Science.gov

Sample records for 17o nmr chemical

  1. Predicting (17)O NMR chemical shifts of polyoxometalates using density functional theory.

    PubMed

    Sharma, Rupali; Zhang, Jie; Ohlin, C André

    2016-03-21

    We have investigated the computation of (17)O NMR chemical shifts of a wide range of polyoxometalates using density functional theory. The effects of basis sets and exchange-correlation functionals are explored, and whereas pure DFT functionals generally predict the chemical shifts of terminal oxygen sites quite well, hybrid functionals are required for the prediction of accurate chemical shifts in conjunction with linear regression. By using PBE0/def2-tzvp//PBE0/cc-pvtz(H-Ar), lanl2dz(K-) we have computed the chemical shifts of 37 polyoxometalates, corresponding to 209 (17)O NMR signals. We also show that at this level of theory the protonation-induced pH dependence of the chemical shift of the triprotic hexaniobate Lindqvist anion, [HxNb6O19]((8-x)), can be reproduced, which suggests that hypotheses regarding loci of protonation can be confidently tested. PMID:26925832

  2. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  3. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds. PMID:19685922

  4. Qualitative Study of Substituent Effects on NMR 15N and 17O Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Contreras, Rubén H.; Llorente, Tomás; Pagola, Gabriel I.; Bustamante, Manuel G.; Pasqualini, Enrique E.; Melo, Juan I.; Tormena, Cláudio F.

    2009-08-01

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-β substituent effects on both 15N and 17O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and σ-hyperconjugative interactions in saturated multicyclic compounds.

  5. A solid-state 17O NMR, X-ray, and quantum chemical study of N-α-Fmoc-protected amino acids

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Hashizume, Daisuke; Shimizu, Tadashi; Ohki, Shinobu; Yokoyama, Shigeyuki

    2008-10-01

    We report the results of a solid-state 17O NMR and X-ray investigation of 17O-enriched N-α-fluoren-9-ylmethoxycarbonyl- L-alanine (Fmoc- L-ALA) and N-α-fluoren-9-ylmethoxycarbonyl- O- t-butyl- L-serine (Fmoc- L-SER). The present X-ray results for Fmoc- L-SER show that the compound crystallized in the monoclinic space group P2 1 with unit-cell dimensions a = 5.843, b = 11.937, c = 15.042 Å, and β = 96.19°. Analysis of 17O magic-angle spinning (MAS) spectra and stationary NMR spectra recorded at multiple magnetic fields of the present Fmoc-protected amino acids yields the magnitudes of hydroxyl and carbonyl 17O electric-field-gradient (EFG) and chemical shielding (CS) tensors with the relative orientations between the two NMR tensors. The 17O quadrupole coupling constants ( CQ) are found to be 7.05-7.60 MHz and 7.90-8.35 MHz, and the spans of the CS tensors are 218-236 ppm and 450-521 ppm, for hydroxyl and carbonyl oxygen atoms, respectively. We also carry out quantum chemical calculations using density functional theory in order to investigate the effects of hydrogen-bond angles on 17O NMR parameters. It is demonstrated that, in addition to the hydrogen bond distances, hydrogen bond angles are an important factor in determining the magnitudes of these tensor components.

  6. Solid-State 17O NMR of Paramagnetic Coordination Compounds**

    PubMed Central

    Kong, Xianqi; Terskikh, Victor V.; Khade, Rahul L.; Yang, Liu; Rorick, Amber; Zhang, Yong; He, Peng; Huang, Yining; Wu, Gang

    2015-01-01

    We demonstrate that high-quality solid-state 17O (I = 5/2) NMR spectra can be successfully obtained for paramagnetic coordination compounds in which oxygen atoms are directly bonded to the paramagnetic metal centers. For complexes containing V(III) (S = 1), Cu(II) (S = 1/2), and Mn(III) (S = 2) metal centers, the 17O isotropic paramagnetic shifts were found to span a range of more than 10000 ppm. In several cases, high-resolution 17O NMR spectra were recorded under very fast magic-angle spinning (MAS) conditions at 21.1 T. Quantum chemical computations using density functional theory (DFT) qualitatively reproduced the experimental 17O hyperfine shift tensors. PMID:25694203

  7. {sup 17}O NMR investigations of oxidative degradation in polymers

    SciTech Connect

    Alam, T.M.; Celina, M.; Assink, R.A.; Gillen, K.T.; Clough, R.L.

    1996-12-31

    We have initiated studies using both solution and solid state magic angle spinning {sup 17}O NMR for a series of oxidatively aged polymers. This short note reports the solution {sup 17}O NMR for oxidatively degraded polypropylene, ethylene-propylene-diene, polyisoprene, and nitrile rubber. Enriched O{sub 2} is used during the accelerated aging. 3 figs, 7 refs.

  8. (17)O NMR Investigation of Water Structure and Dynamics.

    PubMed

    Keeler, Eric G; Michaelis, Vladimir K; Griffin, Robert G

    2016-08-18

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with (17)O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. (17)O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the (17)O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of (1)H decoupling, we observe a well-resolved (1)H-(17)O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two (1)H-(17)O dipoles and the (1)H-(1)H dipole. PMID:27454747

  9. /sup 13/C and /sup 17/O NMR and IR spectroscopic study of a series of carbonyl(4-substituted pyridine)(meso-tetraphenylporphinato)iron(II) complexes. Correlations between NMR chemical shifts and IR stretching frequencies of the carbonyl ligand and Taft parameters of the pyridine substituent

    SciTech Connect

    Box, J.W.; Gray, G.M.

    1987-08-26

    The results of a /sup 13/C and /sup 17/O NMR and IR spectroscopic study of a series of carbonyl(4 substituted pyridine)(meso-tetraphenylporphinato)iron(II) (Fe(TPP)(CO)(py-4-X)) complexes are presented. Good to excellent linear correlations between the /sup 13/ and /sup 17/O NMR chemical shifts and the IR stretching frequencies of the carbonyl ligand are observed as the pyridine substituent is varied. Good to excellent linear correlations are also observed between these NMR chemical shifts and IR stretching frequencies and the NMR chemical shifts and IR stretching force constants for the trans carbonyls of a series of cis-Mo(CO)/sub 4/(py-4-X)/sub 2/ complexes as the pyridine substituent is varied. The relationship between the donor ability of the pyridine ligands and the /sup 13/C and /sup 17/O NMR chemical shifts and the IR stretching frequencies of the carbonyl ligands in the Fe(TPP)(CO)(py-4-X) complexes has been quantitated by fitting the spectroscopic data to the single and the dual Taft substituent parameters of the pyridine substituent. Good to excellent correlations are observed. The upfield shift in the /sup 13/C NMR resonance of the carbonyl ligand as the electron-donor ability of the pyridine increases is unique. This has been rationalized by using the Buchner and Schenk description of metal carbonyl /sup 13/C NMR chemical shifts. 49 references, 3 figures, 6 tables.

  10. Identification of different oxygen species in oxide nanostructures with (17)O solid-state NMR spectroscopy.

    PubMed

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P; Peng, Luming

    2015-02-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the (17)O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency (17)O chemical shifts being observed for the lower coordinated surface sites. H2 (17)O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. (17)O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  11. Chemometric Analysis of Two Dimensional Decay Data: Application to {sup 17}O NMR Relaxation Matrices

    SciTech Connect

    Alam, M.K.; Alam, T.M.

    1999-03-18

    The use of {sup 17}O NMR spectroscopy as a tool to investigate aging in polymer systems has recently been demonstrated. Because the natural abundance of {sup 17}O is extremely low (0.037%), the use of labeled {sup 17}O{sub 2} during the oxidation of polymers produces {sup 17}O NMR spectra whose signals arise entirely from the degradation species (i.e. signals from the bulk or unaged material are not observed). This selective isotopic labeling eliminates the impact of interference from the unaged material, cause (1) above. As discussed by Alam et al. spectral overlap between different degradation species as well as errors in quantification remains a major difficulty in {sup 17}O NMR spectroscopy. As a demonstration of the DECRA and CTBSA methods, relaxation matrices obtained from {sup 17}O NMR for model alcohol systems are evaluated. The benefits and limitations of these newly developed chemometric techniques are discussed.

  12. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy

    PubMed Central

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P.; Peng, Luming

    2015-01-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the 17O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency 17O chemical shifts being observed for the lower coordinated surface sites. H217O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. 17O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  13. Solid-State (17)O NMR of Oxygen-Nitrogen Singly Bonded Compounds: Hydroxylammonium Chloride and Sodium Trioxodinitrate (Angeli's Salt).

    PubMed

    Lu, Jiasheng; Kong, Xianqi; Terskikh, Victor; Wu, Gang

    2015-07-23

    We report a solid-state NMR study of (17)O-labeled hydroxylammonium chloride ([H(17)O-NH3]Cl) and sodium trioxodinitrate monohydrate (Na2[(17)ONNO2]·H2O, Angeli's salt). The common feature in these two compounds is that they both contain oxygen atoms that are singly bonded to nitrogen. For this class of oxygen-containing functional groups, there is very limited solid-state (17)O NMR data in the literature. In this work, we experimentally measured the (17)O chemical shift and quadrupolar coupling tensors. With the aid of plane-wave DFT computation, the (17)O NMR tensor orientations were determined in the molecular frame of reference. We found that the characteristic feature of an O-N single bond is that the (17)O nucleus exhibits a large quadrupolar coupling constant (13-15 MHz) but a rather small chemical shift anisotropy (100-250 ppm), in sharp contrast with the nitroso (O═N) functional group for which both quantities are very large (e.g., 16 MHz and 3000 ppm, respectively). PMID:26107984

  14. Natural abundant (17) O NMR in a 1.5-T Halbach magnet.

    PubMed

    Sørensen, Morten K; Bakharev, Oleg N; Jensen, Ole; Nielsen, Niels Chr

    2016-06-01

    We present mobile, low-field (17) O NMR as a means for monitoring oxygen in liquids. Whereas oxygen is one of the most important elements, oxygen NMR is limited by a poor sensitivity related to low natural abundance and gyro-magnetic ratio of the NMR active (17) O isotope. Here, we demonstrate (17) O NMR detection at a Larmor frequency of 8.74 MHz in a 1.5-T Halbach neodymium magnet with a home-built digital NMR instrument suitable for large-scale production and in-line monitoring applications. The proposed (17) O NMR sensor may be applied for direct, noninvasive measurements of water content in, for example, oil, manure, or food in automated quality or process control. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25641664

  15. Solid-State 17O NMR Study of Benzoic Acid Adsorption On Metal Oxide Surfaces

    SciTech Connect

    Hagaman, Edward {Ed} W; Chen, Banghao; Jiao, Jian; Parsons, Williams

    2012-01-01

    Solid-state 17O NMR spectra of 17O-labeled benzoic and anisic acids are reported and benzoic acid is used to probe the surface of metal oxides. Complexes formed when benzoic acid is dry-mixed with mesoporous silica, and nonporous titania and alumina are characterized. Chemical reactions with silica are not observed. The nature of benzoic acid on silica is a function of the water content of the oxide. The acid disperses in the pores of the silica if the silica is in equilibrium with ambient laboratory humidity. The acid displays high mobility as evidenced by a liquid-like, Lorentzian resonance. Excess benzoic acid remains as the crystalline hydrogen-bonded dimer. Benzoic acid reacts with titania and alumina surfaces in equilibrium with laboratory air to form the corresponding titanium and aluminum benzoates. In both materials the oxygen of the 17O-labeled acid is bound to the metal, showing the reaction proceeds by bond formation between oxygen deficient metal sites and the oxygen of the carboxylic acid. 27Al MAS NMR confirms this mechanism for the reaction on alumina. Dry mixing of benzoic acid with alumina rapidly quenches pentacoordinate aluminum sites, excellent evidence that these sites are confined to the surface of the alumina particles.

  16. NMR study of a 17O enriched LaMnO3 stoichiometric crystal

    NASA Astrophysics Data System (ADS)

    Pinsard-Gaudart, L.; Trokiner, A.; Verkhovskii, S.; Gerashenko, A.; Dragoe, N.

    2011-12-01

    We present the synthesis and the NMR characterization of a 17O enriched LaMnO 3 crystalline sample. We checked that it is single phase and, more important, stoichiometric in oxygen. Its 17O enrichment estimated by NMR is about 5.5%. These first 17O NMR results obtained at T=415 K in an undoped parent LaMnO 3 manganite demonstrate that the two oxygen sites of the structure probe very different Mn spin correlations in the paramagnetic orbital ordered phase. This work opens the way to study experimentally the interactions responsible for the orbital order.

  17. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGESBeta

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  18. Correlations between 29Si, 17O and 1H NMR properties and local structures in silicates: an ab initio calculation

    NASA Astrophysics Data System (ADS)

    Xue, X.; Kanzaki, M.

    In order to gain insight into the correlations between 29Si, 17O and 1H NMR properties (chemical shift and quadrupolar coupling parameters) and local structures in silicates, ab initio self-consistent field Hartree-Fock molecular orbital calculations have been carried out on silicate clusters of various polymerizations and intertetrahedral (Si-O-Si) angles. These include Si(OH)4 monomers (isolated as well as interacting), Si2O(OH)6 dimers (C2 symmetry) with the Si-O-Si angle fixed at 5° intervals from 120° to 180°, Si3O2(OH)8 linear trimers (C2 symmetry) with varying Si-O-Si angles, Si3O3(OH)6 three-membered rings (D3 and C1 symmetries), Si4O4(OH)8 four-membered ring (C4 symmetry) and Si8O12(OH)8 octamer (D4 symmetry). The calculated 29Si, 17O and 1H isotropic chemical shifts (δiSi, δiO and δiH) for these clusters are all close to experimental NMR data for similar local structures in crystalline silicates. The calculated 17O quadrupolar coupling constants (QCC) of the bridging oxygens (Si-O-Si) are also in good agreement with experimental data. The calculated 17O QCC of silanols (Si-O-H) are much larger than those of the bridging oxygens, but unfortunately there are no experimental data for similar groups in well-characterized crystalline phases for comparison. There is a good correlation between δiSi and the mean Si-O-Si angle for both Q1 and Q2, where Qn denotes Si with n other tetrahedral Si next-nearest neighbors. Both the δiO and the 17O electric field gradient asymmetry parameter, η of the bridging oxygens have been found to depend strongly on the O site symmetry, in addition to the Si-O-Si angle. On the other hand, the 17O QCC seems to be influenced little by structural parameters other than the Si-O-Si angle, and is thus expected to be the most reliable 17O NMR parameter that can be used to decipher Si-O-Si angle distribution information. Both the 17O QCC and the 2H QCC of silanols decrease with decreasing length of hydrogen bond to a second O atom

  19. Constraining 17O and 27Al NMR spectra of high-pressure crystals and glasses: New data for jadeite, pyrope, grossular, and mullite

    USGS Publications Warehouse

    Kelsey, K.E.; Stebbins, J.F.; Du, L.-S.; Hankins, B.

    2007-01-01

    The 17O NMR spectra of glasses quenched from melts at high pressure are often difficult to interpret due to overlapping peaks and lack of crystalline model compounds. High-pressure aluminosilicate glasses often contain significant amounts of [5]Al and [6]Al, thus these high-pressure glasses must contain oxygen bonded to high-coordinated aluminum. The 17O NMR parameters for the minerals jadeite, pyrope, grossular, and mullite are presented to assist interpretation of glass spectra and to help test quantum chemical calculations. The 17O NMR parameters for jadeite and grossular support previous peak assignments of oxygen bonded to Si and high-coordinated Al in high-pressure glasses as well as quantum chemical calculations. The oxygen tricluster in mullite is very similar to the previously observed tricluster in grossite (CaAl4 O7) and suspected triclusters in glasses. We also present 27Al NMR spectra for pyrope, grossular, and mullite.

  20. Characterizing Oxygen Local Environments in Paramagnetic Battery Materials via (17)O NMR and DFT Calculations.

    PubMed

    Seymour, Ieuan D; Middlemiss, Derek S; Halat, David M; Trease, Nicole M; Pell, Andrew J; Grey, Clare P

    2016-08-01

    Experimental techniques that probe the local environment around O in paramagnetic Li-ion cathode materials are essential in order to understand the complex phase transformations and O redox processes that can occur during electrochemical delithiation. While Li NMR is a well-established technique for studying the local environment of Li ions in paramagnetic battery materials, the use of (17)O NMR in the same materials has not yet been reported. In this work, we present a combined (17)O NMR and hybrid density functional theory study of the local O environments in Li2MnO3, a model compound for layered Li-ion batteries. After a simple (17)O enrichment procedure, we observed five resonances with large (17)O shifts ascribed to the Fermi contact interaction with directly bonded Mn(4+) ions. The five peaks were separated into two groups with shifts at 1600 to 1950 ppm and 2100 to 2450 ppm, which, with the aid of first-principles calculations, were assigned to the (17)O shifts of environments similar to the 4i and 8j sites in pristine Li2MnO3, respectively. The multiple O environments in each region were ascribed to the presence of stacking faults within the Li2MnO3 structure. From the ratio of the intensities of the different (17)O environments, the percentage of stacking faults was found to be ca. 10%. The methodology for studying (17)O shifts in paramagnetic solids described in this work will be useful for studying the local environments of O in a range of technologically interesting transition metal oxides. PMID:27404908

  1. Probing oxidative degradation in polymers using {sup 17}O NMR spectroscopy

    SciTech Connect

    Alam, T.M.; Click, C.A.; Assink, R.A.

    1997-09-01

    Understanding the mechanism of oxidative degradation remains an important goal in being able to predict the aging process in polymer materials. Nuclear magnetic resonance (NMR) spectroscopy has previously been utilized to investigate polymer degradation, including both proton ({sup 1}H) and carbon ({sup 13}C) studies. These previous NMR studies, as well as other spectroscopic investigations, are complicated by the almost overwhelming signal arising from the native undegraded polymer. This makes the identification and quantification of degradation species at small concentrations difficult. In this note we discuss recent investigation into the use of oxygen ({sup 17}O) NMR spectroscopy to probe the oxidative degradation process in polymers at a molecular level. Due to the low natural abundance (0.037%) and a nuclear spin of I=5/2 possessing an appreciable quadrupolar moment, the use of {sup 17}O NMR in polymer investigations has been limited. By utilizing synthetically enriched oxygen gas during the accelerated aging process, both the difficulties of low natural abundance and background interference signals are eliminated. For enriched samples {sup 17}O NMR spectra now provide a unique probe since all of the observed NMR resonances are the direct result of oxidative degradation.

  2. Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

    SciTech Connect

    Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.; Wheeler David R.

    1999-07-20

    The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

  3. Site-assignment of 17O-NMR signals in itinerant metamagnetic compound Sr 3Ru 2O 7

    NASA Astrophysics Data System (ADS)

    Kitagawa, Kentaro; Ishida, Kenji; Perry, Robin S.; Maeno, Yoshiteru

    2006-05-01

    We have performed an 17O-NMR measurement in the bilayered perovskite ruthenate Sr 3Ru 2O 7 which shows itinerant metamagnetism at low temperatures. Three oxygen sites are identified in the 17O-NMR spectrum. NMR lines arising from the outer-apical O site are observable in the vicinity of a metamagnetic quantum critical point in spite of strong spin fluctuations. The field dependence of the Knight shift scales with the bulk magnetization.

  4. Computational 17O-NMR spectroscopy of organic acids and peracids: comparison of solvation models.

    PubMed

    Baggioli, Alberto; Crescenzi, Orlando; Field, Martin J; Castiglione, Franca; Raos, Guido

    2013-01-28

    We examine several computational strategies for the prediction of the (17)O-NMR shielding constants for a selection of organic acids and peracids in aqueous solution. In particular, we consider water (the solvent and reference for the chemical shifts), hydrogen peroxide, acetic acid, lactic acid and peracetic acid. First of all, we demonstrate that the PBE0 density functional in combination with the 6-311+G(d,p) basis set provides an excellent compromise between computational cost and accuracy in the calculation of the shielding constants. Next, we move on to the problem of the solvent representation. Our results confirm the shortcomings of the Polarizable Continuum Model (PCM) in the description of systems susceptible to strong hydrogen bonding interactions, while at the same time they demonstrate its usefulness within a molecular-continuum approach, whereby PCM is applied to describe the solvation of the solute surrounded by some explicit solvent molecules. We examine different models of the solvation shells, sampling their configurations using both energy minimizations of finite clusters and molecular dynamics simulations of bulk systems. Hybrid molecular dynamics simulations, in which the solute is described at the PM6 semiempirical level and the solvent by the TIP3P model, prove to be a promising sampling method for medium-to-large sized systems. The roles of solvent shell size and structure are also briefly discussed. PMID:23223608

  5. New insights into the bonding arrangements of L- and D-glutamates from solid state 17O NMR

    NASA Astrophysics Data System (ADS)

    Lemaitre, V.; Pike, K. J.; Watts, A.; Anupold, T.; Samoson, A.; Smith, M. E.; Dupree, R.

    2003-03-01

    Magic angle spinning (MAS) from L- and D-glutamic acid-HCl at 14.1 T produces highly structured and very similar NMR spectra. Lines from all 4 oxygen sites are readily distinguished and assigned. These 17O NMR spectra are very different from the previously reported 17O spectrum of the D, L-form presumably because that was a racemic crystal. 17O NMR from L-monosodium glutamate-HCl is very different again requiring the application of double angle rotation and 3 quantum MAS NMR to provide resolution of 5 different sites. Hence high resolution 17O solid state NMR techniques offer possible new insight into biochemical bonding processes.

  6. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    PubMed

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom. PMID:26670708

  7. Dynamic NMR of low-sensitivity fast-relaxing nuclei: (17)O NMR and DFT study of acetoxysilanes.

    PubMed

    Fusaro, Luca; Mameli, Giulia; Mocci, Francesca; Luhmer, Michel; Cerioni, Giovanni

    2012-02-01

    (17)O NMR is not routinely used for structure characterization, and kinetic studies of fluxional organic compounds are seldom undertaken because poor sensitivity and fast quadrupole relaxation are frequently regarded as intractable issues. This work shows how, nowadays, quantitative (17)O dynamic NMR studies on small organic molecules are feasible without enrichment being needed. It reports on acetoxysilanes, a class of fluxional compounds whose structure and dynamics were to be clarified. Natural abundance (17)O NMR spectra were recorded over a wide range of temperatures using standard instrumentation. The analysis relies on simple linewidth measurements and directly provides the activation parameters. The activation enthalpy is found to decrease with increasing number of acetoxy groups bound to silicon. Density functional theory calculations properly predict this trend and show that a single oxygen atom of the acetoxy group is bound to silicon, excluding chelation as binding mode, and that the dynamic process involves the shift of the silicon atom between the two oxygen atoms of the acetoxy group. PMID:22374872

  8. Ab initio and sup 17 O NMR study of aromatic compounds with dicoordinate oxygen atoms. (1) Methoxy- and (methylenedioxy)benzene derivatives

    SciTech Connect

    Biekofsky, R.R.; Pomilio, A.B.; Contreras, R.H. ); Orendt, A.M.; Facelli, J.C. )

    1990-09-20

    {sup 17}O NMR data at natural abundance in toluene-d{sub 8} at 74{degree}C were obtained for aromatic compounds containing methoxy and methylenedioxy groups as side-chains substituents. {sup 17}O chemical shifts of this series of compounds are significantly influenced by both electronic and steric effects. Ortho electronic and steric substituent chemical shift effects for methoxy and methylenedioxy groups were estimated. Ab initio calculations at the 4-31G level were used to determine geometries of the compounds to gain insight into the structural aspects of these compounds. A correlation between the calculated bond orders, P{sub C{sub Ar}P{minus}O}, and the {sup 17}O chemical shift was found.

  9. Joint experimental and computational 17O solid state NMR study of Brownmillerite Ba2In2O5.

    PubMed

    Dervişoğlu, Rıza; Middlemiss, Derek S; Blanc, Frédéric; Holmes, Lesley A; Lee, Yueh-Lin; Morgan, Dane; Grey, Clare P

    2014-02-14

    Structural characterization of Brownmillerite Ba2In2O5 was achieved by an approach combining experimental solid-state NMR spectroscopy, density functional theory (DFT) energetics, and GIPAW NMR calculations. While in the previous study of Ba2In2O5 by Adler et al. (S. B. Adler, J. A. Reimer, J. Baltisberger and U. Werner, J. Am. Chem. Soc., 1994, 116, 675-681), three oxygen resonances were observed in the (17)O NMR spectra and assigned to the three crystallographically unique O sites, the present high resolution (17)O NMR measurements under magic angle spinning (MAS) find only two resonances. The resonances have been assigned using first principles (17)O GIPAW NMR calculations to the combination of the O ions connecting the InO4 tetrahedra and the O ions in equatorial sites in octahedral InO6 coordination, and to the axial O ions linking the four- and six-fold coordinated In(3+) ions. Possible structural disorder was investigated in two ways: firstly, by inclusion of the high-energy structure also previously studied by Mohn et al. (C. E. Mohn, N. L. Allan, C. L. Freeman, P. Ravindran and S. Stølen, J. Solid State Chem., 2005, 178, 346-355), where the structural O vacancies are stacked rather than staggered as in Brownmillerite and, secondly, by exploring structures derived from the ground-state structure but with randomly perturbed atomic positions. There is no noticeable NMR evidence for any substantial occupancy of the high-energy structure at room temperature. PMID:24382459

  10. Joint Experimental and Computational 17O and 1H Solid State NMR Study of Ba2In2O4(OH)2 Structure and Dynamics

    PubMed Central

    2015-01-01

    A structural characterization of the hydrated form of the brownmillerite-type phase Ba2In2O5, Ba2In2O4(OH)2, is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H2O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics2004, 170, 25−32) using X-ray and neutron studies. Calculations of possible proton arrangements within the partially occupied layer of Ba2In2O4(OH)2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1H and 17O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1H–17O double resonance experiments. PMID:26321789

  11. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    PubMed

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  12. Simple (17) O NMR method for studying electron self-exchange reaction between UO2 (2+) and U(4+) aqua ions in acidic solution.

    PubMed

    Bányai, István; Farkas, Ildikó; Tóth, Imre

    2016-06-01

    (17) O NMR spectroscopy is proven to be suitable and convenient method for studying the electron exchange by following the decrease of (17) O-enrichment in U(17) OO(2+) ion in the presence of U(4+) ion in aqueous solution. The reactions have been performed at room temperature using I = 5 M ClO4 (-) ionic medium in acidic solutions in order to determine the kinetics of electron exchange between the U(4+) and UO2 (2+) aqua ions. The rate equation is given as R = a[H(+) ](-2)  + R', where R' is an acid independent parallel path. R' depends on the concentration of the uranium species according to the following empirical rate equation: R' = k1 [UO(2 +) ](1/2) [U(4 +) ](1/2)  + k2 [UO(2 +) ](3/2) [U(4 +) ](1/2) . The mechanism of the inverse H(+) concentration-dependent path is interpreted as equilibrium formation of reactive UO2 (+) species from UO2 (2+) and U(4+) aqua ions and its electron exchange with UO2 (2+) . The determined rate constant of this reaction path is in agreement with the rate constant of UO2 (2+) -UO2 (+) , one electron exchange step calculated by Marcus theory, match the range given experimentally of it in an early study. Our value lies in the same order of magnitude as the recently calculated ones by quantum chemical methods. The acid independent part is attributed to the formation of less hydrolyzed U(V) species, i.e. UO(3+) , which loses enrichment mainly by electron exchange with UO2 (2+) ions. One can also conclude that (17) O NMR spectroscopy, or in general NMR spectroscopy with careful kinetic analysis, is a powerful tool for studying isotope exchange reactions without the use of sophisticated separation processes. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854521

  13. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy

    DOE PAGESBeta

    Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; Pruski, Marek

    2016-05-06

    Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treatedmore » mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.« less

  14. 17O NMR study of the doped electrons in lightly oxygen-deficient cubic SrMnO3 -x

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Verkhovskii, S.; Volkova, Z.; Gerashenko, A.; Mikhalev, K.; Germov, A.; Yakubovskii, A.; Korolev, A.; Dabrowski, B.; Tyutyunnik, A.

    2016-05-01

    The spin susceptibility of the localized Mn (t2 g) electrons, χs, and the spatially distributed spin density of the doped electrons were investigated by 17O nuclear magnetic resonance (NMR) in the paramagnetic (PM) and antiferromagnetic (AF) phases of electron-doped SrMnO3 -x ceramics with the cubic structure. Three lightly doped samples (2 x <0.015 ) were studied with TN=220 K-240 K. In the PM state χs increases gradually from TN and reaches a broad maximum above ˜1.5 TN . The gapped behavior of χs indicates a low-dimensional short-range spin order persisting above TN. These short-range one-dimensional correlations are consistent with 17O NMR results obtained at room temperature, which show that Mn magnetic moments are aligned along the edges of the cubic unit cell. Above 350 K all doped electrons are fast-moving eg electrons. They provide the uniform polarization of the localized spins which increases χs and the increasing doping shifts the oxygen-deficient SrMnO3 -x oxide towards a ferromagnetic (FM) metallic state. At lower T the doped electrons are heterogeneously distributed in the oxide: The fraction of the fast-moving electrons diminishes and vanishes below 100 K, while the remaining doped electrons slow down their hopping and each of them creates a FM domain. These FM domains which are detected below 10 K by 55Mn NMR can be considered as small-size magnetic polarons. Their T -activated hopping in the G-type AF lattice was probed by 17O spin-echo experiments. The energy barrier of hopping shows a trend to grow with increasing doping, indicating that the de Gennes metallic ground state cannot be achieved in oxygen-deficient SrMnO3 -x oxides, probably due to detrimental oxygen vacancy defects.

  15. GC-MS and /sup 17/O NMR tracer studies of Et/sub 3/PO formation from auranofin and H/sub 2//sup 17/O in the presence of bovine serum albumin: an in vitro model for auranofin metabolism

    SciTech Connect

    Isab, A.A.; Shaw, C.F. III; Locke, J.

    1988-09-21

    /sup 17/O NMR spectroscopy and gas chromatographic-mass spectral analysis have been used to monitor the source of oxygen in the triethylphosphine oxide formed by the reaction of the antiarthritic drug auranofin ((2,3,4,6-tetra-O-acetyl-..beta..-D-1-glucopyranosato)(triethylphosphine)gold(I)) and bovine serum albumin (BSA) in the presence of reduced glutathione (GtSH). A procedure to extract Et/sub 3/PO from aqueous solutions and concentrate it for subsequent analyses was developed. When the in vitro reaction is carried out aerobically in /sup 17/O-enriched water, Et/sub 3/P/sup 17/O is generated. The chemical ionization (CH/sub 4/) mass measurement, (m + 1)/z = 135, and the /sup 17/O NMR parameters (delta/sub O/ = 40.6 and /sup 1/J/sub PO/ = 156 /plus minus/ 5 Hz) unambiguously establish its identity. The SH titer of the albumin (mole ratio of protein SH groups to BSA) increases during the reaction, confirming that albumin disulfide bonds are reduced in the reaction. Under aerobic conditions, the enriched Et/sub 3/PO accounts for at least 60% of the Et/sub 3/PO formed. The significance of these results for the in vivo formation of Et/sub 3/PO, an auranofin metabolite, is discussed. 25 references, 2 figures.

  16. ^17O and ^59Co NMR Studies of Strongly Correlated Electrons in NaxCoO2

    NASA Astrophysics Data System (ADS)

    Imai, Takashi

    2006-03-01

    The anomalous electronic properties of triangular-lattice system NaxCoO2 has been attracting strong interest over the last several years since the discovery of superconductivity in hydrated Na1/3CoO2.4/3[H2O]. The electronic phase diagram of these materials is quite rich, as the physical properties depend very strongly on Na concentration. Here we report our ^17O and ^59Co NMR studies of the local electronic properties and low-frequency spin dynamics in these materials for a variety of Na concentrations [1,2]. [1] F.L. Ning, T. Imai, B.W. Statt, and F.C. Chou, PRL 93 (2004) 237201.[2] F.L. Ning and T. Imai, PRL 94 (2005) 227004.

  17. Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Wan, Chuan; Hu, Mary Y.; Borodin, Oleg; Qian, Jiangfeng; Qin, Zhaohai; Zhang, Ji-Guang; Hu, Jian Zhi

    2016-03-01

    Natural abundance 17O and 6Li NMR experiments, quantum chemistry and molecular dynamics studies were employed to investigate the solvation structures of Li+ at various concentrations of LiFSI in DME electrolytes. It was found that the chemical shifts of both 17O and 6Li changed with the concentration of LiFSI, indicating the changes of solvation structures with concentration. For the quantum chemistry calculations, the coordinated cluster LiFSI(DME)2 forms at first, and its relative ratio increases with increasing LiFSI concentration to 1 M. Then the solvation structure LiFSI(DME) become the dominant component. As a result, the coordination of forming contact ion pairs between Li+ and FSI- ion increases, but the association between Li+ and DME molecule decreases. Furthermore, at LiFSI concentration of 4 M the solvation structures associated with Li+(FSI-)2(DME), Li+2(FSI-)(DME)4 and (LiFSI)2(DME)3 become the dominant components. For the molecular dynamics simulation, with increasing concentration, the association between DME and Li+ decreases, and the coordinated number of FSI- increases, which is in perfect accord with the DFT results.

  18. /sup 17/O NMR spectroscopy of magnetically ordered YBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ microcrystals

    SciTech Connect

    Coretsopoulos, C.; Lee, H.C.; Ramli, E.; Reven, L.; Rauchfuss, T.B.; Oldfield, E.

    1989-01-01

    We have obtained /sup 17/O NMR spectra of powder samples of YBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ and EuBa/sub 2/Cu/sub 3/O/sub 7-//sub x/, as well as magnetically ordered YBa/sub 2/Cu/sub 3/O/sub 7-//sub x/. Two major features are observed in YBa/sub 2/Cu/sub 3/O/sub 7-//sub x/: a sharp resonance at approx. =1800 ppm (from external H/sub 2//sup 17/O, International Union of Pure and Applied Chemistry delta scale) and a broader series of features centered at approx. =400 ppm. The 1800-ppm feature undergoes a diamagnetic shift of approx. =800 ppm on cooling to 77 K, and a similar magnitude shift on Eu substitution, suggesting assignment to the plane oxygens, O(2,3). Measurements on magnetically ordered samples at 8.45 and 11.7 T give the magnitude of the diagonal terms of the electric field gradient tensor, which are 2.3, 3.5, and 5.8 MHz. For the columnar oxygen, O(1), we find e/sup 2/qQ/h = 7.7 MHz, with a chemical shift anisotropy of approx. =660 ppm.

  19. Enrichment of H(2)(17)O from tap water, characterization of the enriched water, and properties of several (17)O-labeled compounds.

    PubMed

    Prasad, Brinda; Lewis, Andrew R; Plettner, Erika

    2011-01-01

    A low-abundance form of water, H(2)(17)O, was enriched from 0.04% to ∼90% by slow evaporation and fractional distillation of tap water. The density and refractive index for H(2)(17)O are reported. Gas chromatography-mass spectrometry (GC-MS) of (16)O- and (17)O-1-hexanols and their trimethyl silyl ethers and of (16)O- and (17)O-hexamethyl disiloxanes was used to determine the percentage of (17)O enrichment in the H(2)(17)O. Furthermore, the chemical shifts of labeled and nonlabeled water dissolved in CDCl(3) differed sufficiently that we could verify the enrichment of H(2)(17)O. (17)O hexanol was synthesized by the reaction of iodohexane with Na(17)OH. (17)O-Labeled trimethylsilanol and (17)O-labeled hexamethyldisiloxane were prepared by the reaction of H(2)(17)O with bis(trimethylsilyl)trifluoroacetamide (BSTFA). To generate standards for (17)O NMR, H(2)(17)O(2), and (17)O camphor were prepared. H(2)(17)O was electrolyzed to form (17)O-labeled hydrogen peroxide which was quantified using two colorimetric assays. (17)O-Labeled camphor was prepared by exchanging the ketone oxygen of camphor using H(2)(17)O. The (17)O-labeled compounds were characterized using (17)O, (1)H, and (13)C NMR and GC-MS. While we were characterizing the labeled camphor, we also detected an unexpected oxygen exchange reaction of primary alcohols, catalyzed by electrophilic ketones such as camphor. The reaction is a displacement of the alcohol OH group by water. This is an example of the usefulness of (17)O NMR in the study of a reaction mechanism that has not been noticed previously. PMID:21128590

  20. Vortex Lattice Formation in High Magnetic Fields in an Underdoped Single Crystal of Hg1201 from 17O NMR

    NASA Astrophysics Data System (ADS)

    Lee, Jeongseop; Xin, Yizhou; Halperin, W. P.; Reyes, A. P.; Kuhns, P. L.

    The vortex lattice in HgBa2CuO4+δ forms at a vortex melting temperature, Tv, typically ~40K for underdoped crystals with a hole doping ~ 0.11. We present our results from 17O NMR for investigation of the vortex lattice as a function of external magnetic field up to 30 T and temperature as low as 5 K. The vortex contribution to the NMR linewidth can be separated from inhomogeneous broadening by deconvolution of the normal state spectra which was measured separately above, Tv. The vortex melting temperature was measured for two underdoped samples marked by the onset of extra linewidth broadening due to the inhomogeneous magnetic field distribution from the solid vortex lattice consistent with transverse relaxation measurements. We have found evidence for a change in the vortex lattice symmetry as a function of external fields. This work was supported by the DOE BES under Grant No. DE-FG02-05ER46248 and the NHMFL through the NSF and State of Florida.

  1. Rate of water exchange between Al(C 2O 4)(H 2O) 4+(aq) complexes and aqueous solutions determined by 17O-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Crawford, Susan Neugebauer; Casey, William H.

    1997-12-01

    Substitution of an oxalate molecule for two inner-coordination-sphere waters of Al(H 2O) 63+(aq) enhances, by a factor of ≈ 10 2, the rate of exchange of water molecules from the innercoordination sphere to the bulk solution. The rate parameters for chemical exchange are: k ex298 = 109 s -1, ΔH ‡ = 68.9 ± 2.4 kJ/mol, and ΔS ‡ = 25.3 ± 6.7 J/mol/K, measured via dynamic 17O-NMR. This reactivity enhancement of coordinated waters by oxalate results from a change in bonding between Al(III) and oxygens throughout the complex upon ligation by oxalate. A similar process has been proposed to explain ligand-enhanced dissolution of oxide minerals (e.g., Stumm, 1991; Casey and Ludwig, 1995; Phillips et al., 1997) where a stable adsorbate increases the flux of metals from a surface. These new rate coefficients for aluminum-oxalate complexes, along with previous work on aluminum-fluoride complexes, show a correlation with the respective equilibrium constants similar to that obtained by Ludwig et al. (1995, 1996).

  2. Probing Oxide-Ion Mobility in the Mixed Ionic-Electronic Conductor La2NiO4+δ by Solid-State (17)O MAS NMR Spectroscopy.

    PubMed

    Halat, David M; Dervişoğlu, Rıza; Kim, Gunwoo; Dunstan, Matthew T; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2016-09-14

    While solid-state NMR spectroscopic techniques have helped clarify the local structure and dynamics of ionic conductors, similar studies of mixed ionic-electronic conductors (MIECs) have been hampered by the paramagnetic behavior of these systems. Here we report high-resolution (17)O (I = 5/2) solid-state NMR spectra of the mixed-conducting solid oxide fuel cell (SOFC) cathode material La2NiO4+δ, a paramagnetic transition-metal oxide. Three distinct oxygen environments (equatorial, axial, and interstitial) can be assigned on the basis of hyperfine (Fermi contact) shifts and quadrupolar nutation behavior, aided by results from periodic DFT calculations. Distinct structural distortions among the axial sites, arising from the nonstoichiometric incorporation of interstitial oxygen, can be resolved by advanced magic angle turning and phase-adjusted sideband separation (MATPASS) NMR experiments. Finally, variable-temperature spectra reveal the onset of rapid interstitial oxide motion and exchange with axial sites at ∼130 °C, associated with the reported orthorhombic-to-tetragonal phase transition of La2NiO4+δ. From the variable-temperature spectra, we develop a model of oxide-ion dynamics on the spectral time scale that accounts for motional differences of all distinct oxygen sites. Though we treat La2NiO4+δ as a model system for a combined paramagnetic (17)O NMR and DFT methodology, the approach presented herein should prove applicable to MIECs and other functionally important paramagnetic oxides. PMID:27538437

  3. Solid-state {sup 17}O magic-angle and dynamic-angle spinning NMR study of the SiO{sub 2} polymorph coesite

    SciTech Connect

    Grandinetti, P.J.; Baltisberger, J.H.; Farnan, I.; Stebbins, J.F.; Werner, U.; Pines, A. |

    1995-08-10

    Five distinctly resolved {sup 17}O solid-state NMR resonances in room temperature coesite, an SiO{sub 2} polymorph, have been observed and assigned using dynamic angle spinning (DAS) at 11.7 T along with magic angle spinning (MAS) spectra at 9.4 and 11.7 T. The {sup 17}O quadrupolar parameters for each of the five oxygen environments in coesite are correlated with the Si-O-Si bridging bond angles determined by diffraction experiments. The sign of e{sup 2}-qQ/h along with the orientation of the electric field gradient for oxygen in the Si-O-Si linkage were determined from a Townes-Dailey analysis of the data. 41 refs., 7 figs., 5 tabs.

  4. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    PubMed

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  5. {sup 13}C and {sup 17}O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351

    SciTech Connect

    Clark, D.L.; Newton, T.W.; Palmer, P.D.; Zwick, B.D.

    1995-01-01

    Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U0{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} and (UO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = {minus}log(a{sub H}{sup +}) versus p[H] = {minus}log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA.

  6. Physicochemical characterization of the dimeric lanthanide complexes [en{Ln(DO3A)(H2O)}2] and [pi{Ln(DTTA)(H2O)}2]2-: a variable-temperature 17O NMR study.

    PubMed

    Lee, Tzu-Ming; Cheng, Tsan-Hwang; Ou, Ming-Hung; Chang, C Allen; Liu, Gin-Chung; Wang, Yun-Ming

    2004-03-01

    The Gd(III) complexes of the two dimeric ligands [en(DO3A)2] {N,N'-bis[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-10-yl-methylcarbonyl]-N,N'-ethylenediamine} and [pi(DTTA)2]8- [bisdiethylenetriaminepentaacetic acid (trans-1,2-cyclohexanediamine)] were synthesized and characterized. The 17O NMR chemical shift of H2O induced by [en{Dy(DO3A)}2] and [pi{Dy(DTTA)}2]2- at pH 6.80 proved the presence of 2.1 and 2.2 inner-sphere water molecules, respectively. Water proton spin-lattice relaxation rates for [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- at 37.0 +/- 0.1 degrees C and 20 MHz are 3.60 +/- 0.05 and 5.25 +/- 0.05 mM(-1) s(-1) per Gd, respectively. The EPR transverse electronic relaxation rate and 17O NMR transverse relaxation time for the exchange lifetime of the coordinated H2O molecule and the 2H NMR longitudinal relaxation rate of the deuterated diamagnetic lanthanum complex for the rotational correlation time were thoroughly investigated, and the results were compared with those reported previously for other lanthanide(III) complexes. The exchange lifetimes for [en{Gd(DO3A)(H2O)}2] (769 +/- 10 ns) and [pi{Gd(DTTA)(H2O)}2]2- (910 +/- 10 ns) are significantly higher than those of [Gd(DOTA)(H2O)]- (243 ns) and [Gd(DTPA)(H2O)]2- (303 ns) complexes. The rotational correlation times for [en{Gd(DO3A)(H2O)}2] (150 +/- 11 ps) and [pi{Gd(DTTA)(H2O)}2]2- (130 +/- 12 ps) are slightly greater than those of [Gd(DOTA)(H2O)]- (77 ps) and [Gd(DTPA)(H2O)]2- (58 ps) complexes. The marked increase in relaxivity (r1) of [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- result mainly from their longer rotational correlation time and higher molecular weight. PMID:14971018

  7. Spin excitations in the (Sr,Ca)14Cu24O41 family of spin ladders: 63Cu and 17O NMR studies under pressure

    NASA Astrophysics Data System (ADS)

    Piskunov, Y.; Jérome, D.; Auban-Senzier, P.; Wzietek, P.; Yakubovsky, A.

    2004-01-01

    We report the results of a NMR study of hole doped spin ladders belonging to the series Sr14-xCaxCu24O41+δ performed on 63Cu and 17O nuclei. The new results obtained on Ca0 and Ca12 single crystals at ambient pressure and also under 32 kbar confirm the onset of low-lying spin fluctuations modes at zero energy coexisting with spin-gapped excitations when superconductivity can be stabilized under pressure in Ca12. We found that the theoretical two and three magnons mechanisms explain fairly well the spin-lattice relaxation data using the magnitude of the pressure dependent magnon spin gap Δs derived from the Knight shifts data as long as most of the spectral weight for low-frequency spin fluctuations is provided by the magnon dispersion of isolated ladders. The cross over between spin gapped and paramagnetic regimes of decoupled Heisenberg chains can be identified in heavily doped ladders via the temperature dependence of dynamical structure factors at q˜(π,π) and q˜(0,0) wave vectors. The cross over temperature scales under pressure with Δs/2.

  8. The relationship between environmental abundant electromagnetic fields and packaging shape to their effects on the 17O NMR and Raman spectra of H2O-NaCl

    NASA Astrophysics Data System (ADS)

    Abdelsamie, Maher A. A.; Rahman, Russly B. Abdul; Mustafa, Shuhaimi; Hashim, Dzulkifly

    2015-07-01

    In this study, two identical groups of four containers with different packaging shapes made of polymethyl methacrylate (PMMA) were used to store H2O-NaCl solution for seven days at ambient room temperature (25 °C). Faraday shield was used to shield one group. The surrounding electromagnetic fields were measured during the storage period by using R&S®TS-EMF EMF measurement system. Samples of H2O-NaCl were collected at the end of the storage period and examined by 17Oxygene nuclear magnetic resonance spectroscopy (17O NMR) and Raman spectroscopy. Electromagnetic simulation was used to explore the relationship between the packaging shape of H2O-NaCl containers and the environmentally abundant electromagnetic fields to their effects on the cluster size of water. The study showed variations in the cluster size of water stored inside the two groups of containers. It was observed that the cluster size of water stored in the unshielded containers was lower than that of the shielded containers. The cluster size of water stored in the unshielded pyramidal container was lower than the cluster size of water stored in the unshielded rectangular, square, and cylindrical containers. The EM simulation results showed significant variations in the total specific absorption rate SAR and maximum point SAR values induced in the H2O-NaCl solution in the unshielded container models at 2400 MHz for both vertical and horizontal polarization. It can be concluded that the variations in the values of SAR induced in H2O-NaCl solution are directly related to the variations in the cluster size of the stored water.

  9. NMR crystallography: the use of chemical shifts

    NASA Astrophysics Data System (ADS)

    Harris, Robin K.

    2004-10-01

    Measurements of chemical shifts obtained from magic-angle spinning NMR spectra (together with quantum mechanical computations of shielding) can provide valuable information on crystallography. Examples are given of the determination of crystallographic asymmetric units, of molecular symmetry in the solid-state environment, and of crystallographic space group assignment. Measurements of full tensor components for 199Hg have given additional coordination information. The nature of intermolecular hydrogen bonding in cortisone acetate polymorphs and solvates is obtained from chemical shift information, also involving measurement of the full tensor parameters. The resulting data have been used as restraints, built into the computation algorithm, in the analysis of powder diffraction patterns to give full crystal structures. A combination of quantum mechanical computation of shielding and measurement of proton chemical shifts (obtained by high-speed MAS) leads to the determination of the position of a proton in an intermolecular hydrogen bond. A recently-developed computer program specifically based on crystallographic repetition has been shown to give acceptable results. Moreover, NMR chemical shifts can distinguish between static and dynamic disorder in crystalline materials and can be used to determine modes and rates of molecular exchange motion.

  10. 17O-NMR Knight shift study of the interplay between superconductivity and pseudogap in (CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy

    NASA Astrophysics Data System (ADS)

    Cvitanić, T.; Pelc, D.; Požek, M.; Amit, E.; Keren, A.

    2014-08-01

    We report systematic 17O-NMR measurements on the high-Tc cuprate (CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy, for four different families (different x). Using Knight shift data, we show that the pseudogap opening temperature T* is much higher than Tc near optimal doping, unlike structurally similar YBCO. In addition, at constant doping the pseudogap temperature does not vary with x, in contrast to Tc. This puts constraints on the nature of the pseudogap and position of the quantum critical point inside the superconducting dome.

  11. Local moment and inhomogeneous hyperfine interaction in the CuO2 plane of Bi2Sr2CaCu2O8+δ (Bi2212) single crystal by ^17O NMR

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Mukhopadhyay, Sutirtha; Halperin, William

    2007-03-01

    The ^17O NMR spectra of Bi2Sr2CaCu2O8+δ (Bi2212) single crystals were measured in the magnetic field of 8 T from 4 K to 200 K. The linewidth of the oxygen in CuO2 plane, O(1), was found to follow a Curie temperature dependence in the normal state, where the Curie coefficient decreases with the increase of δ oxygen in the crystal. In the superconductive state, it decreases with deceasing temperature, proportional to the decreasing Knight shift. This temperature dependence of the linewidth identifies the existence of local moment and inhomogeneous hyperfine interaction in the CuO2 plane.

  12. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  13. Effect of iron content on the structure and disorder of iron-bearing sodium silicate glasses: A high-resolution 29Si and 17O solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Im; Sur, Jung Chul; Lee, Sung Keun

    2016-01-01

    Despite its geochemical importance and implications for the properties of natural magmatic melts, understanding the detailed structure of iron-bearing silicate glasses remains among the outstanding problems in geochemistry. This is mainly because solid-state NMR techniques, one of the most versatile experimental methods to probe the structure of oxide glasses, cannot be fully utilized for exploring the structural details of iron-bearing glasses as the unpaired electrons in Fe induce strong local magnetic fields that mask the original spectroscopic features (i.e., paramagnetic effect). Here, we report high-resolution 29Si and 17O solid-state NMR spectra of iron-bearing sodium silicate glasses (Na2O-Fe2O3-SiO2, Fe3+/ΣFe = 0.89 ± 0.04, thus containing both ferric and ferrous iron) with varying XFe2O3 [=Fe2O3/(Na2O + Fe2O3)], containing up to 22.9 wt% Fe2O3. This compositional series involves Fe-Na substitution at constant SiO2 contents of 66.7 mol% in the glasses. For both nuclides, the NMR spectra exhibit a decrease in the signal intensities and an increase in the peak widths with increasing iron concentration partly because of the paramagnetic effect. Despite the intrinsic difficulties that result from the pronounced paramagnetic effect, the 29Si and 17O NMR results yield structural details regarding the effect of iron content on Q speciation, spatial distribution of iron, and the extent of polymerization in the iron-bearing silicate glasses. The 29Si NMR spectra show an apparent increase in highly polymerized Q species with increasing XFe2O3 , suggesting an increase in the degree of melt polymerization. The 17O 3QMAS NMR spectra exhibit well-resolved non-bridging oxygen (NBO, Na-O-Si) and bridging oxygen (BO, Si-O-Si) peaks with varying iron concentration. By replacing Na2O with Fe2O3 (and thus with increasing iron content), the fraction of Na-O-Si decreases. Quantitative consideration of this effect confirms that the degree of polymerization is likely to

  14. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    ERIC Educational Resources Information Center

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  15. Understanding the symmetric line shape in the 17O MAS spectra for hexagonal ice

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Oki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2016-06-01

    Solid-state 17O Magic-Angle Spinning (MAS) nuclear magnetic resonance (NMR) spectra of 17O-enriched hexagonal ice, [17O]-Ih, between 173 and 253 K were presented. Marked changes in the line shape were clearly observed, indicating water molecular reorientation in the crystal structure. At 173 K, molecular motions were considered to be frozen and analysis of the 1D MAS spectrum yielded the following parameters: quadrupole coupling constant (CQ) = 6.6 ± 0.2 MHz and asymmetry parameter (ηQ) = 0.95 ± 0.05. At 232 K and above, contrary to the conventional explanation, pseudo-symmetric line shapes appeared in the 17O MAS NMR spectra arising from the contribution of second-order quadrupole interactions. As a chemical exchange model to describe these isotropic 17O MAS NMR spectra, a modified Ratcliffe model, which consider the effects of proton disorder, was proposed, and the resulting theoretical spectra could well reproduce the experimental spectra.

  16. Accessible surface area from NMR chemical shifts.

    PubMed

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule's ASA requires three-dimensional coordinate data and the use of a "rolling ball" algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called "ShiftASA" that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation. PMID:26078090

  17. Stable isotope (2H, 17O, 18O) and hydro chemical patterns of precipitation collected in weekly resolution at Hannover, Germany

    NASA Astrophysics Data System (ADS)

    Koeniger, Paul; Himmelsbach, Thomas

    2016-04-01

    Long-term observations of stable isotopes (δ18O and δ2H) in precipitation were initiated in May 2008 at the Federal Institute of Geosciences and Natural Resources (BGR) in Hannover, Germany. In 2014 all precipitation samples were re-analyzed because a purchase of a new laser spectrometer (Picarro L2140-i) now allowed measurements of δ17O and a calculation of the 17O-excess parameter. Starting in October 2015 a routine analysis of hydro chemical parameters was added whenever enough sample aliquot was available (major ions, trace elements). A discussion of the stable isotope data of the seven year series of weekly precipitation samples (n = 370) will be presented. Beneath general patterns (seasonality and trends) we also focus on importance of amount weighing procedures, corrections for minor rain amounts, aspects of sample storage and re-analyzes, as well as impacts through changes in analytical equipment (IRMS, CRD spectroscopy) which is visible from the data. For stable isotopes a Thermo Fisher delta plus IRMS (Gasbench and H-Device) was used until 2011 and from 2012 on a Picarro L2120-i water vapor analyzer with long-term accuracies for quality check samples better than 0.2‰ and 0.8‰ for δ18O and δ2H, respectively.

  18. Prediction of Bioactive Compounds Using Computed NMR Chemical Shifts.

    PubMed

    Karthikeyan, Muthukumarasamy; Rajamohanan, Pattuparambil Ramanpillai; Vyas, Renu

    2015-01-01

    NMR based chemical shifts are an important diagnostic parameter for structure elucidation as they capture rich information related to conformational, electronic and stereochemical arrangement of functional groups in a molecule which is responsible for its activity towards any biological target. The present work discusses the importance of computing NMR chemical shifts from molecular structures. The NMR chemical shift data (experimental or computed) was used to generate fingerprints in binary formats for mapping molecular fragments (as descriptors) and correlating with the bioactivity classes. For this study, chemical shift data derived binary fingerprints were computed for 149 classes and 4800 bioactive molecules. The sensitivity and selectivity of fingerprints in discriminating molecules belonging to different therapeutic categories was assessed using a LibSVM based classifier. An accuracy of 82% for proton and 94% for carbon NMR fingerprints were obtained for anti-psoriatic and anti-psychotic molecules demonstrating the effectiveness of this approach for virtual screening. PMID:26138568

  19. Characterization of the Dynamics in the Protonic Conductor CsH2PO4 by 17O Solid-State NMR Spectroscopy and First-Principles Calculations: Correlating Phosphate and Protonic Motion

    PubMed Central

    2015-01-01

    17O NMR spectroscopy combined with first-principles calculations was employed to understand the local structure and dynamics of the phosphate ions and protons in the paraelectric phase of the proton conductor CsH2PO4. For the room-temperature structure, the results confirm that one proton (H1) is localized in an asymmetric H-bond (between O1 donor and O2 acceptor oxygen atoms), whereas the H2 proton undergoes rapid exchange between two sites in a hydrogen bond with a symmetric double potential well at a rate ≥107 Hz. Variable-temperature 17O NMR spectra recorded from 22 to 214 °C were interpreted by considering different models for the rotation of the phosphate anions. At least two distinct rate constants for rotations about four pseudo C3 axes of the phosphate ion were required in order to achieve good agreement with the experimental data. An activation energy of 0.21 ± 0.06 eV was observed for rotation about the P–O1 axis, with a higher activation energy of 0.50 ± 0.07 eV being obtained for rotation about the P–O2, P–O3d, and P–O3a axes, with the superscripts denoting, respectively, dynamic donor and acceptor oxygen atoms of the H-bond. The higher activation energy of the second process is most likely associated with the cost of breaking an O1–H1 bond. The activation energy of this process is slightly lower than that obtained from the 1H exchange process (0.70 ± 0.07 eV) (Kim, G.; Blanc, F.; Hu, Y.-Y.; Grey, C. P. J. Phys. Chem. C2013, 117, 6504−6515) associated with the translational motion of the protons. The relationship between proton jumps and phosphate rotation was analyzed in detail by considering uncorrelated motion, motion of individual PO4 ions and the four connected/H-bonded protons, and concerted motions of adjacent phosphate units, mediated by proton hops. We conclude that, while phosphate rotations aid proton motion, not all phosphate rotations result in proton jumps. PMID:25732257

  20. Relative Configuration of Natural Products Using NMR Chemical Shifts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By comparing calculated with experimental NMR chemical shifts, we were able to determine the relative configurations of three monoterpene diastereomers produced by the walkingstick Anisomorpha buprestoides. The combined RMSDs of both 1H and 13C quantum chemically calculated shifts were able to predi...

  1. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported. PMID:24746715

  2. Theoretical and experimental NMR chemical shifts of norsanguinarine and norchelerythrine

    NASA Astrophysics Data System (ADS)

    Toušek, Jaromír.; Dostál, Jiří; Marek, Radek

    2004-02-01

    Norchelerythrine and norsanguinarine, tertiary benzo[ c]phenanthridine alkaloids, were examined by gradient-selected 2D NMR spectroscopy and the later also by extensive theoretical calculations. 1H, 13C and 15N chemical shifts assignments of the title isoquinoline alkaloids based on NOE and multiple-bond chemical-shift correlation experiments (GSQMBC) are reported. Various methods were used for the NMR chemical shifts calculations. Molecular mechanics (MM3 forcefield), AM1 method and Ab initio methods were used for optimizing the geometry. Chemical shielding constants were computed by density functional theory, GIAO and IGLO approaches were used. Chemical shifts calculated by all methods display good qualitative agreement with experimentally determined values. The best overall agreement was achieved when geometry was optimized by RHF/6-31G** method and chemical shielding constants were calculated by B3LYP/6-311G** method, GIAO approach.

  3. 17O Single Crystal NMR Evidence for a Gapped Spin-liquid Ground State in the S=1/2 Kagome Lattice ZnCu3 (OH)6Cl2

    NASA Astrophysics Data System (ADS)

    Fu, Mingxuan; Imai, Takashi; Han, Tianheng; Lee, Young. S.

    2015-03-01

    The two-dimensional S=1/2 Kagome lattice in Herbersmithite ZnCu3(OH)6Cl2 is the best candidate for experimental realization of a quantum spin liquid ground state known to date. The recent discovery of a continuum of spinon excitations using inelastic neutron scattering has drawn strong attention to its exotic magnetic properties. Understanding the nature of the paramagnetic ground state of ZnCu3(OH)6Cl2 , however, remains a challenge, due to excess magnetic Cu defects occupying the interlayer Zn sites. We conducted single crystal NMR measurements of the 17 O Knight shift, and succeeded in measuring the intrinsic spin susceptibility of the Kagome layer down to T ~ 0 . 01 J (J ~ 17 meV) for the first time. We demonstrate that the intrinsic spin susceptibility decays exponentially at low temperatures, revealing the presence of a spin gap Δ ~ 0 . 1 J . Moreover, we show that application of a high magnetic field suppresses the gap. These results provide direct evidence for a gapped spin-liquid ground state realized in ZnCu3(OH)6Cl2.

  4. Natural abundance 17O nuclear magnetic resonance and computational modeling studies of lithium based liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang; Wang, Wei; Chen, Zhong; Liu, Jun; Hu, Jian Zhi

    2015-07-01

    Natural abundance 17O NMR measurements were conducted on electrolyte solutions consisting of Li[CF3SO2NSO2CF3] (LiTFSI) dissolved in the solvents of ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and their mixtures at various concentrations. It was observed that 17O chemical shifts of solvent molecules change with the concentration of LiTFSI. The chemical shift displacements of carbonyl oxygen are evidently greater than those of ethereal oxygen, strongly indicating that Li+ ion is coordinated with carbonyl oxygen rather than ethereal oxygen. To understand the detailed molecular interaction, computational modeling of 17O chemical shifts was carried out on proposed solvation structures. By comparing the predicted chemical shifts with the experimental values, it is found that a Li+ ion is coordinated with four double bond oxygen atoms from EC, PC, EMC and TFSI- anion. In the case of excessive amount of solvents of EC, PC and EMC the Li+ coordinated solvent molecules are undergoing quick exchange with bulk solvent molecules, resulting in average 17O chemical shifts. Several kinds of solvation structures are identified, where the proportion of each structure in the liquid electrolytes investigated depends on the concentration of LiTFSI.

  5. Natural Abundance 17O Nuclear Magnetic Resonance and Computational Modeling Studies of Lithium Based Liquid Electrolytes

    SciTech Connect

    Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang; Wang, Wei; Chen, Zhong; Liu, Jun; Hu, Jian Z.

    2015-07-01

    Natural abundance 17O NMR measurements were conducted on electrolyte solutions consisting of Li[CF3SO2NSO2CF3] (LiTFSI) dissolved in the solvents of ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and their mixtures at various concentrations. It was observed that 17O chemical shifts of solvent molecules change with the concentration of LiTFSI. The chemical shift displacements of carbonyl oxygen are evidently greater than those of ethereal oxygen, strongly indicating that Li+ ion is coordinated with carbonyl oxygen rather than ethereal oxygen. To understand the detailed molecular interaction, computational modeling of 17O chemical shifts was carried out on proposed solvation structures. By comparing the predicted chemical shifts with the experimental values, it is found that a Li+ ion is coordinated with four double bond oxygen atoms from EC, PC, EMC and TFSI- anion. In the case of excessive amount of solvents of EC, PC and EMC the Li+ coordinated solvent molecules are undergoing quick exchange with bulk solvent molecules, resulting in average 17O chemical shifts. Several kinds of solvation structures are identified, where the proportion of each structure in the liquid electrolytes investigated depends on the concentration of LiTFSI.

  6. Low Cost CE-NMR with Microcoils for Chemical Detection

    SciTech Connect

    Adams, K; Klunder, G; Demas, V; Malba, V; Bernhardt, A; Evan, L; Harvey, C; Maxwell, R; Herberg, J L

    2009-01-08

    Understanding speciation in solids and solutions is important for environmental and toxicological purposes. Capillary electrophoresis (CE) is a simple rapid separation technique that can be used to identify species in solution. CE is particularly is well suited for rapid separations of metal containing samples. Direct on-capillary measurement of metal compound speciation can be obtained with nuclear magnetic resonance (NMR). The development of a low-cost microcoil CE-NMR system for in situ characterization of samples of interest is discussed. High precision laser lithography is used to produce copper sputtered microcoils that have comparable resistivity and quality factors to that of hand wound microcoils. A portable NMR system coupled with a CE system has the potential to identify chemical species in aqueous solutions. In addition, transient isotachophoresis can separate and pre-concentrate samples of interest to obtain separate chemical peaks for speciation by online NMR analysis. We are developing separation assays to determine the speciation of chemical complexes in solutions with minimal perturbation to the original sample equilibrium. On-line NMR measurements will be made downstream of the UV detector.

  7. Low Cost CE-NMR with Microcoils for Chemical Detection

    SciTech Connect

    Adams, K L; Klunder, G; Demas, V; Malba, V; Bernhardt, A; Evan, L; Harvey, C; Maxwell, R; Herberg, J

    2008-07-25

    Understanding speciation in solids and solutions is important for environmental and toxicological purposes. Capillary electrophoresis (CE) is a simple rapid separation technique that can be used to identify species in solution. CE is particularly is well suited for rapid separations of metal containing samples. Direct on-capillary measurement of metal compound speciation can be obtained with nuclear magnetic resonance (NMR). The development of a low-cost microcoil CE-NMR system for in situ characterization of samples of interest is discussed. High precision laser lithography is used to produce copper sputtered microcoils that have comparable resistivity and quality factors to that of hand wound microcoils. A portable NMR system coupled with a CE system has the potential to identify chemical species in aqueous solutions. In addition, transient isotachophoresis can separate and pre-concentrate samples of interest to obtain separate chemical peaks for speciation by online NMR analysis. We are developing separation assays to determine the speciation of chemical complexes in solutions with minimal perturbation to the original sample equilibrium. On-line NMR measurements will be made downstream of the UV detector.

  8. Chemical shift referencing in MAS solid state NMR

    NASA Astrophysics Data System (ADS)

    Morcombe, Corey R.; Zilm, Kurt W.

    2003-06-01

    Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than ±0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported.

  9. Chemical shift referencing in MAS solid state NMR.

    PubMed

    Morcombe, Corey R; Zilm, Kurt W

    2003-06-01

    Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than +/-0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported. PMID:12810033

  10. Probabilistic validation of protein NMR chemical shift assignments.

    PubMed

    Dashti, Hesam; Tonelli, Marco; Lee, Woonghee; Westler, William M; Cornilescu, Gabriel; Ulrich, Eldon L; Markley, John L

    2016-01-01

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data . ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/. PMID:26724815

  11. 93Nb NMR chemical shift scale for niobia systems.

    PubMed

    Lapina, Olga B; Khabibulin, Dzhalil F; Romanenko, Konstantin V; Gan, Zhehong; Zuev, Mikhail G; Krasil'nikov, Vladimir N; Fedorov, Vladimir E

    2005-09-01

    93Nb solid-state NMR spectra of a series of inorganic niobates with Nb in different oxygen coordination environments were measured. For all studied compounds the chemical shielding and quadrupole tensor parameters were determined using conventional and ultrahigh field NMR facilities, ultrahigh speed MAS, DQ STMAS, solid-echo and computer modeling. It has been demonstrated that the 93Nb isotropic chemical shift is sensitive to the coordination number of Nb sites. For the first time the 93Nb NMR chemical shift scale for NbOx polyhedra in solid materials has been proposed: for four-coordinated Nb sites, the isotropic shifts occur from -650 to -950 ppm; five-coordinated Nb sites have the isotropic shifts in the range of -900 to -980 ppm; for six-coordinated Nb sites the isotropic shifts vary from -900 to -1360 ppm; the shifts from -1200 to -1600 ppm are typical for seven-coordinated Nb sites; for eight-coordinated Nb sites the shifts are higher than -1400 ppm. The possible correlation between the value of the isotropic chemical shift and the ionic character of the NbOx-MOy polyhedra association has been suggested. The magnitude of the 93Nb quadrupole coupling constant depends on the local symmetry of Nb sites and may vary from hundreds of kHz to hundreds of MHz. PMID:16216475

  12. Ab initio theory of NMR chemical shifts in solids

    SciTech Connect

    Louie, S.G. |

    1997-12-31

    A new formalism for ab initio calculation of the orbital magnetic susceptibility and the NMR chemical shifts in solids and liquids is presented. The approach can be applied to periodic systems such as crystals, surfaces or polymers, and with a supercell technique, to nonperiodic systems such as amorphous materials, liquids, or solids with defects. The formalism is based on the density functional theory in the local density approximation and makes use of a generalized f-sum rule to eliminate the divergent terms that plagued previous theories. Calculations have been successfully carried out for the diamagnetic susceptibility of a number of insulators and for the NMR chemical shifts of a variety of systems including free molecules, ionic crystals, hydrogen-bonded materials and amorphous carbon.

  13. NMR chemical shifts in periodic systems from first principles

    NASA Astrophysics Data System (ADS)

    Sebastiani, Daniel; Goward, Gillian; Schnell, Ingo; Parrinello, Michele

    2002-08-01

    A recently developed ab-initio method for the calculation of NMR chemical shifts and magnetic susceptibilities in systems under periodic boundary conditions is presented and applied to a hydrogen-bonded molecular crystal. The calculations can unambiguously assign the chemical shifts to individual atoms in experimental spectra, and can further serve for the validation of simulated atomic trajectories and geometries. Apart from the example presented, the method can be applied to crystalline and amorphous insulators, as well as to isolated molecules using a supercell technique. The results are in good agreement with experiment.

  14. Theoretical Study of the Electrostatic and Steric Effects on the Spectroscopic Characteristics of the Metal-Ligand Unit of Heme Proteins. 2. C-O Vibrational Frequencies, 17O Isotropic Chemical Shifts, and Nuclear Quadrupole Coupling Constants

    PubMed Central

    Kushkuley, Boris; Stavrov, Solomon S.

    1997-01-01

    The quantum chemical calculations, vibronic theory of activation, and London-Pople approach are used to study the dependence of the C-O vibrational frequency, 17O isotropic chemical shift, and nuclear quadrupole coupling constant on the distortion of the porphyrin ring and geometry of the CO coordination, changes in the iron-carbon and iron-imidazole distances, magnitude of the iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that only the electrostatic interactions can cause the variation of all these parameters experimentally observed in different heme proteins, and the heme distortions could modulate this variation. The correlations between the theoretically calculated parameters are shown to be close to the experimentally observed ones. The study of the effect of the electric field of the distal histidine shows that the presence of the four C-O vibrational bands in the infrared absorption spectra of the carbon monoxide complexes of different myoglobins and hemoglobins can be caused by the different orientations of the different tautomeric forms of the distal histidine. The dependence of the 17O isotropic chemical shift and nuclear quadrupole coupling constant on pH and the distal histidine substitution can be also explained from the same point of view. PMID:9017215

  15. Calculations of NMR chemical shifts with APW-based methods

    NASA Astrophysics Data System (ADS)

    Laskowski, Robert; Blaha, Peter

    2012-01-01

    We present a full potential, all electron augmented plane wave (APW) implementation of first-principles calculations of NMR chemical shifts. In order to obtain the induced current we follow a perturbation approach [Pickard and Mauri, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.63.245101 63, 245101 (2001)] and extended the common APW + local orbital (LO) basis by several LOs at higher energies. The calculated all-electron current is represented in traditional APW manner as Fourier series in the interstitial region and with a spherical harmonics representation inside the nonoverlapping atomic spheres. The current is integrated using a “pseudocharge” technique. The implementation is validated by comparison of the computed chemical shifts with some “exact” results for spherical atoms and for a set of solids and molecules with available published data.

  16. Protein Dielectric Constants Determined from NMR Chemical Shift Perturbations

    PubMed Central

    Kukic, Predrag; Farrell, Damien; McIntosh, Lawrence P.; E., Bertrand García-Moreno; Jensen, Kristine Steen; Toleikis, Zigmantas; Teilum, Kaare; Nielsen, Jens Erik

    2015-01-01

    Understanding the connection between protein structure and function requires a quantitative understanding of electrostatic effects. Structure-based electrostatics calculations are essential for this purpose, but their use have been limited by a long-standing discussion on which value to use for the dielectric constants (εeff and εp) required in Coulombic models and Poisson-Boltzmann models. The currently used values for εeff and εp are essentially empirical parameters calibrated against thermodynamic properties that are indirect measurements of protein electric fields. We determine optimal values for εeff and εp by measuring protein electric fields in solution using direct detection of NMR chemical shift perturbations (CSPs). We measured CSPs in fourteen proteins to get a broad and general characterization of electric fields. Coulomb's law reproduces the measured CSPs optimally with a protein dielectric constant (εeff) from 3 to 13, with an optimal value across all proteins of 6.5. However, when the water-protein interface is treated with finite difference Poisson-Boltzmann calculations, the optimal protein dielectric constant (εp) rangedsfrom 2-5 with an optimum of 3. It is striking how similar this value is to the dielectric constant of 2-4 measured for protein powders, and how different it is from the εp of 6-20 used in models based on the Poisson-Boltzmann equation when calculating thermodynamic parameters. Because the value of εp = 3 is obtained by analysis of NMR chemical shift perturbations instead of thermodynamic parameters such as pKa values, it is likely to describe only the electric field and thus represent a more general, intrinsic, and transferable εp common to most folded proteins. PMID:24124752

  17. Quantum chemical 13Cα chemical shift calculations for protein NMR structure determination, refinement, and validation

    PubMed Central

    Vila, Jorge A.; Aramini, James M.; Rossi, Paolo; Kuzin, Alexandre; Su, Min; Seetharaman, Jayaraman; Xiao, Rong; Tong, Liang; Montelione, Gaetano T.; Scheraga, Harold A.

    2008-01-01

    A recently determined set of 20 NMR-derived conformations of a 48-residue all-α-helical protein, (PDB ID code 2JVD), is validated here by comparing the observed 13Cα chemical shifts with those computed at the density functional level of theory. In addition, a recently introduced physics-based method, aimed at determining protein structures by using NOE-derived distance constraints together with observed and computed 13Cα chemical shifts, was applied to determine a new set of 10 conformations, (Set-bt), as a blind test for the same protein. A cross-validation of these two sets of conformations in terms of the agreement between computed and observed 13Cα chemical shifts, several stereochemical quality factors, and some NMR quality assessment scores reveals the good quality of both sets of structures. We also carried out an analysis of the agreement between the observed and computed 13Cα chemical shifts for a slightly longer construct of the protein solved by x-ray crystallography at 2.0-Å resolution (PDB ID code 3BHP) with an identical amino acid residue sequence to the 2JVD structure for the first 46 residues. Our results reveal that both of the NMR-derived sets, namely 2JVD and Set-bt, are somewhat better representations of the observed 13Cα chemical shifts in solution than the 3BHP crystal structure. In addition, the 13Cα-based validation analysis appears to be more sensitive to subtle structural differences across the three sets of structures than any other NMR quality-assessment scores used here, and, although it is computationally intensive, this analysis has potential value as a standard procedure to determine, refine, and validate protein structures. PMID:18787110

  18. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    NASA Astrophysics Data System (ADS)

    Ahola, Susanna; Zhivonitko, Vladimir V.; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-09-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  19. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    PubMed Central

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-01-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR. PMID:26381101

  20. Dissemination of original NMR data enhances reproducibility and integrity in chemical research.

    PubMed

    Bisson, Jonathan; Simmler, Charlotte; Chen, Shao-Nong; Friesen, J Brent; Lankin, David C; McAlpine, James B; Pauli, Guido F

    2016-08-25

    The notion of data transparency is gaining a strong awareness among the scientific community. The availability of raw data is actually regarded as a fundamental way to advance science by promoting both integrity and reproducibility of research outcomes. Particularly, in the field of natural product and chemical research, NMR spectroscopy is a fundamental tool for structural elucidation and quantification (qNMR). As such, the accessibility of original NMR data, i.e., Free Induction Decays (FIDs), fosters transparency in chemical research and optimizes both peer review and reproducibility of reports by offering the fundamental tools to perform efficient structural verification. Although original NMR data are known to contain a wealth of information, they are rarely accessible along with published data. This viewpoint discusses the relevance of the availability of original NMR data as part of good research practices not only to promote structural correctness, but also to enhance traceability and reproducibility of both chemical and biological results. PMID:27197893

  1. Quantum-chemical analyses of aromaticity, UV spectra, and NMR chemical shifts in plumbacyclopentadienylidenes stabilized by Lewis bases.

    PubMed

    Kawamura, Toshiaki; Abe, Minori; Saito, Masaichi; Hada, Masahiko

    2014-04-30

    We carried out a series of zeroth-order regular approximation (ZORA)-density functional theory (DFT) and ZORA-time-dependent (TD)-DFT calculations for molecular geometries, NMR chemical shifts, nucleus-independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2 ((t) BuMe2 Si)2 C4 PbL1 L2 (L1, L2 = tetrahydrofuran, Pyridine, N-heterocyclic carbene), and their model molecules. We mainly discussed the Lewis-base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n-Huckel rule is applied to the fractional π-electron number. The calculated (13)C- and (207)Pb-NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the (13)C-NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the (207)Pb-NMR chemical shifts and J[Pb-C] but also in the (13)C-NMR chemical shifts of carbons adjacent to the lead atom. PMID:24643814

  2. NMR-based analysis of the chemical composition of Japanese persimmon aqueous extracts.

    PubMed

    Ryu, Shoraku; Furihata, Kazuo; Koda, Masanori; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2016-03-01

    Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB-WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional (1) H NMR and BB-WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26482562

  3. 15N NMR chemical shifts in papaverine decomposition products

    NASA Astrophysics Data System (ADS)

    Czyrski, Andrzej; Girreser, Ulrich; Hermann, Tadeusz

    2013-03-01

    Papaverine can be easily oxidized to papaverinol, papaveraldine and 2,3,9,10-tetramethoxy-12-oxo-12H-indolo[2,1-a]isoquinolinium chloride. On addition of alkali solution the latter compound forms 2-(2-carboxy-4,5-dimethoxyphenyl)-6,7-dimethoxyisoquinolinium inner salt. Together with these structures the interesting 13-(3,4-dimethoxyphenyl)-2,3,8,9-tetramethoxy-6a-12a-diazadibenzo[a,g]fluorenylium chloride is discussed, which is formed in the Gadamer-Schulemann reaction of papaverine as a side product. This letter reports the 15N NMR spectra of the above mentioned compounds.

  4. Tautomerism of Warfarin: Combined Chemoinformatics, Quantum Chemical, and NMR Investigation.

    PubMed

    Guasch, Laura; Peach, Megan L; Nicklaus, Marc C

    2015-10-16

    Warfarin, an important anticoagulant drug, can exist in solution in 40 distinct tautomeric forms through both prototropic tautomerism and ring-chain tautomerism. We have investigated all warfarin tautomers with computational and NMR approaches. Relative energies calculated at the B3LYP/6-311G++(d,p) level of theory indicate that the 4-hydroxycoumarin cyclic hemiketal tautomer is the most stable tautomer in aqueous solution, followed by the 4-hydroxycoumarin open-chain tautomer. This is in agreement with our NMR experiments where the spectral assignments indicate that warfarin exists mainly as a mixture of cyclic hemiketal diastereomers, with an open-chain tautomer as a minor component. We present a diagram of the interconversion of warfarin created taking into account the calculated equilibrium constants (pK(T)) for all tautomeric reactions. These findings help with gaining further understanding of proton transfer and ring closure tautomerization processes. We also discuss the results in the context of chemoinformatics rules for handling tautomerism. PMID:26372257

  5. Benchmarks for the 13C NMR chemical shielding tensors in peptides in the solid state

    NASA Astrophysics Data System (ADS)

    Czernek, Jiří; Pawlak, Tomasz; Potrzebowski, Marek J.

    2012-02-01

    The benchmark set is proposed, which comprises 126 principal elements of chemical shielding tensors, and the respective isotropic chemical shielding values, of all 42 13C nuclei in crystalline Tyr-D-Ala-Phe and Tyr-Ala-Phe tripeptides with known, but highly dissimilar structures. These data are obtained by both the NMR measurements and the density functional theory in the pseudopotential plane-wave scheme. Using the CASTEP program, several computational strategies are employed, for which the level of agreement between calculations and experiment is established. This set is mainly intended for the validation of methods capable of predicting the 13C NMR parameters in solid-state systems.

  6. Magnetic couplings in the chemical shift of paramagnetic NMR.

    PubMed

    Vaara, Juha; Rouf, Syed Awais; Mareš, Jiří

    2015-10-13

    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form S·D·S. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case. PMID:26574272

  7. Scalar Relativistic Computations and Localized Orbital Analyses of Nuclear Hyperfine Coupling and Paramagnetic NMR Chemical Shifts

    SciTech Connect

    Aquino, Fredy W.; Pritchard, Ben; Autschbach, Jochen

    2012-02-14

    A method is reported by which calculated hyperfine coupling constants (HFCCs) and paramagnetic NMR (pNMR) chemical shifts can be analyzed in a chemically intuitive way by decomposition into contributions from localized molecular orbitals (LMOs). A new module for density functional calculations with nonhybrid functionals, global hybrids, and range-separated hybrids, utilizing the two-component relativistic zeroth-order regular approximation (ZORA), has been implemented in the parallel open-source NWChem quantum chemistry package. Benchmark results are reported for a test set of few-atom molecules with light and heavy elements. Finite nucleus effects on ¹⁹⁹Hg HFCCs are shown to be on the order of -11 to -15%. A proof of concept for the LMO analysis is provided for the metal and fluorine HFCCs of TiF₃ and NpF₆. Calculated pNMR chemical shifts are reported for the 2-methylphenyl-t-butylnitroxide radical and for five cyclopentadienyl (Cp) sandwich complexes with 3d metals. Nickelocene and vanadocene carbon pNMR shifts are analyzed in detail, demonstrating that the large carbon pNMR shifts calculated as +1540 for Ni (exptl.: +1514) and -443 for V (exptl.: -510) are caused by different spin-polarization mechanisms. For Ni, Cp to Ni π back-donation dominates the result, whereas for vanadocene, V to Cp σ donation with relaxation of the carbon 1s shells can be identified as the dominant mechanism.

  8. MP2 calculation of (77) Se NMR chemical shifts taking into account relativistic corrections.

    PubMed

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2015-07-01

    The main factors affecting the accuracy and computational cost of the Second-order Möller-Plesset perturbation theory (MP2) calculation of (77) Se NMR chemical shifts (methods and basis sets, relativistic corrections, and solvent effects) are addressed with a special emphasis on relativistic effects. For the latter, paramagnetic contribution (390-466 ppm) dominates over diamagnetic term (192-198 ppm) resulting in a total shielding relativistic correction of about 230-260 ppm (some 15% of the total values of selenium absolute shielding constants). Diamagnetic term is practically constant, while paramagnetic contribution spans over 70-80 ppm. In the (77) Se NMR chemical shifts scale, relativistic corrections are about 20-30 ppm (some 5% of the total values of selenium chemical shifts). Solvent effects evaluated within the polarizable continuum solvation model are of the same order of magnitude as relativistic corrections (about 5%). For the practical calculations of (77) Se NMR chemical shifts of the medium-sized organoselenium compounds, the most efficient computational protocols employing relativistic Dyall's basis sets and taking into account relativistic and solvent corrections are suggested. The best result is characterized by a mean absolute error of 17 ppm for the span of (77) Se NMR chemical shifts reaching 2500 ppm resulting in a mean absolute percentage error of 0.7%. PMID:25998325

  9. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    SciTech Connect

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-03-03

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method.

  10. Prediction of (19)F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study.

    PubMed

    Isley, William C; Urick, Andrew K; Pomerantz, William C K; Cramer, Christopher J

    2016-07-01

    The structural analysis of ligand complexation in biomolecular systems is important in the design of new medicinal therapeutic agents; however, monitoring subtle structural changes in a protein's microenvironment is a challenging and complex problem. In this regard, the use of protein-based (19)F NMR for screening low-molecular-weight molecules (i.e., fragments) can be an especially powerful tool to aid in drug design. Resonance assignment of the protein's (19)F NMR spectrum is necessary for structural analysis. Here, a quantum chemical method has been developed as an initial approach to facilitate the assignment of a fluorinated protein's (19)F NMR spectrum. The epigenetic "reader" domain of protein Brd4 was taken as a case study to assess the strengths and limitations of the method. The overall modeling protocol predicts chemical shifts for residues in rigid proteins with good accuracy; proper accounting for explicit solvation of fluorinated residues by water is critical. PMID:27218275

  11. Single-insect NMR: A new tool to probe chemical biodiversity.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to analytical limitations, multiple animals or plants are typically required to identify natural products. Using a unique 1-mm high-temperature superconducting NMR probe, we directly examined the chemical composition of defensive secretions from walkingstick insects. Individual milkings were di...

  12. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.

    PubMed

    Paschoal, D; Guerra, C Fonseca; de Oliveira, M A L; Ramalho, T C; Dos Santos, H F

    2016-10-01

    Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc. PMID:27510431

  13. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  14. Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions

    PubMed Central

    Latino, Diogo A. R. S.; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the 1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the 1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the

  15. (77)Se chemical shift tensor of L-selenocystine: experimental NMR measurements and quantum chemical investigations of structural effects.

    PubMed

    Struppe, Jochem; Zhang, Yong; Rozovsky, Sharon

    2015-03-01

    The genetically encoded amino acid selenocysteine and its dimeric form, selenocystine, are both utilized by nature. They are found in active sites of selenoproteins, enzymes that facilitate a diverse range of reactions, including the detoxification of reactive oxygen species and regulation of redox pathways. Due to selenocysteine and selenocystine's specialized biological roles, it is of interest to examine their (77)Se NMR properties and how those can in turn be employed to study biological systems. We report the solid-state (77)Se NMR measurements of the L-selenocystine chemical shift tensor, which provides the first experimental chemical shift tensor information on selenocysteine-containing systems. Quantum chemical calculations of L-selenocystine models were performed to help understand various structural effects on (77)Se L-selenocystine's chemical shift tensor. The effects of protonation state, protein environment, and substituent of selenium-bonded carbon on the isotropic chemical shift were found to be in a range of ca. 10-20 ppm. However, the conformational effect was found to be much larger, spanning ca. 600 ppm for the C-Se-Se-C dihedral angle range of -180° to +180°. Our calculations show that around the minimum energy structure with a C-Se-Se-C dihedral angle of ca. -90°, the energy costs to alter the dihedral angle in the range from -120° to -60° are within only 2.5 kcal/mol. This makes it possible to realize these conformations in a protein or crystal environment. (77)Se NMR was found to be a sensitive probe to such changes and has an isotropic chemical shift range of 272 ± 30 ppm for this energetically favorable conformation range. The energy-minimized structures exhibited calculated isotropic shifts that lay within 3-9% of those reported in previous solution NMR studies. The experimental solid-state NMR isotropic chemical shift is near the lower bound of this calculated range for these readily accessible conformations. These results suggest

  16. 77Se Chemical Shift Tensor of L-selenocystine: Experimental NMR Measurements and Quantum Chemical Investigations of Structural Effects

    PubMed Central

    Struppe, Jochem; Zhang, Yong; Rozovsky, Sharon

    2015-01-01

    The genetically encoded amino acid selenocysteine and its dimeric form, selenocystine, are both utilized by nature. They are found in active sites of selenoproteins, enzymes that facilitate a diverse range of reactions, including the detoxification of reactive oxygen species and regulation of redox pathways. Due to selenocysteine and selenocystine’s specialized biological roles, it is of interest to examine their 77Se NMR properties and how those can in turn be employed to study biological systems. We report the solid-state 77Se NMR measurements of the L-selenocystine chemical shift tensor, which provides the first experimental chemical shift tensor information of selenocysteine-containing systems. Quantum chemical calculations of L-selenocystine models were performed to help understand various structural effects on 77Se L-selenocystine’s chemical shift tensor. The effects of protonation state, protein environment, and substituent of selenium-bonded carbon on the isotropic chemical shift were found to be in a range of ca. 10–20 ppm. However, the conformational effect was found to be much larger, spanning ca. 600 ppm for the C-Se-Se-C dihedral angle range of −180° to +180°. Our calculations show that around the minimum energy structure with a C-Se-Se-C dihedral angle of ca. −90°, the energy costs to alter the dihedral angle in the range from −120° to −60° are within only 2.5 kcal/mol. This makes it possible to realize these conformations in a protein or crystal environment. 77Se NMR was found to be a sensitive probe to such changes and has an isotropic chemical shift range of 272±30 ppm for this energetically favorable conformation range. The energy-minimized structures exhibited calculated isotropic shifts that lay within 3–9% of those reported in previous solution NMR studies. The experimental solid-state NMR isotropic chemical shift is near the lower bound of this calculated range for these readily accessible conformations. These results

  17. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts.

    PubMed

    Kupka, Teobald; Stachów, Michal; Stobiński, Leszek; Kaminský, Jakub

    2016-06-01

    (13)C NMR chemical shifts of selected finite-size models of pristine zigzag single walled carbon nanotubes (SWCNTs) with a diameter of ∼0.4-0.8nm and length up to 2.2nm were studied theoretically. Results for finite SWCNTs models containing 1, 4 and 10 adjacent bamboo-type units were compared with data obtained for infinite tubes in order to estimate the reliability of small finite models in predicting magnetic properties of real-size nanotubes and to assess their tube-length dependence. SWCNTs were fully optimized using unrestricted density functional theory (DFT-UB3LYP/6-31G*). Cyclacenes, as the shortest models of open-ended zigzag SWCNTs, with systematically varying diameter were calculated as well. GIAO NMR calculations on the SWCNT and cyclacene models were performed using the BHandH density functional combined with relatively small STO-3Gmag basis set, developed by Leszczyński and coworkers for accurate description of magnetic properties. Regular changes of carbon (13)C chemical shifts along the tube axis of real size (6, 0) and (9, 0) zigzag carbon nanotubes were shown. The (13)C NMR shifts according to increasing diameter calculated for zigzag (n, 0, n=5-10) cyclacenes followed the trends observed for zigzag (n, 0) SWCNTs. The results for 4-units long SWCNTs match reasonably well with the data obtained for infinite zigzag (n, 0) SWCNTs, especially to those with bigger diameter (n=8-15). The presence of rim hydrogens obviously affects theoretical (13)C chemical shieldings and shifts in cyclacenes and thus cyclacenes can provide only approximate estimation of (13)C NMR parameters of real-size SWCNTs. The NMR properties predicted for the longest 10-units long models of SWCNTs reliably correspond to results obtained for infinite nanotubes. They were thus able to accurately predict also recently reported experimental chemical shift of chiral (6, 5) SWCNT. PMID:27155813

  18. Tracing Nitrate Deposition Using Δ 17O

    NASA Astrophysics Data System (ADS)

    Michalski, G m; Hernandez, L.; Meixner, T.; Fenn, M.; Thiemens, M.

    2001-12-01

    Assessing the impact of atmospheric deposition of fixed nitrogen on local, regional, and global biogeochemical cycles has received much attention in recent years. Local and regional ecosystems can suffer from eutrophication and shrinking biodiversity from the increased nitrogen flux, in addition to degradation associated with acid rain ( an increasing proportion of which is as HNO3 ). On a global scale, the effect of nitrogen fertilization on CO2 uptake rates is one of the biggest unknowns in global warming research. This renewed interest has led to new attempts to utilize current, and in the development of new, analytical techniques in order to better understand the source, sink and transport mechanisms of atmospheric nitrogen deposition. Its role as the primary sink of the NOx cycle makes atmospheric nitrate (as particulate nitrate or nitric acid ) the primary source of nitrogen deposition. Stable isotopes of nitrogen and oxygen have been used by several researchers to trace atmospheric nitrate through the biogeochemical system. 15N ratios have been problematic due to the lack of large fractionations and an overlap of 15N ratios between sources. Initial studies of 18O ratios showed promise due to the large enrichment (60 ‰ ) in atmospheric nitrate. However, subsequent studies showed an δ 18O spread of 25 - 80 ‰ and have made quantitative analysis of mixing reservoirs difficult. No studies of δ 17O nitrates have been published. For δ 17O, thermodynamic, kinetic, and equilibrium isotope effects dictate that δ 17O = .52 x δ 18O . Certain photochemical processes violate this rule due to quantum effects and are quantified by Δ 17O = δ 17O -.52 x δ 18O which are called mass independent fractionations (MIF). Atmospheric nitrates have now been measured and have been found to have a large MIF; Δ 17O ~ 25 ‰ and a small range +/- 4‰ . The large variations in δ 18O of atmospheric nitrate are due to mass dependent fractions from transport and source ratios

  19. The Chemical Shift Baseline for High-Pressure NMR Spectra of Proteins.

    PubMed

    Frach, Roland; Kibies, Patrick; Böttcher, Saraphina; Pongratz, Tim; Strohfeldt, Steven; Kurrmann, Simon; Koehler, Joerg; Hofmann, Martin; Kremer, Werner; Kalbitzer, Hans Robert; Reiser, Oliver; Horinek, Dominik; Kast, Stefan M

    2016-07-18

    High-pressure (HP) NMR spectroscopy is an important method for detecting rare functional states of proteins by analyzing the pressure response of chemical shifts. However, for the analysis of the shifts it is mandatory to understand the origin of the observed pressure dependence. Here we present experimental HP NMR data on the (15) N-enriched peptide bond model, N-methylacetamide (NMA), in water, combined with quantum-chemical computations of the magnetic parameters using a pressure-sensitive solvation model. Theoretical analysis of NMA and the experimentally used internal reference standard 4,4-dimethyl-4-silapentane-1-sulfonic (DSS) reveal that a substantial part of observed shifts can be attributed to purely solvent-induced electronic polarization of the backbone. DSS is only marginally responsive to pressure changes and is therefore a reliable sensor for variations in the local magnetic field caused by pressure-induced changes of the magnetic susceptibility of the solvent. PMID:27282319

  20. Simulation of the diurnal variations of the isotope anomaly (?17O) of reactive trace gases (NOx, HOx) and implications for the ?17O of nitrate.

    NASA Astrophysics Data System (ADS)

    Morin, Samuel; Sander, Rolf; Savarino, Joël.

    2010-05-01

    The isotope anomaly of secondary atmospheric species such as nitrate (NO3-) has potential to provide useful constrains on their formation pathways. Indeed, the ?17O of their precursors (NOx, HOx etc.) differs and depends on their interactions with ozone, which is the main source of non-zero ?17O in the atmosphere. Interpreting variations of ?17O in nitrate requires an in-depth understanding of the ?17O of its precursors taking into account non-linear chemical regimes operating under various environmental settings. In addition, the role of isotope exchange reactions must be carefully accounted for. To investigate the relevance of various assessments of the isotopic signature of nitrate production pathways that have recently been proposed in the literature, an atmospheric chemistry box model (MECCA, Sander et al., 2005, ACP)) was used to explicitly compute the diurnal variations of the isotope anomaly of NOx, HOx under several conditions prevailing in the marine boundary layer. ?17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2) according to the classical mass-balance equation applied at each time step of the model (30 seconds typically). The model confirms that diurnal variations in ?17O of NOx are well predicted by the photochemical steady-state relationship introduced by Michalski et al. (2003, GRL) during the day, but that at night a different approach must be employed (e.g. « fossilization » of the ?17O of NOx as soon as the photochemical lifetime of NOx drops below ca. 5 minutes). The model also allows to evaluate the impact on ?17O of NOx and nitrate of the frequently made simplifying assumption that ?17O(HOx)=0 permil, with and without mass-independent fractionation during the H+O2-HO2 reaction. Recommendations for the modeling of ?17O of nitrate will be given, based on the extensive model work carried out. In addition, the link between diurnal variations of the ?17O of nitrate precursors and seasonal

  1. Using Neural Networks for 13C NMR Chemical Shift Prediction-Comparison with Traditional Methods

    NASA Astrophysics Data System (ADS)

    Meiler, Jens; Maier, Walter; Will, Martin; Meusinger, Reinhard

    2002-08-01

    Interpretation of 13C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network ( J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical description of the carbon atom environment, resulting in a standard deviation (std. dev.) of 2.4 ppm for an independent test data set of ˜42,500 carbons. Thus, this neural network allows fast and accurate 13C NMR chemical shift prediction without the necessity of access to molecule or fragment databases. For an unbiased test dataset containing 100 organic structures the accuracy of the improved neural network was compared to that of a prediction method based on the HOSE code ( hierarchically ordered spherical description of environment) using S PECI NFO. The results show the neural network predictions to be of quality (std. dev.=2.7 ppm) comparable to that of the HOSE code prediction (std. dev.=2.6 ppm). Further we compare the neural network predictions to those of a wide variety of other 13C chemical shift prediction tools including incremental methods (C HEMD RAW, S PECT OOL), quantum chemical calculation (G AUSSIAN, C OSMOS), and HOSE code fragment-based prediction (S PECI NFO, ACD/CNMR, P REDICTI T NMR) for the 47 13C-NMR shifts of Taxol, a natural product including many structural features of organic substances. The smallest standard deviations were achieved here with the neural network (1.3 ppm) and S PECI NFO (1.0 ppm).

  2. NMR ANALYSIS OF MALE FATHEAD MINNOW URINARY METABOLITES: A POTENTIAL APPROACH FOR STUDYING IMPACTS OF CHEMICAL EXPOSURES

    EPA Science Inventory

    The potential for profiling endogenous metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one dimensional (1D) and two dimensional (2D) NMR spectroscopy w...

  3. Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

  4. Chemical structure and heterogeneity differences of two lignins from loblolly pine as investigated by advanced solid-state NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced solid-state NMR was employed to investigate differences in chemical structure and heterogeneity between milled wood lignin (MWL) and residual enzyme lignin (REL). Wiley and conventional milled woods were also studied. The advanced NMR techniques included 13C quantitative direct polarization...

  5. Analysis of atomic scale chemical environments of boron in coal by 11B solid state NMR.

    PubMed

    Takahashi, Takafumi; Kashiwakura, Shunsuke; Kanehashi, Koji; Hayashi, Shunichi; Nagasaka, Tetsuya

    2011-02-01

    Atomic scale chemical environments of boron in coal has been studied by solid state NMR spectroscopy including magic angle spinning (MAS), satellite transition magic angle spinning (STMAS), and cross-polarization magic angle spinning (CPMAS). The (11)B NMR spectra can be briefly classified according to the degree of coalification. On the (11)B NMR spectra of lignite, bituminous, and sub-bituminous coals (carbon content of 70-90mass%), three sites assigned to four-coordinate boron ([4])B with small quadrupolar coupling constants (≤0.9 MHz) are observed. Two of the ([4])B sites in downfield are considered organoboron complexes with aromatic ligands, while the other in the most upper field is considered inorganic tetragonal boron (BO(4)). By contrast, on the (11)B NMR spectra of blind coal (carbon content >90mass%), the ([4])B which substitutes tetrahedral silicon of Illite is observed as a representative species. It has been considered that the organoboron is decomposed and released from the parent phase with the advance of coal maturation, and then the released boron reacts with the inorganic phase to substitute an element of inorganic minerals. Otherwise boron contained originally in inorganic minerals might remain preserved even under the high temperature condition that is generated during coalification. PMID:21175186

  6. Quantifying the chemical composition of soil organic carbon with solid-state 13C NMR

    NASA Astrophysics Data System (ADS)

    Baldock, J. A.; Sanderman, J.

    2011-12-01

    The vulnerability of soil organic carbon (SOC) to biological decomposition and mineralisation to CO2 is defined at least partially by its chemical composition. Highly aromatic charcoal-like SOC components are more stable to biological decomposition than other forms of carbon including cellulose. Solid-state 13C NMR has gained wide acceptance as a method capable of defining SOC chemical composition and mathematical fitting processes have been developed to estimate biochemical composition. Obtaining accurate estimates depends on an ability to quantitatively detect all carbon present in a sample. Often little attention has been paid to defining the proportion of organic carbon present in a soil that is observable in solid-state 13C NMR analyses of soil samples. However, if such data is to be used to inform carbon cycling studies, it is critical that quantitative assessments of SOC observability be undertaken. For example, it is now well established that a significant discrimination exists against the detection of the low proton content polyaromatic structures typical of charcoal using cross polarisation 13C NMR analyses. Such discrimination does not exist where direct polarisation analyses are completed. In this study, the chemical composition of SOC as defined by cross polarisation and direct polarisation13C NMR analyses will be compared for Australian soils collected from under a diverse range of agricultural managements and climatic conditions. Results indicate that where significant charcoal C contents exist, it is highly under-represented in the acquired CP spectra. For some soils, a discrimination against alkyl carbon was also evident. The ability to derive correction factors to compensate for such discriminations will be assessed and presented.

  7. Quantitative H-1 NMR Analysis of Chemical Stabilities in Anion-Exchange Membranes

    SciTech Connect

    Nunez, SA; Hickner, MA

    2013-01-01

    We compared the alkaline stability of three classes of anion exchange membranes that are leading candidates for applications in platinum-free fuel cells. A methodology is presented for the study of chemical stability of anion-exchange polymers in alkaline media that provides clear and quantitative H-1 NMR spectroscopic data of dissolved polymers containing benzyltrimethylammonium functionalities. Recent studies have investigated the stabilities of benzimidazolium- and alkylimidazolium-bearing polymers using periodic H-1 NMR sampling. These studies included varying alkaline concentrations, external heating sources, and excessive processing and contained no internal standard for absolute measurements. Key aspects of our time-resolved H-1 NMR method include in situ heating and sampling within the spectrometer, fixed Stoichiometric relationships between the benzyltrimethylammonium functionalities of each polymer and potassium deuteroxide (KOD), and the incorporation of an internal standard for the absolute measurement of the polymer degradation. In addition, our method permits the identification of the degradation products to find the underlying cause of chemical lability. Our results demonstrate that a styrene-based polymer containing benzyltrimethylammonium functional groups is remarkably stable when exposed to 20 equivalents per cation of KOD at 80 degrees C with a half-life (t(1/2)) of 231 h. Under these standard conditions, functionalized poly(phenylene oxide) and poly(arylene ether sulfone) copolymers, both bearing benzyltrimethylammonium functionalities were found to degrade with a half-lives of 57.8 and 2.7 h, respectively.

  8. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons.

    PubMed

    Silva Elipe, Maria Victoria; Milburn, Robert R

    2016-06-01

    Monitoring chemical reactions is the key to controlling chemical processes where NMR can provide support. High-field NMR gives detailed structural information on chemical compounds and reactions; however, it is expensive and complex to operate. Conversely, low-field NMR instruments are simple and relatively inexpensive alternatives. While low-field NMR does not provide the detailed information as the high-field instruments as a result of their smaller chemical shift dispersion and the complex secondary coupling, it remains of practical value as a process analytical technology (PAT) tool and is complimentary to other established methods, such as ReactIR and Raman spectroscopy. We have tested a picoSpin-45 (currently under ThermoFisher Scientific) benchtop NMR instrument to monitor three types of reactions by 1D (1) H NMR: a Fischer esterification, a Suzuki cross-coupling, and the formation of an oxime. The Fischer esterification is a relatively simple reaction run at high concentration and served as proof of concept. The Suzuki coupling is an example of a more complex, commonly used reaction involving overlapping signals. Finally, the oxime formation involved a reaction in two phases that cannot be monitored by other PAT tools. Here, we discuss the pros and cons of monitoring these reactions at a low-field of 45 MHz by 1D (1) H NMR. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25616193

  9. NMR Hyperfine Shifts in Blue Copper Proteins: A Quantum Chemical Investigation

    PubMed Central

    Zhang, Yong; Oldfield, Eric

    2009-01-01

    We present the results of the first quantum chemical investigations of 1H NMR hyperfine shifts in the blue copper proteins (BCPs): amicyanin, azurin, pseudoazurin, plastocyanin, stellacyanin, and rusticyanin. We find that very large structural models that incorporate extensive hydrogen bond networks, as well as geometry optimization, are required to reproduce the experimental NMR hyperfine shift results, the best theory vs experiment predictions having R2 = 0.94, a slope = 1.01, and a SD = 40.5 ppm (or ~4.7% of the overall ~860 ppm shift range). We also find interesting correlations between the hyperfine shifts and the bond and ring critical point properties computed using atoms-in-molecules theory, in addition to finding that hyperfine shifts can be well-predicted by using an empirical model, based on the geometry-optimized structures, which in the future should be of use in structure refinement. PMID:18314973

  10. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments. PMID:26556218

  11. The 17O Excess of Stratospheric Nitrous Oxide in Mid-latitude Air

    NASA Astrophysics Data System (ADS)

    Ridley, A.; Kaiser, J.; Laube, J. C.

    2015-12-01

    Tropospheric nitrous oxide (N2O) has a 17O excess of (0.9±0.1) ‰ relative to Vienna Standard Mean Ocean Water (VSMOW). The origin of this 17O excess is under debate: tropospheric and stratospheric in-situ sources as well as isotope fractionation and isotope exchange during biological N2O production are all considered to make a contribution, as might the stratospheric photolysis sink. To constrain the relative contributions of the different processes and to improve our understanding of the underlying atmospheric chemical and microbial processes, more measurements are required. We have measured the 17O excess of stratospheric samples from mid-latitudes, from altitudes between 8 and 26 km. N2O was extracted cryogenically, separated from CO2 and CHF3 by a PoraPlotQ pre-column and then thermally decomposed in a gold furnace at 900 ºC. The precision for the 17O excess of a single 5 nmol N2O aliquot was ±0.3 ‰. This dataset significantly enhances the limited range of oxygen triple isotope measurements in mostly lower stratospheric samples reported by Cliff et al. (1999). The average 17O excess of the stratospheric samples analysed was (-0.19 ±0.46) ‰ relative to tropospheric N2O. Since the 17O excess of the first measurements of stratospheric air is not significantly different to that in tropospheric air, this data suggests that the 17O excess is not of stratospheric origin. This confirms the idea that the origin of the 17O excess is not due to either stratospheric photolysis or reaction with electronically excited oxygen atoms. It suggests that the origin of the 17O excess may therefore be related to tropospheric in situ sources, e.g. NH2+NO2 as proposed by Röckmann et al., 2001, or to microbial nitrogen conversion reactions as suggested by Kaiser and Röckmann, 2005.

  12. Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone.

    PubMed

    Arjunan, V; Devi, L; Subbalakshmi, R; Rani, T; Mohan, S

    2014-09-15

    The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO's, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated. PMID:24792193

  13. Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Devi, L.; Subbalakshmi, R.; Rani, T.; Mohan, S.

    2014-09-01

    The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G∗∗ and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO’s, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated.

  14. Dynamic processes and chemical composition of Lepidium sativum seeds determined by means of field-cycling NMR relaxometry and NMR spectroscopy.

    PubMed

    Rachocki, A; Latanowicz, L; Tritt-Goc, J

    2012-12-01

    Proton nuclear magnetic resonance (NMR) techniques, such as field-cycling relaxometry, wide-line NMR spectroscopy, and magic angle spinning NMR spectroscopy, were applied to study the seeds of cress, Lepidium sativum. Field-cycling NMR relaxometry was used for the first time to investigate the properties of the whole molecular system of dry cress seeds. This method not only allowed the dynamics to be studied, but was also successful in the differentiation among the solid (i.e., carbohydrates, proteins, or fats forming a solid form of lipids) and liquid-like (oil compounds) components of the seeds. The (1)H NMR relaxation dispersion of oils was interpreted as a superposition of intramolecular and intermolecular contributions. The intramolecular part was described in terms of a Lorentzian spectral density function, whereas a log-Gaussian distribution of correlation times was applied for the intermolecular dipole-dipole contribution. The models applied led to very good agreement with the experimental data and demonstrate that the contribution of the intermolecular relaxation to the overall relaxation should not be disregarded, especially at low frequencies. A power-law frequency dependence of the proton relaxation dispersion was used for the interpretation of the solid components. From the analysis of the (1)H wide-line NMR spectra of the liquid-like component of hydrated cress seeds, we can conclude that the contribution of oil protons should always be taken into account when evaluating the spin-lattice relaxation times values or measuring the moisture and oil content. The application of (1)H magic angle spinning NMR significantly improves resolution in the liquid-like spectrum of seeds and allows the determination of the chemical composition of cress seeds. PMID:23001307

  15. Subtle Chemical Shifts Explain the NMR Fingerprints of Oligomeric Proanthocyanidins with High Dentin Biomodification Potency.

    PubMed

    Nam, Joo-Won; Phansalkar, Rasika S; Lankin, David C; Bisson, Jonathan; McAlpine, James B; Leme, Ariene A; Vidal, Cristina M P; Ramirez, Benjamin; Niemitz, Matthias; Bedran-Russo, Ana; Chen, Shao-Nong; Pauli, Guido F

    2015-08-01

    The ability of certain oligomeric proanthocyanidins (OPACs) to enhance the biomechanical properties of dentin involves collagen cross-linking of the 1.3-4.5 nm wide space via protein-polyphenol interactions. A systematic interdisciplinary search for the bioactive principles of pine bark has yielded the trimeric PAC, ent-epicatechin-(4β→8)-epicatechin-(2β→O→7,4β→8)-catechin (3), representing the hitherto most potent single chemical entity capable of enhancing dentin stiffness. Building the case from two congeneric PAC dimers, a detailed structural analysis decoded the stereochemistry, spatial arrangement, and chemical properties of three dentin biomodifiers. Quantum-mechanics-driven (1)H iterative full spin analysis (QM-HiFSA) of NMR spectra distinguished previously unrecognized details such as higher order J coupling and provided valuable information about 3D structure. Detection and quantification of H/D-exchange effects by QM-HiFSA identified C-8 and C-6 as (re)active sites, explain preferences in biosynthetic linkage, and suggest their involvement in dentin cross-linking activity. Mapping of these molecular properties underscored the significance of high δ precision in both (1)H and (13)C NMR spectroscopy. Occurring at low- to subppb levels, these newly characterized chemical shift differences in ppb are small but diagnostic measures of dynamic processes inherent to the OPAC pharmacophores and can help augment our understanding of nanometer-scale intermolecular interactions in biomodified dentin macromolecules. PMID:26214362

  16. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.

    PubMed

    Shen, Yang; Bax, Ad

    2015-01-01

    Chemical shifts are obtained at the first stage of any protein structural study by NMR spectroscopy. Chemical shifts are known to be impacted by a wide range of structural factors, and the artificial neural network based TALOS-N program has been trained to extract backbone and side-chain torsion angles from (1)H, (15)N, and (13)C shifts. The program is quite robust and typically yields backbone torsion angles for more than 90 % of the residues and side-chain χ 1 rotamer information for about half of these, in addition to reliably predicting secondary structure. The use of TALOS-N is illustrated for the protein DinI, and torsion angles obtained by TALOS-N analysis from the measured chemical shifts of its backbone and (13)C(β) nuclei are compared to those seen in a prior, experimentally determined structure. The program is also particularly useful for generating torsion angle restraints, which then can be used during standard NMR protein structure calculations. PMID:25502373

  17. Chemical shift changes and line narrowing in 13C NMR spectra of hydrocarbon clathrate hydrates.

    PubMed

    Kida, Masato; Sakagami, Hirotoshi; Takahashi, Nobuo; Nagao, Jiro

    2013-05-23

    The solid-state (13)C NMR spectra of various guest hydrocarbons (methane, ethane, propane, adamantane) in clathrate hydrates were measured to elucidate the local structural environments around hydrocarbon molecules isolated in guest-host frameworks of clathrate hydrates. The results show that, depending on the cage environment, the trends in the (13)C chemical shift and line width change as a function of temperature. Shielding around the carbons of the guest normal alkanes in looser cage environments tends to decrease with increasing temperature, whereas shielding in tighter cage environments tends to increase continuously with increasing temperature. Furthermore, the (13)C NMR line widths suggest, because of the reorientation of the guest alkanes, that the local structures in structure II are more averaged than those in structure I. The differences between structures I and II tend to be very large in the lower temperature range examined in this study. The (13)C NMR spectra of adamantane guest molecules in structure H hydrate show that the local structures around adamantane guests trapped in structure H hydrate cages are averaged at the same level as in the α phase of solid adamantane. PMID:23607335

  18. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Vacchi, Isabella A.; Spinato, Cinzia; Raya, Jésus; Bianco, Alberto; Ménard-Moyon, Cécilia

    2016-07-01

    Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by amidation. We also prove that there is a negligible amount of carboxylic acid groups in two GO samples obtained by a different synthesis process, hence eliminating the possibility of amidation reactions with amine derivatives. This work brings additional insights into the chemical reactivity of GO, which is fundamental to control its functionalization, and highlights the major role of MAS NMR spectroscopy for a comprehensive characterization of derivatized GO.Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by

  19. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents.

    PubMed

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  20. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  1. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR.

    PubMed

    Vacchi, Isabella A; Spinato, Cinzia; Raya, Jésus; Bianco, Alberto; Ménard-Moyon, Cécilia

    2016-07-14

    Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by amidation. We also prove that there is a negligible amount of carboxylic acid groups in two GO samples obtained by a different synthesis process, hence eliminating the possibility of amidation reactions with amine derivatives. This work brings additional insights into the chemical reactivity of GO, which is fundamental to control its functionalization, and highlights the major role of MAS NMR spectroscopy for a comprehensive characterization of derivatized GO. PMID:27411370

  2. Relativistic environmental effects in (29)Si NMR chemical shifts of halosilanes: light nucleus, heavy environment.

    PubMed

    Fedorov, Sergey V; Rusakov, Yury Yu; Krivdin, Leonid B

    2015-06-01

    Relativistic calculations of (29)Si NMR shielding constants (chemical shifts) in the series of halosilanes SiX(n)H(4-n) (X = F, Cl, Br and I) are performed within a full four-component relativistic Dirac's scheme using relativistic Dyall's basis sets. Three different theoretical levels are tested in the computation of (29)Si NMR chemical shifts in comparison with experiment: namely, four-component relativistic GIAO-DFT, four-component relativistic GIAO-RPA, and a hybrid scheme of a nonrelativistic GIAO-MP2 with taking into account relativistic corrections using the four-component relativistic GIAO-RPA. The DFT results give larger relativistic effects as compared to the RPA data which might be rationalized in terms of the manifestation of correlation effects taken into account at the DFT level and not accounted for at the uncorrelated RPA level. Taking into account solvent effects slightly improves agreement with experiment, however, being not a matter of principle. Generally, relativistic pure nonempirical wave function methods perform much better as compared to relativistic DFT methods when benchmarked to experiment. PMID:25946056

  3. High-sensitivity chemical derivatization NMR analysis for condition monitoring of aged elastomers.

    SciTech Connect

    Assink, Roger Alan; Celina, Mathias Christopher; Skutnik, Julie Michelle

    2004-06-01

    An aged polybutadiene-based elastomer was reacted with trifluoroacetic anhydride (TFAA) and subsequently analyzed via 19F NMR spectroscopy. Derivatization between the TFAA and hydroxyl functionalities produced during thermo-oxidative aging was achieved, resulting in the formation of trifluoroester groups on the polymer. Primary and secondary alcohols were confirmed to be the main oxidation products of this material, and the total percent oxidation correlated with data obtained from oxidation rate measurements. The chemical derivatization appears to be highly sensitive and can be used to establish the presence and identity of oxidation products in aged polymeric materials. This methodology represents a novel condition monitoring approach for the detection of chemical changes that are otherwise difficult to analyze.

  4. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1

    PubMed Central

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in

  5. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  6. Ab initio and DFT study of 31P-NMR chemical shifts of sphingomyelin and dihydrosphingomyelin lipid molecule

    NASA Astrophysics Data System (ADS)

    Sugimori, K.; Kawabe, H.; Nagao, H.; Nishikawa, K.

    One of the phospholipids, sphingomyelin (SM, N-acyl-sphingosine-1-phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+-coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P-Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR-gauge invariant atomic orbitals (NMR-GIAO) calculations. The experimental 31P-NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P-NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference.

  7. Direct observation of ¹⁷O-¹⁸⁵/¹⁸⁷Re ¹J-coupling in perrhenates by solid-state ¹⁷O VT MAS NMR: temperature and self-decoupling effects.

    PubMed

    Jakobsen, Hans J; Bildsøe, Henrik; Brorson, Michael; Gan, Zhehong; Hung, Ivan

    2013-05-01

    (17)O MAS NMR spectra recorded at 14.1T and room temperature (RT) for (17)O-enriched samples of the two perrhenates, KReO4 and NH4ReO4, exhibit very similar overall appearances of the manifold of spinning sidebands (ssbs) for the satellite transitions (STs) and the central transition (CT). These overall appearances of the spectra are easily simulated in terms of the usual quadrupole coupling and chemical shift interaction parameters. However, a detailed inspection of the line shapes for the individual ssbs of the STs and, in particular, for the CT in the spectrum of KReO4 reveals line-shape features, which to our knowledge have not before been observed experimentally in 1D MAS NMR spectra for any quadrupolar nucleus, nor emerged from simulations for any combination of second-order quadrupolar interaction and chemical shift anisotropy. In contrast, such line-shape features are not observed for the corresponding ssbs (STs and CT) in the 14.1T RT (17)O MAS NMR spectrum of NH4ReO4. Considering the additional interaction of a combination of residual heteronuclear (17)O-(185/)(187)Re dipolar and scalar J coupling between this spin pair of two quadrupolar nuclei, spectral simulations for KReO4 show that these interactions are able to account for the observed line shapes, although the expected (1)J((17)O-(185/)(187)Re) six-line spin-spin splittings are not resolved. Low-temperature, high-field (21.1T) (17)O VT MAS NMR spectra of both KReO4 and NH4ReO4 show that full resolution into six-line multiplets for the centerbands are achieved at -90°C and -138°C, respectively. This allows determination of (1)J((17)O-(187)Re)=-268Hz and -278Hz for KReO4 and NH4ReO4, respectively, i.e., an isotropic (1)J coupling and its sign between two quadrupolar nuclei, observed for the first time directly from solid-state one-pulse 1D MAS NMR spectra, without resort to additional 1D or 2D experiments. Determination of T1((187)Re) spin-lattice relaxation times, observed indirectly through a 2D

  8. 2D NMR Barcoding and Differential Analysis of Complex Mixtures for Chemical Identification: The Actaea Triterpenes

    PubMed Central

    2015-01-01

    The interpretation of NMR spectroscopic information for structure elucidation involves decoding of complex resonance patterns that contain valuable molecular information (δ and J), which is not readily accessible otherwise. We introduce a new concept of 2D-NMR barcoding that uses clusters of fingerprint signals and their spatial relationships in the δ−δ coordinate space to facilitate the chemical identification of complex mixtures. Similar to widely used general barcoding technology, the structural information of individual compounds is encoded as a specifics pattern of their C,H correlation signals. Software-based recognition of these patterns enables the structural identification of the compounds and their discrimination in mixtures. Using the triterpenes from various Actaea (syn. Cimicifuga) species as a test case, heteronuclear multiple-bond correlation (HMBC) barcodes were generated on the basis of their structural subtypes from a statistical investigation of their δH and δC data in the literature. These reference barcodes allowed in silico identification of known triterpenes in enriched fractions obtained from an extract of A. racemosa (black cohosh). After dereplication, a differential analysis of heteronuclear single-quantum correlation (HSQC) spectra even allowed for the discovery of a new triterpene. The 2D barcoding concept has potential application in a natural product discovery project, allowing for the rapid dereplication of known compounds and as a tool in the search for structural novelty within compound classes with established barcodes. PMID:24673652

  9. 2D NMR barcoding and differential analysis of complex mixtures for chemical identification: the Actaea triterpenes.

    PubMed

    Qiu, Feng; McAlpine, James B; Lankin, David C; Burton, Ian; Karakach, Tobias; Chen, Shao-Nong; Pauli, Guido F

    2014-04-15

    The interpretation of NMR spectroscopic information for structure elucidation involves decoding of complex resonance patterns that contain valuable molecular information (δ and J), which is not readily accessible otherwise. We introduce a new concept of 2D-NMR barcoding that uses clusters of fingerprint signals and their spatial relationships in the δ-δ coordinate space to facilitate the chemical identification of complex mixtures. Similar to widely used general barcoding technology, the structural information of individual compounds is encoded as a specifics pattern of their C,H correlation signals. Software-based recognition of these patterns enables the structural identification of the compounds and their discrimination in mixtures. Using the triterpenes from various Actaea (syn. Cimicifuga) species as a test case, heteronuclear multiple-bond correlation (HMBC) barcodes were generated on the basis of their structural subtypes from a statistical investigation of their δH and δC data in the literature. These reference barcodes allowed in silico identification of known triterpenes in enriched fractions obtained from an extract of A. racemosa (black cohosh). After dereplication, a differential analysis of heteronuclear single-quantum correlation (HSQC) spectra even allowed for the discovery of a new triterpene. The 2D barcoding concept has potential application in a natural product discovery project, allowing for the rapid dereplication of known compounds and as a tool in the search for structural novelty within compound classes with established barcodes. PMID:24673652

  10. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-01

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data.

  11. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    PubMed

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-01

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data. PMID:25736185

  12. Correlation of Chemical Bond Directions and Functional Group Orientations in Solids by Two-Dimensional NMR

    NASA Astrophysics Data System (ADS)

    Weliky, D. P.; Dabbagh, G.; Tycko, R.

    We describe a new two-dimensional NMR technique for structural studies of polycrystalline and noncrystalline solids. The technique is a variant of 2D exchange spectroscopy applicable to organic molecules, macromolecules, or molecular complexes that are doubly 13C-labeled at a specific carboncarbon bond and singly 13C labeled at a specific functional group. A Carr-Purcell sequence is used to obtain dipolar spectra in the t1 dimension. Spectra in the t2 dimension are determined primarily by the chemical-shift anisotropy. With spin diffusion among the labeled sites between the t1 and t2 periods, the resulting 2D spectra reveal correlations between the direction of the labeled bond and the orientation of the labeled functional group. Experimental spectra of two polycrystalline model compounds, dimethyl succinate and diammonium succinate, are presented and compared with simulations to illustrate the structural information contained in the 2D spectra.

  13. Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive atmospheric species

    NASA Astrophysics Data System (ADS)

    Morin, S.; Sander, R.; Savarino, J.

    2010-12-01

    The isotope anomaly (Δ17O) of secondary atmospheric species such as nitrate (NO3-) or hydrogen peroxyde (H2O2) has potential to provide useful constrains on their formation pathways. Indeed, the Δ17O of their precursors (NOx, HOx etc.) differs and depends on their interactions with ozone, which is the main source of non-zero Δ17O in the atmosphere. Interpreting variations of Δ17O in secondary species requires an in-depth understanding of the Δ17O of their precursors taking into account non-linear chemical regimes operating under various environmental settings. We present results from numerical simulations carried out using the atmospheric chemistry box model (CAABA/MECCA) to explicitly compute the diurnal variations of the isotope anomaly of short-lived species such as NOx and HOx. Δ17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2) according to the classical mass-balance equation, through the implementation of various sets of hypotheses pertaining to the transfer of Δ17O during chemical reactions. The model confirms that diurnal variations in Δ17O of NOx are well predicted by the photochemical steady-state relationship during the day, but that at night a different approach must be employed (i.e. "fossilization" of the Δ17O of NOx as soon as the photolytical lifetime of NOx drops below ca. 5 min). We quantify the diurnally-integrated isotopic signature (DIIS) of sources of atmospheric nitrate and H2O2 under the various environmental conditions analyzed, which is of particular relevance to larger-scale implementations of Δ17O where high computational costs cannot be afforded.

  14. Modeling proteins using a super-secondary structure library and NMR chemical shift information

    PubMed Central

    Menon, Vilas; Vallat, Brinda; Dybas, Joseph M.; Fiser, Andras

    2013-01-01

    Summary A remaining challenge in protein modeling is to predict structures for sequences that do not share recognizable sequence similarity to any experimentally solved structure. This challenge can be addressed by hybrid algorithms that utilize easily obtainable experimental data and carry a limited amount of indirect structural information. Based on earlier observations, the library of protein super-secondary structure motifs (Smotifs) saturated about a decade ago, and new folds discovered since then are novel combinations of existing Smotifs. This observation suggests that it should be possible to build any structure, of either a known or yet to be discovered fold, from a combination of existing Smotifs derived from already known structures. In the absence of any sequence similarity signal, limited experimental data can be used to relate the backbone conformations of Smotifs between target proteins and known experimental structures. Here we present a modeling algorithm that relies on an exhaustive Smotif library and on NMR chemical shift patterns without any input of primary sequence information. In a test of 102 proteins with unique folds, the algorithm delivered 90 homology model quality models, among them 24 high quality ones, and a topologically correct solution for almost all cases. Detailed analysis of the method’s performance suggests that further improvement can be achieved by improving sampling algorithms and developing more precise tools that predict dihedral angle preferences from chemical shift assignments. The current approach opens a venue to address the modeling of larger protein structures for which chemical shifts are available. PMID:23685209

  15. Are nucleus-independent (NICS) and 1H NMR chemical shifts good indicators of aromaticity in π-stacked polyfluorenes?

    NASA Astrophysics Data System (ADS)

    Osuna, Sílvia; Poater, Jordi; Bofill, Josep M.; Alemany, Pere; Solà, Miquel

    2006-09-01

    We have analyzed the change of local aromaticity in a series of polyfluorene compounds with the increase of the number of π-stacked layers. The local aromaticity of the aromatic and non-aromatic rings of polyfluorenes remains unchanged when going from one to four layers of π-stacked rings according to HOMA, PDI, and FLU aromaticity descriptors. On the contrary, experimental 1H NMR chemical shifts indicate a reduction of the aromaticity of π-stacked rings with the increase of the number of layers. Calculated NICS also show a change of aromaticity, but opposite to the tendency given by the 1H NMR chemical shifts. We show that this increase (decrease) of local aromaticity in superimposed aromatic rings indicated by NICS ( 1H NMR) is not real but the result of the coupling between the magnetic fields generated by the π-stacked rings.

  16. NMR studies on the chemical alteration of soil organic matter precursors during controlled charring

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2010-05-01

    Beside the production of volatiles, vegetation fire transforms various amounts of labile organic components into recalcitrant dark colored and highly aromatic structures. They are incorporated into soils and are assumed to represent an important sink within the global carbon cycle. In order to elucidate the real importance of PyOM as a C-sink, a good understanding of its chemistry is crucial. Although several 'Black Carbon' (BC) models are reported, a commonly accepted view of the chemistry involved in its formation is still missing. Its biogeochemical recalcitrance is commonly associated with a highly condensed aromatic structure. However, recent studies indicated that this view may be oversimplified for PyOM derived from vegetation fire. In order to bring some more light on the structural properties of PyOM produced during vegetation fire, charred plant residues and model chars derived from typical plant macromolecules (casein, cellulose, lignin and condensed tannins) were subjected to controlled charring under oxic conditions (350°C and 450°C) and then characterized by nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. Subsequently, the chemical features of the PyOM were related to its chemical recalcitrance as determined by chemical oxidation with acid potassium dichromate. Charring cellulose (350°C, 8 min) yielded in a low C-recovery (11%). Treating casein in the same way resulted in a survival of 62% of its C and 46% of its N. Comparable high C-recoveries are reported for lignin. After charring Lolium perenne, 34% of its N and C were recovered. NMR-spectroscopic studies revealed that for this sample most of the charred N and C occurred in pyrrole-type structures. Our studies further indicate that the aromatic skeleton of char accumulating after a vegetation fire must contain remains of the lignin backbone and considerable contributions of furans and anhydrosugars from thermally altered cellulose. Enhancing the temperature during the

  17. Mechanism of Spin-Orbit Effects on the Ligand NMR Chemical Shift in Transition-Metal Complexes: Linking NMR to EPR.

    PubMed

    Vícha, Jan; Straka, Michal; Munzarová, Markéta L; Marek, Radek

    2014-04-01

    Relativistic effects play an essential role in understanding the nuclear magnetic resonance (NMR) chemical shifts in heavy-atom compounds. Particularly interesting from the chemical point of view are the relativistic effects due to heavy atom (HA) on the NMR chemical shifts of the nearby light atoms (LA), referred to as the HALA effects. The effect of Spin-Orbit (SO) interaction originating from HA on the nuclear magnetic shielding at a neighboring LA, σ(SO), is explored here in detail for a series of d(6) complexes of iridium. Unlike the previous findings, the trends in σ(SO) observed in this study can be fully explained neither in terms of the s-character of the HA-LA bonding nor by trends in the energy differences between occupied and virtual molecular orbitals (MOs). Rather, the σ(SO) contribution to the total NMR shielding is found to be modulated by the d-orbital participation of the heavy atom (Ir) in the occupied and virtual spin-orbit active MOs, i.e., those which contribute significantly to the σ(SO). The correlation between the d-character of σ(SO)-active MOs and the size of the corresponding SO contribution to the nuclear magnetic shielding constant at LA is so tight that the magnitude of σ(SO) can be predicted in a given class of compounds on the basis of d-orbital character of relevant MO with relative error smaller than 15%. This correspondence is supported by an analogy between the perturbation theory expressions for the spin-orbit induced NMR σ-tensor and those for the EPR g-tensor as well as the A-tensor of the ligand. This correlation is demonstrated on a series of d(5) complexes of iridium. Thus, known qualitative relationships between electronic structure and EPR parameters can be newly applied to reproduce, predict, and understand the SO-induced contributions to NMR shielding constants of light atoms in heavy-atom compounds. PMID:26580365

  18. Dynamic Nuclear Polarization of 17O: Direct Polarization

    PubMed Central

    Michaelis, Vladimir K.; Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2014-01-01

    Dynamic nuclear polarization of 17O was studied using four different polarizing agents – the biradical TOTAPOL, and the monoradicals trityl and SA-BDPA, as well as a mixture of the latter two. Field profiles, DNP mechanisms and enhancements were measured to better understand and optimize directly polarizing this low-gamma quadrupolar nucleus using both mono- and bi-radical polarizing agents. Enhancements were recorded < 88 K and were > 100 using the trityl (OX063) radical and < 10 with the other polarizing agents. The > 10,000 fold savings in acquisition time enabled a series of biologically relevant small molecules to be studied with small sample sizes and the measurement of various quadrupolar parameters. The results are discussed with comparison to room temperature studies and GIPAW quantum chemical calculations. These experimental results illustrate the strength of high field DNP and the importance of radical selection for studying low-gamma nuclei. PMID:24195759

  19. Measurments and Modeling of Δ 17O Vatiations in Atmospheric Nitrate

    NASA Astrophysics Data System (ADS)

    Michalski, G. M.; Thiemens, M. H.

    2002-12-01

    The estimated doubling of HNO3 production in the atmosphere in the next 50 years is important from both an ecological and an atmospheric chemistry perspective. The removal of NO-{3 atm} (HNO3 + aerosol nitrate) by dry and wet deposition can initiate serious environmental consequences including soil acidification, forest decline, the alteration of native plant diversity, and the promotion of eutrophication and toxic algae blooms in coastal waters. A reliable, quantitative, tracer of NO-{3 atm} deposition, particularly in regions with multiple nitrate sources and heavy nitrogen cycling is still lacking. In the atmosphere, HNO3 production is the primary sink for NOx, which via direct and catalytic production of ozone regulates the oxidative capacity of the troposphere. The impact heterogeneous versus homogenous HNO3 production exert on global O3 and OH steady state concentrations has also been demonstrated in Global 3-D chemical models. Yet, the extent that anthroprogenic activities have impacted heterogeneous and homogenous production, and how these pathways varied on ancient time scales is also unknown. Nitrate aerosols were collected in La Jolla, Ca. for a one-year period and their oxygen isotopic composition were analyzed (δ 18O and δ 17O). A large Δ 17O17O = δ 17O - 0.515 δ 18O ) was observed and this isotopic signature exhibited a strong seasonal amplitude. The variability in Δ 17O is attributed to variability in HOx and O3 oxidation rates and the seasonal variation of homogeneous versus heterogeneous nitric acid formation reactions. An isotopic model coupled to a photochemical box model reproduced the observed Δ 17O with good precision. Implications for the use of Δ 17O in nitrate as an investigative tool for NOx related chemistry in both present day atmosphere and in ancient atmospheres is discussed. The magnitude of the Δ 17O signature also has implications as a tracer of atmospheric nitrogen deposition. Both the increased detection sensitivity

  20. Cigarette Butt Decomposition and Associated Chemical Changes Assessed by 13C CPMAS NMR

    PubMed Central

    Bonanomi, Giuliano; Incerti, Guido; Cesarano, Gaspare; Gaglione, Salvatore A.; Lanzotti, Virginia

    2015-01-01

    Cigarette butts (CBs) are the most common type of litter on earth, with an estimated 4.5 trillion discarded annually. Apart from being unsightly, CBs pose a serious threat to living organisms and ecosystem health when discarded in the environment because they are toxic to microbes, insects, fish and mammals. In spite of the CB toxic hazard, no studies have addressed the effects of environmental conditions on CB decomposition rate. In this study we investigate the interactive effects of substrate fertility and N transfer dynamics on CB decomposition rate and carbon quality changes. We carried out an experiment using smoked CBs and wood sticks, used as a slow decomposing standard organic substrate, incubated in both laboratory and field conditions for two years. CB carbon quality changes during decomposition was assessed by 13C CPMAS NMR. Our experiment confirmed the low degradation rate of CBs which, on average, lost only 37.8% of their initial mass after two years of decomposition. Although a net N transfer occurred from soil to CBs, contrary to our hypothesis, mass loss in the medium-term (two years) was unaffected by N availability in the surrounding substrate. The opposite held for wood sticks, in agreement with the model that N-rich substrates promote the decomposition of other N-poor natural organic materials with a high C/N ratio. As regards CB chemical quality, after two years of decomposition 13C NMR spectroscopy highlighted very small changes in C quality that are likely to reflect a limited microbial attack. PMID:25625643

  1. Cigarette butt decomposition and associated chemical changes assessed by 13C CPMAS NMR.

    PubMed

    Bonanomi, Giuliano; Incerti, Guido; Cesarano, Gaspare; Gaglione, Salvatore A; Lanzotti, Virginia

    2015-01-01

    Cigarette butts (CBs) are the most common type of litter on earth, with an estimated 4.5 trillion discarded annually. Apart from being unsightly, CBs pose a serious threat to living organisms and ecosystem health when discarded in the environment because they are toxic to microbes, insects, fish and mammals. In spite of the CB toxic hazard, no studies have addressed the effects of environmental conditions on CB decomposition rate. In this study we investigate the interactive effects of substrate fertility and N transfer dynamics on CB decomposition rate and carbon quality changes. We carried out an experiment using smoked CBs and wood sticks, used as a slow decomposing standard organic substrate, incubated in both laboratory and field conditions for two years. CB carbon quality changes during decomposition was assessed by 13C CPMAS NMR. Our experiment confirmed the low degradation rate of CBs which, on average, lost only 37.8% of their initial mass after two years of decomposition. Although a net N transfer occurred from soil to CBs, contrary to our hypothesis, mass loss in the medium-term (two years) was unaffected by N availability in the surrounding substrate. The opposite held for wood sticks, in agreement with the model that N-rich substrates promote the decomposition of other N-poor natural organic materials with a high C/N ratio. As regards CB chemical quality, after two years of decomposition 13C NMR spectroscopy highlighted very small changes in C quality that are likely to reflect a limited microbial attack. PMID:25625643

  2. Density-functional computation of ⁹³Nb NMR chemical shifts.

    PubMed

    Bühl, Michael; Wrackmeyer, Bernd

    2010-12-01

    93Nb chemical shifts of [NbX6](-) (X = Cl, F, CO), [NbXCl4](-) (X = O, S), Nb2(OMe)10, Cp*2Nb(κ2-BH4), (Cp*Nb)2(µ-B2H6)2, CpNb(CO)4, and Cp2NbH3 are computed at the GIAO (gauge-including atomic orbitals)-, BPW91- and B3LYP-, and CSGT (continuous set of gauge transformations)-CAM-B3LYP, -ωB97, and -ωB97X levels, using BP86-optimized or experimental (X-ray) geometries. Experimental chemical shifts are best reproduced at the GIAO-BPW91 level when δ(93Nb) values of inorganic complexes are referenced directly relative to [NbCl6](-) and those of organometallic species are first calculated relative to [Nb(CO)6](-). An inadvertent error in the reported δ(93Nb) values of cyclopentadiene borane complexes (H. Brunner et al., J. Organomet. Chem.1992, 436, 313) is corrected. Trends in the observed 93Nb NMR linewidths for anionic niobates [Nb(CO)5](3-), [Nb(CO)5H](2-), and [Nb(CO)5(NH3)](-) are rationalized in terms of computed electric field gradients at the metal. PMID:20552575

  3. Chemical curing in alkyd paints: An evaluation via FT-IR and NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Bartolozzi, G.; Marchiafava, V.; Mirabello, V.; Peruzzini, M.; Picollo, M.

    2014-01-01

    A study aimed at determining the time necessary for an alkyd paint to attain chemical curing is presented. In particular, the object of our investigation was an oil paint made by Winsor & Newton, namely French ultramarine (PB29) in the Griffin Alkyd “fast drying oil colour” series. Using this paint, we prepared several mock-ups on glass. These were left in the laboratory at room temperature in a piece of furniture with glass doors for a total of 70 days. Samples were taken at different times, and the changes in their composition were monitored by means of FT-IR and multinuclear NMR spectroscopic analyses. Since the cross-linking reactions involved in the formation of the pictorial film mainly affect the amount of carbon-carbon double bonds, we monitored the decrease in allyl, diallyl and vinyl protons and carbons. The data obtained from the use of both techniques led us to conclude that, in our particular experimental conditions, the chemical curing of the paint layer is reached within the first 70 days, thus establishing the beginning of the ageing phenomena.

  4. Oxygen isotope dynamics of atmospheric nitrate over the Antarctic plateau: First combined measurements of ozone and nitrate 17O-excess (Δ17O)

    NASA Astrophysics Data System (ADS)

    Vicars, William; Savarino, Joël; Erbland, Joseph; Preunkert, Susanne; Jourdain, Bruno; Frey, Markus; Gil, Jaime; Legrand, Michel

    2013-04-01

    Variations in the isotopic composition of atmospheric nitrate (NO3-) provide novel indicators for important processes in boundary layer chemistry, often acting as source markers for reactive nitrogen (NOx = NO + NO2) and providing both qualitative and quantitative constraints on the pathways that determine its fate. Stable isotope ratios of nitrate (δ15N, δ17O, δ18O) offer direct insight into the nature and magnitude of the fluxes associated with different processes, thus providing unique information regarding phenomena that are often difficult to quantify from concentration measurements alone. The unique and distinctive 17O-excess (Δ17O = δ17O - 0.52 × δ18O ) of ozone (O3), which is transferred to NOx via oxidation reactions in the atmosphere, has been found to be a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O-excess within the NOx cycle is critical in polar areas where there exists the possibility of extending atmospheric interpretations to the glacial/interglacial time scale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C, Antarctica during December 2011 to January 2012. Sampling was conducted within the framework of the OPALE (Oxidant Production over Antarctic Land and its Export) project, thus providing an opportunity to combine our isotopic observations with a wealth of meteorological and chemical data, including in-situ concentration measurements of the gas-phase precursors involved in nitrate production (NOx, O3, OH, HO2, etc.). Furthermore, nitrate isotope analysis has been combined in this study for the first time with parallel observations of the transferrable Δ17O of surface ozone, which was measured concurrently at Dome C using our recently developed analytical approach. This unique dataset has allowed for a direct comparison of observed Δ17O(NO3-) values to those that are

  5. Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2012-10-01

    13C and 15N chemical shift (CS) interaction is a sensitive probe of structure and dynamics in a wide variety of biological and inorganic systems, and in the recent years several magic angle spinning NMR approaches have emerged for residue-specific measurements of chemical shift anisotropy (CSA) tensors in uniformly and sparsely enriched proteins. All of the currently existing methods are applicable to slow and moderate magic angle spinning (MAS) regime, i.e., MAS frequencies below 20 kHz. With the advent of fast and ultrafast MAS probes capable of spinning frequencies of 40-100 kHz, and with the superior resolution and sensitivity attained at such high frequencies, development of CSA recoupling techniques working under such conditions is necessary. In this work, we present a family of R-symmetry based pulse sequences for recoupling of 13C/15N CSA interactions that work well in both natural abundance and isotopically enriched systems. We demonstrate that efficient recoupling of either first-rank (σ1) or second-rank (σ2) spatial components of CSA interaction is attained with appropriately chosen γ-encoded RNnv symmetry sequences. The advantage of these γ-encoded RNnv-symmetry based CSA (RNCSA) recoupling schemes is that they are suitable for CSA recoupling under a wide range of MAS frequencies, including fast MAS regime. Comprehensive analysis of the recoupling properties of these RNnv symmetry sequences reveals that the σ1-CSA recoupling symmetry sequences exhibit large scaling factors; however, the partial homonuclear dipolar Hamiltonian components are symmetry allowed, which makes this family of sequences suitable for CSA measurements in systems with weak homonuclear dipolar interactions. On the other hand, the γ-encoded symmetry sequences for σ2-CSA recoupling have smaller scaling factors but they efficiently suppress the homonuclear dipole-dipole interactions. Therefore, the latter family of sequences is applicable for measurements of CSA parameters in

  6. Chemical structure and intra-molecular effects on NMR-NQR tensors of harmine and harmaline alkaloids

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tahan, Arezoo; Talebi Tari, Mostafa

    2016-02-01

    Density functional theory (DFT) methods were used to analyze the effects of molecular structure and ring currents on the NMR chemical shielding tensors and NQR frequencies of harmine and harmaline alkaloids in the gas phase. The results demonstrated that NMR tensors and NQR frequencies of 15N nuclei in these compounds depend on chemical environment and resonance interactions. Hence, their values are obviously different in the mentioned structures. The interpretation of natural bond orbital (NBO) data suggests that in harmine structure, the lone pair participation of N9 in π-system electron clouds causes to development of aromaticity nature in pyrrole ring. However, the chemical shielding around N9 atom in harmine structure is higher than in harmaline, while in harmaline structure, lone pair participation of N2 in π-system electron clouds causes to development of aromaticity nature in pyridine ring. Hence, chemical shielding around N2 atom in harmaline structure is higher than in harmine. It can be deduced that by increasing lone pair electrons contribution of nitrogen atoms in ring resonance interactions and aromaticity development, the values of NMR chemical shielding around them increase, while χ and q zz values of these nuclei decrease.

  7. 125Te NMR chemical-shift trends in PbTe–GeTe and PbTe–SnTe alloys

    SciTech Connect

    Njegic, Bosiljka; Levin, Evgenii M.; Schmidt-Rohr, Klaus

    2013-10-08

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in 125Te NMR chemical shift due to bonding to dopant or “solute” atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the 125Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS 125Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the 125Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  8. On the Δ17O budget of atmospheric O2

    NASA Astrophysics Data System (ADS)

    Young, Edward D.; Yeung, Laurence Y.; Kohl, Issaku E.

    2014-06-01

    We modeled the Δ17O of atmospheric O2 using 27 ordinary differential equations comprising a box model composed of the stratosphere, troposphere, geosphere, hydrosphere and biosphere. Results show that 57% of the deficit in 17O in O2 relative to a reference water fractionation line is the result of kinetic isotope fractionation attending the Dole effect, 33% balances the positive Δ17O of O(1D) in the stratosphere, and 10% is from evapotranspiration. The predicted Δ‧17O O2 relative to waters is -0.410‰ as measured at the δ18O of air. The value for Δ‧17O O2 varies at fixed δ18O with the concentration of atmospheric CO2, gross primary production, and net primary production as well as with reaction rates in the stratosphere. Our model prediction is consistent with our measurements of the oxygen isotopic composition of air O2 compared with rocks if rocks define a fractionation line with an intercept in δ‧17O = 103ln(δ17O/103 + 1) vs. δ‧18O = 103ln(δ18O/103 + 1) space less than SMOW but more positive than some recent measurements imply. The predicted Δ17O is less negative than that obtained from recent measurements of O2 directly against SMOW. Underestimation of Δ‧17O O2 can only be ameliorated if the integrated (bulk) Δ‧17O for stratospheric CO2 is significantly greater than measurements currently allow. Our results underscore the need for high-precision comparisons of the 17O/16O and 18O/16O ratios of atmospheric O2, VSMOW, and rocks.

  9. Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR

    PubMed Central

    Bai, Yubin; Wang, Yanfei; Goulian, Mark; Driks, Adam

    2014-01-01

    Previously, we reported hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR techniques for the ultrasensitive (i.e., 1 picomolar) detection of xenon host molecules known as cryptophane. Here, we demonstrate a more general role for Hyper-CEST NMR as a spectroscopic method for probing nanoporous structures, without the requirement for cryptophane or engineered xenon-binding sites. Hyper-CEST 129Xe NMR spectroscopy was employed to detect Bacillus anthracis and Bacillus subtilis spores in solution, and interrogate the layers that comprise their structures. 129Xe-spore samples were selectively irradiated with radiofrequency pulses; the depolarized 129Xe returned to aqueous solution and depleted the 129Xe-water signal, providing measurable contrast. Removal of the outermost spore layers in B. anthracis and B. subtilis (the exosporium and coat, respectively) enhanced 129Xe exchange with the spore interior. Notably, the spores were invisible to hyperpolarized 129Xe NMR direct detection methods, highlighting the lack of high-affinity xenon-binding sites, and the potential for extending Hyper-CEST NMR structural analysis to other biological and synthetic nanoporous structures. PMID:25089181

  10. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules

    SciTech Connect

    Martin, Bob; Autschbach, Jochen

    2015-02-07

    Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T{sup 2}, which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ≥ 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (Δg = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of Δg = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When Δg is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/T{sup n} with n = 2 and higher.

  11. Experimental Determination of pK[subscript a] Values by Use of NMR Chemical Shifts, Revisited

    ERIC Educational Resources Information Center

    Gift, Alan D.; Stewart, Sarah M.; Bokashanga, Patrick Kwete

    2012-01-01

    This laboratory experiment, using proton NMR spectroscopy to determine the dissociation constant for heterocyclic bases, has been modified from a previously described experiment. A solution of a substituted pyridine is prepared using deuterium oxide (D[subscript 2]O) as the solvent. The pH of the solution is adjusted and proton NMR spectra are…

  12. Comprehensive signal assignment of 13C-labeled lignocellulose using multidimensional solution NMR and 13C chemical shift comparison with solid-state NMR.

    PubMed

    Komatsu, Takanori; Kikuchi, Jun

    2013-09-17

    A multidimensional solution NMR method has been developed using various pulse programs including HCCH-COSY and (13)C-HSQC-NOESY for the structural characterization of commercially available (13)C labeled lignocellulose from potatoes (Solanum tuberosum L.), chicory (Cichorium intybus), and corn (Zea mays). This new method allowed for 119 of the signals in the (13)C-HSQC spectrum of lignocelluloses to be assigned and was successfully used to characterize the structures of lignocellulose samples from three plants in terms of their xylan and xyloglucan structures, which are the major hemicelluloses in angiosperm. Furthermore, this new method provided greater insight into fine structures of lignin by providing a high resolution to the aromatic signals of the β-aryl ether and resinol moieties, as well as the diastereomeric signals of the β-aryl ether. Finally, the (13)C chemical shifts assigned in this study were compared with those from solid-state NMR and indicated the presence of heterogeneous dynamics in the polysaccharides where rigid cellulose and mobile hemicelluloses moieties existed together. PMID:24010724

  13. Use of nuclear magnetic resonance (NMR) spectroscopy for the analysis of chemical warfare agents and their degradation products in enviornmental samples

    SciTech Connect

    Szafraniec, L.L.; Beaudry, W.T.

    1995-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful analytical techniques for elucidating the molecular structure of organic compounds. In environmental samples, the identification and detection of chemical warfare related compounds is best accomplished using high field high resolution NMR. This paper describes the experimental procedures.

  14. Predicting paramagnetic 1H NMR chemical shifts and state-energy separations in spin-crossover host-guest systems.

    PubMed

    Isley, William C; Zarra, Salvatore; Carlson, Rebecca K; Bilbeisi, Rana A; Ronson, Tanya K; Nitschke, Jonathan R; Gagliardi, Laura; Cramer, Christopher J

    2014-06-14

    The behaviour of metal-organic cages upon guest encapsulation can be difficult to elucidate in solution. Paramagnetic metal centres introduce additional dispersion of signals that is useful for characterisation of host-guest complexes in solution using nuclear magnetic resonance (NMR). However, paramagnetic centres also complicate spectral assignment due to line broadening, signal integration error, and large changes in chemical shifts, which can be difficult to assign even for known compounds. Quantum chemical predictions can provide information that greatly facilitates the assignment of NMR signals and identification of species present. Here we explore how the prediction of paramagnetic NMR spectra may be used to gain insight into the spin crossover (SCO) properties of iron(II)-based metal organic coordination cages, specifically examining how the structure of the local metal coordination environment affects SCO. To represent the tetrahedral metal-organic cage, a model system is generated by considering an isolated metal-ion vertex: fac-ML3(2+) (M = Fe(II), Co(II); L = N-phenyl-2-pyridinaldimine). The sensitivity of the (1)H paramagnetic chemical shifts to local coordination environments is assessed and utilised to shed light on spin crossover behaviour in iron complexes. Our data indicate that expansion of the metal coordination sphere must precede any thermal SCO. An attempt to correlate experimental enthalpies of SCO with static properties of bound guests shows that no simple relationship exists, and that effects are likely due to nuanced dynamic response to encapsulation. PMID:24752730

  15. Automated evaluation of chemical shift perturbation spectra: New approaches to quantitative analysis of receptor-ligand interaction NMR spectra

    PubMed Central

    Peng, Chen; Unger, Stephen W.; Filipp, Fabian V.; Sattler, Michael; Szalma, Sándor

    2016-01-01

    This paper presents new methods designed for quantitative analysis of chemical shift perturbation NMR spectra. The methods automatically trace the displacements of cross peaks between a perturbed test spectrum and the reference spectrum (or among a series of titration spectra), and measure the changes of chemical shifts, heights, and widths of the altered peaks. The methods are primary aimed at the 1H-15N HSQC spectra of relatively small proteins (<15 kDa) assuming fast exchange between free and ligand-bound states on the chemical shift time scale, or for comparing spectra of free and fully bound states in the slow exchange situation. Using the 1H-15N HSQC spectra from a titration experiment of the 74-residue Pex13p SH3 domain with a Pex14p peptide ligand (14 residues, Kd = ~ 40µM), we demonstrate the scope and limits of our automatic peak tracing (APET) algorithm for efficient scoring of high-throughput SAR by NMR type HSQC spectra, and progressive peak tracing (PROPET) algorithm for detailed analysis of ligand titration spectra. Simulated spectra with low signal-to-noise ratios (S/N ranged from 20 to 1) were used to demonstrate the reliability and reproducibility of the results when dealing with poor quality spectra. These algorithms have been implemented in a new software module, FELIX-Autoscreen, for streamlined processing, analysis and visualization of SAR by NMR and other high-throughput receptor/ligand interaction experiments. PMID:15243180

  16. Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive atmospheric species

    NASA Astrophysics Data System (ADS)

    Morin, S.; Sander, R.; Savarino, J.

    2011-04-01

    The isotope anomaly (Δ17O) of secondary atmospheric species such as nitrate (NO3-) or hydrogen peroxide (H2O2) has potential to provide useful constrains on their formation pathways. Indeed, the Δ17O of their precursors (NOx, HOx etc.) differs and depends on their interactions with ozone, which is the main source of non-zero Δ17O in the atmosphere. Interpreting variations of Δ17O in secondary species requires an in-depth understanding of the Δ17O of their precursors taking into account non-linear chemical regimes operating under various environmental settings. This article reviews and illustrates a series of basic concepts relevant to the propagation of the Δ17O of ozone to other reactive or secondary atmospheric species within a photochemical box model. We present results from numerical simulations carried out using the atmospheric chemistry box model CAABA/MECCA to explicitly compute the diurnal variations of the isotope anomaly of short-lived species such as NOx and HOx. Using a simplified but realistic tropospheric gas-phase chemistry mechanism, Δ17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2) according to the mass-balance equations, through the implementation of various sets of hypotheses pertaining to the transfer of Δ17O during chemical reactions. The model results confirm that diurnal variations in Δ17O of NOx predicted by the photochemical steady-state relationship during the day match those from the explicit treatment, but not at night. Indeed, the Δ17O of NOx is "frozen" at night as soon as the photolytical lifetime of NOx drops below ca. 10 min. We introduce and quantify the diurnally-integrated isotopic signature (DIIS) of sources of atmospheric nitrate and H2O2, which is of particular relevance to larger-scale simulations of Δ17O where high computational costs cannot be afforded.

  17. Relativistically corrected nuclear magnetic resonance chemical shifts calculated with the normalized elimination of the small component using an effective potential-NMR chemical shifts of molybdenum and tungsten

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2003-07-01

    A new method for relativistically corrected nuclear magnetic resonance (NMR) chemical shifts is developed by combining the individual gauge for the localized orbital approach for density functional theory with the normalized elimination of a small component using an effective potential. The new method is used for the calculation of the NMR chemical shifts of 95Mo and 183W in various molybdenum and tungsten compounds. It is shown that quasirelativistic corrections lead to an average improvement of calculated NMR chemical shift values by 300 and 120 ppm in the case of 95Mo and 183W, respectively, which is mainly due to improvements in the paramagnetic contributions. The relationship between electronic structure of a molecule and the relativistic paramagnetic corrections is discussed. Relativistic effects for the diamagnetic part of the magnetic shielding caused by a relativistic contraction of the s,p orbitals in the core region concern only the shielding values, however, have little consequence for the shift values because of the large independence from electronic structure and a cancellation of these effects in the shift values. It is shown that the relativistic corrections can be improved by level shift operators and a B3LYP hybrid functional, for which Hartree-Fock exchange is reduced to 15%.

  18. Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening.

    PubMed

    Dalvit, Claudio; Vulpetti, Anna

    2016-05-23

    It is known that strong hydrogen-bonding interactions play an important role in many chemical and biological systems. However, weak or very weak hydrogen bonds, which are often difficult to detect and characterize, may also be relevant in many recognition and reaction processes. Fluorine serving as a hydrogen-bond acceptor has been the subject of many controversial discussions and there are different opinions about it. It now appears that there is compelling experimental evidence for the involvement of fluorine in weak intramolecular or intermolecular hydrogen bonds. Using established NMR methods, we have previously characterized and measured the strengths of intermolecular hydrogen-bond complexes involving the fluorine moieties CH2 F, CHF2 , and CF3 , and have compared them with the well-known hydrogen-bond complex formed between acetophenone and the strong hydrogen-bond donor p-fluorophenol. We now report evidence for the formation of hydrogen bonds involving fluorine with significantly weaker donors, namely 5-fluoroindole and water. A simple NMR method is proposed for the simultaneous measurement of the strengths of hydrogen bonds between an acceptor and a donor or water. Important implications of these results for enzymatic/chemical reactions involving fluorine, for chemical and physical properties, and for ligand/protein (19) F NMR screening are analyzed through experiments and theoretical simulations. PMID:27112430

  19. [Comparison of chemical composition between raw and vinegar-baked Paeoniae Radix Alba using NMR based metabolomic approach].

    PubMed

    Li, Zhen-Yu; Fan, Ma-Li; Qin, Xue-Mei

    2015-02-01

    To compare the chemical change of Paeoniae Radix Alba (PRA) after vinegar-baking processing, as well as the effect of vinegar types exerted on the processing, 1H NMR-based metabolomic approach combined with multivariate statistical analysis was used to investigate the different metabolites between the raw and two vinegar-baked PRA. More than thirty metabolites were identified in the 1H NMR spectrum of PRA, and the multivariate statistical analysis showed that raw and two vinegar-baked PRA could be separated obviously. After vinegar-baking, the contents of isoleucine, lactate, alanine, arginine, albiflorin, and 5-hydroxymethyl furfural (5-HMF) elevated, while those of sucrose, paeoniflorin and its analogues (calculated by benzoate) decreased. The chemical compositions of two vinegar-baked PRA were also different. Shanxi vinegar- baked PRA showed higher levels of leucine, isoleucine, valine, and albiflorin, while rice vinegar-baked PRA contained more sucrose and paeoniflorin's analogues (calculated by benzoate). And the chemical changes in Shanxi vinegar-baked PRA were greater than those of rice vinegar-baked PRA. The results revealed the chemical differences between raw and vinegar-baked PRA, as well as the influence of vinegar type on processing, in a holistic manner, the results obtained suggested that the correlations between the chemical change and the drug action after processing, as well as the vinegar type used in processing, should be further studied. PMID:25975031

  20. (39)K NMR of solid potassium salts at 21 T: effect of quadrupolar and chemical shift tensors.

    PubMed

    Moudrakovski, Igor L; Ripmeester, John A

    2007-01-25

    39K Solid State NMR spectra (static and magic angle spinning (MAS)) on a set of potassium salts measured at 21.14 T show that the chemical shift range for K(+) ions in diamagnetic salts is well in excess of 100 ppm contrary to previous assumptions that it was quite small. Inequivalent potassium sites in crystals can be resolved through differences in chemical shifts, with chemically similar sites showing differences of over 10 ppm. The quadrupolar coupling constants obtained from MAS and solid echo experiments on powders cover the range from zero for potassium in cubic environments in halides to over 3 MHz for the highly asymmetric sites in K2CO3. Although the quadrupolar effects generally dominate the 39K spectra, in several instances, we have observed subtle but significant contributions of chemical shift anisotropy with values up to 45 ppm, a first such observation. Careful analysis of static and MAS spectra allows the observation of the various chemical shift and quadrupole coupling tensor components as well as their relative orientations, thereby demonstrating that high-field 39K NMR spectroscopy in the solid state has a substantial sensitivity to the local environment with parameters that will be of considerable value in materials characterization and electronic structure studies. PMID:17228903

  1. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR.

    PubMed

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr; Nielsen, Anders B

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization ((RESPIRATION)CP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the (RESPIRATION)CP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous (15)N → (13)CO and (15)N → (13)Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability. PMID:27608995

  2. Explosive hydrogen burning of 17O in classical novae.

    PubMed

    Fox, C; Iliadis, C; Champagne, A E; Coc, A; José, J; Longland, R; Newton, J; Pollanen, J; Runkle, R

    2004-08-20

    We report on the observation of a new resonance at E(lab)(R)=190 keV in the 17O(p,gamma)18F reaction. The measured resonance strength amounts to omegagamma(pgamma)=(1.2+/-0.2)x10(-6) eV. With this new value, the uncertainties in the 17O(p,gamma)18F and 17O(p,alpha)14N thermonuclear reaction rates are reduced by orders of magnitude at nova temperatures. Our significantly improved reaction rates have major implications for the galactic synthesis of 17O, the stellar production of the radioisotope 18F, and the predicted oxygen isotopic ratios in nova ejecta. PMID:15447168

  3. The chemical structure of highly aromatic humic acids in three volcanic ash soils as determined by dipolar dephasing NMR studies

    USGS Publications Warehouse

    Hatcher, P.G.; Schnitzer, M.; Vassallo, A.M.; Wilson, M.A.

    1989-01-01

    Dipolar dephasing 13C NMR studies of three highly aromatic humic acids, one from a modern soil and two from paleosols, have permitted the determination of the degree of aromatic substitution. From these data and the normal solid-state 13C NMR data we have been able to develop a model for the average chemical structure of these humic acids that generally correlates well with permanganate oxidation data. The models depict these humic acids as benzene di- and tricarboxylic acids interconnected by biphenyl linkages. An increasing degree of substitution is observed with increasing geologic age. These structures may be characteristic of the resistant aromatic part of the "core" of humic substances that survives degradation. ?? 1989.

  4. The use of IRMS, (1)H NMR and chemical analysis to characterise Italian and imported Tunisian olive oils.

    PubMed

    Camin, Federica; Pavone, Anita; Bontempo, Luana; Wehrens, Ron; Paolini, Mauro; Faberi, Angelo; Marianella, Rosa Maria; Capitani, Donatella; Vista, Silvia; Mannina, Luisa

    2016-04-01

    Isotope Ratio Mass Spectrometry (IRMS), (1)H Nuclear Magnetic Resonance ((1)H NMR), conventional chemical analysis and chemometric elaboration were used to assess quality and to define and confirm the geographical origin of 177 Italian PDO (Protected Denomination of Origin) olive oils and 86 samples imported from Tunisia. Italian olive oils were richer in squalene and unsaturated fatty acids, whereas Tunisian olive oils showed higher δ(18)O, δ(2)H, linoleic acid, saturated fatty acids β-sitosterol, sn-1 and 3 diglyceride values. Furthermore, all the Tunisian samples imported were of poor quality, with a K232 and/or acidity values above the limits established for extra virgin olive oils. By combining isotopic composition with (1)H NMR data using a multivariate statistical approach, a statistical model able to discriminate olive oil from Italy and those imported from Tunisia was obtained, with an optimal differentiation ability arriving at around 98%. PMID:26593470

  5. An NMR study and ab initio molecular orbital calculation of substituted benzofuroxans and the salt of 4,6-dinitrobenzofuroxan

    NASA Astrophysics Data System (ADS)

    Cmoch, P.; Wiench, J. W.; Stefaniak, L.; Webb, G. A.

    1999-09-01

    13C, 15N and 17O NMR data are reported for a series of substituted benzofuroxans in aprotic and acidic solutions and for a potassium salt of a substituted benzofuroxan. Some of the title compounds can exhibit fast furoxan valence equilibrium at room temperature regardless of a solvent used, whereas for the others no evidence of above-mentioned process exists. The NMR parameters most sensitive to salt formation are the chemical shifts of the C7, N1, N3 and all of the oxygen nuclei. Hence these are reported as the most satisfactory chemical shifts to be used in distinguishing between the salt and non-ionic forms of the substituted benzofuroxans studied. Calculated energies at the self-consistent field (SCF) level of theory for both tautomeric forms (N1- and N3-oxide) of some compounds studied are used for predicting the tautomeric equilibrium constants. Absolute 17O shieldings are employed in the reversal of the assignments of 17O NMR signals existing in the literature.

  6. Ab Initio Molecular Dynamics Simulations and GIPAW NMR Calculations of a Lithium Borate Glass Melt.

    PubMed

    Ohkubo, Takahiro; Tsuchida, Eiji; Takahashi, Takafumi; Iwadate, Yasuhiko

    2016-04-14

    The atomic structure of a molten 0.3Li2O-0.7B2O3 glass at 1250 K was investigated using ab initio molecular dynamics (AIMD) simulations. The gauge including projector augmented wave (GIPAW) method was then employed for computing the chemical shift and quadrupolar coupling constant of (11)B, (17)O, and (7)Li from 764 AIMD derived structures. The chemical shift and quadrupolar coupling constant distributions were directly estimated from the dynamical structure of the molten glass. (11)B NMR parameters of well-known structural units such as the three-coordinated ring, nonring, and four-coordinated tetrahedron were found to be in good agreement with the experimental results. In this study, more detailed classification of B units was presented based on the number of O species bonded to the B atoms. This highlights the limitations of (11)B NMR sensitivity for resolving (11)B local environment using the experimentally obtained spectra only. The (17)O NMR parameter distributions can theoretically resolve the bridging and nonbridging O atoms with different structural units such as nonring, single boroxol ring, and double boroxol ring. Slight but clear differences in the number of bridging O atoms surrounding Li that have not been reported experimentally were observed in the theoretically obtained (7)Li NMR parameters. PMID:27010637

  7. Roles of chemically inequivalent N(CH3)4 ions in phase transition temperatures in [N(CH3)4]2CoCl4 by single-crystal NMR and MAS NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2014-06-01

    The temperature dependences of the 1H and 13C spin-lattice relaxation time in the laboratory frame, T1, and in the rotating frame, T1ρ, in [N(CH3)4]2CoCl4 were measured by static nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. In the ferroelastic phase, 1H T1ρ underwent molecular motion according to the Bloembergen-Purcell-Pound theory. Two inequivalent ions, a-N(CH3)4 and b-N(CH3)4, were identified by 13C cross polarization (CP)/MAS NMR. On the basis of the 13C NMR results, the existence of two chemically inequivalent a-N(CH3)4 and b-N(CH3)4 ions in the ferroelectric phase and the existence of the ferroelastic twin structure of the N(CH3)4 ions in the ferroelastic phase were discussed.

  8. Carbon-13 chemical-shift tensors in indigo: A two-dimensional NMR-ROCSA and DFT Study.

    PubMed

    Holmes, Sean T; Dybowski, Cecil

    2015-11-01

    The principal components of the (13)C NMR chemical-shift tensors for the eight unique carbon sites of crystalline indigo have been measured using the ROCSA pulse sequence. The chemical shifts have been assigned unambiguously to their respective nuclear sites through comparison of the experimental data to the results of density-functional calculations employing a refined X-ray diffraction structure. These measurements expand the database of measured aromatic (13)C chemical-shift tensors to the indole ring. Magnetic shielding calculations for hypoxanthine and adenosine are also reported. Comparisons of calculations that include the effect of the crystalline lattice with calculations that model indigo as an isolated molecule give an estimate of the intermolecular contribution to the magnetic shielding. PMID:26344134

  9. Carbon-13 chemical-shift tensors in indigo: A two-dimensional NMR-ROCSA and DFT Study

    PubMed Central

    Holmes, Sean T.; Dybowski, Cecil

    2016-01-01

    The principal components of the 13C NMR chemical-shift tensors for the eight unique carbon sites of crystalline indigo have been measured using the ROCSA pulse sequence. The chemical shifts have been assigned unambiguously to their respective nuclear sites through comparison of the experimental data to the results of density-functional calculations employing a refined X-ray diffraction structure. These measurements expand the database of measured aromatic 13C chemical-shift tensors to the indole ring. Magnetic shielding calculations for hypoxanthine and adenosine are also reported. Comparisons of calculations that include the effect of the crystalline lattice with calculations that model indigo as an isolated molecule give an estimate of the intermolecular contribution to the magnetic shielding. PMID:26344134

  10. Corrections for 17O interference, effects on Δ47 determination

    NASA Astrophysics Data System (ADS)

    Olack, G.; He, B.; Colman, A. S.

    2013-12-01

    The measurements of 13C on CO2 samples are routinely corrected for 17O contribution to the m/z 45 signal (Craig, 1957; Santrock, et al., 1985). The 17O abundance affects the Δ47 calculation, and the amount of 17O present is routinely determined using the relationship between 18O and 17O presented in IAEA TECDOC 825 (Dennis, et al., 2011; Huntington, et al., 2009; Gonfiantini, et al., 1995). In 2010, the IAEA released new recommendations for 17O determinations to be used for 13C corrections (Brand, et al., 2010). We compare the effect of using different ways to determine 17O interference, as well as using the currently accepted N(13C)/N(12C) value for VPDB (Brand, et al., 2010), on heated gas lines, model data, and on CO2 gases made to have similar δ47 and Δ47, but with highly contrasting δ18O and δ13C values. The 2010 IAEA recommendations give a better fit for heated gas data than the TECDOC 825 recommendations. Comparing differences in the data points relative to their respective fitted lines, we see differences on the order of 5 to 10 ppm in Δ47. That corresponds to a systematic error of 2 °C in the temperature estimate (room temperature range), and one that varies with δ13C and δ18O, but not necessarily with δ47. The preliminary work on equilibrated CO2 gases having similar δ47, but very different δ13C and δ18O, showed large (ca. 70 ppm) differences in Δ47 when using the (standard) TECDOC 825 recommendations. The Δ47 values were much closer when the 2010 IUPAC recommendations were used. This also serves as a test of the updated factors for 17O determination, as well as the overall robustness of the Δ47 measurement.

  11. Study of chemically inequivalent N(CH3)4 ions in [N(CH3)4]2ZnBr4 near the phase transition temperature using 1H MAS NMR, 13C CP/MAS NMR, and 14N NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-02-01

    The temperature dependences of the chemical shifts and intensities of 1H, 13C, and 14N nuclei in tetramethylammonium tetrabromozincate, [N(CH3)4]2ZnBr4, were investigated using single-crystal nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR spectroscopy to elucidate the structural geometry near the phase transition temperature. Based on the analysis of the 13C cross-polarization (CP)/MAS NMR and 14N NMR spectra, the two chemically inequivalent N(1) (CH3)4 and N(2) (CH3)4 ions were distinguished. Furthermore, the 14N NMR spectrum at the phase transition temperature indicated the existence of the ferroelastic characteristics of the N(CH3)4 ions.

  12. Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...

  13. Chemical compositions of dissolved organic matter from various sources as characterized by solid-state NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...

  14. Chemical ligation of the influenza M2 protein for solid-state NMR characterization of the cytoplasmic domain.

    PubMed

    Kwon, Byungsu; Tietze, Daniel; White, Paul B; Liao, Shu Y; Hong, Mei

    2015-07-01

    Solid-state NMR-based structure determination of membrane proteins and large protein complexes faces the challenge of limited spectral resolution when the proteins are uniformly (13)C-labeled. A strategy to meet this challenge is chemical ligation combined with site-specific or segmental labeling. While chemical ligation has been adopted in NMR studies of water-soluble proteins, it has not been demonstrated for membrane proteins. Here we show chemical ligation of the influenza M2 protein, which contains a transmembrane (TM) domain and two extra-membrane domains. The cytoplasmic domain, which contains an amphipathic helix (AH) and a cytoplasmic tail, is important for regulating virus assembly, virus budding, and the proton channel activity. A recent study of uniformly (13)C-labeled full-length M2 by spectral simulation suggested that the cytoplasmic tail is unstructured. To further test this hypothesis, we conducted native chemical ligation of the TM segment and part of the cytoplasmic domain. Solid-phase peptide synthesis of the two segments allowed several residues to be labeled in each segment. The post-AH cytoplasmic residues exhibit random-coil chemical shifts, low bond order parameters, and a surface-bound location, thus indicating that this domain is a dynamic random coil on the membrane surface. Interestingly, the protein spectra are similar between a model membrane and a virus-mimetic membrane, indicating that the structure and dynamics of the post-AH segment is insensitive to the lipid composition. This chemical ligation approach is generally applicable to medium-sized membrane proteins to provide site-specific structural constraints, which complement the information obtained from uniformly (13)C, (15)N-labeled proteins. PMID:25966817

  15. Chemical ligation of the influenza M2 protein for solid-state NMR characterization of the cytoplasmic domain

    PubMed Central

    Kwon, Byungsu; Tietze, Daniel; White, Paul B; Liao, Shu Y; Hong, Mei

    2015-01-01

    Solid-state NMR-based structure determination of membrane proteins and large protein complexes faces the challenge of limited spectral resolution when the proteins are uniformly 13C-labeled. A strategy to meet this challenge is chemical ligation combined with site-specific or segmental labeling. While chemical ligation has been adopted in NMR studies of water-soluble proteins, it has not been demonstrated for membrane proteins. Here we show chemical ligation of the influenza M2 protein, which contains a transmembrane (TM) domain and two extra-membrane domains. The cytoplasmic domain, which contains an amphipathic helix (AH) and a cytoplasmic tail, is important for regulating virus assembly, virus budding, and the proton channel activity. A recent study of uniformly 13C-labeled full-length M2 by spectral simulation suggested that the cytoplasmic tail is unstructured. To further test this hypothesis, we conducted native chemical ligation of the TM segment and part of the cytoplasmic domain. Solid-phase peptide synthesis of the two segments allowed several residues to be labeled in each segment. The post-AH cytoplasmic residues exhibit random-coil chemical shifts, low bond order parameters, and a surface-bound location, thus indicating that this domain is a dynamic random coil on the membrane surface. Interestingly, the protein spectra are similar between a model membrane and a virus-mimetic membrane, indicating that the structure and dynamics of the post-AH segment is insensitive to the lipid composition. This chemical ligation approach is generally applicable to medium-sized membrane proteins to provide site-specific structural constraints, which complement the information obtained from uniformly 13C, 15N-labeled proteins. PMID:25966817

  16. Chemical structures of manure from conventional and phytase transgenic pigs investigated by advanced solid-state NMR spectroscopy.

    PubMed

    Mao, Jingdong; Ajakaiye, Ayodele; Lan, Yeqing; Olk, Dan C; Ceballos, Michael; Zhang, Tiequan; Fan, Ming Z; Forsberg, Cecil W

    2008-03-26

    Nonpoint phosphorus (P) pollution from animal manure is becoming a serious global problem. The current solution for the swine industry includes the enzyme phytase as a component in oil meal and cereal grain-based swine diets. A long-term approach is the production of transgenic phytase pigs that express phytase in the salivary glands and secrete it in the saliva. This study provides a detailed comparison of chemical structures of manure from conventional pigs and transgenic pigs that express phytase under growing and finishing phases using new solid-state NMR techniques. Spectral editing techniques and quantitative NMR techniques were used to identify and quantify specific functional groups. Two-dimensional (1)H- (13)C heteronuclear correlation NMR was used to detect their connectivity. Manure from conventional and transgenic pigs had similar peptide, carbohydrate, and fatty acid components, while those from transgenic pigs contained more carbohydrates and fewer nonpolar alkyls. There was no consistent effect from diets with or without supplemental phosphate or growth stages. PMID:17973446

  17. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles.

    PubMed

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof; Daszkiewicz, Zdzislaw; Sauer, Stephan P A

    2013-10-01

    Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory, and their (13) C nuclear magnetic resonance (NMR) isotropic shieldings were predicted using density functional theory (DFT). The model compounds contained 9H, N-methyl and N-ethyl derivatives. The relativistic effect of Br and I atoms on nuclear shieldings was modeled using the spin-orbit zeroth-order regular approximation (ZORA) method. Significant heavy atom shielding effects for the carbon atom directly bonded with Br and I were observed (~-10 and ~-30 ppm while the other carbon shifts were practically unaffected). The decreasing electronegativity of the halogen substituent (F, Cl, Br, and I) was reflected in both nonrelativistic and relativistic NMR results as decreased values of chemical shifts of carbon atoms attached to halogen (C3 and C6) leading to a strong sensitivity to halogen atom type at 3 and 6 positions of the carbazole ring. The predicted NMR data correctly reproduce the available experimental data for unsubstituted N-alkylcarbazoles. PMID:23922027

  18. Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction

    NASA Astrophysics Data System (ADS)

    Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael

    2015-05-01

    A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100-250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation.

  19. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.

    PubMed

    Vícha, Jan; Patzschke, Michael; Marek, Radek

    2013-05-28

    A methodology for optimizing the geometry and calculating the NMR shielding constants is calibrated for octahedral complexes of Pt(IV) and Ir(III) with modified nucleic acid bases. The performance of seven different functionals (BLYP, B3LYP, BHLYP, BP86, TPSS, PBE, and PBE0) in optimizing the geometry of transition-metal complexes is evaluated using supramolecular clusters derived from X-ray data. The effects of the size of the basis set (ranging from SVP to QZVPP) and the dispersion correction (D3) on the interatomic distances are analyzed. When structural deviations and computational demands are employed as criteria for evaluating the optimizations of these clusters, the PBE0/def2-TZVPP/D3 approach provides excellent results. In the next step, the PBE0/def2-TZVPP approach is used with the continuum-like screening model (COSMO) to optimize the geometry of single molecules for the subsequent calculation of the NMR shielding constants in solution. The two-component zeroth-order regular approximation (SO-ZORA) is used to calculate the NMR shielding constants (PBE0/TZP/COSMO). The amount of exact exchange in the PBE0 functional is validated for the nuclear magnetic shieldings of atoms in the vicinity of heavy transition metals. For the PBE0/TZP/COSMO setup, an exact exchange of 40% is found to accurately reproduce the experimental NMR shielding constants for both types of complexes. Finally, the effect of the amount of exact exchange on the NMR shielding calculations (which is capable of compensating for the structural deficiencies) is analyzed for various molecular geometries (SCS-MP2, BHLYP, and PBE0) and the influence of a trans-substituent on the NMR chemical shift of nitrogen is discussed. The observed dependencies for an iridium complex cannot be rationalized by visualizing the Fermi-contact (FC) induced spin density and probably originate from changes in the d-d transitions that modulate the spin-orbit (SO) part of the SO/FC term. PMID:23598437

  20. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  1. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.

    PubMed

    Victora, Andrea; Möller, Heiko M; Exner, Thomas E

    2014-12-16

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3-0.6 ppm and correlation coefficients (r(2)) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  2. A multiple pulse zero crossing NMR technique, and its application to F-19 chemical shift measurements in solids

    NASA Technical Reports Server (NTRS)

    Burum, D. P.; Elleman, D. D.; Rhim, W.-K.

    1978-01-01

    A simple multiple-pulse 'zero crossing technique' for accurately determining the first moment of a solid-state NMR spectrum is introduced. This technique was applied to obtain the F-19 chemical shift versus pressure curves up to 5 kbar for single crystals of CaF2 (0.29 + or - 0.02 ppm/kbar) and BaF2 (0.62 + or - 0.05 ppm/kbar). Results at ambient temperature and pressure are also reported for a number of other fluorine compounds. Because of its high data rate, this technique is potentially several orders of magnitude more sensitive than similar CW methods.

  3. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Gautam

    Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of

  4. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and (31)P NMR analysis.

    PubMed

    Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna

    2016-11-01

    Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process. PMID:27343937

  5. Chemical tagging of chlorinated phenols for their facile detection and analysis by NMR spectroscopy

    SciTech Connect

    Valdez, Carlos A.; Leif, Roald N.

    2015-03-22

    A derivatization method that employs diethyl (bromodifluoromethyl) phosphonate (DBDFP) to efficiently tag the endocrine disruptor pentachlorophenol (PCP) and other chlorinated phenols (CPs) along with their reliable detection and analysis by NMR is presented. The method accomplishes the efficient alkylation of the hydroxyl group in CPs with the difluoromethyl (CF2H) moiety in extremely rapid fashion (5 min), at room temperature and in an environmentally benign manner. The approach proved successful in difluoromethylating a panel of 18 chlorinated phenols, yielding derivatives that displayed unique 1H, 19F NMR spectra allowing for the clear discrimination between isomerically related CPs. Due to its biphasic nature, the derivatization can be applied to both aqueous and organic mixtures where the analysis of CPs is required. Furthermore, the methodology demonstrates that PCP along with other CPs can be selectively derivatized in the presence of other various aliphatic alcohols, underscoring the superiority of the approach over other general derivatization methods that indiscriminately modify all analytes in a given sample. The present work demonstrates the first application of NMR on the qualitative analysis of these highly toxic and environmentally persistent species.

  6. (31)P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements.

    PubMed

    Legrand, A P; Sfihi, H; Lequeux, N; Lemaître, J

    2009-10-01

    The composition and evolution of a brushite-type calcium phosphate cement was investigated by Solid-State NMR and X-ray during the setting process. The cement is obtained by mixing beta-tricalcium phosphate [Ca(3)(PO(4))(2), beta-TCP] and monocalcium phosphate monohydrate [Ca(H(2)PO(4))(2).H(2)O, MCPM] in presence of water, with formation of dicalcium phosphate dihydrate or brushite [CaHPO(2).2H(2)O, DCPD]. Analysis of the initial beta-TCP paste has shown the presence of beta-calcium pyrophosphate [Ca(2)P(2)O(7), beta-CPy] and that of the initial MCPM a mixture of MCPM and dicalcium phosphate [CaHPO(4), DCP]. Follow-up of the chemical composition by (31)P Solid-State NMR enables to show that the chemical setting process appeared to reach an end after 20 min. The constant composition observed at the end of the process was similarly determined. PMID:19365821

  7. Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups

    NASA Astrophysics Data System (ADS)

    Fenzke, Dieter; Hunger, Michael; Pfeifer, Harry

    A procedure is described which allows a separate determination of the proton-aluminum distance and of the chemical-shift anisotropy for the bridging OH groups of crystalline molecular sieves from their 'H MAS NMR sideband patterns. For the bridging OH groups which point into the 6-rings of the framework (line "c"), the 1H- 27Al distance could be determined to be 0.237 ± 0.004 and 0.234 ± 0.004 nm for molecular sieves of type H-Y and SAPO-5, respectively. In contrast, for the bridging OH groups of the 12-rings (line "b"), the corresponding distances are equal and distinctly larger, 0.248 ± 0.004 nm. Within the limits of error, the values of the chemical-shift anisotropy are equal (about 19 ± 2 ppm) except for line b of SAPO-5, which exhibits a much smaller value of 14.5 ± 2 ppm.

  8. First Principles NMR Study of Fluorapatite under Pressure

    PubMed Central

    Pavan, Barbara; Ceresoli, Davide; Tecklenburg, Mary M. J.; Fornari, Marco

    2012-01-01

    NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method [Pickard and Mauri, 2001]. Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from −5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as 43Ca and 17O. PMID:22770669

  9. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    SciTech Connect

    Puzzarini, Cristina Cazzoli, Gabriele; Harding, Michael E.; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O and HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  10. Crystal structure and proton conductivity of BaSn0.6Sc0.4O3–δ: insights from neutron powder diffraction and solid-state NMR spectroscopy† †Electronic supplementary information (ESI) available: Rietveld fit of dry BaSn0.6Sc0.4O3–δ sample (Fig. S1). 119Sn (Fig. S2), 45Sc (Fig. S3–S6) and 17O (Fig. S7) spectra of all materials as a function of Sc doping concentration, 45Sc MQMAS of deuterated BaSn0.9Sc0.1O3–δ (Fig. S4), 45Sc MQMAS of dry and deuterated BaSn0.8Sc0.2O3–δ (Fig. S5), 45Sc MQMAS of dry and deuterated BaSn0.7Sc0.3O3–δ (Fig. S6), 17O MQMAS of 17O enriched BaSn0.8Sc0.2O3–δ and BaSn0.6Sc0.4O3–δ (Fig. S8). See DOI: 10.1039/c5ta09744d Click here for additional data file.

    PubMed Central

    Norberg, Stefan T.; Knee, Christopher S.; Ahmed, Istaq; Hull, Stephen; Buannic, Lucienne; Hung, Ivan; Gan, Zhehong; Blanc, Frédéric; Grey, Clare P.; Eriksson, Sten G.

    2016-01-01

    The solid-state synthesis and structural characterisation of perovskite BaSn1–xScxO3–δ (x = 0.0, 0.1, 0.2, 0.3, 0.4) and its corresponding hydrated ceramics are reported. Powder and neutron X-ray diffractions reveal the presence of cubic perovskites (space group Pm3m) with an increasing cell parameter as a function of scandium concentration along with some indication of phase segregation. 119Sn and 45Sc solid-state NMR spectroscopy data highlight the existence of oxygen vacancies in the dry materials, and their filling upon hydrothermal treatment with D2O. It also indicates that the Sn4+ and Sc3+ local distribution at the B-site of the perovskite is inhomogeneous and suggests that the oxygen vacancies are located in the scandium dopant coordination shell at low concentrations (x ≤ 0.2) and in the tin coordination shell at high concentrations (x ≥ 0.3). 17O NMR spectra on 17O enriched BaSn1–xScxO3–δ materials show the existence of Sn–O–Sn, Sn–O–Sc and Sc–O–Sc bridging oxygen environments. A further room temperature neutron powder diffraction study on deuterated BaSn0.6Sc0.4O3–δ refines the deuteron position at the 24k crystallographic site (x, y, 0) with x = 0.579(3) and y = 0.217(3) which leads to an O–D bond distance of 0.96(1) Å and suggests tilting of the proton towards the next nearest oxygen. Proton conduction was found to dominate in wet argon below 700 °C with total conductivity values in the range 1.8 × 10–4 to 1.1 × 10–3 S cm–1 between 300 and 600 °C. Electron holes govern the conduction process in dry oxidizing conditions, whilst in wet oxygen they compete with protonic defects leading to a wide mixed conduction region in the 200 to 600 °C temperature region, and a suppression of the conductivity at higher temperature. PMID:27358734

  11. Quantitative analysis of deuterium using the isotopic effect on quaternary (13)C NMR chemical shifts.

    PubMed

    Darwish, Tamim A; Yepuri, Nageshwar Rao; Holden, Peter J; James, Michael

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual (1)H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D2O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary (13)C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing (13)C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve (13)C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ((1)H, (2)H) resolves closely separated quaternary (13)C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. PMID:27237841

  12. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    PubMed Central

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species. PMID:25785229

  13. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame.

    PubMed

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20-60 nm and lengths of 4-6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  14. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    PubMed Central

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  15. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    NASA Astrophysics Data System (ADS)

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-06-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications.

  16. sup 17 O nuclear-magnetic-resonance spectroscopic study of high- T sub c superconductors

    SciTech Connect

    Oldfield, E.; Coretsopoulos, C.; Yang, S.; Reven, L.; Lee, H.C.; Shore, J.; Han, O.H.; Ramli, E. Materials Research Laboratory, University of Illinois at Urbana; Hinks, D.

    1989-10-01

    We have obtained solid-state {sup 17}O NMR spectra of a number of {sup 17}O-enriched oxides and high-temperature oxide superconductors, including Cu{sub 2}{sup I}O, Cu{sup II}O, KCu{sup III}O{sub 2}, Bi{sub 2}O{sub 3}, Tl{sub 2}O{sub 3}, La{sub 1.85}Sr{sub 0.15}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{ital x}}, Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8+{ital x}}, and Ba{sub 0.6}K{sub 0.4}BiO{sub 3}. Spectra of all of the simple diamagnetic oxides contain relatively sharp resonances in a diamagnetic'' region of {similar to}{minus}200 to +700 ppm (from H{sub 2}O, International Union of Pure and Applied Chemistry {delta} scale). Cu{sup II}O exhibits a broad resonance centered at {similar to}4500 ppm.

  17. High-performance liquid chromatographic separation of natural and synthetic desulphoglucosinolates and their chemical validation by UV, NMR and chemical ionisation-MS methods.

    PubMed

    Kiddle, G; Bennett, R N; Botting, N P; Davidson, N E; Robertson, A A; Wallsgrove, R M

    2001-01-01

    Methods are described for the optimised extraction, desulphation and HPLC separation of desulphoglucosinolates. These methods provide rapid separation, identification and quantitative measurements of glucosinolates extracted from Brassica napus L and related crops, of unusual glucosinolates found in crucifer weed species, and also of synthetic alkylglucosinolates. The desulphoglucosinolates used in these studies were either chemically synthesised (at least one example from each major structural class), or purified from various plant sources. Validation of the identities of the desulphoglucosinolates was by comparison of retention times with standards, and by UV, 1H- and 13C-NMR and chemical ionisation MS analysis. A list of useful species, and the specific tissues, from which high concentrations of standards can be extracted is included. PMID:11705329

  18. Comparison of the computational NMR chemical shifts of choline with the experimental data

    NASA Astrophysics Data System (ADS)

    Alcorn, C.; Cuperlovic-Culf, M.; Ghandi, K.

    2012-02-01

    One of the main biological markers of the presence of cancer in living patients is an over-expression of total choline (tCho), which is the sum of free choline and its derivatives. 1H Magnetic Resonance Spectroscopy, or H-MRS, enables the quantification of tCho via its proton spectra, and thus has the potential to be a diagnostic tool for the presence of cancer and an accurate early indicator of the response of cancer to treatment. However, it remains difficult to quantify individual choline derivatives, since they share a large structural similarity ((CH3)3-N+-CH2-CH2-O-), of which the strongest signal detectable by MRS is that of the choline "head group": the three methyl groups bonded to the nitrogen. This work used ACENet, a high performance computing system, to attempt to model the NMR parameters of choline derivatives, with the focus of this report being free choline. Optimized structures were determined using Density Functional Theory and the B3LYP electron correlation functional. The Polarizable Continuum Model was used to evaluate solvent effects. The Gauge-Invariant Atomic Orbital method was found to be the superior method for calculating the NMR parameters of cholines.

  19. Density functional investigation of intermolecular effects on {sup 13}C NMR chemical-shielding tensors modeled with molecular clusters

    SciTech Connect

    Holmes, Sean T.; Dybowski, Cecil; Iuliucci, Robbie J.; Mueller, Karl T.

    2014-10-28

    A quantum-chemical method for modeling solid-state nuclear magnetic resonance chemical-shift tensors by calculations on large symmetry-adapted clusters of molecules is demonstrated. Four hundred sixty five principal components of the {sup 13}C chemical-shielding tensors of 24 organic materials are analyzed. The comparison of calculations on isolated molecules with molecules in clusters demonstrates that intermolecular effects can be successfully modeled using a cluster that represents a local portion of the lattice structure, without the need to use periodic-boundary conditions (PBCs). The accuracy of calculations which model the solid state using a cluster rivals the accuracy of calculations which model the solid state using PBCs, provided the cluster preserves the symmetry properties of the crystalline space group. The size and symmetry conditions that the model cluster must satisfy to obtain significant agreement with experimental chemical-shift values are discussed. The symmetry constraints described in the paper provide a systematic approach for incorporating intermolecular effects into chemical-shielding calculations performed at a level of theory that is more advanced than the generalized gradient approximation. Specifically, NMR parameters are calculated using the hybrid exchange-correlation functional B3PW91, which is not available in periodic codes. Calculations on structures of four molecules refined with density plane waves yield chemical-shielding values that are essentially in agreement with calculations on clusters where only the hydrogen sites are optimized and are used to provide insight into the inherent sensitivity of chemical shielding to lattice structure, including the role of rovibrational effects.

  20. Experimental link between the /sup 13/C NMR chemical shift of carbonyl carbons and the energy shifts observed in the n. -->. 3s optical transition of cyclic ketones

    SciTech Connect

    Cornish, T.J.; Baer, T.

    1988-09-14

    The n ..-->.. 3s transition energies of cold methylcyclopentanones and -cyclohexanones, as well as those of some branched-chain and bicyclic ketones, have been measured with 2 + 1 resonance-enhanced multiphoton ionization (REMPI). The energy shifts of the n ..-->.. 3s transition origins are found to correlate in a linear fashion with reported /sup 13/C NMR chemical shifts of the carbonyl carbon atoms. Several possible explanations for the experimental connection to NMR are discussed including consideration of both the paramagnetic and diamagnetic shielding contributions to the total chemical shift. 31 references, 3 figures, 1 table.

  1. Probing physical and chemical changes in cortical bone due to osteoporosis and type 2 diabetes by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Zhou, Donghua; Taylor, Amanda; Rendina, Beth; Smith, Brenda; Department of Physics Collaboration; Department of Nutritional Sciences Collaboration

    2013-03-01

    Approximately 1.5 million fractures occur each year in the U.S. due to osteoporosis, which is characterized by decreased bone mineral density and deterioration of bone micro-architecture. On the other hand, type 2 diabetes also significantly increases fracture risks, despite having a normal or even higher bone mineral density. Solid-state NMR has been applied to bone tissues from normal and disease-inflicted mouse models to study structural and chemical dynamics as the disease progresses. Proton relaxation experiments were performed to measure water populations in the bone matrix and pores. Collagen-bound water has strong influence on bone resilience, while water content in the pores reveals amount and size of pores from micro- to millimeter range. Other biochemical and atomic-scale structural alterations in the mineral and organic phases and their interface were investigated by proton, phosphorus, and carbon NMR spectroscopy. Experiments were designed to individually detect different types of phosphorus environments: near the mineral surface, similar to hydroxyapatite, and deficient of hydrogens due to substitution of the hydroxyl group by other ions. A new method was also developed for accurate quantification of each phosphorus species. The authors appreciate financial support for this project from the College of Human Sciences and the College of Arts and Sciences, Oklahoma State University.

  2. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    PubMed

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. PMID:25979265

  3. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    SciTech Connect

    Mao, Kanmi

    2011-01-01

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$\\bar{x}$, PMLG5mm$\\bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based

  4. On reasons of 29Si NMR chemical shift/structure relations for silicon oxides, nitrides, and carbides: an individual-gauge-for-localized-orbitals study.

    PubMed

    Wolff, R; Jancke, H; Radeglia, R

    1997-12-01

    For alpha-quartz, monoclinic ZSM-5, alpha- and beta-Si3N4 and SiC-6H polytype, the silicon chemical shifts have been calculated using the IGLO (individual gauge for localized orbitals) method and models of different size in real crystal geometry. The result is a theoretical chemical shift scale, which is very similar to the corresponding experimental scale from 29Si MAS NMR experiments. It is shown that the assignment of isotropic silicon chemical shifts of crystallized solids based on theory is a method of practical applicability, also in cases where experimental methods or empirical relations fail. The two NMR spectral lines of alpha-Si3N4 are for the first time assigned to the crystallographic positions. The partition of the silicon chemical shifts into localized contributions from different parts of the model allows insight into the interactions around the resonance nucleus due to substituent and geometry variations leading to silicon chemical shifts. PMID:9477448

  5. 13C and 1H chemical shift assignments and conformation confirmation of trimedlure-Y via 2-D NMR

    NASA Astrophysics Data System (ADS)

    Warthen, J. D.; Waters, R. M.; McGovern, T. P.

    The conformation of 1,1-dimethylethyl 5-chloro- cis-2-methylcyclohexane-1-carboxylate (trimedlure-Y) was confirmed as 1,2,5 equatorial, axial, equatorial via 13C, 1H, APT, CSCM and COSY NMR analyses. The carbon and proton nuclei in trimedlure-Y and the previously unassigned eight cyclohexyl protons (1.50-2.60 ppm) in 1,1-dimethylethyl 5-chloro- trans-2-methylcyclohexane-1-carboxylate (trimedlure-B 1; 1,2,5 equatorial, equatorial, equatorial) were also characterized by these methods. The effects of the 2-CH 3 in the axial or equatorial conformation upon the chemical shifts of the other nuclei in the molecule are discussed.

  6. Comprehensive Chemical Profiling of Picrorhiza kurroa Royle ex Benth Using NMR, HPTLC and LC-MS/MS Techniques.

    PubMed

    Kumar, Dinesh; Kumar, Rakesh; Singh, Bikram; Ahuja, Paramvir Singh

    2016-01-01

    Picrorhiza kurroa is an important herb in Indian medicine and contains cucurbitacins, flavonoids, phenolics, iridoid-glucoside and their derivatives as active constituents for the treatment of indigestion, fever, hepatitis, cancer, liver and respiratory diseases. Extensive use of P. kurroa needs detailed analysis and recognition of chemical diversity, is of great importance to evaluate their role as quality control markers. In the present study, comprehensive metabolic profiling of crude extracts of leaves and rhizomes of P. kurroa was carried out using NMR, HPTLC and LC-MS/MS. Primary and secondary metabolites were unambiguously identified along with a new report of monoterpenic glycoside (1-β-D-glucopyranosyl)-8-hydroxy-3,7-dimethyl-oct-2(E),6(E)-dienoate) in P. Kurroa. Significant qualitative differences with respect to the secondary metabolites were noticed between the leaves and rhizomes tissues. Leaves contained more cucurbitacins and flavonoids while iridoids were present more in rhizomes. The comprehensive chemical profiling is expected to give an idea of chemical diversity and quality of P. kurroa, for their ultimate utilisation in various applications. PMID:26777484

  7. Monitoring the effects of storage in caviar from farmed Acipenser transmontanus using chemical, SEM, and NMR methods.

    PubMed

    Gussoni, Maristella; Greco, Fulvia; Vezzoli, Alessandra; Paleari, Maria Antonietta; Moretti, Vittorio Maria; Beretta, Giuseppe; Caprino, Fabio; Lanza, Barbara; Zetta, Lucia

    2006-09-01

    The effects of storage at 4 degrees C on the quantity and quality of chemical components in the caviar from farmed Acipenser transmontanus have been analyzed by SEM, chemical methods, and NMR and MRI techniques. Particular attention has been focused on the lipid components, the distribution and mobility of which were strongly affected by the storage time. MRI and relaxation data indicated that lipids are endowed with two different mobility regimes, one slow (short T1) and one fast (long T1), both lengthening with the storage time. Chemical analysis assessed a total fat content that remained practically unchanged and a constant fatty acid composition during the total storage time. The combination of the two methods allowed one (a) to suppose that a mechanism of lipid hydrolysis (faster in unsalted than in salted eggs) is still occurring during storage of caviar at 4 degrees C for up to approximately 4 months and (b) to exclude that an intensive oxidative process is active in the same storage period. PMID:16939332

  8. Investigations on the Crystal-Chemical Behavior of Transition-Metal-Bearing Aluminosilicate Garnet Solid Solutions Using 27Al and 29Si NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palke, A. C.; Geiger, C. A.; Stebbins, J. F.

    2015-12-01

    The petrological importance of silicate garnet is derived from the presence of three distinct cation sites of varying size and coordination number. This allows for a wide range of trace, minor, and major element substitutions. However, a full and precise crystal-chemical understanding of the nature of transition metals in garnet is not at hand. Possible mechanisms of various charge-balanced substitutions (e.g. octahedral Ti4+ or tetrahedral Al3+) and the structural state of solid solutions (i.e. short- to long-range ordering) need study. We report on ongoing efforts in these directions using 27Al and 29Si Magic-Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy. Early work on synthetic and natural Fe- and Mn-bearing pyrope- and grossular-rich garnets focused on the effect these paramagnetic transition metals have in measuring and interpreting NMR spectra. These results have been expanded with NMR measurements on synthetic pyrope-rich garnets containing other paramagnetic transition metals including Cr3+, V3+, Co2+, and Ni2+ as well as diamagnetic Ti4+. NMR peaks are severely broadened in the presence of even small concentrations of Cr3+, Mn2+, and Fe3+ leading to a loss of spectral resolution. On the other hand, the spectra of garnet containing V3+, Fe2+, Co2+, and Ni2+ have better resolution and show separate paramagnetically shifted NMR peaks. In some cases, crystal-chemical information can be obtained because of the large frequency separations between the NMR peaks that can be assigned to various local atomic configurations around Al and Si. Furthermore, the 27Al NMR spectrum of a synthetic pyrope garnet with about 2% diamagnetic Ti4+ on the octahedral site showed the absence of any tetrahedral Al3+, which rules out the substitution mechanism VITi + IVAl = VIAl + IVSi in the solid solution. Our NMR investigations on garnet are now being made at the exploratory level. We think that NMR spectra of diamagnetic garnet can provide information on a

  9. The nature and origin of chemical shift for intracellular water nuclei in artemia cysts.

    PubMed

    Kasturi, S R; Hazlewood, C F; Yamanashi, W S; Dennis, L W

    1987-08-01

    We investigated the possible existence of chemical shift of water nuclei in Artemia cysts using high resolution nuclear magnetic resonance (NMR) methods. The results conducted at 60, 200, and 500 MHz revealed an unusually large chemical shift for intracellular water protons. After correcting for bulk susceptibility effects, a residual downfield chemical shift of 0.11 ppm was observed in fully hydrated cysts. Similar results have been observed for the deuterium and (17)O nuclei.We have ruled out unusual intracellular pH, diamagnetic susceptibility of intracellular water, or interaction of water molecules with lipids, glycerol, and/or trehalose as possible origins of the residual chemical shift. We conclude that the residual chemical shift observed for water nuclei ((1)H, (2)H, and (17)O) is due to significant water-macromolecular interactions. PMID:19431702

  10. Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gambuzzi, Elisa; Pedone, Alfonso; Menziani, Maria Cristina; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault

    2014-01-01

    Silicon and aluminium chemical environments in silicate and aluminosilicate glasses with compositions 60SiO2·20Na2O·20CaO (CSN), 60SiO2·20Al2O3·20CaO (CAS), 78SiO2·11Al2O3·11Na2O (NAS) and 60SiO2·10Al2O3·10Na2O·20CaO (CASN) have been investigated by 27Al and 29Si solid state magic angle spinning (MAS) and multiple quantum MAS (MQMAS) nuclear magnetic resonance (NMR) experiments. To interpret the NMR data, first-principles calculations using density functional theory were performed on structural models of these glasses. These models were generated by Shell-model molecular dynamics (MD) simulations. The theoretical NMR parameters and spectra were computed using the gauge including projected augmented wave (GIPAW) method and spin-effective Hamiltonians, respectively. This synergetic computational-experimental approach offers a clear structural characterization of these glasses, particularly in terms of network polymerization, chemical disorder (i.e. Si and Al distribution in second coordination sphere) and modifier cation distributions. The relationships between the local structural environments and the 29Si and 27Al NMR parameters are highlighted, and show that: (i) the isotropic chemical shift of both 29Si and 27Al increases of about +5 ppm for each Al added in the second sphere and (ii) both the 27Al and 29Si isotropic chemical shifts linearly decrease with the reduction of the average Si/Al-O-T bond angle. Conversely, 27Al and 29Si NMR parameters are much less sensitive to the connectivity with triple bridging oxygen atoms, precluding their indirect detection from 27Al and 29Si NMR.

  11. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. PMID:26845204

  12. Hydrogen Burning of {sup 17}O in Classical Novae

    SciTech Connect

    Chafa, A.; Ouichaoui, S.; Tatischeff, V.; Coc, A.; Garrido, F.; Kiener, J.; Lefebvre-Schuhl, A.; Thibaud, J.-P.; Aguer, P.; Barhoumi, S.; Hernanz, M.; Jose, J.; Sereville, N. de

    2005-07-15

    We report on the observation of a previously unknown resonance at E{sub R}{sup lab}=194.1{+-}0.6 keV in the {sup 17}O(p,{alpha}){sup 14}N reaction, with a measured resonance strength {omega}{gamma}{sub p{alpha}}=1.6{+-}0.2 meV. We studied in the same experiment the {sup 17}O(p,{gamma}){sup 18}F reaction by an activation method and the resonance-strength ratio was found to be {omega}{gamma}{sub p{alpha}}/{omega}{gamma}{sub p{gamma}}=470{+-}50. The corresponding excitation energy in the {sup 18}F compound nucleus was determined to be 5789.8{+-}0.3 keV by {gamma}-ray measurements using the {sup 14}N({alpha},{gamma}){sup 18}F reaction. These new resonance properties have important consequences for {sup 17}O nucleosynthesis and {gamma}-ray astronomy of classical novae.

  13. Structure of the Bacterial Cytoskeleton Protein Bactofilin by NMR Chemical Shifts and Sequence Variation.

    PubMed

    Kassem, Maher M; Wang, Yong; Boomsma, Wouter; Lindorff-Larsen, Kresten

    2016-06-01

    Bactofilins constitute a recently discovered class of bacterial proteins that form cytoskeletal filaments. They share a highly conserved domain (DUF583) of which the structure remains unknown, in part due to the large size and noncrystalline nature of the filaments. Here, we describe the atomic structure of a bactofilin domain from Caulobacter crescentus. To determine the structure, we developed an approach that combines a biophysical model for proteins with recently obtained solid-state NMR spectroscopy data and amino acid contacts predicted from a detailed analysis of the evolutionary history of bactofilins. Our structure reveals a triangular β-helical (solenoid) conformation with conserved residues forming the tightly packed core and polar residues lining the surface. The repetitive structure explains the presence of internal repeats as well as strongly conserved positions, and is reminiscent of other fibrillar proteins. Our work provides a structural basis for future studies of bactofilin biology and for designing molecules that target them, as well as a starting point for determining the organization of the entire bactofilin filament. Finally, our approach presents new avenues for determining structures that are difficult to obtain by traditional means. PMID:27276252

  14. NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.

    PubMed

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  15. NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data

    PubMed Central

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  16. Modeling (15)N NMR chemical shift changes in protein backbone with pressure.

    PubMed

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence. PMID:27586953

  17. Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.

    PubMed

    Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula

    2007-12-01

    Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards. PMID:17973498

  18. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    PubMed

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  19. Tracing the Atmospheric Source of Desert Nitrates Using Δ 17O

    NASA Astrophysics Data System (ADS)

    Michalski, G. M.; Holve, M.; Feldmeier, J.; Bao, H.; Reheis, M.; Bockheim, J. G.; Thiemens, M. H.

    2001-05-01

    atmospheric deposition. Mass balance calculations were able to show the range of input from both nitrate sources over a range of soil types and locations. Antarctic soil nitrate Δ 17O ~ 30 ‰ reveals that these nitrates are entirely due to atmospheric deposition and that the isotopic composition of nitrates produced in pristine locations do not vary widely from those produced in highly polluted urban centers. δ 18 O and δ 15 N isotope ratios help refine these budgets further. The oxygen isotope data also suggest another source other than biologic fixation and atmospheric deposition. The implications of using Δ 17O as a conservative tracer for atmospheric nitrates has important implications for areas of research including nitrogen deposition, coastal and estuary ecology and water quality research. References: [1] J.K. Bohlke, G.E. Erickson, and K. Revesz. (1997) Chemical Geology, 136, 135-152. [2] G.M. Michalski and M.H. Thiemens , Abstracts AGU, Dec. 2000

  20. Studies on vibrational, NMR spectra and quantum chemical calculations of N-Succinopyridine: An organic nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Kannan, V.; Thirupugalmani, K.; Brahadeeswaran, S.

    2013-10-01

    Single crystals of N-Succinopyridine (NSP) have been grown from water using solution growth method by isothermal solvent evaporation technique. The solid state Fourier Transform Infrared (FTIR) spectrum of the grown crystal shows a broad absorption extending from 3450 down to 400 cm-1, due to H-bond vibrations and other characteristic vibrations. Fourier Transform Raman (FT-Raman) spectrum of NSP single crystal shows Raman intensities ranging from 3100 to 100 cm-1 due the characteristics vibrations of functional groups present in NSP. The proton and carbon positions of NSP have been described by 1H and 13C NMR spectrum respectively. Ab initio quantum chemical calculations on NSP have been performed by density functional theory (DFT) calculations using B3LYP method with 6-311++G(d,p) basis set. The predicted first hyperpolarizability is found to be 1.29 times greater than that of urea and suggests that the title compound could be an attractive material for nonlinear optical applications. The calculated HOMO-LUMO energies show that charge transfers occur within the molecule and other related molecular properties. Molecular properties such as Mulliken population analysis, thermodynamic functions and perturbation theory energy analysis have also been reported. Electrostatic potential map (ESP) of NSP obtained by electron density isosurface provided the information about the size, shape, charge density distribution and site of chemical reactivity of the title molecule. The molecular stability and bond strength have been investigated through the Natural Bond Orbital (NBO) analysis.

  1. Conformational stability, vibrational and NMR analysis, chemical potential and thermodynamical parameter of 3-tert-butyl-4-hydroxyanisole

    NASA Astrophysics Data System (ADS)

    Balachandran, V.; Karpagam, V.; Revathi, B.; Kavimani, M.; Santhi, G.

    2015-01-01

    The FT-IR and FT-Raman spectra of 3-tert-butyl-4-hydroxyanisole (TBHA) molecule have been recorded in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. Optimized geometrical structure, harmonic vibrational frequencies has been computed by B3LYP level using 6-31G (d, p) and 6-311 + G (d, p) basis sets. The observed FT-IR and FT-Raman vibrational frequencies are analyzed and compared with theoretically predicted vibrational frequencies. The geometries and normal modes of vibration obtained from DFT method are in good agreement with the experimental data. The Mulliken charges, the natural bonding orbital (NBO) analysis, the first-order hyperpolarizability of the investigated molecule were computed using DFT calculations. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) were calculated and analyzed. The isotropic chemical shift computed by 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the TBHA calculated using the gauge invariant atomic orbital (GIAO) method also shows good agreement with experimental observations.

  2. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary.

    PubMed

    Yilmaz, Emel Maden; Güntert, Peter

    2015-09-01

    An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary. PMID:26123317

  3. NMR characterization of sodium carboxymethyl cellulose 2: Chemical shift assignment and conformation analysis of substituent groups.

    PubMed

    Kono, Hiroyuki; Oshima, Kazuhiro; Hashimoto, Hisaho; Shimizu, Yuuichi; Tajima, Kenji

    2016-10-01

    The chemical shifts of the substituent groups of sodium carboxymethyl cellulose (CMC) were assigned by examining a series of CMC samples with different degrees of substitution. Comparative analysis of the (1)H-(13)C heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) spectra allowed the complete assignment of the substituent groups at the 2-, 3-, and 6-positions of the seven substituted monomers comprising the CMC chains, namely, 2-mono-, 3-mono-, 6-mono-, 2,3-di-, 2,6-di-, 3,6-di-, and 2,3,6-tri-substituted anhydroglucose units (AGUs). In addition, the mole fractions of the monomers were determined by lineshape analysis of the carbonyl carbon resonances. The comparison between the chemical shifts of the substituents revealed strong interactions between 2- and 3-substituents in the same AGU, and showed that the steric hindrance by a substituent at the 2- or 3-position suppresses subsequent substitution at the adjacent position. PMID:27312635

  4. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). PMID:24824670

  5. Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator.

    PubMed

    Lu, Dawei; Xu, Nanyang; Xu, Ruixue; Chen, Hongwei; Gong, Jiangbin; Peng, Xinhua; Du, Jiangfeng

    2011-07-01

    Quantum simulation can beat current classical computers with minimally a few tens of qubits. Here we report an experimental demonstration that a small nuclear-magnetic-resonance quantum simulator is already able to simulate the dynamics of a prototype laser-driven isomerization reaction using engineered quantum control pulses. The experimental results agree well with classical simulations. We conclude that the quantum simulation of chemical reaction dynamics not computable on current classical computers is feasible in the near future. PMID:21797586

  6. Ab initio DFT study of bisphosphonate derivatives as a drug for inhibition of cancer: NMR and NQR parameters.

    PubMed

    Aghabozorg, Hussein; Sohrabi, Beheshteh; Mashkouri, Sara; Aghabozorg, Hamid Reza

    2012-03-01

    DFT computations were carried out to characterize the (17)Oand (2)H electric field gradient, EFG, in various bisphosphonate derivatives. The computations were performed at the B3LYP level with 6-311++G (d,P) standard basis set. Calculated EFG tensors were used to determine the (17)O and (2)H nuclear quadrupole coupling constant, χ and asymmetry parameter, η. For better understanding of the bonding and electronic structure of bisphosphonates, isotropic and anisotropic NMR chemical shieldings were calculated for the (13)C, (17)O and (31)P nuclei using GIAO method for the optimized structure of intermediate bisphosphonates at B3LYP level of theory using 6-311++G (d, p) basis set. The results showed that various substituents have a strong effect on the nuclear quadrupole resonance (NQR) parameters (χ, η) of (17)O in contrast with (2)H NQR parameters. The NMR and NQR parameters were studied in order to find the correlation between electronic structure and the activity of the desired bisphosphonates. In addition, the effect of substitutions on the bisphosphonates polarity was investigated. Molecular polarity was determined via the DFT calculated dipole moment vectors and the results showed that substitution of bromine atom on the ring would increase the activity of bisphosphonates. PMID:21633790

  7. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches.

    PubMed

    Vícha, Jan; Novotný, Jan; Straka, Michal; Repisky, Michal; Ruud, Kenneth; Komorovsky, Stanislav; Marek, Radek

    2015-10-14

    The role of various factors (structure, solvent, and relativistic treatment) was evaluated for square-planar 4d and 5d transition-metal complexes. The DFT method for calculating the structures was calibrated using a cluster approach and compared to X-ray geometries, with the PBE0 functional (def2-TZVPP basis set) providing the best results, followed closely by the hybrid TPSSH and the MN12SX functionals. Calculations of the NMR chemical shifts using the two-component (2c, Zeroth-Order Regular Approximation as implemented in the ADF package) and four-component (4c, Dirac-Coulomb as implemented in the ReSpect code) relativistic approaches were performed to analyze and demonstrate the importance of solvent corrections (2c) as well as a proper treatment of relativistic effects (4c). The importance of increased exact-exchange admixture in the functional (here PBE0) for reproducing the experimental data using the current implementation of the 2c approach is partly rationalized as a compensation for the missing exchange-correlation response kernel. The kernel contribution was identified to be about 15-20% of the spin-orbit-induced NMR chemical shift, ΔδSO, which roughly corresponds to an increase in ΔδSO introduced by the artificially increased exact-exchange admixture in the functional. Finally, the role of individual effects (geometry, solvent, relativity) in the NMR chemical shift is discussed in selected complexes. Although a fully relativistic DFT approach is still awaiting the implementation of GIAOs for hybrid functionals and an implicit solvent model, it nevertheless provides reliable NMR chemical shift data at an affordable computational cost. It is expected to outperform the 2c approach, in particular for the calculation of NMR parameters in heavy-element compounds. PMID:26344822

  8. Inverted cucurbit[n]urils: density functional investigations on the electronic structure, electrostatic potential, and NMR chemical shifts.

    PubMed

    Pinjari, Rahul V; Gejji, Shridhar P

    2009-02-19

    Inverted cucurbit[n]uril (i(x)CB[n], x = 1, 2; n = 6-8), the enantiomers of cucurbit[n]uril (CB[n]) comprising one or more inverted glycouril units, show distinct selectivity in recognition toward the guest by the virtue of shape and dimensions of its cavity. The iCB[n] (x = 1 and n = 6, 7) are isolated as intermediates during the synthesis of CB[n]. In this work, density functional theory using the hybrid B3LYP functional has been employed to derive the electronic structure and the NMR chemical shifts in the i(x)CB[n] hosts. The present calculations have shown that the inversion of the glycouril unit of CB[6] and CB[7] engenders a destabilization by 4.2 and 5.7 kJ mol(-1), respectively, and, as opposed to this, the iCB[8] is favored by 18.6 kJ mol(-1) over the corresponding CB[8] host. Likewise, i2CB[7] possessing two inverted glycourils are highly destabilized over CB[7]. A large separation of the inverted glycouril units reduces the repulsion between methine protons inside the cavity, rendering the 1,4-i2CB[n] (n = 7 or 8) to be of lowest energy. Stabilization energies from the self-consistent reaction field (SCRF) theory are calculated with water, ethanol, and tetrahydrofuran (THF) as solvents. Unlike in gas phase and other solvents, the stabilization hierarchy iCB[6] < iCB[7] < iCB[8] has been predicted in THF. Molecular electrostatic potential (MESP) was used to gauge the cavity shape of these hosts. Consequently the iCB[6] reveals a half-sprocket-like cavity; an additional tooth for each glycouril in the succeeding iCB[n] homologue was noticed. In the case of the 1,5-i2CB[8] enantiomer, the cavity turns out to be rectangular. The deeper MESP minima near the ureido oxygens suggest strong electrostatic interactions with the guest at the iCB[6] portals. The electron-rich region within the cavity explains the large affinity of CB[n] toward the electron deficient guests. The electronic distribution and shape and size of the cavity thus derived provide insights

  9. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  10. NMR analysis and chemical shift calculations of poly(lactic acid) dimer model compounds with different tacticities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, PLA dimer model compounds with different tacticities were synthesized and studied in detail by 1H and 13C NMR in three solvents, CDCl3/CCl4 (20/80 v/v), CDCl3 and DMSO-d6. All the peaks in the 1H and 13C NMR spectra were assigned with the help of two-dimensional NMR. Although the solve...

  11. A palm-size μNMR relaxometer using a digital microfluidic device and a semiconductor transceiver for chemical/biological diagnosis.

    PubMed

    Lei, Ka-Meng; Mak, Pui-In; Law, Man-Kay; Martins, Rui P

    2015-08-01

    Herein, we describe a micro-nuclear magnetic resonance (μNMR) relaxometer miniaturized to palm-size and electronically automated for multi-step and multi-sample chemical/biological diagnosis. The co-integration of microfluidic and microelectronic technologies enables an association between the droplet managements and μNMR assays inside a portable sub-Tesla magnet (1.2 kg, 0.46 Tesla). Targets in unprocessed biological samples, captured by specific probe-decorated magnetic nanoparticles (NPs), can be sequentially quantified by their spin-spin relaxation time (T2) via multiplexed μNMR screening. Distinct droplet samples are operated by a digital microfluidic device that electronically manages the electrowetting-on-dielectric effects over an electrode array. Each electrode (3.5 × 3.5 mm(2)) is scanned with capacitive sensing to locate the distinct droplet samples in real time. A cross-domain-optimized butterfly-coil-input semiconductor transceiver transduces between magnetic and electrical signals to/from a sub-10 μL droplet sample for high-sensitivity μNMR screening. A temperature logger senses the ambient temperature (0 to 40 °C) and a backend processor calibrates the working frequency for the transmitter to precisely excite the protons. In our experiments, the μNMR relaxometer quantifies avidin using biotinylated Iron NPs (Φ: 30 nm, [Fe]: 0.5 mM) with a sensitivity of 0.2 μM. Auto-handling and identification of two targets (avidin and water) are demonstrated and completed within 2.2 min. This μNMR relaxometer holds promise for combinatorial chemical/biological diagnostic protocols using closed-loop electronic automation. PMID:26034784

  12. Study of {sup 17}O(p,{alpha}){sup 14}N reaction via the Trojan Horse Method for application to {sup 17}O nucleosynthesis

    SciTech Connect

    Sergi, M. L.; Spitaleri, C.; Pizzone, R. G.; Gulino, M.; Cherubini, S.; Crucilla, V.; La Cognata, M.; Lamia, L.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Tudisco, S.; Tumino, A.; Coc, A.; Hammache, F.; Sereville, N. de; Kiss, G.

    2008-05-21

    Because of the still present uncertainties on its rate, the {sup 17}O(p,{alpha}){sup 14}N is one of the most important reaction to be studied in order to get more information about the fate of {sup 17}O in different astrophysical scenarios. The preliminary study of the three-body reaction {sup 2}H({sup 17}O,{alpha}{sup 14}N)n is presented here as a first stage of the indirect study of this important {sup 17}O(p,{alpha}){sup 14}N reaction through the Trojan Horse Method (THM)

  13. Soil organic degradation: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR)

    NASA Astrophysics Data System (ADS)

    Albrecht, Remy; Sebag, David; Verrecchia, Eric

    2013-04-01

    Being a source of mineral nutrients, organic matter contributes to soil chemical fertility and acts on soil physical fertility through its role in soil structure. Soil organic matter (SOM) is a key component of soils. Despite the paramount importance of SOM, information on its chemistry and behaviour in soils is incomplete. Numerous methods are used to characterize and monitor OM dynamics in soils using different approaches (Kogel-Knabner, 2000). Two of the main approaches are evaluated and compared in this study. Rock-Eval pyrolysis (RE pyrolysis) provides a description of a SOM's general evolution using its thermal resistance. The second tool (13C CPMAS NMR) aims to give precise and accurate chemical information on OM characterization. The RE pyrolysis technique was designed for petroleum exploration (Lafargue et al., 1998) and because of its simplicity, it has been applied to a variety of other materials such as soils or Recent sediments (Disnar et al., 2000; Sebag, 2006). Recently, RE pyrolysis became a conventional tool to study OM dynamics in soils. In RE pyrolysis, a peak deconvolution is applied to the pyrolysis signal in order to get four main components related to major classes of organic constituents. These components differ in origin and resistance to pyrolysis: labile biological constituents (F1), resistant biological constituents (F2), immature non-biotic constituents (F3) and a mature refractory fraction (F4) (Sebag, 2006; Coppard, 2006). Main advantages of the technique are its repeatability, and rapidity to provide an overview of OM properties and stocks. However, do the four major classes used in the literature reflect a pertinent chemical counterpart? To answer this question, we used 13C Nuclear Magnetic Resonance Spectroscopy in the solid state (13C CPMAS NMR) to collect direct information on structural and conformational characteristics of OM. NMR resonances were assigned to chemical structures according to five dominant forms: alkyl C, O

  14. Soil organic degradation: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR)

    NASA Astrophysics Data System (ADS)

    Albrecht, Remy; Sebag, David; Verrecchia, Eric

    2013-04-01

    Being a source of mineral nutrients, organic matter contributes to soil chemical fertility and acts on soil physical fertility through its role in soil structure. Soil organic matter (SOM) is a key component of soils. Despite the paramount importance of SOM, information on its chemistry and behaviour in soils is incomplete. Numerous methods are used to characterize and monitor OM dynamics in soils using different approaches (Kogel-Knabner, 2000). Two of the main approaches are evaluated and compared in this study. Rock-Eval pyrolysis (RE pyrolysis) provides a description of a SOM's general evolution using its thermal resistance. The second tool (13C CPMAS NMR) aims to give precise and accurate chemical information on OM characterization. The RE pyrolysis technique was designed for petroleum exploration (Lafargue et al., 1998) and because of its simplicity, it has been applied to a variety of other materials such as soils or Recent sediments (Disnar et al., 2000; Sebag, 2006). Recently, RE pyrolysis became a conventional tool to study OM dynamics in soils. In RE pyrolysis, a peak deconvolution is applied to the pyrolysis signal in order to get four main components related to major classes of organic constituents. These components differ in origin and resistance to pyrolysis: labile biological constituents (F1), resistant biological constituents (F2), immature non-biotic constituents (F3) and a mature refractory fraction (F4) (Sebag, 2006; Coppard, 2006). Main advantages of the technique are its repeatability, and rapidity to provide an overview of OM properties and stocks. However, do the four major classes used in the literature reflect a pertinent chemical counterpart? To answer this question, we used 13C Nuclear Magnetic Resonance Spectroscopy in the solid state (13C CPMAS NMR) to collect direct information on structural and conformational characteristics of OM. NMR resonances were assigned to chemical structures according to five dominant forms: alkyl C, O

  15. Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation.

    PubMed

    Cuny, Jérôme; Xie, Yu; Pickard, Chris J; Hassanali, Ali A

    2016-02-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental tools to probe the local atomic order of a wide range of solid-state compounds. However, due to the complexity of the related spectra, in particular for amorphous materials, their interpretation in terms of structural information is often challenging. These difficulties can be overcome by combining molecular dynamics simulations to generate realistic structural models with an ab initio evaluation of the corresponding chemical shift and quadrupolar coupling tensors. However, due to computational constraints, this approach is limited to relatively small system sizes which, for amorphous materials, prevents an adequate statistical sampling of the distribution of the local environments that is required to quantitatively describe the system. In this work, we present an approach to efficiently and accurately predict the NMR parameters of very large systems. This is achieved by using a high-dimensional neural-network representation of NMR parameters that are calculated using an ab initio formalism. To illustrate the potential of this approach, we applied this neural-network NMR (NN-NMR) method on the (17)O and (29)Si quadrupolar coupling and chemical shift parameters of various crystalline silica polymorphs and silica glasses. This approach is, in principal, general and has the potential to be applied to predict the NMR properties of various materials. PMID:26730889

  16. 129Xe NMR chemical shift in Xe@C60 calculated at experimental conditions: essential role of the relativity, dynamics, and explicit solvent.

    PubMed

    Standara, Stanislav; Kulhánek, Petr; Marek, Radek; Straka, Michal

    2013-08-15

    The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems. PMID:23703381

  17. Chemically selective NMR imaging of a 3-component (solid-solid-liquid) sedimenting system.

    PubMed

    Beyea, Steven D; Altobelli, Stephen A; Mondy, Lisa A

    2003-04-01

    A novel magnetic resonance imaging (MRI) technique which resolves the separate components of the evolving vertical concentration profiles of 3-component non-colloidal suspensions is described. This method exploits the sensitivity of MRI to chemical differences between the three phases to directly image the fluid phase and one of the solid phases, with the third phase obtained by subtraction. 19F spin-echo imaging of a polytetrafluoroethylene (PTFE) oil was interlaced with 1H SPRITE imaging of low-density polyethylene (LDPE) particles. The third phase was comprised of borosilicate glass spheres, which were not visible while imaging the PTFE or LDPE phases. The method is demonstrated by performing measurements on 2-phase materials containing only the floating (LDPE) particles, with the results contrasted to the experimental behaviour of the individual phases in the full 3-phase system. All experiments were performed using nearly monodisperse particles, with initial suspension volume fractions, phi(i), of 0.1. PMID:12713970

  18. Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro

    2013-09-01

    Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.

  19. DFT calculations of 15N NMR shielding constants, chemical shifts and complexation shifts in complexes of rhodium(II) tetraformate with some nitrogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Leniak, Arkadiusz; Jaźwiński, Jarosław

    2015-03-01

    Benchmark calculations of 15N NMR shielding constants for a set of model complexes of rhodium(II) tetraformate with nine organic ligands using the Density Functional Theory (DFT) methods have been carried out. The calculations were performed by means of several methods: the non-relativistic, relativistic scalar ZORA, and spin-orbit ZORA approaches at the CGA-PBE/QZ4P theory level, and the GIAO NMR method using the B3PW91 functional with the 6-311++G(2d,p) basis set for C, H, N, O atoms and the Stuttgart basis set for the Rh atom. The geometry of compounds was optimised either by the same basis set as for the NMR calculations or applying the B3LYP functional with the 6-31G(2d) basis set for C, H, N, O atoms and LANL2DZ for the Rh atom. Computed 15N NMR shielding constants σ were compatible with experimental 15N chemical shifts δ of complexes exhibiting similar structure and fulfil the linear equation δ = aσ + b. The a and b parameters for all data sets have been estimated by means of linear regression analysis. In contrast to the correlation method giving "scaled" chemical shifts, the conversion of shielding constants to chemical shifts with respect to the reference shielding of CH3NO2 provided very inaccurate "raw" δ values. The application of the former to the calculation of complexation shifts Δδ (Δδ = δcompl - δlig) reproduced experimental values qualitatively or semi-quantitatively. The non-relativistic B3PW91/[6-311++G(2d,p), Stuttgart] theory level reproduced the NMR parameters as good as the more expensive relativistic CGA-PBE//QZ4P ZORA approaches.

  20. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water. PMID:24595457

  1. 13C NMR chemical shift correlations in application of “tool of increasing electron demand” to stable long-lived carbocations: Comprehensive evaluation*

    PubMed Central

    Olah, George A.; Berrier, Arthur L.; Prakash, G. K. Surya

    1981-01-01

    The reliability of 13C NMR chemical shift correlations in the application of the “tool of increasing electron demand” to stable long-lived carbocationic systems is demonstrated by a comprehensive analysis of 22 stable aryl-substituted carbocationic systems. The observation of slopes of less than unity in such chemical shift correlations for several cationic systems has been attributed to additional charge delocalizing mechanisms present in the system (such as homoallylic, cyclopropyl, and π conjugations). The onset of nonclassical σ-delocalization in 2-aryl-2-norbornyl cations with electron withdrawing-substituents previously observed was further verified by using σC+ substituent constants. Difficulties in relating the CαNMR shifts in different carbocationic systems are also discussed. PMID:16593000

  2. Correlation between 1H NMR chemical shifts of hydroxyl protons in n-hexanol/cyclohexane and molecular association properties investigated using density functional theory

    NASA Astrophysics Data System (ADS)

    Flores, Mario E.; Shibue, Toshimichi; Sugimura, Natsuhiko; Nishide, Hiroyuki; Moreno-Villoslada, Ignacio

    2016-01-01

    Association of n-hexanol molecules in cyclohexane forming clusters is studied by DFT and 1H NMR. Geometry optimization, corrected binding energies, charge distributions, charge transfer energies, and 1H NMR chemical shifts have been obtained. The calculated chemical shifts of hydroxyl protons have been correlated to experimental data obtained in the range of n-hexanol molar fraction between 0.002 and 0.2, showing that n-hexanol molecules at a molar fraction around 0.1, where well-structured hydrogen bond networks are observed, tend to form linear pentamers and hexamers. The experimental data are consistent with the continuous linear association thermodynamic model, showing a dimensionless association constant of 284.

  3. Selenium Chain Length Distribution in GexSe100-x Glasses: Insights from (77)Se NMR Spectroscopy and Quantum Chemical Calculations.

    PubMed

    Kaseman, Derrick C; Oliveira, Karina Moreira; Palazzo, Teresa; Sen, Sabyasachi

    2016-05-19

    The statistics of selenium chain length distribution in GexSe100-x glasses with 5 ≤ x ≤ 20 are investigated using a combination of high-resolution, two-dimensional (77)Se nuclear magnetic resonance (NMR) spectroscopy and quantum chemical calculations. This combined approach allows for the distinction of various selenium chain environments on the basis of subtle but systematic effects of next-nearest neighbors of Se atoms in -Se-Se-Se- linkages on the (77)Se chemical shift tensor parameters. Simulation of the experimental (77)Se NMR spectral line shapes indicates that Se chain speciation in these chalcogenide glasses follows the Flory-Schulz distribution, originally developed for organic chain polymers. PMID:27129100

  4. Synthesis of a new 1,2,3,4,5-pentasubstituted cyclohexanol and determining its stereochemistry by NMR spectroscopy and quantum-chemical calculations.

    PubMed

    Mamedov, Ibrahim; Abbasoglu, Rza; Bayramov, Musa; Maharramov, Abel

    2016-04-01

    The presence of substituents in cyclohexane can influence to the ratio of conformers; for some cases, the boat form is preferable. The new six-membered cyclohexanol derivative 2 has been obtained by the synthesis of (E)-1-(bromophenyl)-3-phenylpropen-2-one (1). The NMR and quantum-chemical conformational analysis for the 2 have carried out, and its possible mechanism of formation was given. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26939987

  5. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  6. Structure analysis and spectroscopic characterization of 2-Fluoro-3-Methylpyridine-5-Boronic Acid with experimental (FT-IR, Raman, NMR and XRD) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Dikmen, Gökhan

    2016-03-01

    Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.

  7. Constraining Oxygen-17 NMR Spectra of High Pressure Crystals and Glasses: New Data for Jadeite, Pyrope, Grossular, and Mullite

    NASA Astrophysics Data System (ADS)

    Kelsey, K. E.; Stebbins, J. F.; Du, L.; Hankins, B.

    2005-12-01

    17O NMR is a direct way of analyzing the immediate environment around oxygen atoms and can provide information on cation ordering, mixing, and network connectivity in glasses and disordered crystals. Due to overlapping peaks and lack of data on crystalline model compounds, 17O NMR spectra of high pressure glasses have been difficult to interpret. Additionally, data on crystalline model compounds are needed to test the validity of quantum chemical calculations. In this study, 17O NMR spectra were collected for crystalline jadeite, pyrope, grossular, and mullite in order to determine the parameters for oxygen bonded to [6]Al in a variety of environments. Jadeite contains three oxygen sites: oxygen bonded to [4]Si, Na, and two [6]Al atoms (O1), oxygen bonded to [4]Si, Na, and [6]Al atoms (O2), and oxygen bonded to two [4]Si and two Na atoms (O3). The NMR parameters for O1 are CQ = 3.3 MHz, δ = 64 ppm, and ν = 0.9; for O2 are CQ = 4.1 MHz, δ = 59 ppm, and ν = 0.15; and for O3 are CQ = 5.0 MHz, δ = 60 ppm, and ν = 0.15. The parameters for O2 are similar to interpretations of recent data for this kind of site in high pressure sodium aluminosilicate glasses (δ = 59 ppm) and to quantum chemical calculations (Lee et al., 2004, J. Phys. Chem., 108, 5897). Pyrope and grossular each contain one oxygen site, oxygen bonded to [4]Si, [6]Al, and two M2+ cations. The 17O NMR parameters for pyrope are CQ = 3.4 MHz, δ = 84 ppm, and ν = 0.3 and for grossular are CQ = 4.1 MHz, δ = 102 ppm, and ν = 0.4. In grossular, the NMR peak for oxygens bonded to [4]Si, Ca, and high coordinated Al seems to fall between those for "normal" bridging and non bridging oxygens, as reported for high pressure CAS glasses by Allwardt et al. (2005). These data will also be useful to help understand Ca-Mg ordering in the pyrope-grossular solid solutions. Mullite contains four oxygen environments: oxygen bonded to three tetrahedral Al or Si (Oc*), oxygen bonded to two tetrahedral Al or Si (Oc), and

  8. The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions.

    PubMed

    Kirk, K; Kuchel, P W

    1988-01-01

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single 31P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular 31P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied), it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference in the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved. PMID:3275636

  9. Contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the /sup 31/P NMR spectra of oxygenated erythrocyte suspensions

    SciTech Connect

    Kirk, K.; Kuchel, P.W.

    1988-01-05

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single /sup 31/P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular /sup 31/P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied) it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference is the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved.

  10. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    SciTech Connect

    Bevilaqua, Rochele C. A.; Miranda, Caetano R.; Rigo, Vagner A.; Veríssimo-Alves, Marcos

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  11. NMR characterization of hydrocarbon adsorption on calcite surfaces: a first principles study.

    PubMed

    Bevilaqua, Rochele C A; Rigo, Vagner A; Veríssimo-Alves, Marcos; Miranda, Caetano R

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca(2+). Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 (101¯4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for (43)Ca, (13)C, and (17)O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated. PMID:25429955

  12. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    NASA Astrophysics Data System (ADS)

    Bevilaqua, Rochele C. A.; Rigo, Vagner A.; Veríssimo-Alves, Marcos; Miranda, Caetano R.

    2014-11-01

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca2+. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 ( {10bar 14} )). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for 43Ca, 13C, and 17O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  13. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction.

    PubMed

    Lehtivarjo, Juuso; Tuppurainen, Kari; Hassinen, Tommi; Laatikainen, Reino; Peräkylä, Mikael

    2012-03-01

    While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein (1)H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6-17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for (1)Hα, (1)HN, (13)Cα, (13)Cβ, (13)CO and backbone (15)N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at http://www.uef.fi/4dspot. PMID:22314705

  14. Alkaline earth chloride hydrates: chlorine quadrupolar and chemical shift tensors by solid-state NMR spectroscopy and plane wave pseudopotential calculations.

    PubMed

    Bryce, David L; Bultz, Elijah B

    2007-01-01

    A series of alkaline earth chloride hydrates has been studied by solid-state (35/37)Cl NMR spectroscopy in order to characterize the chlorine electric field gradient (EFG) and chemical shift (CS) tensors and to relate these observables to the structure around the chloride ions. Chlorine-35/37 NMR spectra of solid powdered samples of pseudopolymorphs (hydrates) of magnesium chloride (MgCl(2).6H(2)O), calcium chloride (CaCl(2).2H(2)O), strontium chloride (SrCl(2), SrCl(2).2H(2)O, and SrCl(2).6H(2)O), and barium chloride (BaCl(2).2H(2)O) have been acquired under stationary and magic-angle spinning conditions in magnetic fields of 11.75 and 21.1 T. Powder X-ray diffraction was used as an additional tool to confirm the purity and identity of the samples. Chlorine-35 quadrupolar coupling constants (C(Q)) range from essentially zero in cubic anhydrous SrCl(2) to 4.26+/-0.03 MHz in calcium chloride dihydrate. CS tensor spans, Omega, are between 40 and 72 ppm, for example, Omega= 45+/-20 ppm for SrCl(2).6H(2)O. Plane wave-pseudopotential density functional theory, as implemented in the CASTEP program, was employed to model the extended solid lattices of these materials for the calculation of their chlorine EFG and nuclear magnetic shielding tensors, and allowed for the assignment of the two-site chlorine NMR spectra of barium chloride dihydrate. This work builds upon our current understanding of the relationship between chlorine NMR interaction tensors and the local molecular and electronic structure, and highlights the particular sensitivity of quadrupolar nucleus solid-state NMR spectroscopy to the differences between various pseudopolymorphic structures in the case of strontium chloride. PMID:17385204

  15. Experimental determination of the {sup 17}O(p,{alpha}){sup 14}N and {sup 17}O(p,{gamma}){sup 18}F reaction rates

    SciTech Connect

    Chafa, A.; Ouichaoui, S.; Tatischeff, V.; Coc, A.; Garrido, F.; Kiener, J.; Lefebvre-Schuhl, A.; Thibaud, J.-P.; Aguer, P.; Barhoumi, S.; Hernanz, M.; Jose, J.; Sereville, N. de

    2007-03-15

    The {sup 17}O(p,{alpha}){sup 14}N and {sup 17}O(p,{gamma}){sup 18}F reactions are of major importance to hydrogen-burning nucleosynthesis in a number of different stellar sites. In particular, {sup 17}O and {sup 18}F nucleosynthesis in classical novae is strongly dependent on the thermonuclear rates of these two reactions. The previously estimated rate for {sup 17}O(p,{alpha}){sup 14}N carries very large uncertainties in the temperature range of classical novae (T=0.01-0.4 GK), whereas a recent measurement has reduced the uncertainty of the {sup 17}O(p,{gamma}){sup 18}F rate. We report on the observation of a previously undiscovered resonance at E{sub c.m.}=183.3 keV in the {sup 17}O(p,{alpha}){sup 14}N reaction, with a measured resonance strength {omega}{gamma}{sub p{alpha}}=(1.6{+-}0.2)x10{sup -3} eV. We studied in the same experiment the {sup 17}O(p,{gamma}){sup 18}F reaction by an activation method, and the resonance strength was found to amount to {omega}{gamma}{sub p{gamma}}=(2.2{+-}0.4)x10{sup -6} eV. The excitation energy of the corresponding level in {sup 18}F was determined to be 5789.8{+-}0.3 keV in a Doppler shift attenuation method measurement, which yielded a value of {tau}<2.6 fs for the level lifetime. The {sup 17}O(p,{alpha}){sup 14}N and {sup 17}O(p,{gamma}){sup 18}F reaction rates were calculated using the measured resonance properties and reconsidering some previous analyses of the contributions of other levels or processes. The {sup 17}O(p,{alpha}){sup 14}N rate is now well established below T=1.5 GK, with uncertainties reduced by orders of magnitude in the temperature range T=0.1-0.4 GK. The uncertainty in the {sup 17}O(p,{gamma}){sup 18}F rate is somewhat larger because of remaining obscurities in the knowledge of the direct capture process. These new resonance properties have important consequences for {sup 17}O nucleosynthesis and {gamma}-ray emission of classical novae.

  16. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using delta17O.

    PubMed

    Michalski, Greg; Meixner, Thomas; Fenn, Mark; Hernandez, Larry; Sirulnik, Abby; Allen, Edith; Thiemens, Mark

    2004-04-01

    The isotopic composition of nitrate collected from aerosols, fog, and precipitation was measured and found to have a large 17O anomaly with delta17O values ranging from 20 percent per thousand to 30% percent per thousand (delta17O = delta17O - 0.52(delta18O)). This 17O anomaly was used to trace atmospheric deposition of nitrate to a semiarid ecosystem in southern California. We demonstrate that the delta17O signal is a conserved tracer of atmospheric nitrate deposition and is a more robust indicator of N deposition relative to standard delta18O techniques. The data indicate that a substantial portion of nitrate found in the local soil, stream, and groundwater is of atmospheric origin and does not undergo biologic processing before being exported from the system. PMID:15112822

  17. Stereochemistry of Complex Marine Natural Products by Quantum Mechanical Calculations of NMR Chemical Shifts: Solvent and Conformational Effects on Okadaic Acid

    PubMed Central

    Domínguez, Humberto J.; Crespín, Guillermo D.; Santiago-Benítez, Adrián J.; Gavín, José A.; Norte, Manuel; Fernández, José J.; Hernández Daranas, Antonio

    2014-01-01

    Marine organisms are an increasingly important source of novel metabolites, some of which have already inspired or become new drugs. In addition, many of these molecules show a high degree of novelty from a structural and/or pharmacological point of view. Structure determination is generally achieved by the use of a variety of spectroscopic methods, among which NMR (nuclear magnetic resonance) plays a major role and determination of the stereochemical relationships within every new molecule is generally the most challenging part in structural determination. In this communication, we have chosen okadaic acid as a model compound to perform a computational chemistry study to predict 1H and 13C NMR chemical shifts. The effect of two different solvents and conformation on the ability of DFT (density functional theory) calculations to predict the correct stereoisomer has been studied. PMID:24402177

  18. Spectroscopic (FT-IR, Raman, NMR and UV-vis.) and quantum chemical investigations of (E)-3-[4-(pentyloxy)phenyl]-1-phenylprop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Abbas, Asghar; Gökce, Halil; Bahçeli, Semiha; Naseer, Muhammad Moazzam

    2014-10-01

    In this study, the molecular structure and vibrational and electronic transition spectra and 1H and 13C NMR chemical shift values (gas phase and in chloroform solvent), HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic properties and Mulliken atomic charges of (E)-3-[4-(pentyloxy)phenyl]-1-phenylprop-2-en-1-one molecule, C20H22O2, which has many biological activities have been calculated using the DFT/B3LYP method with 6-311++G(d,p) basis set in the ground state. The obtained results indicate a good harmony among the calculated and the experimental FT-IR, Raman, UV-vis. (in methanol solvent) and 1H and 13C NMR (in chloroform-d solvent) spectra of the mentioned compound.

  19. Moving NMR

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard; Casanova, Federico; Danieli, Ernesto; Gong, Qingxia; Greferath, Marcus; Haber, Agnes; Kolz, Jürgen; Perlo, Juan

    2008-12-01

    Initiated by the use of NMR for well logging, portable NMR instruments are being developed for a variety of novel applications in materials testing and process analysis and control. Open sensors enable non-destructive testing of large objects, and small, cup-size magnets become available for high throughput analysis by NMR relaxation and spectroscopy. Some recent developments of mobile NMR are reviewed which delineate the direction into which portable NMR is moving.

  20. Solid-state (185/187)Re NMR and GIPAW DFT study of perrhenates and Re2(CO)10: chemical shift anisotropy, NMR crystallography, and a metal-metal bond.

    PubMed

    Widdifield, Cory M; Perras, Frédéric A; Bryce, David L

    2015-04-21

    Advances in solid-state nuclear magnetic resonance (SSNMR) methods, such as dynamic nuclear polarization (DNP), intricate pulse sequences, and increased applied magnetic fields, allow for the study of systems which even very recently would be impractical. However, SSNMR methods using certain quadrupolar probe nuclei (i.e., I > 1/2), such as (185/187)Re remain far from fully developed due to the exceedingly strong interaction between the quadrupole moment of these nuclei and local electric field gradients (EFGs). We present a detailed high-field (B0 = 21.1 T) experimental SSNMR study on several perrhenates (KReO4, AgReO4, Ca(ReO4)2·2H2O), as well as ReO3 and Re2(CO)10. We propose solid ReO3 as a new rhenium SSNMR chemical shift standard due to its reproducible and sharp (185/187)Re NMR resonances. We show that for KReO4, previously poorly understood high-order quadrupole-induced effects (HOQIE) on the satellite transitions can be used to measure the EFG tensor asymmetry (i.e., ηQ) to nearly an order-of-magnitude greater precision than competing SSNMR and nuclear quadrupole resonance (NQR) approaches. Samples of AgReO4 and Ca(ReO4)2·2H2O enable us to comment on the effects of counter-ions and hydration upon Re(vii) chemical shifts. Calcium-43 and (185/187)Re NMR tensor parameters allow us to conclude that two proposed crystal structures for Ca(ReO4)2·2H2O, which would be considered as distinct, are in fact the same structure. Study of Re2(CO)10 provides insights into the effects of Re-Re bonding on the rhenium NMR tensor parameters and rhenium oxidation state on the Re chemical shift value. As overtone NQR experiments allowed us to precisely measure the (185/187)Re EFG tensor of Re2(CO)10, we were able to measure rhenium chemical shift anisotropy (CSA) for the first time in a powdered sample. Experimental observations are supported by gauge-including projector augmented-wave (GIPAW) density functional theory (DFT) calculations, with NMR tensor calculations also

  1. Implications of using approximate Bloch-McConnell equations in NMR analyses of chemically exchanging systems: application to the electron self-exchange of plastocyanin

    NASA Astrophysics Data System (ADS)

    Flemming Hansen, D.; Led, Jens J.

    2003-08-01

    The validity of a series of approximate solutions of the Bloch-McConnell equations normally applied in the analyses of chemically exchanging systems is evaluated, using the electron self-exchange (ESE) in the blue copper protein plastocyanin from Anabaena variabilis as an example. The evaluation is based on a comparison with the results of a complete analysis of the NMR signals of chemically exchanging nuclei that allows an independent and accurate determination of all the involved parameters. The complete analysis is based on the general solution of the Bloch-McConnell equations. It includes a simultaneous analysis of the chemical shift, and the transverse and longitudinal relaxation rates of the observed nuclei as well as the variation of these parameters with the molar fractions of the exchanging species and the rate of the chemical exchange process. The linear prediction model method was used in the data analysis to achieve the highest possible precision. Surprisingly, it is found that the fast exchange condition may not be fulfilled even in cases where a single exchange-averaged NMR signal is observed, and the Larmor frequency and relaxation rates depend linearly on the molar fractions of the exchanging species. In such cases the use of approximate solutions in the analysis of the transverse relaxation rates and the pseudo-contact shifts can lead to erroneous results. In limiting cases close to the fast exchange and slow exchange regimes correct values of some of the parameters can be obtained using the second order approximate solution of the Bloch-McConnell equations. In contrast, the complete analysis of the NMR signals results in an accurate determination of the exchange rates and the NMR parameters of the exchanging sites. This, in turn, can provide information about the structure and function of a protein undergoing chemically exchange. For the investigated plastocyanin the complete analysis results in an accurate determination of the paramagnetic

  2. Characterizing the Microstructure of Heparin and Heparan Sulfate using N-sulfoglucosamine 1H and 15N NMR Chemical Shift Analysis

    PubMed Central

    Langeslay, Derek J.; Beecher, Consuelo N.; Naggi, Annamaria; Guerrini, Marco; Torri, Giangiacomo; Larive, Cynthia K.

    2014-01-01

    Heparin and heparan sulfate (HS) are members of a biologically important group of highly anionic linear polysaccharides called glycosaminoglycans (GAGs). Because of their structural complexity, the molecular-level characterization of heparin and HS continues to be a challenge. The work presented herein describes an emerging approach for the analysis of unfractionated and low molecular weight heparins as well as porcine and human-derived HS. This approach utilizes the untapped potential of 15N NMR to characterize these preparations through detection of the NH resonances of N-sulfo-glucosamine residues. The sulfamate group 1H and 15N chemical shifts of six GAG microenvironments were assigned based on the critical comparison of selectively modified heparin derivatives, NMR measurements for a library of heparin-derived oligosaccharide standards, and an in-depth NMR analysis of the low molecular weight heparin enoxaparin through systematic investigation of the chemical exchange properties of NH resonances and residue-specific assignments using the [1H, 15N] HSQC-TOCSY experiment. The sulfamate microenvironments characterized in this study include GlcNS(6S)-UA(2S), ΔUA(2S)-GlcNS(6S), GlcNS(3S)(6S)-UA(2S), GlcNS-UA, GlcNS(6S)-redα, and 1,6-anhydro GlcNS demonstrate the utility of [1H, 15N] HSQC NMR spectra to provide a spectroscopic fingerprint reflecting the composition of intact GAGs and low molecular weight heparin preparations. PMID:23240897

  3. Experimental Study of 17O(p,{alpha})14N and 17O(p,{gamma})18F for Classical Nova Nucleosynthesis

    SciTech Connect

    Chafa, A.; Ouichaoui, S.; Tatischeff, V.; Coc, A.; Garrido, F.; Kiener, J.; Lefebvre-Schuhl, A.; Thibaud, J.-P.; Aguer, P.; Barhoumi, S.; Hernanz, M.; Jose, J.; Sereville, N. de

    2006-04-26

    We investigated the proton-capture reactions on 17O occurring in classical nova explosions. We observed a previously undiscovered resonance at E{sub R}{sup lab}=194.1{+-}0.6 keV in the 17O(p,{alpha})14N reaction, with a measured resonance strength {omega}{gamma}p{alpha}=1.6{+-}0.2 meV. We studied in the same experiment the 17O(p,{gamma})18F reaction by an activation method and the resonance-strength ratio was found to be {omega}{gamma}p{alpha}/{omega}{gamma}p{gamma}=470{+-}50. The corresponding excitation energy in the 18F compound nucleus was determined to be 5789.8{+-}0.3 keV by {gamma}-ray measurements using the 14N({alpha},{gamma})18F reaction. These new resonance properties have important consequences for 17O nucleosynthesis and {gamma}-ray astronomy of classical novae.

  4. Measurement of δ18O, δ17O, and 17O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry.

    PubMed

    Berman, Elena S F; Levin, Naomi E; Landais, Amaelle; Li, Shuning; Owano, Thomas

    2013-11-01

    Stable isotopes of water have long been used to improve understanding of the hydrological cycle, catchment hydrology, and polar climate. Recently, there has been increasing interest in measurement and use of the less-abundant (17)O isotope in addition to (2)H and (18)O. Off-axis integrated cavity output spectroscopy (OA-ICOS) is demonstrated for accurate and precise measurements δ(18)O, δ(17)O, and (17)O-excess in liquid water. OA-ICOS involves no sample conversion and has a small footprint, allowing measurements to be made by researchers collecting the samples. Repeated (514) high-throughput measurements of the international isotopic reference water standard Greenland Ice Sheet Precipitation (GISP) demonstrate the precision and accuracy of OA-ICOS: δ(18)OVSMOW-SLAP = -24.74 ± 0.07‰ (1σ) and δ(17)OVSMOW-SLAP = -13.12 ± 0.05‰ (1σ). For comparison, the International Atomic Energy Agency (IAEA) value for δ(18)OVSMOW-SLAP is -24.76 ± 0.09‰ (1σ) and an average of previously reported values for δ(17)OVSMOW-SLAP is -13.12 ± 0.06‰ (1σ). Multiple (26) high-precision measurements of GISP provide a (17)O-excessVSMOW-SLAP of 23 ± 10 per meg (1σ); an average of previously reported values for (17)O-excessVSMOW-SLAP is 22 ± 11 per meg (1σ). For all these OA-ICOS measurements, precision can be further enhanced by additional averaging. OA-ICOS measurements were compared with two independent isotope ratio mass spectrometry (IRMS) laboratories and shown to have comparable accuracy and precision as the current fluorination-IRMS techniques in δ(18)O, δ(17)O, and (17)O-excess. The ability to measure accurately δ(18)O, δ(17)O, and (17)O-excess in liquid water inexpensively and without sample conversion is expected to increase vastly the application of δ(17)O and (17)O-excess measurements for scientific understanding of the water cycle, atmospheric convection, and climate modeling among others. PMID:24032448

  5. An oxygen-17 dynamic NMR study of the Pr-DOTA complex.

    PubMed

    Fusaro, Luca; Luhmer, Michel

    2014-01-21

    The complex between (17)O-enriched DOTA (tetraazacyclododecanetetraacetic acid) and praseodymium(III) (Pr(3+)) was studied in aqueous solution by variable-temperature (17)O NMR at 14.1 T. pH effects as well as the influence of metal ions free in solution were investigated. At low temperature, the so-called TSAP and SAP conformations give rise to distinct signals for the oxygen atoms coordinated to the metal ion (O2); coalescence occurs between 20 and 30 °C. In contrast, a single signal was detected for the noncoordinated oxygen atoms (O1) in the entire investigated temperature range, i.e. between -3 and 135 °C. At high temperature, the spectra exhibit signal broadening that reveals the interchange of the O1 and O2 oxygen atoms of the carboxylate groups. The linewidths measured for O1 were deconvolved into contributions from quadrupole relaxation and chemical exchange, allowing the corresponding activation barriers to be determined. The present (17)O dynamic NMR study provides the first quantitative experimental data characterizing the interchange of the oxygen atoms in a DOTA chelate of a lanthanide metal ion. The activation entropy of this process is negligible and the activation enthalpy is found to range between 66 and 77 kJ mol(-1), depending on the pH and the presence of free Pr(3+) ions in solution. These data support the results of a previous computational study according to which the exchange mechanism involves the internal rotation of the carboxylate groups. PMID:24158053

  6. 17O-excess traces atmospheric nitrate in paleo groundwater of the Saharan desert

    NASA Astrophysics Data System (ADS)

    Dietzel, M.; Leis, A.; Abdalla, R.; Savarino, J.; Morin, S.; Böttcher, M. E.; Köhler, S.

    2013-12-01

    Saharan paleo groundwater from the Hasouna area of Libya contains up to 1.8 mM of nitrate, the origin of which is still disputed. Herein we show that a positive 17O-excess in NO3- (Δ17ONO3 = δ17ONO3 - 0.52 δ18ONO3) is preserved in the paleo groundwater. The 17O-excess provides an excellent tracer of atmospheric NO3-, which is caused by the interaction of ozone with NOx via photochemical reactions, coupled with a non-mass dependent isotope fractionation. Our Δ17ONO3 data from 0.4 to 5.0‰ (n = 28) indicate that up to x [NO3-]atm = 20 mol % of total dissolved NO3- originated from the Earth's atmosphere. High Δ17ONO3 values correspond to soils that are barren in dry periods, while low Δ17ONO3 values correspond to more fertile soils. Coupled high Δ17ONO3 and high x [NO3-]atm values are caused by a sudden wash out of dry deposition of atmospheric NO3- on plant or soil surfaces within humid-wet cycles. The individual isotope and chemical composition of the Hasouna groundwater can be followed by a binary mixing approach using the lowest and highest mineralized groundwater as end-members without considering evaporation. Using the δ34SSO4 and δ18OSO4 isotope signature of dissolved sulfate, no indication is found for a superimposition by denitrification, e.g. involving pyrite minerals within the aquifers. It is suggested that dissolved sulfate originates from the dissolution of calcium sulfate minerals during groundwater evolution.

  7. 17O excess traces atmospheric nitrate in paleo-groundwater of the Saharan desert

    NASA Astrophysics Data System (ADS)

    Dietzel, M.; Leis, A.; Abdalla, R.; Savarino, J.; Morin, S.; Böttcher, M. E.; Köhler, S.

    2014-06-01

    Saharan paleo-groundwater from the Hasouna area of Libya contains up to 1.8 mM of nitrate, which exceeds the World Health Organization limit for drinking water, but the origin is still disputed. Herein we show that a positive 17O excess in NO3- (Δ17ONO3 = Δ17ONO3 - 0.52 δ18ONO3) is preserved in the paleo-groundwater. The 17O excess provides an excellent tracer of atmospheric NO3-, which is caused by the interaction of ozone with NOx via photochemical reactions, coupled with a non-mass-dependent isotope fractionation. Our Δ17ONO3 data from 0.4 to 5.0 ‰ (n = 28) indicate that up to 20 mol % of total dissolved NO3- originated from the Earth's atmosphere (x[NO3-]atm), where the remaining NO3- refers to microbially induced nitrification in soils. High Δ17ONO3 values correspond to soils that are barren in dry periods, while low Δ17ONO3 values correspond to more fertile soils. Coupled high Δ17ONO3 and high x[NO3-]atm values are caused by a sudden wash-out of accumulated disposition of atmospheric NO3- on plants, soil surfaces and in vadose zones within humid-wet cycles. The individual isotope and chemical composition of the Hasouna groundwater can be followed by a binary mixing approach using the lowest and highest mineralised groundwater as end members without considering evaporation. Using the δ34SSO4 and δ18OSO4 isotope signature of dissolved SO42-, no indication is found for a superimposition by denitrification, e.g. involving pyrite minerals within the aquifers. It is suggested that dissolved SO42- originates from the dissolution of CaSO4 minerals during groundwater evolution.

  8. Silver and Gold NMR

    PubMed Central

    Zangger, Klaus

    1999-01-01

    Silver and gold, together with copper, form the transition metal group IB elements in the periodic table and possess very different nuclear magnetic resonance (NMR) spectroscopic properties. While there is only one gold isotope (197Au), which has a spin of 3/2 and therefore a quadrupole moment, silver occurs in two isotopic forms (109Ag and 109Au), both of which have a spin 1/2 and similar NMR spectroscopic properties. The unfavorable properties of gold have prevented its NMR spectroscopic investigation thus far. On the other hand, there are several reports of silver NMR. However, the low sensitivity of silver, combined with its long relaxation times have rendered the direct detection of silver possible only with concentrations greater than a few tenth molar. Reviewed here are the general limitations of silver NMR and some techniques to partially overcome these limitations, as well as a summary of currently available chemical shift and scalar coupling data on 109Ag. PMID:18475898

  9. Chemical Origins of Permanent Set in a Peroxide Cured Filled Silicone Elastomer - Tensile and 1H NMR Analysis

    SciTech Connect

    Chinn, S; Deteresa, S; Shields, A; Sawvel, A; Balazs, B; Maxwell, R S

    2004-10-29

    The aging of a commercial filled siloxane polymeric composite in states of high stress and Co-60 {gamma}-radiation exposure has been studied. DC-745 is a commercially available silicone elastomer consisting of dimethyl, methyl-phenyl, and vinyl-methyl siloxane monomers crosslinked with a peroxide vinyl specific curing agent. It is filled with {approx}30 wt.% mixture of high and low surface area silicas. This filled material is shown to be subject to permanent set if exposed to radiation while under tensile stress. Tensile modulus measurements show that the material gets marginally softer with combined radiation exposure and tensile strain as compared to material exposed to radiation without tensile strain. In addition, the segmental dynamics as measured by both uniaxial NMR relaxometry and Multiple Quantum NMR methods indicate that the material is undergoes radiatively-induced crosslinking in the absence of tensile strain and a combination of crosslinking and strain dependent increase in dynamic order parameter for the network chains. The MQ-NMR also suggests a small change in the number of polymer chains associated with the silica filler surface. Comparison of the prediction of the relative change in crosslink density from the NMR data as well as solvent swelling data and from that predicted from the Tobolsky model suggest that degradation leads to a deviation from Gaussian chain statistics and the formation of increased numbers of elastically ineffective network chains.

  10. Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy

    SciTech Connect

    David, K.; Ben, H.; Muzzy, J.; Feik, C.; Iisa, K.; Ragauskas, A.

    2012-03-01

    Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oils range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.

  11. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 - Proof of concept.

    PubMed

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In microemulsions, changes in droplet size and shape and possible transformations occur under various conditions. They are difficult to characterize by most analytical tools because of their nano-sized structure and dynamic nature. Several methods are usually combined to obtain reliable information, guiding the scientist in understanding their physical behavior. We felt that there is a need for a technique that complements those in use today in order to provide more information on the microemulsion behavior, mainly as a function of dilution with water. The improvement of NMR chemical shift measurements independent of bulk magnetization effects makes it possible to study the very weak intermolecular chemical shift effects. In the present study, we used NMR high resolution magic angle spinning to measure the chemical shift very accurately, free of bulk magnetization effects. The chemical shift of microemulsion components is measured as a function of the water content in order to validate the method in an interesting and promising, U-type dilutable microemulsion, which had been previously studied by a variety of techniques. Phase transition points of the microemulsion (O/W, bicontinuous, W/O) and changes in droplet shape were successfully detected using high-accuracy chemical shift measurements. We analyzed the results and found them to be compatible with the previous studies, paving the way for high-accuracy chemical shifts to be used for the study of other microemulsion systems. We detected two transition points along the water dilution line of the concentrate (reverse micelles) corresponding to the transition from swollen W/O nano-droplets to bicontinuous to the O/W droplets along with the changes in the droplets' sizes and shapes. The method seems to be in excellent agreement with other previously studied techniques and shows the advantage of this easy and valid technique. PMID:25113928

  12. A high-resolution phosphorus-31 nuclear magnetic resonance (NMR) spectroscopic method for the non-phosphorus markers of chemical warfare agents.

    PubMed

    Mazumder, Avik; Kumar, Ajeet; Purohit, Ajay K; Dubey, Devendra K

    2012-02-01

    A high-resolution phosphorus-31 nuclear magnetic resonance (NMR) spectroscopic method has been developed for detection, identification and quantification of non-phosphorus markers of toxic nerve agents (soman and V-class), vesicants (HD, HN-2, HN-3), and incapacitating agent (Bz). These analytes were converted to phosphorus-containing derivatives via phosphitylation reaction of their hydroxyl and sulfhydryl functions (using 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane). This was followed by (31)P{(1)H} and (31)P NMR analysis of these derivatives. The chemical shifts (δ) and coupling constants ((3)J(P-H)) of derivatives were used for their specific detection and identification. The method allowed clear distinction between the alcohols and thiols. The lower limits of detection of these analytes were found to be between 12 and 28 μg obtained from 128 transients of (31)P{(1)H} quantitative NMR experiments. Utility of the method was ensured by the detection and identification of triethanolamine present (at an original concentration of 5 μg/mL) in an aqueous sample from 28th OPCW Official Proficiency Tests. PMID:22160203

  13. Use of solid waste for chemical stabilization: Adsorption isotherms and {sup 13}C solid-state NMR study of hazardous organic compounds sorbed on coal fly ash

    SciTech Connect

    Netzel, D.A.; Lane, D.C.; Rovani, J.F.; Cox, J.D.; Clark, J.A.; Miknis, F.P.

    1993-09-01

    Adsorption of hazardous organic compounds on the Dave Johnston plant fly ash is described. Fly ash from Dave Johnston and Laramie River power plants were characterized using elemental, x-ray, and {sup 29}Si NMR; the Dave Johnston (DJ) fly ash had higher quartz contents, while the Laramie River fly ash had more monomeric silicate anions. Adsorption data for hydroaromatics and chlorobenzenes indicate that the adsorption capacity of DJ coal fly ash is much less than that of activated carbon by a factor of >3000; but it is needed to confirm that solid-gas and solid-liquid equilibrium isotherms can indeed be compared. However, for pyridine, pentachlorophenol, naphthalene, and 1,1,2,2-tetrachloroethane, the DJ fly ash appears to adsorb these compounds nearly as well as activated carbon. {sup 13}C NMR was used to study the adsorption of hazardous org. cpds on coal fly ash; the nuclear spin relaxation times often were very long, resulting in long experimental times to obtain a spectrum. Using a jumbo probe, low concentrations of some hazardous org. cpds could be detected; for pentachlorophenol adsorbed onto fly ash, the chemical shift of the phenolic carbon was changed. Use of NMR to study the adsorption needs further study.

  14. Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes

    SciTech Connect

    Alam, Todd M.; Henry, Marc

    1999-08-05

    Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.

  15. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    SciTech Connect

    Cort, John R.; Cho, Herman M.

    2009-10-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  16. The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and solid state 13C CP/MAS NMR analyses.

    PubMed

    Henderson, J; Davies, H A; Heyes, S J; Osborne, D J

    2001-01-01

    We have investigated distinguishing features in cells of the abscission zone of a monocotyledon fruit, the oil palm Elaeis guineensis. The cell walls of the abscission zone and the subtending mesocarp and pedicel have been analysed by light and transmission electron microscopy, by chemical methods and by solid state 13C CP/MAS NMR spectroscopy. Results show that these abscission zone cells have specific characteristics which include high levels of unmethylated pectin in the walls and an inducible (x35) polygalacturonase enzyme expression. Together these findings help to explain the localised precision of cell separation events. PMID:11219806

  17. 17O excess transfer during the NO2 + O3 → NO3 + O2 reaction

    NASA Astrophysics Data System (ADS)

    Berhanu, Tesfaye Ayalneh; Savarino, Joël; Bhattacharya, S. K.; Vicars, Willliam C.

    2012-01-01

    The ozone molecule possesses a unique and distinctive 17O excess (Δ17O), which can be transferred to some of the atmospheric molecules via oxidation. This isotopic signal can be used to trace oxidation reactions in the atmosphere. However, such an approach depends on a robust and quantitative understanding of the oxygen transfer mechanism, which is currently lacking for the gas-phase NO2 + O3 reaction, an important step in the nocturnal production of atmospheric nitrate. In the present study, the transfer of Δ17O from ozone to nitrate radical (NO3) during the gas-phase NO2 + O3 → NO3 + O2 reaction was investigated in a series of laboratory experiments. The isotopic composition (δ17O, δ18O) of the bulk ozone and the oxygen gas produced in the reaction was determined via isotope ratio mass spectrometry. The Δ17O transfer function for the NO2 + O3 reaction was determined to be: Δ17O(O3*) = (1.23 ± 0.19) × Δ17O(O3)bulk + (9.02 ± 0.99). The intramolecular oxygen isotope distribution of ozone was evaluated and results suggest that the excess enrichment resides predominantly on the terminal oxygen atoms of ozone. The results obtained in this study will be useful in the interpretation of high Δ17O values measured for atmospheric nitrate, thus leading to a better understanding of the natural cycling of atmospheric reactive nitrogen.

  18. Low-lying 1- and 2+ states in 124Sn via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Crespi, F. C. L.

    2016-05-01

    The γ decay of low-lying 1-and 2+ states up to the neutron separation energy in 124Sn populate by the inelastic scattering of 17O was measured. The Angular distributions were measured both for the γ rays and the scattered 17O ions. The results are presented.

  19. Continental scale variation in 17O-excess of meteoric waters in the United States

    NASA Astrophysics Data System (ADS)

    Li, Shuning; Levin, Naomi E.; Chesson, Lesley A.

    2015-09-01

    High-precision triple oxygen isotope analysis of waters is an emerging tool in hydrological and paleoclimate research. The existing research on 17O-excess in waters includes surveys of meteoric waters and region-specific studies of high-latitude snow and tropical storms. However, a better understanding of the variation in 17O-excess of waters across large geographic regions is needed to expand the utility of triple oxygen isotope measurements. Here we present 17O-excess data from tap waters across the continental U.S., which we used as a proxy for precipitation. The 17O-excess values of tap waters ranged from -6 to +43 per meg and averaged 17 ± 11 per meg which is lower than the average 17O-excess reported for global meteoric waters, but overlaps with reported 17O-excess values of rainfall from the tropics. We observed relatively high 17O-excess values (>25 per meg) of tap waters in the northwestern U.S. and some of the lowest 17O-excess values (<5 per meg) in the states bordering the Gulf of Mexico. The latitudinal variation of 17O-excess among tap waters likely reflects the different controls on 17O-excess in precipitation. For example, re-evaporation of precipitation and convective processes influence the isotopic composition of tap waters from the southern portions of the U.S., resulting in relatively low 17O-excess values. In contrast, these effects are reduced in tap waters from the northern portions of the U.S. where snow and cold-season rainfall are primarily responsible for the majority of annual precipitation. Exceptions to the latitudinal trend are prevalent in the central portions of the U.S., where mixing and convection are likely responsible for 17O-excess values that are lower than would be expected at their latitudes. The results of this study provide both a first look at the variation of 17O-excess in meteoric waters on a continental scale and a predictive map for 17O-excess of meteoric waters in the U.S.

  20. Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations

    NASA Astrophysics Data System (ADS)

    Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Wawer, Iwona

    2016-06-01

    In this article we report the results of combined theoretical and experimental structural studies on cinnamic acid derivatives (CADs), one of the main groups of secondary metabolites present in various medicinal plant species and food products of plant origin. The effects of structural differences in CADs on their spectroscopic properties were studied in detail by both: solid-state NMR and GIAO/GIPAW calculations. Theoretical computations were used in order to perform signal assignment in 13C CP/MAS NMR spectra of the cinnamic, o-coumaric, m-coumaric, p-coumaric, caffeic, ferulic, sinapic and 3,4-dimethoxycinnamic acids, and to evaluate the accuracy of GIPAW and GIAO methodology.

  1. NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1.

    PubMed Central

    Schmiedeskamp, M.; Rajagopal, P.; Klevit, R. E.

    1997-01-01

    Mutagenesis studies have revealed that the minimal DNA-binding domain of the yeast transcription factor ADR1 consists of two Cys2-His2 zinc fingers plus an additional 20 residues proximal and N-terminal to the fingers. We have assigned NMR 1H, 15N, and 13C chemical shifts for the entire minimal DNA-binding domain of ADR1 both free and bound to specific DNA. 1H chemical shift values suggest little structural difference between the zinc fingers in this construct and in single-finger constructs, and 13C alpha chemical shift index analysis indicates little change in finger structure upon DNA binding. 1H chemical shift perturbations upon DNA binding are observed, however, and these are mapped to define the protein-DNA interface. The two zinc fingers appear to bind DNA with different orientations, as the entire helix of finger 1 is perturbed, while only the extreme N-terminus of the finger 2 helix is affected. Furthermore, residues N-terminal to the first finger undergo large chemical shift changes upon DNA binding suggesting a role at the protein-DNA interface. A striking correspondence is observed between the protein-DNA interface mapped by chemical shift changes and that previously mapped by mutagenesis. PMID:9300483

  2. Validation of Relativistic DFT Approaches to the Calculation of NMR Chemical Shifts in Square-Planar Pt(2+) and Au(3+) Complexes.

    PubMed

    Pawlak, Tomasz; Munzarová, Markéta L; Pazderski, Leszek; Marek, Radek

    2011-12-13

    Recently implemented hybrid density functional methods of calculating nuclear magnetic shielding using the two-component zeroth-order regular approximation approach (J. Phys. Chem. A2009, 113, 11495) have been employed for a series of compounds containing heavy transition-metal atoms. These include Pt(2+), Pd(2+), and Au(3+) organometallics and metal complexes with azines, some of which exhibit interesting biological and catalytic activities. In this study we investigate the effects of geometry, exchange-correlation functional, solvent, and scalar relativistic and spin-orbit corrections on the nuclear magnetic shielding-mainly for (13)C and (15)N atoms connected to a heavy-atom center. Our calculations demonstrate that the B3LYP method using effective core potentials and a cc-pwCVTZ-PP/6-31G** basis set augmented with the polarizable continuum model of the dimethylsulfoxide solvent provides geometries for the complexes in question which are compatible with the experimental NMR results in terms of both the trends and the absolute values of the (13)C shifts. The important role of the exact exchange admixture parameter for hybrid functionals based on B3LYP and PBE0 is investigated systematically for selected Pt(2+) and Au(3+) complexes. The (13)C and (15)N NMR chemical shifts are found to be best reproduced by using a B3LYP or PBE0 approach with 30% and 40-50% exact exchange admixtures for the Pt(2+) and Au(3+) complexes, respectively. The spin-orbit contributions to the (15)N NMR chemical shifts reflect metal-ligand bonding that is much more ionic for the Au(3+) than for the Pt(2+) complex. Finally, an optimized density functional method is applied to a series of transition-metal complexes to estimate the scope and the limitations of the current approach. PMID:26598337

  3. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton.

    PubMed

    Pomin, Vitor H

    2016-01-01

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially ¹H-(15)N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the ¹H-(15)N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate (15)N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS (15)N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via ¹H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D ¹H and 2D ¹H-(15)N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin. PMID:27618066

  4. Application of ChemDraw NMR Tool: Correlation of Program-Generated (Super 13)C Chemical Shifts and pK[subscript a] Values of Para-Substituted Benzoic Acids

    ERIC Educational Resources Information Center

    Hongyi Wang

    2005-01-01

    A study uses the ChemDraw nuclear magnetic resonance spectroscopy (NMR) tool to process 15 para-substituted benzoic acids and generate (super 13)C NMR chemical shifts of C1 through C5. The data were plotted against their pK[subscript a] value and a fairly good linear fit was found for pK[subscript a] versus delta[subscript c1].

  5. Solid-state NMR chemical-shift perturbations indicate domain reorientation of the DnaG primase in the primosome of Helicobacter pylori.

    PubMed

    Gardiennet, Carole; Wiegand, Thomas; Bazin, Alexandre; Cadalbert, Riccardo; Kunert, Britta; Lacabanne, Denis; Gutsche, Irina; Terradot, Laurent; Meier, Beat H; Böckmann, Anja

    2016-03-01

    We here investigate the interactions between the DnaB helicase and the C-terminal domain of the corresponding DnaG primase of Helicobacter pylori using solid-state NMR. The difficult crystallization of this 387 kDa complex, where the two proteins interact in a six to three ratio, is circumvented by simple co-sedimentation of the two proteins directly into the MAS-NMR rotor. While the amount of information that can be extracted from such a large protein is still limited, we can assign a number of amino-acid residues experiencing significant chemical-shift perturbations upon helicase-primase complex formation. The location of these residues is used as a guide to model the interaction interface between the two proteins in the complex. Chemical-shift perturbations also reveal changes at the interaction interfaces of the hexameric HpDnaB assembly on HpDnaG binding. A structural model of the complex that explains the experimental findings is obtained. PMID:26961129

  6. Structural characterization of chemical warfare agent degradation products in decontamination solutions with proton band-selective (1)H-(31)P NMR spectroscopy.

    PubMed

    Koskela, Harri; Hakala, Ullastiina; Vanninen, Paula

    2010-06-15

    Decontamination solutions, which are usually composed of strong alkaline chemicals, are used for efficient detoxification of chemical warfare agents (CWAs). The analysis of CWA degradation products directly in decontamination solutions is challenging due to the nature of the matrix. Furthermore, occasionally an unforeseen degradation pathway can result in degradation products which could be eluded to in standard analyses. Here, we present the results of the application of proton band-selective (1)H-(31)P NMR spectroscopy, i.e., band-selective 1D (1)H-(31)P heteronuclear single quantum coherence (HSQC) and band-selective 2D (1)H-(31)P HSQC-total correlation spectroscopy (TOCSY), for ester side chain characterization of organophosphorus nerve agent degradation products in decontamination solutions. The viability of the approach is demonstrated with a test mixture of typical degradation products of nerve agents sarin, soman, and VX. The proton band-selective (1)H-(31)P NMR spectroscopy is also applied in characterization of unusual degradation products of VX in GDS 2000 solution. PMID:20507069

  7. Combined experimental and quantum chemical studies on spectroscopic (FT-IR, FT-Raman, UV-Vis, and NMR) and structural characteristics of quinoline-5-carboxaldehyde

    NASA Astrophysics Data System (ADS)

    Kumru, Mustafa; Altun, Ahmet; Kocademir, Mustafa; Küçük, Vesile; Bardakçı, Tayyibe; Şaşmaz, İbrahim

    2016-12-01

    Comparative experimental and theoretical studies have been performed on the structure and spectral (FT-IR, FT-Raman, UV-Vis and NMR) features of quinoline-5-carboxaldehyde. Quantum chemical calculations have been carried out at Hartree-Fock and density functional B3LYP levels with the triple-zeta 6-311++G** basis set. Two stable conformers of quinoline-5-carboxaldehyde arising from the orientation of the carboxaldehyde moiety have been located at the room temperature. The energetic separation of these conformers is as small as 2.5 kcal/mol with a low transition barrier (around 9 kcal/mol). Therefore, these conformers are expected to coexist at the room temperature. Several molecular characteristics of quinoline-5-carboxaldehyde obtained through B3LYP and time-dependent B3LYP calculations, such as conformational stability, key geometry parameters, vibrational frequencies, IR and Raman intensities, UV-Vis vertical excitation energies and the corresponding oscillator strengths have been analyzed. The 1H and 13C NMR chemical shifts of quinoline-5-carboxaldehyde were also investigated.

  8. Comparative molecular field analysis and comparative molecular similarity index analysis studies on 1H NMR chemical shift of NH group of diaryl triazene derivatives.

    PubMed

    Rofouie, M K; Salahinejad, M; Ghasemi, J B; Aghaei, A

    2013-05-01

    Comparative molecular field analysis (CoMFA), comparative molecular field analysis region focusing (CoMFA-RF) for optimizing the region for the final partial least square analysis, and comparative molecular similarity indices analysis (CoMSIA) methods were employed to develop three-dimensional quantitative structure-activity relationship (3D-QSAR) models of (1)H NMR chemical shift of NH proton of diaryl triazene derivatives. The best orientation was searched by all-orientation search (AOS) strategy to minimize the effect of the initial orientation of the structures. The predictive abilities of CoMFA-RF and CoMSIA models were determined using a test set of ten compounds affording predictive correlation coefficients of 0.721 and 0.754, respectively, indicating good predictive power. For further model validation, cross validation (leave one out), progressive scrambling, and bootstrapping were also applied. The accuracy and speed of obtained 3D-QSAR models for the prediction of (1)H NMR chemical shifts of NH group of diaryl triazene derivatives were greater compared to some computational well-known procedures. PMID:23456682

  9. {sup 17}O({alpha},{gamma}){sup 21}Ne and {sup 17}O({alpha},n){sup 20}Ne for the weak s process

    SciTech Connect

    Best, A.; Goerres, J.; Beard, M.; Couder, M.; Boer, R. de; Falahat, S.; Gueray, R. T.; Kontos, A.; Kratz, K.-L.; LeBlanc, P. J.; Li, Q.; O'Brien, S.; Oezkan, N.; Pignatari, M.; Sonnabend, K.; Talwar, R.; Tan, W.; Uberseder, E.; Wiescher, M.

    2012-11-20

    The ratio of the reaction rates of the competing channels {sup 17}O({alpha}{gamma}){sup 21}Ne and {sup 17}O({alpha},n){sup 20}Ne determines the efficiency of {sup 16}O as a neutron poison in the s process in low metallicity rotating stars. It has a large impact on the element production, either producing elements to the mass range of A=90 in case of a significant poisoning effect or extending the mass range up to the region of A=150 if the {gamma} channel is of negligible strength. We present an improved study of the reaction {sup 17}O({alpha},n){sup 20}Ne, including an independent measurement of the {sup 17}O({alpha},n{sub 1}){sup 20}Ne channel. A simultaneous R-Matrix fit to both the n{sub 0} and the n{sub 1} channels has been performed. New reaction rates, including recent data on the {sup 17}O({alpha},{gamma}){sup 21}Ne reaction, have been calculated and used as input for stellar network calculations and their impact on the s process in rotating massive stars is discussed.

  10. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    SciTech Connect

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms

  11. DFT-GIAO 1H and 13C NMR prediction of chemical shifts for the configurational assignment of 6beta-hydroxyhyoscyamine diastereoisomers.

    PubMed

    Muñoz, Marcelo A; Joseph-Nathan, Pedro

    2009-07-01

    (1)H and (13)C NMR chemical shift calculations using the density functional theory-gauge including/invariant atomic orbitals (DFT-GIAO) approximation at the B3LYP/6-311G++(d,p) level of theory have been used to assign both natural diastereoisomers of 6beta-hydroxyhyoscyamine. The theoretical chemical shifts of the (1)H and (13)C atoms in both isomers were calculated using a previously determined conformational distribution, and the theoretical and experimental values were cross-compared. For protons, the obtained average absolute differences and root mean square (rms) errors for each comparison showed that the experimental chemical shifts of dextrorotatory and levorotatory 6beta-hydroxyhyoscyamines correlated well with the theoretical values calculated for the (3R,6R,2'S) and (3S,6S,2'S) configurations, respectively, whereas for (13)C atoms the calculations were unable to differentiate between isomers. The nature of the relatively large chemical shift differences observed in nuclei that share similar chemical environments between isomers was asserted from the same calculations. It is shown that the anisotropic effect of the phenyl group in the tropic ester moiety, positioned under the tropane ring, has a larger shielding effect over one ring side than over the other one. PMID:19373852

  12. 1H NMR spectra of alcohols and diols in chloroform: DFT/GIAO calculation of chemical shifts.

    PubMed

    Lomas, John S

    2014-12-01

    Proton nuclear magnetic resonance (NMR) shifts of aliphatic alcohols in chloroform have been computed on the basis of density functional theory, the solvent being included by the integral-equation-formalism polarisable continuum model of Gaussian 09. Relative energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6-311+G(d,p) level, and NMR shifts by the gauge-including atomic orbital method with the PBE0/6-311+G(d,p) geometry and the cc-pVTZ basis set. The 208 computed CH proton NMR shifts for 34 alcohols correlate very well with the experimental values, with a gradient of 1.00 ± 0.01 and intercept close to zero; the overall root mean square difference (RMSD) is 0.08 ppm. Shifts for CH protons of diols in chloroform are well correlated with the theoretical values for (isotropic) benzene, with similar gradient and intercept (1.02 ± 0.01, -0.13 ppm), but the overall RMSD is slightly higher, 0.12 ppm. This approach generally gives slightly better results than the CHARGE model of Abraham et al. The shifts of unsaturated alcohols in benzene have been re-examined with Gaussian 09, but the overall fit for CH protons is not improved, and OH proton shifts are worse. Shifts of vinyl protons in alkenols are systematically overestimated, and the correlation of computed shifts against the experimental data for unsaturated alcohols follows a quadratic equation. Splitting the 20 compounds studied into two sets, and applying empirical scaling based on the quadratic for the first set to the second set, gives an RMSD of 0.10 ppm. A multi-standard approach gives a similar result. PMID:25199903

  13. Spatial (data and model) and temporal variability of 17O-excess in East Antarctica

    NASA Astrophysics Data System (ADS)

    Winkler, Renato; Landais, Amaelle; Umuera, Ryu; Xiao, Cunde; Hoffmann, Georg; Jouzel, Jean; Kelley, Maxwell; Fukui, Kotaro

    2010-05-01

    For many decades stable water isotopes (δD and δ18O) are used as tracers in earth's hydrological cycle in order to get information about climatic parameters such as temperature and precipitation. In particular, δD and δ18O in ice cores permit to reconstruct the polar temperature of the past. Improvements of the analytical devices made it possible to measure also the δ17O of water with high precision. The combination of δ18O and δ17O leads to the definition of the so called 17O-excess (ln(δ17O/1000 +1)-0.528ln(δ18O/1000+1)) by analogy with the d-excess (δD -8δ18O). It has been suggested that 17O-excess in the ice cores is a more direct indicator of relative humidity of the source region than d-excess and that the combination of the two parameters is essential to reconstruct the past climatic conditions in the evaporative regions. Here we show new results for the spatial and temporal distribution of 17O-excess in East Antarctica. We especially explore the isotopic composition of the surface snow in remote regions of East Antarctica characterized by very low δ18O (between -60 and -55 permil). Then, we present the record of 17O-excess over the last deglaciation (26 to 8 kyrs BP) in the EPICA Dome C ice core. Interestingly, this 17O-excess record shows a more stable behavior than the one at Vostok. Finally, we compare our results with the spatial variability of 17O-excess in precipitation obtained by the old version of the GISS GCM model.

  14. δ17O and Δ47—The Heavens can Wait.

    NASA Astrophysics Data System (ADS)

    Olack, G.; Colman, A. S.

    2015-12-01

    Most terrestrial systems fall on or close to the Global Meteoric Water Line, GMWL, for 17O and 18O isotopes. Luz and Barken (2010) recently discussed variations from the GMWL, and typically the differences were in the 50 per meg, or 0.05‰, 17O excess. Landais et al. also looked at water from a Vostok ice core, covering the past 150,000 years, and see differences from GMWL on the order of 45 per meg 17O excess. Carbonate samples are analyze for their 13C and 18O to help understand paleo-climate, water sources, and by looking at clumped isotopes, Δ47, the excess of 13C-18O bonds measured by mass spectroscopy on m/z 47. Those samples will also carry thru the 17O-excess in their waters of formation. We modeled the effect of 17O excess on Δ47 and basically there is little effect in the 50 per meg 17O excess range. We also looked at what would happen with 18O spiked samples, presuming the spike does not add 17O. In that case, a 100 ‰ shift in 18O would give rise to -49‰ 17O excess anomaly. That shows a significant effect, a 1.8 ‰ shift in Δ47 and even a 3.5 ‰ shift in the δ13C reading. So spiked samples are not good candidates for clumped isotope analysis, terrestrial samples probably will not have enough of a 17O excess to affect Δ47 measurements, and extra-terrestrial samples will have to be checked.

  15. Multiple acquisition/multiple observation separated local field/chemical shift correlation solid-state magic angle spinning NMR spectroscopy.

    PubMed

    Das, Bibhuti B; Opella, Stanley J

    2014-08-01

    Multiple acquisition spectroscopy (MACSY) experiments that enable multiple free induction decays to be recorded during individual experiments are demonstrated. In particular, the experiments incorporate separated local field spectroscopy into homonuclear and heteronuclear correlation spectroscopy. The measured heteronuclear dipolar couplings are valuable in structure determination as well as in enhancing resolution by providing an additional frequency axis. In one example four different three-dimensional spectra are obtained in a single experiment, demonstrating that substantial potential saving in experimental time is available when multiple multi-dimensional spectra are required as part of solid-state NMR studies. PMID:25023566

  16. Multiple Acquisition/Multiple Observation Separated Local Field/Chemical Shift Correlation Solid-state Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Das, Bibhuti B.; Opella, Stanley J.

    2014-01-01

    Multiple acquisition spectroscopy (MACSY) experiments that enable multiple free induction decays to be recorded during individual experiments are demonstrated. In particular, the experiments incorporate separated local field spectroscopy into homonuclear and heteronuclear correlation spectroscopy. The measured heteronuclear dipolar couplings are valuable in structure determination as well as in enhancing resolution by providing an additional frequency axis. In one example four different three-dimensional spectra are obtained in a single experiment, demonstrating that substantial potential saving in experimental time is available when multiple multi-dimensional spectra are required as part of solid-state NMR studies. PMID:25023566

  17. Multitude of 2+ discrete states in 124Sn observed via the (17O 17O'γ) reaction: Evidence for pygmy quadrupole states

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Tsoneva, N.; Avigo, R.; Benzoni, G.; Blasi, N.; Bottoni, S.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Lenske, H.; Million, B.; Morales, A. I.; Nicolini, R.; Wieland, O.; Bazzacco, D.; Bednarczyk, P.; Birkenbach, B.; Ciemała, M.; de Angelis, G.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Isocrate, R.; Kmiecik, M.; Krzysiek, M.; Lunardi, S.; Maj, A.; Mazurek, K.; Mengoni, D.; Michelagnoli, C.; Napoli, D. R.; Recchia, F.; Siebeck, B.; Siem, S.; Ur, C.; Valiente-Dobón, J. J.

    2015-07-01

    A multitude of discrete 2+ states in 124Sn with energy up to 5 MeV were populated and identified with the (17O, 17O'γ) reaction at 340 MeV. Cross sections were compared with distorted wave Born approximation predictions and in general a good agreement was found. The measured energy and intensity distributions of the 2+ states are very similar to the predictions based on self-consistent density functional theory and extended QRPA approach accounting for multiphonon degrees of freedom. This provides evidence of the excitation of the pygmy quadrupole resonance in skin nuclei.

  18. Observation of the Second-Order Quadrupolar Interaction as a Dominating NMR Relaxation Mechanism in Liquids: The Ultraslow Regime of Motion.

    PubMed

    Shen, Jiahui; Terskikh, Victor; Wu, Gang

    2016-09-01

    We report variable-temperature (VT) (17)O NMR spectra of [5-(17)O]-d-glucose in an aqueous solution and in glycerol at 14.1 and 21.1 T. The VT (17)O NMR data cover a wide range of motion for which the molecular rotational correlation time (τc) of glucose changes more than 5 orders of magnitude. The observed line width of the (17)O NMR signal for [5-(17)O]-d-glucose displays a maximum at ω0τc ≈ 1 and a minimum at ω0τc ≈ 150, where ω0 is the angular Larmor frequency of (17)O. Under the ultraslow motion condition (i.e., ω0τc > 150), the line width of the observed (17)O NMR signal increases drastically with τc, suggesting that the second-order quadrupolar interaction becomes the predominant relaxation mechanism. While this relaxation mechanism has long been predicted by theory, the current study reports the first experimental observation of such a phenomenon. The implications of this new relaxation mechanism on the spectral resolution limit in liquid-state NMR spectroscopy for half-integer spins are discussed. PMID:27525537

  19. Comparison of black coral skeleton and insect cuticle by a combination of carbon-13 NMR and chemical analyses.

    PubMed

    Holl, S M; Schaefer, J; Goldberg, W M; Kramer, K J; Morgan, T D; Hopkins, T L

    1992-01-01

    Cross-polarization, magic-angle spinning 13C NMR spectra of skeletal components of individual colonies of the New Zealand black coral, Antipathes fiordensis, have a marked similarity to spectra of the sclerotized exoskeleton of the adult tobacco hornworm, Manduca sexta. NMR analysis estimates the organic content of the load-bearing skeletal base of A. fiordensis as 70% protein, 10% chitin, 15% diphenol, and 5% lipid by weight, and that of M. Sexta moth cuticle as 60% protein, 20% chitin, 15% diphenol, and 5% lipid. The younger pinnules or tips of A. fiordensis are less than 3% diphenol by weight. The only diphenols extracted from coral skeleton by hydrochloric acid are 3-(3,4-dihydroxyphenyl)-DL-alanine (DOPA) and 3,4-dihydroxybenzaldehyde (DOBAL), while the predominant diphenols in acid extracts of insect cuticles are N-acyldopamines. More DOPA is found in the base than in the tips of A. fiordensis and it appears to be a peptidyl component of coral skeletal protein. The oxidation of DOPA and DOBAL to quinones may provide mechanical stabilization of the coral skeleton by cross-linking of structural proteins to other proteins or to chitin. PMID:1345775

  20. High-Frequency (13)C and (29)Si NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of Tl(I) and Pb(II): Decisive Role of Relativistic Effects.

    PubMed

    Vícha, Jan; Marek, Radek; Straka, Michal

    2016-02-15

    The (13)C and (29)Si NMR signals of ligand atoms directly bonded to Tl(I) or Pb(II) heavy-element centers are predicted to resonate at very high frequencies, up to 400 ppm for (13)C and over 1000 ppm for (29)Si, outside the typical experimental NMR chemical-shift ranges for a given type of nuclei. The large (13)C and (29)Si NMR chemical shifts are ascribed to sizable relativistic spin-orbit effects, which can amount to more than 200 ppm for (13)C and more than 1000 ppm for (29)Si, values unexpected for diamagnetic compounds of the main group elements. The origin of the vast spin-orbit contributions to the (13)C and (29)Si NMR shifts is traced to the highly efficient 6p → 6p* metal-based orbital magnetic couplings and related to the 6p orbital-based bonding together with the low-energy gaps between the occupied and virtual orbital subspaces in the subvalent Tl(I) and Pb(II) compounds. New NMR spectral regions for these compounds are suggested based on the fully relativistic density functional theory calculations in the Dirac-Coulomb framework carefully calibrated on the experimentally known NMR data for Tl(I) and Pb(II) complexes. PMID:26820039

  1. Structural determination of complex natural products by quantum mechanical calculations of (13)C NMR chemical shifts: development of a parameterized protocol for terpenes.

    PubMed

    de Albuquerque, Ana Carolina Ferreira; Ribeiro, Daniel Joras; de Amorim, Mauro Barbosa

    2016-08-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important tools for determining the structures of organic molecules. Despite the advances made in this technique, revisions of erroneously established structures for natural products are still commonly published in the literature. In this context, the prediction of chemical shifts through ab initio and density functional theory (DFT) calculations has become a very powerful tool for assisting with the structural determination of complex organic molecules. In this work, we present the development of a protocol for (13)C chemical shift calculations of terpenes, a class of natural products that are widely distributed among plant species and are very important due to their biological and pharmacological activities. This protocol consists of GIAO-DFT calculations of chemical shifts and the application of a parameterized scaling factor in order to ensure accurate structural determination of this class of natural products. The application of this protocol to a set of five terpenes yielded accurate calculated chemical shifts, showing that this is a very attractive tool for the calculation of complex organic structures such as terpenes. PMID:27424297

  2. Recoupling of chemical shift anisotropies in solid-state NMR under high-speed magic-angle spinning and in uniformly 13C-labeled systems

    NASA Astrophysics Data System (ADS)

    Chan, Jerry C. C.; Tycko, Robert

    2003-05-01

    We demonstrate the possibility of recoupling chemical shift anisotropy (CSA) interactions in solid-state nuclear magnetic resonance (NMR) under high-speed magic-angle spinning (MAS) while retaining a static CSA powder pattern line shape and simultaneously attenuating homonuclear dipole-dipole interactions. CSA recoupling is accomplished by a rotation-synchronized radio-frequency pulse sequence with symmetry properties that permit static CSA line shapes to be obtained. We suggest a specific recoupling sequence, which we call ROCSA, for which the scaling factors for CSA and homonuclear dipole-dipole interactions are 0.272 and approximately 0.05, respectively. This sequence is suitable for high-speed 13C MAS NMR experiments on uniformly 13C-labeled organic compounds, including biopolymers. We demonstrate the ROCSA sequence experimentally by measuring the 13C CSA patterns of the uniformly labeled, polycrystalline compounds L-alanine and N-acetyl-D,L-valine at MAS frequencies of 11 and 20 kHz. We also present experimental data for amyloid fibrils formed by a 15-residue fragment of the β-amyloid peptide associated with Alzheimer's disease, in which four amino acid residues are uniformly labeled, demonstrating the applicability to biochemical systems of high molecular weight and significant complexity. Analysis of the CSA patterns in the amyloid fibril sample demonstrates the utility of ROCSA measurements as probes of peptide and protein conformation in noncrystalline solids.

  3. Molecular structure, tautomeric stability, protonation and deprotonation effects, vibrational, NMR and NBO analyses of 2,4-Dioxoimidazolidine-5-acetic acid (DOIAA) by quantum chemical calculations.

    PubMed

    Sridevi, C; Velraj, G

    2014-01-01

    This study represents the conformation, tautomeric stability, protonation and deprotonation effects, vibrational, electronic, NBO and NMR aspects of 2,4-Dioxoimidazolidine-5-acetic acid (DOIAA). Theoretical calculations were performed by ab initio HF and density functional theory (DFT)/B3LYP method using 6-311++G(d,p) basis sets. Tautomerism and the effect of solvent on the tautomeric equilibria in the gas phase and in different solvents were studied. The protonation and deprotonation effects on the reactivity and conformations of DOIAA were investigated. Electronic transitions were also studied and the most prominent transition corresponds to π→π*. Natural bond orbital (NBO) analysis was also carried out to find the intramolecular interactions and their stabilization energy. In DOIAA, the interaction between the lone pair donor orbital (n(LP1N5)) and the acceptor antibonding orbital π*(C6O7) reveals the strong stabilization energy of 224.9 kJ mol(-1). Molecular electrostatic potential (MEP) was calculated to predict the reactive sites of the title compound. The NMR results indicated that the observed chemical shifts for NH, COOH protons of DOIAA not only depend on the structure of the molecule being studied but also on the nature of the solvent, concentration of the sample and the presence of the other exchangeable protons. PMID:24291430

  4. Hydrogen bonding between acetate-based ionic liquids and water: Three types of IR absorption peaks and NMR chemical shifts change upon dilution

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Cao, Yuanyuan; Zhang, Yuwei; Mu, Tiancheng

    2014-01-01

    The hydrogen-bonding interaction between acetate-based ionic liquids (AcIL) and water was investigated by attenuated total reflection infrared (ATR-IR) and 1H NMR. Interestingly, the relative change of chemical shift δ of 1H NMR upon dilution could be divided into three regions. All the H show an upfield shift in Regions 1 and 2 while a different tendency in Region 3 (upfield, no, and downfield shift classified as Types 1, 2, 3, respectively). For ATR-IR, the red, no, or blue shift of νOD (IR absorption peak of OD in D2O) and ν± (IR absorption peak of AcILs) also have three types, respectively. Two-Times Explosion Mechanism (TTEM) was proposed to interpret the dynamic processes of AcILs upon dilution macroscopically, meanwhile an Inferior Spring Model (ISM) was proposed to help to understand the TTEM microscopically, All those indicate that AcILs present the state of network, sub-network, cluster, sub-cluster, ion pairs and sub-ion pairs in sequence upon dilution by water and the elongation of hydrogen bonding between AcILs-water, between cation-anion of AcILs is plastic deformation rather than elastic deformation.

  5. The 17O(p,α)14N reaction measurement via the Trojan horse method and its application to 17O nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; Pizzone, R. G.; Burjan, S. V.; Cherubini, S.; Coc, A.; Gulino, M.; Hammache, F.; Hons, Z.; Irgaziev, B.; Kiss, G. G.; Kroha, V.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; de Séréville, N.; Somorjai, E.; Tumino, A.

    2014-05-01

    The role of oxygen in astrophysics is related to different problems as novae nucleosynthesis and gamma-ray astronomy. In particular, owing to the still present uncertainties on its rate, the 17O(p,α)14N is one of the most important reaction to be studied in order to get more information about the fate of oxygen in different astrophysical scenarios.

  6. 17O(p,α)14N reaction measurement at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; Pizzone, R. G.; Burjan, S. V.; Cherubini, S.; Coc, A.; Gulino, M.; Hammache, F.; Hons, Z.; Irgaziev, B.; Kiss, G. G.; Kroha, V.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; de Séréville, N.; Somorjai, E.; Tumino, A.

    2014-05-01

    The 17O(p,α)14N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of narrow resonance in the ultra-low energy region.

  7. Operando NMR and XRD study of chemically synthesized LiCx oxidation in a dry room environment

    NASA Astrophysics Data System (ADS)

    Sacci, Robert L.; Gill, Lance W.; Hagaman, Edward W.; Dudney, Nancy J.

    2015-08-01

    We test the stability of pre-lithiated graphite anodes for Li-ion batteries in a dry room battery processing room. The reaction between LiCx and laboratory air was followed using operando NMR and x-ray diffraction, as these methods are sensitive to change in Li stoichiometry in graphite. There is minimal reactivity between LiC6 and N2, CO2 or O2; however, LiC6 reacts with moisture to form lithium (hydr)oxide. The reaction rate follows zero-order kinetics with respects to intercalated lithium suggesting that lithium transport through the graphite is fast. The reaction occurs by sequential formation of higher stages-LiC12, then LiC18, and then LiC24-as the hydrolysis proceeds to the formation of LixOHy and graphite end products. Slowing down the formation rate of the LixOHy passivation layer stabilizes of the higher stages.

  8. An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database.

    PubMed

    Kobayashi, Naohiro; Harano, Yoko; Tochio, Naoya; Nakatani, Eiichi; Kigawa, Takanori; Yokoyama, Shigeyuki; Mading, Steve; Ulrich, Eldon L; Markley, John L; Akutsu, Hideo; Fujiwara, Toshimichi

    2012-08-01

    Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including (1)H, (13)C and (15)N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001-2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies. PMID:22689068

  9. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  10. Primidone - An antiepileptic drug - characterisation by quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR and UV-Visible) investigations

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Santhanam, R.; Subramanian, S.; Mohan, S.

    2013-05-01

    The solid phase FTIR and FT-Raman spectra of primidone were recorded in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The vibrational spectra were analysed and the observed fundamentals were assigned and analysed. The experimental wavenumbers were compared with the theoretical scaled vibrational wavenumbers determined by DFT methods. The Raman intensities were also determined with B3LYP/6-31G(d,p) method. The total electron density and molecular electrostatic potential surface of the molecule were constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron + nuclei) distribution. The HOMO and LUMO energies were measured. Natural bond orbital analysis of primidone has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR spectra were recorded and the chemical shifts of the molecule were calculated.

  11. Organometallic derivatives of furan. LII. Synthesis of carbofunctional furylsilanes and their /sup 1/H, /sup 13/C, and /sup 29/Si NMR spectroscopic and quantum-chemical investigation

    SciTech Connect

    Lukevits, E.; Erchak, N.P.; Castro, I.; Popelis, Yu.Yu.; Kozyrev, A.K.; Anoshkin, V.I.; Kovalev, I.F.

    1986-03-10

    Under the standard conditions for the synthesis of furan compounds it is possible to obtain the carbofunctional derivatives of silylated furfural with retention of the trimethylsilyl group in the ring. By NMR and CNDO/2 LCAO MO methods and also as a result of the investigation of the chemical characteristics of silylated furfural and its carbofunctional derivatives it was established that the introduction of a trimethylsilyl group at position 5 of the furan ring does not change the reactivity of the carbofunctional substituents at position 2. The electronic effects of the substituents are hardly transmitted through the furan ring at all. The effect of substituents in the carbofunctional furylsilanes on the electronic structure of the ring is additive.

  12. Improvement of the high-accuracy 17O(p ,α )14N reaction-rate measurement via the Trojan Horse method for application to 17O nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; O'Brien, S.; Roberson, D.; Tan, W.; Wiescher, M.; Irgaziev, B.; Mukhamedzhanov, A.; Mrazek, J.; Kroha, V.

    2015-06-01

    The 17O(p ,α )14N and 17O(p ,γ )18F reactions are of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RGs), asymptotic giant branch (AGB) stars, massive stars, and classical novae. In particular, they govern the destruction of 17O and the formation of the short-lived radioisotope 18F, which is of special interest for γ -ray astronomy. At temperatures typical of the above-mentioned astrophysical scenario, T =0.01 -0.1 GK for RG, AGB, and massive stars and T =0.1 -0.4 GK for a classical nova explosion, the 17O(p ,α )14N reaction cross section is dominated by two resonances: one at about ERc m=65 keV above the 18F proton threshold energy, corresponding to the EX=5.673 MeV level in 18F, and another one at ERc m=183 keV (EX=5.786 MeV). We report on the indirect study of the 17O(p ,α )14N reaction via the Trojan Horse method by applying the approach recently developed for extracting the strength of narrow resonance at ultralow energies. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature. This value was used as input parameter for reaction-rate determination and its comparison with the result of the direct measurement is also discussed in the light of the electron screening effect.

  13. Estimation of the regional cerebral metabolic rate of oxygen consumption with proton detected 17O MRI during precision 17O2 inhalation in swine

    PubMed Central

    Mellon, Eric A.; Beesam, R. Shashank; Baumgardner, James E.; Borthakur, Arijitt; Witschey, Walter R.; Reddy, Ravinder

    2009-01-01

    Despite the importance of metabolic disturbances in many diseases, there are currently no clinically used methods for the detection of oxidative metabolism in vivo. To address this deficiency, 17O MRI techniques are scaled from small animals to swine as a large animal model of human inhalation and circulation. The hemispheric cerebral metabolic rate of oxygen consumption (CMRO2) is estimated in swine by detection of metabolically produced H217O by rapid T1ρ-weighted proton magnetic resonance imaging on a 1.5 Tesla clinical scanner. The 17O is delivered as oxygen gas by a custom, minimal-loss, precision-delivery breathing circuit and converted to H217O by oxidative metabolism. A model for gas arterial input is presented for the deeply breathing large animal. The arterial input function for recirculation of metabolic water is measured by arterial blood sampling and high field 17O spectroscopy. It is found that minimal metabolic water “wash-in” occurs before 60 seconds. A high temporal resolution pulse sequence is employed to measure CMRO2 during those 60 seconds after delivery begins. Only about one tidal volume of 17O enriched oxygen gas is used per measurement. Proton measurements of signal change due to metabolically produced water are correlated with 17O in vivo spectroscopy. Using these techniques, the hemispheric CMRO2 in swine is estimated to be 1.23 ± 0.26 μmol/g/min, consistent with existing literature values. All of the technology used to perform these CMRO2 estimates can easily be adapted to clinical MR scanners, and it is hoped that this work will lead to future studies of human disease. PMID:19428508

  14. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  15. A solid-state (11)b NMR and computational study of boron electric field gradient and chemical shift tensors in boronic acids and boronic esters.

    PubMed

    Weiss, Joseph W E; Bryce, David L

    2010-04-22

    The results of a solid-state (11)B NMR study of a series of 10 boronic acids and boronic esters with aromatic substituents are reported. Boron-11 electric field gradient (EFG) and chemical shift (CS) tensors obtained from analyses of spectra acquired in magnetic fields of 9.4 and 21.1 T are demonstrated to be useful for gaining insight into the molecular and electronic structure about the boron nucleus. Data collected at 21.1 T clearly show the effects of chemical shift anisotropy (CSA), with tensor spans (Omega) on the order of 10-40 ppm. Signal enhancements of up to 2.95 were achieved with a DFS-modified QCPMG pulse sequence. To understand the relationship between the measured tensors and the local structure better, calculations of the (11)B EFG and magnetic shielding tensors for these compounds were conducted. The best agreement was found between experimental results and those obtained from GGA revPBE DFT calculations. A positive correlation was found between Omega and the dihedral angle (phi(CCBO)), which describes the orientation of the boronic acid/ester functional group relative to an aromatic system bound to boron. The small boron CSA is discussed in terms of paramagnetic shielding contributions as well as diamagnetic shielding contributions. Although there is a region of overlap, both Omega and the (11)B quadrupolar coupling constants tend to be larger for boronic acids than for the esters. We conclude that the span is generally the most characteristic boron NMR parameter of the molecular and electronic environment for boronic acids and esters, and show that the values result from a delicate interplay of several competing factors, including hydrogen bonding, the value of phi(CCBO), and the electron-donating or withdrawing substituents bound to the aromatic ring. PMID:20337440

  16. Experimental study of resolution of proton chemical shifts in solids: Combined multiple pulse NMR and magic-angle spinning

    SciTech Connect

    Ryan, L.M.; Taylor, R.E.; Paff, A.J.; Gerstein, B.C.

    1980-01-01

    High-resolution nuclear magnetic resonance spectra of protons in rigid, randomly oriented solids have been measured using combined homonuclear dipolar decoupling (via multiple pulse techniques) and attenuation of chemical shift anisotropies (via magic-angle sample spinning). Under those conditions, isotropic proton chemical shifts were recorded for a variety of chemical species, with individual linewidths varying from about 55 to 110 Hz (1--2 ppm). Residual line broadening was due predominately to (i) magnetic-field instability and inhomogeneity, (ii) unresolved proton--proton spin couplings, (iii) chemical shift dispersion, (iv) residual dipolar broadening, and (v) lifetime broadening under the multiple pulse sequences used. The magnitudes of those effects and the current limits of resolution for this experiment in our spectrometer have been investigated. The compounds studied included organic solids (4, 4'-dimethylbenzophenone, 2, 6-dimethylbenzoic acid, and aspirin), polymers (polystyrene and polymethylmethacrylate), and the vitrain portion of a bituminous coal.

  17. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  18. Distinguishing Vaccinium species by chemical fingerprinting based on NMR spectra, validated with spectra collected in different laboratories.

    PubMed

    Markus, Michelle A; Ferrier, Jonathan; Luchsinger, Sarah M; Yuk, Jimmy; Cuerrier, Alain; Balick, Michael J; Hicks, Joshua M; Killday, K Brian; Kirby, Christopher W; Berrue, Fabrice; Kerr, Russell G; Knagge, Kevin; Gödecke, Tanja; Ramirez, Benjamin E; Lankin, David C; Pauli, Guido F; Burton, Ian; Karakach, Tobias K; Arnason, John T; Colson, Kimberly L

    2014-06-01

    A method was developed to distinguish Vaccinium species based on leaf extracts using nuclear magnetic resonance spectroscopy. Reference spectra were measured on leaf extracts from several species, including lowbush blueberry (Vaccinium angustifolium), oval leaf huckleberry (Vaccinium ovalifolium), and cranberry (Vaccinium macrocarpon). Using principal component analysis, these leaf extracts were resolved in the scores plot. Analysis of variance statistical tests demonstrated that the three groups differ significantly on PC2, establishing that the three species can be distinguished by nuclear magnetic resonance. Soft independent modeling of class analogies models for each species also showed discrimination between species. To demonstrate the robustness of nuclear magnetic resonance spectroscopy for botanical identification, spectra of a sample of lowbush blueberry leaf extract were measured at five different sites, with different field strengths (600 versus 700 MHz), different probe types (cryogenic versus room temperature probes), different sample diameters (1.7 mm versus 5 mm), and different consoles (Avance I versus Avance III). Each laboratory independently demonstrated the linearity of their NMR measurements by acquiring a standard curve for chlorogenic acid (R(2) = 0.9782 to 0.9998). Spectra acquired on different spectrometers at different sites classifed into the expected group for the Vaccinium spp., confirming the utility of the method to distinguish Vaccinium species and demonstrating nuclear magnetic resonance fingerprinting for material validation of a natural health product. PMID:24963620

  19. Operando NMR and XRD study of chemically synthesized LiCx oxidation in a dry room environment

    DOE PAGESBeta

    Sacci, Robert L.; Gill, Lance W.; Hagaman, Edward W.; Dudney, Nancy J.

    2015-04-07

    We test the stability of pre-lithiated graphite anodes for Li-ion batteries in a dry room battery processing room. The reaction between LiCx and laboratory air was followed using operando NMR and x-ray diffraction as these methods are sensitive to change in Li stoichiometry in graphite. There is minimal reactivity between LiC6 and N2, CO2 or O2; however, LiC6 reacts with moisture to form lithium (hydr)oxide. The reaction rate follows zero-order kinetics with respects to intercalated lithium suggesting that lithium transport through the graphite is fast. The reaction mechanism occurs by sequential formation of higher stages LiC12, then LiC18, and thenmore » LiC24 as the hydrolysis proceeds to the formation of LixOHy and graphite end products. Slowing down the formation rate of the LixOHy passivation layer stabilizes of the higher stages.« less

  20. Chemical prospection of important ayurvedic plant Tinospora cordifolia by UPLC-DAD-ESI-QTOF-MS/MS and NMR.

    PubMed

    Bala, Manju; Verma, Praveen Kumar; Awasthi, Shiv; Kumar, Neeraj; Lal, Brij; Singh, Bikram

    2015-01-01

    A rapid, sensitive, and accurate ultra-performance liquid chromatography coupled with mass spectrometric method (UPLC-MS) was developed and validated for simultaneous determination of four bioactive compounds, syringin (3), cordifolioside A (4), magnoflorine (6) and tinocordiside (10) in the stem of Tinospora cordifolia. The analysis was performed using an Acquity C18 column and gradient elution of 0.05% formic acid in water and acetonitrile at a detection wavelength of 267 nm in 5 min. A high correlation coefficient (r2 > 0.998) indicated good correlation between investigated compounds concentration and their peak area within the test ranges. The LODs for compounds 3, 4, 6 and 10 were 1.95, 0.97, 3.90 and 0.97 ng/mL, respectively, and LOQs were 6.64, 3.20, 12.87 and 3.20 ng/mL, respectively. The overall intra- and inter-day variations of the four compounds were less than 1%. The variation of these four bioactive compounds in T. cordifolia hosted on fifteen different trees was also determined. The compounds (3, 4, 6 and 10) were found in high amount in the T. cordifolia hosted on Azadirachta indica and Mangifera indica as compared with other plants. Twelve compounds were identified on the basis of their mass and UV-vis spectra. The NMR fingerprinting of the extract revealed the presence of alkaloids, fatty acid methyl esters, polysaccharides and marker components of T. cordifolia. PMID:25920217

  1. Operando NMR and XRD study of chemically synthesized LiCx oxidation in a dry room environment

    SciTech Connect

    Sacci, Robert L.; Gill, Lance W.; Hagaman, Edward W.; Dudney, Nancy J.

    2015-04-07

    We test the stability of pre-lithiated graphite anodes for Li-ion batteries in a dry room battery processing room. The reaction between LiCx and laboratory air was followed using operando NMR and x-ray diffraction as these methods are sensitive to change in Li stoichiometry in graphite. There is minimal reactivity between LiC6 and N2, CO2 or O2; however, LiC6 reacts with moisture to form lithium (hydr)oxide. The reaction rate follows zero-order kinetics with respects to intercalated lithium suggesting that lithium transport through the graphite is fast. The reaction mechanism occurs by sequential formation of higher stages LiC12, then LiC18, and then LiC24 as the hydrolysis proceeds to the formation of LixOHy and graphite end products. Slowing down the formation rate of the LixOHy passivation layer stabilizes of the higher stages.

  2. A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory.

    PubMed

    Shaghaghi, Hoora; Ebrahimi, Hossein Pasha; Fathi, Fariba; Bahrami Panah, Niloufar; Jalali-Heravi, Mehdi; Tafazzoli, Mohsen

    2016-05-30

    The dependency of amino acid chemical shifts on φ and ψ torsion angle is, independently, studied using a five-residue fragment of ubiquitin and ONIOM(DFT:HF) approach. The variation of absolute deviation of (13) C(α) chemical shifts relative to φ dihedral angle is specifically dependent on secondary structure of protein not on amino acid type and fragment sequence. This dependency is observed neither on any of (13) C(β) , and (1) H(α) chemical shifts nor on the variation of absolute deviation of (13) C(α) chemical shifts relative to ψ dihedral angle. The (13) C(α) absolute deviation chemical shifts (ADCC) plots are found as a suitable and simple tool to predict secondary structure of protein with no requirement of highly accurate calculations, priori knowledge of protein structure and structural refinement. Comparison of Full-DFT and ONIOM(DFT:HF) approaches illustrates that the trend of (13) C(α) ADCC plots are independent of computational method but not of basis set valence shell type. © 2016 Wiley Periodicals, Inc. PMID:26940760

  3. 33S NMR spectroscopy 3. Substituent effects on 33S NMR parameters in 2-substituted ethanesulfonates.

    PubMed

    Musio, Roberta; Sciacovelli, Oronzo

    2006-08-01

    33S NMR parameters (chemical shifts and linewidths) in 2-substituted sodium ethanesulfonates, XCH2CH2SO3Na (X = H, CH3, OH, SH, NH2, Cl, Br, NH3+) depend upon the electronic properties of substituents. To explain experimental results and obtain additional information on the origin of the observed substituent effect (SE), sulfur isotropic absolute shielding constants have been calculated at DFT level of theory (B3LYP/6-311++G(2d,p)) by gauge-including atomic orbitals (GIAO) method. Data have been interpreted with the aid of natural bond orbital (NBO) method and natural chemical shielding (NCS) analysis. It has been demonstrated that in the class of compounds considered the diamagnetic contribution to sulfur-shielding constant is constant and the observed upfield shift of 33S resonance induced by electron-withdrawing substituents (reverse chemical shift effect) can be related to variations of the paramagnetic contribution. Substituents with different electronic properties cause variations in the polarization of S-C and S-O bonds of the -C-SO3- moiety thus determining changes of the electron density at sulfur nucleus and consequently the expansion or contraction of 3p sulfur orbitals. Also oxygen lone-pairs and sulfur core 2p electrons can play an active role in determining the paramagnetic contribution to sulfur shielding. With regard to linewidth variations, they can be ascribed primarily to changes in the nuclear quadrupole coupling constant values. B3LYP/6-311++G(2d,p) method allows obtaining a good reproducibility of SE on the electric field gradient (EFG) at sulfur, although its values tend to be underestimated significantly. Moreover, 17O shielding constants have been calculated. PMID:16741982

  4. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  5. Synthesis, spectral analysis (FT-IR, 1H NMR, 13C NMR and UV-visible) and quantum chemical studies on molecular geometry, NBO, NLO, chemical reactivity and thermodynamic properties of novel 2-amino-4-(4-(dimethylamino)phenyl)-5-oxo-6-phenyl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carbonitrile

    NASA Astrophysics Data System (ADS)

    Fatma, Shaheen; Bishnoi, Abha; Verma, Anil Kumar

    2015-09-01

    In the present study novel 2-amino-4-(4-(dimethylamino)phenyl)-5-oxo-6-phenyl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carbonitrile was synthesized and characterized by FT-IR, 1H NMR, 13C NMR, UV-visible spectroscopy and mass spectral analysis. The chemical calculations were done by DFT level of theory using Becke3-Lee-Yang-Parr (B3LYP) and Coulomb Attenuating Method (CAM-B3LYP)/6-31G(d,p) basis set. 1H, 13C chemical shifts and vibrational wavenumbers were calculated and good correlation with the experimental data has been accomplished. UV-Visible spectrum of the molecule was recorded in the region 200-500 nm and the electronic properties and composition were obtained using Time Dependent Density Functional Theory (TDDFT) method. Hyperconjugative interactions were studied with the help of natural bond orbital analysis. Electric dipole moment, polarizability and first static hyperpolarizability values have been calculated. The results show that the title compound possesses nonlinear optical behavior with non-zero values. The thermodynamic properties of the compound were calculated at different temperatures. The local reactivity descriptors show that C(7) is most reactive site for nucleophilic attack.

  6. Nucleotide-type chemical shift assignment of the encapsulated 40 kbp dsDNA in intact bacteriophage T7 by MAS solid-state NMR.

    PubMed

    Abramov, Gili; Goldbourt, Amir

    2014-08-01

    The icosahedral bacteriophage T7 is a 50 MDa double-stranded DNA (dsDNA) virus that infects Escherichia coli. Although there is substantial information on the physical and morphological properties of T7, structural information, based mostly on Raman spectroscopy and cryo-electron microscopy, is limited. Here, we apply the magic-angle spinning (MAS) solid-state NMR (SSNMR) technique to study a uniformly (13)C and (15)N labeled wild-type T7 phage. We describe the details of the large-scale preparation and purification of an isotopically enriched phage sample under fully hydrated conditions, and show a complete (13)C and a near-complete (15)N nucleotide-type specific assignment of the sugar and base moieties in the 40 kbp dsDNA of T7 using two-dimensional (13)C-(13)C and (15)N-(13)C correlation experiments. The chemical shifts are interpreted as reporters of a B-form conformation of the encapsulated dsDNA. While MAS SSNMR was found to be extremely useful in determining the structures of proteins in native-like environments, its application to nucleic acids has lagged behind, leaving a missing (13)C and (15)N chemical shift database. This work therefore expands the (13)C and (15)N database of real B-form DNA systems, and opens routes to characterize more complex nucleic acid systems by SSNMR. PMID:24875850

  7. Isotope separation of 17O by photodissociation of ozone with near-infrared laser irradiation

    NASA Astrophysics Data System (ADS)

    Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro; Kuze, Hiroaki

    2012-04-01

    Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of 17O, however, has been very costly due to the lack of appropriate methods that enable efficient production of 17O on an industrial level. In this paper, we report the first 17O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O3-90 vol% CF4 with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of 16O16O17O around 1 μm. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an 17O enrichment factor of 2.2 was attained.

  8. Isotope separation of {sup 17}O by photodissociation of ozone with near-infrared laser irradiation

    SciTech Connect

    Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro; Kuze, Hiroaki

    2012-04-01

    Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of {sup 17}O, however, has been very costly due to the lack of appropriate methods that enable efficient production of {sup 17}O on an industrial level. In this paper, we report the first {sup 17}O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O{sub 3}-90 vol% CF{sub 4} with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of {sup 16}O{sup 16}O{sup 17}O around 1 {mu}m. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an {sup 17}O enrichment factor of 2.2 was attained.

  9. Survey of {sup 17}O excited states selectively populated by five-particle transfer reactions

    SciTech Connect

    Crisp, A. M.; Roeder, B. T.; Momotyuk, O. A.; Kemper, K. W.; Weintraub, W.; Wiedeking, M.; Keeley, N.

    2008-04-15

    The highly selective reactions {sup 12}C({sup 7}Li,d){sup 17}O and {sup 12}C({sup 6}Li,p){sup 17}O have been used to populate high-lying excited states in {sup 17}O up to 16 MeV in excitation. Several of the states are newly observed, and the existence of others in a previous study of {sup 12}C({sup 6}Li,p){sup 17}O is confirmed. The observed spectra show a clear gap of about 3 MeV, indicating an energy gap between 3p-2h and 5p-4h states in {sup 17}O. Differential cross section angular distributions have been extracted from the data for both reactions and they have been compared with finite-range DWBA calculations by assuming a ''{sup 5}He'' cluster transfer. Possible spins and parities are reported for states at 11.82 MeV (7/2{sup +}), 12.00 MeV (9/2{sup +}),12.22 MeV (7/2{sup -}), and 12.42 MeV (9/2{sup +})

  10. Simulation of NMR powder line shapes of quadrupolar nuclei with half-integer spin at low-symmetry sites

    SciTech Connect

    Power, W.P.; Wasylishen, R.E. ); Mooibroek, S. Ltd., Milton, Ontario ); Pettitt, B.A.; Danchura, W. )

    1990-01-25

    At crystallographic sites of low symmetry it is possible for the interactions governing the NMR powder line shape of half-integer spin quadrupolar nuclei to have different orientation dependences. In such cases, it is found that the NMR line shape is sensitive to the relative orientation of the quadrupolar (Q) and chemical shielding (CS) tensors. An analysis of the {sup 133}Cs NMR powder pattern of cesium chromate illustrates the importance of considering such orientation effects. For systems where second-order quadrupolar interactions influence the central (m{sub I} = 1/2 {leftrightarrow} 1/2) transition, the line shape arising from this transition also depends critically on the relative orientation of the Q and CS tensors. It is anticipated that such effects will be important for pin n/2 nuclei (n = 3,5,7, or 9) with large chemical shift ranges and quadrupole moments larger than that of {sup 133}Cs (e.g., {sup 17}O, {sup 51}V, {sup 59}Co, and {sup 63}Cu).

  11. A Series of Diamagnetic Pyridine Monoimine Rhenium Complexes with Different Degrees of Metal-to-Ligand Charge Transfer: Correlating (13) C NMR Chemical Shifts with Bond Lengths in Redox-Active Ligands.

    PubMed

    Sieh, Daniel; Kubiak, Clifford P

    2016-07-18

    A set of pyridine monoimine (PMI) rhenium(I) tricarbonyl chlorido complexes with substituents of different steric and electronic properties was synthesized and fully characterized. Spectroscopic (NMR and IR) and single-crystal X-ray diffraction analyses of these complexes showed that the redox-active PMI ligands are neutral and that the overall electronic structure is little affected by the choices of the substituent at the ligand backbone. One- and two-electron reduction products were prepared from selected starting compounds and could also be characterized by multiple spectroscopic methods and X-ray diffraction. The final product of a one-electron reduction in THF is a diamagnetic metal-metal-bonded dimer after loss of the chlorido ligand. Bond lengths in and NMR chemical shifts of the PMI ligand backbone indicate partial electron transfer to the ligand. Two-electron reduction in THF also leads to the loss of the chlorido ligand and a pentacoordinate complex is obtained. The comparison with reported bond lengths and (13) C NMR chemical shifts of doubly reduced free pyridine monoaldimine ligands indicates that both redox equivalents in the doubly reduced rhenium complex investigated here are located in the PMI ligand. With diamagnetic complexes varying over three formal reduction stages at the PMI ligand we were, for the first time, able to establish correlations of the (13) C NMR chemical shifts with the relevant bond lengths in redox-active ligands over a full redox series. PMID:27319753

  12. Atmosphere-surface interactions on Mars: delta 17O measurements of carbonate from ALH 84001.

    PubMed

    Farquhar, J; Thiemens, M H; Jackson, T

    1998-06-01

    Oxygen isotope measurements of carbonate from martian meteorite ALH 84001 (delta18O = 18.3 +/- 0.4 per mil, delta17O = 10.3 +/- 0.2 per mil, and Delta17O = 0.8 +/- 0.05 per mil) are fractionated with respect to those of silicate minerals. These measurements support the existence of two oxygen isotope reservoirs (the atmosphere and the silicate planet) on Mars at the time of carbonate growth. The cause of the atmospheric oxygen isotope anomaly may be exchange between CO2 and O(1D) produced by the photodecomposition of ozone. Atmospheric oxygen isotope compositions may be transferred to carbonate minerals by CO2-H2O exchange and mineral growth. A sink of 17O-depleted oxygen, as required by mass balance, may exist in the planetary regolith. PMID:9616116

  13. The ^17O(p,α)^14N reaction measured using a novel technique

    NASA Astrophysics Data System (ADS)

    Moazen, B. H.; Blackmon, J. C.; Bardayan, D. W.; Chae, K. Y.; Chipps, K.; Domizioli, C. P.; Fitzgerald, R.; Greife, U.; Hix, W. R.; Jones, K. L.; Kozub, R. L.; Lingerfelt, E. J.; Livesay, R. J.; Nesaraja, C. D.; Pain, S. D.; Roberts, L. F.; Shriner, J. F., Jr.; Smith, M. S.; Thomas, J. S.

    2007-10-01

    We developed a new approach for measuring (p,α) reactions and applied it to measure the energy and strength of the 183 keV resonance in ^17O(p,α)^ 14N that was recently reported to significantly increase the reaction rate in novae. A beam of ^17O from the Holifield Radioactive Ion Beam Facility [ORNL] tandem accelerator bombarded hydrogen gas, which filled a differentially pumped scattering chamber at pressures up to 4 Torr. Reaction products were detected in coincidence and the vertex of the reaction was determined from the relative kinematics of the two products. Nova simulations show the new ^17O(p,α)^14N reaction rate significantly decreases ^18F production in low mass ONeMg nova but affects more energetic novae less. Results and astrophysical implications will be presented as well as comments regarding my past CEU participation. ORNL is managed by UT-Battelle for the US DOE.

  14. CRDS of 17O enriched water between 5850 and 6671 cm-1: More than 1000 energy levels of H217O and HD17O newly determined

    NASA Astrophysics Data System (ADS)

    Mikhailenko, S. N.; Leshchishina, O.; Karlovets, E. V.; Mondelain, D.; Kassi, S.; Campargue, A.

    2016-07-01

    The room temperature absorption spectrum of water vapor highly enriched in 17O has been recorded by Cavity Ring Down Spectroscopy (CRDS) between 5850 and 6671 cm-1. Two series of recordings were performed with pressure values of 1.0 and 12.0 Torr. The investigated spectral region corresponds to the important 1.55 μm transparency window of the atmosphere where water absorption is very weak. The high sensitivity of the recordings (αmin ~ 5×10-11 cm-1) allows detecting lines with intensity spanning six orders of magnitude (1.4×10-30-3.6×10-24 cm/molecule at room temperature). The experimental list includes more than 10,300 lines. The assignments of water lines were performed using known experimental energy levels as well as calculated line lists based on the results of Partridge and Schwenke. More than 8500 lines were assigned to 9619 transitions of six water isotopologues (H216O, H217O, H218O, HD16O, HD17O and HD18O). All but four transitions of the 16O and 18O isotopologues were assigned using known experimental energy levels. More than half of the assigned H217O and HD17O transitions correspond to new (or corrected) upper energy levels. About 1000 new H217O transitions associated with upper states of the second triad and of the first hexad were identified. Most of the newly assigned HD17O transitions belong to the ν1+ν3 and 2ν2+ν3 bands. The assigned transitions allowed to newly determine or correct 20 highly excited rotational levels of the vibrational ground state of this isotopologue. Overall 791 and 266 energy levels are newly determined for H217O and HD17O, respectively. A few additional levels were corrected compared to literature values. The obtained experimental results are compared to the spectroscopic parameters provided by the HITRAN database and to the empirical energy levels recommended by an IUPAC task group.

  15. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Malon, Michal; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-01-01

    There is considerable interest in the measurement of proton ((1)H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong (1)H/(1)H dipolar interaction makes it difficult to determine small size (1)H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for (1)H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate γ-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple (1)H CSA in the indirect dimension of a 2D (1)H/(1)H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D (1)H/(1)H correlation spectrum without decoupling (1)H/(1)H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (<200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 270°0-90°180 composite-180° pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable (1)H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions. PMID:25497846

  16. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    PubMed

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at < or = 25 microg/mL were easily detected in a sample where the 1H solvent signal was approximately 58,000-fold more intense than the analyte 1H signals. The problem of overlapping signals typically observed in conventional 1H spectroscopy was essentially eliminated, while 1H and 13C chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental

  17. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  18. Solution oxygen-17 NMR application for observing a peroxidized cysteine residue in oxidized human SOD1

    NASA Astrophysics Data System (ADS)

    Fujiwara, Noriko; Yoshihara, Daisaku; Sakiyama, Haruhiko; Eguchi, Hironobu; Suzuki, Keiichiro

    2016-12-01

    NMR active nuclei, 1H, 13C and 15N, are usually used for determination of protein structure. However, solution 17O-NMR application to proteins is extremely limited although oxygen is an essential element in biomolecules. Proteins are oxidized through cysteine residues by two types of oxidation. One is reversible oxidation such as disulphide bonding (Cys-S-S-Cys) and the other is irreversible oxidation to cysteine sulfinic acid (Cys-SO 2H) and cysteine sulfonic acid (Cys-SO 3H). Copper,Zinc-superoxide dismutase (SOD1) is a key enzyme in the protection of cells from the superoxide anion radical. The SH group at Cys 111 residue in human SOD1 is selectively oxidized to -SO 2H and -SO 3H with atmospheric oxygen, and this oxidized human SOD1 is also suggested to play an important role in the pathophysiology of various neurodegenerative diseases, probably mainly via protein aggregation. Therefore, information on the structural and the dynamics of the oxidized cysteine residue would be crucial for the understanding of protein aggregation mechanism. Although the -SO 3H group on proteins cannot be directly detected by conventional NMR techniques, we successfully performed the site-specific 17O-labeling of Cys 111 in SOD1 using ^{17}it {O}2 gas and the 17O-NMR analysis for the first time. We observed clear 17O signal derived from a protein molecule and show that 17O-NMR is a sensitive probe for studying the structure and dynamics of the 17O-labeled protein molecule. This novel and unique strategy can have great impact on many research fields in biology and chemistry.

  19. Chemical shift and electric field gradient tensors for the amide and carboxyl hydrogens in the model peptide N-acetyl-D,L-valine. Single-crystal deuterium NMR study.

    SciTech Connect

    Gerald, R. E., II; Bernhard, T.; Haeberlen, U.; Rendell, J.; Opella, S.; Chemical Engineering

    1993-01-01

    Solid-state NMR spectroscopy is well established as a method for describing molecular structure with resolution on the atomic scale. Many of the NMR observables result from anisotropic interactions between the nuclear spin and its environment. These observables can be described by second-rank tensors. For example, the eigenvalues of the traceless symmetric part of the hydrogen chemical shift (CS) tensor provide information about the strength of inter- or intramolecular hydrogen bonding. On the other hand, the eigenvectors of the deuterium electric field gradient (EFG) tensor give deuteron/proton bond directions with an accuracy rivalled only by neutron diffraction. In this paper the authors report structural information of this type for the amide and carboxyl hydrogen sites in a single crystal of the model peptide N-acetyl-D,L-valine (NAV). They use deuterium NMR to infer both the EFG and CS tensors at the amide and carboxyl hydrogen sites in NAV. Advantages of this technique over multiple-pulse proton NMR are that it works in the presence of {sup 14}N spins which are very hard to decouple from protons and that additional information in form of the EFG tensors can be derived. The change in the CS and EFG tensors upon exchange of a deuteron for a proton (the isotope effect) is anticipated to be very small; the effect on the CS tensors is certainly smaller than the experimental errors. NAV has served as a model peptide before in a variety of NMR studies, including those concerned with developing solid-state NMR spectroscopy as a method for determining the structure of proteins. NMR experiments on peptide or protein samples which are oriented in at least one dimension can provide important information about the three-dimensional structure of the peptide or the protein. In order to interpret the NMR data in terms of the structure of the polypeptide, the relationship of the CS and EFG tensors to the local symmetry elements of an amino acide, e.g., the peptide plane, is

  20. Chemical structure elucidation from ¹³C NMR chemical shifts: efficient data processing using bipartite matching and maximal clique algorithms.

    PubMed

    Koichi, Shungo; Arisaka, Masaki; Koshino, Hiroyuki; Aoki, Atsushi; Iwata, Satoru; Uno, Takeaki; Satoh, Hiroko

    2014-04-28

    Computer-assisted chemical structure elucidation has been intensively studied since the first use of computers in chemistry in the 1960s. Most of the existing elucidators use a structure-spectrum database to obtain clues about the correct structure. Such a structure-spectrum database is expected to grow on a daily basis. Hence, the necessity to develop an efficient structure elucidation system that can adapt to the growth of a database has been also growing. Therefore, we have developed a new elucidator using practically efficient graph algorithms, including the convex bipartite matching, weighted bipartite matching, and Bron-Kerbosch maximal clique algorithms. The utilization of the two matching algorithms especially is a novel point of our elucidator. Because of these sophisticated algorithms, the elucidator exactly produces a correct structure if all of the fragments are included in the database. Even if not all of the fragments are in the database, the elucidator proposes relevant substructures that can help chemists to identify the actual chemical structures. The elucidator, called the CAST/CNMR Structure Elucidator, plays a complementary role to the CAST/CNMR Chemical Shift Predictor, and together these two functions can be used to analyze the structures of organic compounds. PMID:24655374

  1. High resolution δ17O-δ18O as a single mineral thermometer

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Sengupta, S.; Pack, A.

    2014-12-01

    The equilibrium relationship α17O/16Oa-b = (α18O/16Oa-b)θ makes the analysis of δ17O redundant for most terrestrial applications. However the θ term varies with temperature, so that ultra-high precision δ17O data provide additional information not available from δ18O alone. If the δ18O and δ17O values of formation water covary in a known way (e.g., meteoric water, ocean water), then a unique solution for both temperature and the δ18O of the formation fluids can be obtained from the combined δ18O-δ17O mineral values. The paired δ18O-δ17O values are in essence a single mineral thermometer. Unlike clumped isotopes or combined δ18O-δD data, the δ18O and δ17O values of a mineral have identical 'diagenetic potential', and will only be altered with a high F/R ratio. We have made an empirical determination of the temperature dependence on θ = -710/T2 + 0.5305 using Pleistocene diatom data from ODP Leg 177, Site 1093 (δ18O = 39.610, δ17O = 20.536‰), which is almost identical to Pack and Herwartz (EPSL, 2014). Application to ancient cherts gives the following results: The δ18O-δ17O values of cherts vary systematically with age, from Archean to Proterozoic to Phanerozoic. The Archean cherts are incompatible with modern seawater under any temperature conditions. Instead they have equilibrated with water of δ18O= -10±3 (‰ vs SMOW) at 50 to 70°C. These data support a lighter ocean in the Archean by ~5‰. Proterozoic cherts equilibrated at 35-50°C with meteoric water of -8±3‰ and Phanerozoic cherts equilibrated with mixed meteoric water/ocean water at similar temperatures and higher δ18O values (-3±3‰). The δ18O values of lacustrine diatoms from the Valles Caldera, NM, vary by over 20‰ between glacial and interglacial times. The combined δ18O-δ17O values of interglacial diatoms give T= ~12°C, δ18Ometeoric water = -9‰. A glacial age diatom sample gives T=<10°C, δ18Ometeoric water = -20‰. These data could not be obtained from the

  2. NMR chemical shift analysis of the conformational transition between the monomer and tetramer of melittin in an aqueous solution.

    PubMed

    Miura, Yoshinori

    2016-05-01

    It is known that melittin in an aqueous solution undergoes a conformational transition between the monomer and tetramer by variation in temperature. The transition correlates closely with isomers of the proline residue; monomeric melittin including a trans proline peptide bond (trans-monomer) is involved directly in the transition, whereas monomeric melittin having a cis proline peptide bond (cis-monomer) is virtually not. The transition has been explored by using nuclear magnetic resonance spectroscopy in order to clarify the stability of the tetrameric conformation and the cooperativity of the transition. In the light of temperature dependence of chemical shifts of resonances from the isomeric monomers, we qualitatively estimate the temperature-, salt-, and concentration-dependence of the relative equilibrium populations of the trans-monomer and tetramer, and show that the tetramer has a maximum conformational stability at 30-45 °C and that the transition cooperativity is very low. PMID:26658745

  3. Two-dimensional NMR spectroscopy

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

  4. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses

    NASA Astrophysics Data System (ADS)

    Benner, Ronald; Hatcher, Patrick G.; Hedges, John I.

    1990-07-01

    Changes in the chemical composition of mangrove ( Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed.

  5. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol - An analgesic drug

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2014-03-01

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G** and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecule have been anlysed.

  6. Tangled web of interactions among proteins involved in iron–sulfur cluster assembly as unraveled by NMR, SAXS, chemical crosslinking, and functional studies☆

    PubMed Central

    Kim, Jin Hae; Bothe, Jameson R.; Alderson, T. Reid; Markley, John L.

    2014-01-01

    Proteins containing iron–sulfur (Fe–S) clusters arose early in evolution and are essential to life. Organisms have evolved machinery consisting of specialized proteins that operate together to assemble Fe–S clusters efficiently so as to minimize cellular exposure to their toxic constituents: iron and sulfide ions. To date, the best studied system is the iron sulfur cluster (isc) operon of Escherichia coli, and the eight ISC proteins it encodes. Our investigations over the past five years have identified two functional conformational states for the scaffold protein (IscU) and have shown that the other ISC proteins that interact with IscU prefer to bind one conformational state or the other. From analyses of the NMR spectroscopy-derived network of interactions of ISC proteins and small-angle X-ray scattering (SAXS), chemical crosslinking experiments, and functional assays, we have constructed working models for Fe–S cluster assembly and delivery. Future work is needed to validate and refine what has been learned about the E. coli system and to extend these findings to the homologous Fe–S cluster biosynthetic machinery of yeast and human mitochondria. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. PMID:25450980

  7. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses

    USGS Publications Warehouse

    Benner, R.; Hatcher, P.G.; Hedges, J.I.

    1990-01-01

    Changes in the chemical composition of mangrove (Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed. ?? 1990.

  8. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    SciTech Connect

    Brothers, Michael C; Nesbitt, Anna E; Hallock, Michael J; Rupasinghe, Sanjeewa; Tang, Ming; Harris, Jason B; Baudry, Jerome Y; Schuler, Mary A; Rienstra, Chad M

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  9. Elucidating the Physical and Chemical Structural Changes of Proteins on Clay Mineral Surfaces using Large-scale Molecular Dynamics Simulations in Tandem with NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Govind, N.; Washton, N.; Reardon, P.; Chacon, S. S.; Burton, S.; Lipton, A.; Kleber, M.; Qafoku, N. P.

    2014-12-01

    Carbon cycling among the three major Earth's pools, i.e., atmosphere, terrestrial systems and oceans, has received increased attention because the concentration of CO2 in the atmosphere has increased significantly in recent years reaching concentrations greater than 400 ppm that have never been recorded before, warming the planet and changing the climate. Within the terrestrial system, soil organic matter (SOM) represents an important sub-pool of carbon. The associations of SOM with soil mineral interfaces and particles, creating micro-aggregates, are believed to regulate the bioavailability of the associated organic carbon by protecting it from transformations and mineralization to carbon dioxide. Nevertheless, the molecular scale interactions of different types of SOM with a variety of soil minerals and the controls on the extent and rate of SOM transformation and mineralization are not well documented in the current literature. Given the importance of SOM fate and persistence in soils and the current knowledge gaps, the application of atomistic scale simulations to study SOM/mineral associations in abiotic model systems offers rich territory for original and impactful science. Molecular modeling and simulation of SOM is a burgeoning and challenging avenue for aiding the characterization of these complex compounds and chemical systems and for studying their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types and common in soils, which are thought to contribute to their reactive properties including recalcitrance potential and resistance to mineralization. Here, we will discuss our large-scale molecular dynamics simulation efforts to explore the interaction of proteins with clay minerals (i.e., phyllosilicates such as kaolinite, smectite and micas), including the potential physical and chemical structural changes of proteins, protein adsorption by polar and permanently charged

  10. Hyphenated low-field NMR techniques: combining NMR with NIR, GPC/SEC and rheometry.

    PubMed

    Räntzsch, Volker; Wilhelm, Manfred; Guthausen, Gisela

    2016-06-01

    Hyphenated low-field NMR techniques are promising characterization methods for online process analytics and comprehensive offline studies of soft materials. By combining different analytical methods with low-field NMR, information on chemical and physical properties can be correlated with molecular dynamics and complementary chemical information. In this review, we present three hyphenated low-field NMR techniques: a combination of near-infrared spectroscopy and time-domain NMR (TD-NMR) relaxometry, online (1) H-NMR spectroscopy measured directly after size exclusion chromatographic (SEC, also known as GPC) separation and a combination of rheometry and TD-NMR relaxometry for highly viscous materials. Case studies are reviewed that underline the possibilities and challenges of the different hyphenated low-field NMR methods. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854997

  11. Measurements and Modeling of (16)O(12)C(17)O Spectroscopic Parameters at 2µm

    NASA Astrophysics Data System (ADS)

    Jacquemart, D.; Sung, K.; Brown, L. R.; Coleman, M.; Mantz, A. W.; Smith, M. A. H.

    2014-06-01

    In the present study, line-intensity measurements for 16O12C17O were performed using a high-resolution Fourier transform spectrometer (Bruker IFS-125HR) together with a Herriott cell allowing a 20.956 m absorption path. For this, a 17O-enriched CO2 gas sample mixture was used. The 16O12C17O isotopologue abundance in the sample was determined to be 0.3991 by mass spectrometry. Since a collisional narrowing effect has been observed, the Rautian profile was systematically used instead of the Voigt profile. Finally, around 1000 transitions were studied between 4604 and 5126 cm-1 involving 15 bands of the 16O12C17O isotopologue. For each of the 15 bands, transition dipole moments and Herman-Wallis factors were derived, which also enabled a global comparison with theoretical calculations and predictions achieved for carbon dioxide. For the measured and calculated line positions, the accuracy is between 0.1 - 1×10-3 cm-1. For line intensities, depending on the intensity of the band, accuracies are between 2 - 3 % for 5 cold bands and 2 hot bands and between 6 - 30 % for 8 weaker hot bands. Results from this work are compared to previous works and to HITRAN 2012. Complete line lists were generated to support atmospheric remote sensing for the Earth (e.g. GOSAT, OCO-2 ...), Mars and Venus.

  12. Arginine Interactions with Anatase TiO2 (100) Surface and the Perturbation of 49Ti NMR Chemical Shifts - A DFT Investigation: Relevance to Renu-Seeram Bio Solar Cell

    SciTech Connect

    Koch, Rainer; Lipton, Andrew S.; Filipek, S.; Renugopalakrishnan, Venkatesan M.

    2011-06-01

    Density functional theoretical calculations have been utilized to investigate the interaction of the amino acid arginine with the (100) surface of anatase and the reproduction of experimentally measured 49Ti NMR chemical shifts of anatase. Significant binding of arginine through electrostatic interaction and hydrogen bonds of the arginine guanidinium protons to the TiO2 surface oxygen atoms is observed, allowing attachment of proteins to titania surfaces in the construction of bio-sensitized solar cells. GIAO-B3LYP/6-31G(d) NMR calculation of a three-layer model based on the experimental structure of this TiO2 modification gives an excellent reproduction of the experimental value (-927 ppm) within +/- 7 ppm, however, the change in relative chemical shifts, EFGs and CSA suggest that the effect of the electrostatic arginine binding might be too small for experimental detection.

  13. 129Xe NMR of xenon adsorbed on the molecular sieves AlPO 4-11 and SAPO-11. Chemical shift anisotropy related to the asymmetry of the adsorption zones

    NASA Astrophysics Data System (ADS)

    Springuel-Huet, M. A.; Fraissard, J.

    1989-01-01

    The form of the 129Xe NMR signal of xenon adsorbed at low concentration on the molecular sieves SAPO-11 and AlPO 4-11 corresponds to a highly anisotropic chemical shift which expresses the asymmetry of the channels in which the xenon is located. To the asymmetry of the xenon-wall interaction is added that of the xenon-xenon interaction when the channels are largely filled.

  14. Practice and applications of 17-O-excess measurements of water using novel laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Dennis, K. J.; Steig, E. J.; Vasileios, G.; Schauer, A. J.; Schoenemann, S. W.; Hoffnagle, J.

    2014-12-01

    17O-excess, defined as the deviation from the Global Meteoric Water Line (GMWL) in a plot of ln(δ18O+1) vs. ln(δ17O+1), is an evolving tool for understanding the modern water cycle and reconstructing past climate regimes. Because of competing effects between equilibrium and kinetic fractionation small variations in 17O-excess can be used, for example, to (i) infer changes in temperature and sea ice across glacial-interglacial cycles in Antarctica (Schoenemann et al., 2014), (ii) study the role of rain re-evaporation during convective events thereby improving the incorporation of isotopes into GCMs (Landais et al., 2010), and (iii) assess the role of stratospheric water vapor intrusions at high altitudes or in polar regions (Winkler et al., 2013). In natural waters, variability in 17O-excess is very small (on the order of tens of per meg, where 1 per meg is 0.001‰). Until recently, only measurements made via Isotope Ratio Mass Spectrometry (IRMS) could achieve the required precision, following time-consuming front-end chemistry that converted H2O into O2 for analysis of m/z+ 32, 33 and 34. Recent improvements in laser-based spectroscopy, e.g., Cavity Ring-Down Spectroscopy (CRDS), are enabling quicker and easier measurement of 17O-excess in water (Steig et al., 2013; 2014). The Picarro L2140-i is certified with a precision of ≤ 0.015‰; however implementation of best practices can result in an achievable precision of ≤ 0.008‰, thereby demonstrating comparable performance to IRMS. We will review our recommendations for achieving high-precision measurements of 17O-excess on the Picarro L2140-i, including how to calibrate the system, the frequency of standards analysis, the number of replicate injections and vials required, and approaches to dealing with sample-to-sample memory. We will also compare the external accuracy achieved by three distinct Picarro L2140-i analyzers for multiple waters with distinct isotopic composition.

  15. Characterization of soil phosphorus in a fire-affected forest Cambisol by chemical extractions and (31)P-NMR spectroscopy analysis.

    PubMed

    Turrion, María-Belén; Lafuente, Francisco; Aroca, María-José; López, Olga; Mulas, Rafael; Ruipérez, Cesar

    2010-07-15

    This study was conducted to investigate the long-term effects of fire on soil phosphorus (P) and to determine the efficiency of different procedures in extracting soil P forms. Different P forms were determined: labile forms (Olsen-P, Bray-P, and P extracted by anion exchange membranes: AEM-P); moderately labile inorganic and organic P, obtained by NaOH-EDTA extraction after removing the AEM-P fraction; and total organic and inorganic soil P. (31)P-NMR spectroscopy was used to characterize the structure of alkali-soluble P forms (orthophosphate, monoester, pyrophosphate, and DNA). The studied area was a Pinus pinaster forest located at Arenas de San Pedro (southern Avila, Spain). The soils were Dystric Cambisols over granites. Soil samples were collected at 0-2 cm, 2-5 cm, and 10-15 cm depths, two years after a fire in the burned area and in an adjacent unburned forest area. Fire increased the total N, organic C, total P, and organic and inorganic P content in the surface soil layer. In burned soil, the P extracted by the sequential procedure (AEM and NaOH+EDTA) was about 95% of the total P. Bray extraction revealed a fire-induced increase in the sorption surfaces. Analysis by chemical methods overestimated the organic P fraction in the EDTA-NaOH extract in comparison with the determination by ignition procedure. This overestimation was more important in the burned than unburned soil samples, probably due to humification promoted by burning, which increased P sorption by soil particles. The fire-induced changes on the structure of alkali-soluble P were an increase in orthophosphate-P and a decrease in monoester-P and DNA-P. PMID:20452650

  16. Simultaneous Measurement of δ2H, δ17O, and δ18O in H2O using a Commercial Cavity Ringdown Spectrometer

    NASA Astrophysics Data System (ADS)

    Dominguez, G.; Salvo, C.; Gormally, J.

    2012-12-01

    Quantifying the abundance of oxygen and hydrogen isotopes found in H2O from natural systems and laboratory experiments can be used to better understand physical-chemical processes. While much attention has traditionally been paid to 18O/16O and D/H ratios in natural samples, advances in the precision of mass-spectrometric techniques have exploited small differences in the relative changes of 18O/16O and 17O/16O ratios that are induced by different photochemical and chemical processes such as diffusion and evaporation. In recent years, commercial instruments employing infrared spectroscopy have been shown to be capable of resolving 18O/16O ratios in H2O samples with precisions that are comparable to traditional IRMS techniques. Here we show that, with a modest amount of work, a widely distributed commercial water vapor spectroscopic instrument designed for the determination of {{18}O/{16}^O} and D/H ratios in samples (Picarro L2120-i) can be used to also be used to simultaneously determine the 17O/16O ratio of water samples. Using this instrument, we performed simple evaporation experiments to determine the effect of H2O evaporation (T=40-70C) on the relative ratios of 17O/16O and 18O/16O of residual water. Our results agree with Angert et al. (2004) theoretical prediction for this fractionation. In addition, our results confirm that relative changes in 18O/16O vs. D/H for evaporative conditions follow a slope that is significantly less than 8 (δ 18O vs. D/H) , the value expected for equilibrium conditions. This technique should prove helpful for acquiring data on the multi-isotopic fractionation induced by physical-chemical processes such as evaporation and diffusion in field and laboratory investigations.

  17. Study on molecular structure, spectroscopic investigation (IR, Raman and NMR), vibrational assignments and HOMO-LUMO analysis of L-sodium folinate using DFT: a combined experimental and quantum chemical approach.

    PubMed

    Li, Linwei; Cai, Tiancheng; Wang, Zhiqiang; Zhou, Zhixu; Geng, Yiding; Sun, Tiemin

    2014-01-01

    In the present work, an exhaustive conformational search of N-[4-[[(2-amino-5-formyl-(6S)-3,4,5,6,7,8-hexahydro-4-oxo-6-pteridinyl)methyl]amino]benzoyl]-L-glutamic acid disodium salt (L-SF) has been preformed. The optimized structure of the molecule, vibrational frequencies and NMR spectra studies have been calculated by density functional theory (DFT) using B3LYP method with the 6-311++G (d, p) basis set. IR and FT-Raman spectra for L-SF have been recorded in the region of 400-4000 cm(-1) and 100-3500 cm(-1), respectively. 13C and 1H NMR spectra were recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule were calculated based on the gauge-independent atomic orbital (GIAO) method. Finally all of the calculation results were applied to simulate IR, Raman, 1H NMR and 13C NMR spectrum of the title compound which showed excellent agreement with observed spectrum. Furthermore, reliable vibrational assignments which have been made on the basis of potential energy distribution (PED) and characteristic vibratinonal absorption bands of the title compound in IR and Raman have been figured out. HOMO-LUMO energy and Mulliken atomic charges have been evaluated, either. PMID:24177877

  18. Simulating the budget and distribution of Δ17O in CO2 with a global atmosphere-biosphere model

    NASA Astrophysics Data System (ADS)

    Peters, Wouter; Schneider, Linda; Hofmann, Magdalena E. G.; van der Velde, Ivar; Röckmann, Thomas

    2015-04-01

    The isotope ratios of 16O, 17O and 18O in CO2 are referred to as the triple-oxygen isotope composition of CO2, and have long held promise to better understand terrestrial carbon cycling. However, measurement precision as well as an incomplete understanding of fractionation during equilibrium exchange and diffusion of CO2 have been a challenge, especially for the estimation of gross primary production (GPP) and respiration from measured δ17O and δ18O isotope ratios in CO2. The excess-17O in CO2 (Δ17O), defined as the deviation of the δ17O and δ18O ratios from an expected mass-dependent fractionation line, is in principle easier to interpret as many processes that simultaneously affect δ17O and δ18O are not reflected in Δ17O. Two global box model simulations suggest that atmospheric Δ17O is therefore mostly determined by transport of relatively δ17O enriched CO2 from the stratosphere, and its equilibration in leaf-water back to an excess of close to zero, following diffusion as part of photosynthetic CO2 uptake by vegetation. This makes Δ17O an interesting tracer for photosynthesis at the global scale, and the first decadal time series have recently been published that indeed suggest strong GPP-driven variations in atmospheric Δ17O. In this study, we expand the modeling of Δ17O beyond the current two global box model results published by explicitly simulating the global atmospheric Δ17O distribution over a five year period. We specifically are interested whether regional gradients in Δ17O in areas with large GPP such as Amazonia leave an imprint on Δ17O that can be measured with the rapidly improving measurement precision (10-40 permeg currently). Therefore, we used the SIBCASA biosphere model at 1x1 degrees globally to simulate hourly fluxes of Δ17O into and out of C3 and C4 vegetation as well as soils. These fluxes were then fed into the TM5 atmospheric transport model at 6x4 degrees horizontal resolution to simulate the hourly spatial gradients in

  19. Multinuclear NMR spectroscopy for differentiation of molecular configurations and solvent properties between acetone and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chun; Kuo, Hsiao-Ching; Jia, Hsi-Wei

    2016-04-01

    The differences in molecular configuration and solvent properties between acetone and dimethyl sulfoxide (DMSO) were investigated using the developed technique of 1H, 13C, 17O, and 1H self-diffusion liquid state nuclear magnetic resonance (NMR) spectroscopy. Acetone and DMSO samples in the forms of pure solution, ionic salt-added solution were used to deduce their active sites, relative dipole moments, dielectric constants, and charge separations. The NMR results suggest that acetone is a trigonal planar molecule with a polarized carbonyl double bond, whereas DMSO is a trigonal pyramidal-like molecule with a highly polarized S-O single bond. Both molecules use their oxygen atoms as the active sites to interact other molecules. These different molecular models explain the differences their physical and chemical properties between the two molecules and explain why DMSO is classified as an aprotic but highly dipolar solvent. The results are also in agreement with data obtained using X-ray diffraction, neutron diffraction, and theoretical calculations.

  20. Application of NMR Spectroscopy to the Determination of Low Concentrations of Nonradioactive Isotopes in Liquid Media

    NASA Astrophysics Data System (ADS)

    Dzhimak, S. S.; Basov, A. A.; Kopytov, G. F.; Kashaev, D. V.; Sokolov, M. E.; Artsybasheva, O. M.; Sharapov, K. S.; Baryshev, M. G.

    2015-11-01

    A method is developed for measuring the content of hydrogen (2H) and oxygen (17O) isotopes in liquid media based on quantitative nuclear magnetic resonance. It has been established that the shifting europium trifluoromethanesulfonate (III) reagent is the most appropriate chemical compound for a reference sample to study the isotopic composition of aqueous solutions. A dependence of the paramagnetic chemical shift of 2H and 17O nuclei on the concentration of Eu3+ ions in a solution is studied.

  1. Pygmy dipole resonance in 124Sn populated by inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Crespi, F. C. L.; Leoni, S.; Camera, F.; Lanza, E. G.; Kmiecik, M.; Maj, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Nicolini, R.; Vandone, V.; Wieland, O.; Bazzacco, D.; Bednarczyk, P.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Cederwall, B.; Charles, L.; Ciemala, M.; De Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Gernhäuser, R.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; Isocrate, R.; Jolie, J.; Judson, D.; Jungclaus, A.; Karkour, N.; Krzysiek, M.; Litvinova, E.; Lunardi, S.; Mazurek, K.; Mengoni, D.; Michelagnoli, C.; Menegazzo, R.; Molini, P.; Napoli, D. R.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente Dobon, J. J.; Zieblinski, M.

    2014-11-01

    The γ decay from the high-lying states of 124Sn was measured using the inelastic scattering of 17O at 340 MeV. The emitted γ rays were detected with high resolution with the AGATA demonstrator array and the scattered ions were detected in two segmented ΔE- E silicon telescopes. The angular distribution was measured both for the γ rays and the scattered 17O ions. An accumulation of E1 strength below the particle threshold was found and compared with previous data obtained with (γ ,γ‧) and (α ,α‧ γ) reactions. The present results of elastic scattering, and excitation of E2 and E1 states were analysed using the DWBA approach. From this comprehensive description the isoscalar component of the 1- excited states was extracted. The obtained values are based on the comparison of the data with DWBA calculations including a form factor deduced using a microscopic transition density.

  2. Seasonal variations in 35S and Δ17O of sulfate aerosols on the Antarctic plateau

    NASA Astrophysics Data System (ADS)

    Hill-Falkenthal, Jason; Priyadarshi, Antra; Savarino, Joel; Thiemens, Mark

    2013-08-01

    The first reported seasonal Δ17O anomaly in sulfate aerosols and measurements of radioactive 35SO42- activities collected from Dome C, Antarctica, are reported. Δ17O values exhibit minima during summer (as low as 0.91‰) when tropospheric oxidation patterns are dominated by OH/H2O2 mechanisms. Significant enrichment during autumn and spring is observed (up to 2.40‰) as ozone oxidation increases in the troposphere relative to summer and both stratospheric sources and long-range transport become more significant to the total sulfate budget. An unexpected decrease in Δ17O is seen as winter progresses. This decline is concluded to potentially arise due to a reduction in vertical mixing in the troposphere or linked to variations in the long-range transport of sulfur species to Antarctica. 35SO42- activities exhibit maxima during summer (up to 1219 atoms 35S/m3) that correlate with the peak in stratospheric flux and minima during winter (as low as 146 atoms 35S/m3) when the lack of solar radiation substantially reduces photochemical activity. It is shown that 35S offers the potential to be used as an additional tracer to study stratospheric and tropospheric interactions and is used to estimate stratospheric input of sulfur (combination of SO2 and SO42-). Stratospheric sulfur input produces maxima during summer/autumn with an upper limit of 5.5 ng/m3 and minima during winter/spring with an upper limit of 1.1 ng/m3. From these results, it is concluded that the variation in Δ17O is more reliant upon shifts in tropospheric oxidation mechanisms and long-range transport than on changes in the stratospheric flux.

  3. Study of the soft dipole modes in 140Ce via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Ciemała, M.; Fornal, B.; Grȩbosz, J.; Mazurek, K.; Mȩczyński, W.; Ziȩbliński, M.; Crespi, F. C. L.; Bracco, A.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Giaz, A.; Leoni, S.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.; Wieland, O.; De Angelis, G.; Napoli, D. R.; Valiente-Dobon, J. J.; Bazzacco, D.; Farnea, E.; Gottardo, A.; Lenzi, S.; Lunardi, S.; Mengoni, D.; Michelagnoli, C.; Recchia, F.; Ur, C.; Gadea, A.; Huyuk, T.; Barrientos, D.; Birkenbach, B.; Geibel, K.; Hess, H.; Reiter, P.; Steinbach, T.; Wiens, A.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Siem, S.

    2014-05-01

    The main aim of this study was a deeper understanding of the nuclear structure properties of the soft dipole modes in 140Ce, excited via inelastic scattering of weakly bound 17O projectiles. An important aim was to investigate the ‘splitting’ of the PDR into two parts: a low-energy isoscalar component dominated by neutron-skin oscillations and a higher-energy component lying on the tail of the giant dipole resonance of a rather isovector character. This was already observed for this nucleus, investigated in (α, α‧) and (γ, γ‧) experiments. The experiment was performed at Laboratori Nazionali di Legnaro, Italy. Inelastic scattering of 17O ion beam at 20 MeV A-1 was used to excite the resonance modes in the 140Ce target. Gamma-rays were registered by five triple clusters of AGATA-Demonstrator and nine large volume scintillators (LaBr3). The scattered 17O ions were identified by two ΔE - E Si telescopes of the TRACE array mounted inside the scattering chamber. The telescopes consisted of two segmented Si-pad detectors, each of 60 pixels. Very preliminary data have shown a strong domination of the E1 transitions in the ‘pygmy’ region with a character more similar to the one obtained in alpha scattering experiment.

  4. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  5. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  6. Scalable NMR spectroscopy with semiconductor chips.

    PubMed

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-08-19

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm(2) silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  7. Molecular structure, spectral investigation (1H NMR, 13C NMR, UV-Visible, FT-IR, FT-Raman), NBO, intramolecular hydrogen bonding, chemical reactivity and first hyperpolarizability analysis of formononetin [7-hydroxy-3(4-methoxyphenyl)chromone]: A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Srivastava, Anubha; Mishra, Rashmi; Kumar, Sudhir; Dev, Kapil; Tandon, Poonam; Maurya, Rakesh

    2015-03-01

    Formononetin [7-hydroxy-3(4-methoxyphenyl)chromone or 4‧-methoxy daidzein] is a soy isoflavonoid that is found abundantly in traditional Chinese medicine Astragalus mongholicus (Bunge) and Trifolium pretense L. (red clover), and in an Indian medicinal plant, Butea (B.) monosperma. Crude extract of B.monosperma is used for rapid healing of fracture in Indian traditional medicine. In this study, a combined theoretical and experimental approach is used to study the properties of formononetin. The optimized geometry was calculated by B3LYP method using 6-311++G(d,p) as a large basis set. The FT-Raman and FT-IR spectra were recorded in the solid phase, and interpreted in terms of potential energy distribution (PED) analysis. Density functional theory (DFT) is applied to explore the nonlinear optical properties of the molecule. Good consistency is found between the calculated results and observed data for the electronic absorption, IR and Raman spectra. The solvent effects have been calculated using time-dependent density functional theory in combination with the integral equation formalism polarized continuum model, and the results are in good agreement with observed measurements. The double well potential energy curve of the molecule about the respective bonds, have been plotted, as obtained from DFT/6-31G basis set. The computational results diagnose the most stable conformer of formononetin. The HOMO-LUMO energy gap of possible conformers has been calculated for comparing their chemical activity. Chemical reactivity has been measured by reactivity descriptors and molecular electrostatic potential surface (MEP). The 1H and 13C NMR chemical shifts of the molecule were calculated by the Gauge including atomic orbital (GIAO) method. Furthermore, the role of CHsbnd O intramolecular hydrogen bond in the stability of molecule is investigated on the basis of the results of topological properties of AIM theory and NBO analysis. The calculated first hyperpolarizability shows

  8. Experimental and quantum-chemical studies of 15N NMR coordination shifts in palladium and platinum chloride complexes with pyridine, 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pazderski, Leszek; Szłyk, Edward; Sitkowski, Jerzy; Kamieński, Bohdan; Kozerski, Lech; Tousek, Jaromír; Marek, Radek

    2006-02-01

    A series of Pd and Pt chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), of general formulae trans-/cis-[M(py)2Cl2], [M(py)4]Cl2, trans-/cis-[M(py)2Cl4], [M(bpy)Cl2], [M(bpy)Cl4], [M(phen)Cl2], [M(phen)Cl4], where M = Pd, Pt, was studied by 1H, 195Pt, and 15N NMR. The 90-140 ppm low-frequency 15N coordination shifts are discussed in terms of such structural features of the complexes as the type of platinide metal, oxidation state, coordination sphere geometry and the type of ligand. The results of quantum-chemical NMR calculations were compared with the experimental 15N coordination shifts, well reproducing their magnitude and correlation with the molecular structure. PMID:16392105

  9. Unraveling the interaction between the LPS O-antigen of Burkholderia anthina and the 5D8 monoclonal antibody by using a multidisciplinary chemical approach, with synthesis, NMR, and molecular modeling methods.

    PubMed

    Marchetti, Roberta; Canales, Angeles; Lanzetta, Rosa; Nilsson, Inga; Vogel, Christian; Reed, Dana E; Aucoin, David P; Jiménez-Barbero, Jesús; Molinaro, Antonio; Silipo, Alba

    2013-08-19

    The interaction between the O-chain from the lipopolysaccharide from Burkholderia anthina and a lipopolysaccharide-specific monoclonal antibody (5D8) has been studied at high resolution by NMR spectroscopy. In particular, the 5D8-bound epitope of the saccharide entity has been unraveled by a combination of saturation transfer difference (STD) and transferred NOESY (tr-NOESY) experiments performed on the 5D8/polysaccharide complex. To dissect the fine details of the molecular recognition events, further experiments with simpler carbohydrate ligands were carried out. Thus, experiments were also performed with ad hoc synthesized trisaccharide and hexasaccharide O-antigen repeating units. By using this multidisciplinary approach (chemical synthesis, NMR spectroscopy and molecular dynamics simulation), determination of the binding epitope and the contribution to the binding of the sugar units composing the O-chain have been determined. PMID:23873779

  10. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  11. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  12. [DOTA-bis(amide)]lanthanide complexes: NMR evidence for differences in water-molecule exchange rates for coordination isomers.

    PubMed

    Zhang, S; Kovacs, Z; Burgess, S; Aime, S; Terreno, E; Sherry, A D

    2001-01-01

    Two derivatives of 1,4,7,10-tetraazacyclododecane with trans-acetate and trans-amide side-chain ligating groups have been prepared and their complexes with lanthanide cations examined by multinuclear NMR spectroscopy. These lanthanide complexes exist in aqueous solution as a mixture of slowly interconverting coordination isomers with 1H chemical shifts similar to those reported previously for the major (M) and minor (m) forms of the tetraacetate ([Ln(dota)]-) and tetraamide ([Ln(dtma)]3+) complexes. As in the [Ln(dota)]- and [Ln(dtma)]3+ complexes, the m/M ratio proved to be a sensitive function of lanthanide size and temperature. An analysis of 1H hyperfine shifts in spectra of the Yb3+ complexes revealed significant differences between the axial (D1) and non-axial (D2) components of the magnetic susceptibility tensor anisotropy in the m and M coordination isomers and the energetics of ring inversion and m <==> M isomerization as determined by two-dimensional exchange spectroscopy (EXSY). (17)O shift data for the Dy3+ complexes showed that both have one inner-sphere water molecule. A temperature-dependent (17)O NMR study of bulk water linewidths for solutions of the Gd3+ complexes provided direct evidence for differences in water exchange rates for the two coordination isomers. The bound-water lifetimes (tauM298) in the M and m isomers of the Gd3+ complexes ranged from 1.4-2.4 micros and 3-14 ns, respectively. This indicates that 1) the inner-sphere water lifetimes for the complexes with a single positive charge reported here are considerably shorter for both coordination isomers than the corresponding values for the [Gd(dtma)]3+ complex with three positive charges, and 2) the difference in water lifetimes for M and m isomers in these two series is magnified in the [Gd[dota-bis(amide)

  13. Chemical Profiling (HPLC-NMR & HPLC-MS), Isolation, and Identification of Bioactive Meroditerpenoids from the Southern Australian Marine Brown Alga Sargassum paradoxum

    PubMed Central

    Brkljača, Robert; Urban, Sylvia

    2014-01-01

    A phytochemical investigation of a southern Australian marine brown alga, Sargassum paradoxum, resulted in the isolation and identification of four new (5, 9, 10, and 15) and nine previously reported (1, 2, 6–8, and 11–14) bioactive meroditerpenoids. HPLC-NMR and HPLC-MS were central to the identification of a new unstable compound, sargahydroquinal (9), and pivotal in the deconvolution of eight (1, 2, 5–7, and 10–12) other meroditerpenoids. In particular, the complete characterization and identification of the two main constituents (1 and 2) in the crude dichloromethane extract was achieved using stop-flow HPLC-NMR and HPLC-MS. This study resulted in the first acquisition of gHMBCAD NMR spectra in the stop-flow HPLC-NMR mode for a system solely equipped with a 60 μL HPLC-NMR flow cell without the use of a cold probe, microcoil, or any pre-concentration. PMID:25551779

  14. Complete Measurement of Stable Isotopes in N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O) Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Gupta, M.

    2014-12-01

    Nitrate contamination in water is a worldwide environmental problem and source apportionment is critical to managing nitrate pollution. Fractionation caused by physical, chemical and biological processes alters the isotope ratios of nitrates (15N/14N, 18O/16O and 17O/16O) and biochemical nitrification and denitrification impart different intramolecular site preference (15N14NO vs. 14N15NO). Additionally, atmospheric nitrate is anomalously enriched in 17O compared to other nitrate sources. The anomaly (Δ17O) is conserved during fractionation processes, providing a tracer of atmospheric nitrate. All of these effects can be used to apportion nitrate in soil. Current technology for measuring nitrate isotopes is complicated and costly - it involves conversion of nitrate to nitrous oxide (N2O), purification, preconcentration and measurement by isotope ratio mass spectrometer (IRMS). Site specific measurements require a custom IRMS. There is a pressing need to make this measurement simpler and more accessible. Los Gatos Research has developed a next generation mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to quantify all stable isotope ratios of N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O). We present the latest performance data demonstrating the precision and accuracy of the OA-ICOS based measurement. At an N2O concentration of 322 ppb, the analyzer quantifies [N2O], δ15N, δ15Na, δ15Nb, and δ18O with a precision of ±0.05 ppb, ±0.4 ‰, ±0.45 ‰, and ±0.6 ‰, and ±0.8 ‰ respectively (1σ, 100s; 1σ, 1000s for δ18O). Measurements of gas standards demonstrate accuracy better than ±1 ‰ for isotope ratios over a wide dynamic range (200 - 100,000 ppb). The measurement of δ17O requires a higher concentration (1 - 50 ppm), easily obtainable through conversion of nitrates in water. For 10 ppm of N2O, the instrument achieves a δ17O precision of ±0.05 ‰ (1σ, 1000s). This performance is sufficient to quantify atmospheric

  15. Insight into the dynamics of lanthanide-DTPA complexes as revealed by oxygen-17 NMR.

    PubMed

    Fusaro, Luca; Mocci, Francesca; Muller, Robert N; Luhmer, Michel

    2012-08-01

    DTPA chelates of various diamagnetic and paramagnetic lanthanide(III) metal ions, as well as the chemically similar DTPA chelate of Y(3+), were studied in aqueous solution by variable temperature (17)O NMR with the aim of characterizing their internal dynamics. As a consequence of poor chemical shift dispersion and fast quadrupole relaxation, no dynamic exchange process could be detected for the diamagnetic complexes nor for the Sm-DTPA complex. In contrast, the spectra recorded for the Eu-DTPA complex show chemical exchange due to the well-known racemization process and, at high temperature, feature signal broadening that reveals a fluxional process involving the interchange of the coordinated and noncoordinated oxygen atoms of the carboxylate groups. The spectra recorded for the Pr-DTPA complex feature coalescence events due to such a fluxional process, which is ascribable to the rotation of the carboxylate groups. The activation free energy barriers determined experimentally are remarkably lower than the calculated activation barriers recently reported for the rotation of the carboxylate groups of various Ln-DOTA complexes. Furthermore, the smallest activation free energy measured for the Pr-DTPA complex, about 45 kJ mol(-1), is significantly lower than the activation free energy characterizing the racemization process. The fluxional behavior of the carboxylate groups is, however, not expected to significantly affect the residence time of the water molecule coordinated to the metal ion. PMID:22817329

  16. The Solid Solution Sr(1-x)Ba(x)Ga2: Substitutional Disorder and Chemical Bonding Visited by NMR Spectroscopy and Quantum Mechanical Calculations.

    PubMed

    Pecher, Oliver; Mausolf, Bernhard; Lamberts, Kevin; Oligschläger, Dirk; Niewieszol, Carina; Englert, Ulli; Haarmann, Frank

    2015-09-28

    Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr(1-x)Ba(x)Ga2 is shown by means of X-ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10% cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation-dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs. PMID:26272697

  17. Solid-state NMR and Membrane Proteins

    PubMed Central

    Opella, Stanley J.

    2015-01-01

    The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers. PMID:25681966

  18. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  19. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  20. Geochemical kinetics via the Swift-Connick equations and solution NMR

    NASA Astrophysics Data System (ADS)

    Harley, Steven J.; Ohlin, C. André; Casey, William H.

    2011-07-01

    Signal analysis in Nuclear Magnetic Resonance spectroscopy is among the most powerful methods to quantify reaction rates in aqueous solutions. To this end, the Swift-Connick approximations to the Bloch-McConnell equations have been used extensively to estimate rate parameters for elementary reactions. The method is primarily used for 17O NMR in aqueous solutions, but the list of geochemically relevant nuclei that can be used is long, and includes 29Si, 27Al, 19F, 13C and many others of particular interest to geochemists. Here we review the derivation of both the Swift-Connick and Bloch-McConnell equations and emphasize assumptions and quirks. For example, the equations were derived for CW-NMR, but are used with modern pulse FT-NMR and can be applied to systems that have exchange rates that are shorter than the lifetime of a typical pulse. The method requires a dilute solution where the minor reacting species contributes a negligible amount of total magnetization. We evaluate the sensitivity of results to this dilute-solution requirement and also highlight the need for chemically well-defined systems if reliable data are to be obtained. The limitations in using longitudinal relaxation to estimate reaction rate parameters are discussed. Finally, we provide examples of the application of the method, including ligand exchanges from aqua ions and hydrolysis complexes, that emphasize its flexibility. Once the basic requirements of the Swift-Connick method are met, it allows geochemists to establish rates of elementary reactions. Reactions at this scale lend themselves well to methods of computational simulation and could provide key tests of accuracy.

  1. Development of LC-13C NMR

    NASA Technical Reports Server (NTRS)

    Dorn, H. C.; Wang, J. S.; Glass, T. E.

    1986-01-01

    This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

  2. Using dual-bacterial denitrification to improve δ15N determinations of nitrates containing mass-independent 17O

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; Casciotti, K.L.

    2004-01-01

    The bacterial denitrification method for isotopic analysis of nitrate using N2O generated from Pseudomonas aureofaciens may overestimate ??15N values by as much as 1-2??? for samples containing atmospheric nitrate because of mass-independent 17O variations in such samples. By analyzing such samples for ??15N and ??18O using the denitrifier Pseudomonas chlororaphis, one obtains nearly correct ??15N values because oxygen in N 2O generated by P. chlororaphis is primarily derived from H 2O. The difference between the apparent ??15N value determined with P. aureofaciens and that determined with P. chlororaphis, assuming mass-dependent oxygen isotopic fractionation, reflects the amount of mass-independent 17O in a nitrate sample. By interspersing nitrate isotopic reference materials having substantially different ?? 18O values with samples, one can normalize oxygen isotope ratios and determine the fractions of oxygen in N2O derived from the nitrate and from water with each denitrifier. This information can be used to improve ??15N values of nitrates having excess 17O. The same analyses also yield estimates of the magnitude of 17O excess in the nitrate (expressed as ??17O) that may be useful in some environmental studies. The 1-?? uncertainties of ??15N, ??18O and ??17O measurements are ??0.2, ??0.3 and ??5???, respectively. Copyright ?? 2004 John Wiley & Sons, Ltd.

  3. Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: the influenza a M2 transmembrane peptide as an example.

    PubMed

    Hong, Mei; Mishanina, Tatiana V; Cady, Sarah D

    2009-06-10

    The use of side chain methyl (13)C chemical shifts for the determination of the rotameric conformation of Val and Leu residues in proteins by solid-state NMR spectroscopy is described. Examination of the solution NMR stereospecifically assigned methyl groups shows significant correlation between the difference in the two methyl carbons' chemical shifts and the side chain conformation. It is found that alpha-helical and beta-sheet backbones cause different side chain methyl chemical shift trends. In alpha-helical Leu's, a relatively large absolute methyl (13)C shift difference of 2.89 ppm is found for the most populated mt rotamer (chi(1) = -60 degrees, chi(2) = 180 degrees), while a much smaller value of 0.73 ppm is found for the next populated tp rotamer (chi(1) = 180 degrees, chi(2) = 60 degrees). For alpha-helical Val residues, the dominant t rotamer (chi(1) = 180 degrees) has more downfield Cgamma2 chemical shifts than Cgamma1 by 1.71 ppm, while the next populated m rotamer (chi(1) = -60 degrees) shows the opposite trend of more downfield Cgamma1 chemical shift by 1.23 ppm. These significantly different methyl (13)C chemical shifts exist despite the likelihood of partial rotameric averaging at ambient temperature. We show that these conformation-dependent methyl (13)C chemical shifts can be utilized for side chain structure determination once the methyl (13)C resonances are accurately measured by double-quantum (DQ) filtered 2D correlation experiments, most notably the dipolar DQ to single-quantum (SQ) correlation technique. The advantage of the DQ-SQ correlation experiment over simple 2D SQ-SQ correlation experiments is demonstrated on the transmembrane peptide of the influenza A M2 proton channel. The methyl chemical shifts led to predictions of the side chain rotameric states for several Val and Leu residues in this tetrameric helical bundle. The predicted Val rotamers were further verified by dipolar correlation experiments that directly measure the chi(1

  4. Quantitative constraints on the 17O-excess (Δ17O) signature of surface ozone: Ambient measurements from 50°N to 50°S using the nitrite-coated filter technique

    NASA Astrophysics Data System (ADS)

    Vicars, William C.; Savarino, Joël

    2014-06-01

    The unique and distinctive 17O-excess (Δ17O) of ozone (O3) provides a conservative tracer for oxidative processes in both modern and paleo-atmospheres and has acted as the primary driver of theoretical and experimental research into non-mass-dependent fractionation (NMDF) for over three decades. However, due to the inherent complexity of extracting O3 from ambient air, the existing observational dataset for tropospheric O3 isotopic composition remains quite small. Recent analytical developments have provided a robust and reliable means for determining Δ17O(O3)trans., the transferrable Δ17O signature of ozone in the troposphere (Vicars et al., 2012). We have employed this new methodology in a systematic investigation of the spatial and seasonal features of Δ17O(O3)trans. in two separate field campaigns: a weekly sampling effort at our laboratory in Grenoble, France (45°N) throughout 2012 (n = 47) and a four-week campaign onboard the Research Vessel (R/V) Polarstern along a latitudinal transect from 50°S to 50°N in the Atlantic Ocean (n = 30). The bulk 17O-excess of ozone, denoted Δ17O(O3)bulk, exhibited mean (±1σ) values of 26.2 ± 1.3‰ (Δ17O(O3)trans. = 39.3 ± 2.0‰) and 25.9 ± 1.1‰ (Δ17O(O3)trans. = 38.8 ± 1.6‰) for the Grenoble and R/V Polarstern collections, respectively. This range of values is in excellent quantitative agreement with the two previous studies of ozone triple-isotope composition, which have yielded mean (±1σ) Δ17O(O3)bulk values of 25.4 ± 9.0‰ (n = 89). However, the magnitude of variability detected in the present study is much smaller than that formerly reported. In fact, the standard deviation of Δ17O(O3)bulk in each new dataset is lower than the uncertainty previously estimated for the filter technique (±1.7‰), indicating a low level of natural spatial and temporal variation in the 17O-excess of surface ozone. For instance, no clear temporal pattern in Δ17O(O3) is evident in the annual record from Grenoble

  5. Revealing the climate of snowball Earth from Δ17O systematics of hydrothermal rocks

    PubMed Central

    Herwartz, Daniel; Pack, Andreas; Krylov, Dmitri; Xiao, Yilin; Muehlenbachs, Karlis; Sengupta, Sukanya; Di Rocco, Tommaso

    2015-01-01

    The oxygen isotopic composition of hydrothermally altered rocks partly originates from the interacting fluid. We use the triple oxygen isotope composition (17O/16O, 18O/16O) of Proterozoic rocks to reconstruct the 18O/16O ratio of ancient meteoric waters. Some of these waters have originated from snowball Earth glaciers and thus give insight into the climate and hydrology of these critical intervals in Earth history. For a Paleoproterozoic [∼2.3–2.4 gigayears ago (Ga)] snowball Earth, δ18O = −43 ± 3‰ is estimated for pristine meteoric waters that precipitated at low paleo-latitudes (≤35°N). Today, such low 18O/16O values are only observed in central Antarctica, where long distillation trajectories in combination with low condensation temperatures promote extreme 18O depletion. For a Neoproterozoic (∼0.6–0.7 Ga) snowball Earth, higher meltwater δ18O estimates of −21 ± 3‰ imply less extreme climate conditions at similar paleo-latitudes (≤35°N). Both estimates are single snapshots of ancient water samples and may not represent peak snowball Earth conditions. We demonstrate how 17O/16O measurements provide information beyond traditional 18O/16O measurements, even though all fractionation processes are purely mass dependent. PMID:25870269

  6. 1- and 2+ discrete states in 90Zr populated via the (17O,'17Oγ ) reaction

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Lanza, E. G.; Vitturi, A.; Mengoni, D.; Leoni, S.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Corsi, A.; Giaz, A.; Million, B.; Pellegri, L.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Kmiecik, M.; Krzysiek, M.; Maj, A.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Hess, H.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Kempley, R. S.; Labiche, M.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Sahin, E.; Siem, S.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.

    2015-02-01

    2+ and 1- states in 90Zr were populated via the (17O,'17Oγ ) reaction at 340 MeV. The γ decay was measured with high resolution using the AGATA (advanced γ tracking array demonstrator array). Differential cross sections were obtained at few different angles for the scattered particle. The results of the elastic scattering and inelastic excitation of 2+,3-, and 1- states are compared with distorted-wave Born approximation (DWBA) calculations, using both the standard collective form factor and a form factor obtained by folding microscopically calculated transition densities. This allowed to extract the isoscalar component of the 1- state at 6.424 MeV. The comparison of the present (17O,'17Oγ ) data with existing (γ ,γ' ) and (p ,p' ) data in the corresponding region of the γ continuum (6-11 MeV), characterized by a large E 1 component, shows completely different behaviors of the cross section as a function of the nuclear excitation energy. The comparison of the data with DWBA calculations suggests a decrease of the isoscalar strength in the cross section with increasing excitation energy.

  7. Elastic scattering of 17O+208Pb at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Strano, E.; Mazzocco, M.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Nicoletto, M.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Soramel, F.; Toniolo, N.; Filipescu, D.; Gheorghe, A.; Glodariu, T.; Jeong, S.; Kim, Y. H.; Lay, J. A.; Miyatake, H.; Pakou, A.; Sgouros, O.; Soukeras, V.; Stroe, L.; Vitturi, A.; Watanabe, Y.; Zerva, K.

    2016-05-01

    Within the frame of the commissioning of a new experimental apparatus EXPADES we undertook the measurement of the elastic scattering angular distribution for the system 17O+208Pb at energy around the Coulomb barrier. The reaction dynamics induced by loosely bound Radioactive Ion Beams is currently being extensively studied [4]. In particular the study of the elastic scattering process allows to obtain direct information on the total reaction cross section of the exotic nuclei. In order to understand the effect of the low binding energy on the reaction mechanism it is important to compare radioactive weakly bound nuclei with stable strongly-bound nuclei. In this framework the study of the 17O+208Pb elastic scattering can be considered to be complementary to a previous measurement of the total reaction cross section for the system 17F+208Pb at energies of 86, 90.4 MeV [5, 6]. The data will be compared with those obtained for the neighboring systems 16,18O+208Pb and others available in literature.

  8. Revealing the climate of snowball Earth from Δ17O systematics of hydrothermal rocks.

    PubMed

    Herwartz, Daniel; Pack, Andreas; Krylov, Dmitri; Xiao, Yilin; Muehlenbachs, Karlis; Sengupta, Sukanya; Di Rocco, Tommaso

    2015-04-28

    The oxygen isotopic composition of hydrothermally altered rocks partly originates from the interacting fluid. We use the triple oxygen isotope composition ((17)O/(16)O, (18)O/(16)O) of Proterozoic rocks to reconstruct the (18)O/(16)O ratio of ancient meteoric waters. Some of these waters have originated from snowball Earth glaciers and thus give insight into the climate and hydrology of these critical intervals in Earth history. For a Paleoproterozoic [∼2.3-2.4 gigayears ago (Ga)] snowball Earth, δ(18)O = -43 ± 3‰ is estimated for pristine meteoric waters that precipitated at low paleo-latitudes (≤35°N). Today, such low (18)O/(16)O values are only observed in central Antarctica, where long distillation trajectories in combination with low condensation temperatures promote extreme (18)O depletion. For a Neoproterozoic (∼0.6-0.7 Ga) snowball Earth, higher meltwater δ(18)O estimates of -21 ± 3‰ imply less extreme climate conditions at similar paleo-latitudes (≤35°N). Both estimates are single snapshots of ancient water samples and may not represent peak snowball Earth conditions. We demonstrate how (17)O/(16)O measurements provide information beyond traditional (18)O/(16)O measurements, even though all fractionation processes are purely mass dependent. PMID:25870269

  9. Using NMR chemical shift imaging to monitor swelling and molecular transport in drug-loaded tablets of hydrophobically modified poly(acrylic acid): methodology and effects of polymer (in)solubility.

    PubMed

    Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart

    2013-11-12

    A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent. PMID:24106807

  10. Dipolar-dephasing 13C NMR studies of decomposed wood and coalified xylem tissue: Evidence for chemical structural changes associated with defunctionalization of lignin structural units during coalification

    USGS Publications Warehouse

    Hatcher, P.G.

    1988-01-01

    A series of decomposed and coalified gymnosperm woods was examined by conventional solid-state 13C nuclear magnetic resonance (NMR) and by dipolar-dephasing NMR techniques. The results of these NMR studies for a histologically related series of samples provide clues as to the nature of codification reactions that lead to the defunctionalization of lignin-derived aromatic structures. These reactions sequentially involve the following: (1) loss of methoxyl carbons from guaiacyl structural units with replacement by hydroxyls and increased condensation; (2) loss of hydroxyls or aryl ethers with replacement by hydrogen as rank increases from lignin to high-volatile bituminous coal; (3) loss of alkyl groups with continued replacement by hydrogen. The dipolar-dephasing data show that the early stages of coalification in samples examined (lignin to lignite) involve a decreasing degree of protonation on aromatic rings and suggest that condensation is significant during coalification at this early stage. An increasing degree of protonation on aromatic rings is observed as the rank of the sample increases from lignite to anthracite.

  11. Orotate phosphoribosyltransferase from baker's yeast: I. Kinetic analysis, chemical modification, and proton NMR spectroscopy of the enzyme substrate complex. II. Amino acid analysis and NMR spectroscopy of the protein

    SciTech Connect

    Strauss, R.S.

    1986-01-01

    Kinetic analysis of the effect of pH on the reversible reaction catalyzed by orotate phosphoribosyltransferase (OPRTase) from Baker's yeast revealed that different amino acid residues may enable the enzyme-catalyzed reactions to proceed in the forward and reverse directions, respectively. For the forward reaction, there appear to be at least two critical amino acid residues (pK's 4.6 and 7.1) which must be in a deprotonated state to reach a maximum activity near pH 8 which is maintained through pH 9.5. For the reverse reaction, maximum activity is reached near pH 7 (pK's at 5.4) and then the activity decreases at higher pH (pK's at 7.9 and possibly above 9). A theoretical proton NMR spectrum was generated for OPRTase, based on its amino acid composition. The spectrum thus produced has a similar number of major peaks to that of the actual spectrum taken at 300 MHz. Spectra collected at various pH values between 8 and 5, were consistent with the maintenance of the gross conformational structure of the enzyme over that pH range.

  12. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Au(III), Pd(II) and Pt(II) chloride complexes with picolines.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Malináková, Katerina; Kozerski, Lech; Szłyk, Edward

    2009-03-01

    (1)H, (13)C and (15)N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with picolines, [Au(PIC)Cl(3)], trans-[Pd(PIC)(2)Cl(2)], trans/cis-[Pt(PIC)(2)Cl(2)] and [Pt(PIC)(4)]Cl(2), were performed. After complexation, the (1)H and (13)C signals were shifted to higher frequency, whereas the (15)N ones to lower (by ca 80-110 ppm), with respect to the free ligands. The (15)N shielding phenomenon was enhanced in the series [Au(PIC)Cl(3)] < trans-[Pd(PIC)(2)Cl(2)] < cis-[Pt(PIC)(2)Cl(2)] < trans-[Pt(PIC)(2)Cl(2)]; it increased following the Pd(II) --> Pt(II) replacement, but decreased upon the trans --> cis-transition. Experimental (1)H, (13)C and (15)N NMR chemical shifts were compared to those quantum-chemically calculated by B3LYP/LanL2DZ + 6-31G**//B3LYP/LanL2DZ + 6-31G*. PMID:19097135

  13. Infrared spectroscopy of 17O- and 18O-enriched carbon dioxide: Line positions and intensities in the 4681-5337 cm-1 region

    NASA Astrophysics Data System (ADS)

    Borkov, Yu. G.; Jacquemart, D.; Lyulin, O. M.; Tashkun, S. A.; Perevalov, V. I.

    2015-07-01

    The line positions and intensities of carbon dioxide isotopologues have been retrieved in the 4681-5337 cm-1 spectral range from Fourier transform spectra of carbon dioxide recorded in LADIR (Paris, France) with the Bruker IFS 125-HR [Jacquemart D, et al., J Quant Spectrosc Radiat Transf 2012;113:961-975]. In total 6386 line positions and intensities of 89 bands of 12 isotopologues 16O12C16O, 16O13C16O, 16O12C18O, 16O12C17O, 16O13C18O, 16O13C17O, 18O12C18O, 17O12C18O, 17O12C17O, 18O13C18O, 17O13C18O, and 17O13C17O have been retrieved. 23 bands were newly assigned. All studied bands belong to the ΔP=7 series of transitions, where P = 2V1 +V2 + 3V3 is the polyad number (Vi are vibrational quantum numbers). The accuracy of the line position measurement is about 0.3×10-3 cm-1 for the unblended and not very weak lines. The accuracy of the line intensities varies from 4% to 15% depending on the isotopologue, on the intensity of the line and on the extent of the line overlapping. The observed intensities were used to fit the effective dipole moment parameters for the ΔP=7 series of transitions in 16O12C18O, 16O12C17O, 12C17O2, 17O12C18O, 16O13C17O, 13C17O2 and 17O13C18O isotopologues of carbon dioxide.

  14. Prediction of (195) Pt NMR chemical shifts of dissolution products of H2 [Pt(OH)6 ] in nitric acid solutions by DFT methods: how important are the counter-ion effects?

    PubMed

    Tsipis, Athanassios C; Karapetsas, Ioannis N

    2016-08-01

    (195) Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3 )n (OH)6 - n ](2-) , [Pt(NO3 )n (OH2 )6 - n ](4 - n) (n = 1-6), and [Pt(NO3 )6 - n  - m (OH)m (OH2 )n ](-2 + n - m) formed by dissolution of platinic acid, H2 [Pt(OH)6 ], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge-including atomic orbitals (GIAO)-PBE0/segmented all-electron relativistically contracted-zeroth-order regular approximation (SARC-ZORA)(Pt) ∪ 6-31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second-order polynomial plots of δcalcd ((195) Pt) versus δexptl ((195) Pt) chemical shifts and δcalcd ((195) Pt) versus the natural atomic charge QPt are obtained. Despite of neglecting relativistic and spin orbit effects the good agreement of the calculated δ (195) Pt chemical shifts with experimental values is probably because of the fact that the contribution of relativistic and spin orbit effects to computed σ(iso) (195) Pt magnetic shielding of Pt(IV) coordination compounds is effectively cancelled in the computed δ (195) Pt chemical shifts, because the relativistic corrections are expected to be similar in the complexes and the proper reference standard used. To probe the counter-ion effects on the (195) Pt NMR chemical shifts of the anionic [Pt(NO3 )n (OH)6 - n ](2-) and cationic [Pt(NO3 )n (OH2 )6 - n ](4 - n) (n = 0-3) complexes we calculated the (195) Pt NMR chemical shifts of the neutral (PyH)2 [Pt(NO3 )n (OH)6 - n ] (n = 1-6; PyH = pyridinium cation, C5 H5 NH(+) ) and [Pt(NO3 )n (H2 O)6 - n ](NO3 )4 - n (n = 0-3) complexes. Counter-anion effects are very important for the accurate prediction of the (195) Pt NMR chemical shifts of the cationic [Pt(NO3 )n (OH2 )6 - n ](4 - n) complexes, while counter-cation effects are less important for the anionic [Pt(NO3 )n (OH)6

  15. Pygmy dipole resonance in 140Ce via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Bracco, A.; Crespi, F. C. L.; Lanza, E. G.; Litvinova, E.; Paar, N.; Avigo, R.; Bazzacco, D.; Benzoni, G.; Birkenbach, B.; Blasi, N.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Ciemała, M.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; Isocarte, R.; Jungclaus, A.; Leoni, S.; Ljungvall, J.; Lunardi, S.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Milion, B.; Morales, A. I.; Napoli, D. R.; Nicolini, R.; Pellegri, L.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Salsac, M. D.; Siebeck, B.; Siem, S.; Söderström, P.-A.; Ur, C.; Valiente-Dobon, J. J.; Wieland, O.; Ziebliński, M.

    2016-04-01

    The γ decay from the high-lying states of 140Ce excited via inelastic scattering of 17O at a bombarding energy of 340 MeV was measured using the high-resolution AGATA-demonstrator array in coincidence with scattered ions detected in two segmented Δ E -E silicon detectors. Angular distributions of scattered ions and emitted γ rays were measured, as well as their differential cross sections. The excitation of 1- states below the neutron separation energy is similar to the one obtained in reactions with the α isoscalar probe. The comparison between the experimental differential cross sections and the corresponding predictions using the distorted-wave Born approximation allowed us to extract the isoscalar component of identified 1- pygmy states. For this analysis the form factor obtained by folding microscopically calculated transition densities and optical potentials was used.

  16. Optimised conditions for the synthesis of (17)O and (18)O labelled cholesterol.

    PubMed

    de la Calle Arregui, Celia; Purdie, Jonathan A; Haslam, Catherine A; Law, Robert V; Sanderson, John M

    2016-02-01

    Conditions are described for the preparation of cholesterol with (17)O and (18)O labels from i-cholesteryl methyl ether using minimal amounts of isotopically enriched water. Optimum yields employed trifluoromethanesulfonic acid as catalyst in 1,4-dioxane at room temperature with 5 equivalents of water. An isotopic enrichment >90% of that of the water used for the reaction could be attained. Tetrafluoroboric acid could also be used as catalyst, at the expense of a lower overall reaction yield. Byproducts from the reaction included dicholesteryl ether, methyl cholesteryl ether, compounds formed by ether hydrolysis, and olefins arising from elimination reactions. Reactions in tetrahydrofuran yielded significant amounts of cholesteryl ethers formed by reaction with alcohols arising from hydrolysis of the solvent. PMID:26724708

  17. EZ-ASSIGN, a program for exhaustive NMR chemical shift assignments of large proteins from complete or incomplete triple-resonance data

    PubMed Central

    Zuiderweg, Erik R.P.; Bagai, Ireena; Rossi, Paolo; Bertelsen, Eric B.

    2013-01-01

    For several of the proteins in the BioMagResBank larger than 200 residues, 60% or fewer of the backbone resonances were assigned. But how reliable are those assignments? In contrast to complete assignments, where it is possible to check whether every triple-resonance Generalized Spin System (GSS) is assigned once and only once, with incomplete data one should compare all possible assignments and pick the best one. But that is not feasible: For example, for 200 residues and an incomplete set of 100 GSS, there are 1.6*10260 possible assignments. In “EZ-ASSIGN”, the protein sequence is divided in smaller unique fragments. Combined with intelligent search approaches, an exhaustive comparison of all possible assignments is now feasible using a laptop computer. The program was tested with experimental data of a 388-residue domain of the Hsp70 chaperone protein DnaK and for a 351-residue domain of a type III secretion ATPase. EZ-ASSIGN reproduced the hand assignments. It did slightly better than the computer program PINE (Bahrami et al., PLoS Comput Biol. 2009 5 (3): e1000307) and significantly outperformed SAGA (Crippen et al, (2010) J Biomol NMR 46, 281–298), AUTOASSIGN (Zimmerman et al., (1997) J Mol Biol 269:592–610), and IBIS (Hyberts and Wagner (2003) J Biomol NMR 26:335–344). Next, EZ-ASSIGN was used to investigate how well NMR data of decreasing completeness can be assigned. We found that the program could confidently assign fragments in very incomplete data. Here, EZ-ASSIGN dramatically outperformed all the other assignment programs tested. PMID:24022834

  18. Phosphide oxides RE2AuP2O (RE = La, Ce, Pr, Nd): synthesis, structure, chemical bonding, magnetism, and 31P and 139La solid state NMR.

    PubMed

    Bartsch, Timo; Wiegand, Thomas; Ren, Jinjun; Eckert, Hellmut; Johrendt, Dirk; Niehaus, Oliver; Eul, Matthias; Pöttgen, Rainer

    2013-02-18

    Polycrystalline samples of the phosphide oxides RE(2)AuP(2)O (RE = La, Ce, Pr, Nd) were obtained from mixtures of the rare earth elements, binary rare earth oxides, gold powder, and red phosphorus in sealed silica tubes. Small single crystals were grown in NaCl/KCl fluxes. The samples were studied by powder X-ray diffraction, and the structures were refined from single crystal diffractometer data: La(2)AuP(2)O type, space group C2/m, a = 1515.2(4), b = 424.63(8), c = 999.2(2) pm, β = 130.90(2)°, wR2 = 0.0410, 1050 F(2) values for Ce(2)AuP(2)O, and a = 1503.6(4), b = 422.77(8), c = 993.0(2) pm, β = 130.88(2)°, wR2 = 0.0401, 1037 F(2) values for Pr(2)AuP(2)O, and a = 1501.87(5), b = 420.85(5), c = 990.3(3) pm, β = 131.12(1)°, wR2 = 0.0944, 1143 F(2) values for Nd(2)AuP(2)O with 38 variables per refinement. The structures are composed of [RE(2)O](4+) polycationic chains of cis-edge-sharing ORE(4/2) tetrahedra and polyanionic strands [AuP(2)](4-), which contain gold in almost trigonal-planar phosphorus coordination by P(3-) and P(2)(4-) entities. The isolated phosphorus atoms and the P(2) pairs in La(2)AuP(2)O could clearly be distinguished by (31)P solid state NMR spectroscopy and assigned on the basis of a double quantum NMR technique. Also, the two crystallographically inequivalent La sites could be distinguished by static (139)La NMR in conjunction with theoretical electric field gradient calculations. Temperature-dependent magnetic susceptibility measurements show diamagnetic behavior for La(2)AuP(2)O. Ce(2)AuP(2)O and Pr(2)AuP(2)O are Curie-Weiss paramagnets with experimental magnetic moments of 2.35 and 3.48 μ(B) per rare earth atom, respectively. Their solid state (31)P MAS NMR spectra are strongly influenced by paramagnetic interactions. Ce(2)AuP(2)O orders antiferromagnetically at 13.1(5) K and shows a metamagnetic transition at 11.5 kOe. Pr(2)AuP(2)O orders ferromagnetically at 7.0 K. PMID:23374070

  19. Probing cation and vacancy ordering in the dry and hydrated yttrium-substituted BaSnO3 perovskite by NMR spectroscopy and first principles calculations: implications for proton mobility.

    PubMed

    Buannic, Lucienne; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2012-09-01

    Hydrated BaSn(1-x)Y(x)O(3-x/2) is a protonic conductor that, unlike many other related perovskites, shows high conductivity even at high substitution levels. A joint multinuclear NMR spectroscopy and density functional theory (total energy and GIPAW NMR calculations) investigation of BaSn(1-x)Y(x)O(3-x/2) (0.10 ≤ x ≤ 0.50) was performed to investigate cation ordering and the location of the oxygen vacancies in the dry material. The DFT energetics show that Y doping on the Sn site is favored over doping on the Ba site. The (119)Sn chemical shifts are sensitive to the number of neighboring Sn and Y cations, an experimental observation that is supported by the GIPAW calculations and that allows clustering to be monitored: Y substitution on the Sn sublattice is close to random up to x = 0.20, while at higher substitution levels, Y-O-Y linkages are avoided, leading, at x = 0.50, to strict Y-O-Sn alternation of B-site cations. These results are confirmed by the absence of a "Y-O-Y" (17)O resonance and supported by the (17)O NMR shift calculations. Although resonances due to six-coordinate Y cations were observed by (89)Y NMR, the agreement between the experimental and calculated shifts was poor. Five-coordinate Sn and Y sites (i.e., sites next to the vacancy) were observed by (119)Sn and (89)Y NMR, respectively, these sites disappearing on hydration. More five-coordinated Sn than five-coordinated Y sites are seen, even at x = 0.50, which is ascribed to the presence of residual Sn-O-Sn defects in the cation-ordered material and their ability to accommodate O vacancies. High-temperature (119)Sn NMR reveals that the O ions are mobile above 400 °C, oxygen mobility being required to hydrate these materials. The high protonic mobility, even in the high Y-content materials, is ascribed to the Y-O-Sn cation ordering, which prevents proton trapping on the more basic Y-O-Y sites. PMID:22691062

  20. Backbone and Ile-δ1, Leu, Val Methyl 1H, 13C and 15N NMR chemical shift assignments for human interferon-stimulated gene 15 protein

    SciTech Connect

    Yin, Cuifeng; Aramini, James M.; Ma, LiChung; Cort, John R.; Swapna, G.V.T.; Krug, R. M.; Montelione, Gaetano

    2011-10-01

    Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing two ubiquitin-like domains fused in tandem. The active form of ISG15 is conjugated to target proteins via the C-terminal glycine residue through an isopeptide bond in a manner similar to ubiquitin. The biological role of ISG15 is strongly associated with the modulation of cell immune function, and there is mounting evidence suggesting that many viral pathogens evade the host innate immune response by interfering with ISG15 conjugation to both host and viral proteins in a variety of ways. Here we report nearly complete backbone 1HN, 15N, 13CO, and 13Ca, as well as side chain 13Cb, methyl (Ile-d1, Leu, Val), amide (Asn, Gln), and indole NH (Trp) NMR resonance assignments for the 157-residue human ISG15 protein. These resonance assignments provide the basis for future structural and functional solution NMR studies of the biologically important human ISG15 protein.

  1. Synthesis, antimicrobial evaluation and theoretical prediction of NMR chemical shifts of thiazole and selenazole derivatives with high antifungal activity against Candida spp.

    NASA Astrophysics Data System (ADS)

    Łączkowski, Krzysztof Z.; Motylewska, Katarzyna; Baranowska-Łączkowska, Angelika; Biernasiuk, Anna; Misiura, Konrad; Malm, Anna; Fernández, Berta

    2016-03-01

    Synthesis and investigation of antimicrobial activities of novel thiazoles and selenazoles is presented. Their structures were determined using NMR, FAB(+)-MS, HRMS and elemental analyses. To support the experiment, theoretical calculations of the 1H NMR shifts were carried out for representative systems within the DFT B3LYP/6-311++G** approximation which additionally confirmed the structure of investigated compounds. Among the derivatives, compounds 4b, 4h, 4j and 4l had very strong activity against reference strains of Candida albicans ATCC and Candida parapsilosis ATCC 22019 with MIC = 0.49-7.81 μg/ml. In the case of compounds 4b, 4c, 4h - 4j and 4l, the activity was very strong against of Candida spp. isolated from clinical materials, i.e. C. albicans, Candida krusei, Candida inconspicua, Candida famata, Candida lusitaniae, Candida sake, C. parapsilosis and Candida dubliniensis with MIC = 0.24-15.62 μg/ml. The activity of several of these was similar to the activity of commonly used antifungal agent fluconazole. Additionally, compounds 4m - 4s were found to be active against Gram-positive bacteria, both pathogenic staphylococci Staphylococcus aureus ATCC with MIC = 31.25-125 μg/ml and opportunistic bacteria, such as Staphylococcus epidermidis ATCC 12228 and Micrococcus luteus ATCC 10240 with MIC = 7.81-31.25 μg/ml.

  2. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2007-12-01

    1H, 13C, and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with quinolines (L=quinoline-quin, or isoquinoline-isoquin; LL=2,2'-biquinoline-bquin), having the general formulae trans-/cis-[ML2Cl2] and [M(LL)Cl2], were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H coordination shifts of various signs and magnitudes (Delta1Hcoord=delta1Hcomplex-delta1Hligand) are discussed in relation to the changes of diamagnetic contribution to the relevant 1H shielding constants. The comparison to the literature data for similar complexes containing auxiliary ligands other than chlorides exhibited a large dependence of delta1H parameters on electron density variations and ring-current effects (inductive and anisotropic phenomena). The influence of deviations from planarity, concerning either MN2Cl2 chromophores or azine ring systems, revealed by the known X-ray structures of [Pd(bquin)Cl2] and [Pt(bquin)Cl2], is discussed in respect to 1H NMR spectra. 15N coordination shifts (Delta15Ncoord=delta15Ncomplex-delta15Nligand) of ca. 78-100 ppm (to lower frequency) are attributed mainly to the decrease of the absolute value of paramagnetic contribution in the relevant 15N shielding constants, this phenomenon being noticeably dependent on the type of a platinide metal and coordination sphere geometry. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) replacement but decreased by ca. 15 ppm following trans-->cis transition. Experimental 1H, 13C, 15N NMR chemical shifts are compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in CHCl3 or DMF solution. PMID:18044805

  3. VizieR Online Data Catalog: C18O/C17O ratios in the Galactic center

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Sun, L. L.; Riquelme, D.; Henkel, C.; Lu, D. R.; Zhang, Y.; Wang, J. Z.; Wang, M.; Li, J.

    2015-09-01

    Our mapping observations of the J=1-0 lines of 12CO, 13 and C17O were carried out with the DLH 13.7m telescope of the Purple Mountain Observatory (PMO) at Delingha in 2011 January and 2012 May and November. The C18O and C17O lines were also observed in single-point mode toward Sgr B2 with the IRAM 30m telescope in 2011 September, and toward Sgr C and Sgr D with the Mopra 22m in 2014 June. (2 data files).

  4. On the introduction of 17O+p reaction rates evaluated through the THM in AGB nucleosynthesis calculations

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2014-05-01

    The rates for the 17O(p,αα14N, 17O(p,α)18F and 18O(p,α)15N reactions deduced trough the Trojan Horse Method (THM) have been introduced into a state-of-the-art asymptotic giant branch (AGB) models for proton-capture nucleosynthesis and cool bottom process. The predicted abundances have been compared with isotopic compositions provided by geochemical analysis of presolar grains. As a result, an improved agreement is found between the models and the isotopic mix of oxide grains of AGB origins, whose composition is the signature of low-temperature proton-capture nucleosynthesis.

  5. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α)14N Reaction Studied via THM

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wischer, M.; Mrazek, J.; Kroha, V.

    2016-05-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature.

  6. Resonance strength measurement at astrophysical energies: The 17O(p,α)14N reaction studied via Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrazek, J.; Kroha, V.

    2015-10-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  7. Potential barriers and Landau-Zener promotion in the inelastic excitation of /sup 17/O by /sup 13/C ions

    SciTech Connect

    Park, J.Y.; Gramlich, K.; Scheid, W.; Greiner, W.

    1986-05-01

    The inelastic excitation of the (1/2)/sup +/ (871 keV) state of /sup 17/O in the reaction of /sup 13/C on /sup 17/O is described by a time-dependent quantum mechanical model with two diabatic states and a classical treatment of the radial relative motion. The structures in the angle-integrated cross section are interpreted as caused by the barriers of the angular momentum-dependent potentials. The transition strength is enhanced by the Landau-Zener effect between the levels considered.

  8. Tracing Atmospheric Sulfate Through a Subalpine Ecosystem Using 17O and 35S, Loch Vale Watershed, Colorado

    NASA Astrophysics Data System (ADS)

    Kester, C. L.; Johnson, C. A.; Mast, M. A.; Michel, R. L.

    2002-12-01

    Over the past several decades, sulfur cycles have been examined in numerous watersheds worldwide to assess the impacts of changes in sulfuric acid deposition rates. A thorough understanding of sulfur behavior in these systems requires that the sulfate influxes from bedrock weathering and from atmospheric deposition be known, and that the extent of sulfur uptake by biomass be determined. Following the discovery of excess 17O in atmospheric sulfate (Lee et al, 2001, GRL 28:1783), we used 17O to help constrain sulfur dynamics and fluxes in alpine/subalpine watersheds in the Rocky Mountains of Colorado (Johnson et al, 2001, GRL 28:4483). Building on this work, and on our previous studies employing cosmogenic 35S (t1/2=87 d, Michel et al, 2000, WRR 36:27), we report a combined 17O-35S study of sulfate in an undisturbed subalpine watershed, Loch Vale, Colorado. In this study, both isotopes were measured in sulfate from a suite of stream and spring waters collected in 1999, and in sulfate from the 1999 snowpack. The snowpack sulfate represents the dominant fraction of annual atmospheric deposition to the watershed. Individual sampling sites show linear correlations between excess 17O and 35S, suggesting that there are two dominant sources of surface water sulfate. The data arrays extend neither toward the measured compositions of snowpack sulfate (Δ17O=1.3‰ , 35S=53 mBq/mg sulfate at Julian day 90), nor toward the compositions characteristic of sulfate from bedrock weathering (Δ17O =0, 35S=0). Thus, the mixing components are themselves composites of different sulfate types. One component appears to be sulfate from bedrock weathering plus atmospheric sulfate with watershed residence times great enough for its 35S to have decayed to below detection (> approx 1 yr). The second mixing component is atmospheric sulfate, a portion of which was subject to redox cycling in soil organic matter - thereby erasing the excess 17O fingerprint - on timescales short enough that 35S is

  9. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-01

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide

  10. Structure of pyridine and quinoline vinyl ethers according to data from /sup 1/H and /sup 13/C NMR spectra and quantum-chemical calculations

    SciTech Connect

    Afonin, A.V.; Voronov, V.K.; Andriankov, M.A.; Danovich, D.K.

    1987-08-10

    A systematic investigation of the structure of the vinyl ethers of heterocyclic compounds has not been undertaken. The present work was devoted to investigation of the stereochemical and electronic structure of the vinyl ethers of pyridine and quinoline. The PMR spectra of the samples were recorded for 5% solutions in deuterochloroform on a Tesla BS-497 spectrometer at 100 MHz. The /sup 13/C NMR spectra were recorded on a Tesla BS-567A spectrometer at 25.1 MHz in deuterochloroform with the samples at concentrations of 30%. The internal standard was HMDS. The vinyl ethers of pyridine and quinoline exist preferentially in the nonplanar S-trans conformation. In the vinyl esters of pyridine and quinoline the p-..pi.. conjugation is concurrent in nature and depends on the position of the vinyloxy group in the heterocycle.

  11. Chemical profile of white wines produced from 'Greco bianco' grape variety in different Italian areas by nuclear magnetic resonance (NMR) and conventional physicochemical analyses.

    PubMed

    Caruso, Marisa; Galgano, Fernanda; Castiglione Morelli, Maria Antonietta; Viggiani, Licia; Lencioni, Livio; Giussani, Barbara; Favati, Fabio

    2012-01-11

    In this study the characterization of white wines produced from the monovarietal 'Greco bianco' grape variety is presented for the first time. A total of 40 commercial wines, from two different southern Italian regions, Calabria and Campania, from the same grape variety and two different vintages, were investigated. The analyses were performed by means of chromatographic methods, conventional analyses, and nuclear magnetic resonance (NMR) spectroscopy. No differentiation was observed according to the year of production but a significant discrimination was achieved using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). In particular, PLS-DA allowed the selection of compounds (total acidity; citric, malic, succinic, and lactic acids; total polyphenol index; glucose and proline/arginine ratio) useful for differentiating the studied wines on the basis of geographical origin. PMID:22148282

  12. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  13. E-2-Benzylidenebenzocycloalkanones. IV. Studies on transmission of substituent effects on 13C NMR chemical shifts of E-2-(X-benzylidene)-1-tetralones, and -benzosuberones. Comparison with the 13C NMR data of chalcones and E-2-(X-benzylidene)-1-indanones

    NASA Astrophysics Data System (ADS)

    Perjési, Pál; Linnanto, Juha; Kolehmainen, Erkki; Ősz, Erzsébet; Virtanen, Elina

    2005-04-01

    Single substituent parameter (SSP) and dual substituent parameter (DSP) analyses were applied to study the transmission of substituent effects on selected 13C NMR chemical shifts of the cyclic chalcone analogues, E-2-(4'-X-benzylidene)-1-tetralones ( 2) and E-2-(4'-X-benzylidene)-1-benzosuberones ( 3). In order to study how the geometry of the cyclic chalcone analogues affects the transmission of substituent effects similar investigations with the respective chalcones ( 4) were also performed. The results obtained earlier with the five-membered analogue E-2-(4'-X-benzylidene)-1-indanones ( 1) were also involved in the comparisons. Geometry optimization of the unsubstituted 1a, 2a, 3a and 4a as well as the substituted 2 and 3 was performed by ab initio quantum chemical calculations. Both SSP and DSP analyses reflected that resonance effects contribute more to the chemical shift of C-α (C2), while inductive effects primarily affect that of C-β (C10) of the enone moiety of all the four series. This latter effect, however, is far not as pronounced as that of the former one. It was found that DSP analysis data ( ρF and ρR values) of transmission of substituent effects on the δC2 data can serve as a measure of choice to study the conformation (planarity) of the investigated enones in the four series.

  14. Molecular structure, spectroscopic characterization (FT-IR, FT-Raman, UV and NMR), HOMO and LUMO analysis of 3-ethynylthiophene with DFT quantum chemical calculations.

    PubMed

    Karabacak, Mehmet; Bilgili, Sibel; Mavis, Tugba; Eskici, Mustafa; Atac, Ahmet

    2013-11-01

    In this work, FT-IR, FT-Raman, UV and NMR spectra of 3-ethynylthiophene (3-ETP, C6H4S) were carried out by using density functional theory DFT/B3LYP method with the 6-311++G(d,p), 6-311+G(d,p), 6-311G(d,p), 6-31++G(d,p), 6-31+G(d,p), 6-31G(d,p) basis sets. FT-IR and FT-Raman spectra were recorded in the regions of 3500-400cm(-1) and 3500-50cm(-1), respectively. The geometrical parameters, energies and wavenumbers were obtained and the complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The (1)H, (13)C and HMQC ((1)H-(13)C correlation) NMR spectra in chloroform (CDCl3) were recorded and calculated. The UV spectrum of investigated compound were recorded in the region of 200-400nm in ethanol solution. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies were performed by DFT/B3LYP approach and the results were compared with experimental observations. The thermodynamic properties such zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment of the studied compound were calculated. As a result, the calculated results were compared with the observed data and found to be in good agreement. PMID:23886506

  15. Molecular structure, spectroscopic characterization (FT-IR, FT-Raman, UV and NMR), HOMO and LUMO analysis of 3-ethynylthiophene with DFT quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Bilgili, Sibel; Mavis, Tugba; Eskici, Mustafa; Atac, Ahmet

    2013-11-01

    In this work, FT-IR, FT-Raman, UV and NMR spectra of 3-ethynylthiophene (3-ETP, C6H4S) were carried out by using density functional theory DFT/B3LYP method with the 6-311++G(d,p), 6-311+G(d,p), 6-311G(d,p), 6-31++G(d,p), 6-31+G(d,p), 6-31G(d,p) basis sets. FT-IR and FT-Raman spectra were recorded in the regions of 3500-400 cm-1 and 3500-50 cm-1, respectively. The geometrical parameters, energies and wavenumbers were obtained and the complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The 1H, 13C and HMQC (1H-13C correlation) NMR spectra in chloroform (CDCl3) were recorded and calculated. The UV spectrum of investigated compound were recorded in the region of 200-400 nm in ethanol solution. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies were performed by DFT/B3LYP approach and the results were compared with experimental observations. The thermodynamic properties such zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment of the studied compound were calculated. As a result, the calculated results were compared with the observed data and found to be in good agreement.

  16. Diethylstilbestrol can effectively accelerate estradiol-17-O-glucuronidation, while potently inhibiting estradiol-3-O-glucuronidation

    SciTech Connect

    Zhu, Liangliang; Xiao, Ling; Xia, Yangliu; Zhou, Kun; Wang, Huili; Huang, Minyi; Ge, Guangbo; Wu, Yan; Wu, Ganlin; Yang, Ling

    2015-03-01

    This in vitro study investigates the effects of diethylstilbestrol (DES), a widely used toxic synthetic estrogen, on estradiol-3- and 17-O- (E2-3/17-O) glucuronidation, via culturing human liver microsomes (HLMs) or recombinant UDP-glucuronosyltransferases (UGTs) with DES and E2. DES can potently inhibit E2-3-O-glucuronidation in HLM, a probe reaction for UGT1A1. Kinetic assays indicate that the inhibition follows a competitive inhibition mechanism, with the Ki value of 2.1 ± 0.3 μM, which is less than the possible in vivo level. In contrast to the inhibition on E2-3-O-glucuronidation, the acceleration is observed on E2-17-O-glucuronidation in HLM, in which cholestatic E2-17-O-glucuronide is generated. In the presence of DES (0–6.25 μM), K{sub m} values for E2-17-O-glucuronidation are located in the range of 7.2–7.4 μM, while V{sub max} values range from 0.38 to 1.54 nmol/min/mg. The mechanism behind the activation in HLM is further demonstrated by the fact that DES can efficiently elevate the activity of UGT1A4 in catalyzing E2-17-O-glucuronidation. The presence of DES (2 μM) can elevate V{sub max} from 0.016 to 0.81 nmol/min/mg, while lifting K{sub m} in a much lesser extent from 4.4 to 11 μM. Activation of E2-17-O-glucuronidation is well described by a two binding site model, with K{sub A}, α, and β values of 0.077 ± 0.18 μM, 3.3 ± 1.1 and 104 ± 56, respectively. However, diverse effects of DES towards E2-3/17-O-glucuronidation are not observed in liver microsomes from several common experimental animals. In summary, this study issues new potential toxic mechanisms for DES: potently inhibiting the activity of UGT1A1 and powerfully accelerating the formation of cholestatic E2-17-O-glucuronide by UGT1A4. - Highlights: • E2-3-O-glucuronidation in HLM is inhibited when co-incubated with DES. • E2-17-O-glucuronidation in HLM is stimulated when co-incubated with DES. • Acceleration of E2-17-O-glucuronidationin in HLM by DES is via activating the

  17. Synthesis, structural, and spectroscopic (FT-IR, NMR, and UV) Characterization of 1-(Cyclohexylmethyl)-2-(pyridin-2-yl)-1 H-benzo[ d]imidazole by experimental techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Özdemir, Namık; Dayan, Osman; Demirmen, Selin

    2016-05-01

    The title compound ( II), 1-(cyclohexylmethyl)-2-(pyridin-2-yl)-1 H-benzo[ d]imidazole (C19H21N3), was synthesized via N-alkylation of 2-(pyridin-2-yl)-1 H-benzo[ d]imidazole ( I). Both compounds I and II were characterized by IR, NMR and UV-vis spectroscopy. Solid-state structure of compound II was determined by single-crystal X-ray diffraction technique. Furthermore, quantum chemical calculations employing density functional theory (DFT/B3LYP) method with the 6-311++ G( d, p) basis set were performed for the theoretical characterization of the molecular and spectroscopic features of the compounds. Using the TD-DFT method, electronic absorption spectra of the compounds have been predicted at same level. When the obtained results were compared with the experimental findings, it is seen that theoretical results support the experimental data and a good agreement exists between them.

  18. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  19. 13C and 15N—Chemical Shift Anisotropy of Ampicillin and Penicillin-V Studied by 2D-PASS and CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Antzutkin, Oleg N.; Lee, Young K.; Levitt, Malcolm H.

    1998-11-01

    The principal values of the chemical shift tensors of all13C and15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensionalphaseadjustedspinningsideband (2D-PASS) and conventional CP/MAS experiments. The13C and15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the13C and15N sites and the β-lactam ring conformation.

  20. Determination of the tautomeric equilibria of pyridoyl benzoyl β-diketones in the liquid and solid state through the use of deuterium isotope effects on (1)H and (13)C NMR chemical shifts and spin coupling constants.

    PubMed

    Hansen, Poul Erik; Borisov, Eugeny V; Lindon, John C

    2015-02-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on (1)H and (13)C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in the solution state the 2-bond and 3-bond J((1)H-(13)C) coupling constants have been used to confirm the equilibrium positions. The isotope effects due to deuteriation at the OH position are shown to be superior to chemical shift in determination of equilibrium positions of these almost symmetrical -pyridoyl-benzoyl methanes. The assignments of the NMR spectra are supported by calculations of the chemical shifts at the DFT level. The equilibrium positions are shown to be different in the liquid and the solid state. In the liquid state the 4-pyridoyl derivative is at the B-form (C-1 is OH), whereas the 2-and 3-pyridoyl derivatives are in the A-form. In the solid state all three compounds are on the B-form. The 4-pyridoyl derivative shows unusual deuterium isotope effects in the solid, which are ascribed to a change of the crystal structure of the deuteriated compound. PMID:24070650

  1. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    NASA Astrophysics Data System (ADS)

    Steig, E. J.; Gkinis, V.; Schauer, A. J.; Schoenemann, S. W.; Samek, K.; Hoffnagle, J.; Dennis, K. J.; Tan, S. M.

    2014-08-01

    High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O), a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS). We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS) with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  2. 17O(n,α)14C cross section from 25 meV to approximately 1 MeV

    NASA Astrophysics Data System (ADS)

    Koehler, P. E.; Graff, S. M.

    1991-12-01

    We have measured the 17O(n,α)14C cross section from thermal energy to approximately 1 MeV. A bump in the data near 3 keV could be fitted by a state whose properties are consistent with a known subthreshold J π=1- level at Ex=8.039 MeV. The cause of the 1/v cross section near thermal energy could not be determined although the known 2+ state at 8.213 MeV was found to be too narrow to contribute much to the thermal cross section. Our data are compared to measurements made via the inverse reaction. There are many differences between the two sets of data. The astrophysical reaction rate was calculated from the measured cross section. This reaction plays a role in the nucleosynthesis of heavy elements in nonstandard big-bang models. At big-bang temperatures, the experimental rate was found to be in fair agreement with the rate estimated from the previously known properties of states of 18O in this region. Furthermore, using the available information from experiments, it was estimated that the 17O(n,α)14C rate is approximately a factor of 103-104 times larger than the 17O(n,γ)18O rate at big-bang temperatures. As a result, there may be significant cycling between 14C and 17O resulting in a reduction of heavy-element nucleosynthesis.

  3. Synthesis of 5α-androstane-3α,17β-diol 17-O-glucuronide histaminyl conjugate for immunoassays.

    PubMed

    Vinš, Petr; Černý, Ivan; Mikšátková, Petra; Drašar, Pavel

    2016-05-01

    Simple method of preparation of 5α-androstane-3α,17β-diol 17-O-glucuronide N-histaminyl amide was developed for the construction of immunoanalytical kit. Improved method of glucuronide derivative synthesis was used, followed by hydroxybenzotriazole-dicyclohexylcarbodiimide coupling with histamine. PMID:26898541

  4. Effects on ^18F production in novae from changes in the ^17O(p,α)^14N rate

    NASA Astrophysics Data System (ADS)

    Moazen, B. H.; Blackmon, J. C.; Bardayan, D. W.; Chae, K. Y.; Chipps, K.; Domizioli, C. P.; Fitzgerald, R.; Greife, U.; Hix, W. R.; Jones, K. L.; Kozub, R. L.; Lingerfelt, E. J.; Livesay, R. J.; Nesaraja, C. D.; Pain, S. D.; Roberts, L. F.; Shriner, J. F., Jr.; Smith, M. S.; Thomas, J. S.

    2008-04-01

    The properties of a resonance at 183 keV are important for understanding the ^17 O(p,α)^14N and ^17O(p,γ)^18F reaction rates at nova temperatures and was recently reported to significantly increase the (p,α) reaction rate. A method involving the bombardment of a hydrogen filled target chamber was recently developed at ORNL for measuring the strength and energy of (p, α) resonances and was applied to measure this resonance in ^17O(p, α)^14N. The strength of the resonance was confirmed and post-processing nova nucleosynthesis simulations show the new ^17O(p,α)^14N reaction rate significantly decreases ^18F production in low mass ONeMg novae but has little effect on more energetic novae [Moazen et. al. Phys. Rev. C 75 065801 (2007)]. Results and astrophysical implications will be presented as well as future plans to measure ^18F(p,α)^15O with this technique. ORNL is managed by UT Battelle for the US DOE

  5. (1)H NMR-based metabolite profiling workflow to reduce inter-sample chemical shift variations in urine samples for improved biomarker discovery.

    PubMed

    Gil, Ryan B; Lehmann, Rainer; Schmitt-Kopplin, Philippe; Heinzmann, Silke S

    2016-07-01

    Metabolite profiling of urine has seen much advancement in recent years, and its analysis by nuclear magnetic resonance (NMR) spectroscopy has become well established. However, the highly variable nature of human urine still requires improved protocols despite some standardization. In particular, diseases such as kidney disease can have a profound effect on the composition of urine and generate a highly diverse sample set for clinical studies. Large variations in pH and the cationic concentration of urine play an important role in creating positional noise within datasets generated from NMR. We demonstrate positional noise to be a confounding variable for multivariate statistical tools such as statistical total correlation spectroscopy (STOCSY), thereby hindering the process of biomarker discovery. We present a two-dimensional buffering system using potassium fluoride (KF) and phosphate buffer to reduce positional noise in metabolomic data generated from urine samples with various levels of proteinuria. KF reduces positional noise in citrate peaks, by decreasing the mean relative standard deviation (RSD) from 0.17 to 0.09. By reducing positional noise with KF, STOCSY analysis of citrate peaks saw significant improvement. We further aligned spectral data using a recursive segment-wise peak alignment (RSPA) method, which leads to further improvement of the positional noise (RSD = 0.06). These results were validated using diverse selection of metabolites which lead to an overall improvement in positional noise using the suggested protocol. In summary, we provide an improved workflow for urine metabolite biomarker discovery to achieve higher data quality for better pathophysiological understanding of human diseases. Graphical abstract Citrate peaks in the range 2.75-2.5 ppm from datasets with different sample preparation protocols and with/without in silico alignment. A Citrate peaks with standard phosphate buffering and without in silico alignment. B citrate

  6. Superconductivity and planar hole densities in the cuprates from NMR

    NASA Astrophysics Data System (ADS)

    Haase, Juergen; Jurkutat, Michael; Rybicki, Damian

    We show how nuclear magnetic resonance (NMR) of 63Cu and 17O provides a quantitative measure of the charge distribution in the ubiquitous CuO2 plane, the common structural feature of cuprate physics. The various materials are found to differ significantly in the local charge distribution, while the total charge per CuO2 matches expectation from stoichiometry. Using the local charges on Cu and O measured by NMR, a new three-dimensional cuprate phase diagram is drawn that consistently encompasses all cuprate materials. These appear ordered according to their maximum Tc. It is the sharing of the inherent Cu hole with O that sets an upper limit for Tc, and it correlates with the superfluid density measured by μSR, over all cuprate families.

  7. Investigation of the Herzberg (C1Σ+→A1Π) band system in 12C17O

    NASA Astrophysics Data System (ADS)

    Hakalla, Rafał

    2015-10-01

    The C→A (0,1), (0,2) and (0,3) rovibronic bands of the less-abundant 12C17O isotopologue are studied in high resolution using a high-accuracy dispersive optical spectroscopy in the region of 22,800-26,100 cm-1. Calibration with respect to simultaneously recorded thorium atomic lines, obtained from several overlapped orders of the spectrum in the visible range, as well as a stainless steel hollow-cathode molecular lamp with two anodes, yields an absolute accuracy of wavenumbers measurements of about 0.0025 cm-1 for the CO spectra. All 261 spectra lines of the Herzberg band system in 12C17O, up to Jmax=34, were precisely measured and rotationally analyzed. As a result, the merged rotational constants and rotational equilibrium constants for the C1Σ+ Rydberg state, as well as the band origins, the isotope shifts, the RKR turning points, Franck-Condon factors, relative intensities, and r-centroids of the C→A system in the 12C17O isotopologue were obtained. An experimental RKR potential energy curve and vibrational levels of the C1Σ+ state in 12C17O together with highly excited k3Π, c3Π, E1Π, B1Σ+ and D‧1Σ+ states lying in the region between the first dissociation limit and the ionization potential of CO were plotted. A detailed investigation of possible perturbations that should occur in the C1Σ+(υ=0) Rydberg state of less-abundant 12C17O isotopologue in the close vicinity of the k3Π(υ=1, 2) and c3Π(υ=0) states in the region 92,000 cm-1 was performed. In the A1Π, υ=3 state of 12C17O, extensive, multi-state rotational perturbations were found and analyzed. Also, a global isotopic analysis of the C1Σ+ Rydberg state was carried out in the 12C16O, 12C17O, 13C16O, 12C18O, 13C17O, and 13C18O as well as in 14C16O and 14C18O isotopologues. This analysis enabled us to determine, amongst others, the vibrational equilibrium constants in 12C17O for the C1Σ+ state, to improve these constants in the 12C16O, 13C16O, 12C18O, 13C17O, and 13C18O isotopologues and

  8. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Assonov, Sergey S.

    2010-01-01

    Measurements of δ(13C) determined on CO2 with an isotope-ratio mass spectrometer (IRMS) must be corrected for the amount of 17O in the CO2. For data consistency, this must be done using identical methods by different laboratories. This report aims at unifying data treatment for CO2 IRMS by proposing (i) a unified set of numerical values, and (ii) a unified correction algorithm, based on a simple, linear approximation formula. Because the oxygen of natural CO2 is derived mostly from the global water pool, it is recommended that a value of 0.528 be employed for the factor λ, which relates differences in 17O and 18O abundances. With the currently accepted N(13C)/N(12C) of 0.011 180(28) in VPDB (Vienna Peedee belemnite) reevaluation of data yields a value of 0.000 393(1) for the oxygen isotope ratio N(17O)/N(16O) of the evolved CO2. The ratio of these quantities, a ratio of isotope ratios, is essential for the 17O abundance correction: [N(17O)/N(16O)]/[N(13C)/N(12C)] = 0.035 16(8). The equation [δ(13C) ≈ 45δVPDB-CO2 + 2 17R/13R (45δVPDB-CO2 – λ46δVPDB-CO2)] closely approximates δ(13C) values with less than 0.010 ‰ deviation for normal oxygen-bearing materials and no more than 0.026 ‰ in extreme cases. Other materials containing oxygen of non-mass-dependent isotope composition require a more specific data treatment. A similar linear approximation is also suggested for δ(18O). The linear approximations are easy to implement in a data spreadsheet, and also help in generating a simplified uncertainty budget.

  9. Study the chemical composition and biological outcomes resulting from the interaction of the hormone adrenaline with heavy elements: Infrared, Raman, electronic, 1H NMR, XRD and SEM studies

    NASA Astrophysics Data System (ADS)

    Ibrahim, Omar B.; Mohamed, Mahmoud A.; Refat, Moamen S.

    2014-01-01

    Heavy metal adrenaline complexes formed from the reaction of adrenaline with Al3+, Zn2+, Sn2+, Sb3+, Pb2+and Bi3+ ions in methanolic solvent at 60 °C. The final reaction products have been isolated and characterization using elemental analyses (% of carbon, hydrogen and nitrogen), conductivity measurements, mid infrared, Raman laser, UV-Vis, 1H NMR spectra, X-ray powder diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). Upon the spectroscopic, conductivity and elemental analyses, the stoichiometric reactions indicated that the data obtained refer to 1:2 (M:L) for Zn2+, Sn2+, Pb2+and Bi3+ complexes [Zn(Adr)2(Cl)2], [Sn(Adr)2]Cl2, [Pb(Adr)2](NO3)2 and [Bi(Adr)2(Cl)2]Cl, while the molar ratio 1:3 (M:L) for Al3+ and Sb3+ with formulas [Al(Adr)3](NO3)3 and [Sb(Adr)3]Cl3. The infrared and Raman laser spectra interpreted the mode of interactions which associated through the two phenolic groups of catechol moiety. The adrenaline chelates have been screened for their in vitro antibacterial activity against four bacteria, Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to possess more antibacterial and antifungal activities than the free adrenaline chelate.

  10. Dynamic NMR and Quantum-Chemical Study of the Stereochemistry and Stability of the Chiral MoO2(acac)2 Complex in Solution.

    PubMed

    Conte, Marco; Hippler, Michael

    2016-09-01

    The stereochemistry and dynamics of MoO2(acac)2 in benzene, chloroform, and toluene were investigated by variable temperature (1)H NMR, density functional theory (SOGGA11-X, B3LYP), and ab initio (MP2) methods. In solution, an equilibrium between two chiral enantiomers with C2 symmetry was identified, Λ-cis-MoO2(acac)2 and Δ-cis-MoO2(acac)2. The two enantiomers are connected via achiral cis transition states that switch the enantiomeric conformations via a Ray-Dutt, Bailar, and a newly described racemization twisting mechanism. All three mechanisms have similar calculated activation energies. Activation parameters Ea, ΔH(‡), and ΔS(‡) were experimentally determined for the exchange process, with a small, negative ΔS(‡), and a positive ΔH(‡) of 68.1 kJ mol(-1) in benzene, 54.9 kJ mol(-1) in chloroform, and 60.6 kJ mol(-1) in toluene, in reasonable general agreement with the calculations. Trans configurations of MoO2(acac)2 are very much higher in energy than cis and are not relevant in the temperature range experimentally studied, 243-340 K. The enantiomers interconvert within seconds near room temperature and much faster at elevated temperatures. Racemization will thus prevent the use of enantiomerically pure MoO2(acac)2 for chiral catalysis under practical conditions. PMID:27510306

  11. Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando PDF and NMR spectroscopy.

    PubMed

    Wiaderek, Kamila M; Borkiewicz, Olaf J; Castillo-Martínez, Elizabeth; Robert, Rosa; Pereira, Nathalie; Amatucci, Glenn G; Grey, Clare P; Chupas, Peter J; Chapman, Karena W

    2013-03-13

    In-depth analysis of operando X-ray pair distribution function (PDF) data is combined with Li NMR spectroscopy to gain comprehensive insights into the electrochemical reaction mechanism of high-performance iron oxyfluoride electrodes. While the full discharge capacity could be recovered upon charge, implying reversibility of the electrochemical reaction, the atomic structure of the electrode formed after cycling (discharge-charge) differs from the pristine uncycled electrode material. Instead, the "active" electrode that forms upon cycling is a nanocomposite of an amorphous rutile phase and a nanoscale rock salt phase. Bond valence sum analysis, based on the precise structural parameters (bond lengths and coordination number) extracted from the in situ PDF data, suggests that anion partitioning occurs during the electrochemical reaction, with the rutile phase being F-rich and the rock salt phase being O-rich. The F- and O-rich phases react sequentially; Fe in a F-rich environment reacts preferentially during both discharge and charge. PMID:23432753

  12. Neutral zinc(II) O,O-di-alkyldithiopho- sphates-variable temperature 31P NMR and quantum chemical study of the ZDDP monomer-dimer equilibrium.

    PubMed

    Harrison, J J; Chan, C Y; Onopchenko, A; Pradhan, A R; Petersen, M

    2008-02-01

    A full line-shape analysis of the VT 31P NMR spectra was carried out for the monomer-dimer equilibrium of neutral ZDDP. The energy surface and the energetics of the monomer-dimer equilibrium (DeltaH degrees , DeltaG degrees , Ea, DeltaH(not equal), and DeltaG(not equal)) are reported for three variants wherein the alkyl groups in the ZDDP are 2-ethylhexyl, isopropyl, and isobutyl. We explored a reaction pathway between the monomer and dimer form by means of density functional theory (DFT). The linear combination of atomic orbitals (LCAO) code DMol3 was used together with a synchronous transient method to effectively locate transition states. Vibrational eigenmodes of all intermediates were computed to capture finite temperature effects. Methyl and ethyl were considered as alkyl groups. Two novel intermediates were located-a four-membered ring and a six-membered ring intermediate along the reaction coordinate. Comparison of the experimentally derived and computed energy surfaces was carried out. PMID:18098153

  13. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors. PMID:12470051

  14. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  15. Report on neptunium speciation by NMR and optical spectroscopies

    SciTech Connect

    Tait, C.D.; Palmer, P.D.; Ekberg, S.A.; Clark, D.L.

    1995-11-01

    Hydrolysis and carbonate complexation reactions were examined for NpO{sub 2}{sup 2+} and NpO{sub 2}{sup +} ions by a variety of techniques including potentiometric titration, UV-Vis-NIR and NMR spectroscopy. The equilibrium constant for the reaction 3NpO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} + 3H{sup +} {rightleftharpoons} (NpO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} + 3HCO{sub 3}{sup {minus}} was determined to be logK = 19.7 ({plus_minus} 0.8) (I = 2.5 m). {sup 17}O NMR spectroscopy of NpO{sub 2}{sup n+} ions (n = 1,2) reveals a readily observable {sup 17}O resonance for n = 2, but not for n = 1. The first hydrolysis constant for NpO{sub 2}{sup +} was studied as a function of temperature, and the functional form for the temperature-dependent equilibrium constant for the reaction written as NpO{sub 2}{sup +} + H{sub 2}O {rightleftharpoons} NpO{sub 2}OH + H{sup +} was found to be logK = 2.28 {minus} 3780/T, where T is in {degree}K. Finally, the temperature dependence of neptunium(V) carbonate complexation constants was studied. For the first carbonate complexation constant, the appropriate functional form was found to be log{beta}{sub 01} = 1.47 + 786/T.

  16. A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials.

    PubMed

    Lin, Zhongjie; Jones, Julian R; Hanna, John V; Smith, Mark E

    2015-01-28

    Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties. PMID:25494341

  17. Chemical composition of organic matter in a deep soil changed with a positive priming effect due to glucose addition as investigated by 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fresh organic carbon becomes more accessible to subsoil following losses of surface soil or deep incorporation of crop residues, which can cause the priming effect and influence the quality and quantity of soil organic C (SOC) in subsoil. Chemical compositions of SOC in subsoil (1.0-1.2 m) without ...

  18. Monomeric and dimeric structures analysis and spectroscopic characterization of 3,5-difluorophenylboronic acid with experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Asiri, Abdullah M.; Kurt, Mustafa

    2014-01-01

    The spectroscopic properties of 3,5-difluorophenylboronic acid (3,5-DFPBA, C6H3F2B(OH)2) were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C NMR spectroscopic techniques. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase and 1H and 13C NMR spectra in DMSO solution were recorded. The UV spectra that dissolved in ethanol and water were recorded in the range of 200-400 nm for each solution. The structural and spectroscopic data of the molecule have been obtained for possible three conformers from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Hydrogen-bonded dimer of title molecule, optimized by counterpoise correction, was also studied B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. The effects due to the substitutions of boric acid group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP), nonlinear optical properties (NLO) and thermodynamic features were performed.

  19. Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis.

    PubMed

    Ash, E L; Sudmeier, J L; Day, R M; Vincent, M; Torchilin, E V; Haddad, K C; Bradshaw, E M; Sanford, D G; Bachovchin, W W

    2000-09-12

    13C-selective NMR, combined with inhibitor perturbation experiments, shows that the C(epsilon)(1)H proton of the catalytic histidine in resting alpha-lytic protease and subtilisin BPN' resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such protons and approximately 0.6 to 0.8 ppm further downfield than previously reported. They also show that the previous alpha-lytic protease assignments [Markley, J. L., Neves, D. E., Westler, W. M., Ibanez, I. B., Porubcan, M. A. & Baillargeon, M. W. (1980) Front. Protein Chem. 10, 31-61] were to signals from inactive or denatured protein. Simulations of linewidth vs. pH demonstrate that the true signal is more difficult to detect than corresponding signals from inactive derivatives, owing to higher imidazole pK(a) values and larger chemical shift differences between protonated and neutral forms. A compilation and analysis of available NMR data indicates that the true C(epsilon)(1)H signals from other serine proteases are similarly displaced downfield, with past assignments to more upfield signals probably in error. The downfield displacement of these proton resonances is shown to be consistent with an H-bond involving the histidine C(epsilon)(1)H as donor, confirming the original hypothesis of Derewenda et al. [Derewenda, Z. S., Derewenda, U. & Kobos, P. M. (1994) J. Mol. Biol. 241, 83-93], which was based on an analysis of literature x-ray crystal structures of serine hydrolases. The invariability of this H-bond among enzymes containing Asp-His-Ser triads indicates functional importance. Here, we propose that it enables a reaction-driven imidazole ring flip mechanism, overcoming a major dilemma inherent in all previous mechanisms, namely how these enzymes catalyze both the formation and productive breakdown of tetrahedral intermediates. PMID:10984533

  20. Unusual 1H NMR chemical shifts support (His) Cɛ1—H⋅⋅⋅O⩵C H-bond: Proposal for reaction-driven ring flip mechanism in serine protease catalysis

    PubMed Central

    Ash, Elissa L.; Sudmeier, James L.; Day, Regina M.; Vincent, Matthew; Torchilin, Ekaterina V.; Haddad, Kristin Coffman; Bradshaw, Elizabeth M.; Sanford, David G.; Bachovchin, William W.

    2000-01-01

    13C-selective NMR, combined with inhibitor perturbation experiments, shows that the Cɛ1—H proton of the catalytic histidine in resting α-lytic protease and subtilisin BPN′ resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such protons and ≈0.6 to 0.8 ppm further downfield than previously reported. They also show that the previous α-lytic protease assignments [Markley, J. L., Neves, D. E., Westler, W. M., Ibanez, I. B., Porubcan, M. A. & Baillargeon, M. W. (1980) Front. Protein Chem. 10, 31–61] were to signals from inactive or denatured protein. Simulations of linewidth vs. pH demonstrate that the true signal is more difficult to detect than corresponding signals from inactive derivatives, owing to higher imidazole pKa values and larger chemical shift differences between protonated and neutral forms. A compilation and analysis of available NMR data indicates that the true Cɛ1—H signals from other serine proteases are similarly displaced downfield, with past assignments to more upfield signals probably in error. The downfield displacement of these proton resonances is shown to be consistent with an H-bond involving the histidine Cɛ1—H as donor, confirming the original hypothesis of Derewenda et al. [Derewenda, Z. S., Derewenda, U. & Kobos, P. M. (1994) J. Mol. Biol. 241, 83–93], which was based on an analysis of literature x-ray crystal structures of serine hydrolases. The invariability of this H-bond among enzymes containing Asp-His-Ser triads indicates functional importance. Here, we propose that it enables a reaction-driven imidazole ring flip mechanism, overcoming a major dilemma inherent in all previous mechanisms, namely how these enzymes catalyze both the formation and productive breakdown of tetrahedral intermediates. PMID:10984533

  1. Z and E rotamers of N-formyl-1-bromo-4-hydroxy-3-methoxymorphinan-6-one and their interconversion as studied by 1H/13C NMR spectroscopy and quantum chemical calculations

    PubMed Central

    Sulima, Agnieszka; Cheng, Kejun; Jacobson, Arthur E.; Rice, Kenner C.; Gawrisch, Klaus; Lee, Yong-Sok

    2012-01-01

    N-Formyl-1-bromo-4-hydroxy-3-methoxymorphinan-6-one (2), an important intermediate in the NIH Opiate Total Synthesis, presumably exists as a mixture of two rotamers (Z and E) in both CHCl3 and DMSO at room temperature due to the hindered rotation of its N-C18 bond in the amide moiety. By comparing the experimental 1H and 13C chemical shifts of a single rotamer and the mixture of 2 in CDCl3 with the calculated chemical shifts of the geometry optimized Z and E rotamers utilizing density functional theory, the crystalline rotamer of 2 was characterized as having the E configuration. The energy barrier between the two rotamers was also determined with the temperature dependence of 1H and 13C NMR coalescence experiments, and then compared with that from the reaction path for the interconversion of the two rotamers calculated at the level of B3LYP/6-31G*. Detailed geometry of the ground state and the transition states of both rotamers are given and discussed. PMID:23233124

  2. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates. PMID:27490497

  3. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift

    SciTech Connect

    Kanematsu, Yusuke; Tachikawa, Masanori

    2014-04-28

    We have developed the multicomponent hybrid density functional theory [MC-(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC-(HF+DFT) method with PCM (MC-B3LYP/PCM). Our MC-B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

  4. Two dimensional NMR spectroscopy

    SciTech Connect

    Schram, J.; Bellama, J.M.

    1988-01-01

    Two dimensional NMR represents a significant achievement in the continuing effort to increase solution in NMR spectroscopy. This book explains the fundamentals of this new technique and its analytical applications. It presents the necessary information, in pictorial form, for reading the ''2D NMR,'' and enables the practicing chemist to solve problems and run experiments on a commercial spectrometer by using the software provided by the manufacturer.

  5. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  6. On the introduction of {sup 17}O+p reaction rates evaluated through the THM in AGB nucleosynthesis calculations

    SciTech Connect

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Lamia, L.; Spitaleri, C.

    2014-05-09

    The rates for the {sup 17}O(p,αα{sup 14}N, {sup 17}O(p,α){sup 18}F and {sup 18}O(p,α){sup 15}N reactions deduced trough the Trojan Horse Method (THM) have been introduced into a state-of-the-art asymptotic giant branch (AGB) models for proton-capture nucleosynthesis and cool bottom process. The predicted abundances have been compared with isotopic compositions provided by geochemical analysis of presolar grains. As a result, an improved agreement is found between the models and the isotopic mix of oxide grains of AGB origins, whose composition is the signature of low-temperature proton-capture nucleosynthesis.

  7. Theoretical NMR correlations based Structure Discussion

    PubMed Central

    2011-01-01

    The constitutional assignment of natural products by NMR spectroscopy is usually based on 2D NMR experiments like COSY, HSQC, and HMBC. The actual difficulty of the structure elucidation problem depends more on the type of the investigated molecule than on its size. The moment HMBC data is involved in the process or a large number of heteroatoms is present, a possibility of multiple solutions fitting the same data set exists. A structure elucidation software can be used to find such alternative constitutional assignments and help in the discussion in order to find the correct solution. But this is rarely done. This article describes the use of theoretical NMR correlation data in the structure elucidation process with WEBCOCON, not for the initial constitutional assignments, but to define how well a suggested molecule could have been described by NMR correlation data. The results of this analysis can be used to decide on further steps needed to assure the correctness of the structural assignment. As first step the analysis of the deviation of carbon chemical shifts is performed, comparing chemical shifts predicted for each possible solution with the experimental data. The application of this technique to three well known compounds is shown. Using NMR correlation data alone for the description of the constitutions is not always enough, even when including 13C chemical shift prediction. PMID:21797997

  8. DFT study of the NMR properties of xenon in covalent compounds and van der waals complexes-implications for the use of 129Xe as a molecular probe.

    PubMed

    Bagno, Alessandro; Saielli, Giacomo

    2003-04-01

    The NMR properties (chemical shift and spin-spin coupling constants) of (129)Xe in covalent compounds and weakly bound complexes have been investigated by DFT methods including relativistic effects. For covalent species, a good agreement between experimental and calculated results is achieved without scalar relativistic effects, but their inclusion (with a triple-zeta, double-polarization basis set) leads to some improvement in the quality of the correlation. The spin-orbit coupling term has a significant effect on the shielding constant, but makes a small contribution to the chemical shift. Coupling constants contain substantial contributions from the Fermi contact and paramagnetic spin-orbit terms; unlike light nuclei the spin-dipole term is also large, whereas the diamagnetic spin-orbit term is negligible. For van der Waals dimers, the dependence of the xenon chemical shift and anisotropy is calculated as a function of the distance. Small (<1 Hz) but non-negligible through-space coupling constants between (129)Xe and (13)C or (1)H are predicted. Much larger couplings, of the order of few Hz, are calculated between xenon and (17)O in a model silicate residue. PMID:12658645

  9. NMR structure note: Structure of the Membrane Protein MerF, a Bacterial Mercury Transporter, Improved by the Inclusion of Chemical Shift Anisotropy Constraints

    PubMed Central

    Tian, Ye; Lu, George J.; Marassi, Francesca M.; Opella, Stanley J.

    2014-01-01

    SUMMARY MerF is a mercury transport membrane protein from the bacterial mercury detoxification system. By performing a solid-state INEPT experiment and measuring chemical shift anisotropy frequencies in aligned samples, we are able to improve on the accuracy and precision of the initial structure that we presented. MerF has four N-terminal and eleven C-terminal residues that are mobile and unstructured in phospholipid bilayers. The structure presented here has average pairwise RMSDs of 1.78 Å for heavy atoms and 0.92 Å for backbone atoms. PMID:25103921

  10. Quantitative chemical exchange saturation transfer with hyperpolarized nuclei (qHyper-CEST): Sensing xenon-host exchange dynamics and binding affinities by NMR

    SciTech Connect

    Kunth, M. Witte, C.; Schröder, L.

    2014-11-21

    The reversible binding of xenon to host molecules has found numerous applications in nuclear magnetic resonance studies. Quantitative characterization of the Xe exchange dynamics is important to understand and optimize the physico-chemical behavior of such Xe hosts, but is often challenging to achieve at low host concentrations. We have investigated a sensitive quantification technique based on chemical exchange saturation transfer with hyperpolarized nuclei, qHyper-CEST. Using simulated signals we demonstrated that qHyper-CEST yielded accurate and precise results and was robust in the presence of large amounts of noise (10%). This is of particular importance for samples with completely unknown exchange rates. Using these findings we experimentally determined the following exchange parameters for the Xe host cryptophane-A monoacid in dimethyl sulfoxide in one type of experiment: the ratio of bound and free Xe, the Xe exchange rate, the resonance frequencies of free and bound Xe, the Xe host occupancy, and the Xe binding constant. Taken together, qHyper-CEST facilitates sensitive quantification of the Xe exchange dynamics and binding to hydrophobic cavities and has the potential to analyze many different host systems or binding sites. This makes qHyper-CEST an indispensable tool for the efficient design of highly specific biosensors.

  11. Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative (1)H and (13)C NMR chemical shifts.

    PubMed

    Marekha, Bogdan A; Kalugin, Oleg N; Bria, Marc; Idrissi, Abdenacer

    2015-09-21

    Mixtures of ionic liquids (ILs) with polar aprotic solvents in different combinations and under different conditions (concentration, temperature etc.) are used widely in electrochemistry. However, little is known about the key intermolecular interactions in such mixtures depending on the nature of the constituents and mixture composition. In order to systematically address the intermolecular interactions, the chemical shift variation of (1)H and (13)C nuclei has been followed in mixtures of imidazolium ILs 1-n-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4), 1-n-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate (BmimTfO) and 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) with molecular solvent acetonitrile (AN) over the entire composition range at 300 K. The concept of relative chemical shift variation is proposed to assess the observed effects on a unified and unbiased scale. We have found that hydrogen bonds between the imidazolium ring hydrogen atoms and electronegative atoms of anions are stronger in BmimBF4 and BmimTfO ILs than those in BmimTFSI and BmimPF6. Hydrogen atom at position 2 of the imidazolium ring is substantially more sensitive to interionic hydrogen bonding than those at positions 4-5 in the case of BmimTfO and BmimTFSI ILs. These hydrogen bonds are disrupted upon dilution in AN due to ion dissociation which is more pronounced at high dilutions. Specific solvation interactions between AN molecules and IL cations are poorly manifested. PMID:26278514

  12. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  13. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  14. An NMR Study of Microvoids in Polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattrix, Larry

    1996-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is most crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally not be found naturally in polymer or in NMR probe materials. There are two NMR active Xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb and Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe-129-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts in Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of Xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A series of spectra were obtained interspersed with applications of vacuum and heating to drive out the adsorbed Xe and determine the role of Xe-Xe interactions in the observed chemical shift.

  15. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  16. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Anitha, R.; Devi, L.; Mohan, S.; Yang, Haifeng

    2015-01-01

    Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. The structure of the compound has been optimised with B3LYP method using 6-311++G** and cc-pVTZ basis sets. The IR and Raman intensities are determined. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of the compounds has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecules have been analysed.

  17. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol--an analgesic drug.

    PubMed

    Arjunan, V; Santhanam, R; Marchewka, M K; Mohan, S

    2014-03-25

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G(**) and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron+nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR chemical shifts of the molecule have been anlysed. PMID:24316546

  18. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, (1)H, (13)C NMR) investigations of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane.

    PubMed

    Arjunan, V; Anitha, R; Devi, L; Mohan, S; Yang, Haifeng

    2015-01-25

    Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The observed fundamentals are assigned to different normal modes of vibration. The structure of the compound has been optimised with B3LYP method using 6-311++G(**) and cc-pVTZ basis sets. The IR and Raman intensities are determined. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of the compounds has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR chemical shifts of the molecules have been analysed. PMID:25062058

  19. Multidimensional NMR spectroscopy in a single scan.

    PubMed

    Gal, Maayan; Frydman, Lucio

    2015-11-01

    Multidimensional NMR has become one of the most widespread spectroscopic tools available to study diverse structural and functional aspects of organic and biomolecules. A main feature of multidimensional NMR is the relatively long acquisition times that these experiments demand. For decades, scientists have been working on a variety of alternatives that would enable NMR to overcome this limitation, and deliver its data in shorter acquisition times. Counting among these methodologies is the so-called ultrafast (UF) NMR approach, which in principle allows one to collect arbitrary multidimensional correlations in a single sub-second transient. By contrast to conventional acquisitions, a main feature of UF NMR is a spatiotemporal manipulation of the spins that imprints the chemical shift and/or J-coupling evolutions being sought, into a spatial pattern. Subsequent gradient-based manipulations enable the reading out of this information and its multidimensional correlation into patterns that are identical to those afforded by conventional techniques. The current review focuses on the fundamental principles of this spatiotemporal UF NMR manipulation, and on a few of the methodological extensions that this form of spectroscopy has undergone during the years. PMID:26249041

  20. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-12-01

    The extraction of chemical shift anisotropy (CSA) tensors of protons either directly bonded to 14N nuclei (I = 1) or lying in their vicinity using rotor-synchronous recoupling pulse sequence is always fraught with difficulty due to simultaneous recoupling of 14N-1H heteronuclear dipolar couplings and the lack of methods to efficiently decouple these interactions. This difficulty mainly arises from the presence of large 14N quadrupolar interactions in comparison to the rf field that can practically be achieved. In the present work it is demonstrated that the application of on-resonance 14N-1H decoupling with rf field strength ∼30 times weaker than the 14N quadrupolar coupling during 1H CSA recoupling under ultrafast MAS (90 kHz) results in CSA lineshapes that are free from any distortions from recoupled 14N-1H interactions. With the use of extensive numerical simulations we have shown the applicability of our proposed method on a naturally abundant L-Histidine HCl·H2O sample.

  1. Development of Halbach magnet for portable NMR device

    NASA Astrophysics Data System (ADS)

    Doğan, N.; Topkaya, R.; Subaşi, H.; Yerli, Y.; Rameev, B.

    2009-03-01

    Nuclear magnetic resonance (NMR) has enormous potential for various applications in industry as the on-line or at-line test/control device of process environments. Advantage of NMR is its non-destructive nature, because it does not require the measurement probe to have a contact with the tested media. Despite of the recent progress in this direction, application of NMR in industry is still very limited. This is related to the technical and analytical complications of NMR as a method, and high cost of NMR analyzers available at the market. However in many applications, NMR is a very useful technique to test various products and to monitor quantitatively industrial processes. Fortunately usually there is no need in a high-field superconducting magnets to obtain the high-resolution spectra with the detailed information on chemical shifts and coupling-constant. NMR analyzers are designed to obtain the relaxation parameters by measuring the NMR spectra in the time domain rather than in frequency domain. Therefore it is possible to use small magnetic field (and low frequency of 2-60 MHz) in NMR systems, based on permanent magnet technology, which are specially designed for specific at-line and on-line process applications. In this work we present the permanent magnet system developed to use in the portative NMR devices. We discuss the experimental parameters of the designed Halbach magnet system and compare them with results of theoretical modelling.

  2. International NMR-based Environmental Metabolomics Intercomparison Exercise

    EPA Science Inventory

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  3. NMR study of some coumarins and furocoumarins methylated

    NASA Astrophysics Data System (ADS)

    Miranda, R.; Santana, L.; Uriarte, E.; Zagotto, G.

    1994-01-01

    The 1H and 13C NMR spectra of various methylcoumarins and methylfurocoumarins are reported. All signals were assigned and the influence on chemical shifts of methylation at various positions was determined.

  4. Detection of thin film NMR spectrum by Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Saun, Seung-Bo; Kwon, Sungmin; Lee, Soonchil; Won, Soonho

    2014-03-01

    NMR is widely used in many fields due to its powerful advantages such as nondestructive, chemically selective detection, and local probing. However, because of its low sensitivity, it is difficult to investigate thin film samples by conventional NMR. MRFM is the combined technic of NMR and Scanning Probe Microscopy (SPM), and it enabled exceptional sensitivity increasement of NMR detection. We succeeded in detecting general thin film NMR spectrum for the first time by modifying the MRFM. CaF2 34nm thin film NMR was detected and we observed 20 Gauss spectrum in proximity to bulk spectrum which is about 10 Gauss.

  5. Spin fluctuations in La2-xSrxCuO4: NMR versus inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Barzykin, V.; Pines, D.; Thelen, D.

    1994-12-01

    We use a one-component description to analyze the current experimental situation for the low-frequency magnetic properties of La1.85Sr0.15CuO4 as determined by NMR and neutron-scattering experiments. We show that the measured 17O spin-lattice relaxation rate is in sharp conflict with the incommensurate-magnetic-structure interpretation of neutron-scattering experiments, but is quantitatively explained if the local-spin-fluctuation spectrum (measured by NMR) possesses a commensurate peak. We conclude that the formation of domains, as suggested by Slichter and Phillips, represents the best (and, quite possibly, only) way of reconciling NMR and neutron-scattering experiments on La1.85Sr0.15CuO4.

  6. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application

    NASA Astrophysics Data System (ADS)

    Babailov, S. P.; Purtov, P. A.; Fomin, E. S.

    2016-08-01

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  7. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application.

    PubMed

    Babailov, S P; Purtov, P A; Fomin, E S

    2016-08-01

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange. PMID:27497554

  8. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory

    NASA Astrophysics Data System (ADS)

    Fu, R.; Brey, W. W.; Shetty, K.; Gor'kov, P.; Saha, S.; Long, J. R.; Grant, S. C.; Chekmenev, E. Y.; Hu, J.; Gan, Z.; Sharma, M.; Zhang, F.; Logan, T. M.; Brüschweller, R.; Edison, A.; Blue, A.; Dixon, I. R.; Markiewicz, W. D.; Cross, T. A.

    2005-11-01

    Access to an ultra-wide bore (105 mm) 21.1 T magnet makes possible numerous advances in NMR spectroscopy and MR imaging, as well as novel applications. This magnet was developed, designed, manufactured and tested at the National High Magnetic Field Laboratory and on July 21, 2004 it was energized to 21.1 T. Commercial and unique homebuilt probes, along with a standard commercial NMR console have been installed and tested with many science applications to develop this spectrometer as a user facility. Solution NMR of membrane proteins with enhanced resolution, new pulse sequences for solid state NMR taking advantage of narrowed proton linewidths, and enhanced spatial resolution and contrast leading to improved animal imaging have been documented. In addition, it is demonstrated that spectroscopy of single site 17O labeled macromolecules in a hydrated lipid bilayer environment can be recorded in a remarkably short period of time. 17O spectra of aligned samples show the potential for using this data for orientational restraints and for characterizing unique details of cation binding properties to ion channels. The success of this NHMFL magnet illustrates the potential for using a similar magnet design as an outsert for high temperature superconducting insert coils to achieve an NMR magnet with a field >25 T.

  9. An NMR study of microvoids in polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattix, Larry

    1995-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally be found naturally in polymer or in NMR probe materials. There are two NMR active xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb the Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe(129)-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts line Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A single Xe-129 line at 83.003498 Mhz (with protons at 300 Mhz) was observed for the gas. With the xenon charged PMR-15 samples, a second broader line is observed 190 ppm downfield from the gas line (also observed). The width of the NMR line from the Xe-129 absorbed in the polymer is at least partially due to the distribution of microvoid sizes. From the chemical shift (relative to the gas line) and the line width, we estimate the average void sizes to be 2.74 +/- 0.20 angstroms. Since Xe-129 has such a large chemical shift range (approximately 5000 ppm), we expect the chemical shift anisotropy to contribute to the

  10. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  11. Dicobalt-μ-oxo polyoxometalate compound, [(α(2)-P2W17O61Co)2O](14-): a potent species for water oxidation, C-H bond activation, and oxygen transfer.

    PubMed

    Barats-Damatov, Delina; Shimon, Linda J W; Weiner, Lev; Schreiber, Roy E; Jiménez-Lozano, Pablo; Poblet, Josep M; de Graaf, Coen; Neumann, Ronny

    2014-02-01

    High-valent oxo compounds of transition metals are often implicated as active species in oxygenation of hydrocarbons through carbon-hydrogen bond activation or oxygen transfer and also in water oxidation. Recently, several examples of cobalt-catalyzed water oxidation have been reported, and cobalt(IV) species have been suggested as active intermediates. A reactive species, formally a dicobalt(IV)-μ-oxo polyoxometalate compound [(α2-P2W17O61Co)2O](14-), [(POMCo)2O], has now been isolated and characterized by the oxidation of a monomeric [α2-P2W17O61Co(II)(H2O)](8-), [POMCo(II)H2O], with ozone in water. The crystal structure shows a nearly linear Co-O-Co moiety with a Co-O bond length of ∼1.77 Å. In aqueous solution [(POMCo)2O] was identified by (31)P NMR, Raman, and UV-vis spectroscopy. Reactivity studies showed that [(POMCo)2O]2O] is an active compound for the oxidation of H2O to O2, direct oxygen transfer to water-soluble sulfoxides and phosphines, indirect epoxidation of alkenes via a Mn porphyrin, and the selective oxidation of alcohols by carbon-hydrogen bond activation. The latter appears to occur via a hydrogen atom transfer mechanism. Density functional and CASSCF calculations strongly indicate that the electronic structure of [(POMCo)2O]2O] is best defined as a compound having two cobalt(III) atoms with two oxidized oxygen atoms. PMID:24437566

  12. THM determination of the 65 keV resonance strength intervening in the 17O ( p ,α)14N reaction rate

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; Burjan, S. V.; Cherubini, S.; Coc, A.; Gulino, M.; Hammache, F.; Hons, Z.; Irgaziev, B.; Kiss, G. G.; Kroha, V.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; de Séréville, N.; Somorjai, E.; Tumino, A.

    2015-02-01

    The 17O ( p ,α)14N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the 17O ( p ,α)14N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of the narrow resonance at Ec.m.R = 65 keV (EX =5.673 MeV). The strength of the 65 keV resonance in the 17O ( p ,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel.

  13. THM determination of the 65 keV resonance strength intervening in the {sup 17}O(p,α){sup 14}N reaction rate

    SciTech Connect

    Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Burjan, S. V.; Hons, Z.; Kroha, V.; Coc, A.; Hammache, F.; Irgaziev, B.; Kiss, G. G.; Somorjai, E.; Lamia, L.; Mukhamedzhanov, A.; and others

    2015-02-24

    The {sup 17}O(p,α){sup 14}N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of the narrow resonance at E{sub c.m.}{sup R} = 65 keV (E{sub X} =5.673 MeV). The strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel.

  14. Study of the γ decay of high-lying states in 208Pb via inelastic scattering of 17O ions

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Kmiecik, M.; Bracco, A.; Leoni, S.; Maj, A.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemala, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; De Angelis, G.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Lenzi, S.; Lunardi, S.; Mengoni, D.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Recchia, F.; Sahin, E.; Siebeck, B.; Siem, S.; Ur, C.; Valiente Dobon, J. J.

    2014-03-01

    A measurement of the high-lying states in 208Pb has been made using 17O beams at 20 MeV/u. The gamma decay following inelastic excitation was measured with the detector system AGATA Demonstrator based on segmented HPGe detectors, coupled to an array of large volume LaBr3:Ce scintillators and to an array of Si detectors. Preliminary results in comparison with (γ,γ') data, for states in the 5-8 MeV energy interval, are presented.

  15. Review of NMR characterization of pyrolysis oils

    DOE PAGESBeta

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  16. Characterization of Oxygen Bridged Manganese Model Complexes Using Multifrequency (17)O-Hyperfine EPR Spectroscopies and Density Functional Theory.

    PubMed

    Rapatskiy, Leonid; Ames, William M; Pérez-Navarro, Montserrat; Savitsky, Anton; Griese, Julia J; Weyhermüller, Thomas; Shafaat, Hannah S; Högbom, Martin; Neese, Frank; Pantazis, Dimitrios A; Cox, Nicholas

    2015-10-29

    Multifrequency pulsed EPR data are reported for a series of oxygen bridged (μ-oxo/μ-hydroxo) bimetallic manganese complexes where the oxygen is labeled with the magnetically active isotope (17)O (I = 5/2). Two synthetic complexes and two biological metallocofactors are examined: a planar bis-μ-oxo bridged complex and a bent, bis-μ-oxo-μ-carboxylato bridge complex; the dimanganese catalase, which catalyzes the dismutation of H2O2 to H2O and O2, and the recently identified manganese/iron cofactor of the R2lox protein, a homologue of the small subunit of the ribonuclotide reductase enzyme (class 1c). High field (W-band) hyperfine EPR spectroscopies are demonstrated to be ideal methods to characterize the (17)O magnetic interactions, allowing a magnetic fingerprint for the bridging oxygen ligand to be developed. It is shown that the μ-oxo bridge motif displays a small positive isotropic hyperfine coupling constant of about +5 to +7 MHz and an anisotropic/dipolar coupling of -9 MHz. In addition, protonation of the bridge is correlated with an increase of the hyperfine coupling constant. Broken symmetry density functional theory is evaluated as a predictive tool for estimating hyperfine coupling of bridging species. Experimental and theoretical results provide a framework for the characterization of the oxygen bridge in Mn metallocofactor systems, including the water oxidizing cofactor of photosystem II, allowing the substrate/solvent interface to be examined throughout its catalytic cycle. PMID:26225537

  17. Application of the Trojan Horse Method to study neutron induced reactions: the 17O(n, α)14C reaction

    NASA Astrophysics Data System (ADS)

    Gulino, M.; Spitaleri, C.; Tang, X. D.; Guardo, G. L.; Lamia, L.; Cherubini, S.; Bucher, B.; Burjan, V.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Goldberg, V. Z.; Hons, Z.; Kroha, V.; Lamm, L.; La Cognata, M.; Li, C.; Ma, C.; Mrazek, J.; Mukhamedzhanov, A. M.; Notani, M.; O'Brien, S.; Pizzone, R. G.; Rapisarda, G. G.; Roberson, D.; Sergi, M. L.; Tan, W.; Thompson, I. J.; Wiescher, M.

    2014-03-01

    The reaction 17O(n, α)14C was studied using virtual neutrons coming from the quasi-free deuteron break-up in the three body reaction 17O+d → α+14C+p. This technique, called virtual neutron method, extends the Trojan Horse method to neutron-induced reactions allowing to study the reaction cross section avoiding the suppression effects coming from the penetrability of the centrifugal barrier. For incident neutron energies from thermal up to a few hundred keV, direct experiments have shown the population of two out of three expected excited states at energies 8213 keV and 8282 keV and the influence of the sub-threshold level at 8038 keV. In the present experiment the 18O excited state at E* = 8.125 MeV, missing in the direct measurement, is observed. The angular distributions of the populated resonances have been measured for the first time. The results unambiguously indicate the ability of the method to overcome the centrifugal barrier suppression effect and to pick out the contribution of the bare nuclear interaction.

  18. Physical and Chemical Effects of Two-Phase Brine/Supercritical-CO2 Fluid Flow on Clastic Rocks: Real-Time Monitoring and NMR Imaging of Flow-Through Core Experiments

    NASA Astrophysics Data System (ADS)

    Shaw, C. A.; Vogt, S.; Maneval, J. E.; Brox, T.; Skidmore, M. L.; Codd, S. L.; Seymour, J. D.

    2010-12-01

    Sandstone core samples were challenged with a supercritical CO2-saturated brine mixture in a laboratory flow-through core reactor system over a range of temperatures and brine strengths. Cores of quartz arenite from the Berea formation were selected to represent ideal ‘clean’ sandstone These laboratory experiments potentially provide an analog for the acidification of pore fluids near the brine/CO2 interface during CO2 flooding of depleted clastic hydrocarbon reservoirs for carbon sequestration. Flow in the reactor was perpendicular to bedding. Initial experiments were run at 50°C and 100°C with brine concentrations of 1g/L and 10g/L (TDS) to test effects of different temperatures and brine compositions. Real-time monitoring of fluid pH and conductivity provided a measure of reaction rates. Introduction of supercritical CO2 into the brine-saturated cores initiated a reduction in pH accompanied by an increase in conductivity. NMR images of fresh cores were compared with images of challenged cores using a protocol for pixel-by-pixel comparison to determine the effects on bulk pore volume and geometry. Two types of imaging experiments were conducted: multi-slice spin echo and 3-D spin echo images. Multi-slice experiments had a slice thickness of 1.5 mm and an in-plane resolution of 0.27 mm x 0.27 mm, and 3-D experiments had a resolution of 0.47 mm x 0.55 mm x 0.55mm. Imaging results reflected the observed changes in the physical and chemical structure post-challenge. Two-dimensional relaxation correlation experiments were also conducted to probe the pore sizes, connectivity and fluid saturation of the rock cores before and after challenging. Chemical analyses and microscopic examination of the challenged cores will provide a better understanding of alteration in the cores and the changes in the volume, geometry and connectivity of pore space.

  19. Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model?

    NASA Astrophysics Data System (ADS)

    Risi, C.; Landais, A.; Winkler, R.; Vimeux, F.

    2013-09-01

    Combined measurements of the H218O and HDO isotopic ratios in precipitation, leading to second-order parameter D-excess, have provided additional constraints on past climates compared to the H218O isotopic ratio alone. More recently, measurements of H217O have led to another second-order parameter: 17O-excess. Recent studies suggest that 17O-excess in polar ice may provide information on evaporative conditions at the moisture source. However, the processes controlling the spatio-temporal distribution of 17O-excess are still far from being fully understood. We use the isotopic general circulation model (GCM) LMDZ to better understand what controls d-excess and 17O-excess in precipitation at present-day (PD) and during the last glacial maximum (LGM). The simulation of D-excess and 17O-excess is evaluated against measurements in meteoric water, water vapor and polar ice cores. A set of sensitivity tests and diagnostics are used to quantify the relative effects of evaporative conditions (sea surface temperature and relative humidity), Rayleigh distillation, mixing between vapors from different origins, precipitation re-evaporation and supersaturation during condensation at low temperature. In LMDZ, simulations suggest that in the tropics convective processes and rain re-evaporation are important controls on precipitation D-excess and 17O-excess. In higher latitudes, the effect of distillation, mixing between vapors from different origins and supersaturation are the most important controls. For example, the lower d-excess and 17O-excess at LGM simulated at LGM are mainly due to the supersaturation effect. The effect of supersaturation is however very sensitive to a parameter whose tuning would require more measurements and laboratory experiments. Evaporative conditions had previously been suggested to be key controlling factors of d-excess and 17O-excess, but LMDZ underestimates their role. More generally, some shortcomings in the simulation of 17O-excess by LMDZ