-Yao; Hu, Jin-Jia; Luan, Xin; Zhu, Liang; Chen, Hong-Zhuan

    2012-09-15

    Because glycine plays a prominent role in living creatures, an accurate and precise quantitative analysis method for the compound is needed. Herein, a new approach to analyze glycine by hydrophilic interaction chromatography (HILIC) coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS) was developed. This method avoids the use of derivatization and/or ion-pairing reagents. N-methyl-D-aspartate (NMDA) is used as the internal standard (IS). The mobile phase for the isocratic elution consisted of 10 mM ammonium formate in acetonitrile-water (70:30, v/v, adjusted to pH 2.8 with formic acid), and a flow rate of 250 μL/min was used. Two microliters of sample was injected for analysis. The signal was monitored in the positive multiple reaction monitoring (MRM) mode. The total run time was 5 min. The dynamic range was 40-2000 ng/mL for glycine in the biological matrix. The LLOQ (lower limit of quantification) of this method was 40 ng/mL (80 pg on column). The validated method was applied to determine the dynamic release of glycine from P19 embryonal carcinoma stem cells (ECSCs). Glycine spontaneously released from the ECSCs into the intercellular space gradually increased from 331.02±60.36 ng/mL at 2 min in the beginning to 963.52±283.80 ng/mL at 60 min and 948.27±235.09 ng/mL at 120 min, finally reaching a plateau, indicating that ECSCs consecutively release glycine until achieving equilibration between the release and the reuptake of the compound; on the contrary, the negative control NIH/3T3 embryonic fibroblast cells did not release glycine. This finding will help to improve our understanding of the novel effects of neurotransmitters, including glycine, on non-neural systems. PMID:22906796

  1. Heat-initiated prebiotic formation of peptides from glycine/aspartic acid and glycine/valine in aqueous environment and clay suspension

    NASA Astrophysics Data System (ADS)

    Pant, Chandra Kala; Lata, Hem; Pathak, Hari Datt; Mehata, Mohan Singh

    2009-04-01

    The effect of heat on the reaction system of glycine/aspartic acid and glycine/valine in the aqueous environment as well as in montmorillonite clay suspension with or without divalent cations (Ca2+, Mg2+ and Ni2+) has been investigated at 85°C±5°C for varying periods under prebiotic drying and wetting conditions. The resulting products were analysed and characterized by chromatographic and spectroscopic methods. Peptide formation appears to depend on the duration of heat effect, nature of reactant amino acids and, to some extent, on montmorillonite clay incorporated with divalent cations. In the glycine/aspartic acid system, oligomerization of glycine was limited up to trimer level (Gly)3 along with the formation of glycyl-aspartic acid, while linear and cyclic peptides of aspartic acid were not formed, whereas the glycine/valine system preferentially elongated homo-oligopeptide of glycine up to pentamer level (Gly)5 along with formation of hetero-peptides (Gly-Val and Val-Gly). These studies are relevant in the context of the prebiotic origin of proteins and the role of clay and metal ions in condensation and oligomerization of amino acids. The length of the bio-oligomer chain depends upon the reaction conditions. However, condensation into even a small length seems significant, as the same process would have taken millions of years in the primitive era of the Earth, leading to the first proteins.

  2. Velvetbean in Rotation with Soybean for Management of Heterodera glycines and Meloidogyne arenaria

    PubMed Central

    Weaver, D. B.; Rodríguez-Kábana, R.; Carden, E. L.

    1993-01-01

    The effect of previous crops - soybean (Glycine max) or velvetbean (Mucuna deeringiana) - and aldicarb on yield and nematode numbers for selected soybean cultivars was studied in a field infested with a mixture of Meloidogyne arenaria and Heterodera glycines. Soybean following velvetbean yielded 959 kg/ha more than soybean following soybean. Nematicide treatment resulted in increased yield, and there was no interaction between nematicide treatment and previous crop. Cultivars interacted significantly with nematicide treatment but not with previous crop for yield. Velvetbean reduced numbers of H. glycines but not M. arenaria. Cultivars interacted with previous crop, and the previous crop × nematicide x cultivar interaction was significant for both M. arenaria and H. glycines. We concluded that velvetbean is effective in reducing yield losses caused by mixed populations of M. arenaria and H. glycines, regardless of genetic resistance of soybean cultivar. PMID:19279845

  3. Structural, functional and optical studies on the amino acid doped glycine crystal

    NASA Astrophysics Data System (ADS)

    Manikandan, M. R.; Mahalingam, T.; Ravi, G.

    2012-06-01

    Single crystals of pure and amino acid (L-arginine) doped γ-glycine single crystals have been grown from aqueous solution by employing slow evaporation method. Morphological changes in different crystallographic planes were observed in the L-arginine doped γ-glycine crystals. Incorporation of L-arginine was confirmed qualitatively by FTIR spectroscopy. Powder X-ray diffraction was carried out to confirm γ-glycine and assess the single phase nature of the crystals. The lower cutoff wavelength was decreased by the influence of L-arginine in γ-glycine and this leads to an increase in the band gap. Nonlinear optical study revealed that L-arginine doping increases the SHG efficiency of the glycine crystal.

  4. Host Suitability of Diverse Lines of Phaseolus vulgaris to Multiple Populations of Heterodera glycines

    PubMed Central

    Smith, James R.; Young, Lawrence D.

    2003-01-01

    The host suitability of diverse races and gene pools of common bean (Phaseolus vulgaris) for multiple isolates of Heterodera glycines was studied. Twenty P. vulgaris genotypes, representing three of the six races within the two major germplasm pools, were tested in greenhouse experiments to determine their host suitability to five H. glycines isolates. Phaseolus vulgaris genotypes differed in their host suitability to different H. glycines isolates. While some common bean lines were excellent hosts for some H. glycines isolates, no common bean line was a good host for all isolates. Some bean lines from races Durango and Mesoamerica, representing the Middle America gene pool, were resistant to all five nematode isolates. Other lines, from both the Andean and Middle America gene pools, had differential responses for host suitability to the different isolates of H. glycines. PMID:19265970

  5. Theoretical Investigation on Alcohol Sensing of Glycine-Coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Kussow, Gary; Kwon, Young-Kyun

    2007-03-01

    It has been observed that single walled carbon nanotube field effect transistors (SWNT-FET) coated with glycine can be used as alcohol sensors. The original semiconducting glycine-coated SWNT-FET have been changed to be metalic in the presence of alcohol. Using ab initio density functional theory, we compute the structural and electronic properties of carbon nanotubes coated with glycine in the absence or in the presence of alcohol (Isopropanol) to investigate alcohol sensing mechanism. To demonstrate specificity of such glycine-coated SWNT-FETs on alcohol, we also study those properties in the presence of other molecules, such as acetone and water. Furthermore, we investigate the effect of an external fields on glycine-coated SWNT with IPA, and indentify the gate-electric-field screening in SWNT-FET to be a major role for alcohol sensing.

  6. Glycine as a d-amino acid surrogate in the K+-selectivity filter

    PubMed Central

    Valiyaveetil, Francis I.; Sekedat, Matthew; MacKinnon, Roderick; Muir, Tom W.

    2004-01-01

    The K+ channel-selectivity filter consists of two absolutely conserved glycine residues. Crystal structures show that the first glycine in the selectivity filter, Gly-77 in KcsA, is in a left-handed helical conformation. Although the left-handed helical conformation is not favorable for the naturally occurring l-amino acids, it is favorable for the chirally opposite d-amino acids. Here, we demonstrate that Gly-77 can be replaced by d-Ala with almost complete retention of function. In contrast, substitution with an l-amino acid results in a nonfunctional channel. This finding suggests that glycine is used as a surrogate d-amino acid in the selectivity filter. The absolute conservation of glycine in the K+-selectivity filter can be explained as a result of glycine being the only natural amino acid that can play this role. PMID:15563591

  7. Population-specific gene expression in the pathogenic nematode Hederodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of Glycine max.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on gene expression experiments, a single Glycine max (soybean) genotype (Peking) reacts differently to two different populations of Heterodera glycines (soybean cyst nematode) within the first twelve hours of infection. This suggested that H. glycines has population-specific gene expression si...

  8. A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE

    SciTech Connect

    Garrod, Robin T.

    2013-03-01

    A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH{sub 2}CH{sub 2}COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures {approx}40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 Multiplication-Sign 10{sup -11}-8 Multiplication-Sign 10{sup -9}, occurring at {approx}200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH{sub 2}, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

  9. A Three-phase Chemical Model of Hot Cores: The Formation of Glycine

    NASA Astrophysics Data System (ADS)

    Garrod, Robin T.

    2013-03-01

    A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH2CH2COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures ~40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 × 10-11-8 × 10-9, occurring at ~200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH2, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

  10. Secondary fragmentation routes of glycine in ice under irradiation

    NASA Astrophysics Data System (ADS)

    Pernet, A.; Pilme, J.; Ellinger, Y.

    2011-05-01

    The question of the relative stability of the complex organic molecules (COM) under the interstellar radiation field is a crucial question, especially in the context of the panspermia hypothesis for which their survival during the transfer from space to the Earth is a necessary condition for the appearance of life (Ehrenfreund et al 2001, 2002). Assuming that these species are originally embedded in interstellar grains, their resistance to the solar UV radiation in ice is a key issue. The case of glycine, H2NCH2COOH, has been considered recently in irradiation experiments carried out at the SOLEIL synchrotron facility. It appeared that glycine is partially protected by ice but also suffers some fragmentation leading in the end to CO2 and to CN containing species. Quantum chemical simulations have been performed in parallel for all the possible fragmentations of neutral, ionized, doubly ionized, protonated and zwitterionic glycine (Lattelais et al. 2010). This study has shown that the primary decomposition routes leading to fragments CH2COOH, H2NCH2, H2NCH2+, CH2COOH+, H2NCH3, and CO2 are energetically valid. The experiments have also shown that the role of water is mainly to increase the production of the end products in the photoreactions, most probably due to the reactions with the OH radicals formed during the irradiation of the ice. We present a theoretical study of the secondary fragmentation channels initiated by the OH radical by means of quantum chemical calculations using DFT and ab initio correlated methods (MP2,CCSD(T)). We have examined all the possible secondary fragmentations starting from the primary fragments mentioned above. We considered all species embedded in the dielectric continuum simulating an icy environment (comparison with the gas phase situation serves as reference). Thermodynamic stabilities as well as activation barriers have been determined. This study shows that the formation of the HCN molecule as end product is energetically

  11. Interactions Between the Soybean Cyst Nematode and Fusarium solani f. sp. glycines Based on Greenhouse Factorial Experiments.

    PubMed

    Gao, X; Jackson, T A; Hartman, G L; Niblack, T L

    2006-12-01

    ABSTRACT The soybean cyst nematode, Heterodera glycines, and the fungus that causes sudden death syndrome (SDS) of soybean, Fusarium solani f. sp. glycines, frequently co-infest soybean (Glycine max) fields. The interactions between H. glycines and F. solani f. sp. glycines were investigated in factorial greenhouse experiments with different inoculum levels of both organisms on a soybean cultivar susceptible to both pathogens. Measured responses included root and shoot dry weights, H. glycines reproduction, area under the SDS disease progress curve, and fungal colonization of roots. Both H. glycines and F. solani f. sp. glycines reduced the growth of soybeans. Reproduction of H. glycines was suppressed by high inoculum levels but not by low levels of F. solani f. sp. glycines. The infection of soybean roots by H. glycines did not affect root colonization by the fungus, as determined by real-time polymerase chain reaction. Although both pathogens reduced the growth of soybeans, H. glycines did not increase SDS foliar symptoms, and statistical interactions between the two pathogens were seldom significant. PMID:18943675

  12. 40 CFR 174.533 - Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Glycine max Herbicide-Resistant... Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from the requirement of a tolerance. Residues of Glycine max herbicide-resistant acetolactate synthase (GM-HRA)...

  13. 40 CFR 174.533 - Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Glycine max Herbicide-Resistant... Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from the requirement of a tolerance. Residues of Glycine max herbicide-resistant acetolactate synthase (GM-HRA)...

  14. Degradation of Glycine and Alanine on Irradiated Quartz

    NASA Astrophysics Data System (ADS)

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P.

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  15. Structure and reaction mechanism of L-arginine:glycine amidinotransferase.

    PubMed

    Humm, A; Fritsche, E; Steinbacher, S

    1997-01-01

    L-Arginine:glycine amidinotransferase (AT) catalyzes the committed step in creatine biosynthesis by formation of guanidinoacetic acid, the direct precursor of creatine. The X-ray structure of the human enzyme shows a novel fold with fivefold pseudosymmetry of beta beta alphabeta-modules. These modules enclose the active site compartment of the basket-like structure. The active site of AT lies at the bottom of a very narrow channel and contains a catalytic triad with the residues Cys-His-Asp. The transamidination reaction follows a ping-pong mechanism and is accompanied by large conformational changes. During catalysis the amidino group is covalently attached to the active site cysteine to give an amidino-cysteine intermediate. PMID:9165070

  16. Biofortification of soy (Glycine max (L.) Merr.) with strontium ions.

    PubMed

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Dresler, Sławomir; Szwerc, Wojciech; Blicharski, Tomasz; Szymczak, Grażyna; Kocjan, Ryszard

    2014-06-11

    Soy (Glycine max (L.) Merr.) is an annual plant cultivated worldwide mostly for food. Moreover, due to its pharmacological properties it is widely used in pharmacy for alleviating the symptoms of osteoporosis. The aim of the present study was to investigate the biofortification of soy treated with various concentrations of strontium. Soy was found to have a strong capacity to absorb Sr(2+) (bioconcentration factor higher than 1). A positive linear correlation (R(2) > 0.98) between the amount of strontium in the growth medium and its content in the plant was also observed. Moreover, at a concentration of 1.5 mM, strontium appeared to be nontoxic and even stimulated plant growth by approximately 19.4% and 22.6% of fresh weight for shoots and roots, respectively. Our research may be useful to obtain vegetable products or herbal preparations containing both phytoestrogens and strontium to prevent postmenopausal osteoporosis. PMID:24835388

  17. Dislocations, microhardness and optical studies on glycine potassium nitrate crystal

    NASA Astrophysics Data System (ADS)

    Chandra, Ch. Sateesh; Nagaraju, D.; Shekar, P. V. Raja; Rao, T. Tirumal; Krishna, N. Gopi

    2015-06-01

    Single crystals of glycine potassium nitrate (GPN), a semiorganic nonlinear optical crystal, of dimensions 15×12×4 mm3 were grown in a period of 10 days. The defect content present in the crystals was estimated by chemical etching technique. The results indicate that the average dislocation density is about 4.1×103/cm2. The UV-Vis. studies indicate that the crystal has a wide transmission range. The Kurtz powder test indicates that the second harmonic generation efficiency of GPN is 2.5 times that of KDP. The load-hardness curves for GPN were studied over the load range 10-100 g. The anisotropy in hardness was studied using Knoop indentation technique.

  18. Contaminating levels of zinc found in commonly-used labware and buffers affect glycine receptor currents

    PubMed Central

    Cornelison, Garrett L.; Mihic, S. John

    2013-01-01

    Zinc is an allosteric modulator of glycine receptor function, enhancing the effects of glycine at nM to low μM concentrations, and inhibiting its effects at higher concentrations. Because of zinc’s high potency at the glycine receptor, there exists a possibility that effects attributed solely to exogenously-applied glycine in fact contain an undetected contribution of zinc acting as an allosteric modulator. We found that glycine solutions made up in standard buffers and using deionized distilled water produced effects that could be decreased by the zinc chelator tricine. This phenomenon was observed in three different vials tested and persisted even if vials were extensively washed, suggesting the zinc was probably present in the buffer constituents. In addition, polystyrene, but not glass, pipets bore a contaminant that enhanced glycine receptor function and that could also be antagonized by tricine. Our findings suggest that without checking for this effect using a chelator such as tricine, one cannot assume that responses elicited by glycine applied alone are not necessarily also partially due to some level of allosteric modulation by zinc. PMID:24177173

  19. Contaminating levels of zinc found in commonly-used labware and buffers affect glycine receptor currents.

    PubMed

    Cornelison, Garrett L; Mihic, S John

    2014-01-01

    Zinc is an allosteric modulator of glycine receptor function, enhancing the effects of glycine at nM to low μM concentrations, and inhibiting its effects at higher concentrations. Because of zinc's high potency at the glycine receptor, there exists a possibility that effects attributed solely to exogenously-applied glycine in fact contain an undetected contribution of zinc acting as an allosteric modulator. We found that glycine solutions made up in standard buffers and using deionized distilled water produced effects that could be decreased by the zinc chelator tricine. This phenomenon was observed in three different vials tested and persisted even if vials were extensively washed, suggesting the zinc was probably present in the buffer constituents. In addition, polystyrene, but not glass, pipets bore a contaminant that enhanced glycine receptor function and that could also be antagonized by tricine. Our findings suggest that without checking for this effect using a chelator such as tricine, one cannot assume that responses elicited by glycine applied alone are not necessarily also partially due to some level of allosteric modulation by zinc. PMID:24177173

  20. In Vivo Magnetic Resonance Studies of Glycine and Glutathione Metabolism in a Rat Mammary Tumor

    PubMed Central

    Thelwall, Peter E.; Simpson, Nicholas E.; Rabbani, Zahid N.; Clark, M. Daniel; Pourdeyhimi, Roxana; Macdonald, Jeffrey M.; Blackband, Stephen J.; Gamcsik, Michael P.

    2011-01-01

    The metabolism of glycine into glutathione was monitored noninvasively in vivo in intact R3230Ac rat tumors by magnetic resonance imaging and spectroscopy. Metabolism was tracked by following the isotope label from intravenously infused [2-13C]-glycine into the glycinyl residue of glutathione. Signals from [2-13C]-glycine and γ-glutamylcysteinyl-[2-13C]-glycine (13C-glutathione) were detected by nonlocalized 13C spectroscopy as these resonances are distinct from background signals. In addition, using spectroscopic imaging methods, heterogeneity in the in vivo tumor distribution of glutathione was observed. In vivo spectroscopy also detected isotope incorporation from [2-13C]-glycine into both the 2- and 3-carbons of serine. Analyses of tumor tissue extracts show single and multiple label incorporation from [2-13C]-glycine into serine from metabolism through the serine hydroxymethyltransferase and glycine cleavage system pathways. Mass spectrometric analysis of extracts also shows that isotope-labeled serine is further metabolized via the transsulfuration pathway as the 13C-isotope labels appear in both the glycinyl- and the cysteinyl-residue of glutathione. Our studies demonstrate the use of magnetic resonance imaging and spectroscopy for monitoring tumor metabolic processes central to oxidative stress defense. PMID:21751272

  1. A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems.

    PubMed

    Valadez-Bustos, Ma Guadalupe; Aguado-Santacruz, Gerardo Armando; Tiessen-Favier, Axel; Robledo-Paz, Alejandrina; Muñoz-Orozco, Abel; Rascón-Cruz, Quintin; Santacruz-Varela, Amalio

    2016-04-01

    Glycine betaine is a quaternary ammonium compound that accumulates in a large variety of species in response to different types of stress. Glycine betaine counteracts adverse effects caused by abiotic factors, preventing the denaturation and inactivation of proteins. Thus, its determination is important, particularly for scientists focused on relating structural, biochemical, physiological, and/or molecular responses to plant water status. In the current work, we optimized the periodide technique for the determination of glycine betaine levels. This modification permitted large numbers of samples taken from a chlorophyllic cell line of the grass Bouteloua gracilis to be analyzed. Growth kinetics were assessed using the chlorophyllic suspension to determine glycine betaine levels in control (no stress) cells and cells osmotically stressed with 14 or 21% polyethylene glycol 8000. After glycine extraction, different wavelengths and reading times were evaluated in a spectrophotometer to determine the optimal quantification conditions for this osmolyte. Optimal results were obtained when readings were taken at a wavelength of 290 nm at 48 h after dissolving glycine betaine crystals in dichloroethane. We expect this modification to provide a simple, rapid, reliable, and cheap method for glycine betaine determination in plant samples and cell suspension cultures. PMID:26774956

  2. Glycine modulates membrane potential, cell volume, and phagocytosis in murine microglia.

    PubMed

    Komm, Barbara; Beyreis, Marlena; Kittl, Michael; Jakab, Martin; Ritter, Markus; Kerschbaum, Hubert H

    2014-08-01

    Phagocytes form engulfment pseudopodia at the contact area with their target particle by a process resembling cell volume (CV) regulatory mechanisms. We evaluated whether the osmoregulatory active neutral amino acid glycine, which contributes to CV regulation via activation of sodium-dependent neutral amino acid transporters (SNATs) improves phagocytosis in isotonic and hypertonic conditions in the murine microglial cell line BV-2 and primary microglial cells (pMG). In BV-2 cells and pMG, RT-PCR analysis revealed expression of SNATs (Slc38a1, Slc38a2), but not of GlyRs (Glra1-4). In BV-2 cells, glycine (5 mM) led to a rapid Na(+)-dependent depolarization of membrane potential (V mem). Furthermore, glycine increased CV by about 9%. Visualizing of phagocytosis of polystyrene microspheres by scanning electron microscopy revealed that glycine (1 mM) increased the number of BV-2 cells containing at least one microsphere by about 13%. Glycine-dependent increase in phagocytosis was suppressed by the SNAT inhibitor α-(methylamino)isobutyric acid (MeAIB), by replacing extracellular Na(+) with choline, and under hypertonic conditions, but not by the GlyR antagonist strychnine or the GlyR agonist taurine. Interestingly, hypertonicity-induced suppression of phagocytosis was rescued by glycine. These findings demonstrate that glycine increases phagocytosis in iso- and hypertonic conditions by activation of SNATs. PMID:24760586

  3. Quest for Cells Responsible for Age-related Increase of Salivary Glycine and Proline.

    PubMed

    Hino, Shunsuke; Nishiyama, Akira; Matsuta, Tomohiko; Horie, Norio; Shimoyama, Tetsuo; Tanaka, Shoji; Sakagami, Hiroshi

    2016-01-01

    We have previously reported that salivary glycine and proline levels are increased to nearly butanoate level in elderly people. In order to identify the source of glycine and proline, we performed high-performance liquid chromatography analysis of amino acid production to a total of seven oral cells before and after stimulation with inflammation inducers. We found that production of amino acids (per a given number of cells) by normal oral mesenchymal cells (gingival fibroblast, pulp cell, periodontal ligament fibroblast) was approximately three-fold that of oral squamous cell carcinoma cell lines (HSC-2, HSC-3, HSC-4, Ca9-22), and that production of glycine and especially proline by all these seven cells was much lower than that of glutamine and glutamic acid. Treatment of three oral mesenchymal cells with interleukin (IL)-1β or lipopoly-saccharide (LPS) reproducibly increased the production of glutamic acid and glutamine, but not that of glycine and proline. Glycine and proline only marginally stimulated the IL-8 production by IL-1β-stimulated gingival fibroblast, whereas glycine dose-dependently inhibited the nitric oxide production by lipopolysaccharide-stimulated mouse macrophage-like RAW264.7 cells. These data demonstrated that normal oral mesenchymal cells are not the major source of glycine and proline that accumulates in the saliva of aged people, suggesting the involvement of the deregulation of collagen metabolism during aging. PMID:26912818

  4. Conformation and hydrogen-bond-assisted polymerization in glycine lithium sulfate at high pressures.

    PubMed

    Mishra, A K; Murli, Chitra; Verma, Ashok K; Song, Yang; Kumar, M R Suresh; Sharma, Surinder M

    2013-07-18

    The conformation of glycine has been a subject of extensive research for the past several years. As glycine exists in zwitterionic form in liquids and solids, the experimental observations of its neutral conformation are very limited. The complexes of glycine are simple prototypes to study the conformational properties of glycine. We have investigated the high-pressure behavior of glycine lithium sulfate (GLS), a semiorganic complex of glycine using X-ray diffraction, Raman spectroscopy, and density functional theory (DFT)-based first principles calculations. Our Raman studies and DFT calculations suggest formation of an intramolecular hydrogen bond at higher pressures. Subsequent to a structural transformation to a new high-pressure phase at ∼9 GPa, the observed spectral changes in the Raman spectra above 14 GPa indicate possible conformational change of glycine from zwitterionic to neutral form. At pressures above 18 GPa, the characteristic features in the Raman spectra and the X-ray diffraction patterns suggest transformation to a hydrogen-bond-assisted polymeric phase with intermediate range order. PMID:23822139

  5. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period

    PubMed Central

    Meunier, Claire N. J.; Dallérac, Glenn; Le Roux, Nicolas; Sacchi, Silvia; Levasseur, Grégoire; Amar, Muriel; Pollegioni, Loredano; Mothet, Jean-Pierre; Fossier, Philippe

    2016-01-01

    N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC) at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP) at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors. PMID:27003418

  6. Purification and characterization of the glycine receptor of pig spinal cord

    SciTech Connect

    Graham, D.; Pfeiffer, F.; Simler, R.; Betz, H.

    1985-02-12

    A large-scale purification procedure was developed to isolate the glycine receptor of pig spinal cord by affinity chromatography on aminostrychnine agarose. After an overall purification of about 10,000-fold, the glycine receptor preparations contained three major polypeptides of Mr 48,000, 58,000, and 93,000. Photoaffinity labeling with (/sup 3/H)strychnine showed that the (/sup 3/H)strychnine binding site is associated with the Mr 48,000 and, to a much lesser extent, the Mr 58,000 polypeptides. (/sup 3/H)Strychnine binding to the purified receptor exhibited a dissociation constant K /sub D/ of 13.8 nM and was inhibited by the agonists glycine, taurine, and beta-alanine. Gel filtration and sucrose gradient centrifugation gave a Stokes radius of 7.1 nm and an apparent sedimentation coefficient of 9.6 S. Peptide mapping of the (/sup 3/H)strychnine-labeled Mr 48,000 polypeptides of purified pig and rat glycine receptor preparations showed that the strychnine binding region of this receptor subunit is highly conserved between these species. Also, three out of six monoclonal antibodies against the glycine receptor of rat spinal cord significantly cross-reacted with their corresponding polypeptides of the pig glycine receptor. These results show that the glycine receptor of pig spinal cord is very similar to the well-characterized rat receptor protein and can be purified in quantities sufficient for protein chemical analysis.

  7. Glycine transporter 1 is a target for the treatment of epilepsy.

    PubMed

    Shen, Hai-Ying; van Vliet, Erwin A; Bright, Kerry-Ann; Hanthorn, Marissa; Lytle, Nikki K; Gorter, Jan; Aronica, Eleonora; Boison, Detlev

    2015-12-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the synaptic availability of glycine is largely under control of glycine transporter 1 (GlyT1). Since epilepsy is a disorder of disrupted network homeostasis affecting the equilibrium of various neurotransmitters and neuromodulators, we hypothesized that changes in hippocampal GlyT1 expression and resulting disruption of glycine homeostasis might be implicated in the pathophysiology of epilepsy. Using two different rodent models of temporal lobe epilepsy (TLE)--the intrahippocampal kainic acid model of TLE in mice, and the rat model of tetanic stimulation-induced TLE--we first demonstrated robust overexpression of GlyT1 in the hippocampal formation, suggesting dysfunctional glycine signaling in epilepsy. Overexpression of GlyT1 in the hippocampal formation was corroborated in human TLE samples by quantitative real time PCR. In support of a role of dysfunctional glycine signaling in the pathophysiology of epilepsy, both the genetic deletion of GlyT1 in hippocampus and the GlyT1 inhibitor LY2365109 increased seizure thresholds in mice. Importantly, chronic seizures in the mouse model of TLE were robustly suppressed by systemic administration of the GlyT1 inhibitor LY2365109. We conclude that GlyT1 overexpression in the epileptic brain constitutes a new target for therapeutic intervention, and that GlyT1 inhibitors constitute a new class of antiictogenic drugs. These findings are of translational value since GlyT1 inhibitors are already in clinical development to treat cognitive symptoms in schizophrenia. PMID:26302655

  8. Structural difference between heteromeric somatic and homomeric axonal glycine receptors in the hypothalamo-neurohypophysial system.

    PubMed

    Deleuze, C; Runquist, M; Orcel, H; Rabié, A; Dayanithi, G; Alonso, G; Hussy, N

    2005-01-01

    Glycine receptors are ionotropic receptors formed by either the homomeric assembly of ligand-binding alpha subunits or the heteromeric combination of an alpha subunit and the auxiliary beta subunit. Glycine receptors in the brain are found at either pre- or post-synaptic sites. Rat supraoptic nucleus neurons express glycine receptors on the membrane of both their soma and dendrites within the supraoptic nucleus, and their axon terminals in the neurohypophysis. Taking advantage of the well-separated cellular compartments of this system, we correlated the structural properties of the receptors to their subcellular localization. Immunohistochemical study using the generic mAb4a antibody revealed that somatodendritic receptors were clustered, whereas axonal glycine receptors showed a more diffuse distribution. This was paralleled by the presence of clusters of the glycine receptor aggregating protein gephyrin in the supraoptic nucleus and its complete absence in the neurohypophysis. Moreover, another antibody recognizing the alpha1/alpha2 subunits similarly labeled the axonal glycine receptors, but did not recognize the somatodendritic receptor clusters of supraoptic nucleus neurons, indicative of structural differences between somatic and axonal glycine receptors. Furthermore, the subunits composing the somatic and axonal receptors have different molecular weight. Functional study further differentiated the two types of glycine receptors on the basis of their sensitivity to picrotoxin, identifying somatic receptors as alpha/beta heteromers, and axonal receptors as alpha homomers. These results indicate that targeting of glycine receptors to axonal or somatodendritic compartment is directly related to their subunit composition, and set the hypothalamo-neurohypophysial system as an excellent model to study the mechanisms of targeting of proteins to various neuronal cellular compartments. PMID:16125853

  9. Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus

    PubMed Central

    Chen, Rongqing; Okabe, Akihito; Sun, Haiyan; Sharopov, Salim; Hanganu-Opatz, Ileana L; Kolbaev, Sergei N; Fukuda, Atsuo; Luhmann, Heiko J; Kilb, Werner

    2014-01-01

    While the expression of glycine receptors in the immature hippocampus has been shown, no information about the role of glycine receptors in controlling the excitability in the immature CNS is available. Therefore, we examined the effect of glycinergic agonists and antagonists in the CA3 region of an intact corticohippocampal preparation of the immature (postnatal days 4–7) rat using field potential recordings. Bath application of 100 μm taurine or 10 μm glycine enhanced the occurrence of recurrent epileptiform activity induced by 20 μm 4-aminopyridine in low Mg2+ solution. This proconvulsive effect was prevented by 3 μm strychnine or after incubation with the loop diuretic bumetanide (10 μm), suggesting that it required glycine receptors and an active NKCC1-dependent Cl− accumulation. Application of higher doses of taurine (≥1 mm) or glycine (100 μm) attenuated recurrent epileptiform discharges. The anticonvulsive effect of taurine was also observed in the presence of the GABAA receptor antagonist gabazine and was attenuated by strychnine, suggesting that it was partially mediated by glycine receptors. Bath application of the glycinergic antagonist strychnine (0.3 μm) induced epileptiform discharges. We conclude from these results that in the immature hippocampus, activation of glycine receptors can mediate both pro- and anticonvulsive effects, but that a persistent activation of glycine receptors is required to suppress epileptiform activity. In summary, our study elucidated the important role of glycine receptors in the control of neuronal excitability in the immature hippocampus. PMID:24665103

  10. A search for the lowest-energy conformer of interstellar glycine

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Snyder, L. E.; Suenram, R. D.; Lovas, F. J.

    1980-01-01

    The first search for the lowest-energy conformation of interstellar glycine has been carried out. An emission line has been detected in Sgr B2 which is coincident in frequency with the J(K-K+) = 14(1, 14)-13(1, 13) transition of conformer I glycine; while the carrier of the observed line is uncertain, no other frequency-coincident species are known, and hence glycine cannot be ruled out. Several previously unidentified lines have been identified as methyl formate. Evidence for the existence of the elusive interstellar ethylene oxide, the only reported interstellar ring-structure molecule, is discussed.