Science.gov

Sample records for 16mnd5 steel influence

  1. Susceptibility of stainless steel weldments to microbiologically influenced corrosion

    SciTech Connect

    Borenstein, S.W.

    1993-12-31

    Microbiologically influenced corrosion (MIC) is the term used for the phenomenon where corrosion is initiated or accelerated by microorganisms. Biofilms of bacteria form on metal surfaces when exposed to natural waters. The activity of these biofilms and how they attach themselves to metal surfaces directly influence corrosion mechanisms. This paper describes the mechanisms for MIC and the factors which influence the susceptibility of austenitic stainless steel weldments to MIC. The metallurgical, microbiological and electrochemical factors that influence MIC are discussed. Case histories of MIC-related failures and field test results of austenitic stainless steel weldments in various welded conditions are presented.

  2. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion.

    PubMed

    Javed, M A; Neil, W C; Stoddart, P R; Wade, S A

    2016-01-01

    The influence of the composition and microstructure of different carbon steel grades on the initial attachment (≤ 60 min) of Escherichia coli and subsequent longer term (28 days) corrosion was investigated. The initial bacterial attachment increased with time on all grades of carbon steel. However, the rate and magnitude of bacterial attachment varied on the different steel grades and was significantly less on the steels with a higher pearlite phase content. The observed variations in the number of bacterial cells attached across different steel grades were significantly reduced by applying a fixed potential to the steel samples. Longer term immersion studies showed similar levels of biofilm formation on the surface of the different grades of carbon steel. The measured corrosion rates were significantly higher in biotic conditions compared to abiotic conditions and were found to be positively correlated with the pearlite phase content of the different grades of carbon steel coupons. PMID:26785935

  3. Influence of cadmium ions on plasticity of steel under pickling

    SciTech Connect

    Matuiichuk, A.Y.; Eskazina, R.S.; Levinson, Z.F.; Shmaneva, N.Y.; Zhakupova, A.S.

    1986-07-01

    The authors study how cadmium ions influence the plasticity of steel during pickling. The specimens were rods 0.8 mm diameter, 120 mm long, of steel KT-2, and were pickled for 30 min at 25 c in solutions of sulfuric acid and ferric sulfate, then washed with water and subjected to twisting. It is shown that when the sulfuric acid concentration is altered from 60 to 180 g/liter the fall in plasticity changes from 12.6 to 23.0%. In the presence of at least 10 g/liter of cadmium sulfate in the same solutions the fall in plasticity decreases to 4.6-8%. Thus, cadmium ions have a marked influence on the plasticity of steel in pickling in sulfuric acid solutions at low temperatures.

  4. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    NASA Astrophysics Data System (ADS)

    France, Danielle Cook

    2016-07-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  5. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  6. Factors influencing the surface quality of polished tool steels

    NASA Astrophysics Data System (ADS)

    Rebeggiani, S.; Rosén, B.-G.

    2014-09-01

    Today’s demands on surface quality of moulds for injection moulding of plastic components involve no/low defect contents and roughness levels in the nm-range for high gloss applications. Material properties as well as operating conditions influence the mould finish, and thus the final surface of moulded products. This paper focuses on how particle content and different polishing strategies influence final surface qualities of moulds. Visual estimations of polished tool steel samples were combined with non-contact 3D-surface texture analysis in order to correlate traditional assessments to more quantitative methods, and to be able to analyse the surfaces at nanometre-level. It was found that steels with a lower proportion of particles, like carbides and oxides, gave rise to smoother polished surfaces. In a comparative study of polishers from different polishing shops, it was found that while different surface preparation strategies can lead to similar final roughness, similar preparation techniques can produce high-quality surfaces from different steel grades. However, the non-contact 3D-surface texture analysis showed that not all smooth polished surfaces have desirable functional topographies for injection moulding of glossy plastic components.

  7. Warm PreStress effect on highly irradiated reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Hure, J.; Vaille, C.; Wident, P.; Moinereau, D.; Landron, C.; Chapuliot, S.; Benhamou, C.; Tanguy, B.

    2015-09-01

    This study investigates the Warm Prestress (WPS) effect on 16MND5 (A508 Cl3) RPV steel, irradiated up to a fluence of 13 ·1023 n .m-2 (E > 1 MeV) at a temperature of 288 ° C, corresponding to more than 60 years of operations in a French Pressurized Water Reactor (PWR). Mechanical properties, including tensile tests with different strain rates and tension-compression tests on notched specimens, have been characterized at unirradiated and irradiated states and used to calibrate constitutive equations to describe the mechanical behavior as a function of temperature and fluence. Irradiation embrittlement has been determined based on Charpy V-notch impact tests and isothermal quasi-static toughness tests. Assessment of WPS effect has been done through various types of thermomechanical loadings performed on CT(0.5 T) specimens. All tests have confirmed the non-failure during the thermo-mechanical transients. Experimental data obtained in this study have been compared to both engineering-based models and to a local approach (Beremin) model for cleavage fracture. It is shown that both types of modeling give good predictions for the effective toughness after warm prestressing.

  8. Kinetic of solute clustering in neutron irradiated ferritic model alloys and a French pressure vessel steel investigated by atom probe tomography

    NASA Astrophysics Data System (ADS)

    Meslin, E.; Radiguet, B.; Pareige, P.; Barbu, A.

    2010-04-01

    The embrittlement of reactor pressure vessel steels under neutron irradiation is partly due to the formation of solute clusters. To gain more insight into their formation mechanisms, ferritic model alloys (low copper Fe-0.08 at.% Cu, Fe-0.09 Cu-1.1 Mn-0.7 Ni (at.%), and a copper free Fe-1.1 Mn-0.7 Ni (at.%)) and a French 16MND5 reactor pressure vessel steel, were irradiated in a test reactor at two fluxes of 0.15 and 9 × 10 17 n( E> 1 MeV) m -2 s -1 and at increasing doses from 0.18 to 1.3 × 10 24 n( E> 1 MeV) m -2. Atom probe tomography analyses revealed that nanometer-size solute clusters were formed during irradiation in all the materials, even in the copper free Fe-1.1 Mn-0.7 Ni (at.%) alloy. It should be noted that solute segregation in a low-Ni ferritic material was never reported before in absence of the highly insoluble copper impurity. The manganese and nickel segregation is suggested to result from a radiation-induced mechanism.

  9. On Key Factors Influencing Ductile Fractures of Dual Phase (DP) Steels

    SciTech Connect

    Sun, Xin; Choi, Kyoo Sil; Soulami, Ayoub; Liu, Wenning N.; Khaleel, Mohammad A.

    2009-11-25

    In this paper, we examine the key factors influencing ductile failure of various grades of dual phase (DP) steels using the microstructure-based modeling approach. Various microstructure-based finite element models are generated based on the actual microstructures of DP steels with different martensite volume fractions. These models are, then, used to investigate the influence of ductility of the constituent ferrite phase and also the influence of voids introduced in the ferrite phase on the overall ductility of DP steels. It is found that with volume fraction of martensite in the microstructure less than 15%, the overall ductility of the DP steels strongly depends on the ductility of the ferrite matrix, hence pre-existing micro voids in the microstructure significantly reduce the overall ductility of the steel. When the volume fraction of martensite is above 15%, the preexisting voids in the ferrite matrix does not significantly reduce the overall ductility of the DP steels, and the overall ductility is more influenced by the mechanical property disparity between the two phases. The applicability of the phase inhomogeneity driven ductile failure of DP steels is then discussed based on the obtained computational results for various grades of DP steels, and the experimentally obtained scanning electron microscopy (SEM) pictures of the corresponding grades of DP steels near fracture surface are used as evidence for result validations.

  10. Influence of boron on void swelling in model austenitic steels

    NASA Astrophysics Data System (ADS)

    Okita, T.; Wolfer, W. G.; Garner, F. A.; Sekimura, N.

    2004-08-01

    Model austenitic steels based on Fe-15Cr-16Ni with additions of 0.25Ti, 500 appm B, or 0.25Ti-500 appm B were irradiated in FFTF/MOTA over a wide range of dose rates at ˜400 °C. In addition to the effect of dose rate on swelling, it was desired to study the effect of boron addition to produce variations in He/dpa ratio. A strong effect of dose rate was observed, so strong that the relatively small distances separating the boron-free and doped alloys introduced a complication into the experiment. For specimens irradiated within the core, boron addition had no significant effect. For irradiations conducted near or outside the core edge, swelling appeared to be either enhanced or decreased by boron. The variability was a consequence of a strong dose rate effect overwhelming the influence of boron and helium. It is shown that helium exerted little influence relative to other important factors in these alloys.

  11. Influence of abrasive waterjet cutting on the magnetic properties of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Schoppa, A.; Louis, H.; Pude, F.; von Rad, Ch.

    2003-01-01

    The laminations for magnetic cores used in electric motors, generators, ballasts are manufactured by punching, mechanical cutting or cutting by laser of coils of electrical steels. The magnetic material close to the cutting edge is essentially influenced by these processes. Compared with these methods the deterioration of the magnetic properties after the waterjet cutting of electrical steels is very low.

  12. The influence of furnace wall emissivity on steel charge heating

    NASA Astrophysics Data System (ADS)

    Švantner, Michal; Honnerová, Petra; Veselý, Zdeněk

    2016-01-01

    Radiation heat transfer is one of the most important heat transfer modes in high-temperature applications. It is a strongly non-linear process, which depends on the temperature and emissivity of heat exchange surfaces, their geometrical configuration and properties of the surrounding atmosphere. Heat exchange intensity between the surfaces depends mainly on their temperature differences. However, their emissivities influence significantly the radiation heat transfer process as well. Emissivity is a function of surface state or atmospheric chemical reactions, temperature and wavelengths. Because of these non-linearities, it is very complicated to evaluate such a real problem by numerical simulation, and experimental work seems to be the most reliable evaluation procedure. We applied special high-temperature coatings of different emissivities on furnace walls to evaluate the dependence between the furnace wall emissivity and steel charge heating. The emissivity analyses of the coatings used and emissivity measurement results in dependence on wavelength are presented in this paper. The dependence of the charge heating on the furnace wall emissivity, the importance of emissivity wavelength dependence and significant differences of the emissivity effect in electrical and gas heated furnaces are shown. The possible consequences and practical benefits are also discussed in this paper.

  13. Embrittlement Phenomena in an Austenitic Stainless Steel: Influence of Hydrogen and Temperature

    NASA Astrophysics Data System (ADS)

    Lamani, Emil; Jouinot, Patrice

    2007-04-01

    The influence of hydrogen and temperature (up to 650°C) on an austenitic stainless steel is studied by means of two main techniques: the disk pressure embrittlement and the special biaxial tensile tests. The embrittlement index of the steel is determined as the ratio of rupture pressures of the disks tested similarly under helium and hydrogen. Furthermore, we studied the effect of loading speed and temperature on rupture pressures. We show that the mechanical behavior of the steel is strongly influenced by the apparition of a second phase: the deformation induced martensite, α'.

  14. Analysis of the Parameters Influencing the Quench-Aging Behavior of Ultra-Low-Carbon Steels

    NASA Astrophysics Data System (ADS)

    Massardier, V.; Merlin, J.

    2009-05-01

    The influence of the annealing temperature and of the grain size on the quench-aging behavior of ultra-low-carbon (ULC) steels was investigated by thermoelectric power measurements (TEPs) and mechanical testing. The TEP technique showed that the quench aging of ULC steels occurs in two distinct stages: (1) the segregation of carbon atoms to the grain boundaries and (2) the precipitation of iron carbides. It was suggested that the degree of grain boundary coverage by the carbon atoms resulting from the annealing or aging conditions influences the development of the yield point of ULC steels.

  15. The role of acetogens in microbially influenced corrosion of steel.

    PubMed

    Mand, Jaspreet; Park, Hyung Soo; Jack, Thomas R; Voordouw, Gerrit

    2014-01-01

    Microbially influenced corrosion (MIC) of iron (Fe(0)) by sulfate-reducing bacteria (SRB) has been studied extensively. Through a mechanism, that is still poorly understood, electrons or hydrogen (H2) molecules are removed from the metal surface and used as electron donor for sulfate reduction. The resulting ferrous ions precipitate in part with the sulfide produced, forming characteristic black iron sulfide. Hydrogenotrophic methanogens can also contribute to MIC. Incubation of pipeline water samples, containing bicarbonate and some sulfate, in serum bottles with steel coupons and a headspace of 10% (vol/vol) CO2 and 90% N2, indicated formation of acetate and methane. Incubation of these samples in serum bottles, containing medium with coupons and bicarbonate but no sulfate, also indicated that formation of acetate preceded the formation of methane. Microbial community analyses of these enrichments indicated the presence of Acetobacterium, as well as of hydrogenotrophic and acetotrophic methanogens. The formation of acetate by homoacetogens, such as Acetobacterium woodii from H2 (or Fe(0)) and CO2, is potentially important, because acetate is a required carbon source for many SRB growing with H2 and sulfate. A consortium of the SRB Desulfovibrio vulgaris Hildenborough and A. woodii was able to grow in defined medium with H2, CO2, and sulfate, because A. woodii provides the acetate, needed by D. vulgaris under these conditions. Likewise, general corrosion rates of metal coupons incubated with D. vulgaris in the presence of acetate or in the presence of A. woodii were higher than in the absence of acetate or A. woodii, respectively. An extended MIC model capturing these results is presented. PMID:24917861

  16. The role of acetogens in microbially influenced corrosion of steel

    PubMed Central

    Mand, Jaspreet; Park, Hyung Soo; Jack, Thomas R.; Voordouw, Gerrit

    2014-01-01

    Microbially influenced corrosion (MIC) of iron (Fe0) by sulfate-reducing bacteria (SRB) has been studied extensively. Through a mechanism, that is still poorly understood, electrons or hydrogen (H2) molecules are removed from the metal surface and used as electron donor for sulfate reduction. The resulting ferrous ions precipitate in part with the sulfide produced, forming characteristic black iron sulfide. Hydrogenotrophic methanogens can also contribute to MIC. Incubation of pipeline water samples, containing bicarbonate and some sulfate, in serum bottles with steel coupons and a headspace of 10% (vol/vol) CO2 and 90% N2, indicated formation of acetate and methane. Incubation of these samples in serum bottles, containing medium with coupons and bicarbonate but no sulfate, also indicated that formation of acetate preceded the formation of methane. Microbial community analyses of these enrichments indicated the presence of Acetobacterium, as well as of hydrogenotrophic and acetotrophic methanogens. The formation of acetate by homoacetogens, such as Acetobacterium woodii from H2 (or Fe0) and CO2, is potentially important, because acetate is a required carbon source for many SRB growing with H2 and sulfate. A consortium of the SRB Desulfovibrio vulgaris Hildenborough and A. woodii was able to grow in defined medium with H2, CO2, and sulfate, because A. woodii provides the acetate, needed by D. vulgaris under these conditions. Likewise, general corrosion rates of metal coupons incubated with D. vulgaris in the presence of acetate or in the presence of A. woodii were higher than in the absence of acetate or A. woodii, respectively. An extended MIC model capturing these results is presented. PMID:24917861

  17. Influence of fretting on flexural fatigue of 304 stainless steel and mild steel

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Rohn, D. A.

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural fatigue test arrangement with bolted on fretting pads demonstrated that fatigue life is reduced by at least a factor of 10 in the 265 to 334 MPa (38,500 - to 48,500 psi) nominal flexural fatigue stress range. In addition, experiments in which the fretting pads were removed after selected numbers of cycles, followed by continued flexural fatigue without fretting show that continued fretting beyond 50,000 cycles does not significantly further reduce fatigue life of 304 stainless steel at 317 MPa (46,000 psi). Microscopic examination of the fretted contact areas revealed fracture initiation sites as well as numerous cracks that did not propagate to failure. Flexural fretting fatigue experiments performed on mild steel showed an insensitivity of fatigue life to the incidence of fretting under flexural stress conditions of from 162 to 217 MPa (23,500 to 31,500 psi).

  18. Influence of Subsurface Structure on the Linear Reciprocating Sliding Wear Behavior of Steels with Different Microstructures

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Sangal, S.; Mondal, K.

    2014-09-01

    The present work investigates the influence of subsurface microstructure on the linear reciprocating sliding wear behavior of a number of steels with ferrite-pearlitic, pearlitic, bainitic, and martensitic microstructures under dry unlubricated condition. The change in the underlying microstructure with depth from worn-out surface of steel sample intimately relates to the associated hardness variation and wear volume. The present paper is not about comparison of wear resistance of steels with different structures; rather it is on mutual influence of wear and substructure for individual microstructure. Inherent toughness of the matrix and ability of microstructural components to get deformed under the reciprocating action of the ball decide the wear resistance of the steels. Bainite has good amount of stability to plastic deformation. Ferrite shows severe banding due to wear action. Work hardening renders pearlite to be wear resistant. Temperature rise and associated tempering of martensite are observed during wear.

  19. Influence of Subsurface Structure on the Linear Reciprocating Sliding Wear Behavior of Steels with Different Microstructures

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Sangal, S.; Mondal, K.

    2014-12-01

    The present work investigates the influence of subsurface microstructure on the linear reciprocating sliding wear behavior of a number of steels with ferrite-pearlitic, pearlitic, bainitic, and martensitic microstructures under dry unlubricated condition. The change in the underlying microstructure with depth from worn-out surface of steel sample intimately relates to the associated hardness variation and wear volume. The present paper is not about comparison of wear resistance of steels with different structures; rather it is on mutual influence of wear and substructure for individual microstructure. Inherent toughness of the matrix and ability of microstructural components to get deformed under the reciprocating action of the ball decide the wear resistance of the steels. Bainite has good amount of stability to plastic deformation. Ferrite shows severe banding due to wear action. Work hardening renders pearlite to be wear resistant. Temperature rise and associated tempering of martensite are observed during wear.

  20. Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual Phase Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    In this paper, the effects of the mechanical properties of the martensite phase on the failure mode and ductility of dual phase (DP) steels are investigated using a micromechanics-based finite element method. Actual microstructures of DP sheet steels obtained from scanning electron microscopy are used as representative volume element (RVE) in two-dimensional plane-stress finite element calculations. Failure is predicted as plastic strain localization in the RVE during deformation. The mechanical properties of the ferrite and martensite phases in a commercial DP 980 steel are obtained based on the in-situ X-ray diffraction measurements of a uniaxial tensile test. Computations are then conducted on the RVE in order to investigate the influence of the martensite mechanical properties and volume fraction on the macroscopic behavior and failure mode of DP steels. The computations show that, as the strength and volume fraction of the martensite phase increase, the ultimate tensile strength (UTS) of DP steels increases but the UTS strain and failure strain decrease. These results agree well with the general experimental observations on DP steels. Additionally, shear dominant failure modes usually develop for DP steels with lower martensite strengths, whereas split failure modes typically develop for DP steels with higher martensite strengths.

  1. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  2. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  3. Influence of boron oxide on protective properties of zinc coating on steel

    SciTech Connect

    Alimov, V.I.; Berezin, A.V.

    1986-05-01

    The authors study the properties of zinc coating when boron oxide is added to the melt for galvanization. The authors found that a rise in the degree of initial deformation of the steel leads to the production of varying thickness of the zinc coating. The results show the favorable influence of small amounts of added boron oxide on the corrosion resistance of a zinc coating on cold-deformed high-carbon steel; this influence is also manifested in the case of deformation of the zinc coating itself.

  4. INFLUENCE OF MICROSTRUCTURAL ANISOTROPY ON THE SPALLATION OF 1080 EUTECTOID STEEL

    SciTech Connect

    G.T. GRAY; M.F. LOPEZ; ET AL

    2001-06-01

    While the influence of crystallographic texture on elastic and plastic constitutive response has seen extensive investigation in recent years, the influence of texture on the dynamic fracture of engineering materials remains less extensively explored. In particular, the influence of anisotropy, both textural and morphological, on the spallation behavior of materials remains poorly quantified. In this study, the spallation response of 1080-steel has been studied as a function of microstructural morphological anisotropy. In this study the influence of elongated MnS stringers, resident within a crystallographically isotropic eutectoid steel, on the spallation response of 1080 steel was investigated. That of a fully-pearlitic 1080 steel loaded to 5 GPa was found to be dominated by the heterogeneous nucleation of damage normal and orthogonal to the MnS stringers. Delamination between the matrix pearlitic microstructure and the MnS stringers was seen to correlate to a significantly lower pull-back signal during transverse loading than to that parallel to the stringer axis. The ''pull-back'' signals and post-spallation metallographic observations are discussed with reference to the influence of microstructural anisotropy on void nucleation and growth.

  5. Influence of microstructural anisotropy on the spallation of 1080 eutectoid steel

    SciTech Connect

    Bourne, N. K.; Millett, J. C. F.; Lopez, M. F.; Vecchio, K. S.; Gray, G. T. , III

    2001-01-01

    While the influence of crystallographic texture on elastic and plastic constitutive response has seen extensive investigation in recent years, the influence of texture on the dynamic fracture of engineering materials remains less extensively explored. In particular, the influence of anisotropy, both textural and morphological, on the spallation behavior of materials remains poorly quantified. In this study, the spallation response of 1080-steel has been studied as a function of microstructural morphological anisotropy. In this study the influence of elongated MnS stringers, resident within a crystallographically isotropic eutectoid steel, on the spallation response of 1080 steel was investigated. That of a fully-pearlitic 1080 steel loaded to 5 GPa was found to be dominated by the heterogeneous nucleation of damage normal and orthogonal to the MnS stringers. Delamination between the matrix pearlitic microstructure and the MnS stringers was seen to correlate to a significantly lower pull-back signal during transverse loading than to that parallel to the stringer axis. The 'pull-back' signals and post-spallation metallographic observations are discussed with reference to the influence of microstructural anisotropy on void nucleation and growth.

  6. Influence of the cutting process on the magnetic properties of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Schoppa, A.; Schneider, J.; Roth, J.-O.

    2000-06-01

    The laminations for the cores used in electrical applications like motors, generators, ballasts are manufactured by punching, mechanical cutting or cutting by laser of coils of non-oriented fully processed electrical steels. The magnetic material close to the cutting edge is essentially influenced by these processes. Depending on the parameter, the magnetic properties can vary substantially.

  7. The influence of deformation-induced martensite on the cryogenic behavior of 300-series stainless steels

    SciTech Connect

    Morris, J.W. Jr.; Chan, J.W.; Mei, Z.

    1992-06-01

    The 300-series stainless steels that are commonly specified for the structures of high field superconducting magnets are metastable austenitic alloys that undergo martensitic transformations when deformed at low temperature. The martensitic tranformation is promoted by plastic deformation and by exposure to high magnetic fields. The transformation significantly influences the mechanical properties of the alloy. The mechanisms of this influence are reviewed, with emphasis on fatigue crack growth effects and magnetomechanical phenomena that have only recently been recognized.

  8. Influence of ultrasonic cavitation on passive film of stainless steel.

    PubMed

    Wang, Bao-Cheng; Zhu, Jin-hua

    2008-03-01

    The electrochemical behaviors of passive film of stainless steel 0Cr13Ni5Mo under the condition of static state (quiescence) and ultrasonic cavitation in the HCl solution have been studied by means of polarization curve, electrochemical impedance spectroscopy (EIS) and capacitance potential measurement. The results indicate that the passive film shows a multi layer structure distribution, and presents a p-type semiconductor property under the condition of quiescence. The stability of passive film decreases, the semiconducting property changes to an n-type semiconductor in the presence of cavitation. The amount of transition electrons from valence band because of cavitation is related to the height of Fermi level of passive film semiconductor. PMID:17584517

  9. Green rusts in electrochemical and microbially influenced corrosion of steel

    NASA Astrophysics Data System (ADS)

    Refait, Philippe; Abdelmoula, Mustapha; Génin, Jean-Marie R.; Sabot, René

    2006-06-01

    Green rusts have been identified as corrosion products of steel in neutral or slightly alkaline aqueous media. They were mainly observed in carbonated media, where the carbonated green rust is obtained, and in seawater, where the sulphated variety is obtained. In the first case, the formation of the carbonated green rust competes with that of siderite FeCO 3. It is favoured when the dissolution of iron is accompanied by the reduction of dissolved oxygen and the formation of OH - ions. In the second case, the formation of the sulphated variety competes with that of the chlorinated variety. The sulphated green rust is obtained since the layered structure of green rusts is characterised by a strong affinity for divalent anions. Finally, the oxidation of green rusts leads to the various constituents of 'common' rust. The conditions favouring the formation of a ferric compound keeping the crystal structure of green rusts is discussed. To cite this article: P. Refait et al., C. R. Geoscience 338 (2006).

  10. Researches concerning influence of magnesium, aluminum and titanium lime on steel desulfurization

    NASA Astrophysics Data System (ADS)

    Putan, V.; Putan, A.; Josan, A.; Vilceanu, L.

    2016-02-01

    The paper presents the results of laboratory experiments on steel desulphurisation with slag from the system MgO-Al2O3-TiO2. To determine the influence, on the desulphurisation process, of the titanium oxide added in calcium aluminate slag, we experimented, in the laboratory phase, the steel treatment with a mechanical mixture consisting of lime, aluminous slag and slag obtained from the titanium making process through the aluminothermic technology. The steel melting was carried out in an induction furnace of 10 kg capacity, existent in the "Metallic Melts" laboratory of the Engineering Faculty of Hunedoara. During the research, we aimed to establish correlation equations between the sulphur distribution coefficient and the slag components (MgO, Al2O3, TiO2). The data obtained in the experiments were processed in MATLAB programs, resulting multiple correlation equations, which allowed the elucidation of some physical-chemical phenomena specific to the desulphurisation processes.

  11. Influence of Processing and Heat Treatment on Corrosion Resistance and Properties of High Alloyed Steel Coatings

    NASA Astrophysics Data System (ADS)

    Hill, Horst; Weber, Sebastian; Raab, Ulrich; Theisen, Werner; Wagner, Lothar

    2012-09-01

    Corrosion and abrasive wear are two important aspects to be considered in numerous engineering applications. Looking at steels, high-chromium high-carbon tool steels are proper and cost-efficient materials. They can either be put into service as bulk materials or used as comparatively thin coatings to protect lower alloyed construction or heat treatable steels from wear and corrosion. In this study, two different corrosion resistant tool steels were used for the production of coatings and bulk material. They were processed by thermal spraying and super solidus liquid phase sintering as both processes can generally be applied to produce coatings on low alloyed substrates. Thermally sprayed (high velocity oxygen fuel) coatings were investigated in the as-processed state, which is the most commonly used condition for technical applications, and after a quenching and tempering treatment. In comparison, sintered steels were analyzed in the quenched and tempered condition only. Significant influence of alloy chemistry, processing route, and heat treatment on tribological properties was found. Experimental investigations were supported by computational thermodynamics aiming at an improvement of tribological and corrosive resistance.

  12. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    SciTech Connect

    Martins, Marcelo; E-mail: marcelo.martins@sulzer.com; Casteletti, Luiz Carlos

    2005-09-15

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl{sup -}). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure.

  13. Influence of the Inclusion Shape on the Rolling Contact Fatigue Life of Carburized Steels

    NASA Astrophysics Data System (ADS)

    Neishi, Yutaka; Makino, Taizo; Matsui, Naoki; Matsumoto, Hitoshi; Higashida, Masashi; Ambai, Hidetaka

    2013-05-01

    It has been well known that the flaking failure in rolling contact fatigue (RCF) originates from nonmetallic inclusions in steels, and their apparent size is one of the important factors affecting RCF life. However, the influence of inclusion shape on the RCF life has not been fully clarified. In this study, attention was paid to the influence of the inclusion shape on the RCF life. This was evaluated by using carburized JIS-SCM420 (SAE4320) steels that contained two different shapes of MnS—stringer type and spheroidized type—as inclusions. Sectional observations were made to investigate the relation between the occurrence of shear crack in the subsurface and the shape of MnS. It was found that the RCF life was well correlated with the length of MnS projected to the load axis, and the initiation of shear crack in subsurface was accelerated as the length of MnS increased.

  14. The influence of deformation rate on the uniform elongation of low-carbon steel

    SciTech Connect

    Pashchenko, A.A.; Khristenko, I.N.; Tomenko, Y.S.

    1985-08-01

    An experiment is carried out making it possible to obtain new data on the influence of deformation rate on the characteristics of strength and plasticity of construction steels. Tensile machine curves recorded at different rates are presented. At deformation rates exceeding the requirements of the All-Union State Standard, there is a change in the form of the tensile curves, which may lead to errors in determination of uniform elongation.

  15. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  16. Influence of remote cathodes on corrosion mechanism at exposed cut edges in organically coated galvanized steels

    SciTech Connect

    Worsley, D.A.; Powell, S.M.; McMurray, H.N.

    2000-05-01

    The scanning vibrating electrode technique (SVET) was used to study the influence that accelerating corrosion, by attaching remote stainless steel cathodes, has on the corrosion mechanism occurring at exposed cut edges of 0.7-mm gauge organically coated galvanized steels (OCS). Galvanized steel samples were coated with organic coating layers (200 {micro}m polyvinyl chloride [PVC] on one side and between 5 {micro}m and 36 {micro}m polyester on the other) to produce model cut edges with varying degrees of coating asymmetry. Under green corrosion conditions in 5% aqueous sodium chloride (NaCl) in the absence of polarization, such materials exhibited an asymmetric corrosion profile, which likely was caused by the establishment of differential aeration. Anodic activity was localized proximal to the thicker PVC coating with cathodic activity on the steel and zinc proximal to the thinner polyester coating. SVET testing and electrical impedance spectroscopic (EIS) measurements showed that there was no activity occurring via electrolytic transport through the organic coating, with the exception of the thinnest (5 {micro}m polyester) coatings, which had measurable pore resistance. Attaching a 4-cm{sup 2} remote stainless steel cathode to the 20-mm exposed cut edge caused the anodic currents emanating from the cut edge to increase fifty-fold, accompanied by a dramatic change in observed mechanism. The location of anodic and cathodic activity on the cut edge was altered significantly with both zinc layers acting as focal anodes. Removal of the remote cathode returned the corrosion current to a similar level seen in the unpolarized conditions, but the original mechanism never was recovered, and both zinc layers remained anodic. Cyclic wet and dry testing using a paint-undercutting accelerated test (PUCAT) apparatus was used to demonstrate the influence that this mechanistic change had on the degree of PVC coating delamination away from the exposed cut edge.

  17. Influence of the residual aluminum content on the grain size and the mechanical properties of 20G steel

    NASA Astrophysics Data System (ADS)

    Zyuban, N. A.; Rutskii, D. V.; Kolesnichenko, A. P.; Ananyeva, A. N.

    2013-12-01

    The article presents the results of detecting the possible influence of the residual aluminum content on the grain size and the mechanical properties of the 20G steel produced at ZAO VMZ Krasny Oktyabr.

  18. Influence of Direct Quenching on Microstructure and Mechanical Properties of Steel Plate for Large Oil Storage Tanks

    NASA Astrophysics Data System (ADS)

    Xiao, Guizhi; di, Hongshuang; Zhu, Fuxian; Chen, Bingzhang; Qiu, Bing

    2010-08-01

    The influence of direct quenching on microstructure and mechanical properties of high performance steel plates for large oil storage tanks was studied. The direct quenched and tempered (DQ&T) steel plates were rolled at different finish rolling temperatures (1113 and 1173 K), and their microstructures and mechanical properties were compared with those of reheat quenched and tempered (RQ&T) steel plate. The optical microscopy of the DQ steel shows deformed grains elongated along the rolling direction, while complete equiaxed grains are visible in RQ steel. Transmission electron microscopy (TEM) of the DQ steel shows refined lath martensite with high density of dislocations, which acts as preferred precipitation sites for NbC or Nb(C,N) particles during tempering. In all the plates, strength decreases with increasing tempering temperature. The strength of RQ steel increased significantly compared with that of DQ steel at the higher tempering temperature, which leads to better tempering resistance in DQ steels. The optimum combination of strength and toughness (yield strength (YS) reaches 585 MPa, tensile strength (TS) 667 MPa, and Charpy impact energy at 253 K of 291 J) in the DQ steels is achieved by quenching at 1113 K and tempering at 923 K.

  19. Influence of thermal aging on microstructure and mechanical properties of CLAM steel

    NASA Astrophysics Data System (ADS)

    Huang, Lixin; Hu, Xue; Yang, Chunguang; Yan, Wei; Xiao, Furen; Shan, Yiyin; Yang, Ke

    2013-11-01

    In order to investigate the influence of thermal aging on microstructure and mechanical properties of CLAM (China low activation martensitic) steel, a comparison study was made on the as-tempered and the aged steels. The tempered CLAM steels were subjected to aging treatment at 600 °C for 1100 h and 3000 h, and at 650 °C for 1100 h, respectively. The changes of microstructure were characterized by both transmission electron microscope (TEM) and scanning electron microscope (SEM). The mechanical properties were evaluated by Charpy impact, tensile and Vickers hardness tests. The upper shelf energy (USE) of the thermal aged CLAM steel decreased with the extension of aging time, while the yield strength changed slightly. After long-term thermal aging, the MX type precipitates remained stable. The coarsening of M23C6 and the formation of Laves phase were confirmed by scanning/transmission electron microscopes. The Laves phase was the main factor leading to the increase of DBTT.

  20. Influence of preliminary tension on the low-cycle fatigue of 40Kh13 steel in gaseous hydrogen

    SciTech Connect

    Romaniv, A.N.

    1985-05-01

    Information is lacking on the influence of hydrogen entering from an electrolyte or an external gaseous medium on the low-cycle fatigue of steels after preliminary tension. Since preliminary plastic deformation by tension increases the elastic limit and hardness of the steel while reducing its toughness, this must be reflected in the processes of crack origin and propagation in low-cycle loading in hydrogen. The purpose of this work was to study the influence of the degree of preliminary tension on the low-cycle failure resistance of 40Kh13 martensitic class steel in an atmosphere of gaseous hydrogen.

  1. Influence of molten FeS on the mechanical properties of structural steels

    SciTech Connect

    Deev, G.F.; Karikh, V.V.; Palash, V.N.; Popovich, V.V.

    1985-05-01

    One of the primary defects of weld joints is crystallization cracks. In the welding of structural steels, with an increase in sulfur content in the metal of the joint, its sensitivity to the formation of crystallization cracks increases sharply as a result of formation of low-melting sulfide eutectics. In the literature there is little data on the influence of molten nonmetallic materials on the mechanical properties of solid metals, and the influence of molten low-melting metals has been studied at temperatures not exceeding 1100K. With an increase in temperature, this influence weakens, and at high temperatures the effect may even completely disappear. The purpose of this study was an investigation of the influence of molten FeS on the plasticity and strength of solid metals at 1373K.

  2. Microbiologically influenced corrosion of steel during putrefaction of seawater: Evidence for a new mechanism

    SciTech Connect

    Eashwar, M. ); Chandrasekaran, P.; Subramanian, G. ); Balakrishnan, K. )

    1993-02-01

    The influence of putrid seawater on the performance of mild steel has been investigated in laboratory tests with decomposing Ulva lactuca. During a 30-day period, the corrosion of steel was considerably enhanced by increased rates of putrefaction. However, accelerated rates of corrosion in the presence of large amounts of decomposing organisms were limited to the initial stages prior to oxygen depletion and rapid sulfide production. Evidence for microbiological oxidation of sulfur in algal proteins is presented, and this process appears to have a significant effect on pH. Acidification of seawater by thiobacilli and the coexistence of oxygen and sulfide are two important phenomena involved in corrosion enhancement contrary to the prevalent thought emphasizing anaerobic corrosion. Implications of the present findings to natural systems are considered.

  3. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations.

    PubMed

    Moreira, Rebeca; Schütz, Marta K; Libert, Marie; Tribollet, Bernard; Vivier, Vincent

    2014-06-01

    Low carbon steel has been considered a suitable material for component of the multi-barrier system employed on the geological disposal of high-level radioactive waste (HLW). A non negligible amount of dihydrogen (H2) is expected to be produced over the years within the geological repository due to the anoxic corrosion of metallic materials and also to the water radiolysis. The influence of the activity of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB) on carbon steel corrosion is considered in this study because of the high availability of energetic nutriments (H2, iron oxides and hydroxides) produced in anoxic disposal conditions. Local electrochemical techniques were used for investigating the activity of IRB as a promoter of local corrosion in the presence of H2 as electron donor. A local consumption of H2 by the bacteria has been evidenced and impedance measurements indicate the formation of a thick layer of corrosion products. PMID:24177135

  4. Influence of steel fibres on bond and development length of deformed bars in normal strength concrete

    NASA Astrophysics Data System (ADS)

    Tenzey, Ugyen

    Transverse reinforcement (stirrups) plays an important role in improving bond and anchorage of deformed bars in reinforced concrete structures. Steel fibres or steel fibre reinforced concrete (SFRC) can be used in lieu of stirrups to provide a similar beneficial effect. The application of steel fibres in lieu of stirrups is not recognized in codes of practice for concrete structures because of limited research for this type of application. The results of this study are based on 18 large scale test beams (250 mm wide by 300 mm high and 3.4 m long). Control cylinders and flexure prisms are used to obtain the required concrete material properties together with tension tests of the steel rebar. The focus of this research is to investigate the influence of steel fibres to enhance bond and development of deformed reinforcing bars in normal strength reinforced concrete beams. An attempt is also made to develop an understanding and rationale of the effect SFRC has on improving bond. Longitudinal reinforcement in most of the beams is lap spliced with different types of confinement in the spliced region (plain concrete, plain concrete with stirrups, SFRC, and SFRC with stirrups), and evaluated under third point loading to ensure the spliced bars are subjected to a constant tensile force in the region of constant moment. All of the beams with spliced reinforcement failed in bond before yielding of the longitudinal reinforcement. The SFRC mix uses steel fibres at an 80 kg/m3 dosage (1% by volume). The plain concrete beams without any transverse reinforcement failed suddenly without any warning. The presence of steel fibres did not affect the flexural cracking load of the specimens, but did provide a consistent increase in the load capacity at bond failure and ensure a more controlled failure. The spliced beams with SFRC exhibited a 22.5% increase in the bond failure load capacity compared with the plain concrete beams. The combined effect of fibres and transverse reinforcement

  5. Influence of modification by vanadium nitrides on the mechanical and physical properties of 25L constructional steel

    SciTech Connect

    Ishchenko, I.I.; Kasperskaya, V.V.; Kritsuk, A.A.; Lutsenko, G.G.; Sinaiskii, B.N.

    1985-11-01

    This paper discusses the influence exerted by nitride phase (VN) on the mechanical and physical properties of 25L constructional cast steel, which is used for the production of ship fitting parts. The authors investigate the interaction of the components of the steel and the vanadium nitrides. The heat treated cycles and the quantity of vanadium nitride additions providing the optimum combination of mechanical properties of 25L steel were established as hardening from 950-100 degrees C, temperature at 600-650 degrees C, and the quantity of vanadium nitrides added 0.05-0.1 wt.%. The structure of 25L steel after the selected optimum heat-treatment cycle consists of ferrite grains, pearlite, and residual austentite. In contrast to the original structure, the modified steel seemed finer and more uniform.

  6. Influence of Cooling Rate on Phase Formationin Spray-Formed H13 Tool Steel

    SciTech Connect

    K. M. Mchugh; Y. Lin; Y. Zhou; E. J. Lavernia

    2006-04-01

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern’s features. The pattern is removed and the die is fitted into a standard holding fixture. This approach results in significant cost and lead-time savings compared to conventional machining, Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life over conventional dies. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die’s properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate and other processing parameters during spray processing and heat treatment of H13 tool steel influence phase formation. Results of case studies on spray-formed die performance in forging, extrusion and die casting, conducted by industry during production runs, will be described.

  7. Experimental investigation of microbiologically influenced corrosion of selected steels in sugarcane juice environment.

    PubMed

    Wesley, Sunil Bala; Maurya, Devendra Prasad; Goyal, Hari Sharan; Negi, Sangeeta

    2013-12-01

    In the current study, ferritic stainless grades AISI 439 and AISI 444 were investigated as possible construction materials for machinery and equipment in the cane-sugar industry. Their performance in corrosive cane-sugar juice environment was compared with the presently used low carbon steel AISI 1010 and austenitic stainless steel AISI 304. The Tafel plot electrochemical technique was used to evaluate general corrosion performance. Microbiologically influenced corrosion (MIC) behaviour in sugarcane juice environment was studied. Four microbial colonies were isolated from the biofilms on the metal coupon surfaces on the basis of their different morphology. These were characterized as Brevibacillus parabrevis, Bacillus azotoformans, Paenibacillus lautus and Micrococcus sp. The results of SEM micrographs showed that AISI 439 and AISI 304 grades had suffered maximum localized corrosion. MIC investigations revealed that AISI 444 steel had the best corrosion resistance among the tested materials. However from the Tafel plots it was evident that AISI 1010 had the least corrosion resistance and AISI 439 the best corrosion resistance. PMID:23764955

  8. The influence of gouge defects on failure pressure of steel pipes

    NASA Astrophysics Data System (ADS)

    Alang, N. A.; Razak, N. A.; Zulfadli, M. R.

    2013-12-01

    Failure pressure of API X42 steel pipes with gouge defects was estimated through a nonlinear finite element (FE) analysis. The effect of gouge length on failure pressure of different pipe diameters was investigated. Stress modified critical strain (SMCS) model was applied as in predicting the failure of the pipe. The model uses strain based criteria to predict the failure. For validation of the model, the FE results were compared to experimental data in literature showing overall good agreement. The results show that the gouge length has significant influence on failure pressure. A smaller pipe diameter gives highest value of failure pressure.

  9. The Influence of Yttrium on High Temperature Oxidation of Valve Steels

    NASA Astrophysics Data System (ADS)

    Grzesik, Z.; Migdalska, M.; Mrowec, S.

    2015-04-01

    The influence of small amounts of yttrium, electrochemically deposited on the surface of four steels utilized in the production of valves in car engines, on the protective properties of the oxide scale and its adherence to the surface of the oxidized materials has been studied under isothermal and thermal cycle conditions. Oxidation measurements have been carried out at 1173 K. It has been found that yttrium addition improves considerably the scale adherence to the substrate surface, increasing thereby corrosion resistance of the studied materials.

  10. 316L stainless steel tubes corrosion influenced by SRB in sea water

    SciTech Connect

    Yoffe, P.

    1997-08-01

    A tube made from SS316L was attacked by stagnated sea water. The typical onion form of the pits were obscured in welded and unwelded sectors of the tube. Iron sulfides FeS{sub 1{minus}x} and FeS{sub 2} (in pyrite form) were observed on effected surface of the tube, in addition to iron chloride and oxide/hydroxide. Theoretical investigation was based on cluster model of alloy and thermodynamic/kinetic characterization of possible reactions. It was concluded that microbially influenced sulfidizing played an accelerating role in the failure that exhibited the typical characteristics for stagnated sea water effect to chromium-nickel stainless steel.

  11. Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel

    NASA Astrophysics Data System (ADS)

    Schäfer, L.

    1998-10-01

    Martensitic chrome steels with a high content of chromium incline to form delta ferrite frequently accompanied by massive dendritic carbide precipitations. Both phases mostly influence the mechanical properties of this steel in countercurrent manner. The relatively soft delta ferrite causes an increase of ductility and toughness, whilst the brittle dendritic carbides decreases both. Both phases mostly decrease the strength of the steel. One or the other influence will be dominant in dependence of the quantitative relation of the two phases. This is the cause for very different statements in the literature. The dendritic carbides should be avoided using a cooling rate of more than 10 3 K/min after the austenitization, because this phase mostly impairs the mechanical properties of the steel. However, the delta ferrite without dendritic carbides can be tolerated mostly.

  12. Influence of thermo-mechanical treatment on the tensile properties of a modified 14Cr-15Ni stainless steel

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Laha, K.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.

    2014-10-01

    The titanium modified 14Cr-15Ni austenitic stainless steel is used as clad and wrapper material for fast breeder nuclear reactor. Thermo-mechanical treatments consisting of solution annealing at two different temperatures of 1273 and 1373 K followed by cold-work and thermal ageing have been imparted to the steel to tailor its microstructure for enhancing strength. Tensile tests have been carried out on the thermo-mechanically treated steel at nominal strain rate of 1.6 × 10-4 s-1 over a temperature range of 298-1073 K. The yield stress and the ultimate tensile strength of the steel increased with increase in solution treatment temperature and this has been attributed to the fine and higher density of Ti(C,N) precipitate. Tensile flow behaviour of the steel has been analysed using Ludwigson and Voce constitutive equations. The steel heat treated at higher solution temperature exhibited earlier onset of cross slip during tensile deformation. The rate of recovery at higher test temperatures was also influenced by variations in solution heat treatment temperature. In addition, dynamic recrystallization during tensile deformation at higher temperatures was profound for steel solution heat-treated at lower temperature. The differences in flow behaviour and softening mechanisms during tensile testing of the steel after different heat treated conditions have been attributed to the nature of Ti(C,N) precipitation.

  13. Factors influencing the performance of carbon steel overpacks in the proposed high-level nuclear waste repository

    SciTech Connect

    Cragnolino, G.A.; Dunn, D.S.; Angell, P.; Pan, Y.M.; Sridhar, N.

    1998-12-31

    A C-Mn steel, ASTM A516 Grade 55, is the primary candidate material for the outer metallic barrier in the current advanced conceptual design for the waste package in the proposed high-level radioactive waste repository at Yucca Mountain. The expected performance of this steel and that of the alternate material, A387 Grade 22 (2 1/4Cr-1Mo) steel, as affected by thermal embrittlement, dry or humid air oxidation, uniform and localized aqueous corrosion, microbially influenced corrosion, and stress corrosion cracking, is discussed on the basis of experimental studies and a review of information and data available in the literature.

  14. Influence of severe plastic deformation on the structure and properties of ultrahigh carbon steel wire

    SciTech Connect

    Leseur, D R; Sherby, O D; Syn, C K

    1999-07-01

    Ultrahigh-carbon steel wire can achieve very high strength after severe plastic deformation, because of the fine, stable substructures produce. Tensile strengths approaching 6000 MPa are predicted for UHCS containing 1.8%C. This paper discusses the microstructural evolution during drawing of UHCS wire, the resulting strength produced and the factors influencing fracture. Drawing produces considerable alignment of the pearlite plates. Dislocation cells develop within the ferrite plates and, with increasing strain, the size normal to the axis ({lambda}) decreases. These dislocation cells resist dynamic recovery during wire drawing and thus extremely fine substructures can be developed ({lambda} < 10 nm). Increasing the carbon content reduces the mean free ferrite path in the as-patented wire and the cell size developed during drawing. For UHCS, the strength varies as {lambda}{sup {minus}5}. Fracture of these steels was found to be a function of carbide size and composition. The influence of processing and composition on achieving high strength in these wires during severe plastic deformation is discussed.

  15. Influence of crack depth on the fracture toughness of reactor pressure vessel steel

    SciTech Connect

    Theiss, T.J.; Bryson, J.W.

    1991-01-01

    The Heavy Section Steel Technology Program (HSST) at Oak Ridge National Laboratory (ORNL) is investigating the influence of flaw depth on the fracture toughness of reactor pressure vessel (RPV) steel. Recently, it has been shown that, in notched beam testing, shallow cracks tend to exhibit an elevated toughness as a result of a loss of constraint at the crack tip. The loss of constraint takes place when interaction occurs between the elastic-plastic crack-tip stress field and the specimen surface nearest the crack tip. An increased shallow-crack fracture toughness is of interest to the nuclear industry because probabilistic fracture-mechanics evaluations show that shallow flaws play a dominant role in the probability of vessel failure during postulated pressurized-thermal-shock (PTS) events. Tests have been performed on beam specimens loaded in 3-point bending using unirradiated reactor pressure vessel material (A533 B). Testing has been conducted using specimens with a constant beam depth (W = 94 mm) and within the lower transition region of the toughness curve for A533 B. Test results indicate a significantly higher fracture toughness associated with the shallow flaw specimens compared to the fracture toughness determined using deep-crack (a/W = 0.5) specimens. Test data also show little influence of thickness on the fracture toughness for the current test temperature ({minus}60{degree}C). 21 refs., 5 figs., 3 tabs.

  16. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel.

    PubMed

    Schönbauer, Bernd M; Stanzl-Tschegg, Stefanie E

    2013-12-01

    In the present work, the influence of different environments on the fatigue crack growth behaviour of 12% Cr steam turbine blade steel is investigated. Fatigue crack growth rates (FCGRs) in the near threshold regime are measured with ultrasonic fatigue testing technique. Fatigue tests are performed in vacuum, air and different aqueous environments with defined chloride and oxygen content. Furthermore, the influence of different stress ratios is investigated. It is found that crack propagation is not necessarily enhanced with increasing corrosiveness. In the aqueous environments, the FCGRs below 10⁻⁸ m/cycle are lower than in air. The threshold stress intensity factor ranges are higher or equal. Observation of the fracture surfaces shows oxide formation and partly intergranular fracture for specimens tested in aqueous environments. Crack closure effects seem to be responsible for this unexpected behaviour. PMID:23490013

  17. Enzymatic approach in microbial-influenced corrosion: a review based on stainless steels in natural waters.

    PubMed

    Landoulsi, J; El Kirat, K; Richard, C; Féron, D; Pulvin, S

    2008-04-01

    The electrochemical behavior of stainless steels (SS) in natural waters is characterized by the ennoblement of their free corrosion potential (E(corr)). This phenomenon depends strongly on the settlement of biofilms on SS surfaces. Many hypotheses have been proposed to explain the biofilm action, in particular the enzymatic catalysis plays an important role by shifting the cathodic and/or anodic processes. However, there are still only few studies relating the use of purified enzymes. In contrast with bacteria-associated corrosion, the direct influence of enzymes is still poorly documented. The aim of this review is to show the benefits of the enzymatic approach in the study of biocorrosion. Indeed, enzymatic systems may constitute convenient models to mimic microbial influenced corrosion and to evaluate the behavior of metallic materials in natural waters. PMID:18504948

  18. Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling

    NASA Astrophysics Data System (ADS)

    Espallargas, N.; Jakobsen, P. D.; Langmaack, L.; Macias, F. J.

    2015-01-01

    Abrasion on tunnel boring machine (TBM) cutters may be critical in terms of project duration and costs. Several researchers are currently studying the degradation of TBM cutter tools used for excavating hard rock, soft ground and loose soil. So far, the primary focus of this research has been directed towards abrasive wear. Abrasive wear is a very common process in TBM excavation, but with a view to the environment in which the tools are working, corrosion may also exert an influence. This paper presents a selection of techniques that can be used to evaluate the influence of corrosion on abrasion on TBM excavation tools. It also presents the influence of corrosion on abrasive wear for some initial tests, with constant steel and geomaterial and varying properties of the excavation fluids (soil conditioners, anti-abrasion additives and water). The results indicate that the chloride content in the water media greatly influences the amount of wear, providing evidence of the influence of corrosion on the abrasion of the cutting tools. The presence of conditioning additives tailored to specific rock or soil conditions reduces wear. However, when chloride is present in the water, the additives minimise wear rates but fail to suppress corrosion of the cutting tools.

  19. Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation

    NASA Astrophysics Data System (ADS)

    Liu, Xiangbing; Wang, Rongshan; Ren, Ai; Jiang, Jing; Xu, Chaoliang; Huang, Ping; Qian, Wangjie; Wu, Yichu; Zhang, Chonghong

    2014-01-01

    Nanoindentation in combination with ion irradiation offers the possibility to quantify irradiation hardening due to radiation damage. Irradiation experiments for Fe-1.0wt.%Cu alloys, China A508-3 steels, and 16MND5 steels were carried out at about 100 °C by proton and Fe-ions with the energy of 240 keV, 3 MeV respectively. The constant stiffness measurement (CSM) with a diamond Berkovich indenter was used to obtain the depth profile of hardness. The results showed that under 240 keV proton irradiation (peak damage up to 0.5 dpa), Fe-1.0wt.%Cu alloys exhibited the largest hardening (∼55%), 16MND5 steels resided in medium hardening (∼46%), and China A508-3(2) steels had the least hardening (∼10%). Under 3 MeV Fe ions irradiation (peak damage up to 1.37 dpa), both China A508-3(1) and 16MND5 steels showed the same hardening (∼26%). The sequence of irradiation tolerance for these materials is China A508-3(2) > 16MND5 ≈ China A508-3(1) > Fe-1.0wt.%Cu. Based on the determination of the transition depth, the nominal hardness H0irr was also calculated by Kasada method.

  20. Influence of Chemical Composition and Heat Treatment Condition on Impact Toughness of 15Cr Ferritic Creep Resistant Steel

    NASA Astrophysics Data System (ADS)

    Toda, Yoshiaki; Tohyama, Hideaki; Kushima, Hideaki; Kimura, Kazuhiro; Abe, Fujio

    Influences of chemical compositions, heat treatment and microstructure on impact toughness of 15Cr ferritic steel have been investigated. Charpy impact values of the furnace cooled steels were lower than 15J/cm2 at room temperature independent of chemical compositions. Drastic improvement in impact toughness has been attained by controlling the carbon and nitrogen contents, by the addition of nickel and by the increase in cooling rate after annealing. However, the effect of nickel on impact toughness strongly depends on carbon and nitrogen contents. Improvement in impact toughness of the 15Cr ferritic steel has not been explained by individual microstructural factors of grain size, distribution of precipitates, volume fraction of martensitic phase. It has been supposed that the increase in Charpy impact toughness of the 15Cr ferritic steel was attained by improvement in toughness of ferrite matrix itself.

  1. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    NASA Astrophysics Data System (ADS)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  2. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli.

    PubMed

    Nan, Li; Xu, Dake; Gu, Tingyue; Song, Xiu; Yang, Ke

    2015-03-01

    Cu-bearing antibacterial stainless steels have been gaining popularity in recent years due to their strong antibacterial performances. However, only a few studies were reported for their actual performances against microbiologically influenced corrosion (MIC). In this study, electrochemical methods and surface analytical techniques were applied to study the MIC resistance characteristics of a 304L-Cu stainless steel (SS) against Escherichia coli in comparison with 304L SS as control. Corrosion tests for specimens after a 21-day exposure to a Luria-Bertani (LB) culture medium with E. coli demonstrated that the 304L-Cu SS considerably reduced the maximum MIC pit depth and the specific weight loss compared with 304L SS (8.3μm and 0.2mg/cm(2) vs. 13.4μm and 0.6mg/cm(2)). Potentiodynamic polarization tests showed that the corrosion current density of the 304L-Cu SS was as much as 4 times lower than that of the 304L SS, indicating that the 304L-Cu SS is a better choice for applications in MIC-prone environments. PMID:25579918

  3. Influence of Prior Deformation on the Sensitization Kinetics of Nitrogen Alloyed 316L Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mannepalli, Srinivas; Gupta, Ram Kishor; Kumar, A. Vinod; Parvathavarthini, N.; Mudali, U. Kamachi

    2015-05-01

    This paper presents the influence of prior deformation on the sensitization kinetics of nitrogen-alloyed 316L stainless steels. Systematic investigations were carried out for two varieties of 316L SS containing (i) 0.025% C and 0.14% N; (ii) 0.033% C and 0.11% N. Using ASTM standard A262 Practice A and E tests, time-temperature-sensitization diagrams were constructed for as-received as well as 5-25% cold-worked materials. Using these TTS diagrams, critical cooling rates (CCR) above which there is no risk of sensitization were calculated. TTS diagrams established for these two stainless steels will be useful for avoiding time-temperature combinations that may result in sensitization and susceptibility to IGC. These CCR obtained can be used to optimize heating rates/cooling rates to be followed which will not lead to sensitization during solution annealing, stress-relieving, and dimensional stabilization of critical components for fast breeder reactors.

  4. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    SciTech Connect

    Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.; De, P.K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.

  5. Influence of water cavitation peening with aeration on fatigue behaviour of SAE1045 steel

    NASA Astrophysics Data System (ADS)

    Han, B.; Ju, D. Y.; Jia, W. P.

    2007-10-01

    Water cavitation peening (WCP) with aeration is a recent potential method in the surface enhancement techniques. In this method, a ventilation nozzle is adopted to improve the process capability of WCP by increasing the impact pressure, which is induced by the bubble collapse on the surface of components in the similar way as conventional shot peening. In this paper, fatigue tests were conducted on the both-edge-notched flat tensile specimens to assess the influences of WCP on fatigue behaviour of SAE1045 steel. The notched specimens were treated by WCP, and the compressive residual stress distributions in the superficial layer were measured by X-ray diffraction method. The tension-tension ( R = Smin/ Smax = 0.1, f = 10 Hz) fatigue tests and the fracture surfaces observation by scan electron microscopy (SEM) were conducted. The experimental results show that WCP can improve the fatigue life by inducing the residual compressive stress in the superficial layer of mechanical components.

  6. Influence of crystal orientation on hardness and nanoindentation deformation in ion-irradiated stainless steels

    NASA Astrophysics Data System (ADS)

    Miura, Terumitsu; Fujii, Katsuhiko; Fukuya, Koji; Takashima, Keisuke

    2011-10-01

    The influence of crystal orientation on hardness and the range of plastic deformation caused by nanoindentation was investigated in a solution annealed type 316 stainless steel irradiated with Fe 2+ ions. The hardness was a function of grain orientation and was correlated with the Taylor factor averaged over three normal directions of the contact surface of the Berkovich indenter. The transmission electron microscope observations of the deformation microstructure under the indentations showed that the range of plastic deformation reached up to 10 times the indent depth for unirradiated material and depended on the orientation relation between the contact surface of the indenter and the slip directions. The range of plastic deformation decreased as the damage structure developed in ion irradiation.

  7. Influence of sulfate-reducing bacteria on alloy 625 and austenitic stainless steel weldments

    SciTech Connect

    Enos, D.G.; Taylor, S.R.

    1996-11-01

    A series of welded austenitic stainless steel and alloy 625 clad specimens were exposed to natural lake water inoculated with a mixed culture of anaerobic organisms high in sulfate-reducing bacteria. Total exposure was 300 days. The water and bacteria were taken from an actual service water system. Electrochemical testing included electrochemical impedance spectroscopy, monitoring of open-circuit potential (E{sub oc}), and zero resistance ammetry tests. Comparison of electrochemical and visual observations to sterile controls indicated electrochemical behavior of all materials in the test matrix was influenced by the bacteria. Polarization resistance and E{sub oc} values were reduced dramatically. Attack was along the fusion line of the weld. The magnitude of these effects followed a trend predicted by the pitting index for each material.

  8. Influence of zirconium on microstructure and toughness of low-alloy steel weld metals

    NASA Astrophysics Data System (ADS)

    Trindade, V. B.; Mello, R. S. T.; Payão, J. C.; Paranhos, R. P. R.

    2006-06-01

    The influence of zirconium on microstructure and toughness of low-alloy steel weld metal was studied. Weld metals with different zirconium contents were obtained adding iron-zirconium alloy in the welding flux formulation. Weld metal chemical composition proved that zirconium was able to be transferred from the flux to the weld metal. The addition of zirconium refined the weld metal microstructure, increasing the acicular ferrite content. Weld metal toughness, determined by means of impact Charpy-V tests, showed that the zirconium addition is beneficial up to a content of 0.005 wt.%. Above this level, zirconium was not able to produce further microstructure refinement, although the toughness was reduced, possibly due to the formation of microconstituent such as the martensite-austenite constituent (M-A), which is considered to be deleterious to the weld metal toughness.

  9. Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI 321 steel

    NASA Astrophysics Data System (ADS)

    Karthik, D.; Swaroop, S.

    2016-07-01

    The objective of this study is to investigate the influence of laser peening without coating (LPwC) on austenitic to martensitic (γ → α') phase transformation and corrosion behavior of austenitic stainless steel AISI 321 in 3.5% NaCl environment. Results indicate that LPwC induces a large compressive residual stresses of nearly -854 MPa and γ → α' phase transformation of about 18% (volume fraction). Microstructures of peened surface confirmed the γ → α' phase transformation and showed no grain refinement. Hardness increased slightly with a case depth of 900 μm. Despite the smaller surface roughness introduced, corrosion resistance improved after peening due to compressive residual stresses.

  10. The Influence of Heat Treatment on the Microstructure and Machinability of a Prehardened Mold Steel

    NASA Astrophysics Data System (ADS)

    Hoseiny, Hamed; Caballero, Francisca G.; M'Saoubi, Rachid; Högman, Berne; Weidow, Jonathan; Andrén, Hans-Olof

    2015-05-01

    The machinability performance of a modified AISI P20 steel, heat treated to have the same hardness but three different microstructures, lower bainite, tempered martensite, and primary spheroidized carbides in a tempered martensite matrix, was studied. The microstructures were characterized using light optical and scanning electron microscopy and X-ray diffraction, and mechanical properties were compared by means of tensile and Charpy V-notch impact tests. The influence of microstructure and the resultant mechanical properties on machinability was studied in the context of single tooth end milling operation. The results showed that the material containing primary spheroidized carbides exhibited a superior machinability at the expense of a marginal loss of tensile strength and impact toughness, with comparable yield strength to that of the material containing tempered martensite. By contrast, the material with bainitic microstructure showed the lowest yield strength and the poorest machinability performance while having the highest uniform elongation.

  11. Influence of retained austenite on short fatigue crack growth and wear resistance of case carburized steel

    SciTech Connect

    Silva, V.F. da; Canale, L.F.; Spinelli, D.P.; Bose-Filho, W.W.; Crnkovic, O.R.

    1999-10-01

    The influence of the amount of retained austenite on short fatigue crack growth and wear resistance in carburized SAE 8620 steel was studied in this article. Different amounts of retained austenite in the microstructure of the carburized case were obtained through different heat treatment routes applied after the carburizing process. The wear tests were carried out using pin on disk equipment. After every 200 turns the weight loss was registered. Four point bend fatigue tests were carried out at room temperature, using three different levels of stress and R = 0.1. Crack length versus number of cycles and crack growth rate versus mean crack length curves were analyzed. In both tests the results showed that the test pieces with higher levels of retained austenite in the carburized case exhibited longer fatigue life and better wear resistance.

  12. Simulating microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surfaces

    SciTech Connect

    Roe, F.L.; Lewandowski, Z.; Funk, T.

    1996-10-01

    Electrochemical properties of corroding mild steel (MS) surfaces were measured in real time using three closely spaced microelectrodes. Dissolved oxygen, pH, and ion currents were mapped simultaneously and noninvasively above a MS coupon partially coated with biopolymer gels. Calcium alginate (Ca-Alg [an extracellular biopolymer containing carboxylate functional groups]) and agarose (one without carboxylate functional groups) were tested. Corrosion occurred at approximately the same rate under the two biopolymer spots on the same coupon. Corrosion rates under these biopolymers were {approx} 4 mpy in a weak saline solution. Results suggested corrosion was not influenced by chemical properties of the biopolymer but possibly was controlled by oxygen reduction in noncoated regions of the coupon (i.e., a differential aeration cell).

  13. Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI 321 steel

    NASA Astrophysics Data System (ADS)

    Karthik, D.; Swaroop, S.

    2016-06-01

    The objective of this study is to investigate the influence of laser peening without coating (LPwC) on austenitic to martensitic (γ → α') phase transformation and corrosion behavior of austenitic stainless steel AISI 321 in 3.5% NaCl environment. Results indicate that LPwC induces a large compressive residual stresses of nearly -854 MPa and γ → α' phase transformation of about 18% (volume fraction). Microstructures of peened surface confirmed the γ → α' phase transformation and showed no grain refinement. Hardness increased slightly with a case depth of 900 μm. Despite the smaller surface roughness introduced, corrosion resistance improved after peening due to compressive residual stresses.

  14. Analysis of laser cutting speed influence on the surface quality and shape deviation of steel parts

    NASA Astrophysics Data System (ADS)

    Kowalczyk, R.; Zebala, W.

    2014-11-01

    The results of laser cutting speed influence on the quality of machined surface, defined by the Ra roughness parameter and the shape errors, in case of machining two types of steel: i) P265GH, ii) 1.4307 are presented in the paper. Two CO2 laser cutters with maximum power of the laser beam 4000W and 3200W were used for the investigation. The characteristics of the roughness parameter Ra depending on the laser cutting speed vc are presented. The diagrams of shape deviation of the machined specimens for the greatest and lowest values of the Ra for the both laser cutters are also presented. The deviation values from the theoretical profile of the particular samples, taking into account the type of the cut-out shape profiles (circular, linear) are calculated.

  15. Influence of high deformation on the microstructure of low-carbon steel

    NASA Astrophysics Data System (ADS)

    Popa, Florin; Chicinaş, Ionel; Frunză, Dan; Nicodim, Ioan; Banabic, Dorel

    2014-03-01

    Low-carbon steel sheets DC04 used in the automotive industry were subjected to cold rolling for thickness reduction from 20% to 89%. The desired thickness was achieved by successive reductions using a rolling mill. The influence of thickness reduction on the microstructure was studied by scanning electron microscopy. Microstructure evolution was characterized by the distortion of grains and the occurrence of the oriented grain structure for high cold work. A mechanism of grain restructuring for high cold work was described. The occurrence of voids was discussed in relation with cold work. The evolution of voids at the grain boundaries and inside the grains was also considered. To characterize the grain size, the Feret diameter was measured and the grain size distribution versus cold work was discussed. The chemical homogeneity of the sample was also analyzed.

  16. Influence of Heat Input on the Content of Delta Ferrite in the Structure of 304L Stainless Steel GTA Welded Joints

    NASA Astrophysics Data System (ADS)

    Sejč, Pavol; Kubíček, Rastislav

    2011-12-01

    Welding of austenitic stainless steel has its specific issues, even when the weldability is considered good. The main problems of austenitic stainless steel welding are connected with its metallurgical weldability. The amount of the components presented in the structure of stainless steel welded joint affect its properties, therefore the understanding of the behavior of stainless steel during its welding is important for successful processing and allows the fabricators the possibility to manage the resulting issues. This paper is focused on the influence of heat input on the structural changes in GTA welded joints of austenitic stainless steel designated: ASTM SA TP 304L.

  17. Mössbauer investigation of the influence of the sea atmosphere on the corrosion of steel constructions in Sochi

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Lauer, D. E.; Lauer, Yu. A.; Kargin, N. I.; Goloborodko, P. G.; Goloborodko, I. V.; Poliakov, A. M.

    2013-04-01

    A study of the sea atmosphere influence on the corrosion products of steel constructions near Sochi at difference distances from the sea has been made. The phases and compositions of the corrosion products formed on different sides of steel construction elements were examined by using Mössbauer spectroscopy (at 298 and 78 K). The results show that phases and composition distributions in oxide films are different on different parts of the constructions. The differences depend not only on the distance from the sea, but from their relative orientation to the sea also. The phase structure of the oxide films on different positions is identified.

  18. Study of Influence of Heat Treatment on Cyclic Properties of L21HMF Cast Steel

    NASA Astrophysics Data System (ADS)

    Mroziński, Stanisław; Golański, Grzegorz

    2016-07-01

    This work presents the results of studies of CrMoV cast steel after long-term service and after regenerative heat treatment (RHT). The cast steel was investigated in the conditions of static and changeable load. The tests were carried out at room temperature and 550 °C. The fatigue lifetime curves were determined and described using the Basquin-Manson-Coffin relationship. It has been shown that the cast steel after RHT is characterized by smaller range of plastic strain and bigger range of stress amplitude, with the same value of total strain, compared with the cast steel after service. For the cast steel after RHT, the observed fatigue properties were different in comparison with the cast steel after service at small and large strains. At room temperature (20 °C) and at elevated temperature (550 °C), there is an increase in the life of samples of the cast steel after RHT in comparison with the samples of the cast steel after service only in the area of large strains ( ɛ ac > 1.2%). For small strains ɛ ac < 0.50%, the life of the cast steel after RHT at the examined temperatures is shorter than that of the cast steel after service. The paper shows that regardless of an explicit improvement in the strength properties (the static and cyclic ones), as a result of the performed RHT, a complete improvement in the fatigue properties of the cast steel does not occur.

  19. HSLA-100 steels: Influence of aging heat treatment on microstructure and properties

    SciTech Connect

    Mujahid, M.; Lis, A.K.; Garcia, C.I.; deArdo, A.J.

    1998-04-01

    The structural steels used in critical construction applications have traditionally been heat-treated low-alloy steels. These normalized and/or quenched and tempered steels derive strength from their carbon contents. Carbon is a very efficient and cost-effective element for increasing strength in ferrite-pearlite or tempered martensitic structures, but it is associated with poor notch toughness. Furthermore, it is well known that both the overall weldability and weldment toughness are inversely related to the carbon equivalent values, especially at high carbon contents. The stringent control needed for the welding of these traditional steels is one of the major causes of high fabrication costs. In order to reduce fabrication cost while simultaneously improving the quality of structural steels, a new family of high-strength low-alloy steels with copper additions (HSLA-100) has been developed. The alloy design philosophy of the new steels includes a reduction in the carbon content, which improves toughness and weldability.

  20. The influence of surface condition on the localized corrosion of 316L stainless steel orthopaedic implants.

    PubMed

    Beddoes, J; Bucci, K

    1999-07-01

    The localized corrosion of austenitic stainless steel 316L intended for use as orthopaedic implants is determined as a function of the surface condition and metallurgical state. From the examination of samples exposed to a ferric chloride solution, at both 22 and 37 degrees C, the independent contribution of crevice and pitting corrosion to localized corrosion is determined. Both forms of localized corrosion occur to a greater extent at the higher temperature. The results indicate that weight loss measurements may not be sufficient to determine the extent of crevice corrosion separately from the influence of pitting corrosion. More importantly, the surface conditions required for the best resistance to crevice or pitting corrosion differ. Electropolished surfaces provide the best resistance to crevice corrosion, while "bead blasted" surfaces provide the best resistance to pitting corrosion. The implication of this result in terms of the serviceability as orthopaedic implants is discussed. The current results indicate the cold-worked state exhibits improved resistance to pitting corrosion. However, the influence of the metallurgical state could not be separated from a possible compositional effect. PMID:15348123

  1. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  2. Influence of DIT Parameters on the Cementite Spheroidization in a Low-Alloy Medium Carbon Steel

    NASA Astrophysics Data System (ADS)

    Arruabarrena, Jon; López, Beatriz; Rodriguez-Ibabe, Jose M.

    2016-01-01

    The influence of strain, strain rate, and temperature on deformation-induced transformation (DIT) in a low-alloy medium carbon steel is studied. The strain promotes the nucleation of ferrite (deformation-induced ferrite) and also pearlite (deformation-induced pearlite), this last being characterized by a fine interlamellar spacing and morphological instability. At strains ɛ > 0.5, intragranular nucleation activates and further ferrite nucleation over the newly created α/ γ interface takes place, which gives rise to the precipitation of cementite (deformation-induced cementite) at the ferrite boundaries. Soft annealing treatments have been performed on the microstructures obtained by DIT, and the degree of spheroidization has been quantified by image analysis techniques. In comparison to non-deformed conditions, the application of DIT results in a higher degree of spheroidization after soft annealing. Moreover, the EBSD analysis denotes that ferrite grain size refinement is achieved with respect to non-deformed conditions. The degree of spheroidization is highly influenced by the applied strain level and subsequent holding temperature.

  3. Shrinkage Study of Polypropylene Films Laminated on Steel-Influence of the Conformation Processes

    NASA Astrophysics Data System (ADS)

    Ponçot, Marc; Martin, Julien; Dahoun, Abdesselam; Hiver, Jean-Marie; Bourson, Patrice; Verchère, Didier

    2011-05-01

    Nowadays, thermoplastic polymers do not cease to attract the interest of the industrialists as steel / polymer composites for various applications in several domains, such as the automotive and the packaging. The ratio between their wide range of thermo-mechanical properties and their low weight density make these materials a real alternative for the current solutions for the lightening and the reinforcement of structural pieces. Likewise, their working facility is a major asset for performing parts of complex geometry. In this paper, we highlight the narrow relationship between the microstructure of a small impact isotactic polypropylene film, either filled or not by mineral particles (calcite), and its behaviour towards shrinkage which can occur during thermal treatments above its melting temperature. This phenomenon of shrinkage is characterized by dimensional instabilities which can in particular, affect the life cycle of the material. Indeed, they may induce the partial delamination of the steel sheet which is consequently exposed to various environmental aggressions. Corrosive behaviour can occur and cause early breakdown of the material. Influences of the extrusion and stamping processes on the microstructure and the shrinkage are presented. The macromolecular chains orientation of the crystalline phase, the volume damage and the heating parameters are studied, and show a real impact on the phenomenon magnitude. An experimental setup was developed at the laboratory to measure in real-time and with good precision, the displacements induced by shrinkage and the microstructural evolution of the polymer film during different thermal cycles. Finally, an empirical law allowing the shrinkage prediction is presented, taking into account the deformation value and the initial degree of chains orientation. These studies and their results have led to the determination of the optimal parameters settings for the different conformation processes with the aim of reducing

  4. Influence of Martensite Volume Fraction on Impact Properties of Triple Phase (TP) Steels

    NASA Astrophysics Data System (ADS)

    Zare, Ahmad; Ekrami, A.

    2013-03-01

    Ferrite-bainite-martensite triple phase (TP) microstructures with different volume fractions of martensite were obtained by changing heat treatment time during austempering at 300 °C. Room temperature impact properties of TP steels with different martensite volume fractions ( V M) were determined by means of Charpy impact testing. The effects of test temperature on impact properties were also investigated for two selected microstructures containing 0 (the DP steel) and 8.5 vol.% martensite. Test results showed reduction in toughness with increasing V M in TP steels. Fracture toughness values for the DP and TP steels with 8.5 vol.% martensite were obtained from correlation between fracture toughness and the Charpy impact energy. Fractography of Charpy specimens confirmed decrease in TP steels' toughness with increasing V M by considering and comparing radial marks and crack initiation regions at the fracture surfaces of the studied steels.

  5. Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Ramasagara Nagarajan, Varun

    Many metallic structural components come into contact with hydrogen during manufacturing processes or forming operations such as hot stamping of auto body frames and while in service. This interaction of metallic parts with hydrogen can occur due to various reasons such as water molecule dissociation during plating operations, interaction with atmospheric hydrogen due to the moisture present in air during stamping operations or due to prevailing conditions in service (e.g.: acidic or marine environments). Hydrogen, being much smaller in size compared to other metallic elements such as Iron in steels, can enter the material and become dissolved in the matrix. It can lodge itself in interstitials locations of the metal atoms, at vacancies or dislocations in the metallic matrix or at grain boundaries or inclusions (impurities) in the alloy. This dissolved hydrogen can affect the functional life of these structural components leading to catastrophic failures in mission critical applications resulting in loss of lives and structural component. Therefore, it is very important to understand the influence of the dissolved hydrogen on the failure of these structural materials due to cyclic loading (fatigue). For the next generation of hydrogen based fuel cell vehicles and energy systems, it is very crucial to develop structural materials for hydrogen storage and containment which are highly resistant to hydrogen embrittlement. These materials should also be able to provide good long term life in cyclic loading, without undergoing degradation, even when exposed to hydrogen rich environments for extended periods of time. The primary focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behaviour of a commercially available high strength medium carbon low alloy (AISI 4140) steel. The secondary objective was to examine the influence of microstructure on the fatigue crack growth behaviour of this material and to determine the

  6. Influence of kinetics of supercooled austenite decomposition on structure formation in sparingly-alloyed tool steel

    NASA Astrophysics Data System (ADS)

    Krylova, S. E.; Yakovleva, I. L.; Tereshchenko, N. A.; Priimak, E. Yu.; Kletsova, O. A.

    2013-10-01

    The decomposition of supercooled austenite in 70Kh3G2VTB steel under isothermal conditions and continuous cooling have been studied. The isothermal and continuous cooling tranformation curves of the decomposition of austenite in the experimental steel have been constructed. The effect of alloying elements on phase transformations in the steel under heating and cooling have been established. The features of the formation of a microstructure in the 70Kh3G2VTB steel after different regimes of heat treatment have been described. The optimal parameters of hardening heat treatment have been developed.

  7. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    NASA Astrophysics Data System (ADS)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  8. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    SciTech Connect

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-25

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  9. Influence of copper on the structure and mechanical properties of pearlitic steels

    NASA Astrophysics Data System (ADS)

    Izotov, V. I.; Ilyukhin, D. S.; Getmanova, M. E.; Filippov, G. A.

    2016-06-01

    The structure and mechanical properties of pearlitic steels, which contain ~0.6% carbon and copper in the amount of 1.25 and 1.4%, have been studied in the states immediately after the pearlitic transformation (with different rates of cooling) and after tempering at 500°C. It has been established that tempered pearlitic steel with copper is 10-15% stronger than the steel of similar composition without copper. The strengthening of copper-containing pearlitic steel after tempering is caused by the precipitation of copper particles 5-20 nm in size in the ferritic regions of pearlite and in grains of free ferrite.

  10. Influence of hydrogen isotopes and radiogenic helium on the structure and mechanical properties of radiation-resistant steels with a composite alpha/gamma structure

    SciTech Connect

    Sagaradze, V.V.; Arbuzov, V.L.; Lapin, S.S.; Zuev, Y.N.; Markelov, N.N.; Dolinski, Y.N.

    1995-10-01

    It is shown that the Cr-Ni-Mo stainless steel with a fine-plate austenitic-martensitic structure has a high resistance to radiation swelling. The influence of small amounts of tritium (0.015 at.%) and radiogenic helium (approx.2.5 appm) on the mechanical proper ties of the steel is analysed. 3 refs., 2 figs., 1 tab.

  11. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm.

    PubMed

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-01-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm. PMID:26846970

  12. Influence of gaseous environments on rates of near-threshold fatigue crack propagation in nicrmov steel

    NASA Astrophysics Data System (ADS)

    Liaw, Peter K.; Hudak, S. J.; Donald, J. Keith

    1982-09-01

    The influence of hydrogen environment (448 kPa) on near-threshold fatigue crack propagation rates was examined in a 779 MPa yield strength NiCrMoV steel at 93 °C. An automatically decreasing and increasing stress intensity technique was employed to generate crack growth rates at three load ratios (R = 0.1, 0.5, and 0.8). Results show that the crack propagation rates in hydrogen are slower than those in air for levels of stress intensity range, ΔK, below about 12 MPa√m. The crack closure concept does not explain the slower crack growth rates in hydrogen than in air. Near-threshold growth rates appear to be controlled by the levels of residual moisture in the environments. In argon and air, the fracture morphology is transgranular, while in H2 the amount of intergranularity varies with ΔK and achieves a maximum when the cyclic plastic zone is approximately equal to the prior austenite grain size.

  13. The Influence of Pre-existing Deformation on GMA Welding Distortion in Thin Steel Plates

    NASA Astrophysics Data System (ADS)

    Davies, C. M.; Ahn, J.; Tsunori, M.; Dye, D.; Nikbin, K. M.

    2015-01-01

    Weld distortion is particularly problematic for large thin structures that are used in the assembly of ships. The drive toward lighter ships and thinner plate is restricted by the significant increase in distortion as the plate thickness decreases. The influence of pre-existing deformation in the plates to be joined on the resultant distortion in gas metal arc welded structure has been studied. DH-36 steel plate surface profiles were measured before and after the butt welding of two plates 1000 × 500 × 4 mm in size. Three dimensional finite element models that incorporate the initial plate profile have been created to simulate the welding process and to examine the relationship between the final welded plate profiles and the initial deformation present in the plates. Both symmetric and asymmetric models were considered. A significant variation in the unwelded base plates' initial distortion was observed. Generally, it has been found that if an out-of-plane deformation exists in a plate prior to welding, the level of distortion further increases in the same direction following welding. The final distortions are strongly related to the initial plate profiles. The residual stress distributions in the plates are also to some extent affected by the level of distortion initially present.

  14. The Influence of Hydrogen on the Microstructure and Dynamic Strength of Lean Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Silverstein, Ravit; Glam, Benny; Eliezer, Dan; Moreno, Daniel; Eliezer, Shalom

    2015-06-01

    In this research the dynamic strength of lean duplex stainless steel (LDS) with and without hydrogen was investigated. The LDS was chosen since it has a mixed structure of ferrite (BCC) and austenite (FCC) which allows an attractive combination of high strength and plasticity. Data collection was performed by VISAR and metallurgical analysis by post mortem observation. In addition, a thermal desorption process (TDS) was carried out in order to observe the influence of hydrogen charging on LDS crystal structure and to determine the hydrogen trapping mechanism before and after the plate impact experiments. Several assessments can be made based on the results of this study. TDS analysis revealed that even after hydrogen desorption, some hydrogen remained trapped in the austenitic phase causing a small lattice expansion. After impact, a brittle spall mechanism was seen, which occurred through crack progression along both phases grain boundaries. It was found that even small hydrogen content affects the dynamic strength of LDS. The relation between the microstructure and the dynamic strength of the LDS in the presence of hydrogen will be discussed. This work was supported by the Pazi foundation.

  15. Influence of sulfur and welding conditions on penetration in thin strip stainless steel

    SciTech Connect

    Scheller, P.R. ); Brooks, R.F.; Mills, K.C. . Division of Materials Metrology)

    1995-02-01

    Welding trials and surface tension measurements have been carried out on 304 stainless steels with sulfur (S) contents between 20 and 100 ppm. Surface tension measurements, determined by the levitated drop method, indicated that the temperature coefficient of surface tension (d[gamma]/dT) changed from negative to positive values at S contents exceeding approximately 50 ppm. Strips with a thickness of approximately 1 mm were GTA welded on both single-electrode, small-scale and multi-electrode industrial-scale units. Welding speeds of 1 to 2 m min[sup [minus]1] were used on the small-scale unit and up to 5 m min[sup [minus]1] on the industrial unit. The weld penetration was found to increase, for both full and partial penetration welds, with (1) increasing sulfur contents; and (2) increasing linear energy. On the small scale-unit markedly higher penetration was observed in heats with S contents > 60 ppm. But the influence of S contents was only of minor importance for welds obtained on the industrial unit. It was found that the similar weld geometry could be obtained for both low ([<=] 60 ppm) and high (> 60 ppm) sulfur contents by careful adjustment of welding parameters. The observed changes in weld geometry are consistent with the proposition that the fluid flow in the weld pool is dominated by thermo-capillary (Marangoni) forces during the GTA welding of thin strips.

  16. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    NASA Astrophysics Data System (ADS)

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-02-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm.

  17. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm.

    PubMed

    Zhang, Peiyu; Xu, Dake; Li, Yingchao; Yang, Ke; Gu, Tingyue

    2015-02-01

    In the microbiologically influenced corrosion (MIC) caused by sulfate reducing bacteria (SRB), iron oxidation happens outside sessile cells while the utilization of the electrons released by the oxidation process for sulfate reduction occurs in the SRB cytoplasm. Thus, cross-cell wall electron transfer is needed. It can only be achieved by electrogenic biofilms. This work hypothesized that the electron transfer is a bottleneck in MIC by SRB. To prove this, MIC tests were carried out using 304 stainless steel coupons covered with the Desulfovibrio vulgaris (ATCC 7757) biofilm in the ATCC 1249 medium. It was found that both riboflavin and flavin adenine dinucleotide (FAD), two common electron mediators that enhance electron transfer, accelerated pitting corrosion and weight loss on the coupons when 10ppm (w/w) of either of them was added to the culture medium in 7-day anaerobic lab tests. This finding has important implications in MIC forensics and biofilm synergy in MIC that causes billions of dollars of damages to the US industry each year. PMID:25023048

  18. Influence of deformation on structural-phase state of weld material in St3 steel

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexander; Kozlov, Eduard; Ababkov, Nicolay; Popova, Natalya; Nikonenko, Elena; Ozhiganov, Yevgeniy; Zboykova, Nadezhda; Koneva, Nina

    2016-01-01

    The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn't lead to the internal stresses that can destroy the sample.

  19. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    PubMed Central

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-01-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm. PMID:26846970

  20. The influence of electropolishing on the corrosion resistance of 316L stainless steel.

    PubMed

    Sutow, E J

    1980-09-01

    A study was conducted which examined the influence of electropolishing on the corrosion resistance of a cold rolled 316L stainless steel. Test specimens were surface prepared to a final mechanical finish of wetted 600 grit SiC paper, prior to electropolishing. An o-H3PO4/Glycerol/H2O electropolishing solution was employed for times of 15, 20, and 25 min. Control specimens were surface prepared only to the final mechanical finish. Anodic polarization tests were performed in a deaerated Ringer's solution (37 degrees C) which was acidified to pH 1, with HCl. The electropolished specimens demonstrated increased corrosion resistance, when compared to the control specimens. This was evidenced for the former by more anodic corrosion and breakdown potentials, and the absence of a dissolution peak which was observed for the control specimens at the initial polarization potentials. Surface hardness measurements indicated that this increase in corrosion resistance was produced, in part, by the removal of the cold worked surface layer produced by the mechanical finish. In terms of increasing corrosion resistance, no optimum electropolishing time was found within the 15-25 min treatment period. PMID:7349665

  1. Influence of Carbide Precipitation and Dissolution on the Microstructure of Ultra-Fine-Grained Intercritically Annealed Medium Manganese Steel

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; De Cooman, Bruno C.

    2016-04-01

    The influence of cementite precipitation and dissolution on the formation of the carbide-free, ultra-fine-grained, ferrite + austenite microstructure of medium manganese steel was analyzed. During heating to the intercritical temperature, cementite nucleates at low-angle lath martensite boundaries, austenite subsequently nucleates at ferrite/cementite boundaries, and the cementite is gradually replaced by the growing austenite grains. The intercritical austenite carbon is therefore due to cementite dissolution, rather than carbon partitioning between ferrite and austenite.

  2. Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Anderoglu, O.; Misra, A.; Wang, H.

    2007-04-01

    The authors have studied the influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel thin films. Transmission electron microscopy shows that the volume fraction of twinned grains increases with increasing deposition rate, whereas the average columnar grain size and twin spacing stay approximately unchanged. These experimental results agree qualitatively with their analytical model that predicts deposition rate dependent formation of growth twins. The film hardness increases monotonically with increasing volume fraction of twinned grains.

  3. Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films

    SciTech Connect

    Zhang, X.; Anderoglu, O.; Misra, A.; Wang, H.

    2007-04-09

    The authors have studied the influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel thin films. Transmission electron microscopy shows that the volume fraction of twinned grains increases with increasing deposition rate, whereas the average columnar grain size and twin spacing stay approximately unchanged. These experimental results agree qualitatively with their analytical model that predicts deposition rate dependent formation of growth twins. The film hardness increases monotonically with increasing volume fraction of twinned grains.

  4. Influence of deformation behavior, oxydation, and temperature on the long time cyclic stress behavior of high temperature steels

    NASA Technical Reports Server (NTRS)

    Maile, K.

    1982-01-01

    The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.

  5. Influence of Carbide Precipitation and Dissolution on the Microstructure of Ultra-Fine-Grained Intercritically Annealed Medium Manganese Steel

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; De Cooman, Bruno C.

    2016-07-01

    The influence of cementite precipitation and dissolution on the formation of the carbide-free, ultra-fine-grained, ferrite + austenite microstructure of medium manganese steel was analyzed. During heating to the intercritical temperature, cementite nucleates at low-angle lath martensite boundaries, austenite subsequently nucleates at ferrite/cementite boundaries, and the cementite is gradually replaced by the growing austenite grains. The intercritical austenite carbon is therefore due to cementite dissolution, rather than carbon partitioning between ferrite and austenite.

  6. Influence of additions of adamantane and its derivatives on electrolytic polishing of Cr18Ni9 stainless steel

    SciTech Connect

    Fedorova, E.A.; Mitrofanov, E.V.; Flerov, V.N.

    1986-02-10

    The authors report the influence of additions of adamantane, hydroxadamantane, bromoadamantane, and acetylaminoadamantane on polishing of Cr18Ni9 alloys in sulfuric-phosphoric acid electrolyte. They show that replacement of adamantane by certain of its derivatives in sulfuric-phosphoric acid solutions for polishing Cr18Ni9 steel increases the technological efficiency of the process considerably; this is due to the greater influence of the new additives on the polarizability of the process and on the surface tension of the solutions.

  7. Influence of oxide scales on the corrosion behaviors of B510L hot-rolled steel strips

    NASA Astrophysics Data System (ADS)

    Man, Cheng; Dong, Chao-fang; Xue, Hui-bin; Xiao, Kui; Li, Xiao-gang; Qi, Hui-bin

    2016-07-01

    The influence of oxide scales on the corrosion behaviors of B510L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-FeOOH, Fe3O4, α-FeOOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.

  8. Simulation study on factors influencing the entrainment behavior of liquid steel as bubbles pass through the steel/slag interface

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Bao, Yan-ping; Wang, Min; Lin, Lu

    2016-05-01

    In this study, a water/silicone oil interface was used to simulate the steel/slag interface in a converter. A high-speed camera was used to record the entrainment process of droplets when air bubbles were passed through the water/silicone oil interface. Motion parameters of the bubbles and droplets were obtained using particle kinematic analysis software, and the entrainment rate of the droplets was calculated. It was found that the entrainment rate decreased from 29.5% to 0 when the viscosity of the silicone oil was increased from 60 mPa·s to 820 mPa·s in the case of bubbles with a 5 mm equivalent diameter passing through the water/silicone oil interface. The results indicate that increasing the viscosity of the silicone oil is conducive to reducing the entrainment rate. The entrainment rate increased from 0 to 136.3% in the case of silicone oil with a viscosity of 60 mPa·s when the equivalent diameter of the bubbles was increased from 3 mm to 7 mm. We therefore conclude that small bubbles are also conductive to reducing the entrainment rate. The force analysis results for the water column indicate that the entrainment rate of droplets is affected by the velocity of the bubble passing through the water/silicone oil interface and that the entrainment rate decreases with the bubble velocity.

  9. Materials Selection Criteria for Nuclear Power Applications: A Decision Algorithm

    NASA Astrophysics Data System (ADS)

    Rodríguez-Prieto, Álvaro; Camacho, Ana María; Sebastián, Miguel Ángel

    2016-02-01

    An innovative methodology based on stringency levels is proposed in this paper and improves the current selection method for structural materials used in demanding industrial applications. This paper describes a new approach for quantifying the stringency of materials requirements based on a novel deterministic algorithm to prevent potential failures. We have applied the new methodology to different standardized specifications used in pressure vessels design, such as SA-533 Grade B Cl.1, SA-508 Cl.3 (issued by the American Society of Mechanical Engineers), DIN 20MnMoNi55 (issued by the German Institute of Standardization) and 16MND5 (issued by the French Nuclear Commission) specifications and determine the influence of design code selection. This study is based on key scientific publications on the influence of chemical composition on the mechanical behavior of materials, which were not considered when the technological requirements were established in the aforementioned specifications. For this purpose, a new method to quantify the efficacy of each standard has been developed using a deterministic algorithm. The process of assigning relative weights was performed by consulting a panel of experts in materials selection for reactor pressure vessels to provide a more objective methodology; thus, the resulting mathematical calculations for quantitative analysis are greatly simplified. The final results show that steel DIN 20MnMoNi55 is the best material option. Additionally, more recently developed materials such as DIN 20MnMoNi55, 16MND5 and SA-508 Cl.3 exhibit mechanical requirements more stringent than SA-533 Grade B Cl.1. The methodology presented in this paper can be used as a decision tool in selection of materials for a wide range of applications.

  10. Evolution of mechanical properties of boron/manganese 22MnB5 steel under magnetic pulse influences

    NASA Astrophysics Data System (ADS)

    Falaleev, A. P.; Meshkov, V. V.; Vetrogon, A. A.; Shymchenko, A. V.

    2016-02-01

    The boron/manganese 22MnB5 steel can be noted as the widely used material for creation of details, which must withstand high amount of load and impact influences. The complexity and high labor input of restoration of boron steel parts leads to growing interest in the new forming technologies such as magnetic pulse forming. There is the investigation of the evolution of mechanical properties of 22MnB5 steel during the restoration by means of magnetic pulse influence and induction heating. The heating of 22MnB5 blanks to the temperature above 9000C was examined. The forming processes at various temperatures (800, 900 and 9500C) were performed during the experiments. The test measurements allowed to obtain the relationships between the strain and the operation parameters such as induced current, pulse discharge time and the operation temperature. Based on these results the assumption about usage of these parameters for control of deformation process was made. Taking into account the load distribution and the plasticity evolution during the heating process, the computer simulation was performed in order to obtain more clear strain distribution through the processed area. The measurement of hardness and the comparison with the properties evolution during hot stamping processes confirmed the obtained results.

  11. Influence of heat treatment on mechanical properties of 300M steel

    NASA Technical Reports Server (NTRS)

    Youngblood, J. L.; Raghavan, M.

    1975-01-01

    Tests show that 300M steel should be austenitized at temperatures above 1,800 deg. F to yield best combintion of strength and thickness. Tempering should be performed at temperatures between 400 and 600 deg. F

  12. The influence of oxygen on the impact toughness and microstructure of steel weld metal

    SciTech Connect

    Sato, Yoshihiro; Kuwana, Takeshi; Maie, Tsuyoshi

    1995-12-31

    A steel plate was welded in a low oxygen potential welding atmosphere. The weld metal obtained is classified in two groups on the oxygen content, very low oxygen content (less than 0.002 mass %) weld metal and relatively high oxygen content (over 0.015 mass%) weld metal. The effect of oxygen in steel weld metal on the Charpy v-notch impact values and the microstructure is investigated and discussed. Very low oxygen content steel weld metal shows superior impact toughness at 273 K as well as the well-known ``optimum oxygen`` containing steel weld metal. The very low oxygen weld metal has relatively large amounts of grain boundary ferrite and side plate ferrite microstructure, instead of upper bainite compared with the relatively high oxygen content weld metal.

  13. The influence of scanning speed and number of scans on the properties of laser formed steel

    NASA Astrophysics Data System (ADS)

    Sanusi, Kazeem O.; Akinlabi, Stephen; Akinlabi, Esther T.

    2016-03-01

    Laser Beam Forming (LBF) process is an emerging and new forming method that generally requires brute force to forge the steel into the desired shape instead of using conventional methods. This study investigates the changes that occur in low carbon steel through the laser beam forming process. The parameters under investigation include variable scanning speed and number of scans at fixed laser intensity. The effect of these laser parameters on the chemical composition and properties of low carbon steel is assessed through characterisation of both the as received and LBF formed specimens. Characterizations of the laser formed steels were studied using microstructural analysis and micro hardness profiling. The results show that there is a significant increase in the mechanical properties of the LBF formed materials. Scanning power and the number of scans have a noticeable effect on the curvature achieved in the formed samples. The results obtained will contribute towards the further optimization of laser forming methods for steel for the optimization of the properties of steel using Laser Beam Forming process.

  14. The influence of sodium hypochlorite biocide on the corrosion of carbon steel in reclaimed water used as circulating cooling water

    NASA Astrophysics Data System (ADS)

    Su, Weina; Tian, Yimei; Peng, Sen

    2014-10-01

    In this paper, we investigated the influence of sodium hypochlorite (NaClO) biocide on the corrosion of carbon steel in four different conditions during one dosing cycle. The results from the polarisation curve and electrochemical impedance spectroscopy (EIS) indicated that NaClO could affect the activity of microorganisms, leading to corrosion inhibition. The equivalent circuits had two time constants in the presence of biocide, which suggested that an oxide layer of NaClO was formed on the carbon steel surface. Environmental scanning electron microscopy (ESEM) and energy dispersive spectroscopy (EDS) were both employed to demonstrate that NaClO produced a good antibacterial activity, thereby indirectly retarding corrosion while simultaneously inhibiting scaling.

  15. Influence of cubic boron nitride grinding on the fatigue strengths of carbon steels and a nickel-base superalloy

    SciTech Connect

    Kawagoishi, N.; Chen, Q.; Kondo, E.; Goto, M.; Nisitani, H.

    1999-04-01

    The influence of cubic boron nitride (CBN) grinding on fatigue strength was investigated on an annealed carbon steel, a quenched and tempered carbon steel at room temperature, and a nickel-base superalloy, Inconel 718, at room temperature and 500 C. The results were discussed from several viewpoints, including surface roughness, residual stress, and work hardening or softening due to CBN grinding. The fatigue strength increased upon CBN grinding at room temperature, primarily because of the generation of compressive residual stress in the surface region. However, in the case of Inconel 718, this marked increase in the fatigue strength tended to disappear at the elevated temperature due to the release of compressive residual stress and the decrease of crack growth resistance at an elevated temperature.

  16. The influence of deformation-induced residual stresses on the post-forming tensile stress/strain behavior of dual-phase steels

    NASA Astrophysics Data System (ADS)

    Hance, Brandon Michael

    It was hypothesized that, in dual-phase (DP) steels, strain partitioning between ferrite (alpha) and martensite (alpha') during deformation results in a distribution of post-deformation residual stresses that, in turn, affects the subsequent strength, work hardening behavior and formability when the strain path is changed. The post-forming deformation-induced residual stress state was expected to depend upon the microstructure, the amount of strain and the prestrain path. The primary objective of this research program was to understand the influence of deformation-induced residual stresses on the post-forming tensile stress/strain behavior of DP steels. Three commercially produced sheet steels were considered in this analysis: (1) a DP steel with approximately 15 vol. % martensite, (2) a conventional high-strength, low-alloy (HSLA) steel, and (3) a conventional, ultra-low-carbon interstitial-free (IF) steel. Samples of each steel were subjected to various prestrain levels in various plane-stress forming modes, including uniaxial tension, plane strain and balanced biaxial stretching. Neutron diffraction experiments confirmed the presence of large post-forming deformation-induced residual stresses in the ferrite phase of the DP steel. The deformation-alphainduced residual stress state varied systematically with the prestrain mode, where the principal residual stress components are proportional to the principal strain components of the prestrain mode, but opposite in sign. For the first time, and by direct experimental correlation, it was shown that deformation-induced residual stresses greatly affect the post-forming tensile stress/strain behavior of DP steels. As previously reported in the literature, the formability (residual tensile ductility) of the IF steel and the HSLA steel was adversely affected by strain path changes. The DP steel presents a formability advantage over the conventional IF and HSLA steels, and is expected to be particularly well suited for

  17. Addition of Dispersoid Titanium Oxide Inclusions in Steel and Their Influence on Grain Refinement

    NASA Astrophysics Data System (ADS)

    Kiviö, Miia; Holappa, Lauri; Iung, Thierry

    2010-12-01

    In this article, the addition of dispersoid titanium oxide inclusions into liquid steel, the effect of additions on the inclusions found in the steel and on grain refinement, and acicular ferrite formation were studied. Different TiO2-containing materials and addition procedures into liquid steel were tested in experimental heats to obtain inclusions that promote grain refinement and acicular ferrite formation in C-Mn-Cr steel. Different additives with metallic Ti and TiO2 were added into the steel melt just before casting or into the mold during casting to create Ti-containing inclusions. The aluminum content in steel was lowered by an addition of iron oxide. The samples taken from steel melts and ingots were studied with a scanning electron microscope to find inclusions and to analyze them. Thermodynamic calculations showed that the Al content should be low (<50 ppm) to obtain Ti oxide dominating inclusions, whereas Al2O3 were formed at higher Al contents. When TiO2 was added late before casting, the oxide inclusions were Ti oxides and were mixed with Ti, Al, and Mn oxides. Small inclusions around 1 μm were detected in the samples with TiO x or TiN as the main component. It could be concluded that the additions resulted in a clearly higher number and in a smaller size of TiO x inclusions than just by adding metallic Ti. Selected samples were brought for subsequent hot rolling and heat-treatment experiments to find out the grain-refining effect and the eventual formation of acicular ferrite. Grain refinement was observed clearly, but the presence of acicular ferrite could not be confirmed definitely.

  18. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Adhe, K. M.; Kain, V.; Madangopal, K.; Gadiyar, H. S.

    1996-08-01

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 °C for 30 min to 10 h. The heat-treated samples then undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 °C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted.

  19. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  20. Influence of chromium content on corrosion of plasma-nitrided steels

    SciTech Connect

    Venkatesan, K.; Subramanian, C.; Green, L.K.; Strafford, K.N.

    1997-07-01

    Commercial steels with varying chromium contents were plasma nitrided for 25 h in a 70% nitrogen + 30% hydrogen gas atmosphere at 520 C under a pressure of 670 Pa. Steels tested included AISI types 4140, with 1% Cr (UNS G41400); H-13, with 5% Cr (UNS T20813); D-2, with 12% Cr (UNS T30402); and 431, with 16% Cr (UNS S43100). Surface layers obtained were characterized using optical microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy with energy dispersive x-ray spectroscopy. Potentiodynamic polarization curves were obtained at room temperature (RT) on samples immersed in an aerated 0.05 M sodium sulfate solution of pH 3.0. Polarization tests were repeated at various depths beneath the surface after grinding successively with abrasives and finishing with 3-{micro}m diamond paste. Potential-vs-time graphs were recorded. Nitrided steels with up to and including 12% Cr showed an increase in corrosion resistance, whereas a decrease was observed for the 16% Cr steel compared to untreated samples. The nitrogen diffusion zones in all the steels studied exhibited reduced corrosion resistance compared to both the nitrided surface and to untreated specimens. Observations were discussed in light of the passivation theory. The role of chromium in nitriding was found to be mainly in hardness enhancement rather than improvement of corrosion resistance.

  1. Influence of vanadium on static recrystallization in warm worked microalloyed steels

    SciTech Connect

    Garcia-Mateo, C.; Lopez, B.; Rodriguez-Ibabe, J.M.

    1999-12-31

    Warm forging of steels, in the range from 600 to 900 C, offers some important advantages over traditional forging procedures, with a better dimensional accuracy as well as surface quality in comparison with hot forging, and lower flow stress and therefore lower press loads in comparison with cold forging. It is well established that in hot working of V microalloyed steels, the vanadium in solid solution has a little effect on the static recrystallization kinetics between passes. In contrast, if strain induced precipitation takes place the static recrystallization is notably modified. The objective of this work is to study the effects that the application of warm working can have on the austenite static recrystallization process of vanadium microalloyed steels, considering a range of temperatures in which different precipitate volume fractions can remain undissolved in the austenite prior to deformation. The static recrystallization kinetics were determined by stress relaxation tests following the deformation by plain strain compression.

  2. Possible influence of sulfur content on magnetic aging behaviors of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Mao, Wei-Min; Yang, Ping; Li, Chang-Rong

    2013-12-01

    Six non-oriented steel sheets of similar grade produced by different steel companies were used to analyze the magnetic aging behaviors after aging at 200°C for 48 h. It was observed that tiny S atoms, besides C and N, could also induce certain increase of core loss during aging. Thermodynamic calculation indicated that the nucleation driving force of FeS is much higher than those of Fe3C and Fe4N at low temperature, while S atoms, which tend to segregated around dislocations and boundaries, would diffuse rapidly along the crystalline defects while FeS particles would form. Therefore, higher content of tiny S atoms could increase core loss during service time of non-oriented steel sheets.

  3. Modelling of Nb influence on phase transformation behaviours from austenite to ferrite in low carbon steels

    NASA Astrophysics Data System (ADS)

    Wang, L.; Parker, S. V.; Rose, A. J.; West, G. D.; Thomson, R. C.

    2016-03-01

    In this paper, a new model has been developed to predict the phase transformation behaviours from austenite to ferrite in Nb-containing low carbon steels. The new model is based on some previous work and incorporates the effects of Nb on phase transformation behaviours, in order to make it applicable for Nb-containing steels. Dissolved Nb atoms segregated at prior austenite grain boundaries increase the critical energy for ferrite nucleation, and thus the ferrite nucleation rate is decreased. Dissolved Nb atoms also apply a solute drag effect to the moving transformation interface, and the ferrite grain growth rate is also decreased. The overall transformation kinetics is then calculated according to the classic Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. The new model predictions are quite consistent with experimental results for various steels during isothermal transformations or continuous cooling.

  4. Influence of the PM-Processing Route and Nitrogen Content on the Properties of Ni-Free Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lefor, Kathrin; Walter, M.; Weddeling, A.; Hryha, E.; Huth, S.; Weber, S.; Nyborg, L.; Theisen, W.

    2015-03-01

    Ni-free austenitic steels alloyed with Cr and Mn are an alternative to conventional Ni-containing steels. Nitrogen alloying of these steel grades is beneficial for several reasons such as increased strength and corrosion resistance. Low solubility in liquid and δ-ferrite restricts the maximal N-content that can be achieved via conventional metallurgy. Higher contents can be alloyed by powder-metallurgical (PM) production via gas-solid interaction. The performance of sintered parts is determined by appropriate sintering parameters. Three major PM-processing routes, hot isostatic pressing, supersolidus liquid phase sintering (SLPS), and solid-state sintering, were performed to study the influence of PM-processing route and N-content on densification, fracture, and mechanical properties. Sintering routes are designed with the assistance of thermodynamic calculations, differential thermal analysis, and residual gas analysis. Fracture surfaces were studied by X-ray photoelectron spectroscopy, secondary electron microscopy, and energy dispersive X-ray spectroscopy. Tensile tests and X-ray diffraction were performed to study mechanical properties and austenite stability. This study demonstrates that SLPS process reaches high densification of the high-Mn-containing powder material while the desired N-contents were successfully alloyed via gas-solid interaction. Produced specimens show tensile strengths >1000 MPa combined with strain to fracture of 60 pct and thus overcome the other tested production routes as well as conventional stainless austenitic or martensitic grades.

  5. Modelling and simulation of the influence of forming processes on the structural behavior of high strength steels

    SciTech Connect

    Gelin, J.C.; Thibaud, S.; Boudeau, N.

    2005-08-05

    The paper first describes experiments and modeling concerning the identification of material behavior for high strength steels with phase transformations associated to plastic deformation. The experiments consist of tensile and bulging tests carried out on 316L stainless steels and TRIP 700 steels used in automotive industry. These experiments have permitted to determine the hardening curves of such materials vs. the martensite volume fraction associated to plastic deformation. It has been demonstrated that the stress triaxiality has a major role in the martenstic transformation and a model is proposed to define the flow stress vs. effective strain accounting planar anisotropy and variation of martenstic volume fraction. Then a plasticity model has been proposed in an anisotropic form and the related flow rules have been defined. The resulting model has been implemented in different finite elements software, and applied in numerical simulations of stamping and hydroforming of typical components to prove the effects of forming processes on the resulting properties of the components. Finally, the structural behavior of the resulting components is investigated and the effects of forming processes on the resulting structural behaviour are analyzed. Two cases are presented, one concerns the deep drawing of a cylindrical cup and the other concerns the stamping of a closed U channel used as a structural part for crash frames. Is has been clearly proved that the variation of martensite volume fraction arising during processing has a strong influence on the resulting behaviour of the parts considering springback and crash resistance.

  6. Microbially Influenced Corrosion of 304 Stainless Steel and Titanium by P. variotii and A. niger in Humid Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Zhou, Feichi; Xiao, Kui; Cui, Tianyu; Qian, Hongchong; Li, Xiaogang

    2015-07-01

    Microbially induced corrosion (MIC) poses significant threats to reliability and safety of engineering materials and structures. While most MIC studies focus on prokaryotic bacteria such as sulfate-reducing bacteria, the influence of fungi on corrosion behaviors of metals has not been adequately reported. In this study, 304 stainless steel and titanium were exposed to two very common fungi, Paecilomyces variotii, Aspergillus niger and their mixtures under highly humid atmosphere. The initial corrosion behaviors within 28 days were studied via scanning Kelvin probe, which showed marked surface ennoblement and increasingly heterogeneous potential distribution upon prolonged fungus exposure. Using stereomicroscopy, fungus growth as well as corrosion morphology of 304 stainless steel and titanium were also evaluated after a long-term exposure for 60 days. The presence of fungi decreased the corrosion resistance for both 304 stainless steel and titanium. Titanium showed higher resistance to fungus growth and the induced corrosion. Exposure to the mixed strains resulted in the highest fungus growth rate but the mildest corrosion, possibly due to the decreased oxygen level by increased fungal activities.

  7. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    NASA Astrophysics Data System (ADS)

    Martínez-Ortiz, P.; Pérez-Benítez, J. A.; Espina-Hernández, J. H.; Caleyo, F.; Mehboob, N.; Grössinger, R.; Hallen, J. M.

    2016-03-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements.

  8. Research of surface activating influence on formation of adhesion between gas-thermal coating and steel substrate

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Z.; Klimenov, V.; Zaitsev, K.

    2015-09-01

    Estimation of influence of physical and thermal activating on adhesion between steel substrates and thermal coatings has been performed. The substrates with surfaces obtained by and ultrasonic surface plastic deformation were used. To evaluate physical activating, preheating of the substrates to 600°C was performed. To evaluate the effect of thermal activating, the substrate surfaces after interfacial detachment were examined. Bonded areas on the substrate surfaces were measured by means of optical profilometry. The experiments have shown that surface physical activating is the main factor in formation of the adhesive bond between the coating and the substrate processed with the proposed methods.

  9. Influence of pre-deformation and oxidation in high temperature water on corrosion resistance of type 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Hongyun, Luo; Tongxiang, Liang

    2015-11-01

    The passivation properties of deformed 304 stainless steels after immersion in borate buffer solution containing 0.2821 mol/L Cl- at 288 °C were investigated. The spinel and magnetite oxides were formed on all the samples. However, the hematite oxides reduced significantly with the increasing of strain. The sample with maximum strain possessed the poorest corrosion resistance. The hematite oxide could offer high corrosion resistance, while magnetite evidently deteriorated corrosion resistance. Moreover, the influence of the donors in outer layer of oxide film on corrosion resistance was more important than that of the acceptors in inner layer.

  10. Influence of banded structure on the mechanical properties of a high-strength maraging steel

    SciTech Connect

    Ahmed, M.; Salam, I.; Hashmi, F.H.; Khan, A.Q.

    1997-04-01

    Chemical inhomogeneity results in the formation of banded structure in high-strength maraging steels. Segregation of titanium and molybdenum was found to be the primary cause of banded structure formation. When the concentrations of these elements increased beyond certain critical levels, bands comprising different grain sizes formed. The inclusions existed preferentially along the interface of the bands. A high-temperature homogenization treatment substantially reduced or eliminated the banded structure. The large grain size resulting from the homogenization treatment was subsequently reduced by a grain refinement treatment. The mechanical properties of the steel substantially improved following homogenization and grain refinement.

  11. Influence Of Tool Geometry, Tool Coating And Process Parameters In Thixoextrusion Of Steel

    SciTech Connect

    Knauf, Frederik; Hirt, Gerhard; Immich, Philipp; Bobzin, Kirsten

    2007-04-07

    Thixoextrusion could become one possibility to enlarge the complexity of extruded profiles made of steel. Accordingly semi-solid extrusion experiments of X210CrW12 tool steel using round dies of approximately 15 mm diameter were performed in order to achieve first information concerning possible process windows and process limits. For liquid fractions between 38% and 10%, extrusion press velocities from 10 mm/s to 50 mm/s and dies with novel PVD-coatings no complete solidification during extrusion was achieved. However the collected pieces of the extruded bars showed a fine and evenly distributed globular microstructure.

  12. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris

    PubMed Central

    Li, Yingchao; Feng, Hao; Liu, Zhiyong; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2015-01-01

    Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry. PMID:26308855

  13. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.

    PubMed

    Li, Huabing; Xu, Dake; Li, Yingchao; Feng, Hao; Liu, Zhiyong; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2015-01-01

    Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry. PMID:26308855

  14. INFLUENCE OF BUFFER CAPACITY, CHLORINE RESIDUAL, AND FLOW RATE ON CORROSION OF MILD STEEL AND COPPER

    EPA Science Inventory

    The corrosion rates of mild steel decreased as buffer capacity was increased with pH at constant alkalinity. The corrosion-promoting effect of ionic strength, however, appeared to predominate over the buffer action in water systems with relatively high total dissolved solids and ...

  15. The influence of endodontic broken stainless steel instruments on the urinary levels of iron.

    PubMed

    Saghiri, Mohammad Ali; Asatourian, Armen; Haraji, Afshin; Ramezani, Golam H; Garcia-Godoy, Franklin; Scarbecz, Mark; Sheibani, Nader

    2014-06-01

    Previous studies on the endodontic broken stainless steel instruments have mainly focused on retrieval of specimens. However, the systemic consequences of the retained separated instruments need an investigation. The current study aimed to evaluate the correlation between broken stainless steel instruments inside the root canal space and the urinary level of iron (Fe) in patients. Sixty near-aged and same-gender patients were selected. Thirty patients in the control group had no endodontic treatment in their history, while the other 30 patients in the endodontic group had broken stainless steel instrument. The urine samples were collected in iron-free containers. All specimens were refrigerated for 1 day and then subjected to Fe level measurement by electrothermal atomic absorption spectrometry. Data were analyzed by Kolmogorov-Smirnov and t tests at P < 0.05. The correlation coefficients of age and sex were also evaluated in relation with Fe levels in the urine. The level of Fe did not show any significant increase in the experimental group (P > 0.05). There was a positive correlation between age and Fe levels of endodontic and control groups. However, the joint effects of age and sex on Fe levels were different for the two groups. The presence of broken stainless steel instruments inside the root canal space did not elevate the level of Fe in the urine of patients. However, this value was positively correlated with the patient age. PMID:24699830

  16. Influence of structural-phase state of ferritic-martensitic steels on the helium porosity development

    NASA Astrophysics Data System (ADS)

    Chernov, I. I.; Staltsov, M. S.; Kalin, B. A.; Bogachev, I. A.; Guseva, L. Yu; Dzhumaev, P. S.; Emelyanova, O. V.; Drozhzhina, M. V.; Manukovsky, K. V.; Nikolaeva, I. D.

    2016-04-01

    Transmission electron microscopy (TEM) has been used to study the effect of the initial structural-phase state (SPhS) of ferritic-martensitic steels EK-181, EP-450 and EP-450- ODS (with 0.5 wt.% nanoparticles of Y2O3) on the of helium porosity formation and gas swelling. Different SPhS of steel EK-181 was produced by water quenching, annealing, normalizing plus tempered, intensive plastic deformation by torsion (HPDT). Irradiation was carried out by He+-40 keV ions at 923 K up to fluence of 5-1020 He+/m2. It is shown that the water quenching causes the formation of uniformly distributed small bubbles (d¯ ∼ 2 nm) of the highest density (ρ∼ 1025 m-3). After normalization followed by tempering as well as after annealing bubbles distribution is highly non-uniform both by volume and in size. Very large faceted bubbles (pre-equilibrium gas-filled voids) are formed in ferrite grains resulting in high level of gas swelling of the irradiated layer with S = 4,9 ± 1,2 and 3.8 ± 0.9% respectively. Nano- and microcrystalline structure created by HPDT completely degenerate at irradiation temperature and ion irradiation formed bubbles of the same parameters as in the annealed steel. Bubbles formed in EP-450-ODS steel are smaller in size and density, which led to a decrease of helium swelling by 4 times (S = 0.8 ± 0.2%) as compared to the swelling of the matrix steel EP-450 (S = 3.1 ± 0.7%).

  17. Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of High Strength Steel EQ70 under Cathodic Polarization.

    PubMed

    Guan, Fang; Zhai, Xiaofan; Duan, Jizhou; Zhang, Meixia; Hou, Baorong

    2016-01-01

    Certain species of sulfate-reducing bacteria (SRB) use cathodes as electron donors for metabolism, and this electron transfer process may influence the proper protection potential choice for structures. The interaction between SRB and polarized electrodes had been the focus of numerous investigations. In this paper, the impact of cathodic protection (CP) on Desulfovibrio caledoniens metabolic activity and its influence on highs trength steel EQ70 were studied by bacterial analyses and electrochemical measurements. The results showed that EQ70 under -0.85 VSCE CP had a higher corrosion rate than that without CP, while EQ70 with -1.05 VSCE had a lower corrosion rate. The enhanced SRB metabolic activity at -0.85 VSCE was most probably caused by the direct electron transfer from the electrode polarized at -0.85 VSCE. This direct electron transfer pathway was unavailable in -1.05 VSCE. In addition, the application of cathodic protection led to the transformation of sulfide rusts into carbonates rusts. These observations have been employed to provide updated recommendations for the optimum CP potential for steel structures in the presence of SRB. PMID:27603928

  18. A study of the influence of cutting parameters on micromilling of steel with cubic boron nitride (CBN) tools

    NASA Astrophysics Data System (ADS)

    Klocke, Fritz; Quito, Fernando; Arntz, Kristian; Souza, Alexandre

    2009-02-01

    It has been concluded in previous studies that Cubic Boron Nitride (CBN) tools have greater wear resistance and superior tool life than other tool materials used in conventional milling, due to chemically stability at high temperatures, high abrasive wear resistance and high degree of hardness; however no research has been conducted about its performance on micro milling. Burr formation has a direct negative effect on product quality and assembly automation in micro milling, therefore adoption of machining strategies and influencing factors were investigated intending to reduce burr formation. This paper also aims at analyzing the interference of cutting parameters on micro milling with CBN tools, such as the influence of cutting speed and feed per tooth on the surface quality and tool life. These outcomes enable us to know which parameters and strategies must be used to achieve better results when micro milling steel with CBN tools.

  19. Investigation of the Influence Factors on Distortion in Induction-Hardened Steel Shafts Manufactured from Cold-Drawn Rod

    NASA Astrophysics Data System (ADS)

    Dong, Juan; Epp, Jeremy; Rocha, Alexandre da Silva; Nunes, Rafael Menezes; Zoch, Hans Werner

    2016-02-01

    In this study, the distortion of steel shafts was investigated before and after induction hardening. Several essential influencing factors in the manufacturing process chain regarding cold drawing, cutting method, notches on the shafts, and induction hardening were analyzed by design of experiment (DoE). Further necessary examinations of microstructures, hardness profile, segregation of chemical composition, and residual stress state were conducted for understanding the distortion behavior. The results of the statistical analysis of the DoE showed that the drawing process is the most important factor influencing distortion. The surface hardening depth of induction hardening is the second main factor. The relationship between inhomogeneities in the work pieces and the distortion was finally discussed.

  20. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Somers, Marcel A. J.

    2015-06-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional tensile straining, plane strain compression, and shear. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at various temperatures. Microstructural characterization of the as-deformed state and the nitrided case produced included X-ray diffraction analysis, reflected-light microscopy, and microhardness testing. The results demonstrate that a case of expanded austenite develops and that the presence of plastic deformation has a significant influence on the morphology of the nitrided case. The presence of strain-induced martensite favors the formation of CrN, while a high dislocation density in a fully austenitic structure does not lead to such premature nucleation of CrN.

  1. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples

    PubMed Central

    Voordouw, Gerrit; Menon, Priyesh; Pinnock, Tijan; Sharma, Mohita; Shen, Yin; Venturelli, Amanda; Voordouw, Johanna; Sexton, Aoife

    2016-01-01

    Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs based on weight loss and iron determination were in good agreement. Average CRs were 0.022 mm/yr for eight produced waters with high numbers (105/ml) of acid-producing bacteria (APB), but no sulfate-reducing bacteria (SRB). Average CRs were 0.009 mm/yr for five central processing facility (CPF) waters, which had no APB or SRB due to weekly biocide treatment and 0.036 mm/yr for 2 CPF tank bottom sludges, which had high numbers of APB (106/ml) and SRB (108/ml). Hence, corrosion monitoring with carbon steel beads indicated that biocide treatment of CPF waters decreased the CR, except where biocide did not penetrate. The CR for incubations with 20 ml of a produced water decreased from 0.061 to 0.007 mm/yr when increasing the number of beads from 1 to 40. CRs determined with beads were higher than those with coupons, possibly also due to a higher weight of iron per unit volume used in incubations with coupons. Use of 1 ml syringe columns, containing carbon steel beads, and injected with 10 ml/day of SRB-containing medium for 256 days gave a CR of 0.11 mm/yr under flow conditions. The standard deviation of the distribution of residual bead weights, a measure for the unevenness of the corrosion, increased with increasing CR. The most heavily corroded beads showed significant pitting. Hence the use of uniformly sized carbon steel beads offers new opportunities for screening and monitoring of corrosion including determination of the distribution of corrosion rates, which allows

  2. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples.

    PubMed

    Voordouw, Gerrit; Menon, Priyesh; Pinnock, Tijan; Sharma, Mohita; Shen, Yin; Venturelli, Amanda; Voordouw, Johanna; Sexton, Aoife

    2016-01-01

    Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs based on weight loss and iron determination were in good agreement. Average CRs were 0.022 mm/yr for eight produced waters with high numbers (10(5)/ml) of acid-producing bacteria (APB), but no sulfate-reducing bacteria (SRB). Average CRs were 0.009 mm/yr for five central processing facility (CPF) waters, which had no APB or SRB due to weekly biocide treatment and 0.036 mm/yr for 2 CPF tank bottom sludges, which had high numbers of APB (10(6)/ml) and SRB (10(8)/ml). Hence, corrosion monitoring with carbon steel beads indicated that biocide treatment of CPF waters decreased the CR, except where biocide did not penetrate. The CR for incubations with 20 ml of a produced water decreased from 0.061 to 0.007 mm/yr when increasing the number of beads from 1 to 40. CRs determined with beads were higher than those with coupons, possibly also due to a higher weight of iron per unit volume used in incubations with coupons. Use of 1 ml syringe columns, containing carbon steel beads, and injected with 10 ml/day of SRB-containing medium for 256 days gave a CR of 0.11 mm/yr under flow conditions. The standard deviation of the distribution of residual bead weights, a measure for the unevenness of the corrosion, increased with increasing CR. The most heavily corroded beads showed significant pitting. Hence the use of uniformly sized carbon steel beads offers new opportunities for screening and monitoring of corrosion including determination of the distribution of corrosion rates, which allows

  3. Influence of nickel and molybdenum on the phase stability and mechanical properties of maraging steels

    SciTech Connect

    Ahmed, M.; Nasim, I.; Husain, S.W. )

    1994-04-01

    The effect of nickel and molybdenum concentrations on the phase transformation and mechanical properties of conventional 10Ni(350) maraging steel has been investigated. Both of these elements act as strong austenite stabilizers. When the concentration of molybdenum or nickel is greater than 7.5 or 24 wt%, respectively, the austenite phase remains stable up to room temperature. In both molybdenum- and nickel-alloyed steels, the austenite phase could be transformed to martensite by either dipping the material in liquid nitrogen or subjecting it to cold working. When 7.5 wt% Mo and 24 wt% Ni were added in combination, however, the austenite phase obtained at room temperature did not transform to martensite when liquid-nitrogen quenched or even when cold rolled to greater than 95% reduction. The aging response of these materials has also been investigated using optical, scanning electron, and scanning transmission electron microscopy.

  4. Influence of laser hardening and resulting microstructure on fatigue properties of carbon steels

    SciTech Connect

    Cerny, I.; Fuerbacher, I.; Linhart, V.

    1998-06-01

    Cylindrical specimens of a CSN 12050 carbon steel, equivalent to the UNS G 10420 steel, with two different initial microstructures, normalized and heat treated, were surface processed without melting by a 2.5 kW, CO{sub 2} laser to study the effects of laser-beam hardening and resulting microstructure on fatigue properties and mechanisms. Two configurations of circumferential laser passes were made, resulting in one and three separate surface hardened lines, respectively. Fatigue resistance was studied using alternating bend tests. A detailed metallographic study and x-ray measurements of surface stresses were carried out. It was shown that the laser beam hardening under different conditions either reduced or slightly improved the fatigue life.

  5. Influence of orientation pinning on the Goss-texture in Fe-3%Si electrical steel

    SciTech Connect

    Engler, O.; Friedel, F.

    1998-12-01

    Despite a large number of investigations on the formation of the Goss-texture in Fe-3%Si electrical steels, the exact mechanisms leading to the preference of this particular orientation are not completely understood so far. As an alternative to the standard explanation of a favored growth of Goss-oriented grains during secondary recrystallization, recently the concept of orientation pinning has been proposed, which considers that the growth of grains with special orientation relationships corresponding to low-angle and twin grain boundaries is disfavored. The present paper present preliminary EBSD-results on the growth of Goss-grains during secondary recrystallization in high-permeability (HiB) transformer steel sheets. A semi-quantitative model to simulate the effect of orientation pinning on the evolution of the Goss-texture is introduced.

  6. Analysis of the influence of electrolyte on surface finish in electropolished stainless steel

    NASA Astrophysics Data System (ADS)

    Hernando, M.; Núñez, P. J.; García, E.; Trujillo, R.

    2012-04-01

    Electropolishing is a surface finishing process of metals and alloys that enhances brilliant surface finishes with low surface roughness values. The most widely used electrolytes for the electropolishing of stainless steel are varying concentrations of phosphoric and sulphuric acid, and occasionally additives such as chromic acid. The objective of this study was to assess the performance of three commonly used industrial electrolytes in terms of the surface finish of electropolished stainless steel AISI 316L. Each electrolyte had varying sulphuric-phosphoric acid combinations with or without chromic acid. The following electropolishing conditions were assessed: current density, bath temperature, electropolishing time, and initial surface texture. The results revealed that adding chromic acid to the electrolyte did not significantly enhance surface finish, and electropolishing ranges were quite similar for all three electrolytes.

  7. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion.

    PubMed

    Dong, Ze Hua; Liu, Tao; Liu, Hong Fang

    2011-05-01

    Extracellular polymeric substances (EPS) were isolated by centrifugation of thermophilic sulphate-reducing bacteria (SRB) grown in API-RP38 culture medium. The protein and polysaccharide fractions were quantified and the highest concentrations were extracted from a 14-day old culture. The effect of EPS on carbon steel corrosion was investigated by electrochemical techniques. At 30°C, a small amount of EPS in 3% NaCl solution inhibited corrosion, whilst excessive amounts of EPS facilitated corrosion. In addition, the inhibition efficiency of EPS decreased with temperature due to thermal desorption of the EPS. The results suggest that adsorbed EPS layers could be beneficial to anti-corrosion by hindering the reduction of oxygen. However, the accumulation of an EPS film could stimulate the anodic dissolution of the underlying steel by chelation of Fe2+ ions. PMID:21604218

  8. Influences of passivating elements on the corrosion and biocompatibility of super stainless steels.

    PubMed

    Yoo, Young-Ran; Jang, Soon-Geun; Oh, Keun-Taek; Kim, Jung-Gu; Kim, Young-Sik

    2008-08-01

    Biometals need high corrosion resistance since metallic implants in the body should be biocompatible and metal ion release should be minimized. In this work, we designed three kinds of super stainless steel and adjusted the alloying elements to obtain different microstructures. Super stainless steels contain larger amounts of Cr, Mo, W, and N than commercial alloys. These elements play a very important role in localized corrosion and, thus, their effects can be represented by the "pitting resistance equivalent number (PREN)." This work focused on the behavior which can arise when the bare surface of an implant in the body is exposed during walking, heavy exercise, and so on. Among the experimental alloys examined herein, Alloy Al and 316L stainless steels were mildly cytotoxic, whereas the other super austenitic, duplex, and ferritic stainless steels were noncytotoxic. This behavior is primarily related to the passive current and pitting resistance of the alloys. When the PREN value was increased, the passivation behavior in simulated body solution was totally different from that in acidic chloride solution and, thus, the Cr(2)O(3)/Cr(OH)(3) and [Metal oxide]/[Metal + Metal oxide] ratios of the passive film in the simulated body solution were larger than those in acidic chloride solution. Also, the critical current density in simulated body solution increased and, thus, active dissolution may induce metal ion release into the body when the PREN value and Ni content are increased. This behavior was closely related to the presence of EDTA in the simulated body solution. PMID:18161790

  9. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  10. The influence of Cr content on the mechanical properties of ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Li, Shaofu; Zhou, Zhangjian; Jang, Jinsung; Wang, Man; Hu, Helong; Sun, Hongying; Zou, Lei; Zhang, Guangming; Zhang, Liwei

    2014-12-01

    The present investigation aimed at researching the mechanical properties of the oxide dispersion strengthened (ODS) ferritic steels with different Cr content, which were fabricated through a consolidation of mechanical alloyed (MA) powders of 0.35 wt.% nano Y2O3 dispersed Fe-12.0Cr-0.5Ti-1.0W (alloy A), Fe-16.0Cr-0.5Ti-1.0W (alloy B), and Fe-18.0Cr-0.5Ti-1.0W (alloy C) alloys (all in wt.%) by hot isostatic pressing (HIP) with 100 MPa pressure at 1150 °C for 3 h. The mechanical properties, including the tensile strength, hardness, and impact fracture toughness were tested by universal testers, while Young's modulus was determined by ultrasonic wave non-destructive tester. It was found that the relationship between Cr content and the strength of ODS ferritic steels was not a proportional relationship. However, too high a Cr content will cause the precipitation of Cr-enriched segregation phase, which is detrimental to the ductility of ODS ferritic steels.

  11. The Influence of Surface Processing on Outgassing Measurements of High-Mn Stainless Steel

    NASA Astrophysics Data System (ADS)

    Fukaya, Masuhiro; Teraoka, Shin-Ichi; Sato, Yoshihiro; Uota, Masahiko; Saito, Yoshio

    An outgassing rate was measured for a stainless steel material of YUS130S, having a high-mangany content (Fe-18Cr-7Ni-11Mn-0.3N), and compared with that for a stainless steel of SUS304L. A surface processing of both electropolished and electrochemical buffing followed by an in-air oxidation was examined in order to investigate the outgas reduction effect in the case of with and without baking. Further, a depth profile of the surface composition was analyzed by glow-discharge emission spectroscopy (GDS). Based on the results, the outgassing rate of YUS130S was 35% lower than that of SUS304L, when electropolished and electrochemical buffing. The oxidation process in air at 723 K in the case of electrochemical buffing showed effect on the outgassing reduction in both YUS130S and SUS304L. The GDS observation shows that, by electropolishing, Cr-Mn-rich and Cr-rich passive films were formed on the YUS130S and SUS304L surface, respectively. By electrochemical buffing, passive films changed to more Fe-rich films. The further process of in-air-oxidation causes a change in oxide films to Fe-Mn-rich and Fe-rich characteristics for YUS130S and SUS304L respectively. The stainless steel with Mn-rich and Cr-poor passive films shows low outgassing rate.

  12. Annealing textures for drawability: Influence of the degree of cold rolling reduction for low-carbon and extra low-carbon ferritic steels

    SciTech Connect

    Pero-Sanz, J.; Ruiz-Delgado, M.; Martinez, V.; Verdeja, J.I.

    1999-11-01

    This work considers the optimization of deep drawing properties by studying the influence of hot rolling conditions, cold reduction rate, and final annealing on the evolution of steel sheet textures. Two steels have been selected: a low-C steel used for enameling applications, and an extra-low-C steel of the interstitial-free type. Results show that the intensity of {l{underscore}brace}111{r{underscore}brace} component--and, consequently, drawability--is considerably higher in the textures of cold-rolled and annealed sheets than in hot-rolled sheets. It is suggested that drawability of sheets annealed after cold rolling improves if greater than conventional reduction rates are used during rolling. Finally, it is shown that, contrary to what has sometimes been claimed, improved of the ``r'' coefficient are not accompanied by a pancake morphology of the ferrite grains.

  13. A Study of the Influence of Thermomechanical Controlled Processing on the Microstructure of Bainite in High Strength Plate Steel

    NASA Astrophysics Data System (ADS)

    Liang, Xiaojun; DeArdo, Anthony J.

    2014-10-01

    , equiaxed austenite to deformed, pancaked austenite, which were followed by seven different cooling rates ranging between 0.5 K/s (0.5 °C/s) and 40 K/s (40 °C/s). The CCT curves showed that the transformation behaviors and temperatures varied with starting austenite microstructure and cooling rate, resulting in different final microstructures. The EBSD results and the thermodynamics and kinetics analyses show that in low carbon bainite, the nucleation rate is the key factor that affects the bainitic ferrite morphology, size, and orientation. However, the growth of bainite is also quite important since the bainitic ferrite laths apparently can coalesce or coarsen into larger units with slower cooling rates or longer isothermal holding time, causing a deterioration in toughness. This paper reviews the formation of bainite in this steel and describes and rationalizes the final microstructures observed, both in terms of not only formation but also for the expected influence on mechanical properties.

  14. Study of the influence of surface carbon on the tribological properties of ion-treated steels

    NASA Astrophysics Data System (ADS)

    Benyagoub, Abdenacer; Faussemagne, Arielle

    1999-01-01

    Samples of 100Cr6 steel were treated by different ion beams in order to study the evolution of their tribological properties. A strong correlation was found between the amount of surface carbon, whatever its origin (contamination, direct C implantation or ion-beam mixing of a deposited carbon layer), and the reduction of the friction coefficient as well as the improvement of the wear resistance. These results are discussed in the framework of a recent statistical model founded on the asperity concept and describing the tribological behaviour of bilayer systems.

  15. Influence of heat treatment on mechanical properties of 300M Steel

    NASA Technical Reports Server (NTRS)

    Youngblood, J. L.; Raghavan, M. R.

    1975-01-01

    The plane strain fracture toughness and tensile strength response of 300M Steel to a wide variety of austenitizing and tempering temperatures were investigated. The results make it possible for one to select heat treatments which provide an optimum combination of strength and toughness for a variety of structural applications. In particular, improvements in toughness on the order of 20% were found possible with no loss in tensile properties by increasing the austenitizing temperature from the currently employed 1144 K to 1255 K or higher, and this change in heat treatment therefore appears worthy of general implementation.

  16. Influence of repeated quenching on the rolling contact fatigue of bearing steel

    NASA Astrophysics Data System (ADS)

    Santos, Edson Costa; Honda, Takashi; Kida, Katsuyuki

    2009-12-01

    The rolling contact fatigue of JIS SUJ2 (high carbon high strength bearing steel) heat treated by repeated quenching was investigated. The microstructure of the bearing traces was observed before and after heat treatment by laser confocal microscope and scanning electron microscope. X-ray diffraction was used to measure changes in the retained austenite and the residual stresses on the bearing races' surface. The prior austenite-grain size was greatly reduced and the compressive stress at the surface of the material was increased by the heat treatment. Both factors contribute to the higher fatigue strength of the bearings.

  17. Influence of repeated quenching on the rolling contact fatigue of bearing steel

    NASA Astrophysics Data System (ADS)

    Santos, Edson Costa; Honda, Takashi; Kida, Katsuyuki

    2010-03-01

    The rolling contact fatigue of JIS SUJ2 (high carbon high strength bearing steel) heat treated by repeated quenching was investigated. The microstructure of the bearing traces was observed before and after heat treatment by laser confocal microscope and scanning electron microscope. X-ray diffraction was used to measure changes in the retained austenite and the residual stresses on the bearing races' surface. The prior austenite-grain size was greatly reduced and the compressive stress at the surface of the material was increased by the heat treatment. Both factors contribute to the higher fatigue strength of the bearings.

  18. Influence of Surface Preparation on the Kinetics of Controlled Gas-Nitrided AISI H13 Steels Used in Extrusion Dies

    NASA Astrophysics Data System (ADS)

    Akhtar, S. S.; Arif, A. F. M.; Yilbas, B. S.; Sheikh, A. K.

    2010-04-01

    In the aluminum extrusion practice, gas nitriding represents an important factor in enhancing the service life of AISI H13 steel dies. It is observed that if the die-bearing surface is not adequately prepared before nitriding, a nonuniform and shallow nitrided layer develops with reduced hardening effect. The focus of this paper is to investigate the influence of different surface conditions in terms of roughness on the kinetics of nitrided layer developed during gas-nitriding process under controlled nitriding potential. Four samples made of AISI H13 steel properly heat treated (quenched and tempered) were considered: without surface preparation, ground, polished, and lapped. All the samples were gas nitrided under the same conditions and examined after being nitrided. The nitrided layers were characterized using different techniques including optical microscopy, scanning electron microscopy, x-ray diffraction analysis, energy dispersive spectrometry mapping, and microhardness analysis. It was found that the surface preparation prior to nitriding significantly enhanced the nitriding kinetics, which in turn resulted in even and deep nitrided case depth. This provided high load-bearing capacity due to increased and deep hardening effect as compared to unprepared sample. A thinner and uniform compound layer with well-resolved phases was achieved in comparison with unprepared sample.

  19. The Influence of Temperature on the Frictional Behavior of Duplex-Coated Die Steel Rubbing Against Forging Brass

    NASA Astrophysics Data System (ADS)

    Ebrahimzadeh, I.; Ashrafizadeh, F.

    2015-01-01

    Improvement of die life under hot forging of brass alloys is considered vital from both economical and technical points of view. One of the best methods for improving die life is duplex coatings. In this research, the influence of temperature on the tribological behavior of duplex-coated die steel rubbing against forging brass was investigated. The wear tests were performed on a pin-on-disk machine from room temperature to 700 °C; the pins were made in H13 hot work tool steel treated by plasma nitriding and by PVD coatings of TiN-TiAlN-CrAlN. The disks were machined from a two-phase brass alloy too. The results revealed that the friction coefficient of this tribosystem went through a maximum at 550 °C and decreased largely at 700 °C. Furthermore, the formation of Cr2O3 caused the reduction of friction coefficient at 700 °C. PVD coatings proved their wear resistance up to 550 °C, well above the working temperature of the brass forging dies.

  20. Influence of mercury velocity on compatibility with type 316L/316LN stainless steel in a flow loop

    NASA Astrophysics Data System (ADS)

    Pawel, S. J.; Taleyarkhan, R. P.; Felde, D. K.; Manneschmidt, E. T.

    2003-05-01

    Previous experiments to examine corrosion resulting from thermal gradient mass transfer of type 316L stainless steel in mercury were conducted in thermal convection loops (TCLs) with an Hg velocity of about 1 m/min. These tests have now been supplemented with a series of experiments designed to examine the influence of increased flow velocity and possible cavitation conditions on compatibility. In one experiment, the standard TCL design was modified to include a reduced section in the hot leg that provided a concomitant increase in the local velocity by a factor of five. In addition, a pumped-loop experiment was operated with a flow velocity of about 1 m/s. Finally, a TCL was modified to include an ultrasonic transducer at the top of the hot leg in an attempt to generate cavitation conditions with corresponding extreme local velocity associated with collapsing bubbles. The results indicate that compatibility of type 316L/316LN stainless steel does not depend significantly on liquid metal velocity in the range of 1 m/min to 1 m/s. Benchtop cavitation experiments revealed susceptibility of 316L coupons to significant weight losses and increases in surface roughness as a result of 24 h exposure to 1.5 MPa pressure waves in Hg generated ultrasonically at 20 kHz. However, attempts to generate cavitation conditions on coupons inside the TCL with the ultrasonic transducer proved largely unsuccessful.

  1. Influence of original microstructure on the transformation behavior and mechanical properties of ultra-high-strength TRIP-aided steel

    NASA Astrophysics Data System (ADS)

    Yin, Hong-xiang; Zhao, Ai-min; Zhao, Zheng-zhi; Li, Xiao; Li, Shuang-jiao; Hu, Han-jiang; Xia, Wei-guang

    2015-03-01

    The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-1.8Mn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a traditional TRIP steel containing as-cold-rolled ferrite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRIP-aided steel with martensite as the original microstructure, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, resulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening behavior is also discussed for both types of steel.

  2. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    NASA Astrophysics Data System (ADS)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  3. Influence of fluence rate on radiation-induced mechanical property changes in reactor pressure vessel steels

    SciTech Connect

    Hawthorne, J.R.; Hiser, A.L. )

    1990-03-01

    This report describes a set of experiments undertaken using a 2 MW test reactor, the UBR, to qualify the significance of fluence rate to the extent of embrittlement produced in reactor pressure vessel steels at their service temperature. The test materials included two reference plates (A 302-B, A 533-B steel) and two submerged arc weld deposits (Linde 80, Linde 0091 welding fluxes). Charpy-V (C{sub v}), tension and 0.5T-CT compact specimens were employed for notch ductility, strength and fracture toughness (J-R curve) determinations, respectively. Target fluence rates were 8 {times} 10{sup 10}, 6 {times} 10{sup 11} and 9 {times} 10{sup 12} n/cm{sup 2} {minus}s{sup {minus}1}. Specimen fluences ranged from 0.5 to 3.8 {times} 10{sup 19} n/cm{sup 2}, E > 1 MeV. The data describe a fluence-rate effect which may extend to power reactor surveillance as well as test reactor facilities now in use. The dependence of embrittlement sensitivity on fluence rate appears to differ for plate and weld deposit materials. Relatively good agreement in fluence-rate effects definition was observed among the three test methods. 52 figs., 4 tabs.

  4. Influence of consolidation methods on the recrystallization kinetics of a Fe-14Cr based ODS steel

    NASA Astrophysics Data System (ADS)

    Dadé, M.; Malaplate, J.; Garnier, J.; De Geuser, F.; Lochet, N.; Deschamps, A.

    2016-04-01

    The recrystallization behavior during thermal annealing with or without prior cold work has been investigated in a 14%Cr ODS steel consolidated by two different methods, hot extrusion (HE) and hot isostatic pressing (HIP). We show that a 1400°C-1 h annealing induces an increase of the oxide nanoparticles radius from 1.3 to 3 nm, however the grain size remain stable despite a recovery of sub-grain boundaries for the hot extruded material. When pre-deformation is applied before annealing, almost full recrystallization can be achieved on the HE ODS steel. In this study, we show recrystallization after 40% cold deformation and annealing 30 min at 1450 °C together with coarsening of oxide particles. At lower temperature and higher pre-deformation (70%-1150 °C/30 min), we show that recrystallization can be achieved without change of the oxide size distribution. We show that due to a lower initial dislocation density, recrystallization is strongly delayed, by at least 250 °C, in the HIP material. Finally, we show that the evolution of the size of the oxide precipitates is controlled by the time and temperature of annealing and are independent on the pre-deformation and occurrence of recrystallization.

  5. The influence of Si content on the oxidation behavior of Type 430 stainless steels

    SciTech Connect

    Alman, D.E.; Jablonski, P.D.

    2007-09-01

    Trace “alloying” elements can significantly affect alloy performance. One example is the effect of residual Si content on the oxidation behavior of stainless steels. Small amounts of Si can form a continuous SiO2 layer at the metal-oxide scale interface. This is beneficial for enhancing oxidation resistance; however it is detrimental for fuel cell interconnect application, as SiO2 is an electrical insulator. In order to assess the effect of SiO2 on the performance of Type 430 ferritic steel, a potential interconnect alloy, a series of custom 430 alloys were melted and reduced to sheet with controlled Si contents (ranging from <0.01 to 0.1 wt% Si). Oxidation tests were conducted at 800oC in moist air. The behavior was compared to a commercial Type 430 alloy (with 0.4 wt%Si) and Crofer 22APU. It was found that for the 430 alloys, the oxidation rate increased with decreasing Si content. However, after 4000 hour of exposure, the mass gain for the low Si 430 alloys was comparable to Crofer 22APU.

  6. Influence of steel fibers on the development of alkali-aggregate reaction

    SciTech Connect

    Pires de Carvalho, Maria Rita; Pagan Hasparyk, Nicole

    2010-04-15

    This work presents the results of an experimental research concerning the use of fibers in mortar specimens subjected to alkali-aggregate reaction (AAR). Two types of steel fibers (0.16 mm diameter and 6.0 mm length, and 0.20 mm diameter and 13.0 mm length) were used with fiber volume contents of 1% and 2%. Besides the expansion accelerated tests, compressive tests and flexural tests have also been carried out to display the main mechanical characteristics of the fiber-reinforced mortars after being subjected to AAR. Moreover, the microstructure of the specimens was analyzed by scanning electron microscopy and energy dispersive X-ray. The results shown that the addition of steel fibers reduced the expansion due to AAR for the experimental conditions studied in this paper. The most expressive benefit corresponded to the addition of 13.0 mm fibers in the mixture containing 2% fiber content. This fiber volume content also corresponded to the maximum increment in the mechanical properties compared to the reference mortar, mainly for the post-cracking strength and for the toughness in bending. It was observed that the fibers have a beneficial effect on the material, without compromising its main mechanical properties.

  7. Influence of irradiation parameters in nanosecond Nd:YVO4 laser micro-machining of stainless steel for biomedical applications

    NASA Astrophysics Data System (ADS)

    Fiorucci, M. Paula; López, Ana J.; Ramil, Alberto

    2013-11-01

    The aim of this paper is to evaluate the influence of the working parameters in the micro-machining process of stainless steel 316L by means of 355 nm Nd:YVO4 nanosecond laser. Our target is the surface modification of metallic bioimplants to favour osseointegration. Well organized structures, like a matrix of drilling holes or a pattern of grooves, were created in the metallic surface by means of different treatments in which both laser parameters and irradiation schemes were varied. Processed metal surfaces were characterized by confocal microscopy and scanning electron microscopy SEM. The results allowed us to establish the most adequate processing parameters to generate textured micro-features in a range suitable for biomedical applications

  8. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    SciTech Connect

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  9. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Martinavičius, A.; Abrasonis, G.; Möller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm-2), ion energy (0.5-1.2 keV), and temperature (370-430 °C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  10. Influence of the tensile strain rate on the mechanical properties and phase composition of VNS 9-Sh TRIP steel

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Slizov, A. K.; Prosvirnin, D. V.; Sirotinkin, V. P.; Ashmarin, A. A.; Gol'dberg, M. A.

    2015-10-01

    The influence of the strain rate on the mechanical properties and the phase composition of a sheet VNS 9-Sh (23Kh15N5AM3-Sh) TRIP steel is studied during static tension. The strain rate is changed in the range from 8.3 × 10-5 to 25 × 10-3 s-1. The dependence of the mechanical properties on the strain rate is found to be nonlinear. The TRIP effect is most pronounced at a strain rate of (8.3-17) × 10-5 s-1. In this strain rate, the deformation martensite content increases significantly, from 50 to 87%, as is detected by X-ray diffraction.

  11. Use of the tritium trick for analysis of the influence that hydrogen and helium exert on the mechanical properties of radiation-resistant precipitation-hardening FCC steels

    SciTech Connect

    Goshchitskii, B.N.; Sagaradze, V.V.; Arbuzov, V.L.; Zuev, Y.N.; Markelov, N.N.; Zimin, A.V.

    1995-10-01

    The aging austenitic stainless steel Crl6Nil5Mo3Til is shown to possess a high resistance to the radiation void formation under irradiation with fast neutrons (60 dpa, 753K). The influence of tritium introduced from the gaseous phase and radiogenic helium on the mechanical properties is analysed. 3 refs., 3 tabs.

  12. Influence of thermal aging on the reactivity of duplex stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Amadou, T.; Rhouma, A. Ben; Sidhom, H.; Braham, C.; Ledion, J.

    2000-08-01

    The annealing of large cast pieces in duplex stainless steel (SS) and the different heat cycles resulting from repairs involve significant structural changes characterized by carbide and intermetallic phase precipitation. This yields to lower local corrosion resistance in sea water due to changes in the local content of alloying elements. The precipitation of chromium carbide affects the resistance to the intergranular corrosion and the repassivation behavior. The eutectoidal decomposition of ferritic phase into regenerated austenite and in sigma phase ( α → γ r + σ) results in weakening the resistance to pit nucleation in synthetic sea water. In contrast, such precipitation will not have any significant effect when the treatment temperature is high enough to involve a rapid rehomogenization of depleted zones and ensure a self-healing.

  13. Influence of De-icers on the Corrosion and Fatigue Behavior of 4140 Steel

    NASA Astrophysics Data System (ADS)

    Dean, William P.; Sanford, Brittain J.; Wright, Matthew R.; Evans, Jeffrey L.

    2012-11-01

    The purpose of this test was to evaluate the effects of calcium magnesium acetate (CMA) and sodium chloride (NaCl)—two common substances used to de-ice roadways—on the corrosion and fatigue behavior of annealed AISI 4140 steel. When CMA-corroded, NaCl-corroded, and as-machined samples were tested using R = 0.1, and f = 20 Hz, it was found that, within the scope of this study, samples corroded in both 3.5% CMA solution and 3.5% NaCl solution exhibited a lower fatigue strength than samples tested in the as-machined, uncorroded condition. For the short lives tested in this study, the difference in the effects of CMA and NaCl is minimal. However, at longer lives it is suspected, based on the trends, that the CMA solution would be less detrimental to the fatigue life.

  14. Influences of various cutting parameters on the surface roughness during turnings stainless steel

    NASA Astrophysics Data System (ADS)

    Zhimin, Zhou; Yuanliang, Zhang; Xiaoyan, Li; Huiyuan, Zhou; Baoyuan, Sun

    2011-01-01

    This paper presents an investigation of the process factors affecting the surface roughness in ultra-precision diamond turning with ultrasonic vibration. Stainless steel was turned by diamond tools with ultrasonic vibration applied in the feed direction with an auto-resonant control system. Surface roughness was measured and compared along with the change of the cutting parameters. The relation curves between the cutting parameters and surface roughness were achieved by comparing the experimental results with different cutting speeds, feed rates, cutting depths. Experimental results indicate that cutting parameters have an obvious effect on the surface roughness. The conclusions are draw in given conditions, the smaller amplitude of the vibration, the worse the surface quality and the higher vibrating frequency, the better surface quality, and the deeper the cutting depth and the more the feed rate, the worse the surface quality. Among these parameters, the feed rate was the most important factor on surface quality.

  15. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    SciTech Connect

    Kaplan, A. F. H.

    2012-10-08

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 {mu}m wavelength CO{sub 2}-laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadow domains.

  16. Factors influencing the Zn and Mn extraction from pyrometallurgical sludge in the steel manufacturing industry.

    PubMed

    Mocellin, J; Mercier, G; Morel, J L; Blais, J F; Simonnot, M O

    2015-08-01

    In this laboratory study, a process has been developed for selectively leaching zinc and manganese from pyrometallurgical sludge produced in the steel manufacturing industry. In the first part, the yield of Zn extraction was studied using four factors and four levels of the Box-Behnken response surface design. The optimum conditions for the step of Zn leaching were determined to be a sulfuric acid concentration of 0.25 mol/L, a pulp density of 10%, an extraction temperature of 20 °C, and three stages of leaching. Under such conditions, 75% of the Zn should be leached. For Mn leaching, the optimum conditions were determined to be a sulfuric acid concentration of 0.25 mol/L, a Na2S2O5/Mn stoichiometry of 1, a leaching time of 120 min and two leaching steps. In this case, 100% of the Mn should be leached. PMID:25958078

  17. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    SciTech Connect

    Pawel, Steven J; Hsu, Julia

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  18. Influence of explosive density on mechanical properties of high manganese steel explosion hardened

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Shen, Zhaowu; Liu, Yingbin; Liu, Tiansheng; Wang, Fengying

    2013-12-01

    The explosion hardening tests of high manganese steel were carried out by using two kinds of explosives of the same composition but different density, respectively. The detonation velocities were tested and the relevant mechanical properties were studied. The results show that the stronger single impulse acting on the specimen, the more hardness of surface increases and the more impact toughness decreases. Compared with the explosive of 1.48 g/cm3 density, the hardness, elongation rate, and impact toughness of the sample for triple explosion with explosive of 1.38 g/cm3 density are larger at the same hardening depth. In addition, the tensile strength of the sample for triple explosion with density of 1.38 g/cm3 is higher from the surface to 15 mm below the surface hardened.

  19. Influence of cryogenic treatment on the wear characteristics of 100Cr6 bearing steel

    NASA Astrophysics Data System (ADS)

    Sri Siva, R.; Mohan Lal, D.; Kesavan Nair, P.; Jaswin, M. Arockia

    2014-01-01

    A series of reciprocating wear tests were performed on the deep cryogenically treated and conventionally heat-treated samples of 100Cr6 bearing steel to study the wear resistance. The worn surfaces as well as the wear debris were analyzed by scanning electron microscopy. The improvement in wear resistance of the deep cryogenically treated samples ranges from 49% to 52%. This significant improvement in wear resistance can be attributed to finer carbide precipitation in the tempered martensitic matrix and the transformation of retained austenite into martensite. X-ray diffraction analysis shows that the volume fraction of retained austenite in the conventionally heat-treated samples is 14% and that of the deep cryogenically treated samples is only 3%.

  20. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric

    2013-02-01

    The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.

  1. Influence of alumina and titanium dioxide coatings on abrasive wear resistance of AISI 1045 steel

    NASA Astrophysics Data System (ADS)

    Santos, A.; Remolina, A.; Marulanda, J.

    2016-02-01

    This project aims to compare the behaviour of an AISI 1045 steel's abrasive wear resistance when is covered with aluminium oxide (Al2O3) or Titanium dioxide (TiO2), of nanometric size, using the technique of thermal hot spray, which allows to directly project the suspension particles on the used substrate. The tests are performed based on the ASTM G65-04 standard (Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Apparatus). The results show that the amount of, lost material increases linearly with the travelled distance; also determined that the thermal treatment of hardening-tempering and the alumina and titanium dioxide coatings decrease in average a 12.9, 39.6 and 29.3% respectively the volume of released material during abrasive wear test.

  2. Influence of Sample Pretreatment Methods on the Determination of Trace Oxygen in Iron and Steel

    NASA Astrophysics Data System (ADS)

    Yasuhara, H.; Shimura, M.; Yoshioka, K.

    1997-04-01

    Removing the oxide film from the sample surface is an important process in analyzing trace oxygen in iron and steel. The depth profiles of oxygen on the surface after electropolishing in CH3COOH - HClO4, CrO3 - H3PO4, and HCl, and chemical polishing by HF- H2O2 are investigated. The thickness of the oxide layer after electropolishing is estimated to be about 3 nm, which is approximately equivalent to 1 mass ppm oxygen. This indicates that the currently available surface polishing methods are inadequate for the analysis of mass ppm or sub-ppm oxygen levels. A surface without an oxide layer is obtained by Ar ion sputtering in a vacuum, but the oxide layer reappears within 1 min when the sample comes into contact with air.

  3. Influence of cubic texture intensity of hot rolled ferritic non-oriented electrical steels on the microstructure and texture in the final processed material

    NASA Astrophysics Data System (ADS)

    Stöcker, A.; Schneider, J.; Scholze, T.; Franke, A.; Hermann, H.; Kawalla, R.

    2015-04-01

    The magnetic properties of non-oriented electrical steels are determined by the microstructure and texture of the material. Besides optimum grain size (microstructure) for low values of specific magnetic losses, a high intensity of θ-fibre texture and low intensity of γ-fibre and α-fibre texture is desirable. Each of the processing steps influences the intensity of the θ-fibre in the final processed material. In this paper the interplay of the various processing steps on the intensity of the θ-fibre is regarded for ferritic Iron-Silicon steels with 2.4 wt.% Si and 3.0 wt.% Si.

  4. Influence of crystallographic texture in X70 pipeline steels on toughness anisotropy and delamination

    NASA Astrophysics Data System (ADS)

    Al-Jabr, Haytham M.

    The effects of microstructure and crystallographic texture in four commercially-produced API X70 pipeline steels and their relation to planar anisotropy of toughness and delamination were evaluated. The experimental steels were processed through either a hot strip mill, a Steckel mill, or a compact strip mill. Different processing routes were selected to obtain plates with potential variations in the microstructure and anisotropic characteristics. Tensile and Charpy impact testing were used to evaluate the mechanical properties in three orientations: longitudinal (L), transverse (T) and diagonal (D) with respect to the rolling direction to evaluate mechanical property anisotropy. The yield and tensile strengths were higher in the T orientation and toughness was lower in the D orientation for all plates. Delamination was observed in some of the ductile fracture surfaces of the impact samples. To further study the splitting behavior and effects on impact toughness, a modified impact test (MCVN) specimen with side grooves was designed to intensify induced stresses parallel to the notch root and thus facilitate evaluation of delamination. Scanning electron microscopy combined with electron backscattered diffraction (EBSD) were used to evaluate the grain size, microstructural constituents, and crystallographic texture to determine the factors leading to delamination and the anisotropy in toughness. The ferrite grain size is mainly responsible for the differences in DBTTs between the L and T orientations. The higher DBTT in the D orientation observed in pipeline steels is attributed to crystallographic texture. The higher DBTT in the D direction is due to the higher volume fraction of grains having their {100} planes parallel or close to the primary fracture plane for the D orientation. An equation based on a new "brittleness parameter," based on an assessment of grain orientations based on EBSD data, was developed to predict the changes in DBTTs with respect to sample

  5. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Laha, K.; Mathew, M. D.; Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K. K.; Jayakumar, T.

    2012-08-01

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  6. Influence of reverted austenite on the texture and magnetic properties of 350 maraging steel

    NASA Astrophysics Data System (ADS)

    Abreu, Hamilton F. G.; Silva, Jean J.; Silva, Manoel R.; Gomes da Silva, Marcelo J.

    2015-11-01

    The aging temperature to improve magnetic properties in Maraging-350 steel (Mar-350) is limited by the onset of austenite reversion. The traditional process of cooling after aging is to remove the piece from the oven and then to air cool it. The purpose of this research was to characterize the reverted austenite and to investigate the effect of cooling below the martensite start temperature (Ms) on the magnetic properties. The Mar350 samples aged at temperatures above 550 °C, and subsequently cooled in liquid nitrogen presented less austenite than samples cooled in air, resulting in higher magnetization saturation and a lower coercive force. A combination of optical microscopy (OM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) techniques were used to characterize the presence of reverted austenite. The crystallographic texture of both martensite and reverted austenite were analyzed. The texture of the reverted austenite coincides with the texture of the parent austenite indicating that a phenomenon of texture memory is present.

  7. Influence of pre-strain on fracture toughness and stable crack growth in low carbon steels

    SciTech Connect

    Miyata, Takashi; Tagawa, Tetsuya; Aihara, Syuji

    1997-12-31

    Experimental investigations demonstrate a significant effect of pre-strain on fracture toughness and stable crack growth resistance of a low carbon structural steel. Fracture toughness, Ji for the onset of stable ductile crack growth is decreased to one half with a 9% pre-strain due to cold rolling. The characteristic distance model for ductile crack initiation was applied to analyze parameters affecting the degradation of fracture resistance. The model predicts that value of Ji is given as a linear function of yield strength and ductility of the material. In order to confirm the theoretical prediction, notched round bar tensile tests were performed and ductility under a high triaxial stress state was measured. Critical plastic strain for micro-void coalescence is significantly decreased with increasing pre-strain. Degradation in Ji due to pre-strain can be well explained by the characteristic distance model. To clarify micro-mechanisms of degradation in ductility due to pre-strain, fracture process in notched round bar specimens was investigated emphasizing the role of micro-void nucleation and growth. Experimental observation indicates that the significant decrease of the critical strain due to pre-strain is attributed to the increase of void nucleation sites under a high triaxial stress state.

  8. Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures

    SciTech Connect

    Balancin, O.; Hoffmann, W.A.M.; Jonas, J.J.

    2000-05-01

    Three kinds of duplex stainless steel, with different ferrite-to-austenite ratios, were deformed in torsion over the temperature range 900 C to 1,200 C; the corresponding microstructural evolution was observed and correlated with the deformation conditions. The shapes of the high-temperature flow curves depend strongly on the volume fractions of the phases, the characteristics of the ferrite-austenite interface, and the active softening mechanism. At low volume fractions of austenite, the mechanical behavior is determined by the ferrite matrix and the flow curves are typical of materials that soften by continuous dynamic recrystallization. When the volume fraction of austenite is increased, coherent {gamma} particles distributed within the grains and at the grain boundaries hinder the deformation of the softer {alpha} matrix, increasing both the yield and the peak stress. These peaked flow curves are characterized by rapid work hardening followed by extensive flow softening; under these conditions, the hard austenite particles become aligned with the deformation direction after large strains. AT high volume fractions of austenite ({approximately}50%), the material tends to form a duplex structure, with the flow curves displaying extended work-hardening and work-softening regions; however, a drastic decrease is observed in ductility because of the dissimilar plastic behaviors of the two phases.

  9. Extrinsic Influence of Environment-Induced Degradation on Load Carrying Capacity of Steel Beams

    NASA Astrophysics Data System (ADS)

    Gowda, Sunil; Patnaik, A.; Payer, J.; Srivatsan, T. S.

    2015-11-01

    In this paper, the results of a study aimed at evaluating the strength of wide-flanged beams subjected to corrosion-induced damage, modeled using a standard finite element program (ABAQUS) is presented and discussed. Typical beams in consideration were subjected to different cases of corrosion-induced damage, such as non-uniform and varying degree of material loss that simulates pitting corrosion. Many variables, such as (a) shape of pitting damage, (b) location of pits along the length of the beam, (c) number of pits, and (d) depth of pits, were considered to facilitate a better understanding of the load carrying capacity of steel I-beams having damage quite similar to pitting damage to the web. The results are compared with an "as-new" beam for purpose of evaluation of the reduction in strength due to environment-induced deterioration. A "corrosion strength reduction factor (CSRF)" is introduced to help identify the reduction in load carrying capacity as a consequence of both height and depth of the damage due to corrosion. The results are presented in charts for purpose of practical beam design.

  10. Influence of Sintering under Nitrogen Atmosphere on Microstructures of Powder Metallurgy Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    García, C.; Martin, F.; Blanco, Y.; de Tiedra, M. P.; Aparicio, M. L.

    2009-02-01

    Duplex stainless steels (SS) obtained through powder metallurgy (PM) from austenitic AISI 316L and ferritic AISI 430L powders were mixed in different amounts to obtain a biphasic structure with an austenite/ferrite ratio of 50/50, 65/35, and 85/15. Prepared powders were compacted at 750 MPa and sintered in N2-H2 (95 pct-5 pct) at 1250 °C for 1 hour. Some samples sintered in vacuum were taken as references. Optical metallography, X-ray diffraction, and scanning electron microscopy/energy dispersive analysis of X-rays were used for microstructural characterization. Powder metallurgy base materials, AISI 430L and 316L, showed a single lamellar constituent after sintering in nitrogen. A mixed constituent was identified in PM duplex SS sintered in nitrogen and in vacuum. However, coarse and fine lamellar constituents were only present in PM duplex SS sintered in nitrogen. The effects of annealing solution heat treatment (1150 °C) on microstructures were evaluated. Homogeneous structures were obtained for the PM base materials, while for PM duplex SS, annealing dissolved lamellar constituents but mixed constituent were still present.

  11. Influence of a Cerium surface treatment on the oxidation behavior of type 347 stainless steel

    SciTech Connect

    Alman, D.E.; Jablonski, P.D.

    2007-04-01

    A surface treatment was applied to the surface of Type 347 stainless steel to enhance oxidation resistance. The treatment consisted of dip coating coupons in a CeO2 and halide activator slurry, followed by a thermal treatment at 900C in an inert atmosphere for 12 hours. Cyclical oxidation tests were conducted at 800C in either dry air or air+3%H2O. In dry air, the treatment reduced the oxidation rate (reduced the magnitude of weight gain) of the alloy by a factor of three. Protective chromium based oxide and spinel ((Mn,Cr)3O4 and (Cr,Fe)2O3) phases formed on the surface of the untreated and treated alloy. More significantly, the treatment suppressed the oxide scale spallation that occurred upon cyclical exposure of this alloy to moist air. In moist air, less protective chromite (FeCr2O4), magnetite (Fe+2Fe2+3O4), and hematite (Fe2O3) formed as oxide products on the surface of the base alloy. The treated alloy did not spall during exposure to moist air, and interestingly, the treated alloy possessed similar oxidation rates (magnitude of weight gain) in both moist and dry air. The same protective chromium based oxide and spinel ((Mn,Cr)3O4 and (Cr,Fe)2O3) phases formed on the surface of the treated alloy exposed to both moist and dry air. In the aggressive moist environment, the Ce surface treatment suppressed the formation of less protective iron-oxides, and concomitant oxide scale spallation during thermal cycling.

  12. Influence of Prior Fatigue Damage on Tensile Properties of 316L(N) Stainless Steel and Modified 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Mathew, M. D.; Bhaduri, A. K.

    2015-02-01

    In the current study, the effect of prior low-cycle fatigue (LCF) damage on the tensile properties of 316L(N) stainless steel (SS) and modified 9Cr-1Mo steel were systematically investigated. The LCF tests were interrupted at 5, 10, 30, and 50 pct of the total fatigue life followed by tensile tests on the same specimens at the same strain rate (3 × 10-3 s-1) and temperatures of 300 K, 823 K, and 873 K (27 °C, 550 °C, and 600 °C). Prior strain cycling at elevated temperatures had remarkable effect on the tensile properties of both cyclically hardening and cyclically softening materials. An exponential relationship between the yield stress and the amount of pre-strain cycles is obtained for both the materials. The initial drastic change in the yield strength values up to 10 pct of fatigue life may be due to the microstructural changes that lead to hardening or softening in 316L(N) SS and modified 9Cr-1Mo steel, respectively. Saturation in the yield strength values beyond 10 pct of fatigue life has practical importance for remnant fatigue life assessment. Evolution of fatigue damage in both the 316L(N) SS and modified 9Cr-1Mo steel was analyzed using the surface replica technique.

  13. Influence of Accelerated Cooling Condition on Welding Thermal Cycle, Residual Stress, and Deformation in SM490A Steel ESW Joint

    NASA Astrophysics Data System (ADS)

    Deng, Dean; Sun, Jiamin; Dai, Deping; Jiang, Xiaohua

    2015-09-01

    Electro-slag welding (ESW) has been widely used to join the box column because of high productivity. The heat input of ESW is far larger than those of other fusion welding processes, so ESW usually results in a long holding time over certain elevated temperature (∆ t H time), a long cooling time from 800 to 500 °C (∆ t 8/5 time), and a wide heat-affected zone (HAZ). It can be foreseen that the mechanical properties especially fracture toughness of the fusion zone and HAZ will be inferior to those of base metal. As a fundamental research, a computational approach based on MSC.Marc code was developed to simulate the thermo-mechanical behaviors in a typical SM490A steel ESW joint under different cooling conditions. Meanwhile, the thermal cycles computed by numerical model were compared with the experimental measurements. Moreover, the influence of accelerated cooling methods on welding residual stress and deformation was examined numerically. Simulation results show that accelerated cooling methods not only can largely shorten ∆ t H time as well as ∆ t 8/5 time and reduce the size of HAZ, but also can affect the residual stress distribution and deformation. It is believed that the accelerated cooling methods proposed by this study potentially improve the mechanical properties of ESW joint.

  14. Simulation of Drawing of Small Stainless Steel Platinum Medical Tubes--Influence of the Tool Parameters on the Forming Limit

    SciTech Connect

    Linardon, Camille; Affagard, Jean-Sebastien; Chagnon, Gregory; Favier, Denis; Gruez, Benoit

    2011-05-04

    Tube cold drawing processes are used to reduce tube diameters and thickness, while pulling them through a conical converging die with or without inner plug. An accurate modelling of the material deformation and friction behaviour is required in order to well describe these processes.The study concerns a stainless steel platinum alloy. The material behaviour is characterised through tensile tests at strain rates as close as possible to the high strain rates reached during the drawing process. The results are fitted with an isotropic temperature-independent Johnson Cook constitutive equation. The modelling of floating plug drawing is performed on a ABAQUS/Explicit model. Friction coefficient is difficult to estimate with mechanical experimental tests, thus an inverse analysis is carried out to fit this parameter thanks to finite element simulation and experimental drawing tests. Drawing force measurements are recorded during the forming process. The Cockroft-Latham criterion is applied to understand the different process parameters influence on tube drawing and its accuracy for drawing process is evaluated.

  15. Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated from an Oil Field

    NASA Astrophysics Data System (ADS)

    AlAbbas, Faisal M.; Williamson, Charles; Bhola, Shaily M.; Spear, John R.; Olson, David L.; Mishra, Brajendra; Kakpovbia, Anthony E.

    2013-11-01

    This work investigates microbiologically influenced corrosion of API 5L X52 linepipe steel by a sulfate-reducing bacteria (SRB) consortium. The SRB consortium used in this study was cultivated from a sour oil well in Louisiana, USA. 16S rRNA gene sequence analysis indicated that the mixed bacterial consortium contained three phylotypes: members of Proteobacteria ( Desulfomicrobium sp.), Firmicutes ( Clostridium sp.), and Bacteroidetes ( Anaerophaga sp.). The biofilm and the pits that developed with time were characterized using field emission scanning electron microscopy (FE-SEM). In addition, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) and open circuit potential (OCP) were used to analyze the corrosion behavior. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and solution interfaces. The results confirmed that extensive localized corrosion activity of SRB is due to a formed biofilm in conjunction with a porous iron sulfide layer on the metal surface. X-ray diffraction (XRD) revealed semiconductive corrosion products predominantly composed of a mixture of siderite (FeCO3), iron sulfide (Fe x S y ), and iron (III) oxide-hydroxide (FeOOH) constituents in the corrosion products for the system exposed to the SRB consortium.

  16. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.

    PubMed

    Yuan, S J; Pehkonen, S O

    2007-09-01

    Microbiologically influenced corrosion (MIC) of stainless steel 304 by a marine aerobic Pseudomonas bacterium in a seawater-based medium was investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM was used to observe in situ the proliferation of a sessile Pseudomonas cell by binary fission. The development of a biofilm on the coupon surface and the extent of corrosion damage beneath the biofilm after various exposure times were also characterized by AFM. Results showed that the biofilm formed on the coupon surface increased in thickness and heterogeneity with time, and thus resulting in the occurrence of extensive micro-pitting corrosion; whilst the depth of pits increased linearly with time. The XPS results confirmed that the colonization of Pseudomonas bacteria on the coupon surface induced subtle changes in the alloy elemental composition in the outermost layer of surface films. The most significant feature resulting from microbial colonization on the coupon surface was the depletion of iron (Fe) and the enrichment of chromium (Cr) content as compared to a control coupon exposed to the sterile medium, and the enrichment of Cr increased with time. These compositional changes in the main alloying elements may be correlated with the occurrence of extensive micropitting corrosion on the surface. PMID:17582747

  17. The influence of loading on the corrosion of steel in cracked ordinary Portland cement and high performance concretes

    NASA Astrophysics Data System (ADS)

    Jaffer, Shahzma Jafferali

    Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there

  18. Influence of tungsten, carbon and nitrogen on toughness and weldability of low activation austenitic high manganese stainless steels

    NASA Astrophysics Data System (ADS)

    Hosoi, Y.; Shimoide, Y.; Abraham, M.; Kutsuna, M.; Miyahara, K.

    1992-09-01

    The effect of alloying elements of tungsten, carbon and nitrogen on high temperature strength, toughness and weldability of Fe12Cr15Mn alloy has been investigated. The high temperature stregth of Fe12Cr15Mn0.2C0.1N at 873 K increases with the addition of 2-300W without affecting ductility. The toughness as estimated by Charpy tests, is also not influenced by the addition of 2-3%W, while the increase of carbon content decreases the absorbed energy. The transition temperature shifts to higher temperature by aging at 873 K for 3600 ks, but it is still lower than room temperature. The degradation of tougheness after aging is considered to be related to the precipitation of M23C6 on grain boundaries. The weldability evaluated by hot cracking susceptibility is not affected by alloying of tungsten and carbon in this alloy system. It is noted that the alloys studied show less hot cracking susceptibility than commercial AISI 316L stainless steel.

  19. The influence of punching process on residual stress and magnetic domain structure of non-oriented silicon steel

    NASA Astrophysics Data System (ADS)

    Cao, Hongzhi; Hao, Linpo; Yi, Jingwen; Zhang, Xianglin; Luo, Zhonghan; Chen, Shenglin; Li, Rongfeng

    2016-05-01

    The main purpose of this paper is to investigate the influence of punching process on residual stress and magnetic domain structure. The residual stress in non-oriented silicon steel after punching process was measured by nanoindentation. The maximum depth was kept constant as 300 nm during nanoindentation. The material around indentation region exhibited no significant pile-up deformation. The calculation of residual stress was based on the Suresh theoretical model. Our experimental results show that residual compressive stress was generated around the sheared edge after punching. The width of residual stress affected zone by punching was around 0.4-0.5 mm. After annealing treatment, the residual stress was significantly decreased. Magnetic domain structure was observed according to the Bitter method. The un-annealed sample exhibited complicated domain patterns, and the widths of the magnetic domains varied between 3 μm and 8 μm. Most of the domain patterns of the annealed sample were 180°-domains and 90°-domains, and the widths of the domains decreased to 1-3 μm.

  20. Simulation of Drawing of Small Stainless Steel Platinum Medical Tubes—Influence of the Tool Parameters on the Forming Limit

    NASA Astrophysics Data System (ADS)

    Linardon, Camille; Affagard, Jean-Sébastien; Chagnon, Grégory; Favier, Denis; Gruez, Benoit

    2011-05-01

    Tube cold drawing processes are used to reduce tube diameters and thickness, while pulling them through a conical converging die with or without inner plug. An accurate modelling of the material deformation and friction behaviour is required in order to well describe these processes. The study concerns a stainless steel platinum alloy. The material behaviour is characterised through tensile tests at strain rates as close as possible to the high strain rates reached during the drawing process. The results are fitted with an isotropic temperature-independent Johnson Cook constitutive equation. The modelling of floating plug drawing is performed on a ABAQUS/Explicit model. Friction coefficient is difficult to estimate with mechanical experimental tests, thus an inverse analysis is carried out to fit this parameter thanks to finite element simulation and experimental drawing tests. Drawing force measurements are recorded during the forming process. The Cockroft-Latham criterion is applied to understand the different process parameters influence on tube drawing and its accuracy for drawing process is evaluated.

  1. Influence of TiN Inclusions on the Cleavage Fracture Behavior of Low-Carbon Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Yan, W.; Shan, Y. Y.; Yang, K.

    2007-06-01

    Toughness is a major concern for low-carbon microalloyed steels. In this work, the impact fracture behavior of two low-carbon Ti-V microalloyed steels was investigated in order to better understand the role of TiN inclusions in the toughness of the steels. The steels had similar chemical compositions and were manufactured by the same rolling process. However, there was an obvious difference in the ductile brittle transition temperature (DBTT) in the Charpy V-notch (CVN) impact tests of the two steels; one (steel 1) possessing a DBTT below -20 °C, while the DBTT of the other (steel 2) was above 15 °C. Scanning electron microscopy (SEM) fractography revealed that there were TiN inclusions at the cleavage fracture initiation sites on the fracture surfaces of steel 2 at both low and room temperatures. It is shown that the TiN inclusions had nucleated on Al2O3 particles and that they had pre-existing interior flaws. A high density of TiN inclusions was found in steel 2, but there was a much lower density in steel 1. Analysis indicates that these inclusions were responsible for the shift of DBTT to a higher temperature in steel 2. A mechanism is proposed for understanding the effect of the size and density of TiN inclusions on the fracture behavior, and the cleavage fracture initiation process is analyzed in terms of the distribution and development of stresses ahead of the notch tip during fracture at both low and room temperatures.

  2. Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism.

    PubMed

    Dall'agnol, Leonardo T; Cordas, Cristina M; Moura, José J G

    2014-06-01

    Sulphate Reducing Prokaryotes (SRP) are an important group of microorganisms involved in biocorrosion processes. Sulphide production is recognized as a fundamental cause of corrosion and nitrate is often used as treatment. The present work analyses the influence of respiratory substrates in the metal, from off-shore installations, SRP influenced corrosion, using Desulfovibrio desulfuricans ATTC 27774 as model organism, since this can switch from sulphate to nitrate. Open Circuit Potential over 6days in different conditions was measured, showing an increase around 200 and 90mV for the different media. Tafel plots were constructed allowing Ecorr and jcorr calculations. For SRP in sulphate and nitrate media Ecorr values of -824 and -728mV, and jcorr values of 2.5 and 3.7μAcm(-2), respectively, were attained indicating that in nitrate, the resultant corrosion rate is larger than in sulphate. Also, it is shown that the equilibrium of sulphide in the solution/gas phases is a key factor to the evolution of corrosion Nitrate prevents pitting but promotes general corrosion and increases the corrosion potential and iron dissolution 40 times when compared to sulphate. Our results demonstrate that nitrate injection strategy in oil fields has to be considered carefully as option to reduce souring and localized corrosion. PMID:24238897

  3. Influence of variable operating modes of a steam turbine on the growth of creep cracks in the metal of shell parts made of austenitic steel

    NASA Astrophysics Data System (ADS)

    Gladshtein, V. I.

    2011-09-01

    Results obtained from assessing the crack resistance of type EI-612 VDP steel by testing notched cylindrical samples under the temperature and stress conditions simulating the loading of metal in shell parts in variable operating modes of a steam turbine are presented. Recommendations for conducting variable operating modes and for the time of carrying out operational checks are given taking into account the influence of cyclic loading on the growth of cracks.

  4. The influence of rare earth additions on the resistance of 2-1/4 Cr-1 Mo steels to hydrogen embrittlement

    SciTech Connect

    Fernandes, M.T.

    1989-01-01

    To evaluate the effect of rare earth additions on the resistance of 2-1/4 Cr-1 Mo steels to hydrogen embrittlement, a variety of alloys with differing amounts of rare earth (Ce, La, Nd and Pr) and tramp element additions (As, Sb and Sn) were studied in the quenched, tempered and isothermally annealed condition. Since rare earth additions could influence the resistance of these steels by altering either (1) the hydrogen diffusion coefficient, (2) the hydrogen solubility or (3) the hydrogen induced fracture process, experiments were conducted to investigate each of these possibilities. These experiments consisted of (1) hydrogen permeation experiments (to evaluate the hydrogen diffusion coefficient), (2) hydrogen ingress experiments (to evaluate the hydrogen solubility), (3) quantitative metallography (to evaluate inclusion morphology), (4) slow strain rate tensile tests (to evaluate the resistance of the alloys to embrittlement) and (5) fractography (to evaluate the fracture mechanism). It was found that rare earth additions did not alter the hydrogen diffusion coefficients. However, the hydrogen ingress experiments indicated that the rare earth modified steels had slightly greater hydrogen solubilities than the alloys that did not contain rare earths. The inclusions in the rare earth modified steels were smaller in size, more spherical in shape and more uniformly distributed than the inclusions in the alloys without rare earth elements. Since the interface between an inclusion and the matrix can act as a trap for hydrogen, the increased solubility of hydrogen in the rare earth modified steels was attributed to the increased inclusion to matrix interface area. In the tensile tests, increased ductility was observed in the rare earth modified steels especially at the higher strain rates.

  5. Influence of chemical composition on the evolution of texture in 441 ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Siyasiya, C. W.; Maruma, M. G.; Stumpf, W. E.

    2015-04-01

    The influence of addition of Nb+Ti (0.26 to 0.7wt%Nb and 0.15 to 0.3wt%Ti) to 441 on the development of annealing crystallographic textures was investigated by XRD and EBSD ODFs. It was found that addition of (Nb+Ti) to 441 improved the {111} texture to a limit while the resistance to ridging continued improving with more additions of Ti and Nb. It was found that the TiN nucleates heterogeneously first on the MgO.Al2O3 spinel and followed by Nb(C,N) on the TiN particle. The improvement in ridging was attributed to particle stimulated nucleation (PSN) of randomly oriented grains caused by these coarse compound particles.

  6. Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Naumoski, H.; Riedmüller, B.; Minkow, A.; Herr, U.

    2015-10-01

    The process of manufacturing iron cores for electric machines out of electrical steel sheets can strongly affect the magnetic properties of the material. In order to better understand the influence of cutting on the iron losses, a characterization of the magnetization behavior near the cutting edge is needed. The local magnetic properties of the material are modified by the cutting process which leads to an increase in the iron losses measured for 5 mm wide ring core samples by nearly 160% at low inductions. We present investigations on the effect of cutting by observation of the magnetic domain structure of 0.35 mm thick non-oriented electrical steel. By using the magneto-optical Kerr-effect on a ring samples the local magnetic properties of the material after processing are characterized in the form of domain wall displacements under an applied external ac-field. The influence of various cutting techniques on the magnetic properties was studied before and after stress relief annealing. This method allows a quantitative analysis of the influence of different cutting techniques on the micro-magnetic properties of non-oriented electrical steel for rotating machines.

  7. Digital image correlation and infrared measurements to determine the influence of a uniaxial pre-strain on fatigue properties of a dual phase steel.

    NASA Astrophysics Data System (ADS)

    Munier, R.; Doudard, C.; Calloch, S.; Weber, B.

    2010-06-01

    The high cycle fatigue (HCF) is a major element for a great design of automotive parts. A wide part of the steel sheets for the automotive industry are stamped, sometimes deeply. During this operation, the steel is plastically strained in different directions, so that a good prediction of the fatigue behavior requires the determination of the fatigue properties of the pre-strained material. Nowadays, the evolution of HCF properties is often neglected, because of prohibitive time dedicated to traditional fatigue campaigns. To reduce the characterization time, self-heating measurements are used. This approach permits to identify the influence of homogeneous pre-strain on fatigue properties. The aim of this paper is to develop an original experimental test to identify this influence for a wide range of pre-strain with only one specimen. The study of a particular case of specimen with a constant gradient of pre-strain is presented. Digital image correlation is a way to determine the heterogeneity of the plastic pre-strain on the specimen and infrared measurements with a ”1D” approach allows the determination of the influence of a plastic pre-strain on the fatigue properties of the studied steel.

  8. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  9. The influence of cooling rate on the microstructure of stainless steel alloys

    SciTech Connect

    Elmer, J.W.

    1988-09-01

    The emergence of high energy density welding, laser surface modification and rapid solidification as commonly used metallurgical processing techniques has greatly increased the range of cooling rates that can be accessed during the solidification of metals and alloys. The microstructures which develop during these rapid cooling conditions may be significantly different from those which develop during low cooling rate conditions as the result of access to new metastable phases with the additional kinetic limitations that accompany rapid solidification. This investigation explores the influence of cooling rate on a series of seven ternary alloys which span the line of two-fold saturation in the Fe-Ni-Cr system. High speed electron beam surface melting was used to resolidify these alloys at scan speeds up to 5 m/s. The resulting cooling rates were estimated from dendrite arm spacing measurements and were confirmed by heat flow modeling to vary from 7 /times/ 10/sup 0/ /degree/C/s to 8 /times/ 10/sup 6/ /degree/C/s. The microstructures that developed from each solidification condition were examined using optical metallography, electron microprobe analysis, scanning electron microscopy and a vibrating sample magnetometer. These results were used to create diagrams to predict the primary mode of solidification, the ferrite content and the complex microstructural morphologies which develop as a function of interface velocity and composition. 158 refs., 90 figs., 45 tabs.

  10. Influence of macrostructure on tensile properties of multipass SAW C-Mn steel deposits

    NASA Astrophysics Data System (ADS)

    Yongyuth, P.; Ghosh, P. K.; Gupta, P. C.; Patwardhan, A. K.; Prakash, Satya

    1993-06-01

    Blocks of 'all weld' metal were prepared by a multipass submerged arc process, using a C-Mn filler wire, at different welding currents and speeds by keeping the arc voltage constant. The variation in welding parameters was found to alter the macrostructure primarily by influencing its co-axial dendrite content. The chemical composition and hardness of the dendritic and the heat affected regions were affected little by the welding parameters. A dendrite content up to 37%, had no significant effect on the tensile properties. However an increase in it beyond 37% was found to enhance the UTS and YS and reduce percent elongation. The tensile strength was found to be a maximum in the L orientation and a minimum in the S direction. The use of post-weld heat treatment (PWHT) at 873 K caused spheroidization of cementite there by somewhat reducing the hardness and strength. The treatment while not affecting the basic dendritic morphology reduced the observed difference in tensile properties along the L, T and S directions. Implications of the data vis-a-vis industrial applications have been discussed.

  11. Influence of the carbon content on the phase composition and mechanical properties of P92-type steel

    NASA Astrophysics Data System (ADS)

    Dudko, V. A.; Fedoseeva, A. E.; Belyakov, A. N.; Kaibyshev, R. O.

    2015-11-01

    The deformation behavior and the microstructure evolution under the creep of 10Kh9V2MFBR steel (Russian analog of the P92 steel) (in wt %, Fe-8.9% Cr-0.05% Si-0.2% Mn-1.9% W-0.5% Mo-0.25% V-0.07Nb-0.08% N-0.01% B) with the standard (0.1%) and lowered (0.018%) carbon contents have been investigated. After the heat treatment, which included normalizing at 1050°C and tempering at 720-750°C, carbides M 23 C 6 and carbonitrides M(C,N) are formed in the 10Kh9V2MFBR steel, while in the 02Kh9V2MFBR steel (modified P92 steel), carbides M 23 C 6, nitrides M 2N, and carbonitrides M(C,N) as well as δ-ferrite (23%) were found. The measurements of hardness and tensile tests at room and elevated temper-atures did not reveal substantial distinctions in the short-term mechanical properties of both steels. The hardness of steels after tempering was 220 HB. At the same time, the creep characteristics of the steels were found to be different. A decrease in the carbon content leads to an increase in the long-term creep strength and creep limit at 650°C for short-term tests with time-to-fracture shorter than 103 h. The time to fracture of steels with various carbon contents is almost the same in long-term creep tests. Factor responsible for such effect of carbon on the creep strength are discussed.

  12. Influences of gaseous environment on low growth-rate fatigue crack propagation in steels. Annual report No. 1, January 1980. Report No. FPL/R/80/1030

    SciTech Connect

    Ritchie, R.O.; Suresh, S.; Toplosky, J.

    1980-01-01

    The influence of gaseous environment is examined on fatigue crack propagation behavior in steels. Specifically, a fully martensitic 300-M ultrahigh strength steel and a fully bainitic 2-1/4Cr-1Mo lower strength steel are investigated in environments of ambient temperature moist air and low pressure dehumidified hydrogen and argon gases over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, with particular emphasis given to behavior near the crack propagation threshold ..delta..K/sub 0/. It is found that two distinct growth rate regimes exist where hydrogen can markedly accelerate crack propagation rates compared to air, (1) at near-threshold levels below (5 x 10/sup -6/ mm/cycle) and (2) at higher growth rates, typically around 10/sup -5/ mm/cycle above a critical maximum stress intensity K/sub max//sup T/. Hydrogen-assisted crack propagation at higher growth rates is attributed to a hydrogen embrittlement mechanism, with K/sub max//sup T/ nominally equal to K/sub Iscc/ (the sustained load stress corrosion threshold) in high strength steels, and far below K/sub Iscc/ in the strain-rate sensitive lower strength steels. Hydrogen-assisted crack propagation at near-threshold levels is attributed to a new mechanism involving fretting-oxide-induced crack closure generated in moist (or oxygenated) environments. The absence of hydrogen embrittlement mechanisms at near-threshold levels is supported by tests showing that ..delta..K/sub 0/ values in dry gaseous argon are similar to ..delta..K/sub 0/ values in hydrogen. The potential ramifications of these results are examined in detail.

  13. Measuring the Influence of Pearlite Dissolution on the Transient Dynamic Strength of Rapidly Heated Plain Carbon Steels

    NASA Astrophysics Data System (ADS)

    Mates, Steven; Stoudt, Mark; Gangireddy, Sindhura

    2016-05-01

    Carbon steels containing ferrite-pearlite microstructures weaken dramatically when pearlite dissolves into austenite on heating. The kinetics of this phase transformation, while fast, can play a role during dynamic, high-temperature manufacturing processes, including high-speed machining, when the time scale of this transformation is on the order of the manufacturing process itself. In such a regime, the mechanical strength of carbon steel can become time dependent. The present work uses a rapidly heated, high-strain-rate mechanical test to study the effect of temperature and time on the amount of pearlite dissolved and on the resulting transient effect on dynamic strength of a low and a high carbon (eutectoid) steel. Measurements indicate that the transient effect occurs for heating times less than about 3 s. The 1075 steel loses about twice the strength compared to the 1018 steel (85 MPa to 45 MPa) owing to its higher initial pearlite volume fraction. Pearlite dissolution is confirmed by metallographic examination of tested samples. Despite the different starting pearlite fractions, the kinetics of dissolution are comparable for the two steels, owing to the similarity in their initial pearlite morphology.

  14. Measuring the Influence of Pearlite Dissolution on the Transient Dynamic Strength of Rapidly Heated Plain Carbon Steels

    NASA Astrophysics Data System (ADS)

    Mates, Steven; Stoudt, Mark; Gangireddy, Sindhura

    2016-07-01

    Carbon steels containing ferrite-pearlite microstructures weaken dramatically when pearlite dissolves into austenite on heating. The kinetics of this phase transformation, while fast, can play a role during dynamic, high-temperature manufacturing processes, including high-speed machining, when the time scale of this transformation is on the order of the manufacturing process itself. In such a regime, the mechanical strength of carbon steel can become time dependent. The present work uses a rapidly heated, high-strain-rate mechanical test to study the effect of temperature and time on the amount of pearlite dissolved and on the resulting transient effect on dynamic strength of a low and a high carbon (eutectoid) steel. Measurements indicate that the transient effect occurs for heating times less than about 3 s. The 1075 steel loses about twice the strength compared to the 1018 steel (85 MPa to 45 MPa) owing to its higher initial pearlite volume fraction. Pearlite dissolution is confirmed by metallographic examination of tested samples. Despite the different starting pearlite fractions, the kinetics of dissolution are comparable for the two steels, owing to the similarity in their initial pearlite morphology.

  15. Influence of the pulsed plasma treatment on the corrosion resistance of the low-alloy steel plated by Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Dzhumaev, P.; Yakushin, V.; Kalin, B.; Polsky, V.; Yurlova, M.

    2016-04-01

    This paper presents investigation results of the influence of high temperature pulsed plasma flows (HTPPF) treatment on the corrosion resistance of low-alloy steel 0.2C-Cr-Mn- Ni-Mo cladded by the rapidly quenched nickel-based alloy. A technique that allows obtaining a defect-free clad layer with a good adhesion to the substrate was developed. It is shown that the preliminary treatment of steel samples by nitrogen plasma flows significantly increases their corrosion resistance in the conditions of intergranular corrosion test in a water solution of sulfuric acid. A change of the corrosion mechanism of the clad layer from intergranular to uniform corrosion was observed as a result of sub-microcrystalline structure formation and homogeneous distribution of alloying elements in the plasma treated surface layer thus leading to the significant increase of the corrosion resistance.

  16. Influence of Zn as a spallation product on the behaviour of martensitic steel T91 and austenitic steel 316L in liquid Pb-Bi

    NASA Astrophysics Data System (ADS)

    Deloffre, Ph.; Terlain, A.

    2004-11-01

    The liquid Pb-Bi alloy is proposed as material for the spallation target in hybrid systems. During the spallation process, several chemical elements are produced in the target which could generate specific liquid metal embrittlement phenomena. Among these species, zinc is known as an element which can promote LME (liquid metal embrittlement). Corrosion tests were carried out in liquid Pb-Bi in isothermal static conditions without and with 80 wppm of zinc at 150 °C, 350 °C and 600 °C up to 6000 h. No modification of the corrosion kinetics of T91 martensitic and 316L austenitic steels was observed for either unstressed or U-bend specimens with zinc in Pb-Bi. Moreover, no sign of embrittlement was observed for any of the samples with and without zinc.

  17. Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lu, Si-Yuan; Yao, Ke-Fu; Chen, Yun-Bo; Wang, Miao-Hui; Ge, Xue-Yuan

    2015-12-01

    The effect of heat treatment on the microstructure and the electrochemical properties of a typical corrosion-resistant plastic mold steel in Cl--containing solution were studied in this research. Through X-ray diffraction patterns, SEM and TEM analysis, it was found that the sequence of the precipitates in the steels tempered at 573 K, 773 K, and 923 K (300 °C, 500 °C, and 650 °C) was θ-M3C carbides, nano-sized Cr-rich M23C6 carbides, and micro/submicron-sized Cr-rich M23C6 carbides, respectively. The results of the electrochemical experiments showed that the pitting potential of the as-quenched martensitic stainless steels increased with the austenitizing temperature. However, the corrosion resistance of the steels would decreased after tempering, especially when tempered at 773 K (500 °C), no passivation regime could be found in the polarization curve of the MSSs and no effective passive film could be formed on the steels in Cl--containing environments. The present results suggested that the temperature around 773 K (500 °C) should be avoided for tempering process of MSS used as plastic molds.

  18. Influence of Dispersoids on Corrosion Behavior of Oxide Dispersion-Strengthened 18Cr Steels made by High-Energy Milling

    NASA Astrophysics Data System (ADS)

    Nagini, M.; Jyothirmayi, A.; Vijay, R.; Rao, Tata N.; Reddy, A. V.; Rajulapati, Koteswararao V.; Sundararajan, G.

    2016-02-01

    Corrosion behavior of 18Cr ferritic steel with and without yttria produced by high-energy milling followed by hot extrusion was studied in 3.5% NaCl solution using electrochemical and immersion techniques. The cyclic polarization study showed that pitting corrosion is predominant in all the materials. The pitting rate is higher in yttria dispersed steels and also increases with milling time. Impedance analysis revealed the formation of better corrosion resistance film on the surface of the steel without yttria. Potentiodynamic polarization studies indicated that the corrosion rate decreased up to 48 h of exposure time and increased beyond 48 h. The increase in corrosion rate beyond 48 h is due to the porous passive film. The corrosion behavior of all the materials in immersion studies followed the same trend as observed in electrochemical studies. Even though the corrosion rate of yttria dispersed 18Cr ferritic steel is less than that of the base material, the difference is marginal. The presence of dispersoids appears to promote nucleation of pits when compared to the steel without the dispersoids.

  19. Influence of steel type on the propensity for tribochemical wear in boundary lubrication with a wind turbine gear oil

    SciTech Connect

    Evans, Ryan D.; Doll, Gary L.; Hager, C H; Howe, Jane Y

    2010-01-01

    Tribochemical wear may occur at the interface between a surface and a lubricant as a result of chemical and mechanical interactions in a tribological contact. Understanding the onset of tribochemical wear damage on component surfaces requires the use of high resolution techniques such as transmission electron microscopy (TEM). In this study, two steel types, case carburized AISI 3310 and through-hardened AISI 52100, were wear tested using a ball-on-disk rolling/sliding contact tribometer in fully formulated commercial wind turbine gearbox oil under boundary lubrication conditions with 10% slip. With the exception of steel type, all other test conditions were held constant. Conventional tribofilm analysis in the wear tracks was performed using X-ray photoelectron spectroscopy, and no significant composition differences were detected in the tribofilms for the different steel disk types. However, TEM analysis revealed significant tribochemical wear differences between the two steel types at multiple length scales, from the near-surface material microstructure (depth < 500 nm) to the tribofilm nanostructure. Nanometer-scale interfacial cracking and surface particle detachment was observed for the AISI 52100 case, whereas the tribofilm/substrate interface was abrupt and undamaged for the AISI 3310 case. Differences in tribofilm structure, including the location and orientation of MoS{sub 2} single sheet inclusions, were observed as a function of steel type as well. It is suggested that the tribochemical wear modes observed in these experiments may be origins of macroscopic surface-initiated damage such as micropitting in bearings and gears.

  20. Influence of Alloy Content and Prior Microstructure on Evolution of Secondary Phases in Weldments of 9Cr-Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Sudha, C.; Saroja, S.

    2015-08-01

    9Cr-Reduced Activation Ferritic-Martensitic steels with 1 and 1.4 wt pct tungsten are materials of choice for the test blanket module in fusion reactors. The steels possess a tempered martensite microstructure with a decoration of inter- and intra-lath carbides, which undergoes extensive modification on application of heat. The change in substructure and precipitation behavior on welding and subsequent thermal exposure has been studied using both experimental and computational techniques. Changes i.e., formation of various phases, their volume fraction, size, and morphology in different regions of the weldment due to prolonged thermal exposure was influenced not only by the time and temperature of exposure but also the prior microstructure. Laves phase of type Fe2W was formed in the high tungsten steel, on aging the weldment at 823 K (550 °C). It formed in the fine-grained heat-affected zone (HAZ) at much shorter durations than in the base metal. The accelerated kinetics has been understood in terms of enhanced precipitation of carbides at lath/grain boundaries during aging and the concomitant depletion of carbon and chromium and enrichment of tungsten in the vicinity of the carbides. Therefore, the fine-grained HAZ in the weldment was identified as a region susceptible for failure during service.

  1. Influence of Nb-Microalloying on the Formation of Nano/Ultrafine-Grained Microstructure and Mechanical Properties During Martensite Reversion Process in a 201-Type Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Baghbadorani, Hojjat Samaei; Kermanpur, Ahmad; Najafizadeh, Abbas; Behjati, Peiman; Moallemi, Mohammad; Rezaee, Ahad

    2015-08-01

    In this study, influence of Nb-microalloying on formation of nano/ultrafined grain microstructure and mechanical properties during martensite reversion process in a 201-type austenitic stainless steel microalloyed with Nb was investigated. For this purpose, the 90 pct cold-rolled samples with almost fully martensitic microstructure were reversion annealed at 1023 K to 1173 K (750 °C to 900 °C) for 5 to 1800 seconds. The microstructural evolution was characterized using X-ray diffractometer, Ferritescope, optical microscope, scanning, and transmission electron microscopes. Mechanical properties were evaluated using hardness and tensile tests. The reversion mechanism was found to be diffusion controlled. In comparison with other types of 201 steel, the kinetics of grain growth at 1173 K (900 °C) was much slower in the Nb-bearing steel, being related to the rapid precipitation of nano-sized Nb-rich carbonitrides during reversion process. At this temperature, the finest austenitic microstructure was achieved in the specimen reversion annealed for 60 seconds, possessing a microstructure composed of nano and ultrafined grains with an average grain size of 93 nm. This specimen exhibited an excellent combination of ultrahigh strength (yield strength of 1 GPa and tensile strength of 1.5 GPa) and good ductility (tensile elongation of 35 pct).

  2. Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel during Hot Dip Galvanizing

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2014-09-01

    The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.

  3. Utilization of nondestructive electrochemical techniques in characterizing microbiologically influenced corrosion (MIC) of API-5L X65 carbon linepipe steel: Laboratory study

    NASA Astrophysics Data System (ADS)

    Al-Abbas, F.; Kakpovbia, A.; Mishra, B.; Olson, D.; Spear, J.

    2012-05-01

    Nondestructive electrochemical techniques were used to investigate the microbiologically influenced corrosion (MIC) by Sulfate Reducing Bacteria (SRB) corrosion of API 5L X65 linepipe steel. These techniques included Electrochemical Impedance Spectroscopy (EIS), open circuit potential (OCP) and linear polarization resistance (Rp). OCP trend showed anodic polarization of 67 mV between the biotic media with reference to abiotic media. These shifts were attributed to the cathodic side reactions produced by the metabolic activity of SRB. Through circuit modeling, EIS results were used to interpret the real time interactions between the electrode, biofilm and solution interfaces.

  4. Influence of microstructure on the corrosion resistance of AISI type 304L and type 316L sintered stainless steels exposed to ferric chloride solution

    SciTech Connect

    Otero, E.; Pardo, A.; Utrilla, M.V.; Perez, F.J.; Saenz, E.

    1995-10-01

    The corrosion behavior of type 304L and type 316L austenitic stainless steels, produced by powder metallurgy, when exposed to a ferric chloride solution was studied. The exposures were conducted according to ASTM G48-76, Method A. The influence of ferric chloride concentration and exposure temperature on the corrosion kinetics of these materials was evaluated. A mechanism is proposed to explain the associated morphology observed in the microstructures produced after exposure of these P/M alloys to the aggressive medium.

  5. Influence of a doping by Al stainless steel on kinetics and character of interaction with the metallic nuclear fuel

    NASA Astrophysics Data System (ADS)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.

    2016-04-01

    Metallic nuclear fuel is a perspective kind of fuel for fast reactors. In this paper we conducted a study of the interaction between uranium-molybdenum alloy and ferritic- martensitic steels with additions of aluminum at a temperature of 700 ° C for 25 hours. The rate constants of the interaction layer growth at 700 °C is about 2.8.10-14 m2/s. It is established that doping Al stainless steel leads to decrease in interaction with uranium-molybdenum alloys. The phase composition of the interaction layer is determined.

  6. Influence of TIG welding thermal cycles on HSLA-100 steel plate. Technical report. [TIG (tungsten-inert gas)

    SciTech Connect

    Fox, A.G.; Bhole, S.D.

    1993-11-01

    A series of five bead on plate autogenous tungsten-inert-gas (TIG) welds were performed on U.S. Navy HSLA-100 steel. Power variations in these welds was achieved by altering the welding speed, voltage and current and were as follows (in kJ/mm); 0.7, 1.1, 1.2, 1.6 and 2.2. No evidence was found of either weld metal or underbead HAZ cracking in any of the welds illustrating the advantage of low carbon steel for both weld wire and base plate. Microhardness traverses across both the weld metals and HAZs gave a maximum. Vickers diamond pyramid hardness of 345 HV in the coarse grain HAZ next to the fusion line in the lowest power weld; for the highest power weld this was somewhat lower at 328 HV. These are well below 375 which is usually considered to be the lowest Vickers Hardness value for which severe hydrogen induced cold cracking is observed in this type of steel. Optical, scanning and transmission electron microscopy studies of the coarse grain HAZ microstructure in the regions of maximum hardness was correlated with the continuous cooling transformation diagram for this steel and good agreement between observed and predicted microstructures was obtained.

  7. The influence of complexing agent and proteins on the corrosion of stainless steels and their metal components.

    PubMed

    Kocijan, Aleksandra; Milosev, Ingrid; Pihlar, Boris

    2003-01-01

    The present work is devoted to the problem of biodegradation of orthopaedic implants manufactured from stainless steel. In vitro simulations of the biocompatibility of two types of stainless steel, AISI 304 and AISI 316L, and their individual metal components, i.e. iron, chromium, nickel and molybdenum, were carried out in simulated physiological solution (Hank's) containing complexing agents. Knowledge of the effects of the chemical and biological complexing agents, EDTA and proteins, respectively, on the corrosion resistance of a metal should provide a better understanding of the processes occurring in vivo on its surface. The behavior of stainless steels and metal components was studied under open circuit and under potentiostatic conditions. The concentration of dissolved corrosion products in the form of released ions was determined by differential pulse polarography (DPP) and atomic emission spectrometry using inductively coupled plasma (ICP-AES). The composition of solid corrosion products formed on the surface was analyzed by energy dispersive X-ray spectroscopy (EDS) and their morphology was viewed by scanning electron microscopy (SEM). The addition of EDTA and proteins to physiological solution increased the dissolution of pure metals and stainless steels. The effect of particular protein differs on different metals and alloys. PMID:15348541

  8. The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel.

    PubMed

    Engelberg, D L; Humphreys, F J; Marrow, T J

    2008-06-01

    Grain boundary engineering of austenitic stainless steel, through the introduction of plastic strain and thermal annealing, can be used to develop microstructures with improved resistance to inter-granular degradation. The influence of low-strain thermo-mechanical processing on grain boundary network development, with systematic variations of annealing treatments, has been investigated. Three stages of the microstructure development during grain boundary engineering in low-strain processing conditions are identified, and correlated with changes in grain boundary character and deviation distributions. Low-energy connected length segments at triple junctions, which have been proposed to be responsible for crack bridging during inter-granular stress corrosion cracking, can be influenced by the choice of the annealing treatment parameters. The development of individual grain boundary length segments of different character showed consistent trends with increasing grain size. Crack length predictions are consistent with the beneficial effect of designing microstructures with high fractions of twin grain boundaries and smaller grain size. PMID:18503670

  9. Bauschinger Effect in Microalloyed Steels: Part II. Influence of Work Softening on Strength Development During UOE Line-Pipe Forming

    NASA Astrophysics Data System (ADS)

    Kostryzhev, Andrii G.; Strangwood, Martin; Davis, Claire L.

    2011-10-01

    The Bauschinger effect (a reduced yield stress at the start of reverse deformation following forward prestrain) is an important factor of strength development for cold metal forming technology. In steels, the magnitude of the Bauschinger effect depends on composition, through the presence of microalloy precipitates, and prior processing, through the size and distribution of the microalloy precipitates and the presence of retained work hardening. In this article, the parameters of the Bauschinger effect and work hardening (coefficient and exponent) in forward and reverse deformations were quantitatively related to the particle number density and dislocation density for two high-strength low-alloy (HSLA) steels. An example of the application of the obtained dependences is discussed with respect to the strength development during UOE forming of large diameter line pipes.

  10. Influence of grain refinement on the electrochemical behavior of AISI 430 ferritic stainless steel in an alkaline solution

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, A.; Vafaeian, S.

    2016-01-01

    In this paper, the effect of grain refinement on the electrochemical behavior of AISI 430 ferritic stainless steel in 0.1 M NaOH solution was investigated. Potentiodynamic polarization curves showed that fine-grained samples have less corrosion potential, higher corrosion current density, and less protective passive film in comparison to coarse-grained samples. Electrochemical impedance spectroscopy (EIS) analysis revealed that implementing the thermomechanical operation led to lower polarization resistance. Also, Mott-Schottky analysis revealed that the passive films on both fine-grained and coarse-grained samples behave as n-type and p-type semiconductors and the semiconductor character of the passive films did not change by grain refinement. Moreover, it was found that the calculated donor and acceptor densities increased with grain refinement. Thus, the presented results indicated that grain refinement weakens the corrosion and passivation behavior of AISI 430 stainless steel in this alkaline solution.

  11. Influence of nitrogen on the sensitization, corrosion, mechanical, and microstructural properties of austenitic stainless steels. First annual progress report

    SciTech Connect

    Clark, W.A.T.; Macdonald, D.D.

    1982-04-01

    During this first year of the project, the research effort has concentrated on the electrochemical aspects of the effect of nitrogen on austenitic steels. The status of all the individual project tasks are outlined briefly, and then more detailed results of the electrochemical studies conducted so far are reported. Highlights of this quarter are: (1) nitrogen additions of up to 0.16 wt % retard sensitization of 18Cr-8Ni austenitic stainless steels. However, nitrogen additions to levels above approx. 0.25 wt % promote sensitization; (2) the retardation of sensitization by nitrogen can possibly be explained as being due to retardation of the nucleation or rate of growth of chromium carbides; and (3) polarization studies in high temperature 0.01 M Na/sub 2/SO/sub 4/ solutions at 250/sup 0/C demonstrate that the sensitized alloys are electrochemically more active than the solution annealed materials thereby indicating that they are susceptible to intergranular attack.

  12. The Influence of Shielding Gas and Heat Input on the Mechanical Properties of Laser Welds in Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Keskitalo, M.; Sundqvist, J.; Mäntyjärvi, K.; Powell, J.; Kaplan, A. F. H.

    Laser welding of ferritic steel in normal atmosphere gives rise to weld embrittlement and poor formability. This paper demonstrates that the addition of an argon gas shield to the welding process results in tough, formable welds. Post weld heat treatment and microscopic analysis has suggested that the poor ductility of welds produced without a gas shield is, to some extent, the result of the presence of oxides in the weld metal.

  13. Influence of inclusion characteristics on the formability and toughness properties of a hot-rolled deep-drawing quality steel

    NASA Astrophysics Data System (ADS)

    Paul, S. K.; Ray, A.

    1997-02-01

    In industrial practice, variations in the steelmaking process may cause significant change in inclusion characteristics. During hot rolling of flat steel products, manganese sulfides, which are plastic at elevated temperatures, are elongated in the rolling direction. These elongated inclusions affect the formability properties, such as ductility, strain hardening exponent, average plastic strain ratio, critical strain represented by the forming limit diagram, and Charpy V- notch (CVN) impact energy as well as fracture behavior. The inclusion characteristics and microstructural features of three commercially produced hot- rolled deep- drawing quality steels were evaluated and their effects on formability and impact properties were investigated. All three heats were made in a basic oxygen furnace. Two heats were teemed into ingots while the other heat was argon purged and continuous cast. These heats were then processed into 3.10 mm thick strips with identical processing parameters. Manganese sulfide stringers were found to reduce the transverse ductility, whereas yield and tensile strengths remained virtually the same in all directions. The formability parameters were not significantly affected by small variations in inclusion characteristics. However, CVN impact energy and impact transition temperature data were observed to improve with steel cleanliness. The sulfide stringers were also found to adversely affect the impact energy, transition temperature, and fracture behavior in the transverse direction.

  14. Influence of Thermal Exposure on Structural Changes of M23C6 Carbide in P91 Steel

    NASA Astrophysics Data System (ADS)

    Baltušnikas, Arūnas; Lukošiūtė, Irena; Makarevičius, Vidas; Kriūkienė, Rita; Grybėnas, Albertas

    2016-03-01

    Thermal aging effect on the structural changes of M23C6 carbide precipitates was investigated after a long-term exposure of P91 steel at 600, 650, and 700 °C. The identification of alloy carbides and calculation of M23C6 lattice parameters was accomplished by x-ray diffraction analysis using the Topas program based on the Le Bail pattern decomposition method. This work revealed that M23C6 carbide crystal lattice parameter progressively increases as a function of time at high-temperature exposure due to enhanced diffusion of alloying elements from matrix into the carbide lattice. Kinetic parameters of M23C6 lattice transformation were described using Johnson-Mehl-Avrami equation. The activation energy E, rate constant k, and Avrami exponent n were established, which made it possible to develop a time-temperature relationship for P91 steel structural parameter transformation. The obtained dependence of M23C6 lattice parameter transformation could be used as an indicator for the assessment of the real temperature exposure time of heat-resistant P91 steel.

  15. Influence of Cu-Interlayer Thickness on Microstructures and Mechanical Properties of MIG-Welded Mg-Steel Joints

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Sun, D. Q.; Sun, Y.

    2016-03-01

    The joining of AZ31B Mg alloy to Q235 steel was realized by metal inert-gas arc welding using Cu-interlayer. Microstructure characteristics and mechanical properties of Mg-steel joints with Cu-interlayer of different thicknesses were investigated. The results indicated that acceptable joints with sound appearance could be obtained by adjusting the thickness to the range of 0.1-0.2 mm. In particular, at the thickness of 0.15 mm, the average tensile strength reached a maximum of 190 MPa, representing a 79% joint efficiency relative to the Mg base metal. Further increasing the thickness would cause more formation of coarse and thick Mg-Cu eutectic structure and Mg-Al-Cu ternary phase, which resulted in the decrease of joint strength. Therefore, the best thickness of Cu-interlayer to obtain high strength of Mg-steel MIG-welded joint was in the range of 0.1-0.15 mm. The average microhardness reached the maximum value in the reaction layer because of the presence of FeAl intermetallic compounds.

  16. Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance

    NASA Astrophysics Data System (ADS)

    Pacquentin, Wilfried; Caron, Nadège; Oltra, Roland

    2014-01-01

    Surface modifications of AISI 304L stainless steel by laser surface melting (LSM) were investigated using a nanosecond pulsed laser-fibre doped by ytterbium at different overlaps. The objective was to study the change in the corrosion properties induced by the treatment of the outer-surface of the stainless steel without modification of the bulk material. Different analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and glow discharge optical emission spectrometry (GDOES) were used to characterize the laser-melted surface. The corrosion resistance was evaluated in a chloride solution at room temperature by electrochemical tests. The results showed that the crystallographic structure, the chemical composition, the properties of the induced oxide layer and consequently the pitting corrosion resistance strongly depend on the overlap rate. The most efficient laser parameters led to an increase of the pitting potential by more than 300 mV, corresponding to a quite important improvement of the corrosion resistance. This latter was correlated to chromium enrichment (47 wt.%) at the surface of the stainless steel and the induced absence of martensite and ferrite phases. However, these structural and chemical modifications were not sufficient to explain the change in corrosion behaviour: defects and adhesion of the surface oxide layer must have been taken into consideration.

  17. Influence of Thermal Exposure on Structural Changes of M23C6 Carbide in P91 Steel

    NASA Astrophysics Data System (ADS)

    Baltušnikas, Arūnas; Lukošiūtė, Irena; Makarevičius, Vidas; Kriūkienė, Rita; Grybėnas, Albertas

    2016-05-01

    Thermal aging effect on the structural changes of M23C6 carbide precipitates was investigated after a long-term exposure of P91 steel at 600, 650, and 700 °C. The identification of alloy carbides and calculation of M23C6 lattice parameters was accomplished by x-ray diffraction analysis using the Topas program based on the Le Bail pattern decomposition method. This work revealed that M23C6 carbide crystal lattice parameter progressively increases as a function of time at high-temperature exposure due to enhanced diffusion of alloying elements from matrix into the carbide lattice. Kinetic parameters of M23C6 lattice transformation were described using Johnson-Mehl-Avrami equation. The activation energy E, rate constant k, and Avrami exponent n were established, which made it possible to develop a time-temperature relationship for P91 steel structural parameter transformation. The obtained dependence of M23C6 lattice parameter transformation could be used as an indicator for the assessment of the real temperature exposure time of heat-resistant P91 steel.

  18. Influence of thermal spraying parameters on the corrosion resistance of aluminium oxide coatings deposited on steel 1020

    NASA Astrophysics Data System (ADS)

    Salas, Y.; Vera, E.; Moreno, M.; Pineda, Y.

    2016-02-01

    Parameters required for the preparation of coatings of aluminium oxide deposited on AISI 1020 steels were determined according to their thickness and type of flame to differentiate their behaviour against corrosion. Commercial powders were used by the method of thermal spraying deposition. The coatings were analysed by OM (optical microscopy), the thickness was measured by means of a coating thickness gauge and electrochemical techniques variables measured was the Linear Polarization Resistance (LPR) and approximation Tafel potentiodynamic curves. The corrosion current for steel 1020 with Na2SO4 electrolyte of 3.5% is of the order of hundreds of A/cm2 and coated steel given in the order of A/cm2, which leads to think that the projection produces coatings uniform low closed porosity, although techniques DC indicate a significant porosity as is observable current response to the potentiodynamic curve. The observed thicknesses fall into the hundreds of microns and little uniformity was noted in this coatings. The coatings deposited by oxidizing flame was better performance in corrosion than the coating deposited by neutral flame.

  19. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel

    PubMed Central

    Miller, Robert Bertram; Sadek, Anwar; Rodriguez, Alvaro; Iannuzzi, Mariano; Giai, Carla; Senko, John M.; Monty, Chelsea N.

    2016-01-01

    Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms. PMID:26824529

  20. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel.

    PubMed

    Miller, Robert Bertram; Sadek, Anwar; Rodriguez, Alvaro; Iannuzzi, Mariano; Giai, Carla; Senko, John M; Monty, Chelsea N

    2016-01-01

    Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms. PMID:26824529

  1. Influence of potential, chlorides, pH, and precharging time on embrittlement of cathodically polarized prestressing steel

    SciTech Connect

    Hartt, W.H.; Kumria, C.C. ); Kessler, R.J. )

    1993-05-01

    Corrosion of prestressing steel in concrete has become a major technological problem in highways, buildings, and pipeline structures. While cathodic protection is recognized as an appropriate technique to mitigate corrosion of reinforcing steel in concrete, the possibility of environmental cracking (hydrogen embrittlement) in the case of prestressing tendon has limited application to this usage. To establish the appropriateness of cathodic protection for prestressing steel, constant extension rate testing was performed on smooth and notched wire specimens in deaerated Ca(OH)[sub 2] solutions as a function of potential, [Cl-], pH, and precharging time. Results indicated potential is the most important of these variables, and a threshold value of [minus]0.90 V[sub SCE] was identified below which embrittlement is enhanced. Notched specimens, which may best simulate the geometry of corroded tendon, particularly were susceptible when compared to smooth tendon. Failure of some tendons in this condition could occur upon application of cathodic protection, even when potential is positive to [minus]0.90 V[sub SCE]. Other aspects of cathodic protection utility for prestressed concrete are reviewed.

  2. Nuclear transmutation in steels

    NASA Astrophysics Data System (ADS)

    Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.

    2009-05-01

    The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.

  3. Influence of hot rolling and high speed hydrostatic extrusion on the microstructure and mechanical properties of an ODS RAF steel

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Lewandowska, M.; Kurzydlowski, K. J.; Baluc, N.

    2011-02-01

    An argon gas atomized, pre-alloyed Fe-14Cr-2W-0.3Ti (wt.%) reduced activation ferritic (RAF) steel powder was mechanically alloyed with 0.3wt.% Y 2O 3 nano-particles in an attritor ball mill and consolidated by hot isostatic pressing at 1150 °C under a pressure of 200 MPa for 3 h. In the aim to improve its mechanical properties the ODS steel was then submitted to a thermo-mechanical treatment (TMT): hot rolling (HR) at 850 °C or high speed hydrostatic extrusion (HSHE) at 900 °C, followed by heat treatment (HT). Transmission electron microscopy (TEM) observations of the ODS alloys after TMT and heat treatment revealed the presence of elongated grains in the longitudinal direction, with an average width of 8 μm and an average length of 75 μm, and equiaxed grains, a few microns in diameter, in the transverse direction. Two populations of oxide particles were observed by TEM: large Ti-Al-O particles, up to 250 nm in diameter, usually located at the grain boundaries and small Y-Ti-O nanoclusters, about 2.5 nm in diameter, uniformly distributed in the matrix. Charpy impact tests revealed that the HSHE material exhibits a larger upper shelf energy (5.8 J) than the HR material (2.9 J). The ductile-to-brittle transition temperature of both alloys is relatively high, in the range of 55-72 °C. Tensile mechanical properties of both ODS alloys were found satisfactory over the full range of investigated temperatures (23-750 °C). The HSHE material exhibits better tensile strength and ductility than the HR material. These results indicate that HSHE can be considered as a promising TMT method for improving the mechanical properties of ODS RAF steels.

  4. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  5. Influence of rapid thermal cycles in multipass welding on heat-affected-zone properties in ferritic cryogenic steels

    SciTech Connect

    Kim, H.J.; Shin, H.K.; Morris, J.W. Jr.

    1982-05-01

    The results of both welding and weld simulation studies on 2BT-treated 9Ni steel show that multiple rapid thermal cycles have a very beneficial effect on heat-affected zone toughness at cryogenic temperatures. The metallurgical sources of toughness are, however, different from those in the furnace-treated base plate. The rapidly cycled material contains no detectable austenite phase. The alloy is grain-refined by the rapid thermal cycle, and the matrix carbon content is relieved by the formation of interlathcementite precipitates which do not destroy toughness.

  6. Influence of Secondary Cyclic Hardening on the Low Cycle Fatigue Behavior of Nitrogen Alloyed 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Mathew, M. D.; Sankaran, S.

    2013-12-01

    In this article, the occurrence of secondary cyclic hardening (SCH) and its effect on high-temperature cyclic deformation and fatigue life of 316LN Stainless steel are presented. SCH is found to result from planar slip mode of deformation and enhance the degree of hardening over and above that resulted from dynamic strain aging. The occurrence of SCH is strongly governed by the applied strain amplitude, test temperature, and the nitrogen content in the 316LN SS. Under certain test conditions, SCH is noticed to decrease the low cycle fatigue life with the increasing nitrogen content.

  7. The influence of defects of the fatigue resistance of butt and girth welds in A106B steel

    NASA Technical Reports Server (NTRS)

    Leis, B. N.; Goetz, D. P.; Scott, P. M.

    1986-01-01

    This three-phase study was directed at developing a fitness for service defect acceptance criteria for welds with defect indications. The study focussed on A106 Gr. B steel pipe. The first phase involved a literature search and critical review to develop the preliminary acceptance criteria to the extent permitted by the data. The second phase developed data for flat plate, wall segment, and vessel specimens containing artificial or natural planar or volumetric defects. The final phase developed acceptance criteria from the test data.

  8. Experiments on different materials (polyamide, stainless & galvanized steel) influencing geothermal CaCO3 scaling formation: Polymorphs & elemental incorporation

    NASA Astrophysics Data System (ADS)

    Wedenig, Michael; Dietzel, Martin; Boch, Ronny; Hippler, Dorothee

    2016-04-01

    Thermal water is increasingly used for heat and electric power production providing base-load capable renewable and virtually unlimited geothermal energy. Compared to other energy sources geothermal facilities are less harmful to the environment, i.e. chemically and visually. In order to promote the economic viability of these systems compared to other traditional and renewable energy sources, production hindering processes such as corrosion and scaling of components arising from the typically high salinity thermal waters have to be considered as important economic factors. In this context, using proper materials being in contact with the thermal water is crucial and a playground for further improvements. Aim of the study presented, are basic experiments and observations of scaling and corrosive effects from hydrothermal water interacting with different materials and surfaces (stainless steel, polyamide, galvanized steel) and in particular the nucleation and growth effects of these materials regarding the precipitation of solid carbonate phases. The incorporation of Mg, Sr and Ba cations into the carbonate scalings are investigated as environmental proxy. For this purpose, hydrothermal carbonate precipitating experiments were initialized by mixing NaHCO3 and Ca-Mg-Sr-Ba-chloride solutions at temperatures ranging from 40 to 80 °C in glass reactors hosting artificial substrates of the above mentioned materials. The experiments show a strong dependence of the precipitation behaviour of calcium carbonate polymorphs on the particular material being present. Stainless steel and polyamide seem to restrict aragonite formation, whereas galvanized steel supports aragonite nucleation. Vaterite formation is promoted by polyamide surfaces. Importantly, vaterite is more soluble (less stable) compared to the other anhydrous calcium carbonate polymorphs, i.e. vaterite can be more easily re-dissolved. Thus, the use of polyamide components might reduce the amount and durability of

  9. Influence of Powder Particle Size on the Compaction Behavior and Mechanical Properties of a High-Alloy Austenitic CrMnNi TRIP Steel During Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Decker, S.; Martin, S.; Krüger, L.

    2016-01-01

    In this study, varying powder particle size fractions (<25, 25 to 45, 45 to 63 µm) of a TRIP steel powder were compacted by spark plasma sintering (SPS). Densification initiated at a slightly lower temperature with decreasing particle size due to increasing green density. With decreasing powder particle size fraction, the as-sintered materials exhibited smaller grain sizes. Compression tests revealed a slight decrease of the compressive yield strength with increasing particle size and, accordingly, larger grain size. A few large deformation bands formed in bigger grains, while many thin deformation bands were formed in smaller grains. α'-Martensite nuclei formed successively inside the deformation bands, reducing the mean free path of (partial) dislocation slip. Due to the size of the deformation bands, α'-martensite formation started at lower strains with increasing particle size. When α'-martensite formation was initiated, work hardening was influenced more by α'-martensite formation than by the grain size of the steel matrix. Hence, work hardening increased with increasing particle size.

  10. Influence of Temperature and Time of Post-weld Heat Treatment on Stress Relief in an 800-mm-Thick Steel Weldment

    NASA Astrophysics Data System (ADS)

    Mitra, Abhishek; Siva Prasad, N.; Janaki Ram, G. D.

    2016-04-01

    Ferritic steel weldments are invariably post-weld heat treated for relieving the residual stresses. However, the long duration of post-weld heat treatment (PWHT) required for very thick weldments can adversely affect the mechanical properties and fracture toughness. Thus, there is a need to establish the relative importance of temperature and time of PWHT with respect to stress relief. Accordingly, in the present work, the phenomenon of stress relief (due to PWHT) in an 800-mm-thick steel weldment was investigated using finite element analysis and the results were validated against experimental measurements. An analytical study was also carried out to determine the relative influence of temperature and time of PWHT on stress relief. It was found that time of PWHT plays a more significant role in case of relatively lower PWHT temperatures. It was also found that, for a given value of Hollomon parameter, different combinations of PWHT temperature and time can be employed to achieve the same level of stress relief. A mathematical relationship has been established between Hollomon parameter and magnitude of residual stress after PWHT. It has been shown that residual stress is a monotonically decreasing function of the Hollomon parameter.